1/*
2 * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3 * Copyright (c) 2002-2008 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 *
17 * $FreeBSD$
18 */
19#include "opt_ah.h"
20
21#include "ah.h"
22#include "ah_internal.h"
23#include "ah_devid.h"
24#include "ah_desc.h"			/* NB: for HAL_PHYERR* */
25
26#include "ar5212/ar5212.h"
27#include "ar5212/ar5212reg.h"
28#include "ar5212/ar5212phy.h"
29
30#include "ah_eeprom_v3.h"
31
32#define	AR_NUM_GPIO	6		/* 6 GPIO pins */
33#define	AR_GPIOD_MASK	0x0000002F	/* GPIO data reg r/w mask */
34
35void
36ar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
37{
38	struct ath_hal_5212 *ahp = AH5212(ah);
39
40	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
41}
42
43HAL_BOOL
44ar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
45{
46	struct ath_hal_5212 *ahp = AH5212(ah);
47
48	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
49	return AH_TRUE;
50}
51
52void
53ar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
54{
55	struct ath_hal_5212 *ahp = AH5212(ah);
56
57	OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
58}
59
60HAL_BOOL
61ar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
62{
63	struct ath_hal_5212 *ahp = AH5212(ah);
64
65	/* save it since it must be rewritten on reset */
66	OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
67
68	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
69	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
70	return AH_TRUE;
71}
72
73/*
74 * Attempt to change the cards operating regulatory domain to the given value
75 */
76HAL_BOOL
77ar5212SetRegulatoryDomain(struct ath_hal *ah,
78	uint16_t regDomain, HAL_STATUS *status)
79{
80	HAL_STATUS ecode;
81
82	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
83		ecode = HAL_EINVAL;
84		goto bad;
85	}
86	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
87		ecode = HAL_EEWRITE;
88		goto bad;
89	}
90#ifdef AH_SUPPORT_WRITE_REGDOMAIN
91	if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
92		HALDEBUG(ah, HAL_DEBUG_ANY,
93		    "%s: set regulatory domain to %u (0x%x)\n",
94		    __func__, regDomain, regDomain);
95		AH_PRIVATE(ah)->ah_currentRD = regDomain;
96		return AH_TRUE;
97	}
98#endif
99	ecode = HAL_EIO;
100bad:
101	if (status)
102		*status = ecode;
103	return AH_FALSE;
104}
105
106/*
107 * Return the wireless modes (a,b,g,t) supported by hardware.
108 *
109 * This value is what is actually supported by the hardware
110 * and is unaffected by regulatory/country code settings.
111 */
112u_int
113ar5212GetWirelessModes(struct ath_hal *ah)
114{
115	u_int mode = 0;
116
117	if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
118		mode = HAL_MODE_11A;
119		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
120			mode |= HAL_MODE_TURBO | HAL_MODE_108A;
121		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
122			mode |= HAL_MODE_11A_HALF_RATE;
123		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
124			mode |= HAL_MODE_11A_QUARTER_RATE;
125	}
126	if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
127		mode |= HAL_MODE_11B;
128	if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
129	    AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
130		mode |= HAL_MODE_11G;
131		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
132			mode |= HAL_MODE_108G;
133		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
134			mode |= HAL_MODE_11G_HALF_RATE;
135		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
136			mode |= HAL_MODE_11G_QUARTER_RATE;
137	}
138	return mode;
139}
140
141/*
142 * Set the interrupt and GPIO values so the ISR can disable RF
143 * on a switch signal.  Assumes GPIO port and interrupt polarity
144 * are set prior to call.
145 */
146void
147ar5212EnableRfKill(struct ath_hal *ah)
148{
149	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
150	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
151	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
152
153	/*
154	 * Configure the desired GPIO port for input
155	 * and enable baseband rf silence.
156	 */
157	ath_hal_gpioCfgInput(ah, select);
158	OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
159	/*
160	 * If radio disable switch connection to GPIO bit x is enabled
161	 * program GPIO interrupt.
162	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
163	 * verified that it is a later version of eeprom, it has a place for
164	 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
165	 * connection is present.
166	 */
167	ath_hal_gpioSetIntr(ah, select,
168	    (ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
169}
170
171/*
172 * Change the LED blinking pattern to correspond to the connectivity
173 */
174void
175ar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
176{
177	static const uint32_t ledbits[8] = {
178		AR_PCICFG_LEDCTL_NONE,	/* HAL_LED_INIT */
179		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_SCAN */
180		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_AUTH */
181		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_ASSOC*/
182		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_RUN */
183		AR_PCICFG_LEDCTL_NONE,
184		AR_PCICFG_LEDCTL_NONE,
185		AR_PCICFG_LEDCTL_NONE,
186	};
187	uint32_t bits;
188
189	bits = OS_REG_READ(ah, AR_PCICFG);
190	if (IS_2417(ah)) {
191		/*
192		 * Enable LED for Nala. There is a bit marked reserved
193		 * that must be set and we also turn on the power led.
194		 * Because we mark s/w LED control setting the control
195		 * status bits below is meangless (the driver must flash
196		 * the LED(s) using the GPIO lines).
197		 */
198		bits = (bits &~ AR_PCICFG_LEDMODE)
199		     | SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
200#if 0
201		     | SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
202#endif
203		     | 0x08000000;
204	}
205	bits = (bits &~ AR_PCICFG_LEDCTL)
206	     | SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
207	OS_REG_WRITE(ah, AR_PCICFG, bits);
208}
209
210/*
211 * Change association related fields programmed into the hardware.
212 * Writing a valid BSSID to the hardware effectively enables the hardware
213 * to synchronize its TSF to the correct beacons and receive frames coming
214 * from that BSSID. It is called by the SME JOIN operation.
215 */
216void
217ar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
218{
219	struct ath_hal_5212 *ahp = AH5212(ah);
220
221	/* save bssid for possible re-use on reset */
222	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
223	ahp->ah_assocId = assocId;
224	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
225	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
226				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
227}
228
229/*
230 * Get the current hardware tsf for stamlme
231 */
232uint64_t
233ar5212GetTsf64(struct ath_hal *ah)
234{
235	uint32_t low1, low2, u32;
236
237	/* sync multi-word read */
238	low1 = OS_REG_READ(ah, AR_TSF_L32);
239	u32 = OS_REG_READ(ah, AR_TSF_U32);
240	low2 = OS_REG_READ(ah, AR_TSF_L32);
241	if (low2 < low1) {	/* roll over */
242		/*
243		 * If we are not preempted this will work.  If we are
244		 * then we re-reading AR_TSF_U32 does no good as the
245		 * low bits will be meaningless.  Likewise reading
246		 * L32, U32, U32, then comparing the last two reads
247		 * to check for rollover doesn't help if preempted--so
248		 * we take this approach as it costs one less PCI read
249		 * which can be noticeable when doing things like
250		 * timestamping packets in monitor mode.
251		 */
252		u32++;
253	}
254	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
255}
256
257/*
258 * Get the current hardware tsf for stamlme
259 */
260uint32_t
261ar5212GetTsf32(struct ath_hal *ah)
262{
263	return OS_REG_READ(ah, AR_TSF_L32);
264}
265
266void
267ar5212SetTsf64(struct ath_hal *ah, uint64_t tsf64)
268{
269	OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
270	OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
271}
272
273/*
274 * Reset the current hardware tsf for stamlme.
275 */
276void
277ar5212ResetTsf(struct ath_hal *ah)
278{
279
280	uint32_t val = OS_REG_READ(ah, AR_BEACON);
281
282	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
283	/*
284	 * When resetting the TSF, write twice to the
285	 * corresponding register; each write to the RESET_TSF bit toggles
286	 * the internal signal to cause a reset of the TSF - but if the signal
287	 * is left high, it will reset the TSF on the next chip reset also!
288	 * writing the bit an even number of times fixes this issue
289	 */
290	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
291}
292
293/*
294 * Set or clear hardware basic rate bit
295 * Set hardware basic rate set if basic rate is found
296 * and basic rate is equal or less than 2Mbps
297 */
298void
299ar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
300{
301	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
302	uint32_t reg;
303	uint8_t xset;
304	int i;
305
306	if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan))
307		return;
308	xset = 0;
309	for (i = 0; i < rs->rs_count; i++) {
310		uint8_t rset = rs->rs_rates[i];
311		/* Basic rate defined? */
312		if ((rset & 0x80) && (rset &= 0x7f) >= xset)
313			xset = rset;
314	}
315	/*
316	 * Set the h/w bit to reflect whether or not the basic
317	 * rate is found to be equal or less than 2Mbps.
318	 */
319	reg = OS_REG_READ(ah, AR_STA_ID1);
320	if (xset && xset/2 <= 2)
321		OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
322	else
323		OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
324}
325
326/*
327 * Grab a semi-random value from hardware registers - may not
328 * change often
329 */
330uint32_t
331ar5212GetRandomSeed(struct ath_hal *ah)
332{
333	uint32_t nf;
334
335	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
336	if (nf & 0x100)
337		nf = 0 - ((nf ^ 0x1ff) + 1);
338	return (OS_REG_READ(ah, AR_TSF_U32) ^
339		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
340}
341
342/*
343 * Detect if our card is present
344 */
345HAL_BOOL
346ar5212DetectCardPresent(struct ath_hal *ah)
347{
348	uint16_t macVersion, macRev;
349	uint32_t v;
350
351	/*
352	 * Read the Silicon Revision register and compare that
353	 * to what we read at attach time.  If the same, we say
354	 * a card/device is present.
355	 */
356	v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
357	macVersion = v >> AR_SREV_ID_S;
358	macRev = v & AR_SREV_REVISION;
359	return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
360		AH_PRIVATE(ah)->ah_macRev == macRev);
361}
362
363void
364ar5212EnableMibCounters(struct ath_hal *ah)
365{
366	/* NB: this just resets the mib counter machinery */
367	OS_REG_WRITE(ah, AR_MIBC,
368	    ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
369}
370
371void
372ar5212DisableMibCounters(struct ath_hal *ah)
373{
374	OS_REG_WRITE(ah, AR_MIBC,  AR_MIBC | AR_MIBC_CMC);
375}
376
377/*
378 * Update MIB Counters
379 */
380void
381ar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
382{
383	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
384	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
385	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
386	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
387	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
388}
389
390/*
391 * Detect if the HW supports spreading a CCK signal on channel 14
392 */
393HAL_BOOL
394ar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
395{
396	return AH_TRUE;
397}
398
399/*
400 * Get the rssi of frame curently being received.
401 */
402uint32_t
403ar5212GetCurRssi(struct ath_hal *ah)
404{
405	return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
406}
407
408u_int
409ar5212GetDefAntenna(struct ath_hal *ah)
410{
411	return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
412}
413
414void
415ar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
416{
417	OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
418}
419
420HAL_ANT_SETTING
421ar5212GetAntennaSwitch(struct ath_hal *ah)
422{
423	return AH5212(ah)->ah_antControl;
424}
425
426HAL_BOOL
427ar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting)
428{
429	struct ath_hal_5212 *ahp = AH5212(ah);
430	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
431
432	if (!ahp->ah_phyPowerOn || chan == AH_NULL) {
433		/* PHY powered off, just stash settings */
434		ahp->ah_antControl = setting;
435		ahp->ah_diversity = (setting == HAL_ANT_VARIABLE);
436		return AH_TRUE;
437	}
438	return ar5212SetAntennaSwitchInternal(ah, setting, chan);
439}
440
441HAL_BOOL
442ar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
443{
444	return AH_TRUE;
445}
446
447HAL_BOOL
448ar5212SetSifsTime(struct ath_hal *ah, u_int us)
449{
450	struct ath_hal_5212 *ahp = AH5212(ah);
451
452	if (us > ath_hal_mac_usec(ah, 0xffff)) {
453		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
454		    __func__, us);
455		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
456		return AH_FALSE;
457	} else {
458		/* convert to system clocks */
459		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us-2));
460		ahp->ah_sifstime = us;
461		return AH_TRUE;
462	}
463}
464
465u_int
466ar5212GetSifsTime(struct ath_hal *ah)
467{
468	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
469	return ath_hal_mac_usec(ah, clks)+2;	/* convert from system clocks */
470}
471
472HAL_BOOL
473ar5212SetSlotTime(struct ath_hal *ah, u_int us)
474{
475	struct ath_hal_5212 *ahp = AH5212(ah);
476
477	if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
478		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
479		    __func__, us);
480		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
481		return AH_FALSE;
482	} else {
483		/* convert to system clocks */
484		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
485		ahp->ah_slottime = us;
486		return AH_TRUE;
487	}
488}
489
490u_int
491ar5212GetSlotTime(struct ath_hal *ah)
492{
493	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
494	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
495}
496
497HAL_BOOL
498ar5212SetAckTimeout(struct ath_hal *ah, u_int us)
499{
500	struct ath_hal_5212 *ahp = AH5212(ah);
501
502	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
503		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
504		    __func__, us);
505		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
506		return AH_FALSE;
507	} else {
508		/* convert to system clocks */
509		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
510			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
511		ahp->ah_acktimeout = us;
512		return AH_TRUE;
513	}
514}
515
516u_int
517ar5212GetAckTimeout(struct ath_hal *ah)
518{
519	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
520	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
521}
522
523u_int
524ar5212GetAckCTSRate(struct ath_hal *ah)
525{
526	return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
527}
528
529HAL_BOOL
530ar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
531{
532	struct ath_hal_5212 *ahp = AH5212(ah);
533
534	if (high) {
535		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
536		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
537	} else {
538		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
539		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
540	}
541	return AH_TRUE;
542}
543
544HAL_BOOL
545ar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
546{
547	struct ath_hal_5212 *ahp = AH5212(ah);
548
549	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
550		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
551		    __func__, us);
552		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
553		return AH_FALSE;
554	} else {
555		/* convert to system clocks */
556		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
557			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
558		ahp->ah_ctstimeout = us;
559		return AH_TRUE;
560	}
561}
562
563u_int
564ar5212GetCTSTimeout(struct ath_hal *ah)
565{
566	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
567	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
568}
569
570/* Setup decompression for given key index */
571HAL_BOOL
572ar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
573{
574	struct ath_hal_5212 *ahp = AH5212(ah);
575
576        if (keyidx >= HAL_DECOMP_MASK_SIZE)
577                return AH_FALSE;
578        OS_REG_WRITE(ah, AR_DCM_A, keyidx);
579        OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
580        ahp->ah_decompMask[keyidx] = en;
581
582        return AH_TRUE;
583}
584
585/* Setup coverage class */
586void
587ar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
588{
589	uint32_t slot, timeout, eifs;
590	u_int clkRate;
591
592	AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
593
594	if (now) {
595		if (AH_PRIVATE(ah)->ah_coverageClass == 0)
596			return;
597
598		/* Don't apply coverage class to non A channels */
599		if (!IEEE80211_IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
600			return;
601
602		/* Get core clock rate */
603		clkRate = ath_hal_mac_clks(ah, 1);
604
605		/* Compute EIFS */
606		slot = coverageclass * 3 * clkRate;
607		eifs = coverageclass * 6 * clkRate;
608		if (IEEE80211_IS_CHAN_HALF(AH_PRIVATE(ah)->ah_curchan)) {
609			slot += IFS_SLOT_HALF_RATE;
610			eifs += IFS_EIFS_HALF_RATE;
611		} else if (IEEE80211_IS_CHAN_QUARTER(AH_PRIVATE(ah)->ah_curchan)) {
612			slot += IFS_SLOT_QUARTER_RATE;
613			eifs += IFS_EIFS_QUARTER_RATE;
614		} else { /* full rate */
615			slot += IFS_SLOT_FULL_RATE;
616			eifs += IFS_EIFS_FULL_RATE;
617		}
618
619		/*
620		 * Add additional time for air propagation for ACK and CTS
621		 * timeouts. This value is in core clocks.
622  		 */
623		timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
624
625		/*
626		 * Write the values: slot, eifs, ack/cts timeouts.
627		 */
628		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
629		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
630		OS_REG_WRITE(ah, AR_TIME_OUT,
631			  SM(timeout, AR_TIME_OUT_CTS)
632			| SM(timeout, AR_TIME_OUT_ACK));
633	}
634}
635
636HAL_STATUS
637ar5212SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
638    uint32_t nextStart, HAL_QUIET_FLAG flag)
639{
640	OS_REG_WRITE(ah, AR_QUIET2, period | (duration << AR_QUIET2_QUIET_DUR_S));
641	if (flag & HAL_QUIET_ENABLE) {
642		OS_REG_WRITE(ah, AR_QUIET1, nextStart | (1 << 16));
643	}
644	else {
645		OS_REG_WRITE(ah, AR_QUIET1, nextStart);
646	}
647	return HAL_OK;
648}
649
650void
651ar5212SetPCUConfig(struct ath_hal *ah)
652{
653	ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
654}
655
656/*
657 * Return whether an external 32KHz crystal should be used
658 * to reduce power consumption when sleeping.  We do so if
659 * the crystal is present (obtained from EEPROM) and if we
660 * are not running as an AP and are configured to use it.
661 */
662HAL_BOOL
663ar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
664{
665	if (opmode != HAL_M_HOSTAP) {
666		struct ath_hal_5212 *ahp = AH5212(ah);
667		return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
668		       (ahp->ah_enable32kHzClock == USE_32KHZ ||
669		        ahp->ah_enable32kHzClock == AUTO_32KHZ);
670	} else
671		return AH_FALSE;
672}
673
674/*
675 * If 32KHz clock exists, use it to lower power consumption during sleep
676 *
677 * Note: If clock is set to 32 KHz, delays on accessing certain
678 *       baseband registers (27-31, 124-127) are required.
679 */
680void
681ar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
682{
683	if (ar5212Use32KHzclock(ah, opmode)) {
684		/*
685		 * Enable clocks to be turned OFF in BB during sleep
686		 * and also enable turning OFF 32MHz/40MHz Refclk
687		 * from A2.
688		 */
689		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
690		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
691		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
692		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
693		OS_REG_WRITE(ah, AR_TSF_PARM, 61);  /* 32 KHz TSF incr */
694		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
695
696		if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
697			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x26);
698			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0d);
699			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x07);
700			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x3f);
701			/* # Set sleep clock rate to 32 KHz. */
702			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
703		} else {
704			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x0a);
705			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0c);
706			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x03);
707			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x20);
708			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
709		}
710	} else {
711		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
712		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
713
714		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32MHz TSF inc */
715
716		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
717		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
718
719		if (IS_2417(ah))
720			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
721		else if (IS_HB63(ah))
722			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
723		else
724			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
725		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
726		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
727		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
728		    IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18);
729		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
730		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
731	}
732}
733
734/*
735 * If 32KHz clock exists, turn it off and turn back on the 32Mhz
736 */
737void
738ar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
739{
740	if (ar5212Use32KHzclock(ah, opmode)) {
741		/* # Set sleep clock rate back to 32 MHz. */
742		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
743		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
744
745		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32 MHz TSF incr */
746		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
747		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
748
749		/*
750		 * Restore BB registers to power-on defaults
751		 */
752		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
753		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
754		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0e);
755		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
756		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
757		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
758		    IS_RAD5112_ANY(ah) || IS_5413(ah) ?  0x14 : 0x18);
759	}
760}
761
762/*
763 * Adjust NF based on statistical values for 5GHz frequencies.
764 * Default method: this may be overridden by the rf backend.
765 */
766int16_t
767ar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
768{
769	static const struct {
770		uint16_t freqLow;
771		int16_t	  adjust;
772	} adjustDef[] = {
773		{ 5790,	11 },	/* NB: ordered high -> low */
774		{ 5730, 10 },
775		{ 5690,  9 },
776		{ 5660,  8 },
777		{ 5610,  7 },
778		{ 5530,  5 },
779		{ 5450,  4 },
780		{ 5379,  2 },
781		{ 5209,  0 },
782		{ 3000,  1 },
783		{    0,  0 },
784	};
785	int i;
786
787	for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
788		;
789	return adjustDef[i].adjust;
790}
791
792HAL_STATUS
793ar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
794	uint32_t capability, uint32_t *result)
795{
796#define	MACVERSION(ah)	AH_PRIVATE(ah)->ah_macVersion
797	struct ath_hal_5212 *ahp = AH5212(ah);
798	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
799	const struct ar5212AniState *ani;
800
801	switch (type) {
802	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
803		switch (capability) {
804		case HAL_CIPHER_AES_CCM:
805			return pCap->halCipherAesCcmSupport ?
806				HAL_OK : HAL_ENOTSUPP;
807		case HAL_CIPHER_AES_OCB:
808		case HAL_CIPHER_TKIP:
809		case HAL_CIPHER_WEP:
810		case HAL_CIPHER_MIC:
811		case HAL_CIPHER_CLR:
812			return HAL_OK;
813		default:
814			return HAL_ENOTSUPP;
815		}
816	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
817		switch (capability) {
818		case 0:			/* hardware capability */
819			return HAL_OK;
820		case 1:
821			return (ahp->ah_staId1Defaults &
822			    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
823		}
824		return HAL_EINVAL;
825	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
826		switch (capability) {
827		case 0:			/* hardware capability */
828			return pCap->halTkipMicTxRxKeySupport ?
829				HAL_ENXIO : HAL_OK;
830		case 1:			/* current setting */
831			return (ahp->ah_miscMode &
832			    AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
833		}
834		return HAL_EINVAL;
835	case HAL_CAP_WME_TKIPMIC:	/* hardware can do TKIP MIC w/ WMM */
836		/* XXX move to capability bit */
837		return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
838		    (MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
839		     AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
840	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
841		switch (capability) {
842		case 0:			/* hardware capability */
843			return HAL_OK;
844		case 1:			/* current setting */
845			return ahp->ah_diversity ? HAL_OK : HAL_ENXIO;
846		case HAL_CAP_STRONG_DIV:
847			*result = OS_REG_READ(ah, AR_PHY_RESTART);
848			*result = MS(*result, AR_PHY_RESTART_DIV_GC);
849			return HAL_OK;
850		}
851		return HAL_EINVAL;
852	case HAL_CAP_DIAG:
853		*result = AH_PRIVATE(ah)->ah_diagreg;
854		return HAL_OK;
855	case HAL_CAP_TPC:
856		switch (capability) {
857		case 0:			/* hardware capability */
858			return HAL_OK;
859		case 1:
860			return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
861		}
862		return HAL_OK;
863	case HAL_CAP_PHYDIAG:		/* radar pulse detection capability */
864		switch (capability) {
865		case HAL_CAP_RADAR:
866			return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
867			    HAL_OK: HAL_ENXIO;
868		case HAL_CAP_AR:
869			return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
870			    ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
871			       HAL_OK: HAL_ENXIO;
872		}
873		return HAL_ENXIO;
874	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
875		switch (capability) {
876		case 0:			/* hardware capability */
877			return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENXIO;
878		case 1:
879			return (ahp->ah_staId1Defaults &
880			    AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
881		}
882		return HAL_EINVAL;
883	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
884		switch (capability) {
885		case 0:			/* hardware capability */
886			return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
887		case 1:
888			return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
889				HAL_OK : HAL_ENXIO;
890		}
891		return HAL_EINVAL;
892	case HAL_CAP_TPC_ACK:
893		*result = MS(ahp->ah_macTPC, AR_TPC_ACK);
894		return HAL_OK;
895	case HAL_CAP_TPC_CTS:
896		*result = MS(ahp->ah_macTPC, AR_TPC_CTS);
897		return HAL_OK;
898	case HAL_CAP_INTMIT:		/* interference mitigation */
899		switch (capability) {
900		case HAL_CAP_INTMIT_PRESENT:		/* hardware capability */
901			return HAL_OK;
902		case HAL_CAP_INTMIT_ENABLE:
903			return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
904				HAL_OK : HAL_ENXIO;
905		case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
906		case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
907		case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
908		case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
909		case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
910			ani = ar5212AniGetCurrentState(ah);
911			if (ani == AH_NULL)
912				return HAL_ENXIO;
913			switch (capability) {
914			case 2:	*result = ani->noiseImmunityLevel; break;
915			case 3: *result = !ani->ofdmWeakSigDetectOff; break;
916			case 4: *result = ani->cckWeakSigThreshold; break;
917			case 5: *result = ani->firstepLevel; break;
918			case 6: *result = ani->spurImmunityLevel; break;
919			}
920			return HAL_OK;
921		}
922		return HAL_EINVAL;
923	default:
924		return ath_hal_getcapability(ah, type, capability, result);
925	}
926#undef MACVERSION
927}
928
929HAL_BOOL
930ar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
931	uint32_t capability, uint32_t setting, HAL_STATUS *status)
932{
933#define	N(a)	(sizeof(a)/sizeof(a[0]))
934	struct ath_hal_5212 *ahp = AH5212(ah);
935	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
936	uint32_t v;
937
938	switch (type) {
939	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
940		if (setting)
941			ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
942		else
943			ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
944		return AH_TRUE;
945	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
946		if (!pCap->halTkipMicTxRxKeySupport)
947			return AH_FALSE;
948		/* NB: true =>'s use split key cache layout */
949		if (setting)
950			ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
951		else
952			ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
953		/* NB: write here so keys can be setup w/o a reset */
954		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);
955		return AH_TRUE;
956	case HAL_CAP_DIVERSITY:
957		switch (capability) {
958		case 0:
959			return AH_FALSE;
960		case 1:	/* setting */
961			if (ahp->ah_phyPowerOn) {
962				if (capability == HAL_CAP_STRONG_DIV) {
963					v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
964					if (setting)
965						v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
966					else
967						v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
968					OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
969				}
970			}
971			ahp->ah_diversity = (setting != 0);
972			return AH_TRUE;
973
974		case HAL_CAP_STRONG_DIV:
975			if (! ahp->ah_phyPowerOn)
976				return AH_FALSE;
977			v = OS_REG_READ(ah, AR_PHY_RESTART);
978			v &= ~AR_PHY_RESTART_DIV_GC;
979			v |= SM(setting, AR_PHY_RESTART_DIV_GC);
980			OS_REG_WRITE(ah, AR_PHY_RESTART, v);
981			return AH_TRUE;
982		default:
983			return AH_FALSE;
984		}
985	case HAL_CAP_DIAG:		/* hardware diagnostic support */
986		/*
987		 * NB: could split this up into virtual capabilities,
988		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
989		 *     seems worth the additional complexity.
990		 */
991		AH_PRIVATE(ah)->ah_diagreg = setting;
992		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
993		return AH_TRUE;
994	case HAL_CAP_TPC:
995		ahp->ah_tpcEnabled = (setting != 0);
996		return AH_TRUE;
997	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
998		if (setting)
999			ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
1000		else
1001			ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1002		return AH_TRUE;
1003	case HAL_CAP_TPC_ACK:
1004	case HAL_CAP_TPC_CTS:
1005		setting += ahp->ah_txPowerIndexOffset;
1006		if (setting > 63)
1007			setting = 63;
1008		if (type == HAL_CAP_TPC_ACK) {
1009			ahp->ah_macTPC &= AR_TPC_ACK;
1010			ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
1011		} else {
1012			ahp->ah_macTPC &= AR_TPC_CTS;
1013			ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
1014		}
1015		OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
1016		return AH_TRUE;
1017	case HAL_CAP_INTMIT: {		/* interference mitigation */
1018		/* This maps the public ANI commands to the internal ANI commands */
1019		/* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1020		static const HAL_ANI_CMD cmds[] = {
1021			HAL_ANI_PRESENT,
1022			HAL_ANI_MODE,
1023			HAL_ANI_NOISE_IMMUNITY_LEVEL,
1024			HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1025			HAL_ANI_CCK_WEAK_SIGNAL_THR,
1026			HAL_ANI_FIRSTEP_LEVEL,
1027			HAL_ANI_SPUR_IMMUNITY_LEVEL,
1028		};
1029		return capability < N(cmds) ?
1030			AH5212(ah)->ah_aniControl(ah, cmds[capability], setting) :
1031			AH_FALSE;
1032	}
1033	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
1034		if (pCap->halTsfAddSupport) {
1035			if (setting)
1036				ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
1037			else
1038				ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
1039			return AH_TRUE;
1040		}
1041		/* fall thru... */
1042	default:
1043		return ath_hal_setcapability(ah, type, capability,
1044				setting, status);
1045	}
1046#undef N
1047}
1048
1049HAL_BOOL
1050ar5212GetDiagState(struct ath_hal *ah, int request,
1051	const void *args, uint32_t argsize,
1052	void **result, uint32_t *resultsize)
1053{
1054	struct ath_hal_5212 *ahp = AH5212(ah);
1055	HAL_ANI_STATS *astats;
1056
1057	(void) ahp;
1058	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
1059		return AH_TRUE;
1060	switch (request) {
1061	case HAL_DIAG_EEPROM:
1062	case HAL_DIAG_EEPROM_EXP_11A:
1063	case HAL_DIAG_EEPROM_EXP_11B:
1064	case HAL_DIAG_EEPROM_EXP_11G:
1065	case HAL_DIAG_RFGAIN:
1066		return ath_hal_eepromDiag(ah, request,
1067		    args, argsize, result, resultsize);
1068	case HAL_DIAG_RFGAIN_CURSTEP:
1069		*result = __DECONST(void *, ahp->ah_gainValues.currStep);
1070		*resultsize = (*result == AH_NULL) ?
1071			0 : sizeof(GAIN_OPTIMIZATION_STEP);
1072		return AH_TRUE;
1073	case HAL_DIAG_PCDAC:
1074		*result = ahp->ah_pcdacTable;
1075		*resultsize = ahp->ah_pcdacTableSize;
1076		return AH_TRUE;
1077	case HAL_DIAG_TXRATES:
1078		*result = &ahp->ah_ratesArray[0];
1079		*resultsize = sizeof(ahp->ah_ratesArray);
1080		return AH_TRUE;
1081	case HAL_DIAG_ANI_CURRENT:
1082		*result = ar5212AniGetCurrentState(ah);
1083		*resultsize = (*result == AH_NULL) ?
1084			0 : sizeof(struct ar5212AniState);
1085		return AH_TRUE;
1086	case HAL_DIAG_ANI_STATS:
1087		OS_MEMZERO(&ahp->ext_ani_stats, sizeof(ahp->ext_ani_stats));
1088		astats = ar5212AniGetCurrentStats(ah);
1089		if (astats == NULL) {
1090			*result = NULL;
1091			*resultsize = 0;
1092		} else {
1093			OS_MEMCPY(&ahp->ext_ani_stats, astats, sizeof(HAL_ANI_STATS));
1094			*result = &ahp->ext_ani_stats;
1095			*resultsize = sizeof(ahp->ext_ani_stats);
1096		}
1097		return AH_TRUE;
1098	case HAL_DIAG_ANI_CMD:
1099		if (argsize != 2*sizeof(uint32_t))
1100			return AH_FALSE;
1101		AH5212(ah)->ah_aniControl(ah, ((const uint32_t *)args)[0],
1102			((const uint32_t *)args)[1]);
1103		return AH_TRUE;
1104	case HAL_DIAG_ANI_PARAMS:
1105		/*
1106		 * NB: We assume struct ar5212AniParams is identical
1107		 * to HAL_ANI_PARAMS; if they diverge then we'll need
1108		 * to handle it here
1109		 */
1110		if (argsize == 0 && args == AH_NULL) {
1111			struct ar5212AniState *aniState =
1112			    ar5212AniGetCurrentState(ah);
1113			if (aniState == AH_NULL)
1114				return AH_FALSE;
1115			*result = __DECONST(void *, aniState->params);
1116			*resultsize = sizeof(struct ar5212AniParams);
1117			return AH_TRUE;
1118		} else {
1119			if (argsize != sizeof(struct ar5212AniParams))
1120				return AH_FALSE;
1121			return ar5212AniSetParams(ah, args, args);
1122		}
1123		break;
1124	}
1125	return AH_FALSE;
1126}
1127
1128/*
1129 * Check whether there's an in-progress NF completion.
1130 *
1131 * Returns AH_TRUE if there's a in-progress NF calibration, AH_FALSE
1132 * otherwise.
1133 */
1134HAL_BOOL
1135ar5212IsNFCalInProgress(struct ath_hal *ah)
1136{
1137	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)
1138		return AH_TRUE;
1139	return AH_FALSE;
1140}
1141
1142/*
1143 * Wait for an in-progress NF calibration to complete.
1144 *
1145 * The completion function waits "i" times 10uS.
1146 * It returns AH_TRUE if the NF calibration completed (or was never
1147 * in progress); AH_FALSE if it was still in progress after "i" checks.
1148 */
1149HAL_BOOL
1150ar5212WaitNFCalComplete(struct ath_hal *ah, int i)
1151{
1152	int j;
1153	if (i <= 0)
1154		i = 1;	  /* it should run at least once */
1155	for (j = 0; j < i; j++) {
1156		if (! ar5212IsNFCalInProgress(ah))
1157			return AH_TRUE;
1158		OS_DELAY(10);
1159	}
1160	return AH_FALSE;
1161}
1162
1163void
1164ar5212EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
1165{
1166	uint32_t val;
1167	val = OS_REG_READ(ah, AR_PHY_RADAR_0);
1168
1169	if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) {
1170		val &= ~AR_PHY_RADAR_0_FIRPWR;
1171		val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR);
1172	}
1173	if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) {
1174		val &= ~AR_PHY_RADAR_0_RRSSI;
1175		val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI);
1176	}
1177	if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) {
1178		val &= ~AR_PHY_RADAR_0_HEIGHT;
1179		val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT);
1180	}
1181	if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) {
1182		val &= ~AR_PHY_RADAR_0_PRSSI;
1183		val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI);
1184	}
1185	if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) {
1186		val &= ~AR_PHY_RADAR_0_INBAND;
1187		val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND);
1188	}
1189	if (pe->pe_enabled)
1190		val |= AR_PHY_RADAR_0_ENA;
1191	else
1192		val &= ~ AR_PHY_RADAR_0_ENA;
1193
1194	if (IS_5413(ah)) {
1195
1196		if (pe->pe_blockradar == 1)
1197			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1198			    AR_PHY_RADAR_2_BLOCKOFDMWEAK);
1199		else
1200			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1201			    AR_PHY_RADAR_2_BLOCKOFDMWEAK);
1202
1203		if (pe->pe_en_relstep_check == 1)
1204			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1205			    AR_PHY_RADAR_2_ENRELSTEPCHK);
1206		else
1207			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1208			    AR_PHY_RADAR_2_ENRELSTEPCHK);
1209
1210		if (pe->pe_usefir128 == 1)
1211			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1212			    AR_PHY_RADAR_2_USEFIR128);
1213		else
1214			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1215			    AR_PHY_RADAR_2_USEFIR128);
1216
1217		if (pe->pe_enmaxrssi == 1)
1218			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1219			    AR_PHY_RADAR_2_ENMAXRSSI);
1220		else
1221			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1222			    AR_PHY_RADAR_2_ENMAXRSSI);
1223
1224		if (pe->pe_enrelpwr == 1)
1225			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1226			    AR_PHY_RADAR_2_ENRELPWRCHK);
1227		else
1228			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1229			    AR_PHY_RADAR_2_ENRELPWRCHK);
1230
1231		if (pe->pe_relpwr != HAL_PHYERR_PARAM_NOVAL)
1232			OS_REG_RMW_FIELD(ah, AR_PHY_RADAR_2,
1233			    AR_PHY_RADAR_2_RELPWR, pe->pe_relpwr);
1234
1235		if (pe->pe_relstep != HAL_PHYERR_PARAM_NOVAL)
1236			OS_REG_RMW_FIELD(ah, AR_PHY_RADAR_2,
1237			    AR_PHY_RADAR_2_RELSTEP, pe->pe_relstep);
1238
1239		if (pe->pe_maxlen != HAL_PHYERR_PARAM_NOVAL)
1240			OS_REG_RMW_FIELD(ah, AR_PHY_RADAR_2,
1241			    AR_PHY_RADAR_2_MAXLEN, pe->pe_maxlen);
1242	}
1243
1244	OS_REG_WRITE(ah, AR_PHY_RADAR_0, val);
1245}
1246
1247/*
1248 * Parameters for the AR5212 PHY.
1249 */
1250#define	AR5212_DFS_FIRPWR	-35
1251#define	AR5212_DFS_RRSSI	20
1252#define	AR5212_DFS_HEIGHT	14
1253#define	AR5212_DFS_PRSSI	6
1254#define	AR5212_DFS_INBAND	4
1255
1256/*
1257 * Default parameters for the AR5413 PHY.
1258 */
1259#define	AR5413_DFS_FIRPWR	-34
1260#define	AR5413_DFS_RRSSI	20
1261#define	AR5413_DFS_HEIGHT	10
1262#define	AR5413_DFS_PRSSI	15
1263#define	AR5413_DFS_INBAND	6
1264#define	AR5413_DFS_RELPWR	8
1265#define	AR5413_DFS_RELSTEP	31
1266#define	AR5413_DFS_MAXLEN	255
1267
1268HAL_BOOL
1269ar5212GetDfsDefaultThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
1270{
1271
1272	if (IS_5413(ah)) {
1273		pe->pe_firpwr = AR5413_DFS_FIRPWR;
1274		pe->pe_rrssi = AR5413_DFS_RRSSI;
1275		pe->pe_height = AR5413_DFS_HEIGHT;
1276		pe->pe_prssi = AR5413_DFS_PRSSI;
1277		pe->pe_inband = AR5413_DFS_INBAND;
1278		pe->pe_relpwr = AR5413_DFS_RELPWR;
1279		pe->pe_relstep = AR5413_DFS_RELSTEP;
1280		pe->pe_maxlen = AR5413_DFS_MAXLEN;
1281		pe->pe_usefir128 = 0;
1282		pe->pe_blockradar = 1;
1283		pe->pe_enmaxrssi = 1;
1284		pe->pe_enrelpwr = 1;
1285		pe->pe_en_relstep_check = 0;
1286	} else {
1287		pe->pe_firpwr = AR5212_DFS_FIRPWR;
1288		pe->pe_rrssi = AR5212_DFS_RRSSI;
1289		pe->pe_height = AR5212_DFS_HEIGHT;
1290		pe->pe_prssi = AR5212_DFS_PRSSI;
1291		pe->pe_inband = AR5212_DFS_INBAND;
1292		pe->pe_relpwr = 0;
1293		pe->pe_relstep = 0;
1294		pe->pe_maxlen = 0;
1295		pe->pe_usefir128 = 0;
1296		pe->pe_blockradar = 0;
1297		pe->pe_enmaxrssi = 0;
1298		pe->pe_enrelpwr = 0;
1299		pe->pe_en_relstep_check = 0;
1300	}
1301
1302	return (AH_TRUE);
1303}
1304
1305void
1306ar5212GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
1307{
1308	uint32_t val,temp;
1309
1310	val = OS_REG_READ(ah, AR_PHY_RADAR_0);
1311
1312	temp = MS(val,AR_PHY_RADAR_0_FIRPWR);
1313	temp |= 0xFFFFFF80;
1314	pe->pe_firpwr = temp;
1315	pe->pe_rrssi = MS(val, AR_PHY_RADAR_0_RRSSI);
1316	pe->pe_height =  MS(val, AR_PHY_RADAR_0_HEIGHT);
1317	pe->pe_prssi = MS(val, AR_PHY_RADAR_0_PRSSI);
1318	pe->pe_inband = MS(val, AR_PHY_RADAR_0_INBAND);
1319	pe->pe_enabled = !! (val & AR_PHY_RADAR_0_ENA);
1320
1321	pe->pe_relpwr = 0;
1322	pe->pe_relstep = 0;
1323	pe->pe_maxlen = 0;
1324	pe->pe_usefir128 = 0;
1325	pe->pe_blockradar = 0;
1326	pe->pe_enmaxrssi = 0;
1327	pe->pe_enrelpwr = 0;
1328	pe->pe_en_relstep_check = 0;
1329	pe->pe_extchannel = AH_FALSE;
1330
1331	if (IS_5413(ah)) {
1332		val = OS_REG_READ(ah, AR_PHY_RADAR_2);
1333		pe->pe_relpwr = !! MS(val, AR_PHY_RADAR_2_RELPWR);
1334		pe->pe_relstep = !! MS(val, AR_PHY_RADAR_2_RELSTEP);
1335		pe->pe_maxlen = !! MS(val, AR_PHY_RADAR_2_MAXLEN);
1336
1337		pe->pe_usefir128 = !! (val & AR_PHY_RADAR_2_USEFIR128);
1338		pe->pe_blockradar = !! (val & AR_PHY_RADAR_2_BLOCKOFDMWEAK);
1339		pe->pe_enmaxrssi = !! (val & AR_PHY_RADAR_2_ENMAXRSSI);
1340		pe->pe_enrelpwr = !! (val & AR_PHY_RADAR_2_ENRELPWRCHK);
1341		pe->pe_en_relstep_check =
1342		    !! (val & AR_PHY_RADAR_2_ENRELSTEPCHK);
1343	}
1344}
1345
1346/*
1347 * Process the radar phy error and extract the pulse duration.
1348 */
1349HAL_BOOL
1350ar5212ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs,
1351    uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event)
1352{
1353	uint8_t dur;
1354	uint8_t rssi;
1355
1356	/* Check whether the given phy error is a radar event */
1357	if ((rxs->rs_phyerr != HAL_PHYERR_RADAR) &&
1358	    (rxs->rs_phyerr != HAL_PHYERR_FALSE_RADAR_EXT))
1359		return AH_FALSE;
1360
1361	/*
1362	 * The first byte is the pulse width - if there's
1363	 * no data, simply set the duration to 0
1364	 */
1365	if (rxs->rs_datalen >= 1)
1366		/* The pulse width is byte 0 of the data */
1367		dur = ((uint8_t) buf[0]) & 0xff;
1368	else
1369		dur = 0;
1370
1371	/* Pulse RSSI is the normal reported RSSI */
1372	rssi = (uint8_t) rxs->rs_rssi;
1373
1374	/* 0 duration/rssi is not a valid radar event */
1375	if (dur == 0 && rssi == 0)
1376		return AH_FALSE;
1377
1378	HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, dur=%d\n",
1379	    __func__, rssi, dur);
1380
1381	/* Record the event */
1382	event->re_full_ts = fulltsf;
1383	event->re_ts = rxs->rs_tstamp;
1384	event->re_rssi = rssi;
1385	event->re_dur = dur;
1386	event->re_flags = HAL_DFS_EVENT_PRICH;
1387
1388	return AH_TRUE;
1389}
1390
1391/*
1392 * Return whether 5GHz fast-clock (44MHz) is enabled.
1393 * It's always disabled for AR5212 series NICs.
1394 */
1395HAL_BOOL
1396ar5212IsFastClockEnabled(struct ath_hal *ah)
1397{
1398	return AH_FALSE;
1399}
1400
1401/*
1402 * Return what percentage of the extension channel is busy.
1403 * This is always disabled for AR5212 series NICs.
1404 */
1405uint32_t
1406ar5212Get11nExtBusy(struct ath_hal *ah)
1407{
1408	return 0;
1409}
1410
1411/*
1412 * Channel survey support.
1413 */
1414HAL_BOOL
1415ar5212GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
1416{
1417	struct ath_hal_5212 *ahp = AH5212(ah);
1418	u_int32_t good = AH_TRUE;
1419
1420	/* XXX freeze/unfreeze mib counters */
1421	uint32_t rc = OS_REG_READ(ah, AR_RCCNT);
1422	uint32_t rf = OS_REG_READ(ah, AR_RFCNT);
1423	uint32_t tf = OS_REG_READ(ah, AR_TFCNT);
1424	uint32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1425
1426	if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cc) {
1427		/*
1428		 * Cycle counter wrap (or initial call); it's not possible
1429		 * to accurately calculate a value because the registers
1430		 * right shift rather than wrap--so punt and return 0.
1431		 */
1432		HALDEBUG(ah, HAL_DEBUG_ANY,
1433		    "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1434		good = AH_FALSE;
1435	} else {
1436		hsample->cycle_count = cc - ahp->ah_cycleCount;
1437		hsample->chan_busy = rc - ahp->ah_ctlBusy;
1438		hsample->ext_chan_busy = 0;
1439		hsample->rx_busy = rf - ahp->ah_rxBusy;
1440		hsample->tx_busy = tf - ahp->ah_txBusy;
1441	}
1442
1443	/*
1444	 * Keep a copy of the MIB results so the next sample has something
1445	 * to work from.
1446	 */
1447	ahp->ah_cycleCount = cc;
1448	ahp->ah_rxBusy = rf;
1449	ahp->ah_ctlBusy = rc;
1450	ahp->ah_txBusy = tf;
1451
1452	return (good);
1453}
1454
1455void
1456ar5212SetChainMasks(struct ath_hal *ah, uint32_t tx_chainmask,
1457    uint32_t rx_chainmask)
1458{
1459}
1460