1185377Ssam/*
2187831Ssam * Copyright (c) 2002-2009 Sam Leffler, Errno Consulting
3185377Ssam * Copyright (c) 2002-2008 Atheros Communications, Inc.
4185377Ssam *
5185377Ssam * Permission to use, copy, modify, and/or distribute this software for any
6185377Ssam * purpose with or without fee is hereby granted, provided that the above
7185377Ssam * copyright notice and this permission notice appear in all copies.
8185377Ssam *
9185377Ssam * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10185377Ssam * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11185377Ssam * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12185377Ssam * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13185377Ssam * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14185377Ssam * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15185377Ssam * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16185377Ssam *
17185907Ssam * $FreeBSD$
18185377Ssam */
19185377Ssam#include "opt_ah.h"
20185377Ssam
21185377Ssam#include "ah.h"
22185377Ssam#include "ah_internal.h"
23185377Ssam#include "ah_devid.h"
24185377Ssam#include "ah_desc.h"			/* NB: for HAL_PHYERR* */
25185377Ssam
26185377Ssam#include "ar5212/ar5212.h"
27185377Ssam#include "ar5212/ar5212reg.h"
28185377Ssam#include "ar5212/ar5212phy.h"
29185377Ssam
30185377Ssam#include "ah_eeprom_v3.h"
31185377Ssam
32185377Ssam#define	AR_NUM_GPIO	6		/* 6 GPIO pins */
33185377Ssam#define	AR_GPIOD_MASK	0x0000002F	/* GPIO data reg r/w mask */
34185377Ssam
35185377Ssamvoid
36185377Ssamar5212GetMacAddress(struct ath_hal *ah, uint8_t *mac)
37185377Ssam{
38185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
39185377Ssam
40185377Ssam	OS_MEMCPY(mac, ahp->ah_macaddr, IEEE80211_ADDR_LEN);
41185377Ssam}
42185377Ssam
43185377SsamHAL_BOOL
44185377Ssamar5212SetMacAddress(struct ath_hal *ah, const uint8_t *mac)
45185377Ssam{
46185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
47185377Ssam
48185377Ssam	OS_MEMCPY(ahp->ah_macaddr, mac, IEEE80211_ADDR_LEN);
49185377Ssam	return AH_TRUE;
50185377Ssam}
51185377Ssam
52185377Ssamvoid
53185377Ssamar5212GetBssIdMask(struct ath_hal *ah, uint8_t *mask)
54185377Ssam{
55185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
56185377Ssam
57185377Ssam	OS_MEMCPY(mask, ahp->ah_bssidmask, IEEE80211_ADDR_LEN);
58185377Ssam}
59185377Ssam
60185377SsamHAL_BOOL
61185377Ssamar5212SetBssIdMask(struct ath_hal *ah, const uint8_t *mask)
62185377Ssam{
63185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
64185377Ssam
65185377Ssam	/* save it since it must be rewritten on reset */
66185377Ssam	OS_MEMCPY(ahp->ah_bssidmask, mask, IEEE80211_ADDR_LEN);
67185377Ssam
68185377Ssam	OS_REG_WRITE(ah, AR_BSSMSKL, LE_READ_4(ahp->ah_bssidmask));
69185377Ssam	OS_REG_WRITE(ah, AR_BSSMSKU, LE_READ_2(ahp->ah_bssidmask + 4));
70185377Ssam	return AH_TRUE;
71185377Ssam}
72185377Ssam
73185377Ssam/*
74185380Ssam * Attempt to change the cards operating regulatory domain to the given value
75185380Ssam */
76185380SsamHAL_BOOL
77185380Ssamar5212SetRegulatoryDomain(struct ath_hal *ah,
78185380Ssam	uint16_t regDomain, HAL_STATUS *status)
79185380Ssam{
80185380Ssam	HAL_STATUS ecode;
81185380Ssam
82185380Ssam	if (AH_PRIVATE(ah)->ah_currentRD == regDomain) {
83185380Ssam		ecode = HAL_EINVAL;
84185380Ssam		goto bad;
85185380Ssam	}
86185380Ssam	if (ath_hal_eepromGetFlag(ah, AR_EEP_WRITEPROTECT)) {
87185380Ssam		ecode = HAL_EEWRITE;
88185380Ssam		goto bad;
89185380Ssam	}
90185380Ssam#ifdef AH_SUPPORT_WRITE_REGDOMAIN
91185380Ssam	if (ath_hal_eepromWrite(ah, AR_EEPROM_REG_DOMAIN, regDomain)) {
92185380Ssam		HALDEBUG(ah, HAL_DEBUG_ANY,
93185380Ssam		    "%s: set regulatory domain to %u (0x%x)\n",
94185380Ssam		    __func__, regDomain, regDomain);
95185380Ssam		AH_PRIVATE(ah)->ah_currentRD = regDomain;
96185380Ssam		return AH_TRUE;
97185380Ssam	}
98185380Ssam#endif
99185380Ssam	ecode = HAL_EIO;
100185380Ssambad:
101185380Ssam	if (status)
102185380Ssam		*status = ecode;
103185380Ssam	return AH_FALSE;
104185380Ssam}
105185380Ssam
106185380Ssam/*
107185377Ssam * Return the wireless modes (a,b,g,t) supported by hardware.
108185377Ssam *
109185377Ssam * This value is what is actually supported by the hardware
110185377Ssam * and is unaffected by regulatory/country code settings.
111185377Ssam */
112185377Ssamu_int
113185377Ssamar5212GetWirelessModes(struct ath_hal *ah)
114185377Ssam{
115185377Ssam	u_int mode = 0;
116185377Ssam
117185377Ssam	if (ath_hal_eepromGetFlag(ah, AR_EEP_AMODE)) {
118185377Ssam		mode = HAL_MODE_11A;
119185377Ssam		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO5DISABLE))
120185377Ssam			mode |= HAL_MODE_TURBO | HAL_MODE_108A;
121185380Ssam		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
122185380Ssam			mode |= HAL_MODE_11A_HALF_RATE;
123185380Ssam		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
124185380Ssam			mode |= HAL_MODE_11A_QUARTER_RATE;
125185377Ssam	}
126185377Ssam	if (ath_hal_eepromGetFlag(ah, AR_EEP_BMODE))
127185377Ssam		mode |= HAL_MODE_11B;
128185377Ssam	if (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) &&
129185377Ssam	    AH_PRIVATE(ah)->ah_subvendorid != AR_SUBVENDOR_ID_NOG) {
130185377Ssam		mode |= HAL_MODE_11G;
131185377Ssam		if (!ath_hal_eepromGetFlag(ah, AR_EEP_TURBO2DISABLE))
132185377Ssam			mode |= HAL_MODE_108G;
133185380Ssam		if (AH_PRIVATE(ah)->ah_caps.halChanHalfRate)
134185380Ssam			mode |= HAL_MODE_11G_HALF_RATE;
135185380Ssam		if (AH_PRIVATE(ah)->ah_caps.halChanQuarterRate)
136185380Ssam			mode |= HAL_MODE_11G_QUARTER_RATE;
137185377Ssam	}
138185377Ssam	return mode;
139185377Ssam}
140185377Ssam
141185377Ssam/*
142185377Ssam * Set the interrupt and GPIO values so the ISR can disable RF
143185377Ssam * on a switch signal.  Assumes GPIO port and interrupt polarity
144185377Ssam * are set prior to call.
145185377Ssam */
146185377Ssamvoid
147185377Ssamar5212EnableRfKill(struct ath_hal *ah)
148185377Ssam{
149185377Ssam	uint16_t rfsilent = AH_PRIVATE(ah)->ah_rfsilent;
150185377Ssam	int select = MS(rfsilent, AR_EEPROM_RFSILENT_GPIO_SEL);
151185377Ssam	int polarity = MS(rfsilent, AR_EEPROM_RFSILENT_POLARITY);
152185377Ssam
153185377Ssam	/*
154185377Ssam	 * Configure the desired GPIO port for input
155185377Ssam	 * and enable baseband rf silence.
156185377Ssam	 */
157185377Ssam	ath_hal_gpioCfgInput(ah, select);
158185377Ssam	OS_REG_SET_BIT(ah, AR_PHY(0), 0x00002000);
159185377Ssam	/*
160185377Ssam	 * If radio disable switch connection to GPIO bit x is enabled
161185377Ssam	 * program GPIO interrupt.
162185377Ssam	 * If rfkill bit on eeprom is 1, setupeeprommap routine has already
163185377Ssam	 * verified that it is a later version of eeprom, it has a place for
164185377Ssam	 * rfkill bit and it is set to 1, indicating that GPIO bit x hardware
165185377Ssam	 * connection is present.
166185377Ssam	 */
167185377Ssam	ath_hal_gpioSetIntr(ah, select,
168185377Ssam	    (ath_hal_gpioGet(ah, select) == polarity ? !polarity : polarity));
169185377Ssam}
170185377Ssam
171185377Ssam/*
172185377Ssam * Change the LED blinking pattern to correspond to the connectivity
173185377Ssam */
174185377Ssamvoid
175185377Ssamar5212SetLedState(struct ath_hal *ah, HAL_LED_STATE state)
176185377Ssam{
177185377Ssam	static const uint32_t ledbits[8] = {
178185377Ssam		AR_PCICFG_LEDCTL_NONE,	/* HAL_LED_INIT */
179185377Ssam		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_SCAN */
180185377Ssam		AR_PCICFG_LEDCTL_PEND,	/* HAL_LED_AUTH */
181185377Ssam		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_ASSOC*/
182185377Ssam		AR_PCICFG_LEDCTL_ASSOC,	/* HAL_LED_RUN */
183185377Ssam		AR_PCICFG_LEDCTL_NONE,
184185377Ssam		AR_PCICFG_LEDCTL_NONE,
185185377Ssam		AR_PCICFG_LEDCTL_NONE,
186185377Ssam	};
187185377Ssam	uint32_t bits;
188185377Ssam
189185377Ssam	bits = OS_REG_READ(ah, AR_PCICFG);
190185377Ssam	if (IS_2417(ah)) {
191185377Ssam		/*
192185377Ssam		 * Enable LED for Nala. There is a bit marked reserved
193185377Ssam		 * that must be set and we also turn on the power led.
194185377Ssam		 * Because we mark s/w LED control setting the control
195185377Ssam		 * status bits below is meangless (the driver must flash
196185377Ssam		 * the LED(s) using the GPIO lines).
197185377Ssam		 */
198185377Ssam		bits = (bits &~ AR_PCICFG_LEDMODE)
199185377Ssam		     | SM(AR_PCICFG_LEDMODE_POWON, AR_PCICFG_LEDMODE)
200185377Ssam#if 0
201185377Ssam		     | SM(AR_PCICFG_LEDMODE_NETON, AR_PCICFG_LEDMODE)
202185377Ssam#endif
203185377Ssam		     | 0x08000000;
204185377Ssam	}
205185377Ssam	bits = (bits &~ AR_PCICFG_LEDCTL)
206185377Ssam	     | SM(ledbits[state & 0x7], AR_PCICFG_LEDCTL);
207185377Ssam	OS_REG_WRITE(ah, AR_PCICFG, bits);
208185377Ssam}
209185377Ssam
210185377Ssam/*
211185377Ssam * Change association related fields programmed into the hardware.
212185377Ssam * Writing a valid BSSID to the hardware effectively enables the hardware
213185377Ssam * to synchronize its TSF to the correct beacons and receive frames coming
214185377Ssam * from that BSSID. It is called by the SME JOIN operation.
215185377Ssam */
216185377Ssamvoid
217185377Ssamar5212WriteAssocid(struct ath_hal *ah, const uint8_t *bssid, uint16_t assocId)
218185377Ssam{
219185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
220185377Ssam
221226760Sadrian	/* save bssid for possible re-use on reset */
222185377Ssam	OS_MEMCPY(ahp->ah_bssid, bssid, IEEE80211_ADDR_LEN);
223226760Sadrian	ahp->ah_assocId = assocId;
224185377Ssam	OS_REG_WRITE(ah, AR_BSS_ID0, LE_READ_4(ahp->ah_bssid));
225185377Ssam	OS_REG_WRITE(ah, AR_BSS_ID1, LE_READ_2(ahp->ah_bssid+4) |
226185377Ssam				     ((assocId & 0x3fff)<<AR_BSS_ID1_AID_S));
227185377Ssam}
228185377Ssam
229185377Ssam/*
230185377Ssam * Get the current hardware tsf for stamlme
231185377Ssam */
232185377Ssamuint64_t
233185377Ssamar5212GetTsf64(struct ath_hal *ah)
234185377Ssam{
235185377Ssam	uint32_t low1, low2, u32;
236185377Ssam
237185377Ssam	/* sync multi-word read */
238185377Ssam	low1 = OS_REG_READ(ah, AR_TSF_L32);
239185377Ssam	u32 = OS_REG_READ(ah, AR_TSF_U32);
240185377Ssam	low2 = OS_REG_READ(ah, AR_TSF_L32);
241185377Ssam	if (low2 < low1) {	/* roll over */
242185377Ssam		/*
243185377Ssam		 * If we are not preempted this will work.  If we are
244185377Ssam		 * then we re-reading AR_TSF_U32 does no good as the
245185377Ssam		 * low bits will be meaningless.  Likewise reading
246185377Ssam		 * L32, U32, U32, then comparing the last two reads
247185380Ssam		 * to check for rollover doesn't help if preempted--so
248185380Ssam		 * we take this approach as it costs one less PCI read
249185380Ssam		 * which can be noticeable when doing things like
250185380Ssam		 * timestamping packets in monitor mode.
251185377Ssam		 */
252185377Ssam		u32++;
253185377Ssam	}
254185377Ssam	return (((uint64_t) u32) << 32) | ((uint64_t) low2);
255185377Ssam}
256185377Ssam
257185377Ssam/*
258185377Ssam * Get the current hardware tsf for stamlme
259185377Ssam */
260185377Ssamuint32_t
261185377Ssamar5212GetTsf32(struct ath_hal *ah)
262185377Ssam{
263185377Ssam	return OS_REG_READ(ah, AR_TSF_L32);
264185377Ssam}
265185377Ssam
266219419Sadrianvoid
267219419Sadrianar5212SetTsf64(struct ath_hal *ah, uint64_t tsf64)
268219419Sadrian{
269219419Sadrian	OS_REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
270219419Sadrian	OS_REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
271219419Sadrian}
272219419Sadrian
273185377Ssam/*
274185377Ssam * Reset the current hardware tsf for stamlme.
275185377Ssam */
276185377Ssamvoid
277185377Ssamar5212ResetTsf(struct ath_hal *ah)
278185377Ssam{
279185377Ssam
280185377Ssam	uint32_t val = OS_REG_READ(ah, AR_BEACON);
281185377Ssam
282185377Ssam	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
283185377Ssam	/*
284185377Ssam	 * When resetting the TSF, write twice to the
285185377Ssam	 * corresponding register; each write to the RESET_TSF bit toggles
286185377Ssam	 * the internal signal to cause a reset of the TSF - but if the signal
287185377Ssam	 * is left high, it will reset the TSF on the next chip reset also!
288185377Ssam	 * writing the bit an even number of times fixes this issue
289185377Ssam	 */
290185377Ssam	OS_REG_WRITE(ah, AR_BEACON, val | AR_BEACON_RESET_TSF);
291185377Ssam}
292185377Ssam
293185377Ssam/*
294185377Ssam * Set or clear hardware basic rate bit
295185377Ssam * Set hardware basic rate set if basic rate is found
296185377Ssam * and basic rate is equal or less than 2Mbps
297185377Ssam */
298185377Ssamvoid
299185377Ssamar5212SetBasicRate(struct ath_hal *ah, HAL_RATE_SET *rs)
300185377Ssam{
301187831Ssam	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
302185377Ssam	uint32_t reg;
303185377Ssam	uint8_t xset;
304185377Ssam	int i;
305185377Ssam
306187831Ssam	if (chan == AH_NULL || !IEEE80211_IS_CHAN_CCK(chan))
307185377Ssam		return;
308185377Ssam	xset = 0;
309185377Ssam	for (i = 0; i < rs->rs_count; i++) {
310185377Ssam		uint8_t rset = rs->rs_rates[i];
311185377Ssam		/* Basic rate defined? */
312185377Ssam		if ((rset & 0x80) && (rset &= 0x7f) >= xset)
313185377Ssam			xset = rset;
314185377Ssam	}
315185377Ssam	/*
316185377Ssam	 * Set the h/w bit to reflect whether or not the basic
317185377Ssam	 * rate is found to be equal or less than 2Mbps.
318185377Ssam	 */
319185377Ssam	reg = OS_REG_READ(ah, AR_STA_ID1);
320185377Ssam	if (xset && xset/2 <= 2)
321185377Ssam		OS_REG_WRITE(ah, AR_STA_ID1, reg | AR_STA_ID1_BASE_RATE_11B);
322185377Ssam	else
323185377Ssam		OS_REG_WRITE(ah, AR_STA_ID1, reg &~ AR_STA_ID1_BASE_RATE_11B);
324185377Ssam}
325185377Ssam
326185377Ssam/*
327185377Ssam * Grab a semi-random value from hardware registers - may not
328185377Ssam * change often
329185377Ssam */
330185377Ssamuint32_t
331185377Ssamar5212GetRandomSeed(struct ath_hal *ah)
332185377Ssam{
333185377Ssam	uint32_t nf;
334185377Ssam
335185377Ssam	nf = (OS_REG_READ(ah, AR_PHY(25)) >> 19) & 0x1ff;
336185377Ssam	if (nf & 0x100)
337185377Ssam		nf = 0 - ((nf ^ 0x1ff) + 1);
338185377Ssam	return (OS_REG_READ(ah, AR_TSF_U32) ^
339185377Ssam		OS_REG_READ(ah, AR_TSF_L32) ^ nf);
340185377Ssam}
341185377Ssam
342185377Ssam/*
343185377Ssam * Detect if our card is present
344185377Ssam */
345185377SsamHAL_BOOL
346185377Ssamar5212DetectCardPresent(struct ath_hal *ah)
347185377Ssam{
348185377Ssam	uint16_t macVersion, macRev;
349185377Ssam	uint32_t v;
350185377Ssam
351185377Ssam	/*
352185377Ssam	 * Read the Silicon Revision register and compare that
353185377Ssam	 * to what we read at attach time.  If the same, we say
354185377Ssam	 * a card/device is present.
355185377Ssam	 */
356185377Ssam	v = OS_REG_READ(ah, AR_SREV) & AR_SREV_ID;
357185377Ssam	macVersion = v >> AR_SREV_ID_S;
358185377Ssam	macRev = v & AR_SREV_REVISION;
359185377Ssam	return (AH_PRIVATE(ah)->ah_macVersion == macVersion &&
360185377Ssam		AH_PRIVATE(ah)->ah_macRev == macRev);
361185377Ssam}
362185377Ssam
363185377Ssamvoid
364185377Ssamar5212EnableMibCounters(struct ath_hal *ah)
365185377Ssam{
366185377Ssam	/* NB: this just resets the mib counter machinery */
367185377Ssam	OS_REG_WRITE(ah, AR_MIBC,
368185377Ssam	    ~(AR_MIBC_COW | AR_MIBC_FMC | AR_MIBC_CMC | AR_MIBC_MCS) & 0x0f);
369185377Ssam}
370185377Ssam
371185377Ssamvoid
372185377Ssamar5212DisableMibCounters(struct ath_hal *ah)
373185377Ssam{
374185377Ssam	OS_REG_WRITE(ah, AR_MIBC,  AR_MIBC | AR_MIBC_CMC);
375185377Ssam}
376185377Ssam
377185377Ssam/*
378185377Ssam * Update MIB Counters
379185377Ssam */
380185377Ssamvoid
381185377Ssamar5212UpdateMibCounters(struct ath_hal *ah, HAL_MIB_STATS* stats)
382185377Ssam{
383185377Ssam	stats->ackrcv_bad += OS_REG_READ(ah, AR_ACK_FAIL);
384185377Ssam	stats->rts_bad	  += OS_REG_READ(ah, AR_RTS_FAIL);
385185377Ssam	stats->fcs_bad	  += OS_REG_READ(ah, AR_FCS_FAIL);
386185377Ssam	stats->rts_good	  += OS_REG_READ(ah, AR_RTS_OK);
387185377Ssam	stats->beacons	  += OS_REG_READ(ah, AR_BEACON_CNT);
388185377Ssam}
389185377Ssam
390185377Ssam/*
391185377Ssam * Detect if the HW supports spreading a CCK signal on channel 14
392185377Ssam */
393185377SsamHAL_BOOL
394185377Ssamar5212IsJapanChannelSpreadSupported(struct ath_hal *ah)
395185377Ssam{
396185377Ssam	return AH_TRUE;
397185377Ssam}
398185377Ssam
399185377Ssam/*
400185377Ssam * Get the rssi of frame curently being received.
401185377Ssam */
402185377Ssamuint32_t
403185377Ssamar5212GetCurRssi(struct ath_hal *ah)
404185377Ssam{
405185377Ssam	return (OS_REG_READ(ah, AR_PHY_CURRENT_RSSI) & 0xff);
406185377Ssam}
407185377Ssam
408185377Ssamu_int
409185377Ssamar5212GetDefAntenna(struct ath_hal *ah)
410185377Ssam{
411185377Ssam	return (OS_REG_READ(ah, AR_DEF_ANTENNA) & 0x7);
412185377Ssam}
413185377Ssam
414185377Ssamvoid
415185377Ssamar5212SetDefAntenna(struct ath_hal *ah, u_int antenna)
416185377Ssam{
417185377Ssam	OS_REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
418185377Ssam}
419185377Ssam
420185377SsamHAL_ANT_SETTING
421185377Ssamar5212GetAntennaSwitch(struct ath_hal *ah)
422185377Ssam{
423185380Ssam	return AH5212(ah)->ah_antControl;
424185377Ssam}
425185377Ssam
426185377SsamHAL_BOOL
427185380Ssamar5212SetAntennaSwitch(struct ath_hal *ah, HAL_ANT_SETTING setting)
428185377Ssam{
429185380Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
430187831Ssam	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
431185377Ssam
432187831Ssam	if (!ahp->ah_phyPowerOn || chan == AH_NULL) {
433185380Ssam		/* PHY powered off, just stash settings */
434185380Ssam		ahp->ah_antControl = setting;
435185380Ssam		ahp->ah_diversity = (setting == HAL_ANT_VARIABLE);
436185377Ssam		return AH_TRUE;
437185377Ssam	}
438187831Ssam	return ar5212SetAntennaSwitchInternal(ah, setting, chan);
439185377Ssam}
440185377Ssam
441185377SsamHAL_BOOL
442185377Ssamar5212IsSleepAfterBeaconBroken(struct ath_hal *ah)
443185377Ssam{
444185377Ssam	return AH_TRUE;
445185377Ssam}
446185377Ssam
447185377SsamHAL_BOOL
448185377Ssamar5212SetSifsTime(struct ath_hal *ah, u_int us)
449185377Ssam{
450185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
451185377Ssam
452185377Ssam	if (us > ath_hal_mac_usec(ah, 0xffff)) {
453185377Ssam		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad SIFS time %u\n",
454185377Ssam		    __func__, us);
455185377Ssam		ahp->ah_sifstime = (u_int) -1;	/* restore default handling */
456185377Ssam		return AH_FALSE;
457185377Ssam	} else {
458185377Ssam		/* convert to system clocks */
459188866Ssam		OS_REG_WRITE(ah, AR_D_GBL_IFS_SIFS, ath_hal_mac_clks(ah, us-2));
460218409Sadrian		ahp->ah_sifstime = us;
461185377Ssam		return AH_TRUE;
462185377Ssam	}
463185377Ssam}
464185377Ssam
465185377Ssamu_int
466185377Ssamar5212GetSifsTime(struct ath_hal *ah)
467185377Ssam{
468185377Ssam	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SIFS) & 0xffff;
469188866Ssam	return ath_hal_mac_usec(ah, clks)+2;	/* convert from system clocks */
470185377Ssam}
471185377Ssam
472185377SsamHAL_BOOL
473185377Ssamar5212SetSlotTime(struct ath_hal *ah, u_int us)
474185377Ssam{
475185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
476185377Ssam
477185377Ssam	if (us < HAL_SLOT_TIME_6 || us > ath_hal_mac_usec(ah, 0xffff)) {
478185377Ssam		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad slot time %u\n",
479185377Ssam		    __func__, us);
480185377Ssam		ahp->ah_slottime = (u_int) -1;	/* restore default handling */
481185377Ssam		return AH_FALSE;
482185377Ssam	} else {
483185377Ssam		/* convert to system clocks */
484185377Ssam		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath_hal_mac_clks(ah, us));
485185377Ssam		ahp->ah_slottime = us;
486185377Ssam		return AH_TRUE;
487185377Ssam	}
488185377Ssam}
489185377Ssam
490185377Ssamu_int
491185377Ssamar5212GetSlotTime(struct ath_hal *ah)
492185377Ssam{
493185377Ssam	u_int clks = OS_REG_READ(ah, AR_D_GBL_IFS_SLOT) & 0xffff;
494185377Ssam	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
495185377Ssam}
496185377Ssam
497185377SsamHAL_BOOL
498185377Ssamar5212SetAckTimeout(struct ath_hal *ah, u_int us)
499185377Ssam{
500185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
501185377Ssam
502185377Ssam	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
503185377Ssam		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad ack timeout %u\n",
504185377Ssam		    __func__, us);
505185377Ssam		ahp->ah_acktimeout = (u_int) -1; /* restore default handling */
506185377Ssam		return AH_FALSE;
507185377Ssam	} else {
508185377Ssam		/* convert to system clocks */
509185377Ssam		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
510185377Ssam			AR_TIME_OUT_ACK, ath_hal_mac_clks(ah, us));
511185377Ssam		ahp->ah_acktimeout = us;
512185377Ssam		return AH_TRUE;
513185377Ssam	}
514185377Ssam}
515185377Ssam
516185377Ssamu_int
517185377Ssamar5212GetAckTimeout(struct ath_hal *ah)
518185377Ssam{
519185377Ssam	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_ACK);
520185377Ssam	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
521185377Ssam}
522185377Ssam
523185377Ssamu_int
524185377Ssamar5212GetAckCTSRate(struct ath_hal *ah)
525185377Ssam{
526185377Ssam	return ((AH5212(ah)->ah_staId1Defaults & AR_STA_ID1_ACKCTS_6MB) == 0);
527185377Ssam}
528185377Ssam
529185377SsamHAL_BOOL
530185377Ssamar5212SetAckCTSRate(struct ath_hal *ah, u_int high)
531185377Ssam{
532185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
533185377Ssam
534185377Ssam	if (high) {
535185377Ssam		OS_REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
536185377Ssam		ahp->ah_staId1Defaults &= ~AR_STA_ID1_ACKCTS_6MB;
537185377Ssam	} else {
538185377Ssam		OS_REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_ACKCTS_6MB);
539185377Ssam		ahp->ah_staId1Defaults |= AR_STA_ID1_ACKCTS_6MB;
540185377Ssam	}
541185377Ssam	return AH_TRUE;
542185377Ssam}
543185377Ssam
544185377SsamHAL_BOOL
545185377Ssamar5212SetCTSTimeout(struct ath_hal *ah, u_int us)
546185377Ssam{
547185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
548185377Ssam
549185377Ssam	if (us > ath_hal_mac_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
550185377Ssam		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad cts timeout %u\n",
551185377Ssam		    __func__, us);
552185377Ssam		ahp->ah_ctstimeout = (u_int) -1; /* restore default handling */
553185377Ssam		return AH_FALSE;
554185377Ssam	} else {
555185377Ssam		/* convert to system clocks */
556185377Ssam		OS_REG_RMW_FIELD(ah, AR_TIME_OUT,
557185377Ssam			AR_TIME_OUT_CTS, ath_hal_mac_clks(ah, us));
558185377Ssam		ahp->ah_ctstimeout = us;
559185377Ssam		return AH_TRUE;
560185377Ssam	}
561185377Ssam}
562185377Ssam
563185377Ssamu_int
564185377Ssamar5212GetCTSTimeout(struct ath_hal *ah)
565185377Ssam{
566185377Ssam	u_int clks = MS(OS_REG_READ(ah, AR_TIME_OUT), AR_TIME_OUT_CTS);
567185377Ssam	return ath_hal_mac_usec(ah, clks);	/* convert from system clocks */
568185377Ssam}
569185377Ssam
570185377Ssam/* Setup decompression for given key index */
571185377SsamHAL_BOOL
572185377Ssamar5212SetDecompMask(struct ath_hal *ah, uint16_t keyidx, int en)
573185377Ssam{
574185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
575185377Ssam
576185377Ssam        if (keyidx >= HAL_DECOMP_MASK_SIZE)
577228817Sadrian                return AH_FALSE;
578185377Ssam        OS_REG_WRITE(ah, AR_DCM_A, keyidx);
579185377Ssam        OS_REG_WRITE(ah, AR_DCM_D, en ? AR_DCM_D_EN : 0);
580185377Ssam        ahp->ah_decompMask[keyidx] = en;
581185377Ssam
582185377Ssam        return AH_TRUE;
583185377Ssam}
584185377Ssam
585185377Ssam/* Setup coverage class */
586185377Ssamvoid
587185377Ssamar5212SetCoverageClass(struct ath_hal *ah, uint8_t coverageclass, int now)
588185377Ssam{
589185377Ssam	uint32_t slot, timeout, eifs;
590185377Ssam	u_int clkRate;
591185377Ssam
592185377Ssam	AH_PRIVATE(ah)->ah_coverageClass = coverageclass;
593185377Ssam
594185377Ssam	if (now) {
595185377Ssam		if (AH_PRIVATE(ah)->ah_coverageClass == 0)
596185377Ssam			return;
597185377Ssam
598185377Ssam		/* Don't apply coverage class to non A channels */
599187831Ssam		if (!IEEE80211_IS_CHAN_A(AH_PRIVATE(ah)->ah_curchan))
600185377Ssam			return;
601185377Ssam
602185377Ssam		/* Get core clock rate */
603185377Ssam		clkRate = ath_hal_mac_clks(ah, 1);
604185377Ssam
605185377Ssam		/* Compute EIFS */
606185377Ssam		slot = coverageclass * 3 * clkRate;
607185377Ssam		eifs = coverageclass * 6 * clkRate;
608187831Ssam		if (IEEE80211_IS_CHAN_HALF(AH_PRIVATE(ah)->ah_curchan)) {
609185377Ssam			slot += IFS_SLOT_HALF_RATE;
610185377Ssam			eifs += IFS_EIFS_HALF_RATE;
611187831Ssam		} else if (IEEE80211_IS_CHAN_QUARTER(AH_PRIVATE(ah)->ah_curchan)) {
612185377Ssam			slot += IFS_SLOT_QUARTER_RATE;
613185377Ssam			eifs += IFS_EIFS_QUARTER_RATE;
614185377Ssam		} else { /* full rate */
615185377Ssam			slot += IFS_SLOT_FULL_RATE;
616185377Ssam			eifs += IFS_EIFS_FULL_RATE;
617185377Ssam		}
618185377Ssam
619185377Ssam		/*
620185377Ssam		 * Add additional time for air propagation for ACK and CTS
621185377Ssam		 * timeouts. This value is in core clocks.
622185377Ssam  		 */
623185377Ssam		timeout = ACK_CTS_TIMEOUT_11A + (coverageclass * 3 * clkRate);
624185377Ssam
625185377Ssam		/*
626185377Ssam		 * Write the values: slot, eifs, ack/cts timeouts.
627185377Ssam		 */
628185377Ssam		OS_REG_WRITE(ah, AR_D_GBL_IFS_SLOT, slot);
629185377Ssam		OS_REG_WRITE(ah, AR_D_GBL_IFS_EIFS, eifs);
630185377Ssam		OS_REG_WRITE(ah, AR_TIME_OUT,
631185377Ssam			  SM(timeout, AR_TIME_OUT_CTS)
632185377Ssam			| SM(timeout, AR_TIME_OUT_ACK));
633185377Ssam	}
634185377Ssam}
635185377Ssam
636222644SadrianHAL_STATUS
637222644Sadrianar5212SetQuiet(struct ath_hal *ah, uint32_t period, uint32_t duration,
638222644Sadrian    uint32_t nextStart, HAL_QUIET_FLAG flag)
639222644Sadrian{
640222644Sadrian	OS_REG_WRITE(ah, AR_QUIET2, period | (duration << AR_QUIET2_QUIET_DUR_S));
641222644Sadrian	if (flag & HAL_QUIET_ENABLE) {
642222644Sadrian		OS_REG_WRITE(ah, AR_QUIET1, nextStart | (1 << 16));
643222644Sadrian	}
644222644Sadrian	else {
645222644Sadrian		OS_REG_WRITE(ah, AR_QUIET1, nextStart);
646222644Sadrian	}
647222644Sadrian	return HAL_OK;
648222644Sadrian}
649222644Sadrian
650185377Ssamvoid
651185377Ssamar5212SetPCUConfig(struct ath_hal *ah)
652185377Ssam{
653185377Ssam	ar5212SetOperatingMode(ah, AH_PRIVATE(ah)->ah_opmode);
654185377Ssam}
655185377Ssam
656185377Ssam/*
657185377Ssam * Return whether an external 32KHz crystal should be used
658185377Ssam * to reduce power consumption when sleeping.  We do so if
659185377Ssam * the crystal is present (obtained from EEPROM) and if we
660185377Ssam * are not running as an AP and are configured to use it.
661185377Ssam */
662185377SsamHAL_BOOL
663185377Ssamar5212Use32KHzclock(struct ath_hal *ah, HAL_OPMODE opmode)
664185377Ssam{
665185377Ssam	if (opmode != HAL_M_HOSTAP) {
666185377Ssam		struct ath_hal_5212 *ahp = AH5212(ah);
667185377Ssam		return ath_hal_eepromGetFlag(ah, AR_EEP_32KHZCRYSTAL) &&
668185377Ssam		       (ahp->ah_enable32kHzClock == USE_32KHZ ||
669185377Ssam		        ahp->ah_enable32kHzClock == AUTO_32KHZ);
670185377Ssam	} else
671185377Ssam		return AH_FALSE;
672185377Ssam}
673185377Ssam
674185377Ssam/*
675185377Ssam * If 32KHz clock exists, use it to lower power consumption during sleep
676185377Ssam *
677185377Ssam * Note: If clock is set to 32 KHz, delays on accessing certain
678185377Ssam *       baseband registers (27-31, 124-127) are required.
679185377Ssam */
680185377Ssamvoid
681185377Ssamar5212SetupClock(struct ath_hal *ah, HAL_OPMODE opmode)
682185377Ssam{
683185377Ssam	if (ar5212Use32KHzclock(ah, opmode)) {
684185377Ssam		/*
685185377Ssam		 * Enable clocks to be turned OFF in BB during sleep
686185377Ssam		 * and also enable turning OFF 32MHz/40MHz Refclk
687185377Ssam		 * from A2.
688185377Ssam		 */
689185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
690185380Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
691185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 0x14 : 0x18);
692185377Ssam		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32, 1);
693185377Ssam		OS_REG_WRITE(ah, AR_TSF_PARM, 61);  /* 32 KHz TSF incr */
694185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 1);
695185377Ssam
696185377Ssam		if (IS_2413(ah) || IS_5413(ah) || IS_2417(ah)) {
697185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x26);
698185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0d);
699185377Ssam			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x07);
700185377Ssam			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x3f);
701185377Ssam			/* # Set sleep clock rate to 32 KHz. */
702185377Ssam			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x2);
703185377Ssam		} else {
704185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x0a);
705185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0c);
706185377Ssam			OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x03);
707185377Ssam			OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0x20);
708185377Ssam			OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x3);
709185377Ssam		}
710185377Ssam	} else {
711185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0x0);
712185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
713185377Ssam
714185377Ssam		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32MHz TSF inc */
715185377Ssam
716185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
717185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
718185377Ssam
719185377Ssam		if (IS_2417(ah))
720185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0a);
721185377Ssam		else if (IS_HB63(ah))
722185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x32);
723185377Ssam		else
724185377Ssam			OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL, 0x0e);
725185377Ssam		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
726185377Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
727185377Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
728185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) || IS_2417(ah) ? 0x14 : 0x18);
729185380Ssam		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
730185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
731185377Ssam	}
732185377Ssam}
733185377Ssam
734185377Ssam/*
735185377Ssam * If 32KHz clock exists, turn it off and turn back on the 32Mhz
736185377Ssam */
737185377Ssamvoid
738185377Ssamar5212RestoreClock(struct ath_hal *ah, HAL_OPMODE opmode)
739185377Ssam{
740185377Ssam	if (ar5212Use32KHzclock(ah, opmode)) {
741185377Ssam		/* # Set sleep clock rate back to 32 MHz. */
742185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_RATE_IND, 0);
743185377Ssam		OS_REG_RMW_FIELD(ah, AR_PCICFG, AR_PCICFG_SCLK_SEL, 0);
744185377Ssam
745185377Ssam		OS_REG_WRITE(ah, AR_TSF_PARM, 1);	/* 32 MHz TSF incr */
746185380Ssam		OS_REG_RMW_FIELD(ah, AR_USEC, AR_USEC_USEC32,
747185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) ? 39 : 31);
748185377Ssam
749185377Ssam		/*
750185377Ssam		 * Restore BB registers to power-on defaults
751185377Ssam		 */
752185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_CONTROL, 0x1f);
753185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_CTR_LIMIT,   0x7f);
754185377Ssam		OS_REG_WRITE(ah, AR_PHY_SLEEP_SCAL,        0x0e);
755185377Ssam		OS_REG_WRITE(ah, AR_PHY_M_SLEEP,           0x0c);
756185377Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKDLY,         0xff);
757185380Ssam		OS_REG_WRITE(ah, AR_PHY_REFCLKPD,
758185380Ssam		    IS_RAD5112_ANY(ah) || IS_5413(ah) ?  0x14 : 0x18);
759185377Ssam	}
760185377Ssam}
761185377Ssam
762185377Ssam/*
763185377Ssam * Adjust NF based on statistical values for 5GHz frequencies.
764185377Ssam * Default method: this may be overridden by the rf backend.
765185377Ssam */
766185377Ssamint16_t
767185377Ssamar5212GetNfAdjust(struct ath_hal *ah, const HAL_CHANNEL_INTERNAL *c)
768185377Ssam{
769185377Ssam	static const struct {
770185377Ssam		uint16_t freqLow;
771185377Ssam		int16_t	  adjust;
772185377Ssam	} adjustDef[] = {
773185377Ssam		{ 5790,	11 },	/* NB: ordered high -> low */
774185377Ssam		{ 5730, 10 },
775185377Ssam		{ 5690,  9 },
776185377Ssam		{ 5660,  8 },
777185377Ssam		{ 5610,  7 },
778185377Ssam		{ 5530,  5 },
779185377Ssam		{ 5450,  4 },
780185377Ssam		{ 5379,  2 },
781185377Ssam		{ 5209,  0 },
782185377Ssam		{ 3000,  1 },
783185377Ssam		{    0,  0 },
784185377Ssam	};
785185377Ssam	int i;
786185377Ssam
787185377Ssam	for (i = 0; c->channel <= adjustDef[i].freqLow; i++)
788185377Ssam		;
789185377Ssam	return adjustDef[i].adjust;
790185377Ssam}
791185377Ssam
792185377SsamHAL_STATUS
793185377Ssamar5212GetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
794185377Ssam	uint32_t capability, uint32_t *result)
795185377Ssam{
796185377Ssam#define	MACVERSION(ah)	AH_PRIVATE(ah)->ah_macVersion
797185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
798185377Ssam	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
799185377Ssam	const struct ar5212AniState *ani;
800185377Ssam
801185377Ssam	switch (type) {
802185377Ssam	case HAL_CAP_CIPHER:		/* cipher handled in hardware */
803185377Ssam		switch (capability) {
804185377Ssam		case HAL_CIPHER_AES_CCM:
805185377Ssam			return pCap->halCipherAesCcmSupport ?
806185377Ssam				HAL_OK : HAL_ENOTSUPP;
807185377Ssam		case HAL_CIPHER_AES_OCB:
808185377Ssam		case HAL_CIPHER_TKIP:
809185377Ssam		case HAL_CIPHER_WEP:
810185377Ssam		case HAL_CIPHER_MIC:
811185377Ssam		case HAL_CIPHER_CLR:
812185377Ssam			return HAL_OK;
813185377Ssam		default:
814185377Ssam			return HAL_ENOTSUPP;
815185377Ssam		}
816185377Ssam	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
817185377Ssam		switch (capability) {
818185377Ssam		case 0:			/* hardware capability */
819185377Ssam			return HAL_OK;
820185377Ssam		case 1:
821185377Ssam			return (ahp->ah_staId1Defaults &
822185377Ssam			    AR_STA_ID1_CRPT_MIC_ENABLE) ?  HAL_OK : HAL_ENXIO;
823185377Ssam		}
824185907Ssam		return HAL_EINVAL;
825185377Ssam	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
826185377Ssam		switch (capability) {
827185377Ssam		case 0:			/* hardware capability */
828185377Ssam			return pCap->halTkipMicTxRxKeySupport ?
829185377Ssam				HAL_ENXIO : HAL_OK;
830185377Ssam		case 1:			/* current setting */
831185377Ssam			return (ahp->ah_miscMode &
832185377Ssam			    AR_MISC_MODE_MIC_NEW_LOC_ENABLE) ? HAL_ENXIO : HAL_OK;
833185377Ssam		}
834185377Ssam		return HAL_EINVAL;
835185377Ssam	case HAL_CAP_WME_TKIPMIC:	/* hardware can do TKIP MIC w/ WMM */
836185377Ssam		/* XXX move to capability bit */
837185377Ssam		return MACVERSION(ah) > AR_SREV_VERSION_VENICE ||
838185377Ssam		    (MACVERSION(ah) == AR_SREV_VERSION_VENICE &&
839185377Ssam		     AH_PRIVATE(ah)->ah_macRev >= 8) ? HAL_OK : HAL_ENOTSUPP;
840185377Ssam	case HAL_CAP_DIVERSITY:		/* hardware supports fast diversity */
841185377Ssam		switch (capability) {
842185377Ssam		case 0:			/* hardware capability */
843185377Ssam			return HAL_OK;
844185377Ssam		case 1:			/* current setting */
845185380Ssam			return ahp->ah_diversity ? HAL_OK : HAL_ENXIO;
846239801Sadrian		case HAL_CAP_STRONG_DIV:
847239801Sadrian			*result = OS_REG_READ(ah, AR_PHY_RESTART);
848239801Sadrian			*result = MS(*result, AR_PHY_RESTART_DIV_GC);
849239801Sadrian			return HAL_OK;
850185377Ssam		}
851185377Ssam		return HAL_EINVAL;
852185377Ssam	case HAL_CAP_DIAG:
853185377Ssam		*result = AH_PRIVATE(ah)->ah_diagreg;
854185377Ssam		return HAL_OK;
855185377Ssam	case HAL_CAP_TPC:
856185377Ssam		switch (capability) {
857185377Ssam		case 0:			/* hardware capability */
858185377Ssam			return HAL_OK;
859185377Ssam		case 1:
860185377Ssam			return ahp->ah_tpcEnabled ? HAL_OK : HAL_ENXIO;
861185377Ssam		}
862185377Ssam		return HAL_OK;
863185377Ssam	case HAL_CAP_PHYDIAG:		/* radar pulse detection capability */
864185377Ssam		switch (capability) {
865185377Ssam		case HAL_CAP_RADAR:
866185377Ssam			return ath_hal_eepromGetFlag(ah, AR_EEP_AMODE) ?
867185377Ssam			    HAL_OK: HAL_ENXIO;
868185377Ssam		case HAL_CAP_AR:
869185377Ssam			return (ath_hal_eepromGetFlag(ah, AR_EEP_GMODE) ||
870185377Ssam			    ath_hal_eepromGetFlag(ah, AR_EEP_BMODE)) ?
871185377Ssam			       HAL_OK: HAL_ENXIO;
872185377Ssam		}
873185377Ssam		return HAL_ENXIO;
874185377Ssam	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
875185377Ssam		switch (capability) {
876185377Ssam		case 0:			/* hardware capability */
877222027Sadrian			return pCap->halMcastKeySrchSupport ? HAL_OK : HAL_ENXIO;
878185377Ssam		case 1:
879185377Ssam			return (ahp->ah_staId1Defaults &
880185377Ssam			    AR_STA_ID1_MCAST_KSRCH) ? HAL_OK : HAL_ENXIO;
881185377Ssam		}
882185377Ssam		return HAL_EINVAL;
883185377Ssam	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
884185377Ssam		switch (capability) {
885185377Ssam		case 0:			/* hardware capability */
886185377Ssam			return pCap->halTsfAddSupport ? HAL_OK : HAL_ENOTSUPP;
887185377Ssam		case 1:
888185377Ssam			return (ahp->ah_miscMode & AR_MISC_MODE_TX_ADD_TSF) ?
889185377Ssam				HAL_OK : HAL_ENXIO;
890185377Ssam		}
891185377Ssam		return HAL_EINVAL;
892185377Ssam	case HAL_CAP_TPC_ACK:
893185377Ssam		*result = MS(ahp->ah_macTPC, AR_TPC_ACK);
894185377Ssam		return HAL_OK;
895185377Ssam	case HAL_CAP_TPC_CTS:
896185377Ssam		*result = MS(ahp->ah_macTPC, AR_TPC_CTS);
897185377Ssam		return HAL_OK;
898185377Ssam	case HAL_CAP_INTMIT:		/* interference mitigation */
899185377Ssam		switch (capability) {
900222277Sadrian		case HAL_CAP_INTMIT_PRESENT:		/* hardware capability */
901185377Ssam			return HAL_OK;
902222277Sadrian		case HAL_CAP_INTMIT_ENABLE:
903185377Ssam			return (ahp->ah_procPhyErr & HAL_ANI_ENA) ?
904185377Ssam				HAL_OK : HAL_ENXIO;
905222277Sadrian		case HAL_CAP_INTMIT_NOISE_IMMUNITY_LEVEL:
906222277Sadrian		case HAL_CAP_INTMIT_OFDM_WEAK_SIGNAL_LEVEL:
907222277Sadrian		case HAL_CAP_INTMIT_CCK_WEAK_SIGNAL_THR:
908222277Sadrian		case HAL_CAP_INTMIT_FIRSTEP_LEVEL:
909222277Sadrian		case HAL_CAP_INTMIT_SPUR_IMMUNITY_LEVEL:
910185377Ssam			ani = ar5212AniGetCurrentState(ah);
911185377Ssam			if (ani == AH_NULL)
912185377Ssam				return HAL_ENXIO;
913185377Ssam			switch (capability) {
914185377Ssam			case 2:	*result = ani->noiseImmunityLevel; break;
915185377Ssam			case 3: *result = !ani->ofdmWeakSigDetectOff; break;
916185377Ssam			case 4: *result = ani->cckWeakSigThreshold; break;
917185377Ssam			case 5: *result = ani->firstepLevel; break;
918185377Ssam			case 6: *result = ani->spurImmunityLevel; break;
919185377Ssam			}
920185377Ssam			return HAL_OK;
921185377Ssam		}
922185377Ssam		return HAL_EINVAL;
923185377Ssam	default:
924185377Ssam		return ath_hal_getcapability(ah, type, capability, result);
925185377Ssam	}
926185377Ssam#undef MACVERSION
927185377Ssam}
928185377Ssam
929185377SsamHAL_BOOL
930185377Ssamar5212SetCapability(struct ath_hal *ah, HAL_CAPABILITY_TYPE type,
931185377Ssam	uint32_t capability, uint32_t setting, HAL_STATUS *status)
932185377Ssam{
933185377Ssam#define	N(a)	(sizeof(a)/sizeof(a[0]))
934185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
935185377Ssam	const HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
936185377Ssam	uint32_t v;
937185377Ssam
938185377Ssam	switch (type) {
939185377Ssam	case HAL_CAP_TKIP_MIC:		/* handle TKIP MIC in hardware */
940185377Ssam		if (setting)
941185377Ssam			ahp->ah_staId1Defaults |= AR_STA_ID1_CRPT_MIC_ENABLE;
942185377Ssam		else
943185377Ssam			ahp->ah_staId1Defaults &= ~AR_STA_ID1_CRPT_MIC_ENABLE;
944185377Ssam		return AH_TRUE;
945185377Ssam	case HAL_CAP_TKIP_SPLIT:	/* hardware TKIP uses split keys */
946185377Ssam		if (!pCap->halTkipMicTxRxKeySupport)
947185377Ssam			return AH_FALSE;
948185377Ssam		/* NB: true =>'s use split key cache layout */
949185377Ssam		if (setting)
950185377Ssam			ahp->ah_miscMode &= ~AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
951185377Ssam		else
952185377Ssam			ahp->ah_miscMode |= AR_MISC_MODE_MIC_NEW_LOC_ENABLE;
953185377Ssam		/* NB: write here so keys can be setup w/o a reset */
954219771Sadrian		OS_REG_WRITE(ah, AR_MISC_MODE, OS_REG_READ(ah, AR_MISC_MODE) | ahp->ah_miscMode);
955185377Ssam		return AH_TRUE;
956185377Ssam	case HAL_CAP_DIVERSITY:
957239801Sadrian		switch (capability) {
958239801Sadrian		case 0:
959239801Sadrian			return AH_FALSE;
960239801Sadrian		case 1:	/* setting */
961239801Sadrian			if (ahp->ah_phyPowerOn) {
962239801Sadrian				if (capability == HAL_CAP_STRONG_DIV) {
963240001Sadrian					v = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
964240001Sadrian					if (setting)
965240001Sadrian						v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
966240001Sadrian					else
967240001Sadrian						v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
968240001Sadrian					OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
969240001Sadrian				}
970239801Sadrian			}
971239801Sadrian			ahp->ah_diversity = (setting != 0);
972239801Sadrian			return AH_TRUE;
973239801Sadrian
974239801Sadrian		case HAL_CAP_STRONG_DIV:
975239801Sadrian			if (! ahp->ah_phyPowerOn)
976239801Sadrian				return AH_FALSE;
977239801Sadrian			v = OS_REG_READ(ah, AR_PHY_RESTART);
978239801Sadrian			v &= ~AR_PHY_RESTART_DIV_GC;
979239801Sadrian			v |= SM(setting, AR_PHY_RESTART_DIV_GC);
980239801Sadrian			OS_REG_WRITE(ah, AR_PHY_RESTART, v);
981239801Sadrian			return AH_TRUE;
982239801Sadrian		default:
983239801Sadrian			return AH_FALSE;
984185380Ssam		}
985185377Ssam	case HAL_CAP_DIAG:		/* hardware diagnostic support */
986185377Ssam		/*
987185377Ssam		 * NB: could split this up into virtual capabilities,
988185377Ssam		 *     (e.g. 1 => ACK, 2 => CTS, etc.) but it hardly
989185377Ssam		 *     seems worth the additional complexity.
990185377Ssam		 */
991185377Ssam		AH_PRIVATE(ah)->ah_diagreg = setting;
992185377Ssam		OS_REG_WRITE(ah, AR_DIAG_SW, AH_PRIVATE(ah)->ah_diagreg);
993185377Ssam		return AH_TRUE;
994185377Ssam	case HAL_CAP_TPC:
995185377Ssam		ahp->ah_tpcEnabled = (setting != 0);
996185377Ssam		return AH_TRUE;
997185377Ssam	case HAL_CAP_MCAST_KEYSRCH:	/* multicast frame keycache search */
998185377Ssam		if (setting)
999185377Ssam			ahp->ah_staId1Defaults |= AR_STA_ID1_MCAST_KSRCH;
1000185377Ssam		else
1001185377Ssam			ahp->ah_staId1Defaults &= ~AR_STA_ID1_MCAST_KSRCH;
1002185377Ssam		return AH_TRUE;
1003185377Ssam	case HAL_CAP_TPC_ACK:
1004185377Ssam	case HAL_CAP_TPC_CTS:
1005185377Ssam		setting += ahp->ah_txPowerIndexOffset;
1006185377Ssam		if (setting > 63)
1007185377Ssam			setting = 63;
1008185377Ssam		if (type == HAL_CAP_TPC_ACK) {
1009185377Ssam			ahp->ah_macTPC &= AR_TPC_ACK;
1010185377Ssam			ahp->ah_macTPC |= MS(setting, AR_TPC_ACK);
1011185377Ssam		} else {
1012185377Ssam			ahp->ah_macTPC &= AR_TPC_CTS;
1013185377Ssam			ahp->ah_macTPC |= MS(setting, AR_TPC_CTS);
1014185377Ssam		}
1015185377Ssam		OS_REG_WRITE(ah, AR_TPC, ahp->ah_macTPC);
1016185377Ssam		return AH_TRUE;
1017185377Ssam	case HAL_CAP_INTMIT: {		/* interference mitigation */
1018222277Sadrian		/* This maps the public ANI commands to the internal ANI commands */
1019222277Sadrian		/* Private: HAL_ANI_CMD; Public: HAL_CAP_INTMIT_CMD */
1020185377Ssam		static const HAL_ANI_CMD cmds[] = {
1021185377Ssam			HAL_ANI_PRESENT,
1022185377Ssam			HAL_ANI_MODE,
1023185377Ssam			HAL_ANI_NOISE_IMMUNITY_LEVEL,
1024185377Ssam			HAL_ANI_OFDM_WEAK_SIGNAL_DETECTION,
1025185377Ssam			HAL_ANI_CCK_WEAK_SIGNAL_THR,
1026185377Ssam			HAL_ANI_FIRSTEP_LEVEL,
1027185377Ssam			HAL_ANI_SPUR_IMMUNITY_LEVEL,
1028185377Ssam		};
1029185377Ssam		return capability < N(cmds) ?
1030222265Sadrian			AH5212(ah)->ah_aniControl(ah, cmds[capability], setting) :
1031185377Ssam			AH_FALSE;
1032185377Ssam	}
1033185377Ssam	case HAL_CAP_TSF_ADJUST:	/* hardware has beacon tsf adjust */
1034185377Ssam		if (pCap->halTsfAddSupport) {
1035185377Ssam			if (setting)
1036185377Ssam				ahp->ah_miscMode |= AR_MISC_MODE_TX_ADD_TSF;
1037185377Ssam			else
1038185377Ssam				ahp->ah_miscMode &= ~AR_MISC_MODE_TX_ADD_TSF;
1039185377Ssam			return AH_TRUE;
1040185377Ssam		}
1041185377Ssam		/* fall thru... */
1042185377Ssam	default:
1043185377Ssam		return ath_hal_setcapability(ah, type, capability,
1044185377Ssam				setting, status);
1045185377Ssam	}
1046185377Ssam#undef N
1047185377Ssam}
1048185377Ssam
1049185377SsamHAL_BOOL
1050185377Ssamar5212GetDiagState(struct ath_hal *ah, int request,
1051185377Ssam	const void *args, uint32_t argsize,
1052185377Ssam	void **result, uint32_t *resultsize)
1053185377Ssam{
1054185377Ssam	struct ath_hal_5212 *ahp = AH5212(ah);
1055281128Sadrian	HAL_ANI_STATS *astats;
1056185377Ssam
1057185377Ssam	(void) ahp;
1058185377Ssam	if (ath_hal_getdiagstate(ah, request, args, argsize, result, resultsize))
1059185377Ssam		return AH_TRUE;
1060185377Ssam	switch (request) {
1061185377Ssam	case HAL_DIAG_EEPROM:
1062185377Ssam	case HAL_DIAG_EEPROM_EXP_11A:
1063185377Ssam	case HAL_DIAG_EEPROM_EXP_11B:
1064185377Ssam	case HAL_DIAG_EEPROM_EXP_11G:
1065185377Ssam	case HAL_DIAG_RFGAIN:
1066185377Ssam		return ath_hal_eepromDiag(ah, request,
1067185377Ssam		    args, argsize, result, resultsize);
1068185377Ssam	case HAL_DIAG_RFGAIN_CURSTEP:
1069185377Ssam		*result = __DECONST(void *, ahp->ah_gainValues.currStep);
1070185377Ssam		*resultsize = (*result == AH_NULL) ?
1071185377Ssam			0 : sizeof(GAIN_OPTIMIZATION_STEP);
1072185377Ssam		return AH_TRUE;
1073185377Ssam	case HAL_DIAG_PCDAC:
1074185377Ssam		*result = ahp->ah_pcdacTable;
1075185377Ssam		*resultsize = ahp->ah_pcdacTableSize;
1076185377Ssam		return AH_TRUE;
1077185377Ssam	case HAL_DIAG_TXRATES:
1078185377Ssam		*result = &ahp->ah_ratesArray[0];
1079185377Ssam		*resultsize = sizeof(ahp->ah_ratesArray);
1080185377Ssam		return AH_TRUE;
1081185377Ssam	case HAL_DIAG_ANI_CURRENT:
1082185377Ssam		*result = ar5212AniGetCurrentState(ah);
1083185377Ssam		*resultsize = (*result == AH_NULL) ?
1084185377Ssam			0 : sizeof(struct ar5212AniState);
1085185377Ssam		return AH_TRUE;
1086185377Ssam	case HAL_DIAG_ANI_STATS:
1087281128Sadrian		OS_MEMZERO(&ahp->ext_ani_stats, sizeof(ahp->ext_ani_stats));
1088281128Sadrian		astats = ar5212AniGetCurrentStats(ah);
1089281128Sadrian		if (astats == NULL) {
1090280942Sadrian			*result = NULL;
1091280942Sadrian			*resultsize = 0;
1092280942Sadrian		} else {
1093281128Sadrian			OS_MEMCPY(&ahp->ext_ani_stats, astats, sizeof(HAL_ANI_STATS));
1094281128Sadrian			*result = &ahp->ext_ani_stats;
1095281128Sadrian			*resultsize = sizeof(ahp->ext_ani_stats);
1096280942Sadrian		}
1097185377Ssam		return AH_TRUE;
1098185377Ssam	case HAL_DIAG_ANI_CMD:
1099185377Ssam		if (argsize != 2*sizeof(uint32_t))
1100185377Ssam			return AH_FALSE;
1101222265Sadrian		AH5212(ah)->ah_aniControl(ah, ((const uint32_t *)args)[0],
1102185377Ssam			((const uint32_t *)args)[1]);
1103185377Ssam		return AH_TRUE;
1104185377Ssam	case HAL_DIAG_ANI_PARAMS:
1105185377Ssam		/*
1106185377Ssam		 * NB: We assume struct ar5212AniParams is identical
1107185377Ssam		 * to HAL_ANI_PARAMS; if they diverge then we'll need
1108185377Ssam		 * to handle it here
1109185377Ssam		 */
1110185377Ssam		if (argsize == 0 && args == AH_NULL) {
1111185377Ssam			struct ar5212AniState *aniState =
1112185377Ssam			    ar5212AniGetCurrentState(ah);
1113185377Ssam			if (aniState == AH_NULL)
1114185377Ssam				return AH_FALSE;
1115185377Ssam			*result = __DECONST(void *, aniState->params);
1116185377Ssam			*resultsize = sizeof(struct ar5212AniParams);
1117185377Ssam			return AH_TRUE;
1118185377Ssam		} else {
1119185377Ssam			if (argsize != sizeof(struct ar5212AniParams))
1120185377Ssam				return AH_FALSE;
1121185377Ssam			return ar5212AniSetParams(ah, args, args);
1122185377Ssam		}
1123234750Sadrian		break;
1124185377Ssam	}
1125185377Ssam	return AH_FALSE;
1126185377Ssam}
1127211206Sadrian
1128211206Sadrian/*
1129211206Sadrian * Check whether there's an in-progress NF completion.
1130211206Sadrian *
1131211206Sadrian * Returns AH_TRUE if there's a in-progress NF calibration, AH_FALSE
1132211206Sadrian * otherwise.
1133211206Sadrian */
1134211206SadrianHAL_BOOL
1135211206Sadrianar5212IsNFCalInProgress(struct ath_hal *ah)
1136211206Sadrian{
1137211206Sadrian	if (OS_REG_READ(ah, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF)
1138211206Sadrian		return AH_TRUE;
1139211206Sadrian	return AH_FALSE;
1140211206Sadrian}
1141211206Sadrian
1142211206Sadrian/*
1143211206Sadrian * Wait for an in-progress NF calibration to complete.
1144211206Sadrian *
1145211206Sadrian * The completion function waits "i" times 10uS.
1146211206Sadrian * It returns AH_TRUE if the NF calibration completed (or was never
1147211206Sadrian * in progress); AH_FALSE if it was still in progress after "i" checks.
1148211206Sadrian */
1149211206SadrianHAL_BOOL
1150211206Sadrianar5212WaitNFCalComplete(struct ath_hal *ah, int i)
1151211206Sadrian{
1152211206Sadrian	int j;
1153211206Sadrian	if (i <= 0)
1154211206Sadrian		i = 1;	  /* it should run at least once */
1155211206Sadrian	for (j = 0; j < i; j++) {
1156211206Sadrian		if (! ar5212IsNFCalInProgress(ah))
1157211206Sadrian			return AH_TRUE;
1158211206Sadrian		OS_DELAY(10);
1159211206Sadrian	}
1160211206Sadrian	return AH_FALSE;
1161211206Sadrian}
1162222584Sadrian
1163222584Sadrianvoid
1164222584Sadrianar5212EnableDfs(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
1165222584Sadrian{
1166222584Sadrian	uint32_t val;
1167222584Sadrian	val = OS_REG_READ(ah, AR_PHY_RADAR_0);
1168222584Sadrian
1169222584Sadrian	if (pe->pe_firpwr != HAL_PHYERR_PARAM_NOVAL) {
1170222584Sadrian		val &= ~AR_PHY_RADAR_0_FIRPWR;
1171222584Sadrian		val |= SM(pe->pe_firpwr, AR_PHY_RADAR_0_FIRPWR);
1172222584Sadrian	}
1173222584Sadrian	if (pe->pe_rrssi != HAL_PHYERR_PARAM_NOVAL) {
1174222584Sadrian		val &= ~AR_PHY_RADAR_0_RRSSI;
1175222584Sadrian		val |= SM(pe->pe_rrssi, AR_PHY_RADAR_0_RRSSI);
1176222584Sadrian	}
1177222584Sadrian	if (pe->pe_height != HAL_PHYERR_PARAM_NOVAL) {
1178222584Sadrian		val &= ~AR_PHY_RADAR_0_HEIGHT;
1179222584Sadrian		val |= SM(pe->pe_height, AR_PHY_RADAR_0_HEIGHT);
1180222584Sadrian	}
1181222584Sadrian	if (pe->pe_prssi != HAL_PHYERR_PARAM_NOVAL) {
1182222584Sadrian		val &= ~AR_PHY_RADAR_0_PRSSI;
1183222584Sadrian		val |= SM(pe->pe_prssi, AR_PHY_RADAR_0_PRSSI);
1184222584Sadrian	}
1185222584Sadrian	if (pe->pe_inband != HAL_PHYERR_PARAM_NOVAL) {
1186222584Sadrian		val &= ~AR_PHY_RADAR_0_INBAND;
1187222584Sadrian		val |= SM(pe->pe_inband, AR_PHY_RADAR_0_INBAND);
1188222584Sadrian	}
1189239657Sadrian	if (pe->pe_enabled)
1190239657Sadrian		val |= AR_PHY_RADAR_0_ENA;
1191239657Sadrian	else
1192239657Sadrian		val &= ~ AR_PHY_RADAR_0_ENA;
1193239657Sadrian
1194239801Sadrian	if (IS_5413(ah)) {
1195239801Sadrian
1196239801Sadrian		if (pe->pe_blockradar == 1)
1197239801Sadrian			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1198239801Sadrian			    AR_PHY_RADAR_2_BLOCKOFDMWEAK);
1199239801Sadrian		else
1200239801Sadrian			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1201239801Sadrian			    AR_PHY_RADAR_2_BLOCKOFDMWEAK);
1202239801Sadrian
1203239801Sadrian		if (pe->pe_en_relstep_check == 1)
1204239801Sadrian			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1205239801Sadrian			    AR_PHY_RADAR_2_ENRELSTEPCHK);
1206239801Sadrian		else
1207239801Sadrian			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1208239801Sadrian			    AR_PHY_RADAR_2_ENRELSTEPCHK);
1209239801Sadrian
1210239801Sadrian		if (pe->pe_usefir128 == 1)
1211239801Sadrian			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1212239801Sadrian			    AR_PHY_RADAR_2_USEFIR128);
1213239801Sadrian		else
1214239801Sadrian			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1215239801Sadrian			    AR_PHY_RADAR_2_USEFIR128);
1216239801Sadrian
1217239801Sadrian		if (pe->pe_enmaxrssi == 1)
1218239801Sadrian			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1219239801Sadrian			    AR_PHY_RADAR_2_ENMAXRSSI);
1220239801Sadrian		else
1221239801Sadrian			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1222239801Sadrian			    AR_PHY_RADAR_2_ENMAXRSSI);
1223239801Sadrian
1224239801Sadrian		if (pe->pe_enrelpwr == 1)
1225239801Sadrian			OS_REG_SET_BIT(ah, AR_PHY_RADAR_2,
1226239801Sadrian			    AR_PHY_RADAR_2_ENRELPWRCHK);
1227239801Sadrian		else
1228239801Sadrian			OS_REG_CLR_BIT(ah, AR_PHY_RADAR_2,
1229239801Sadrian			    AR_PHY_RADAR_2_ENRELPWRCHK);
1230239801Sadrian
1231239801Sadrian		if (pe->pe_relpwr != HAL_PHYERR_PARAM_NOVAL)
1232239801Sadrian			OS_REG_RMW_FIELD(ah, AR_PHY_RADAR_2,
1233239801Sadrian			    AR_PHY_RADAR_2_RELPWR, pe->pe_relpwr);
1234239801Sadrian
1235239801Sadrian		if (pe->pe_relstep != HAL_PHYERR_PARAM_NOVAL)
1236239801Sadrian			OS_REG_RMW_FIELD(ah, AR_PHY_RADAR_2,
1237239801Sadrian			    AR_PHY_RADAR_2_RELSTEP, pe->pe_relstep);
1238239801Sadrian
1239239801Sadrian		if (pe->pe_maxlen != HAL_PHYERR_PARAM_NOVAL)
1240239801Sadrian			OS_REG_RMW_FIELD(ah, AR_PHY_RADAR_2,
1241239801Sadrian			    AR_PHY_RADAR_2_MAXLEN, pe->pe_maxlen);
1242239801Sadrian	}
1243239801Sadrian
1244239657Sadrian	OS_REG_WRITE(ah, AR_PHY_RADAR_0, val);
1245222584Sadrian}
1246222584Sadrian
1247239642Sadrian/*
1248239642Sadrian * Parameters for the AR5212 PHY.
1249239642Sadrian */
1250240001Sadrian#define	AR5212_DFS_FIRPWR	-35
1251240001Sadrian#define	AR5212_DFS_RRSSI	20
1252240001Sadrian#define	AR5212_DFS_HEIGHT	14
1253240001Sadrian#define	AR5212_DFS_PRSSI	6
1254240001Sadrian#define	AR5212_DFS_INBAND	4
1255239642Sadrian
1256239801Sadrian/*
1257239801Sadrian * Default parameters for the AR5413 PHY.
1258239801Sadrian */
1259239801Sadrian#define	AR5413_DFS_FIRPWR	-34
1260239801Sadrian#define	AR5413_DFS_RRSSI	20
1261239801Sadrian#define	AR5413_DFS_HEIGHT	10
1262239801Sadrian#define	AR5413_DFS_PRSSI	15
1263239801Sadrian#define	AR5413_DFS_INBAND	6
1264239801Sadrian#define	AR5413_DFS_RELPWR	8
1265239801Sadrian#define	AR5413_DFS_RELSTEP	31
1266239801Sadrian#define	AR5413_DFS_MAXLEN	255
1267239801Sadrian
1268239642SadrianHAL_BOOL
1269239642Sadrianar5212GetDfsDefaultThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
1270239642Sadrian{
1271239642Sadrian
1272239801Sadrian	if (IS_5413(ah)) {
1273239801Sadrian		pe->pe_firpwr = AR5413_DFS_FIRPWR;
1274239801Sadrian		pe->pe_rrssi = AR5413_DFS_RRSSI;
1275239801Sadrian		pe->pe_height = AR5413_DFS_HEIGHT;
1276239801Sadrian		pe->pe_prssi = AR5413_DFS_PRSSI;
1277239801Sadrian		pe->pe_inband = AR5413_DFS_INBAND;
1278239801Sadrian		pe->pe_relpwr = AR5413_DFS_RELPWR;
1279239801Sadrian		pe->pe_relstep = AR5413_DFS_RELSTEP;
1280239801Sadrian		pe->pe_maxlen = AR5413_DFS_MAXLEN;
1281239801Sadrian		pe->pe_usefir128 = 0;
1282239801Sadrian		pe->pe_blockradar = 1;
1283239801Sadrian		pe->pe_enmaxrssi = 1;
1284239801Sadrian		pe->pe_enrelpwr = 1;
1285239801Sadrian		pe->pe_en_relstep_check = 0;
1286239801Sadrian	} else {
1287239801Sadrian		pe->pe_firpwr = AR5212_DFS_FIRPWR;
1288239801Sadrian		pe->pe_rrssi = AR5212_DFS_RRSSI;
1289239801Sadrian		pe->pe_height = AR5212_DFS_HEIGHT;
1290239801Sadrian		pe->pe_prssi = AR5212_DFS_PRSSI;
1291239801Sadrian		pe->pe_inband = AR5212_DFS_INBAND;
1292239801Sadrian		pe->pe_relpwr = 0;
1293239801Sadrian		pe->pe_relstep = 0;
1294239801Sadrian		pe->pe_maxlen = 0;
1295239801Sadrian		pe->pe_usefir128 = 0;
1296239801Sadrian		pe->pe_blockradar = 0;
1297239801Sadrian		pe->pe_enmaxrssi = 0;
1298239801Sadrian		pe->pe_enrelpwr = 0;
1299239801Sadrian		pe->pe_en_relstep_check = 0;
1300239801Sadrian	}
1301239642Sadrian
1302239642Sadrian	return (AH_TRUE);
1303239642Sadrian}
1304239642Sadrian
1305222584Sadrianvoid
1306222584Sadrianar5212GetDfsThresh(struct ath_hal *ah, HAL_PHYERR_PARAM *pe)
1307222584Sadrian{
1308222584Sadrian	uint32_t val,temp;
1309222584Sadrian
1310222584Sadrian	val = OS_REG_READ(ah, AR_PHY_RADAR_0);
1311222584Sadrian
1312222584Sadrian	temp = MS(val,AR_PHY_RADAR_0_FIRPWR);
1313222584Sadrian	temp |= 0xFFFFFF80;
1314222584Sadrian	pe->pe_firpwr = temp;
1315222584Sadrian	pe->pe_rrssi = MS(val, AR_PHY_RADAR_0_RRSSI);
1316222584Sadrian	pe->pe_height =  MS(val, AR_PHY_RADAR_0_HEIGHT);
1317222584Sadrian	pe->pe_prssi = MS(val, AR_PHY_RADAR_0_PRSSI);
1318222584Sadrian	pe->pe_inband = MS(val, AR_PHY_RADAR_0_INBAND);
1319239657Sadrian	pe->pe_enabled = !! (val & AR_PHY_RADAR_0_ENA);
1320222584Sadrian
1321222584Sadrian	pe->pe_relpwr = 0;
1322222584Sadrian	pe->pe_relstep = 0;
1323222584Sadrian	pe->pe_maxlen = 0;
1324239801Sadrian	pe->pe_usefir128 = 0;
1325239801Sadrian	pe->pe_blockradar = 0;
1326239801Sadrian	pe->pe_enmaxrssi = 0;
1327239801Sadrian	pe->pe_enrelpwr = 0;
1328239801Sadrian	pe->pe_en_relstep_check = 0;
1329222584Sadrian	pe->pe_extchannel = AH_FALSE;
1330239801Sadrian
1331239801Sadrian	if (IS_5413(ah)) {
1332239801Sadrian		val = OS_REG_READ(ah, AR_PHY_RADAR_2);
1333239801Sadrian		pe->pe_relpwr = !! MS(val, AR_PHY_RADAR_2_RELPWR);
1334239801Sadrian		pe->pe_relstep = !! MS(val, AR_PHY_RADAR_2_RELSTEP);
1335239801Sadrian		pe->pe_maxlen = !! MS(val, AR_PHY_RADAR_2_MAXLEN);
1336239801Sadrian
1337239801Sadrian		pe->pe_usefir128 = !! (val & AR_PHY_RADAR_2_USEFIR128);
1338239801Sadrian		pe->pe_blockradar = !! (val & AR_PHY_RADAR_2_BLOCKOFDMWEAK);
1339239801Sadrian		pe->pe_enmaxrssi = !! (val & AR_PHY_RADAR_2_ENMAXRSSI);
1340239801Sadrian		pe->pe_enrelpwr = !! (val & AR_PHY_RADAR_2_ENRELPWRCHK);
1341239801Sadrian		pe->pe_en_relstep_check =
1342239801Sadrian		    !! (val & AR_PHY_RADAR_2_ENRELSTEPCHK);
1343239801Sadrian	}
1344222584Sadrian}
1345222584Sadrian
1346222815Sadrian/*
1347222815Sadrian * Process the radar phy error and extract the pulse duration.
1348222815Sadrian */
1349222815SadrianHAL_BOOL
1350222815Sadrianar5212ProcessRadarEvent(struct ath_hal *ah, struct ath_rx_status *rxs,
1351222815Sadrian    uint64_t fulltsf, const char *buf, HAL_DFS_EVENT *event)
1352222815Sadrian{
1353222815Sadrian	uint8_t dur;
1354222815Sadrian	uint8_t rssi;
1355222815Sadrian
1356222815Sadrian	/* Check whether the given phy error is a radar event */
1357222815Sadrian	if ((rxs->rs_phyerr != HAL_PHYERR_RADAR) &&
1358222815Sadrian	    (rxs->rs_phyerr != HAL_PHYERR_FALSE_RADAR_EXT))
1359222815Sadrian		return AH_FALSE;
1360222815Sadrian
1361222815Sadrian	/*
1362222815Sadrian	 * The first byte is the pulse width - if there's
1363222815Sadrian	 * no data, simply set the duration to 0
1364222815Sadrian	 */
1365222815Sadrian	if (rxs->rs_datalen >= 1)
1366222815Sadrian		/* The pulse width is byte 0 of the data */
1367222815Sadrian		dur = ((uint8_t) buf[0]) & 0xff;
1368222815Sadrian	else
1369222815Sadrian		dur = 0;
1370222815Sadrian
1371222815Sadrian	/* Pulse RSSI is the normal reported RSSI */
1372222815Sadrian	rssi = (uint8_t) rxs->rs_rssi;
1373222815Sadrian
1374222815Sadrian	/* 0 duration/rssi is not a valid radar event */
1375222815Sadrian	if (dur == 0 && rssi == 0)
1376222815Sadrian		return AH_FALSE;
1377222815Sadrian
1378222815Sadrian	HALDEBUG(ah, HAL_DEBUG_DFS, "%s: rssi=%d, dur=%d\n",
1379222815Sadrian	    __func__, rssi, dur);
1380222815Sadrian
1381222815Sadrian	/* Record the event */
1382222815Sadrian	event->re_full_ts = fulltsf;
1383222815Sadrian	event->re_ts = rxs->rs_tstamp;
1384222815Sadrian	event->re_rssi = rssi;
1385222815Sadrian	event->re_dur = dur;
1386222815Sadrian	event->re_flags = HAL_DFS_EVENT_PRICH;
1387222815Sadrian
1388222815Sadrian	return AH_TRUE;
1389222815Sadrian}
1390224709Sadrian
1391224709Sadrian/*
1392224709Sadrian * Return whether 5GHz fast-clock (44MHz) is enabled.
1393224709Sadrian * It's always disabled for AR5212 series NICs.
1394224709Sadrian */
1395224709SadrianHAL_BOOL
1396224709Sadrianar5212IsFastClockEnabled(struct ath_hal *ah)
1397224709Sadrian{
1398224709Sadrian	return AH_FALSE;
1399224709Sadrian}
1400230791Sadrian
1401230791Sadrian/*
1402230791Sadrian * Return what percentage of the extension channel is busy.
1403230791Sadrian * This is always disabled for AR5212 series NICs.
1404230791Sadrian */
1405230791Sadrianuint32_t
1406230791Sadrianar5212Get11nExtBusy(struct ath_hal *ah)
1407230791Sadrian{
1408230791Sadrian	return 0;
1409230791Sadrian}
1410234873Sadrian
1411234873Sadrian/*
1412256139Sadrian * Channel survey support.
1413234873Sadrian */
1414234873SadrianHAL_BOOL
1415234873Sadrianar5212GetMibCycleCounts(struct ath_hal *ah, HAL_SURVEY_SAMPLE *hsample)
1416234873Sadrian{
1417256139Sadrian	struct ath_hal_5212 *ahp = AH5212(ah);
1418256139Sadrian	u_int32_t good = AH_TRUE;
1419234873Sadrian
1420256139Sadrian	/* XXX freeze/unfreeze mib counters */
1421256139Sadrian	uint32_t rc = OS_REG_READ(ah, AR_RCCNT);
1422256139Sadrian	uint32_t rf = OS_REG_READ(ah, AR_RFCNT);
1423256139Sadrian	uint32_t tf = OS_REG_READ(ah, AR_TFCNT);
1424256139Sadrian	uint32_t cc = OS_REG_READ(ah, AR_CCCNT); /* read cycles last */
1425256139Sadrian
1426256139Sadrian	if (ahp->ah_cycleCount == 0 || ahp->ah_cycleCount > cc) {
1427256139Sadrian		/*
1428256139Sadrian		 * Cycle counter wrap (or initial call); it's not possible
1429256139Sadrian		 * to accurately calculate a value because the registers
1430256139Sadrian		 * right shift rather than wrap--so punt and return 0.
1431256139Sadrian		 */
1432256139Sadrian		HALDEBUG(ah, HAL_DEBUG_ANY,
1433256139Sadrian		    "%s: cycle counter wrap. ExtBusy = 0\n", __func__);
1434256139Sadrian		good = AH_FALSE;
1435256139Sadrian	} else {
1436256139Sadrian		hsample->cycle_count = cc - ahp->ah_cycleCount;
1437256139Sadrian		hsample->chan_busy = rc - ahp->ah_ctlBusy;
1438256139Sadrian		hsample->ext_chan_busy = 0;
1439256139Sadrian		hsample->rx_busy = rf - ahp->ah_rxBusy;
1440256139Sadrian		hsample->tx_busy = tf - ahp->ah_txBusy;
1441256139Sadrian	}
1442256139Sadrian
1443256139Sadrian	/*
1444256139Sadrian	 * Keep a copy of the MIB results so the next sample has something
1445256139Sadrian	 * to work from.
1446256139Sadrian	 */
1447256139Sadrian	ahp->ah_cycleCount = cc;
1448256139Sadrian	ahp->ah_rxBusy = rf;
1449256139Sadrian	ahp->ah_ctlBusy = rc;
1450256139Sadrian	ahp->ah_txBusy = tf;
1451256139Sadrian
1452256139Sadrian	return (good);
1453234873Sadrian}
1454247286Sadrian
1455247286Sadrianvoid
1456247286Sadrianar5212SetChainMasks(struct ath_hal *ah, uint32_t tx_chainmask,
1457247286Sadrian    uint32_t rx_chainmask)
1458247286Sadrian{
1459247286Sadrian}
1460