if_age.c revision 271828
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 271828 2014-09-18 21:01:41Z glebius $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_var.h>
51#include <net/if_arp.h>
52#include <net/ethernet.h>
53#include <net/if_dl.h>
54#include <net/if_media.h>
55#include <net/if_types.h>
56#include <net/if_vlan_var.h>
57
58#include <netinet/in.h>
59#include <netinet/in_systm.h>
60#include <netinet/ip.h>
61#include <netinet/tcp.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65
66#include <dev/pci/pcireg.h>
67#include <dev/pci/pcivar.h>
68
69#include <machine/bus.h>
70#include <machine/in_cksum.h>
71
72#include <dev/age/if_agereg.h>
73#include <dev/age/if_agevar.h>
74
75/* "device miibus" required.  See GENERIC if you get errors here. */
76#include "miibus_if.h"
77
78#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
79
80MODULE_DEPEND(age, pci, 1, 1, 1);
81MODULE_DEPEND(age, ether, 1, 1, 1);
82MODULE_DEPEND(age, miibus, 1, 1, 1);
83
84/* Tunables. */
85static int msi_disable = 0;
86static int msix_disable = 0;
87TUNABLE_INT("hw.age.msi_disable", &msi_disable);
88TUNABLE_INT("hw.age.msix_disable", &msix_disable);
89
90/*
91 * Devices supported by this driver.
92 */
93static struct age_dev {
94	uint16_t	age_vendorid;
95	uint16_t	age_deviceid;
96	const char	*age_name;
97} age_devs[] = {
98	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
99	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
100};
101
102static int age_miibus_readreg(device_t, int, int);
103static int age_miibus_writereg(device_t, int, int, int);
104static void age_miibus_statchg(device_t);
105static void age_mediastatus(struct ifnet *, struct ifmediareq *);
106static int age_mediachange(struct ifnet *);
107static int age_probe(device_t);
108static void age_get_macaddr(struct age_softc *);
109static void age_phy_reset(struct age_softc *);
110static int age_attach(device_t);
111static int age_detach(device_t);
112static void age_sysctl_node(struct age_softc *);
113static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
114static int age_check_boundary(struct age_softc *);
115static int age_dma_alloc(struct age_softc *);
116static void age_dma_free(struct age_softc *);
117static int age_shutdown(device_t);
118static void age_setwol(struct age_softc *);
119static int age_suspend(device_t);
120static int age_resume(device_t);
121static int age_encap(struct age_softc *, struct mbuf **);
122static void age_start(struct ifnet *);
123static void age_start_locked(struct ifnet *);
124static void age_watchdog(struct age_softc *);
125static int age_ioctl(struct ifnet *, u_long, caddr_t);
126static void age_mac_config(struct age_softc *);
127static void age_link_task(void *, int);
128static void age_stats_update(struct age_softc *);
129static int age_intr(void *);
130static void age_int_task(void *, int);
131static void age_txintr(struct age_softc *, int);
132static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
133static int age_rxintr(struct age_softc *, int, int);
134static void age_tick(void *);
135static void age_reset(struct age_softc *);
136static void age_init(void *);
137static void age_init_locked(struct age_softc *);
138static void age_stop(struct age_softc *);
139static void age_stop_txmac(struct age_softc *);
140static void age_stop_rxmac(struct age_softc *);
141static void age_init_tx_ring(struct age_softc *);
142static int age_init_rx_ring(struct age_softc *);
143static void age_init_rr_ring(struct age_softc *);
144static void age_init_cmb_block(struct age_softc *);
145static void age_init_smb_block(struct age_softc *);
146#ifndef __NO_STRICT_ALIGNMENT
147static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
148#endif
149static int age_newbuf(struct age_softc *, struct age_rxdesc *);
150static void age_rxvlan(struct age_softc *);
151static void age_rxfilter(struct age_softc *);
152static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
153static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
155static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
156
157
158static device_method_t age_methods[] = {
159	/* Device interface. */
160	DEVMETHOD(device_probe,		age_probe),
161	DEVMETHOD(device_attach,	age_attach),
162	DEVMETHOD(device_detach,	age_detach),
163	DEVMETHOD(device_shutdown,	age_shutdown),
164	DEVMETHOD(device_suspend,	age_suspend),
165	DEVMETHOD(device_resume,	age_resume),
166
167	/* MII interface. */
168	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
169	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
170	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
171
172	{ NULL, NULL }
173};
174
175static driver_t age_driver = {
176	"age",
177	age_methods,
178	sizeof(struct age_softc)
179};
180
181static devclass_t age_devclass;
182
183DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
184DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
185
186static struct resource_spec age_res_spec_mem[] = {
187	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
188	{ -1,			0,		0 }
189};
190
191static struct resource_spec age_irq_spec_legacy[] = {
192	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
193	{ -1,			0,		0 }
194};
195
196static struct resource_spec age_irq_spec_msi[] = {
197	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
198	{ -1,			0,		0 }
199};
200
201static struct resource_spec age_irq_spec_msix[] = {
202	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
203	{ -1,			0,		0 }
204};
205
206/*
207 *	Read a PHY register on the MII of the L1.
208 */
209static int
210age_miibus_readreg(device_t dev, int phy, int reg)
211{
212	struct age_softc *sc;
213	uint32_t v;
214	int i;
215
216	sc = device_get_softc(dev);
217
218	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
221		DELAY(1);
222		v = CSR_READ_4(sc, AGE_MDIO);
223		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224			break;
225	}
226
227	if (i == 0) {
228		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
229		return (0);
230	}
231
232	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
233}
234
235/*
236 *	Write a PHY register on the MII of the L1.
237 */
238static int
239age_miibus_writereg(device_t dev, int phy, int reg, int val)
240{
241	struct age_softc *sc;
242	uint32_t v;
243	int i;
244
245	sc = device_get_softc(dev);
246
247	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251		DELAY(1);
252		v = CSR_READ_4(sc, AGE_MDIO);
253		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254			break;
255	}
256
257	if (i == 0)
258		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259
260	return (0);
261}
262
263/*
264 *	Callback from MII layer when media changes.
265 */
266static void
267age_miibus_statchg(device_t dev)
268{
269	struct age_softc *sc;
270
271	sc = device_get_softc(dev);
272	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273}
274
275/*
276 *	Get the current interface media status.
277 */
278static void
279age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280{
281	struct age_softc *sc;
282	struct mii_data *mii;
283
284	sc = ifp->if_softc;
285	AGE_LOCK(sc);
286	mii = device_get_softc(sc->age_miibus);
287
288	mii_pollstat(mii);
289	ifmr->ifm_status = mii->mii_media_status;
290	ifmr->ifm_active = mii->mii_media_active;
291	AGE_UNLOCK(sc);
292}
293
294/*
295 *	Set hardware to newly-selected media.
296 */
297static int
298age_mediachange(struct ifnet *ifp)
299{
300	struct age_softc *sc;
301	struct mii_data *mii;
302	struct mii_softc *miisc;
303	int error;
304
305	sc = ifp->if_softc;
306	AGE_LOCK(sc);
307	mii = device_get_softc(sc->age_miibus);
308	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
309		PHY_RESET(miisc);
310	error = mii_mediachg(mii);
311	AGE_UNLOCK(sc);
312
313	return (error);
314}
315
316static int
317age_probe(device_t dev)
318{
319	struct age_dev *sp;
320	int i;
321	uint16_t vendor, devid;
322
323	vendor = pci_get_vendor(dev);
324	devid = pci_get_device(dev);
325	sp = age_devs;
326	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
327	    i++, sp++) {
328		if (vendor == sp->age_vendorid &&
329		    devid == sp->age_deviceid) {
330			device_set_desc(dev, sp->age_name);
331			return (BUS_PROBE_DEFAULT);
332		}
333	}
334
335	return (ENXIO);
336}
337
338static void
339age_get_macaddr(struct age_softc *sc)
340{
341	uint32_t ea[2], reg;
342	int i, vpdc;
343
344	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
345	if ((reg & SPI_VPD_ENB) != 0) {
346		/* Get VPD stored in TWSI EEPROM. */
347		reg &= ~SPI_VPD_ENB;
348		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
349	}
350
351	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
352		/*
353		 * PCI VPD capability found, let TWSI reload EEPROM.
354		 * This will set ethernet address of controller.
355		 */
356		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
357		    TWSI_CTRL_SW_LD_START);
358		for (i = 100; i > 0; i--) {
359			DELAY(1000);
360			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
361			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
362				break;
363		}
364		if (i == 0)
365			device_printf(sc->age_dev,
366			    "reloading EEPROM timeout!\n");
367	} else {
368		if (bootverbose)
369			device_printf(sc->age_dev,
370			    "PCI VPD capability not found!\n");
371	}
372
373	ea[0] = CSR_READ_4(sc, AGE_PAR0);
374	ea[1] = CSR_READ_4(sc, AGE_PAR1);
375	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
376	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
377	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
378	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
379	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
380	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
381}
382
383static void
384age_phy_reset(struct age_softc *sc)
385{
386	uint16_t reg, pn;
387	int i, linkup;
388
389	/* Reset PHY. */
390	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
391	DELAY(2000);
392	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
393	DELAY(2000);
394
395#define	ATPHY_DBG_ADDR		0x1D
396#define	ATPHY_DBG_DATA		0x1E
397#define	ATPHY_CDTC		0x16
398#define	PHY_CDTC_ENB		0x0001
399#define	PHY_CDTC_POFF		8
400#define	ATPHY_CDTS		0x1C
401#define	PHY_CDTS_STAT_OK	0x0000
402#define	PHY_CDTS_STAT_SHORT	0x0100
403#define	PHY_CDTS_STAT_OPEN	0x0200
404#define	PHY_CDTS_STAT_INVAL	0x0300
405#define	PHY_CDTS_STAT_MASK	0x0300
406
407	/* Check power saving mode. Magic from Linux. */
408	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
409	for (linkup = 0, pn = 0; pn < 4; pn++) {
410		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
411		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
412		for (i = 200; i > 0; i--) {
413			DELAY(1000);
414			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
415			    ATPHY_CDTC);
416			if ((reg & PHY_CDTC_ENB) == 0)
417				break;
418		}
419		DELAY(1000);
420		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
421		    ATPHY_CDTS);
422		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
423			linkup++;
424			break;
425		}
426	}
427	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
428	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
429	if (linkup == 0) {
430		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431		    ATPHY_DBG_ADDR, 0);
432		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433		    ATPHY_DBG_DATA, 0x124E);
434		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435		    ATPHY_DBG_ADDR, 1);
436		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
437		    ATPHY_DBG_DATA);
438		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439		    ATPHY_DBG_DATA, reg | 0x03);
440		/* XXX */
441		DELAY(1500 * 1000);
442		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
443		    ATPHY_DBG_ADDR, 0);
444		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
445		    ATPHY_DBG_DATA, 0x024E);
446    }
447
448#undef	ATPHY_DBG_ADDR
449#undef	ATPHY_DBG_DATA
450#undef	ATPHY_CDTC
451#undef	PHY_CDTC_ENB
452#undef	PHY_CDTC_POFF
453#undef	ATPHY_CDTS
454#undef	PHY_CDTS_STAT_OK
455#undef	PHY_CDTS_STAT_SHORT
456#undef	PHY_CDTS_STAT_OPEN
457#undef	PHY_CDTS_STAT_INVAL
458#undef	PHY_CDTS_STAT_MASK
459}
460
461static int
462age_attach(device_t dev)
463{
464	struct age_softc *sc;
465	struct ifnet *ifp;
466	uint16_t burst;
467	int error, i, msic, msixc, pmc;
468
469	error = 0;
470	sc = device_get_softc(dev);
471	sc->age_dev = dev;
472
473	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
474	    MTX_DEF);
475	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
476	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
477	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
478
479	/* Map the device. */
480	pci_enable_busmaster(dev);
481	sc->age_res_spec = age_res_spec_mem;
482	sc->age_irq_spec = age_irq_spec_legacy;
483	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
484	if (error != 0) {
485		device_printf(dev, "cannot allocate memory resources.\n");
486		goto fail;
487	}
488
489	/* Set PHY address. */
490	sc->age_phyaddr = AGE_PHY_ADDR;
491
492	/* Reset PHY. */
493	age_phy_reset(sc);
494
495	/* Reset the ethernet controller. */
496	age_reset(sc);
497
498	/* Get PCI and chip id/revision. */
499	sc->age_rev = pci_get_revid(dev);
500	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
501	    MASTER_CHIP_REV_SHIFT;
502	if (bootverbose) {
503		device_printf(dev, "PCI device revision : 0x%04x\n",
504		    sc->age_rev);
505		device_printf(dev, "Chip id/revision : 0x%04x\n",
506		    sc->age_chip_rev);
507	}
508
509	/*
510	 * XXX
511	 * Unintialized hardware returns an invalid chip id/revision
512	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
513	 * unplugged cable results in putting hardware into automatic
514	 * power down mode which in turn returns invalld chip revision.
515	 */
516	if (sc->age_chip_rev == 0xFFFF) {
517		device_printf(dev,"invalid chip revision : 0x%04x -- "
518		    "not initialized?\n", sc->age_chip_rev);
519		error = ENXIO;
520		goto fail;
521	}
522
523	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
524	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
525	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
526
527	/* Allocate IRQ resources. */
528	msixc = pci_msix_count(dev);
529	msic = pci_msi_count(dev);
530	if (bootverbose) {
531		device_printf(dev, "MSIX count : %d\n", msixc);
532		device_printf(dev, "MSI count : %d\n", msic);
533	}
534
535	/* Prefer MSIX over MSI. */
536	if (msix_disable == 0 || msi_disable == 0) {
537		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
538		    pci_alloc_msix(dev, &msixc) == 0) {
539			if (msic == AGE_MSIX_MESSAGES) {
540				device_printf(dev, "Using %d MSIX messages.\n",
541				    msixc);
542				sc->age_flags |= AGE_FLAG_MSIX;
543				sc->age_irq_spec = age_irq_spec_msix;
544			} else
545				pci_release_msi(dev);
546		}
547		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
548		    msic == AGE_MSI_MESSAGES &&
549		    pci_alloc_msi(dev, &msic) == 0) {
550			if (msic == AGE_MSI_MESSAGES) {
551				device_printf(dev, "Using %d MSI messages.\n",
552				    msic);
553				sc->age_flags |= AGE_FLAG_MSI;
554				sc->age_irq_spec = age_irq_spec_msi;
555			} else
556				pci_release_msi(dev);
557		}
558	}
559
560	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
561	if (error != 0) {
562		device_printf(dev, "cannot allocate IRQ resources.\n");
563		goto fail;
564	}
565
566
567	/* Get DMA parameters from PCIe device control register. */
568	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
569		sc->age_flags |= AGE_FLAG_PCIE;
570		burst = pci_read_config(dev, i + 0x08, 2);
571		/* Max read request size. */
572		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
573		    DMA_CFG_RD_BURST_SHIFT;
574		/* Max payload size. */
575		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
576		    DMA_CFG_WR_BURST_SHIFT;
577		if (bootverbose) {
578			device_printf(dev, "Read request size : %d bytes.\n",
579			    128 << ((burst >> 12) & 0x07));
580			device_printf(dev, "TLP payload size : %d bytes.\n",
581			    128 << ((burst >> 5) & 0x07));
582		}
583	} else {
584		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
585		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
586	}
587
588	/* Create device sysctl node. */
589	age_sysctl_node(sc);
590
591	if ((error = age_dma_alloc(sc) != 0))
592		goto fail;
593
594	/* Load station address. */
595	age_get_macaddr(sc);
596
597	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
598	if (ifp == NULL) {
599		device_printf(dev, "cannot allocate ifnet structure.\n");
600		error = ENXIO;
601		goto fail;
602	}
603
604	ifp->if_softc = sc;
605	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
606	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
607	ifp->if_ioctl = age_ioctl;
608	ifp->if_start = age_start;
609	ifp->if_init = age_init;
610	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
611	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
612	IFQ_SET_READY(&ifp->if_snd);
613	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
614	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
615	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
616		sc->age_flags |= AGE_FLAG_PMCAP;
617		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
618	}
619	ifp->if_capenable = ifp->if_capabilities;
620
621	/* Set up MII bus. */
622	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
623	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
624	    0);
625	if (error != 0) {
626		device_printf(dev, "attaching PHYs failed\n");
627		goto fail;
628	}
629
630	ether_ifattach(ifp, sc->age_eaddr);
631
632	/* VLAN capability setup. */
633	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
634	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
635	ifp->if_capenable = ifp->if_capabilities;
636
637	/* Tell the upper layer(s) we support long frames. */
638	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
639
640	/* Create local taskq. */
641	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
642	    taskqueue_thread_enqueue, &sc->age_tq);
643	if (sc->age_tq == NULL) {
644		device_printf(dev, "could not create taskqueue.\n");
645		ether_ifdetach(ifp);
646		error = ENXIO;
647		goto fail;
648	}
649	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
650	    device_get_nameunit(sc->age_dev));
651
652	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
653		msic = AGE_MSIX_MESSAGES;
654	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
655		msic = AGE_MSI_MESSAGES;
656	else
657		msic = 1;
658	for (i = 0; i < msic; i++) {
659		error = bus_setup_intr(dev, sc->age_irq[i],
660		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
661		    &sc->age_intrhand[i]);
662		if (error != 0)
663			break;
664	}
665	if (error != 0) {
666		device_printf(dev, "could not set up interrupt handler.\n");
667		taskqueue_free(sc->age_tq);
668		sc->age_tq = NULL;
669		ether_ifdetach(ifp);
670		goto fail;
671	}
672
673fail:
674	if (error != 0)
675		age_detach(dev);
676
677	return (error);
678}
679
680static int
681age_detach(device_t dev)
682{
683	struct age_softc *sc;
684	struct ifnet *ifp;
685	int i, msic;
686
687	sc = device_get_softc(dev);
688
689	ifp = sc->age_ifp;
690	if (device_is_attached(dev)) {
691		AGE_LOCK(sc);
692		sc->age_flags |= AGE_FLAG_DETACH;
693		age_stop(sc);
694		AGE_UNLOCK(sc);
695		callout_drain(&sc->age_tick_ch);
696		taskqueue_drain(sc->age_tq, &sc->age_int_task);
697		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
698		ether_ifdetach(ifp);
699	}
700
701	if (sc->age_tq != NULL) {
702		taskqueue_drain(sc->age_tq, &sc->age_int_task);
703		taskqueue_free(sc->age_tq);
704		sc->age_tq = NULL;
705	}
706
707	if (sc->age_miibus != NULL) {
708		device_delete_child(dev, sc->age_miibus);
709		sc->age_miibus = NULL;
710	}
711	bus_generic_detach(dev);
712	age_dma_free(sc);
713
714	if (ifp != NULL) {
715		if_free(ifp);
716		sc->age_ifp = NULL;
717	}
718
719	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
720		msic = AGE_MSIX_MESSAGES;
721	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
722		msic = AGE_MSI_MESSAGES;
723	else
724		msic = 1;
725	for (i = 0; i < msic; i++) {
726		if (sc->age_intrhand[i] != NULL) {
727			bus_teardown_intr(dev, sc->age_irq[i],
728			    sc->age_intrhand[i]);
729			sc->age_intrhand[i] = NULL;
730		}
731	}
732
733	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
734	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
735		pci_release_msi(dev);
736	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
737	mtx_destroy(&sc->age_mtx);
738
739	return (0);
740}
741
742static void
743age_sysctl_node(struct age_softc *sc)
744{
745	int error;
746
747	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
748	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
749	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
750	    "I", "Statistics");
751
752	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
753	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
754	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
755	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
756
757	/* Pull in device tunables. */
758	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
759	error = resource_int_value(device_get_name(sc->age_dev),
760	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
761	if (error == 0) {
762		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
763		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
764			device_printf(sc->age_dev,
765			    "int_mod value out of range; using default: %d\n",
766			    AGE_IM_TIMER_DEFAULT);
767			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
768		}
769	}
770
771	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
772	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
773	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
774	    0, sysctl_hw_age_proc_limit, "I",
775	    "max number of Rx events to process");
776
777	/* Pull in device tunables. */
778	sc->age_process_limit = AGE_PROC_DEFAULT;
779	error = resource_int_value(device_get_name(sc->age_dev),
780	    device_get_unit(sc->age_dev), "process_limit",
781	    &sc->age_process_limit);
782	if (error == 0) {
783		if (sc->age_process_limit < AGE_PROC_MIN ||
784		    sc->age_process_limit > AGE_PROC_MAX) {
785			device_printf(sc->age_dev,
786			    "process_limit value out of range; "
787			    "using default: %d\n", AGE_PROC_DEFAULT);
788			sc->age_process_limit = AGE_PROC_DEFAULT;
789		}
790	}
791}
792
793struct age_dmamap_arg {
794	bus_addr_t	age_busaddr;
795};
796
797static void
798age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
799{
800	struct age_dmamap_arg *ctx;
801
802	if (error != 0)
803		return;
804
805	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
806
807	ctx = (struct age_dmamap_arg *)arg;
808	ctx->age_busaddr = segs[0].ds_addr;
809}
810
811/*
812 * Attansic L1 controller have single register to specify high
813 * address part of DMA blocks. So all descriptor structures and
814 * DMA memory blocks should have the same high address of given
815 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
816 */
817static int
818age_check_boundary(struct age_softc *sc)
819{
820	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
821	bus_addr_t cmb_block_end, smb_block_end;
822
823	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
824	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
825	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
826	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
827	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
828	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
829
830	if ((AGE_ADDR_HI(tx_ring_end) !=
831	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
832	    (AGE_ADDR_HI(rx_ring_end) !=
833	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
834	    (AGE_ADDR_HI(rr_ring_end) !=
835	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
836	    (AGE_ADDR_HI(cmb_block_end) !=
837	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
838	    (AGE_ADDR_HI(smb_block_end) !=
839	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
840		return (EFBIG);
841
842	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
843	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
844	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
845	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
846		return (EFBIG);
847
848	return (0);
849}
850
851static int
852age_dma_alloc(struct age_softc *sc)
853{
854	struct age_txdesc *txd;
855	struct age_rxdesc *rxd;
856	bus_addr_t lowaddr;
857	struct age_dmamap_arg ctx;
858	int error, i;
859
860	lowaddr = BUS_SPACE_MAXADDR;
861
862again:
863	/* Create parent ring/DMA block tag. */
864	error = bus_dma_tag_create(
865	    bus_get_dma_tag(sc->age_dev), /* parent */
866	    1, 0,			/* alignment, boundary */
867	    lowaddr,			/* lowaddr */
868	    BUS_SPACE_MAXADDR,		/* highaddr */
869	    NULL, NULL,			/* filter, filterarg */
870	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
871	    0,				/* nsegments */
872	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
873	    0,				/* flags */
874	    NULL, NULL,			/* lockfunc, lockarg */
875	    &sc->age_cdata.age_parent_tag);
876	if (error != 0) {
877		device_printf(sc->age_dev,
878		    "could not create parent DMA tag.\n");
879		goto fail;
880	}
881
882	/* Create tag for Tx ring. */
883	error = bus_dma_tag_create(
884	    sc->age_cdata.age_parent_tag, /* parent */
885	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
886	    BUS_SPACE_MAXADDR,		/* lowaddr */
887	    BUS_SPACE_MAXADDR,		/* highaddr */
888	    NULL, NULL,			/* filter, filterarg */
889	    AGE_TX_RING_SZ,		/* maxsize */
890	    1,				/* nsegments */
891	    AGE_TX_RING_SZ,		/* maxsegsize */
892	    0,				/* flags */
893	    NULL, NULL,			/* lockfunc, lockarg */
894	    &sc->age_cdata.age_tx_ring_tag);
895	if (error != 0) {
896		device_printf(sc->age_dev,
897		    "could not create Tx ring DMA tag.\n");
898		goto fail;
899	}
900
901	/* Create tag for Rx ring. */
902	error = bus_dma_tag_create(
903	    sc->age_cdata.age_parent_tag, /* parent */
904	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
905	    BUS_SPACE_MAXADDR,		/* lowaddr */
906	    BUS_SPACE_MAXADDR,		/* highaddr */
907	    NULL, NULL,			/* filter, filterarg */
908	    AGE_RX_RING_SZ,		/* maxsize */
909	    1,				/* nsegments */
910	    AGE_RX_RING_SZ,		/* maxsegsize */
911	    0,				/* flags */
912	    NULL, NULL,			/* lockfunc, lockarg */
913	    &sc->age_cdata.age_rx_ring_tag);
914	if (error != 0) {
915		device_printf(sc->age_dev,
916		    "could not create Rx ring DMA tag.\n");
917		goto fail;
918	}
919
920	/* Create tag for Rx return ring. */
921	error = bus_dma_tag_create(
922	    sc->age_cdata.age_parent_tag, /* parent */
923	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
924	    BUS_SPACE_MAXADDR,		/* lowaddr */
925	    BUS_SPACE_MAXADDR,		/* highaddr */
926	    NULL, NULL,			/* filter, filterarg */
927	    AGE_RR_RING_SZ,		/* maxsize */
928	    1,				/* nsegments */
929	    AGE_RR_RING_SZ,		/* maxsegsize */
930	    0,				/* flags */
931	    NULL, NULL,			/* lockfunc, lockarg */
932	    &sc->age_cdata.age_rr_ring_tag);
933	if (error != 0) {
934		device_printf(sc->age_dev,
935		    "could not create Rx return ring DMA tag.\n");
936		goto fail;
937	}
938
939	/* Create tag for coalesing message block. */
940	error = bus_dma_tag_create(
941	    sc->age_cdata.age_parent_tag, /* parent */
942	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
943	    BUS_SPACE_MAXADDR,		/* lowaddr */
944	    BUS_SPACE_MAXADDR,		/* highaddr */
945	    NULL, NULL,			/* filter, filterarg */
946	    AGE_CMB_BLOCK_SZ,		/* maxsize */
947	    1,				/* nsegments */
948	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
949	    0,				/* flags */
950	    NULL, NULL,			/* lockfunc, lockarg */
951	    &sc->age_cdata.age_cmb_block_tag);
952	if (error != 0) {
953		device_printf(sc->age_dev,
954		    "could not create CMB DMA tag.\n");
955		goto fail;
956	}
957
958	/* Create tag for statistics message block. */
959	error = bus_dma_tag_create(
960	    sc->age_cdata.age_parent_tag, /* parent */
961	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
962	    BUS_SPACE_MAXADDR,		/* lowaddr */
963	    BUS_SPACE_MAXADDR,		/* highaddr */
964	    NULL, NULL,			/* filter, filterarg */
965	    AGE_SMB_BLOCK_SZ,		/* maxsize */
966	    1,				/* nsegments */
967	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
968	    0,				/* flags */
969	    NULL, NULL,			/* lockfunc, lockarg */
970	    &sc->age_cdata.age_smb_block_tag);
971	if (error != 0) {
972		device_printf(sc->age_dev,
973		    "could not create SMB DMA tag.\n");
974		goto fail;
975	}
976
977	/* Allocate DMA'able memory and load the DMA map. */
978	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
979	    (void **)&sc->age_rdata.age_tx_ring,
980	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
981	    &sc->age_cdata.age_tx_ring_map);
982	if (error != 0) {
983		device_printf(sc->age_dev,
984		    "could not allocate DMA'able memory for Tx ring.\n");
985		goto fail;
986	}
987	ctx.age_busaddr = 0;
988	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
989	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
990	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
991	if (error != 0 || ctx.age_busaddr == 0) {
992		device_printf(sc->age_dev,
993		    "could not load DMA'able memory for Tx ring.\n");
994		goto fail;
995	}
996	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
997	/* Rx ring */
998	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
999	    (void **)&sc->age_rdata.age_rx_ring,
1000	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1001	    &sc->age_cdata.age_rx_ring_map);
1002	if (error != 0) {
1003		device_printf(sc->age_dev,
1004		    "could not allocate DMA'able memory for Rx ring.\n");
1005		goto fail;
1006	}
1007	ctx.age_busaddr = 0;
1008	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1009	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1010	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1011	if (error != 0 || ctx.age_busaddr == 0) {
1012		device_printf(sc->age_dev,
1013		    "could not load DMA'able memory for Rx ring.\n");
1014		goto fail;
1015	}
1016	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1017	/* Rx return ring */
1018	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1019	    (void **)&sc->age_rdata.age_rr_ring,
1020	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1021	    &sc->age_cdata.age_rr_ring_map);
1022	if (error != 0) {
1023		device_printf(sc->age_dev,
1024		    "could not allocate DMA'able memory for Rx return ring.\n");
1025		goto fail;
1026	}
1027	ctx.age_busaddr = 0;
1028	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1029	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1030	    AGE_RR_RING_SZ, age_dmamap_cb,
1031	    &ctx, 0);
1032	if (error != 0 || ctx.age_busaddr == 0) {
1033		device_printf(sc->age_dev,
1034		    "could not load DMA'able memory for Rx return ring.\n");
1035		goto fail;
1036	}
1037	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1038	/* CMB block */
1039	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1040	    (void **)&sc->age_rdata.age_cmb_block,
1041	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1042	    &sc->age_cdata.age_cmb_block_map);
1043	if (error != 0) {
1044		device_printf(sc->age_dev,
1045		    "could not allocate DMA'able memory for CMB block.\n");
1046		goto fail;
1047	}
1048	ctx.age_busaddr = 0;
1049	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1050	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1051	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1052	if (error != 0 || ctx.age_busaddr == 0) {
1053		device_printf(sc->age_dev,
1054		    "could not load DMA'able memory for CMB block.\n");
1055		goto fail;
1056	}
1057	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1058	/* SMB block */
1059	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1060	    (void **)&sc->age_rdata.age_smb_block,
1061	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1062	    &sc->age_cdata.age_smb_block_map);
1063	if (error != 0) {
1064		device_printf(sc->age_dev,
1065		    "could not allocate DMA'able memory for SMB block.\n");
1066		goto fail;
1067	}
1068	ctx.age_busaddr = 0;
1069	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1070	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1071	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1072	if (error != 0 || ctx.age_busaddr == 0) {
1073		device_printf(sc->age_dev,
1074		    "could not load DMA'able memory for SMB block.\n");
1075		goto fail;
1076	}
1077	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1078
1079	/*
1080	 * All ring buffer and DMA blocks should have the same
1081	 * high address part of 64bit DMA address space.
1082	 */
1083	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1084	    (error = age_check_boundary(sc)) != 0) {
1085		device_printf(sc->age_dev, "4GB boundary crossed, "
1086		    "switching to 32bit DMA addressing mode.\n");
1087		age_dma_free(sc);
1088		/* Limit DMA address space to 32bit and try again. */
1089		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1090		goto again;
1091	}
1092
1093	/*
1094	 * Create Tx/Rx buffer parent tag.
1095	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1096	 * so it needs separate parent DMA tag.
1097	 * XXX
1098	 * It seems enabling 64bit DMA causes data corruption. Limit
1099	 * DMA address space to 32bit.
1100	 */
1101	error = bus_dma_tag_create(
1102	    bus_get_dma_tag(sc->age_dev), /* parent */
1103	    1, 0,			/* alignment, boundary */
1104	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1105	    BUS_SPACE_MAXADDR,		/* highaddr */
1106	    NULL, NULL,			/* filter, filterarg */
1107	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1108	    0,				/* nsegments */
1109	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1110	    0,				/* flags */
1111	    NULL, NULL,			/* lockfunc, lockarg */
1112	    &sc->age_cdata.age_buffer_tag);
1113	if (error != 0) {
1114		device_printf(sc->age_dev,
1115		    "could not create parent buffer DMA tag.\n");
1116		goto fail;
1117	}
1118
1119	/* Create tag for Tx buffers. */
1120	error = bus_dma_tag_create(
1121	    sc->age_cdata.age_buffer_tag, /* parent */
1122	    1, 0,			/* alignment, boundary */
1123	    BUS_SPACE_MAXADDR,		/* lowaddr */
1124	    BUS_SPACE_MAXADDR,		/* highaddr */
1125	    NULL, NULL,			/* filter, filterarg */
1126	    AGE_TSO_MAXSIZE,		/* maxsize */
1127	    AGE_MAXTXSEGS,		/* nsegments */
1128	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1129	    0,				/* flags */
1130	    NULL, NULL,			/* lockfunc, lockarg */
1131	    &sc->age_cdata.age_tx_tag);
1132	if (error != 0) {
1133		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1134		goto fail;
1135	}
1136
1137	/* Create tag for Rx buffers. */
1138	error = bus_dma_tag_create(
1139	    sc->age_cdata.age_buffer_tag, /* parent */
1140	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1141	    BUS_SPACE_MAXADDR,		/* lowaddr */
1142	    BUS_SPACE_MAXADDR,		/* highaddr */
1143	    NULL, NULL,			/* filter, filterarg */
1144	    MCLBYTES,			/* maxsize */
1145	    1,				/* nsegments */
1146	    MCLBYTES,			/* maxsegsize */
1147	    0,				/* flags */
1148	    NULL, NULL,			/* lockfunc, lockarg */
1149	    &sc->age_cdata.age_rx_tag);
1150	if (error != 0) {
1151		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1152		goto fail;
1153	}
1154
1155	/* Create DMA maps for Tx buffers. */
1156	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1157		txd = &sc->age_cdata.age_txdesc[i];
1158		txd->tx_m = NULL;
1159		txd->tx_dmamap = NULL;
1160		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1161		    &txd->tx_dmamap);
1162		if (error != 0) {
1163			device_printf(sc->age_dev,
1164			    "could not create Tx dmamap.\n");
1165			goto fail;
1166		}
1167	}
1168	/* Create DMA maps for Rx buffers. */
1169	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1170	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1171		device_printf(sc->age_dev,
1172		    "could not create spare Rx dmamap.\n");
1173		goto fail;
1174	}
1175	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1176		rxd = &sc->age_cdata.age_rxdesc[i];
1177		rxd->rx_m = NULL;
1178		rxd->rx_dmamap = NULL;
1179		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1180		    &rxd->rx_dmamap);
1181		if (error != 0) {
1182			device_printf(sc->age_dev,
1183			    "could not create Rx dmamap.\n");
1184			goto fail;
1185		}
1186	}
1187
1188fail:
1189	return (error);
1190}
1191
1192static void
1193age_dma_free(struct age_softc *sc)
1194{
1195	struct age_txdesc *txd;
1196	struct age_rxdesc *rxd;
1197	int i;
1198
1199	/* Tx buffers */
1200	if (sc->age_cdata.age_tx_tag != NULL) {
1201		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1202			txd = &sc->age_cdata.age_txdesc[i];
1203			if (txd->tx_dmamap != NULL) {
1204				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1205				    txd->tx_dmamap);
1206				txd->tx_dmamap = NULL;
1207			}
1208		}
1209		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1210		sc->age_cdata.age_tx_tag = NULL;
1211	}
1212	/* Rx buffers */
1213	if (sc->age_cdata.age_rx_tag != NULL) {
1214		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1215			rxd = &sc->age_cdata.age_rxdesc[i];
1216			if (rxd->rx_dmamap != NULL) {
1217				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1218				    rxd->rx_dmamap);
1219				rxd->rx_dmamap = NULL;
1220			}
1221		}
1222		if (sc->age_cdata.age_rx_sparemap != NULL) {
1223			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1224			    sc->age_cdata.age_rx_sparemap);
1225			sc->age_cdata.age_rx_sparemap = NULL;
1226		}
1227		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1228		sc->age_cdata.age_rx_tag = NULL;
1229	}
1230	/* Tx ring. */
1231	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1232		if (sc->age_rdata.age_tx_ring_paddr != 0)
1233			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1234			    sc->age_cdata.age_tx_ring_map);
1235		if (sc->age_rdata.age_tx_ring != NULL)
1236			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1237			    sc->age_rdata.age_tx_ring,
1238			    sc->age_cdata.age_tx_ring_map);
1239		sc->age_rdata.age_tx_ring_paddr = 0;
1240		sc->age_rdata.age_tx_ring = NULL;
1241		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1242		sc->age_cdata.age_tx_ring_tag = NULL;
1243	}
1244	/* Rx ring. */
1245	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1246		if (sc->age_rdata.age_rx_ring_paddr != 0)
1247			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1248			    sc->age_cdata.age_rx_ring_map);
1249		if (sc->age_rdata.age_rx_ring != NULL)
1250			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1251			    sc->age_rdata.age_rx_ring,
1252			    sc->age_cdata.age_rx_ring_map);
1253		sc->age_rdata.age_rx_ring_paddr = 0;
1254		sc->age_rdata.age_rx_ring = NULL;
1255		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1256		sc->age_cdata.age_rx_ring_tag = NULL;
1257	}
1258	/* Rx return ring. */
1259	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1260		if (sc->age_rdata.age_rr_ring_paddr != 0)
1261			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1262			    sc->age_cdata.age_rr_ring_map);
1263		if (sc->age_rdata.age_rr_ring != NULL)
1264			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1265			    sc->age_rdata.age_rr_ring,
1266			    sc->age_cdata.age_rr_ring_map);
1267		sc->age_rdata.age_rr_ring_paddr = 0;
1268		sc->age_rdata.age_rr_ring = NULL;
1269		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1270		sc->age_cdata.age_rr_ring_tag = NULL;
1271	}
1272	/* CMB block */
1273	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1274		if (sc->age_rdata.age_cmb_block_paddr != 0)
1275			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1276			    sc->age_cdata.age_cmb_block_map);
1277		if (sc->age_rdata.age_cmb_block != NULL)
1278			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1279			    sc->age_rdata.age_cmb_block,
1280			    sc->age_cdata.age_cmb_block_map);
1281		sc->age_rdata.age_cmb_block_paddr = 0;
1282		sc->age_rdata.age_cmb_block = NULL;
1283		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1284		sc->age_cdata.age_cmb_block_tag = NULL;
1285	}
1286	/* SMB block */
1287	if (sc->age_cdata.age_smb_block_tag != NULL) {
1288		if (sc->age_rdata.age_smb_block_paddr != 0)
1289			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1290			    sc->age_cdata.age_smb_block_map);
1291		if (sc->age_rdata.age_smb_block != NULL)
1292			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1293			    sc->age_rdata.age_smb_block,
1294			    sc->age_cdata.age_smb_block_map);
1295		sc->age_rdata.age_smb_block_paddr = 0;
1296		sc->age_rdata.age_smb_block = NULL;
1297		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1298		sc->age_cdata.age_smb_block_tag = NULL;
1299	}
1300
1301	if (sc->age_cdata.age_buffer_tag != NULL) {
1302		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1303		sc->age_cdata.age_buffer_tag = NULL;
1304	}
1305	if (sc->age_cdata.age_parent_tag != NULL) {
1306		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1307		sc->age_cdata.age_parent_tag = NULL;
1308	}
1309}
1310
1311/*
1312 *	Make sure the interface is stopped at reboot time.
1313 */
1314static int
1315age_shutdown(device_t dev)
1316{
1317
1318	return (age_suspend(dev));
1319}
1320
1321static void
1322age_setwol(struct age_softc *sc)
1323{
1324	struct ifnet *ifp;
1325	struct mii_data *mii;
1326	uint32_t reg, pmcs;
1327	uint16_t pmstat;
1328	int aneg, i, pmc;
1329
1330	AGE_LOCK_ASSERT(sc);
1331
1332	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1333		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1334		/*
1335		 * No PME capability, PHY power down.
1336		 * XXX
1337		 * Due to an unknown reason powering down PHY resulted
1338		 * in unexpected results such as inaccessbility of
1339		 * hardware of freshly rebooted system. Disable
1340		 * powering down PHY until I got more information for
1341		 * Attansic/Atheros PHY hardwares.
1342		 */
1343#ifdef notyet
1344		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1345		    MII_BMCR, BMCR_PDOWN);
1346#endif
1347		return;
1348	}
1349
1350	ifp = sc->age_ifp;
1351	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1352		/*
1353		 * Note, this driver resets the link speed to 10/100Mbps with
1354		 * auto-negotiation but we don't know whether that operation
1355		 * would succeed or not as it have no control after powering
1356		 * off. If the renegotiation fail WOL may not work. Running
1357		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1358		 * specified in PCI specification and that would result in
1359		 * complete shutdowning power to ethernet controller.
1360		 *
1361		 * TODO
1362		 *  Save current negotiated media speed/duplex/flow-control
1363		 *  to softc and restore the same link again after resuming.
1364		 *  PHY handling such as power down/resetting to 100Mbps
1365		 *  may be better handled in suspend method in phy driver.
1366		 */
1367		mii = device_get_softc(sc->age_miibus);
1368		mii_pollstat(mii);
1369		aneg = 0;
1370		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1371			switch IFM_SUBTYPE(mii->mii_media_active) {
1372			case IFM_10_T:
1373			case IFM_100_TX:
1374				goto got_link;
1375			case IFM_1000_T:
1376				aneg++;
1377			default:
1378				break;
1379			}
1380		}
1381		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1382		    MII_100T2CR, 0);
1383		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1384		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1385		    ANAR_10 | ANAR_CSMA);
1386		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1388		DELAY(1000);
1389		if (aneg != 0) {
1390			/* Poll link state until age(4) get a 10/100 link. */
1391			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1392				mii_pollstat(mii);
1393				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1394					switch (IFM_SUBTYPE(
1395					    mii->mii_media_active)) {
1396					case IFM_10_T:
1397					case IFM_100_TX:
1398						age_mac_config(sc);
1399						goto got_link;
1400					default:
1401						break;
1402					}
1403				}
1404				AGE_UNLOCK(sc);
1405				pause("agelnk", hz);
1406				AGE_LOCK(sc);
1407			}
1408			if (i == MII_ANEGTICKS_GIGE)
1409				device_printf(sc->age_dev,
1410				    "establishing link failed, "
1411				    "WOL may not work!");
1412		}
1413		/*
1414		 * No link, force MAC to have 100Mbps, full-duplex link.
1415		 * This is the last resort and may/may not work.
1416		 */
1417		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1418		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1419		age_mac_config(sc);
1420	}
1421
1422got_link:
1423	pmcs = 0;
1424	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1425		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1426	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1427	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1428	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1429	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1430	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1431		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1432	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1433		reg |= MAC_CFG_RX_ENB;
1434		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1435	}
1436
1437	/* Request PME. */
1438	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1439	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1440	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1441		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1442	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1443#ifdef notyet
1444	/* See above for powering down PHY issues. */
1445	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1446		/* No WOL, PHY power down. */
1447		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1448		    MII_BMCR, BMCR_PDOWN);
1449	}
1450#endif
1451}
1452
1453static int
1454age_suspend(device_t dev)
1455{
1456	struct age_softc *sc;
1457
1458	sc = device_get_softc(dev);
1459
1460	AGE_LOCK(sc);
1461	age_stop(sc);
1462	age_setwol(sc);
1463	AGE_UNLOCK(sc);
1464
1465	return (0);
1466}
1467
1468static int
1469age_resume(device_t dev)
1470{
1471	struct age_softc *sc;
1472	struct ifnet *ifp;
1473
1474	sc = device_get_softc(dev);
1475
1476	AGE_LOCK(sc);
1477	age_phy_reset(sc);
1478	ifp = sc->age_ifp;
1479	if ((ifp->if_flags & IFF_UP) != 0)
1480		age_init_locked(sc);
1481
1482	AGE_UNLOCK(sc);
1483
1484	return (0);
1485}
1486
1487static int
1488age_encap(struct age_softc *sc, struct mbuf **m_head)
1489{
1490	struct age_txdesc *txd, *txd_last;
1491	struct tx_desc *desc;
1492	struct mbuf *m;
1493	struct ip *ip;
1494	struct tcphdr *tcp;
1495	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1496	bus_dmamap_t map;
1497	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1498	int error, i, nsegs, prod, si;
1499
1500	AGE_LOCK_ASSERT(sc);
1501
1502	M_ASSERTPKTHDR((*m_head));
1503
1504	m = *m_head;
1505	ip = NULL;
1506	tcp = NULL;
1507	cflags = vtag = 0;
1508	ip_off = poff = 0;
1509	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1510		/*
1511		 * L1 requires offset of TCP/UDP payload in its Tx
1512		 * descriptor to perform hardware Tx checksum offload.
1513		 * Additionally, TSO requires IP/TCP header size and
1514		 * modification of IP/TCP header in order to make TSO
1515		 * engine work. This kind of operation takes many CPU
1516		 * cycles on FreeBSD so fast host CPU is needed to get
1517		 * smooth TSO performance.
1518		 */
1519		struct ether_header *eh;
1520
1521		if (M_WRITABLE(m) == 0) {
1522			/* Get a writable copy. */
1523			m = m_dup(*m_head, M_NOWAIT);
1524			/* Release original mbufs. */
1525			m_freem(*m_head);
1526			if (m == NULL) {
1527				*m_head = NULL;
1528				return (ENOBUFS);
1529			}
1530			*m_head = m;
1531		}
1532		ip_off = sizeof(struct ether_header);
1533		m = m_pullup(m, ip_off);
1534		if (m == NULL) {
1535			*m_head = NULL;
1536			return (ENOBUFS);
1537		}
1538		eh = mtod(m, struct ether_header *);
1539		/*
1540		 * Check if hardware VLAN insertion is off.
1541		 * Additional check for LLC/SNAP frame?
1542		 */
1543		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1544			ip_off = sizeof(struct ether_vlan_header);
1545			m = m_pullup(m, ip_off);
1546			if (m == NULL) {
1547				*m_head = NULL;
1548				return (ENOBUFS);
1549			}
1550		}
1551		m = m_pullup(m, ip_off + sizeof(struct ip));
1552		if (m == NULL) {
1553			*m_head = NULL;
1554			return (ENOBUFS);
1555		}
1556		ip = (struct ip *)(mtod(m, char *) + ip_off);
1557		poff = ip_off + (ip->ip_hl << 2);
1558		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1559			m = m_pullup(m, poff + sizeof(struct tcphdr));
1560			if (m == NULL) {
1561				*m_head = NULL;
1562				return (ENOBUFS);
1563			}
1564			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1565			m = m_pullup(m, poff + (tcp->th_off << 2));
1566			if (m == NULL) {
1567				*m_head = NULL;
1568				return (ENOBUFS);
1569			}
1570			/*
1571			 * L1 requires IP/TCP header size and offset as
1572			 * well as TCP pseudo checksum which complicates
1573			 * TSO configuration. I guess this comes from the
1574			 * adherence to Microsoft NDIS Large Send
1575			 * specification which requires insertion of
1576			 * pseudo checksum by upper stack. The pseudo
1577			 * checksum that NDIS refers to doesn't include
1578			 * TCP payload length so age(4) should recompute
1579			 * the pseudo checksum here. Hopefully this wouldn't
1580			 * be much burden on modern CPUs.
1581			 * Reset IP checksum and recompute TCP pseudo
1582			 * checksum as NDIS specification said.
1583			 */
1584			ip = (struct ip *)(mtod(m, char *) + ip_off);
1585			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1586			ip->ip_sum = 0;
1587			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1588			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1589		}
1590		*m_head = m;
1591	}
1592
1593	si = prod = sc->age_cdata.age_tx_prod;
1594	txd = &sc->age_cdata.age_txdesc[prod];
1595	txd_last = txd;
1596	map = txd->tx_dmamap;
1597
1598	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1599	    *m_head, txsegs, &nsegs, 0);
1600	if (error == EFBIG) {
1601		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1602		if (m == NULL) {
1603			m_freem(*m_head);
1604			*m_head = NULL;
1605			return (ENOMEM);
1606		}
1607		*m_head = m;
1608		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1609		    *m_head, txsegs, &nsegs, 0);
1610		if (error != 0) {
1611			m_freem(*m_head);
1612			*m_head = NULL;
1613			return (error);
1614		}
1615	} else if (error != 0)
1616		return (error);
1617	if (nsegs == 0) {
1618		m_freem(*m_head);
1619		*m_head = NULL;
1620		return (EIO);
1621	}
1622
1623	/* Check descriptor overrun. */
1624	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1625		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1626		return (ENOBUFS);
1627	}
1628
1629	m = *m_head;
1630	/* Configure VLAN hardware tag insertion. */
1631	if ((m->m_flags & M_VLANTAG) != 0) {
1632		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1633		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1634		cflags |= AGE_TD_INSERT_VLAN_TAG;
1635	}
1636
1637	desc = NULL;
1638	i = 0;
1639	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1640		/* Request TSO and set MSS. */
1641		cflags |= AGE_TD_TSO_IPV4;
1642		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1643		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1644		    AGE_TD_TSO_MSS_SHIFT);
1645		/* Set IP/TCP header size. */
1646		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1647		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1648		/*
1649		 * L1 requires the first buffer should only hold IP/TCP
1650		 * header data. TCP payload should be handled in other
1651		 * descriptors.
1652		 */
1653		hdrlen = poff + (tcp->th_off << 2);
1654		desc = &sc->age_rdata.age_tx_ring[prod];
1655		desc->addr = htole64(txsegs[0].ds_addr);
1656		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1657		desc->flags = htole32(cflags);
1658		sc->age_cdata.age_tx_cnt++;
1659		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1660		if (m->m_len - hdrlen > 0) {
1661			/* Handle remaining payload of the 1st fragment. */
1662			desc = &sc->age_rdata.age_tx_ring[prod];
1663			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1664			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1665			    vtag);
1666			desc->flags = htole32(cflags);
1667			sc->age_cdata.age_tx_cnt++;
1668			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1669		}
1670		/* Handle remaining fragments. */
1671		i = 1;
1672	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1673		/* Configure Tx IP/TCP/UDP checksum offload. */
1674		cflags |= AGE_TD_CSUM;
1675		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1676			cflags |= AGE_TD_TCPCSUM;
1677		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1678			cflags |= AGE_TD_UDPCSUM;
1679		/* Set checksum start offset. */
1680		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1681		/* Set checksum insertion position of TCP/UDP. */
1682		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1683		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1684	}
1685	for (; i < nsegs; i++) {
1686		desc = &sc->age_rdata.age_tx_ring[prod];
1687		desc->addr = htole64(txsegs[i].ds_addr);
1688		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1689		desc->flags = htole32(cflags);
1690		sc->age_cdata.age_tx_cnt++;
1691		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1692	}
1693	/* Update producer index. */
1694	sc->age_cdata.age_tx_prod = prod;
1695
1696	/* Set EOP on the last descriptor. */
1697	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1698	desc = &sc->age_rdata.age_tx_ring[prod];
1699	desc->flags |= htole32(AGE_TD_EOP);
1700
1701	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1702	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1703		desc = &sc->age_rdata.age_tx_ring[si];
1704		desc->flags |= htole32(AGE_TD_TSO_HDR);
1705	}
1706
1707	/* Swap dmamap of the first and the last. */
1708	txd = &sc->age_cdata.age_txdesc[prod];
1709	map = txd_last->tx_dmamap;
1710	txd_last->tx_dmamap = txd->tx_dmamap;
1711	txd->tx_dmamap = map;
1712	txd->tx_m = m;
1713
1714	/* Sync descriptors. */
1715	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1716	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1717	    sc->age_cdata.age_tx_ring_map,
1718	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1719
1720	return (0);
1721}
1722
1723static void
1724age_start(struct ifnet *ifp)
1725{
1726        struct age_softc *sc;
1727
1728	sc = ifp->if_softc;
1729	AGE_LOCK(sc);
1730	age_start_locked(ifp);
1731	AGE_UNLOCK(sc);
1732}
1733
1734static void
1735age_start_locked(struct ifnet *ifp)
1736{
1737        struct age_softc *sc;
1738        struct mbuf *m_head;
1739	int enq;
1740
1741	sc = ifp->if_softc;
1742
1743	AGE_LOCK_ASSERT(sc);
1744
1745	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1746	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1747		return;
1748
1749	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1750		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1751		if (m_head == NULL)
1752			break;
1753		/*
1754		 * Pack the data into the transmit ring. If we
1755		 * don't have room, set the OACTIVE flag and wait
1756		 * for the NIC to drain the ring.
1757		 */
1758		if (age_encap(sc, &m_head)) {
1759			if (m_head == NULL)
1760				break;
1761			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1762			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1763			break;
1764		}
1765
1766		enq++;
1767		/*
1768		 * If there's a BPF listener, bounce a copy of this frame
1769		 * to him.
1770		 */
1771		ETHER_BPF_MTAP(ifp, m_head);
1772	}
1773
1774	if (enq > 0) {
1775		/* Update mbox. */
1776		AGE_COMMIT_MBOX(sc);
1777		/* Set a timeout in case the chip goes out to lunch. */
1778		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1779	}
1780}
1781
1782static void
1783age_watchdog(struct age_softc *sc)
1784{
1785	struct ifnet *ifp;
1786
1787	AGE_LOCK_ASSERT(sc);
1788
1789	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1790		return;
1791
1792	ifp = sc->age_ifp;
1793	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1794		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1795		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1796		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1797		age_init_locked(sc);
1798		return;
1799	}
1800	if (sc->age_cdata.age_tx_cnt == 0) {
1801		if_printf(sc->age_ifp,
1802		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1803		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1804			age_start_locked(ifp);
1805		return;
1806	}
1807	if_printf(sc->age_ifp, "watchdog timeout\n");
1808	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1809	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1810	age_init_locked(sc);
1811	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1812		age_start_locked(ifp);
1813}
1814
1815static int
1816age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1817{
1818	struct age_softc *sc;
1819	struct ifreq *ifr;
1820	struct mii_data *mii;
1821	uint32_t reg;
1822	int error, mask;
1823
1824	sc = ifp->if_softc;
1825	ifr = (struct ifreq *)data;
1826	error = 0;
1827	switch (cmd) {
1828	case SIOCSIFMTU:
1829		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1830			error = EINVAL;
1831		else if (ifp->if_mtu != ifr->ifr_mtu) {
1832			AGE_LOCK(sc);
1833			ifp->if_mtu = ifr->ifr_mtu;
1834			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1835				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1836				age_init_locked(sc);
1837			}
1838			AGE_UNLOCK(sc);
1839		}
1840		break;
1841	case SIOCSIFFLAGS:
1842		AGE_LOCK(sc);
1843		if ((ifp->if_flags & IFF_UP) != 0) {
1844			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1845				if (((ifp->if_flags ^ sc->age_if_flags)
1846				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1847					age_rxfilter(sc);
1848			} else {
1849				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1850					age_init_locked(sc);
1851			}
1852		} else {
1853			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1854				age_stop(sc);
1855		}
1856		sc->age_if_flags = ifp->if_flags;
1857		AGE_UNLOCK(sc);
1858		break;
1859	case SIOCADDMULTI:
1860	case SIOCDELMULTI:
1861		AGE_LOCK(sc);
1862		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1863			age_rxfilter(sc);
1864		AGE_UNLOCK(sc);
1865		break;
1866	case SIOCSIFMEDIA:
1867	case SIOCGIFMEDIA:
1868		mii = device_get_softc(sc->age_miibus);
1869		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1870		break;
1871	case SIOCSIFCAP:
1872		AGE_LOCK(sc);
1873		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1874		if ((mask & IFCAP_TXCSUM) != 0 &&
1875		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1876			ifp->if_capenable ^= IFCAP_TXCSUM;
1877			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1878				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1879			else
1880				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1881		}
1882		if ((mask & IFCAP_RXCSUM) != 0 &&
1883		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1884			ifp->if_capenable ^= IFCAP_RXCSUM;
1885			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1886			reg &= ~MAC_CFG_RXCSUM_ENB;
1887			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1888				reg |= MAC_CFG_RXCSUM_ENB;
1889			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1890		}
1891		if ((mask & IFCAP_TSO4) != 0 &&
1892		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1893			ifp->if_capenable ^= IFCAP_TSO4;
1894			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1895				ifp->if_hwassist |= CSUM_TSO;
1896			else
1897				ifp->if_hwassist &= ~CSUM_TSO;
1898		}
1899
1900		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1901		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1902			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1903		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1904		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1905			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1906		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1907		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1908			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1909		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1910		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1911			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1912		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1913		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1914			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1915			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1916				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1917			age_rxvlan(sc);
1918		}
1919		AGE_UNLOCK(sc);
1920		VLAN_CAPABILITIES(ifp);
1921		break;
1922	default:
1923		error = ether_ioctl(ifp, cmd, data);
1924		break;
1925	}
1926
1927	return (error);
1928}
1929
1930static void
1931age_mac_config(struct age_softc *sc)
1932{
1933	struct mii_data *mii;
1934	uint32_t reg;
1935
1936	AGE_LOCK_ASSERT(sc);
1937
1938	mii = device_get_softc(sc->age_miibus);
1939	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1940	reg &= ~MAC_CFG_FULL_DUPLEX;
1941	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1942	reg &= ~MAC_CFG_SPEED_MASK;
1943	/* Reprogram MAC with resolved speed/duplex. */
1944	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1945	case IFM_10_T:
1946	case IFM_100_TX:
1947		reg |= MAC_CFG_SPEED_10_100;
1948		break;
1949	case IFM_1000_T:
1950		reg |= MAC_CFG_SPEED_1000;
1951		break;
1952	}
1953	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1954		reg |= MAC_CFG_FULL_DUPLEX;
1955#ifdef notyet
1956		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1957			reg |= MAC_CFG_TX_FC;
1958		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1959			reg |= MAC_CFG_RX_FC;
1960#endif
1961	}
1962
1963	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1964}
1965
1966static void
1967age_link_task(void *arg, int pending)
1968{
1969	struct age_softc *sc;
1970	struct mii_data *mii;
1971	struct ifnet *ifp;
1972	uint32_t reg;
1973
1974	sc = (struct age_softc *)arg;
1975
1976	AGE_LOCK(sc);
1977	mii = device_get_softc(sc->age_miibus);
1978	ifp = sc->age_ifp;
1979	if (mii == NULL || ifp == NULL ||
1980	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1981		AGE_UNLOCK(sc);
1982		return;
1983	}
1984
1985	sc->age_flags &= ~AGE_FLAG_LINK;
1986	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1987		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1988		case IFM_10_T:
1989		case IFM_100_TX:
1990		case IFM_1000_T:
1991			sc->age_flags |= AGE_FLAG_LINK;
1992			break;
1993		default:
1994			break;
1995		}
1996	}
1997
1998	/* Stop Rx/Tx MACs. */
1999	age_stop_rxmac(sc);
2000	age_stop_txmac(sc);
2001
2002	/* Program MACs with resolved speed/duplex/flow-control. */
2003	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2004		age_mac_config(sc);
2005		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2006		/* Restart DMA engine and Tx/Rx MAC. */
2007		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2008		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2009		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2010		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2011	}
2012
2013	AGE_UNLOCK(sc);
2014}
2015
2016static void
2017age_stats_update(struct age_softc *sc)
2018{
2019	struct age_stats *stat;
2020	struct smb *smb;
2021	struct ifnet *ifp;
2022
2023	AGE_LOCK_ASSERT(sc);
2024
2025	stat = &sc->age_stat;
2026
2027	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2028	    sc->age_cdata.age_smb_block_map,
2029	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2030
2031	smb = sc->age_rdata.age_smb_block;
2032	if (smb->updated == 0)
2033		return;
2034
2035	ifp = sc->age_ifp;
2036	/* Rx stats. */
2037	stat->rx_frames += smb->rx_frames;
2038	stat->rx_bcast_frames += smb->rx_bcast_frames;
2039	stat->rx_mcast_frames += smb->rx_mcast_frames;
2040	stat->rx_pause_frames += smb->rx_pause_frames;
2041	stat->rx_control_frames += smb->rx_control_frames;
2042	stat->rx_crcerrs += smb->rx_crcerrs;
2043	stat->rx_lenerrs += smb->rx_lenerrs;
2044	stat->rx_bytes += smb->rx_bytes;
2045	stat->rx_runts += smb->rx_runts;
2046	stat->rx_fragments += smb->rx_fragments;
2047	stat->rx_pkts_64 += smb->rx_pkts_64;
2048	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2049	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2050	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2051	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2052	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2053	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2054	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2055	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2056	stat->rx_desc_oflows += smb->rx_desc_oflows;
2057	stat->rx_alignerrs += smb->rx_alignerrs;
2058	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2059	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2060	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2061
2062	/* Tx stats. */
2063	stat->tx_frames += smb->tx_frames;
2064	stat->tx_bcast_frames += smb->tx_bcast_frames;
2065	stat->tx_mcast_frames += smb->tx_mcast_frames;
2066	stat->tx_pause_frames += smb->tx_pause_frames;
2067	stat->tx_excess_defer += smb->tx_excess_defer;
2068	stat->tx_control_frames += smb->tx_control_frames;
2069	stat->tx_deferred += smb->tx_deferred;
2070	stat->tx_bytes += smb->tx_bytes;
2071	stat->tx_pkts_64 += smb->tx_pkts_64;
2072	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2073	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2074	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2075	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2076	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2077	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2078	stat->tx_single_colls += smb->tx_single_colls;
2079	stat->tx_multi_colls += smb->tx_multi_colls;
2080	stat->tx_late_colls += smb->tx_late_colls;
2081	stat->tx_excess_colls += smb->tx_excess_colls;
2082	stat->tx_underrun += smb->tx_underrun;
2083	stat->tx_desc_underrun += smb->tx_desc_underrun;
2084	stat->tx_lenerrs += smb->tx_lenerrs;
2085	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2086	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2087	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2088
2089	/* Update counters in ifnet. */
2090	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2091
2092	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2093	    smb->tx_multi_colls + smb->tx_late_colls +
2094	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2095
2096	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2097	    smb->tx_late_colls + smb->tx_underrun +
2098	    smb->tx_pkts_truncated);
2099
2100	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2101
2102	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2103	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2104	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2105	    smb->rx_alignerrs);
2106
2107	/* Update done, clear. */
2108	smb->updated = 0;
2109
2110	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2111	    sc->age_cdata.age_smb_block_map,
2112	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2113}
2114
2115static int
2116age_intr(void *arg)
2117{
2118	struct age_softc *sc;
2119	uint32_t status;
2120
2121	sc = (struct age_softc *)arg;
2122
2123	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2124	if (status == 0 || (status & AGE_INTRS) == 0)
2125		return (FILTER_STRAY);
2126	/* Disable interrupts. */
2127	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2128	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2129
2130	return (FILTER_HANDLED);
2131}
2132
2133static void
2134age_int_task(void *arg, int pending)
2135{
2136	struct age_softc *sc;
2137	struct ifnet *ifp;
2138	struct cmb *cmb;
2139	uint32_t status;
2140
2141	sc = (struct age_softc *)arg;
2142
2143	AGE_LOCK(sc);
2144
2145	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2146	    sc->age_cdata.age_cmb_block_map,
2147	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2148	cmb = sc->age_rdata.age_cmb_block;
2149	status = le32toh(cmb->intr_status);
2150	if (sc->age_morework != 0)
2151		status |= INTR_CMB_RX;
2152	if ((status & AGE_INTRS) == 0)
2153		goto done;
2154
2155	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2156	    TPD_CONS_SHIFT;
2157	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2158	    RRD_PROD_SHIFT;
2159	/* Let hardware know CMB was served. */
2160	cmb->intr_status = 0;
2161	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2162	    sc->age_cdata.age_cmb_block_map,
2163	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2164
2165#if 0
2166	printf("INTR: 0x%08x\n", status);
2167	status &= ~INTR_DIS_DMA;
2168	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2169#endif
2170	ifp = sc->age_ifp;
2171	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2172		if ((status & INTR_CMB_RX) != 0)
2173			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2174			    sc->age_process_limit);
2175		if ((status & INTR_CMB_TX) != 0)
2176			age_txintr(sc, sc->age_tpd_cons);
2177		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2178			if ((status & INTR_DMA_RD_TO_RST) != 0)
2179				device_printf(sc->age_dev,
2180				    "DMA read error! -- resetting\n");
2181			if ((status & INTR_DMA_WR_TO_RST) != 0)
2182				device_printf(sc->age_dev,
2183				    "DMA write error! -- resetting\n");
2184			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2185			age_init_locked(sc);
2186		}
2187		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2188			age_start_locked(ifp);
2189		if ((status & INTR_SMB) != 0)
2190			age_stats_update(sc);
2191	}
2192
2193	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2194	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2195	    sc->age_cdata.age_cmb_block_map,
2196	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2197	status = le32toh(cmb->intr_status);
2198	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2199		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2200		AGE_UNLOCK(sc);
2201		return;
2202	}
2203
2204done:
2205	/* Re-enable interrupts. */
2206	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2207	AGE_UNLOCK(sc);
2208}
2209
2210static void
2211age_txintr(struct age_softc *sc, int tpd_cons)
2212{
2213	struct ifnet *ifp;
2214	struct age_txdesc *txd;
2215	int cons, prog;
2216
2217	AGE_LOCK_ASSERT(sc);
2218
2219	ifp = sc->age_ifp;
2220
2221	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2222	    sc->age_cdata.age_tx_ring_map,
2223	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2224
2225	/*
2226	 * Go through our Tx list and free mbufs for those
2227	 * frames which have been transmitted.
2228	 */
2229	cons = sc->age_cdata.age_tx_cons;
2230	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2231		if (sc->age_cdata.age_tx_cnt <= 0)
2232			break;
2233		prog++;
2234		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2235		sc->age_cdata.age_tx_cnt--;
2236		txd = &sc->age_cdata.age_txdesc[cons];
2237		/*
2238		 * Clear Tx descriptors, it's not required but would
2239		 * help debugging in case of Tx issues.
2240		 */
2241		txd->tx_desc->addr = 0;
2242		txd->tx_desc->len = 0;
2243		txd->tx_desc->flags = 0;
2244
2245		if (txd->tx_m == NULL)
2246			continue;
2247		/* Reclaim transmitted mbufs. */
2248		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2249		    BUS_DMASYNC_POSTWRITE);
2250		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2251		m_freem(txd->tx_m);
2252		txd->tx_m = NULL;
2253	}
2254
2255	if (prog > 0) {
2256		sc->age_cdata.age_tx_cons = cons;
2257
2258		/*
2259		 * Unarm watchdog timer only when there are no pending
2260		 * Tx descriptors in queue.
2261		 */
2262		if (sc->age_cdata.age_tx_cnt == 0)
2263			sc->age_watchdog_timer = 0;
2264		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2265		    sc->age_cdata.age_tx_ring_map,
2266		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2267	}
2268}
2269
2270#ifndef __NO_STRICT_ALIGNMENT
2271static struct mbuf *
2272age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2273{
2274	struct mbuf *n;
2275        int i;
2276        uint16_t *src, *dst;
2277
2278	src = mtod(m, uint16_t *);
2279	dst = src - 3;
2280
2281	if (m->m_next == NULL) {
2282		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2283			*dst++ = *src++;
2284		m->m_data -= 6;
2285		return (m);
2286	}
2287	/*
2288	 * Append a new mbuf to received mbuf chain and copy ethernet
2289	 * header from the mbuf chain. This can save lots of CPU
2290	 * cycles for jumbo frame.
2291	 */
2292	MGETHDR(n, M_NOWAIT, MT_DATA);
2293	if (n == NULL) {
2294		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2295		m_freem(m);
2296		return (NULL);
2297	}
2298	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2299	m->m_data += ETHER_HDR_LEN;
2300	m->m_len -= ETHER_HDR_LEN;
2301	n->m_len = ETHER_HDR_LEN;
2302	M_MOVE_PKTHDR(n, m);
2303	n->m_next = m;
2304	return (n);
2305}
2306#endif
2307
2308/* Receive a frame. */
2309static void
2310age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2311{
2312	struct age_rxdesc *rxd;
2313	struct ifnet *ifp;
2314	struct mbuf *mp, *m;
2315	uint32_t status, index, vtag;
2316	int count, nsegs;
2317	int rx_cons;
2318
2319	AGE_LOCK_ASSERT(sc);
2320
2321	ifp = sc->age_ifp;
2322	status = le32toh(rxrd->flags);
2323	index = le32toh(rxrd->index);
2324	rx_cons = AGE_RX_CONS(index);
2325	nsegs = AGE_RX_NSEGS(index);
2326
2327	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2328	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2329		/*
2330		 * We want to pass the following frames to upper
2331		 * layer regardless of error status of Rx return
2332		 * ring.
2333		 *
2334		 *  o IP/TCP/UDP checksum is bad.
2335		 *  o frame length and protocol specific length
2336		 *     does not match.
2337		 */
2338		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2339		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2340		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2341			return;
2342	}
2343
2344	for (count = 0; count < nsegs; count++,
2345	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2346		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2347		mp = rxd->rx_m;
2348		/* Add a new receive buffer to the ring. */
2349		if (age_newbuf(sc, rxd) != 0) {
2350			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2351			/* Reuse Rx buffers. */
2352			if (sc->age_cdata.age_rxhead != NULL)
2353				m_freem(sc->age_cdata.age_rxhead);
2354			break;
2355		}
2356
2357		/*
2358		 * Assume we've received a full sized frame.
2359		 * Actual size is fixed when we encounter the end of
2360		 * multi-segmented frame.
2361		 */
2362		mp->m_len = AGE_RX_BUF_SIZE;
2363
2364		/* Chain received mbufs. */
2365		if (sc->age_cdata.age_rxhead == NULL) {
2366			sc->age_cdata.age_rxhead = mp;
2367			sc->age_cdata.age_rxtail = mp;
2368		} else {
2369			mp->m_flags &= ~M_PKTHDR;
2370			sc->age_cdata.age_rxprev_tail =
2371			    sc->age_cdata.age_rxtail;
2372			sc->age_cdata.age_rxtail->m_next = mp;
2373			sc->age_cdata.age_rxtail = mp;
2374		}
2375
2376		if (count == nsegs - 1) {
2377			/* Last desc. for this frame. */
2378			m = sc->age_cdata.age_rxhead;
2379			m->m_flags |= M_PKTHDR;
2380			/*
2381			 * It seems that L1 controller has no way
2382			 * to tell hardware to strip CRC bytes.
2383			 */
2384			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2385			    ETHER_CRC_LEN;
2386			if (nsegs > 1) {
2387				/* Set last mbuf size. */
2388				mp->m_len = sc->age_cdata.age_rxlen -
2389				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2390				/* Remove the CRC bytes in chained mbufs. */
2391				if (mp->m_len <= ETHER_CRC_LEN) {
2392					sc->age_cdata.age_rxtail =
2393					    sc->age_cdata.age_rxprev_tail;
2394					sc->age_cdata.age_rxtail->m_len -=
2395					    (ETHER_CRC_LEN - mp->m_len);
2396					sc->age_cdata.age_rxtail->m_next = NULL;
2397					m_freem(mp);
2398				} else {
2399					mp->m_len -= ETHER_CRC_LEN;
2400				}
2401			} else
2402				m->m_len = m->m_pkthdr.len;
2403			m->m_pkthdr.rcvif = ifp;
2404			/*
2405			 * Set checksum information.
2406			 * It seems that L1 controller can compute partial
2407			 * checksum. The partial checksum value can be used
2408			 * to accelerate checksum computation for fragmented
2409			 * TCP/UDP packets. Upper network stack already
2410			 * takes advantage of the partial checksum value in
2411			 * IP reassembly stage. But I'm not sure the
2412			 * correctness of the partial hardware checksum
2413			 * assistance due to lack of data sheet. If it is
2414			 * proven to work on L1 I'll enable it.
2415			 */
2416			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2417			    (status & AGE_RRD_IPV4) != 0) {
2418				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2419					m->m_pkthdr.csum_flags |=
2420					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2421				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2422				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2423					m->m_pkthdr.csum_flags |=
2424					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2425					m->m_pkthdr.csum_data = 0xffff;
2426				}
2427				/*
2428				 * Don't mark bad checksum for TCP/UDP frames
2429				 * as fragmented frames may always have set
2430				 * bad checksummed bit of descriptor status.
2431				 */
2432			}
2433
2434			/* Check for VLAN tagged frames. */
2435			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2436			    (status & AGE_RRD_VLAN) != 0) {
2437				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2438				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2439				m->m_flags |= M_VLANTAG;
2440			}
2441#ifndef __NO_STRICT_ALIGNMENT
2442			m = age_fixup_rx(ifp, m);
2443			if (m != NULL)
2444#endif
2445			{
2446			/* Pass it on. */
2447			AGE_UNLOCK(sc);
2448			(*ifp->if_input)(ifp, m);
2449			AGE_LOCK(sc);
2450			}
2451		}
2452	}
2453
2454	/* Reset mbuf chains. */
2455	AGE_RXCHAIN_RESET(sc);
2456}
2457
2458static int
2459age_rxintr(struct age_softc *sc, int rr_prod, int count)
2460{
2461	struct rx_rdesc *rxrd;
2462	int rr_cons, nsegs, pktlen, prog;
2463
2464	AGE_LOCK_ASSERT(sc);
2465
2466	rr_cons = sc->age_cdata.age_rr_cons;
2467	if (rr_cons == rr_prod)
2468		return (0);
2469
2470	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2471	    sc->age_cdata.age_rr_ring_map,
2472	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2473	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2474	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2475
2476	for (prog = 0; rr_cons != rr_prod; prog++) {
2477		if (count-- <= 0)
2478			break;
2479		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2480		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2481		if (nsegs == 0)
2482			break;
2483		/*
2484		 * Check number of segments against received bytes.
2485		 * Non-matching value would indicate that hardware
2486		 * is still trying to update Rx return descriptors.
2487		 * I'm not sure whether this check is really needed.
2488		 */
2489		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2490		if (nsegs != (pktlen + (AGE_RX_BUF_SIZE - 1)) / AGE_RX_BUF_SIZE)
2491			break;
2492
2493		/* Received a frame. */
2494		age_rxeof(sc, rxrd);
2495		/* Clear return ring. */
2496		rxrd->index = 0;
2497		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2498		sc->age_cdata.age_rx_cons += nsegs;
2499		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2500	}
2501
2502	if (prog > 0) {
2503		/* Update the consumer index. */
2504		sc->age_cdata.age_rr_cons = rr_cons;
2505
2506		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2507		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2508		/* Sync descriptors. */
2509		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2510		    sc->age_cdata.age_rr_ring_map,
2511		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2512
2513		/* Notify hardware availability of new Rx buffers. */
2514		AGE_COMMIT_MBOX(sc);
2515	}
2516
2517	return (count > 0 ? 0 : EAGAIN);
2518}
2519
2520static void
2521age_tick(void *arg)
2522{
2523	struct age_softc *sc;
2524	struct mii_data *mii;
2525
2526	sc = (struct age_softc *)arg;
2527
2528	AGE_LOCK_ASSERT(sc);
2529
2530	mii = device_get_softc(sc->age_miibus);
2531	mii_tick(mii);
2532	age_watchdog(sc);
2533	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2534}
2535
2536static void
2537age_reset(struct age_softc *sc)
2538{
2539	uint32_t reg;
2540	int i;
2541
2542	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2543	CSR_READ_4(sc, AGE_MASTER_CFG);
2544	DELAY(1000);
2545	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2546		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2547			break;
2548		DELAY(10);
2549	}
2550
2551	if (i == 0)
2552		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2553	/* Initialize PCIe module. From Linux. */
2554	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2555	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2556}
2557
2558static void
2559age_init(void *xsc)
2560{
2561	struct age_softc *sc;
2562
2563	sc = (struct age_softc *)xsc;
2564	AGE_LOCK(sc);
2565	age_init_locked(sc);
2566	AGE_UNLOCK(sc);
2567}
2568
2569static void
2570age_init_locked(struct age_softc *sc)
2571{
2572	struct ifnet *ifp;
2573	struct mii_data *mii;
2574	uint8_t eaddr[ETHER_ADDR_LEN];
2575	bus_addr_t paddr;
2576	uint32_t reg, fsize;
2577	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2578	int error;
2579
2580	AGE_LOCK_ASSERT(sc);
2581
2582	ifp = sc->age_ifp;
2583	mii = device_get_softc(sc->age_miibus);
2584
2585	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2586		return;
2587
2588	/*
2589	 * Cancel any pending I/O.
2590	 */
2591	age_stop(sc);
2592
2593	/*
2594	 * Reset the chip to a known state.
2595	 */
2596	age_reset(sc);
2597
2598	/* Initialize descriptors. */
2599	error = age_init_rx_ring(sc);
2600        if (error != 0) {
2601                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2602                age_stop(sc);
2603		return;
2604        }
2605	age_init_rr_ring(sc);
2606	age_init_tx_ring(sc);
2607	age_init_cmb_block(sc);
2608	age_init_smb_block(sc);
2609
2610	/* Reprogram the station address. */
2611	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2612	CSR_WRITE_4(sc, AGE_PAR0,
2613	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2614	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2615
2616	/* Set descriptor base addresses. */
2617	paddr = sc->age_rdata.age_tx_ring_paddr;
2618	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2619	paddr = sc->age_rdata.age_rx_ring_paddr;
2620	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2621	paddr = sc->age_rdata.age_rr_ring_paddr;
2622	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2623	paddr = sc->age_rdata.age_tx_ring_paddr;
2624	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2625	paddr = sc->age_rdata.age_cmb_block_paddr;
2626	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2627	paddr = sc->age_rdata.age_smb_block_paddr;
2628	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2629	/* Set Rx/Rx return descriptor counter. */
2630	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2631	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2632	    DESC_RRD_CNT_MASK) |
2633	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2634	/* Set Tx descriptor counter. */
2635	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2636	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2637
2638	/* Tell hardware that we're ready to load descriptors. */
2639	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2640
2641	/*
2642	 * Initialize mailbox register.
2643	 * Updated producer/consumer index information is exchanged
2644	 * through this mailbox register. However Tx producer and
2645	 * Rx return consumer/Rx producer are all shared such that
2646	 * it's hard to separate code path between Tx and Rx without
2647	 * locking. If L1 hardware have a separate mail box register
2648	 * for Tx and Rx consumer/producer management we could have
2649	 * indepent Tx/Rx handler which in turn Rx handler could have
2650	 * been run without any locking.
2651	 */
2652	AGE_COMMIT_MBOX(sc);
2653
2654	/* Configure IPG/IFG parameters. */
2655	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2656	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2657	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2658	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2659	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2660
2661	/* Set parameters for half-duplex media. */
2662	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2663	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2664	    HDPX_CFG_LCOL_MASK) |
2665	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2666	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2667	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2668	    HDPX_CFG_ABEBT_MASK) |
2669	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2670	    HDPX_CFG_JAMIPG_MASK));
2671
2672	/* Configure interrupt moderation timer. */
2673	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2674	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2675	reg &= ~MASTER_MTIMER_ENB;
2676	if (AGE_USECS(sc->age_int_mod) == 0)
2677		reg &= ~MASTER_ITIMER_ENB;
2678	else
2679		reg |= MASTER_ITIMER_ENB;
2680	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2681	if (bootverbose)
2682		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2683		    sc->age_int_mod);
2684	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2685
2686	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2687	if (ifp->if_mtu < ETHERMTU)
2688		sc->age_max_frame_size = ETHERMTU;
2689	else
2690		sc->age_max_frame_size = ifp->if_mtu;
2691	sc->age_max_frame_size += ETHER_HDR_LEN +
2692	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2693	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2694	/* Configure jumbo frame. */
2695	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2696	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2697	    (((fsize / sizeof(uint64_t)) <<
2698	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2699	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2700	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2701	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2702	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2703
2704	/* Configure flow-control parameters. From Linux. */
2705	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2706		/*
2707		 * Magic workaround for old-L1.
2708		 * Don't know which hw revision requires this magic.
2709		 */
2710		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2711		/*
2712		 * Another magic workaround for flow-control mode
2713		 * change. From Linux.
2714		 */
2715		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2716	}
2717	/*
2718	 * TODO
2719	 *  Should understand pause parameter relationships between FIFO
2720	 *  size and number of Rx descriptors and Rx return descriptors.
2721	 *
2722	 *  Magic parameters came from Linux.
2723	 */
2724	switch (sc->age_chip_rev) {
2725	case 0x8001:
2726	case 0x9001:
2727	case 0x9002:
2728	case 0x9003:
2729		rxf_hi = AGE_RX_RING_CNT / 16;
2730		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2731		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2732		rrd_lo = AGE_RR_RING_CNT / 16;
2733		break;
2734	default:
2735		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2736		rxf_lo = reg / 16;
2737		if (rxf_lo < 192)
2738			rxf_lo = 192;
2739		rxf_hi = (reg * 7) / 8;
2740		if (rxf_hi < rxf_lo)
2741			rxf_hi = rxf_lo + 16;
2742		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2743		rrd_lo = reg / 8;
2744		rrd_hi = (reg * 7) / 8;
2745		if (rrd_lo < 2)
2746			rrd_lo = 2;
2747		if (rrd_hi < rrd_lo)
2748			rrd_hi = rrd_lo + 3;
2749		break;
2750	}
2751	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2752	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2753	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2754	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2755	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2756	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2757	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2758	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2759	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2760	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2761
2762	/* Configure RxQ. */
2763	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2764	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2765	    RXQ_CFG_RD_BURST_MASK) |
2766	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2767	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2768	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2769	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2770	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2771
2772	/* Configure TxQ. */
2773	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2774	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2775	    TXQ_CFG_TPD_BURST_MASK) |
2776	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2777	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2778	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2779	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2780	    TXQ_CFG_ENB);
2781
2782	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2783	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2784	    TX_JUMBO_TPD_TH_MASK) |
2785	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2786	    TX_JUMBO_TPD_IPG_MASK));
2787	/* Configure DMA parameters. */
2788	CSR_WRITE_4(sc, AGE_DMA_CFG,
2789	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2790	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2791	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2792
2793	/* Configure CMB DMA write threshold. */
2794	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2795	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2796	    CMB_WR_THRESH_RRD_MASK) |
2797	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2798	    CMB_WR_THRESH_TPD_MASK));
2799
2800	/* Set CMB/SMB timer and enable them. */
2801	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2802	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2803	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2804	/* Request SMB updates for every seconds. */
2805	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2806	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2807
2808	/*
2809	 * Disable all WOL bits as WOL can interfere normal Rx
2810	 * operation.
2811	 */
2812	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2813
2814	/*
2815	 * Configure Tx/Rx MACs.
2816	 *  - Auto-padding for short frames.
2817	 *  - Enable CRC generation.
2818	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2819	 *  of MAC is followed after link establishment.
2820	 */
2821	CSR_WRITE_4(sc, AGE_MAC_CFG,
2822	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2823	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2824	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2825	    MAC_CFG_PREAMBLE_MASK));
2826	/* Set up the receive filter. */
2827	age_rxfilter(sc);
2828	age_rxvlan(sc);
2829
2830	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2831	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2832		reg |= MAC_CFG_RXCSUM_ENB;
2833
2834	/* Ack all pending interrupts and clear it. */
2835	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2836	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2837
2838	/* Finally enable Tx/Rx MAC. */
2839	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2840
2841	sc->age_flags &= ~AGE_FLAG_LINK;
2842	/* Switch to the current media. */
2843	mii_mediachg(mii);
2844
2845	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2846
2847	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2848	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2849}
2850
2851static void
2852age_stop(struct age_softc *sc)
2853{
2854	struct ifnet *ifp;
2855	struct age_txdesc *txd;
2856	struct age_rxdesc *rxd;
2857	uint32_t reg;
2858	int i;
2859
2860	AGE_LOCK_ASSERT(sc);
2861	/*
2862	 * Mark the interface down and cancel the watchdog timer.
2863	 */
2864	ifp = sc->age_ifp;
2865	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2866	sc->age_flags &= ~AGE_FLAG_LINK;
2867	callout_stop(&sc->age_tick_ch);
2868	sc->age_watchdog_timer = 0;
2869
2870	/*
2871	 * Disable interrupts.
2872	 */
2873	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2874	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2875	/* Stop CMB/SMB updates. */
2876	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2877	/* Stop Rx/Tx MAC. */
2878	age_stop_rxmac(sc);
2879	age_stop_txmac(sc);
2880	/* Stop DMA. */
2881	CSR_WRITE_4(sc, AGE_DMA_CFG,
2882	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2883	/* Stop TxQ/RxQ. */
2884	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2885	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2886	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2887	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2888	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2889		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2890			break;
2891		DELAY(10);
2892	}
2893	if (i == 0)
2894		device_printf(sc->age_dev,
2895		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2896
2897	 /* Reclaim Rx buffers that have been processed. */
2898	if (sc->age_cdata.age_rxhead != NULL)
2899		m_freem(sc->age_cdata.age_rxhead);
2900	AGE_RXCHAIN_RESET(sc);
2901	/*
2902	 * Free RX and TX mbufs still in the queues.
2903	 */
2904	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2905		rxd = &sc->age_cdata.age_rxdesc[i];
2906		if (rxd->rx_m != NULL) {
2907			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2908			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2909			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2910			    rxd->rx_dmamap);
2911			m_freem(rxd->rx_m);
2912			rxd->rx_m = NULL;
2913		}
2914        }
2915	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2916		txd = &sc->age_cdata.age_txdesc[i];
2917		if (txd->tx_m != NULL) {
2918			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2919			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2920			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2921			    txd->tx_dmamap);
2922			m_freem(txd->tx_m);
2923			txd->tx_m = NULL;
2924		}
2925        }
2926}
2927
2928static void
2929age_stop_txmac(struct age_softc *sc)
2930{
2931	uint32_t reg;
2932	int i;
2933
2934	AGE_LOCK_ASSERT(sc);
2935
2936	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2937	if ((reg & MAC_CFG_TX_ENB) != 0) {
2938		reg &= ~MAC_CFG_TX_ENB;
2939		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2940	}
2941	/* Stop Tx DMA engine. */
2942	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2943	if ((reg & DMA_CFG_RD_ENB) != 0) {
2944		reg &= ~DMA_CFG_RD_ENB;
2945		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2946	}
2947	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2948		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2949		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2950			break;
2951		DELAY(10);
2952	}
2953	if (i == 0)
2954		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2955}
2956
2957static void
2958age_stop_rxmac(struct age_softc *sc)
2959{
2960	uint32_t reg;
2961	int i;
2962
2963	AGE_LOCK_ASSERT(sc);
2964
2965	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2966	if ((reg & MAC_CFG_RX_ENB) != 0) {
2967		reg &= ~MAC_CFG_RX_ENB;
2968		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2969	}
2970	/* Stop Rx DMA engine. */
2971	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2972	if ((reg & DMA_CFG_WR_ENB) != 0) {
2973		reg &= ~DMA_CFG_WR_ENB;
2974		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2975	}
2976	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2977		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2978		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2979			break;
2980		DELAY(10);
2981	}
2982	if (i == 0)
2983		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2984}
2985
2986static void
2987age_init_tx_ring(struct age_softc *sc)
2988{
2989	struct age_ring_data *rd;
2990	struct age_txdesc *txd;
2991	int i;
2992
2993	AGE_LOCK_ASSERT(sc);
2994
2995	sc->age_cdata.age_tx_prod = 0;
2996	sc->age_cdata.age_tx_cons = 0;
2997	sc->age_cdata.age_tx_cnt = 0;
2998
2999	rd = &sc->age_rdata;
3000	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3001	for (i = 0; i < AGE_TX_RING_CNT; i++) {
3002		txd = &sc->age_cdata.age_txdesc[i];
3003		txd->tx_desc = &rd->age_tx_ring[i];
3004		txd->tx_m = NULL;
3005	}
3006
3007	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3008	    sc->age_cdata.age_tx_ring_map,
3009	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3010}
3011
3012static int
3013age_init_rx_ring(struct age_softc *sc)
3014{
3015	struct age_ring_data *rd;
3016	struct age_rxdesc *rxd;
3017	int i;
3018
3019	AGE_LOCK_ASSERT(sc);
3020
3021	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3022	sc->age_morework = 0;
3023	rd = &sc->age_rdata;
3024	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3025	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3026		rxd = &sc->age_cdata.age_rxdesc[i];
3027		rxd->rx_m = NULL;
3028		rxd->rx_desc = &rd->age_rx_ring[i];
3029		if (age_newbuf(sc, rxd) != 0)
3030			return (ENOBUFS);
3031	}
3032
3033	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3034	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3035
3036	return (0);
3037}
3038
3039static void
3040age_init_rr_ring(struct age_softc *sc)
3041{
3042	struct age_ring_data *rd;
3043
3044	AGE_LOCK_ASSERT(sc);
3045
3046	sc->age_cdata.age_rr_cons = 0;
3047	AGE_RXCHAIN_RESET(sc);
3048
3049	rd = &sc->age_rdata;
3050	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3051	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3052	    sc->age_cdata.age_rr_ring_map,
3053	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3054}
3055
3056static void
3057age_init_cmb_block(struct age_softc *sc)
3058{
3059	struct age_ring_data *rd;
3060
3061	AGE_LOCK_ASSERT(sc);
3062
3063	rd = &sc->age_rdata;
3064	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3065	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3066	    sc->age_cdata.age_cmb_block_map,
3067	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3068}
3069
3070static void
3071age_init_smb_block(struct age_softc *sc)
3072{
3073	struct age_ring_data *rd;
3074
3075	AGE_LOCK_ASSERT(sc);
3076
3077	rd = &sc->age_rdata;
3078	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3079	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3080	    sc->age_cdata.age_smb_block_map,
3081	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3082}
3083
3084static int
3085age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3086{
3087	struct rx_desc *desc;
3088	struct mbuf *m;
3089	bus_dma_segment_t segs[1];
3090	bus_dmamap_t map;
3091	int nsegs;
3092
3093	AGE_LOCK_ASSERT(sc);
3094
3095	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3096	if (m == NULL)
3097		return (ENOBUFS);
3098	m->m_len = m->m_pkthdr.len = MCLBYTES;
3099#ifndef __NO_STRICT_ALIGNMENT
3100	m_adj(m, AGE_RX_BUF_ALIGN);
3101#endif
3102
3103	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3104	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3105		m_freem(m);
3106		return (ENOBUFS);
3107	}
3108	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3109
3110	if (rxd->rx_m != NULL) {
3111		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3112		    BUS_DMASYNC_POSTREAD);
3113		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3114	}
3115	map = rxd->rx_dmamap;
3116	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3117	sc->age_cdata.age_rx_sparemap = map;
3118	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3119	    BUS_DMASYNC_PREREAD);
3120	rxd->rx_m = m;
3121
3122	desc = rxd->rx_desc;
3123	desc->addr = htole64(segs[0].ds_addr);
3124	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3125	    AGE_RD_LEN_SHIFT);
3126	return (0);
3127}
3128
3129static void
3130age_rxvlan(struct age_softc *sc)
3131{
3132	struct ifnet *ifp;
3133	uint32_t reg;
3134
3135	AGE_LOCK_ASSERT(sc);
3136
3137	ifp = sc->age_ifp;
3138	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3139	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3140	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3141		reg |= MAC_CFG_VLAN_TAG_STRIP;
3142	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3143}
3144
3145static void
3146age_rxfilter(struct age_softc *sc)
3147{
3148	struct ifnet *ifp;
3149	struct ifmultiaddr *ifma;
3150	uint32_t crc;
3151	uint32_t mchash[2];
3152	uint32_t rxcfg;
3153
3154	AGE_LOCK_ASSERT(sc);
3155
3156	ifp = sc->age_ifp;
3157
3158	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3159	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3160	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3161		rxcfg |= MAC_CFG_BCAST;
3162	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3163		if ((ifp->if_flags & IFF_PROMISC) != 0)
3164			rxcfg |= MAC_CFG_PROMISC;
3165		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3166			rxcfg |= MAC_CFG_ALLMULTI;
3167		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3168		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3169		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3170		return;
3171	}
3172
3173	/* Program new filter. */
3174	bzero(mchash, sizeof(mchash));
3175
3176	if_maddr_rlock(ifp);
3177	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3178		if (ifma->ifma_addr->sa_family != AF_LINK)
3179			continue;
3180		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3181		    ifma->ifma_addr), ETHER_ADDR_LEN);
3182		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3183	}
3184	if_maddr_runlock(ifp);
3185
3186	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3187	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3188	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3189}
3190
3191static int
3192sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3193{
3194	struct age_softc *sc;
3195	struct age_stats *stats;
3196	int error, result;
3197
3198	result = -1;
3199	error = sysctl_handle_int(oidp, &result, 0, req);
3200
3201	if (error != 0 || req->newptr == NULL)
3202		return (error);
3203
3204	if (result != 1)
3205		return (error);
3206
3207	sc = (struct age_softc *)arg1;
3208	stats = &sc->age_stat;
3209	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3210	printf("Transmit good frames : %ju\n",
3211	    (uintmax_t)stats->tx_frames);
3212	printf("Transmit good broadcast frames : %ju\n",
3213	    (uintmax_t)stats->tx_bcast_frames);
3214	printf("Transmit good multicast frames : %ju\n",
3215	    (uintmax_t)stats->tx_mcast_frames);
3216	printf("Transmit pause control frames : %u\n",
3217	    stats->tx_pause_frames);
3218	printf("Transmit control frames : %u\n",
3219	    stats->tx_control_frames);
3220	printf("Transmit frames with excessive deferrals : %u\n",
3221	    stats->tx_excess_defer);
3222	printf("Transmit deferrals : %u\n",
3223	    stats->tx_deferred);
3224	printf("Transmit good octets : %ju\n",
3225	    (uintmax_t)stats->tx_bytes);
3226	printf("Transmit good broadcast octets : %ju\n",
3227	    (uintmax_t)stats->tx_bcast_bytes);
3228	printf("Transmit good multicast octets : %ju\n",
3229	    (uintmax_t)stats->tx_mcast_bytes);
3230	printf("Transmit frames 64 bytes : %ju\n",
3231	    (uintmax_t)stats->tx_pkts_64);
3232	printf("Transmit frames 65 to 127 bytes : %ju\n",
3233	    (uintmax_t)stats->tx_pkts_65_127);
3234	printf("Transmit frames 128 to 255 bytes : %ju\n",
3235	    (uintmax_t)stats->tx_pkts_128_255);
3236	printf("Transmit frames 256 to 511 bytes : %ju\n",
3237	    (uintmax_t)stats->tx_pkts_256_511);
3238	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3239	    (uintmax_t)stats->tx_pkts_512_1023);
3240	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3241	    (uintmax_t)stats->tx_pkts_1024_1518);
3242	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3243	    (uintmax_t)stats->tx_pkts_1519_max);
3244	printf("Transmit single collisions : %u\n",
3245	    stats->tx_single_colls);
3246	printf("Transmit multiple collisions : %u\n",
3247	    stats->tx_multi_colls);
3248	printf("Transmit late collisions : %u\n",
3249	    stats->tx_late_colls);
3250	printf("Transmit abort due to excessive collisions : %u\n",
3251	    stats->tx_excess_colls);
3252	printf("Transmit underruns due to FIFO underruns : %u\n",
3253	    stats->tx_underrun);
3254	printf("Transmit descriptor write-back errors : %u\n",
3255	    stats->tx_desc_underrun);
3256	printf("Transmit frames with length mismatched frame size : %u\n",
3257	    stats->tx_lenerrs);
3258	printf("Transmit frames with truncated due to MTU size : %u\n",
3259	    stats->tx_lenerrs);
3260
3261	printf("Receive good frames : %ju\n",
3262	    (uintmax_t)stats->rx_frames);
3263	printf("Receive good broadcast frames : %ju\n",
3264	    (uintmax_t)stats->rx_bcast_frames);
3265	printf("Receive good multicast frames : %ju\n",
3266	    (uintmax_t)stats->rx_mcast_frames);
3267	printf("Receive pause control frames : %u\n",
3268	    stats->rx_pause_frames);
3269	printf("Receive control frames : %u\n",
3270	    stats->rx_control_frames);
3271	printf("Receive CRC errors : %u\n",
3272	    stats->rx_crcerrs);
3273	printf("Receive frames with length errors : %u\n",
3274	    stats->rx_lenerrs);
3275	printf("Receive good octets : %ju\n",
3276	    (uintmax_t)stats->rx_bytes);
3277	printf("Receive good broadcast octets : %ju\n",
3278	    (uintmax_t)stats->rx_bcast_bytes);
3279	printf("Receive good multicast octets : %ju\n",
3280	    (uintmax_t)stats->rx_mcast_bytes);
3281	printf("Receive frames too short : %u\n",
3282	    stats->rx_runts);
3283	printf("Receive fragmented frames : %ju\n",
3284	    (uintmax_t)stats->rx_fragments);
3285	printf("Receive frames 64 bytes : %ju\n",
3286	    (uintmax_t)stats->rx_pkts_64);
3287	printf("Receive frames 65 to 127 bytes : %ju\n",
3288	    (uintmax_t)stats->rx_pkts_65_127);
3289	printf("Receive frames 128 to 255 bytes : %ju\n",
3290	    (uintmax_t)stats->rx_pkts_128_255);
3291	printf("Receive frames 256 to 511 bytes : %ju\n",
3292	    (uintmax_t)stats->rx_pkts_256_511);
3293	printf("Receive frames 512 to 1024 bytes : %ju\n",
3294	    (uintmax_t)stats->rx_pkts_512_1023);
3295	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3296	    (uintmax_t)stats->rx_pkts_1024_1518);
3297	printf("Receive frames 1519 to MTU bytes : %ju\n",
3298	    (uintmax_t)stats->rx_pkts_1519_max);
3299	printf("Receive frames too long : %ju\n",
3300	    (uint64_t)stats->rx_pkts_truncated);
3301	printf("Receive frames with FIFO overflow : %u\n",
3302	    stats->rx_fifo_oflows);
3303	printf("Receive frames with return descriptor overflow : %u\n",
3304	    stats->rx_desc_oflows);
3305	printf("Receive frames with alignment errors : %u\n",
3306	    stats->rx_alignerrs);
3307	printf("Receive frames dropped due to address filtering : %ju\n",
3308	    (uint64_t)stats->rx_pkts_filtered);
3309
3310	return (error);
3311}
3312
3313static int
3314sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3315{
3316	int error, value;
3317
3318	if (arg1 == NULL)
3319		return (EINVAL);
3320	value = *(int *)arg1;
3321	error = sysctl_handle_int(oidp, &value, 0, req);
3322	if (error || req->newptr == NULL)
3323		return (error);
3324	if (value < low || value > high)
3325		return (EINVAL);
3326        *(int *)arg1 = value;
3327
3328        return (0);
3329}
3330
3331static int
3332sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3333{
3334	return (sysctl_int_range(oidp, arg1, arg2, req,
3335	    AGE_PROC_MIN, AGE_PROC_MAX));
3336}
3337
3338static int
3339sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3340{
3341
3342	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3343	    AGE_IM_TIMER_MAX));
3344}
3345