1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD$");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_var.h>
51#include <net/if_arp.h>
52#include <net/ethernet.h>
53#include <net/if_dl.h>
54#include <net/if_media.h>
55#include <net/if_types.h>
56#include <net/if_vlan_var.h>
57
58#include <netinet/in.h>
59#include <netinet/in_systm.h>
60#include <netinet/ip.h>
61#include <netinet/tcp.h>
62
63#include <dev/mii/mii.h>
64#include <dev/mii/miivar.h>
65
66#include <dev/pci/pcireg.h>
67#include <dev/pci/pcivar.h>
68
69#include <machine/bus.h>
70#include <machine/in_cksum.h>
71
72#include <dev/age/if_agereg.h>
73#include <dev/age/if_agevar.h>
74
75/* "device miibus" required.  See GENERIC if you get errors here. */
76#include "miibus_if.h"
77
78#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
79
80MODULE_DEPEND(age, pci, 1, 1, 1);
81MODULE_DEPEND(age, ether, 1, 1, 1);
82MODULE_DEPEND(age, miibus, 1, 1, 1);
83
84/* Tunables. */
85static int msi_disable = 0;
86static int msix_disable = 0;
87TUNABLE_INT("hw.age.msi_disable", &msi_disable);
88TUNABLE_INT("hw.age.msix_disable", &msix_disable);
89
90/*
91 * Devices supported by this driver.
92 */
93static struct age_dev {
94	uint16_t	age_vendorid;
95	uint16_t	age_deviceid;
96	const char	*age_name;
97} age_devs[] = {
98	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
99	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
100};
101
102static int age_miibus_readreg(device_t, int, int);
103static int age_miibus_writereg(device_t, int, int, int);
104static void age_miibus_statchg(device_t);
105static void age_mediastatus(struct ifnet *, struct ifmediareq *);
106static int age_mediachange(struct ifnet *);
107static int age_probe(device_t);
108static void age_get_macaddr(struct age_softc *);
109static void age_phy_reset(struct age_softc *);
110static int age_attach(device_t);
111static int age_detach(device_t);
112static void age_sysctl_node(struct age_softc *);
113static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
114static int age_check_boundary(struct age_softc *);
115static int age_dma_alloc(struct age_softc *);
116static void age_dma_free(struct age_softc *);
117static int age_shutdown(device_t);
118static void age_setwol(struct age_softc *);
119static int age_suspend(device_t);
120static int age_resume(device_t);
121static int age_encap(struct age_softc *, struct mbuf **);
122static void age_start(struct ifnet *);
123static void age_start_locked(struct ifnet *);
124static void age_watchdog(struct age_softc *);
125static int age_ioctl(struct ifnet *, u_long, caddr_t);
126static void age_mac_config(struct age_softc *);
127static void age_link_task(void *, int);
128static void age_stats_update(struct age_softc *);
129static int age_intr(void *);
130static void age_int_task(void *, int);
131static void age_txintr(struct age_softc *, int);
132static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
133static int age_rxintr(struct age_softc *, int, int);
134static void age_tick(void *);
135static void age_reset(struct age_softc *);
136static void age_init(void *);
137static void age_init_locked(struct age_softc *);
138static void age_stop(struct age_softc *);
139static void age_stop_txmac(struct age_softc *);
140static void age_stop_rxmac(struct age_softc *);
141static void age_init_tx_ring(struct age_softc *);
142static int age_init_rx_ring(struct age_softc *);
143static void age_init_rr_ring(struct age_softc *);
144static void age_init_cmb_block(struct age_softc *);
145static void age_init_smb_block(struct age_softc *);
146#ifndef __NO_STRICT_ALIGNMENT
147static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
148#endif
149static int age_newbuf(struct age_softc *, struct age_rxdesc *);
150static void age_rxvlan(struct age_softc *);
151static void age_rxfilter(struct age_softc *);
152static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
153static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
154static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
155static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
156
157
158static device_method_t age_methods[] = {
159	/* Device interface. */
160	DEVMETHOD(device_probe,		age_probe),
161	DEVMETHOD(device_attach,	age_attach),
162	DEVMETHOD(device_detach,	age_detach),
163	DEVMETHOD(device_shutdown,	age_shutdown),
164	DEVMETHOD(device_suspend,	age_suspend),
165	DEVMETHOD(device_resume,	age_resume),
166
167	/* MII interface. */
168	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
169	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
170	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
171
172	{ NULL, NULL }
173};
174
175static driver_t age_driver = {
176	"age",
177	age_methods,
178	sizeof(struct age_softc)
179};
180
181static devclass_t age_devclass;
182
183DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
184DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
185
186static struct resource_spec age_res_spec_mem[] = {
187	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
188	{ -1,			0,		0 }
189};
190
191static struct resource_spec age_irq_spec_legacy[] = {
192	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
193	{ -1,			0,		0 }
194};
195
196static struct resource_spec age_irq_spec_msi[] = {
197	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
198	{ -1,			0,		0 }
199};
200
201static struct resource_spec age_irq_spec_msix[] = {
202	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
203	{ -1,			0,		0 }
204};
205
206/*
207 *	Read a PHY register on the MII of the L1.
208 */
209static int
210age_miibus_readreg(device_t dev, int phy, int reg)
211{
212	struct age_softc *sc;
213	uint32_t v;
214	int i;
215
216	sc = device_get_softc(dev);
217
218	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
219	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
220	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
221		DELAY(1);
222		v = CSR_READ_4(sc, AGE_MDIO);
223		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
224			break;
225	}
226
227	if (i == 0) {
228		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
229		return (0);
230	}
231
232	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
233}
234
235/*
236 *	Write a PHY register on the MII of the L1.
237 */
238static int
239age_miibus_writereg(device_t dev, int phy, int reg, int val)
240{
241	struct age_softc *sc;
242	uint32_t v;
243	int i;
244
245	sc = device_get_softc(dev);
246
247	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251		DELAY(1);
252		v = CSR_READ_4(sc, AGE_MDIO);
253		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254			break;
255	}
256
257	if (i == 0)
258		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259
260	return (0);
261}
262
263/*
264 *	Callback from MII layer when media changes.
265 */
266static void
267age_miibus_statchg(device_t dev)
268{
269	struct age_softc *sc;
270
271	sc = device_get_softc(dev);
272	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273}
274
275/*
276 *	Get the current interface media status.
277 */
278static void
279age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280{
281	struct age_softc *sc;
282	struct mii_data *mii;
283
284	sc = ifp->if_softc;
285	AGE_LOCK(sc);
286	mii = device_get_softc(sc->age_miibus);
287
288	mii_pollstat(mii);
289	ifmr->ifm_status = mii->mii_media_status;
290	ifmr->ifm_active = mii->mii_media_active;
291	AGE_UNLOCK(sc);
292}
293
294/*
295 *	Set hardware to newly-selected media.
296 */
297static int
298age_mediachange(struct ifnet *ifp)
299{
300	struct age_softc *sc;
301	struct mii_data *mii;
302	struct mii_softc *miisc;
303	int error;
304
305	sc = ifp->if_softc;
306	AGE_LOCK(sc);
307	mii = device_get_softc(sc->age_miibus);
308	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
309		PHY_RESET(miisc);
310	error = mii_mediachg(mii);
311	AGE_UNLOCK(sc);
312
313	return (error);
314}
315
316static int
317age_probe(device_t dev)
318{
319	struct age_dev *sp;
320	int i;
321	uint16_t vendor, devid;
322
323	vendor = pci_get_vendor(dev);
324	devid = pci_get_device(dev);
325	sp = age_devs;
326	for (i = 0; i < nitems(age_devs); i++, sp++) {
327		if (vendor == sp->age_vendorid &&
328		    devid == sp->age_deviceid) {
329			device_set_desc(dev, sp->age_name);
330			return (BUS_PROBE_DEFAULT);
331		}
332	}
333
334	return (ENXIO);
335}
336
337static void
338age_get_macaddr(struct age_softc *sc)
339{
340	uint32_t ea[2], reg;
341	int i, vpdc;
342
343	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
344	if ((reg & SPI_VPD_ENB) != 0) {
345		/* Get VPD stored in TWSI EEPROM. */
346		reg &= ~SPI_VPD_ENB;
347		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
348	}
349
350	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
351		/*
352		 * PCI VPD capability found, let TWSI reload EEPROM.
353		 * This will set ethernet address of controller.
354		 */
355		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
356		    TWSI_CTRL_SW_LD_START);
357		for (i = 100; i > 0; i--) {
358			DELAY(1000);
359			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
360			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
361				break;
362		}
363		if (i == 0)
364			device_printf(sc->age_dev,
365			    "reloading EEPROM timeout!\n");
366	} else {
367		if (bootverbose)
368			device_printf(sc->age_dev,
369			    "PCI VPD capability not found!\n");
370	}
371
372	ea[0] = CSR_READ_4(sc, AGE_PAR0);
373	ea[1] = CSR_READ_4(sc, AGE_PAR1);
374	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
375	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
376	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
377	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
378	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
379	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
380}
381
382static void
383age_phy_reset(struct age_softc *sc)
384{
385	uint16_t reg, pn;
386	int i, linkup;
387
388	/* Reset PHY. */
389	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
390	DELAY(2000);
391	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
392	DELAY(2000);
393
394#define	ATPHY_DBG_ADDR		0x1D
395#define	ATPHY_DBG_DATA		0x1E
396#define	ATPHY_CDTC		0x16
397#define	PHY_CDTC_ENB		0x0001
398#define	PHY_CDTC_POFF		8
399#define	ATPHY_CDTS		0x1C
400#define	PHY_CDTS_STAT_OK	0x0000
401#define	PHY_CDTS_STAT_SHORT	0x0100
402#define	PHY_CDTS_STAT_OPEN	0x0200
403#define	PHY_CDTS_STAT_INVAL	0x0300
404#define	PHY_CDTS_STAT_MASK	0x0300
405
406	/* Check power saving mode. Magic from Linux. */
407	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
408	for (linkup = 0, pn = 0; pn < 4; pn++) {
409		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
410		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
411		for (i = 200; i > 0; i--) {
412			DELAY(1000);
413			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
414			    ATPHY_CDTC);
415			if ((reg & PHY_CDTC_ENB) == 0)
416				break;
417		}
418		DELAY(1000);
419		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
420		    ATPHY_CDTS);
421		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
422			linkup++;
423			break;
424		}
425	}
426	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
427	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
428	if (linkup == 0) {
429		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
430		    ATPHY_DBG_ADDR, 0);
431		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
432		    ATPHY_DBG_DATA, 0x124E);
433		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434		    ATPHY_DBG_ADDR, 1);
435		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
436		    ATPHY_DBG_DATA);
437		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438		    ATPHY_DBG_DATA, reg | 0x03);
439		/* XXX */
440		DELAY(1500 * 1000);
441		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442		    ATPHY_DBG_ADDR, 0);
443		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444		    ATPHY_DBG_DATA, 0x024E);
445    }
446
447#undef	ATPHY_DBG_ADDR
448#undef	ATPHY_DBG_DATA
449#undef	ATPHY_CDTC
450#undef	PHY_CDTC_ENB
451#undef	PHY_CDTC_POFF
452#undef	ATPHY_CDTS
453#undef	PHY_CDTS_STAT_OK
454#undef	PHY_CDTS_STAT_SHORT
455#undef	PHY_CDTS_STAT_OPEN
456#undef	PHY_CDTS_STAT_INVAL
457#undef	PHY_CDTS_STAT_MASK
458}
459
460static int
461age_attach(device_t dev)
462{
463	struct age_softc *sc;
464	struct ifnet *ifp;
465	uint16_t burst;
466	int error, i, msic, msixc, pmc;
467
468	error = 0;
469	sc = device_get_softc(dev);
470	sc->age_dev = dev;
471
472	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
473	    MTX_DEF);
474	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
475	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
476	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
477
478	/* Map the device. */
479	pci_enable_busmaster(dev);
480	sc->age_res_spec = age_res_spec_mem;
481	sc->age_irq_spec = age_irq_spec_legacy;
482	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
483	if (error != 0) {
484		device_printf(dev, "cannot allocate memory resources.\n");
485		goto fail;
486	}
487
488	/* Set PHY address. */
489	sc->age_phyaddr = AGE_PHY_ADDR;
490
491	/* Reset PHY. */
492	age_phy_reset(sc);
493
494	/* Reset the ethernet controller. */
495	age_reset(sc);
496
497	/* Get PCI and chip id/revision. */
498	sc->age_rev = pci_get_revid(dev);
499	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
500	    MASTER_CHIP_REV_SHIFT;
501	if (bootverbose) {
502		device_printf(dev, "PCI device revision : 0x%04x\n",
503		    sc->age_rev);
504		device_printf(dev, "Chip id/revision : 0x%04x\n",
505		    sc->age_chip_rev);
506	}
507
508	/*
509	 * XXX
510	 * Unintialized hardware returns an invalid chip id/revision
511	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
512	 * unplugged cable results in putting hardware into automatic
513	 * power down mode which in turn returns invalld chip revision.
514	 */
515	if (sc->age_chip_rev == 0xFFFF) {
516		device_printf(dev,"invalid chip revision : 0x%04x -- "
517		    "not initialized?\n", sc->age_chip_rev);
518		error = ENXIO;
519		goto fail;
520	}
521
522	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
523	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
524	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
525
526	/* Allocate IRQ resources. */
527	msixc = pci_msix_count(dev);
528	msic = pci_msi_count(dev);
529	if (bootverbose) {
530		device_printf(dev, "MSIX count : %d\n", msixc);
531		device_printf(dev, "MSI count : %d\n", msic);
532	}
533
534	/* Prefer MSIX over MSI. */
535	if (msix_disable == 0 || msi_disable == 0) {
536		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
537		    pci_alloc_msix(dev, &msixc) == 0) {
538			if (msic == AGE_MSIX_MESSAGES) {
539				device_printf(dev, "Using %d MSIX messages.\n",
540				    msixc);
541				sc->age_flags |= AGE_FLAG_MSIX;
542				sc->age_irq_spec = age_irq_spec_msix;
543			} else
544				pci_release_msi(dev);
545		}
546		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
547		    msic == AGE_MSI_MESSAGES &&
548		    pci_alloc_msi(dev, &msic) == 0) {
549			if (msic == AGE_MSI_MESSAGES) {
550				device_printf(dev, "Using %d MSI messages.\n",
551				    msic);
552				sc->age_flags |= AGE_FLAG_MSI;
553				sc->age_irq_spec = age_irq_spec_msi;
554			} else
555				pci_release_msi(dev);
556		}
557	}
558
559	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
560	if (error != 0) {
561		device_printf(dev, "cannot allocate IRQ resources.\n");
562		goto fail;
563	}
564
565
566	/* Get DMA parameters from PCIe device control register. */
567	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
568		sc->age_flags |= AGE_FLAG_PCIE;
569		burst = pci_read_config(dev, i + 0x08, 2);
570		/* Max read request size. */
571		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
572		    DMA_CFG_RD_BURST_SHIFT;
573		/* Max payload size. */
574		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
575		    DMA_CFG_WR_BURST_SHIFT;
576		if (bootverbose) {
577			device_printf(dev, "Read request size : %d bytes.\n",
578			    128 << ((burst >> 12) & 0x07));
579			device_printf(dev, "TLP payload size : %d bytes.\n",
580			    128 << ((burst >> 5) & 0x07));
581		}
582	} else {
583		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
584		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
585	}
586
587	/* Create device sysctl node. */
588	age_sysctl_node(sc);
589
590	if ((error = age_dma_alloc(sc)) != 0)
591		goto fail;
592
593	/* Load station address. */
594	age_get_macaddr(sc);
595
596	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
597	if (ifp == NULL) {
598		device_printf(dev, "cannot allocate ifnet structure.\n");
599		error = ENXIO;
600		goto fail;
601	}
602
603	ifp->if_softc = sc;
604	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
605	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
606	ifp->if_ioctl = age_ioctl;
607	ifp->if_start = age_start;
608	ifp->if_init = age_init;
609	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
610	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
611	IFQ_SET_READY(&ifp->if_snd);
612	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
613	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
614	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
615		sc->age_flags |= AGE_FLAG_PMCAP;
616		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
617	}
618	ifp->if_capenable = ifp->if_capabilities;
619
620	/* Set up MII bus. */
621	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
622	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
623	    0);
624	if (error != 0) {
625		device_printf(dev, "attaching PHYs failed\n");
626		goto fail;
627	}
628
629	ether_ifattach(ifp, sc->age_eaddr);
630
631	/* VLAN capability setup. */
632	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
633	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
634	ifp->if_capenable = ifp->if_capabilities;
635
636	/* Tell the upper layer(s) we support long frames. */
637	ifp->if_hdrlen = sizeof(struct ether_vlan_header);
638
639	/* Create local taskq. */
640	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
641	    taskqueue_thread_enqueue, &sc->age_tq);
642	if (sc->age_tq == NULL) {
643		device_printf(dev, "could not create taskqueue.\n");
644		ether_ifdetach(ifp);
645		error = ENXIO;
646		goto fail;
647	}
648	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
649	    device_get_nameunit(sc->age_dev));
650
651	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
652		msic = AGE_MSIX_MESSAGES;
653	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
654		msic = AGE_MSI_MESSAGES;
655	else
656		msic = 1;
657	for (i = 0; i < msic; i++) {
658		error = bus_setup_intr(dev, sc->age_irq[i],
659		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
660		    &sc->age_intrhand[i]);
661		if (error != 0)
662			break;
663	}
664	if (error != 0) {
665		device_printf(dev, "could not set up interrupt handler.\n");
666		taskqueue_free(sc->age_tq);
667		sc->age_tq = NULL;
668		ether_ifdetach(ifp);
669		goto fail;
670	}
671
672fail:
673	if (error != 0)
674		age_detach(dev);
675
676	return (error);
677}
678
679static int
680age_detach(device_t dev)
681{
682	struct age_softc *sc;
683	struct ifnet *ifp;
684	int i, msic;
685
686	sc = device_get_softc(dev);
687
688	ifp = sc->age_ifp;
689	if (device_is_attached(dev)) {
690		AGE_LOCK(sc);
691		sc->age_flags |= AGE_FLAG_DETACH;
692		age_stop(sc);
693		AGE_UNLOCK(sc);
694		callout_drain(&sc->age_tick_ch);
695		taskqueue_drain(sc->age_tq, &sc->age_int_task);
696		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
697		ether_ifdetach(ifp);
698	}
699
700	if (sc->age_tq != NULL) {
701		taskqueue_drain(sc->age_tq, &sc->age_int_task);
702		taskqueue_free(sc->age_tq);
703		sc->age_tq = NULL;
704	}
705
706	if (sc->age_miibus != NULL) {
707		device_delete_child(dev, sc->age_miibus);
708		sc->age_miibus = NULL;
709	}
710	bus_generic_detach(dev);
711	age_dma_free(sc);
712
713	if (ifp != NULL) {
714		if_free(ifp);
715		sc->age_ifp = NULL;
716	}
717
718	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
719		msic = AGE_MSIX_MESSAGES;
720	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
721		msic = AGE_MSI_MESSAGES;
722	else
723		msic = 1;
724	for (i = 0; i < msic; i++) {
725		if (sc->age_intrhand[i] != NULL) {
726			bus_teardown_intr(dev, sc->age_irq[i],
727			    sc->age_intrhand[i]);
728			sc->age_intrhand[i] = NULL;
729		}
730	}
731
732	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
733	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
734		pci_release_msi(dev);
735	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
736	mtx_destroy(&sc->age_mtx);
737
738	return (0);
739}
740
741static void
742age_sysctl_node(struct age_softc *sc)
743{
744	int error;
745
746	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
747	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
748	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
749	    "I", "Statistics");
750
751	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
752	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
753	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
754	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
755
756	/* Pull in device tunables. */
757	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
758	error = resource_int_value(device_get_name(sc->age_dev),
759	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
760	if (error == 0) {
761		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
762		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
763			device_printf(sc->age_dev,
764			    "int_mod value out of range; using default: %d\n",
765			    AGE_IM_TIMER_DEFAULT);
766			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
767		}
768	}
769
770	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
771	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
772	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
773	    0, sysctl_hw_age_proc_limit, "I",
774	    "max number of Rx events to process");
775
776	/* Pull in device tunables. */
777	sc->age_process_limit = AGE_PROC_DEFAULT;
778	error = resource_int_value(device_get_name(sc->age_dev),
779	    device_get_unit(sc->age_dev), "process_limit",
780	    &sc->age_process_limit);
781	if (error == 0) {
782		if (sc->age_process_limit < AGE_PROC_MIN ||
783		    sc->age_process_limit > AGE_PROC_MAX) {
784			device_printf(sc->age_dev,
785			    "process_limit value out of range; "
786			    "using default: %d\n", AGE_PROC_DEFAULT);
787			sc->age_process_limit = AGE_PROC_DEFAULT;
788		}
789	}
790}
791
792struct age_dmamap_arg {
793	bus_addr_t	age_busaddr;
794};
795
796static void
797age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
798{
799	struct age_dmamap_arg *ctx;
800
801	if (error != 0)
802		return;
803
804	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
805
806	ctx = (struct age_dmamap_arg *)arg;
807	ctx->age_busaddr = segs[0].ds_addr;
808}
809
810/*
811 * Attansic L1 controller have single register to specify high
812 * address part of DMA blocks. So all descriptor structures and
813 * DMA memory blocks should have the same high address of given
814 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
815 */
816static int
817age_check_boundary(struct age_softc *sc)
818{
819	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
820	bus_addr_t cmb_block_end, smb_block_end;
821
822	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
823	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
824	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
825	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
826	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
827	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
828
829	if ((AGE_ADDR_HI(tx_ring_end) !=
830	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
831	    (AGE_ADDR_HI(rx_ring_end) !=
832	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
833	    (AGE_ADDR_HI(rr_ring_end) !=
834	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
835	    (AGE_ADDR_HI(cmb_block_end) !=
836	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
837	    (AGE_ADDR_HI(smb_block_end) !=
838	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
839		return (EFBIG);
840
841	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
842	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
843	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
844	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
845		return (EFBIG);
846
847	return (0);
848}
849
850static int
851age_dma_alloc(struct age_softc *sc)
852{
853	struct age_txdesc *txd;
854	struct age_rxdesc *rxd;
855	bus_addr_t lowaddr;
856	struct age_dmamap_arg ctx;
857	int error, i;
858
859	lowaddr = BUS_SPACE_MAXADDR;
860
861again:
862	/* Create parent ring/DMA block tag. */
863	error = bus_dma_tag_create(
864	    bus_get_dma_tag(sc->age_dev), /* parent */
865	    1, 0,			/* alignment, boundary */
866	    lowaddr,			/* lowaddr */
867	    BUS_SPACE_MAXADDR,		/* highaddr */
868	    NULL, NULL,			/* filter, filterarg */
869	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
870	    0,				/* nsegments */
871	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
872	    0,				/* flags */
873	    NULL, NULL,			/* lockfunc, lockarg */
874	    &sc->age_cdata.age_parent_tag);
875	if (error != 0) {
876		device_printf(sc->age_dev,
877		    "could not create parent DMA tag.\n");
878		goto fail;
879	}
880
881	/* Create tag for Tx ring. */
882	error = bus_dma_tag_create(
883	    sc->age_cdata.age_parent_tag, /* parent */
884	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
885	    BUS_SPACE_MAXADDR,		/* lowaddr */
886	    BUS_SPACE_MAXADDR,		/* highaddr */
887	    NULL, NULL,			/* filter, filterarg */
888	    AGE_TX_RING_SZ,		/* maxsize */
889	    1,				/* nsegments */
890	    AGE_TX_RING_SZ,		/* maxsegsize */
891	    0,				/* flags */
892	    NULL, NULL,			/* lockfunc, lockarg */
893	    &sc->age_cdata.age_tx_ring_tag);
894	if (error != 0) {
895		device_printf(sc->age_dev,
896		    "could not create Tx ring DMA tag.\n");
897		goto fail;
898	}
899
900	/* Create tag for Rx ring. */
901	error = bus_dma_tag_create(
902	    sc->age_cdata.age_parent_tag, /* parent */
903	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
904	    BUS_SPACE_MAXADDR,		/* lowaddr */
905	    BUS_SPACE_MAXADDR,		/* highaddr */
906	    NULL, NULL,			/* filter, filterarg */
907	    AGE_RX_RING_SZ,		/* maxsize */
908	    1,				/* nsegments */
909	    AGE_RX_RING_SZ,		/* maxsegsize */
910	    0,				/* flags */
911	    NULL, NULL,			/* lockfunc, lockarg */
912	    &sc->age_cdata.age_rx_ring_tag);
913	if (error != 0) {
914		device_printf(sc->age_dev,
915		    "could not create Rx ring DMA tag.\n");
916		goto fail;
917	}
918
919	/* Create tag for Rx return ring. */
920	error = bus_dma_tag_create(
921	    sc->age_cdata.age_parent_tag, /* parent */
922	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
923	    BUS_SPACE_MAXADDR,		/* lowaddr */
924	    BUS_SPACE_MAXADDR,		/* highaddr */
925	    NULL, NULL,			/* filter, filterarg */
926	    AGE_RR_RING_SZ,		/* maxsize */
927	    1,				/* nsegments */
928	    AGE_RR_RING_SZ,		/* maxsegsize */
929	    0,				/* flags */
930	    NULL, NULL,			/* lockfunc, lockarg */
931	    &sc->age_cdata.age_rr_ring_tag);
932	if (error != 0) {
933		device_printf(sc->age_dev,
934		    "could not create Rx return ring DMA tag.\n");
935		goto fail;
936	}
937
938	/* Create tag for coalesing message block. */
939	error = bus_dma_tag_create(
940	    sc->age_cdata.age_parent_tag, /* parent */
941	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
942	    BUS_SPACE_MAXADDR,		/* lowaddr */
943	    BUS_SPACE_MAXADDR,		/* highaddr */
944	    NULL, NULL,			/* filter, filterarg */
945	    AGE_CMB_BLOCK_SZ,		/* maxsize */
946	    1,				/* nsegments */
947	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
948	    0,				/* flags */
949	    NULL, NULL,			/* lockfunc, lockarg */
950	    &sc->age_cdata.age_cmb_block_tag);
951	if (error != 0) {
952		device_printf(sc->age_dev,
953		    "could not create CMB DMA tag.\n");
954		goto fail;
955	}
956
957	/* Create tag for statistics message block. */
958	error = bus_dma_tag_create(
959	    sc->age_cdata.age_parent_tag, /* parent */
960	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
961	    BUS_SPACE_MAXADDR,		/* lowaddr */
962	    BUS_SPACE_MAXADDR,		/* highaddr */
963	    NULL, NULL,			/* filter, filterarg */
964	    AGE_SMB_BLOCK_SZ,		/* maxsize */
965	    1,				/* nsegments */
966	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
967	    0,				/* flags */
968	    NULL, NULL,			/* lockfunc, lockarg */
969	    &sc->age_cdata.age_smb_block_tag);
970	if (error != 0) {
971		device_printf(sc->age_dev,
972		    "could not create SMB DMA tag.\n");
973		goto fail;
974	}
975
976	/* Allocate DMA'able memory and load the DMA map. */
977	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
978	    (void **)&sc->age_rdata.age_tx_ring,
979	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
980	    &sc->age_cdata.age_tx_ring_map);
981	if (error != 0) {
982		device_printf(sc->age_dev,
983		    "could not allocate DMA'able memory for Tx ring.\n");
984		goto fail;
985	}
986	ctx.age_busaddr = 0;
987	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
988	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
989	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
990	if (error != 0 || ctx.age_busaddr == 0) {
991		device_printf(sc->age_dev,
992		    "could not load DMA'able memory for Tx ring.\n");
993		goto fail;
994	}
995	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
996	/* Rx ring */
997	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
998	    (void **)&sc->age_rdata.age_rx_ring,
999	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1000	    &sc->age_cdata.age_rx_ring_map);
1001	if (error != 0) {
1002		device_printf(sc->age_dev,
1003		    "could not allocate DMA'able memory for Rx ring.\n");
1004		goto fail;
1005	}
1006	ctx.age_busaddr = 0;
1007	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1008	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1009	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1010	if (error != 0 || ctx.age_busaddr == 0) {
1011		device_printf(sc->age_dev,
1012		    "could not load DMA'able memory for Rx ring.\n");
1013		goto fail;
1014	}
1015	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1016	/* Rx return ring */
1017	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1018	    (void **)&sc->age_rdata.age_rr_ring,
1019	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1020	    &sc->age_cdata.age_rr_ring_map);
1021	if (error != 0) {
1022		device_printf(sc->age_dev,
1023		    "could not allocate DMA'able memory for Rx return ring.\n");
1024		goto fail;
1025	}
1026	ctx.age_busaddr = 0;
1027	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1028	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1029	    AGE_RR_RING_SZ, age_dmamap_cb,
1030	    &ctx, 0);
1031	if (error != 0 || ctx.age_busaddr == 0) {
1032		device_printf(sc->age_dev,
1033		    "could not load DMA'able memory for Rx return ring.\n");
1034		goto fail;
1035	}
1036	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1037	/* CMB block */
1038	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1039	    (void **)&sc->age_rdata.age_cmb_block,
1040	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1041	    &sc->age_cdata.age_cmb_block_map);
1042	if (error != 0) {
1043		device_printf(sc->age_dev,
1044		    "could not allocate DMA'able memory for CMB block.\n");
1045		goto fail;
1046	}
1047	ctx.age_busaddr = 0;
1048	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1049	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1050	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1051	if (error != 0 || ctx.age_busaddr == 0) {
1052		device_printf(sc->age_dev,
1053		    "could not load DMA'able memory for CMB block.\n");
1054		goto fail;
1055	}
1056	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1057	/* SMB block */
1058	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1059	    (void **)&sc->age_rdata.age_smb_block,
1060	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1061	    &sc->age_cdata.age_smb_block_map);
1062	if (error != 0) {
1063		device_printf(sc->age_dev,
1064		    "could not allocate DMA'able memory for SMB block.\n");
1065		goto fail;
1066	}
1067	ctx.age_busaddr = 0;
1068	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1069	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1070	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1071	if (error != 0 || ctx.age_busaddr == 0) {
1072		device_printf(sc->age_dev,
1073		    "could not load DMA'able memory for SMB block.\n");
1074		goto fail;
1075	}
1076	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1077
1078	/*
1079	 * All ring buffer and DMA blocks should have the same
1080	 * high address part of 64bit DMA address space.
1081	 */
1082	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1083	    (error = age_check_boundary(sc)) != 0) {
1084		device_printf(sc->age_dev, "4GB boundary crossed, "
1085		    "switching to 32bit DMA addressing mode.\n");
1086		age_dma_free(sc);
1087		/* Limit DMA address space to 32bit and try again. */
1088		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1089		goto again;
1090	}
1091
1092	/*
1093	 * Create Tx/Rx buffer parent tag.
1094	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1095	 * so it needs separate parent DMA tag.
1096	 * XXX
1097	 * It seems enabling 64bit DMA causes data corruption. Limit
1098	 * DMA address space to 32bit.
1099	 */
1100	error = bus_dma_tag_create(
1101	    bus_get_dma_tag(sc->age_dev), /* parent */
1102	    1, 0,			/* alignment, boundary */
1103	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1104	    BUS_SPACE_MAXADDR,		/* highaddr */
1105	    NULL, NULL,			/* filter, filterarg */
1106	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1107	    0,				/* nsegments */
1108	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1109	    0,				/* flags */
1110	    NULL, NULL,			/* lockfunc, lockarg */
1111	    &sc->age_cdata.age_buffer_tag);
1112	if (error != 0) {
1113		device_printf(sc->age_dev,
1114		    "could not create parent buffer DMA tag.\n");
1115		goto fail;
1116	}
1117
1118	/* Create tag for Tx buffers. */
1119	error = bus_dma_tag_create(
1120	    sc->age_cdata.age_buffer_tag, /* parent */
1121	    1, 0,			/* alignment, boundary */
1122	    BUS_SPACE_MAXADDR,		/* lowaddr */
1123	    BUS_SPACE_MAXADDR,		/* highaddr */
1124	    NULL, NULL,			/* filter, filterarg */
1125	    AGE_TSO_MAXSIZE,		/* maxsize */
1126	    AGE_MAXTXSEGS,		/* nsegments */
1127	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1128	    0,				/* flags */
1129	    NULL, NULL,			/* lockfunc, lockarg */
1130	    &sc->age_cdata.age_tx_tag);
1131	if (error != 0) {
1132		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1133		goto fail;
1134	}
1135
1136	/* Create tag for Rx buffers. */
1137	error = bus_dma_tag_create(
1138	    sc->age_cdata.age_buffer_tag, /* parent */
1139	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1140	    BUS_SPACE_MAXADDR,		/* lowaddr */
1141	    BUS_SPACE_MAXADDR,		/* highaddr */
1142	    NULL, NULL,			/* filter, filterarg */
1143	    MCLBYTES,			/* maxsize */
1144	    1,				/* nsegments */
1145	    MCLBYTES,			/* maxsegsize */
1146	    0,				/* flags */
1147	    NULL, NULL,			/* lockfunc, lockarg */
1148	    &sc->age_cdata.age_rx_tag);
1149	if (error != 0) {
1150		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1151		goto fail;
1152	}
1153
1154	/* Create DMA maps for Tx buffers. */
1155	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1156		txd = &sc->age_cdata.age_txdesc[i];
1157		txd->tx_m = NULL;
1158		txd->tx_dmamap = NULL;
1159		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1160		    &txd->tx_dmamap);
1161		if (error != 0) {
1162			device_printf(sc->age_dev,
1163			    "could not create Tx dmamap.\n");
1164			goto fail;
1165		}
1166	}
1167	/* Create DMA maps for Rx buffers. */
1168	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1170		device_printf(sc->age_dev,
1171		    "could not create spare Rx dmamap.\n");
1172		goto fail;
1173	}
1174	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1175		rxd = &sc->age_cdata.age_rxdesc[i];
1176		rxd->rx_m = NULL;
1177		rxd->rx_dmamap = NULL;
1178		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1179		    &rxd->rx_dmamap);
1180		if (error != 0) {
1181			device_printf(sc->age_dev,
1182			    "could not create Rx dmamap.\n");
1183			goto fail;
1184		}
1185	}
1186
1187fail:
1188	return (error);
1189}
1190
1191static void
1192age_dma_free(struct age_softc *sc)
1193{
1194	struct age_txdesc *txd;
1195	struct age_rxdesc *rxd;
1196	int i;
1197
1198	/* Tx buffers */
1199	if (sc->age_cdata.age_tx_tag != NULL) {
1200		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1201			txd = &sc->age_cdata.age_txdesc[i];
1202			if (txd->tx_dmamap != NULL) {
1203				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1204				    txd->tx_dmamap);
1205				txd->tx_dmamap = NULL;
1206			}
1207		}
1208		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1209		sc->age_cdata.age_tx_tag = NULL;
1210	}
1211	/* Rx buffers */
1212	if (sc->age_cdata.age_rx_tag != NULL) {
1213		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1214			rxd = &sc->age_cdata.age_rxdesc[i];
1215			if (rxd->rx_dmamap != NULL) {
1216				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1217				    rxd->rx_dmamap);
1218				rxd->rx_dmamap = NULL;
1219			}
1220		}
1221		if (sc->age_cdata.age_rx_sparemap != NULL) {
1222			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1223			    sc->age_cdata.age_rx_sparemap);
1224			sc->age_cdata.age_rx_sparemap = NULL;
1225		}
1226		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1227		sc->age_cdata.age_rx_tag = NULL;
1228	}
1229	/* Tx ring. */
1230	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1231		if (sc->age_rdata.age_tx_ring_paddr != 0)
1232			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1233			    sc->age_cdata.age_tx_ring_map);
1234		if (sc->age_rdata.age_tx_ring != NULL)
1235			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1236			    sc->age_rdata.age_tx_ring,
1237			    sc->age_cdata.age_tx_ring_map);
1238		sc->age_rdata.age_tx_ring_paddr = 0;
1239		sc->age_rdata.age_tx_ring = NULL;
1240		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1241		sc->age_cdata.age_tx_ring_tag = NULL;
1242	}
1243	/* Rx ring. */
1244	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1245		if (sc->age_rdata.age_rx_ring_paddr != 0)
1246			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1247			    sc->age_cdata.age_rx_ring_map);
1248		if (sc->age_rdata.age_rx_ring != NULL)
1249			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1250			    sc->age_rdata.age_rx_ring,
1251			    sc->age_cdata.age_rx_ring_map);
1252		sc->age_rdata.age_rx_ring_paddr = 0;
1253		sc->age_rdata.age_rx_ring = NULL;
1254		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1255		sc->age_cdata.age_rx_ring_tag = NULL;
1256	}
1257	/* Rx return ring. */
1258	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1259		if (sc->age_rdata.age_rr_ring_paddr != 0)
1260			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1261			    sc->age_cdata.age_rr_ring_map);
1262		if (sc->age_rdata.age_rr_ring != NULL)
1263			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1264			    sc->age_rdata.age_rr_ring,
1265			    sc->age_cdata.age_rr_ring_map);
1266		sc->age_rdata.age_rr_ring_paddr = 0;
1267		sc->age_rdata.age_rr_ring = NULL;
1268		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1269		sc->age_cdata.age_rr_ring_tag = NULL;
1270	}
1271	/* CMB block */
1272	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1273		if (sc->age_rdata.age_cmb_block_paddr != 0)
1274			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1275			    sc->age_cdata.age_cmb_block_map);
1276		if (sc->age_rdata.age_cmb_block != NULL)
1277			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1278			    sc->age_rdata.age_cmb_block,
1279			    sc->age_cdata.age_cmb_block_map);
1280		sc->age_rdata.age_cmb_block_paddr = 0;
1281		sc->age_rdata.age_cmb_block = NULL;
1282		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1283		sc->age_cdata.age_cmb_block_tag = NULL;
1284	}
1285	/* SMB block */
1286	if (sc->age_cdata.age_smb_block_tag != NULL) {
1287		if (sc->age_rdata.age_smb_block_paddr != 0)
1288			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1289			    sc->age_cdata.age_smb_block_map);
1290		if (sc->age_rdata.age_smb_block != NULL)
1291			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1292			    sc->age_rdata.age_smb_block,
1293			    sc->age_cdata.age_smb_block_map);
1294		sc->age_rdata.age_smb_block_paddr = 0;
1295		sc->age_rdata.age_smb_block = NULL;
1296		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1297		sc->age_cdata.age_smb_block_tag = NULL;
1298	}
1299
1300	if (sc->age_cdata.age_buffer_tag != NULL) {
1301		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1302		sc->age_cdata.age_buffer_tag = NULL;
1303	}
1304	if (sc->age_cdata.age_parent_tag != NULL) {
1305		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1306		sc->age_cdata.age_parent_tag = NULL;
1307	}
1308}
1309
1310/*
1311 *	Make sure the interface is stopped at reboot time.
1312 */
1313static int
1314age_shutdown(device_t dev)
1315{
1316
1317	return (age_suspend(dev));
1318}
1319
1320static void
1321age_setwol(struct age_softc *sc)
1322{
1323	struct ifnet *ifp;
1324	struct mii_data *mii;
1325	uint32_t reg, pmcs;
1326	uint16_t pmstat;
1327	int aneg, i, pmc;
1328
1329	AGE_LOCK_ASSERT(sc);
1330
1331	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1332		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1333		/*
1334		 * No PME capability, PHY power down.
1335		 * XXX
1336		 * Due to an unknown reason powering down PHY resulted
1337		 * in unexpected results such as inaccessbility of
1338		 * hardware of freshly rebooted system. Disable
1339		 * powering down PHY until I got more information for
1340		 * Attansic/Atheros PHY hardwares.
1341		 */
1342#ifdef notyet
1343		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1344		    MII_BMCR, BMCR_PDOWN);
1345#endif
1346		return;
1347	}
1348
1349	ifp = sc->age_ifp;
1350	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1351		/*
1352		 * Note, this driver resets the link speed to 10/100Mbps with
1353		 * auto-negotiation but we don't know whether that operation
1354		 * would succeed or not as it have no control after powering
1355		 * off. If the renegotiation fail WOL may not work. Running
1356		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1357		 * specified in PCI specification and that would result in
1358		 * complete shutdowning power to ethernet controller.
1359		 *
1360		 * TODO
1361		 *  Save current negotiated media speed/duplex/flow-control
1362		 *  to softc and restore the same link again after resuming.
1363		 *  PHY handling such as power down/resetting to 100Mbps
1364		 *  may be better handled in suspend method in phy driver.
1365		 */
1366		mii = device_get_softc(sc->age_miibus);
1367		mii_pollstat(mii);
1368		aneg = 0;
1369		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1370			switch IFM_SUBTYPE(mii->mii_media_active) {
1371			case IFM_10_T:
1372			case IFM_100_TX:
1373				goto got_link;
1374			case IFM_1000_T:
1375				aneg++;
1376			default:
1377				break;
1378			}
1379		}
1380		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1381		    MII_100T2CR, 0);
1382		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1383		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1384		    ANAR_10 | ANAR_CSMA);
1385		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1387		DELAY(1000);
1388		if (aneg != 0) {
1389			/* Poll link state until age(4) get a 10/100 link. */
1390			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1391				mii_pollstat(mii);
1392				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1393					switch (IFM_SUBTYPE(
1394					    mii->mii_media_active)) {
1395					case IFM_10_T:
1396					case IFM_100_TX:
1397						age_mac_config(sc);
1398						goto got_link;
1399					default:
1400						break;
1401					}
1402				}
1403				AGE_UNLOCK(sc);
1404				pause("agelnk", hz);
1405				AGE_LOCK(sc);
1406			}
1407			if (i == MII_ANEGTICKS_GIGE)
1408				device_printf(sc->age_dev,
1409				    "establishing link failed, "
1410				    "WOL may not work!");
1411		}
1412		/*
1413		 * No link, force MAC to have 100Mbps, full-duplex link.
1414		 * This is the last resort and may/may not work.
1415		 */
1416		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1417		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1418		age_mac_config(sc);
1419	}
1420
1421got_link:
1422	pmcs = 0;
1423	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1424		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1425	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1426	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1427	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1428	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1429	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1430		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1431	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1432		reg |= MAC_CFG_RX_ENB;
1433		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1434	}
1435
1436	/* Request PME. */
1437	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1438	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1439	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1440		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1441	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1442#ifdef notyet
1443	/* See above for powering down PHY issues. */
1444	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1445		/* No WOL, PHY power down. */
1446		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1447		    MII_BMCR, BMCR_PDOWN);
1448	}
1449#endif
1450}
1451
1452static int
1453age_suspend(device_t dev)
1454{
1455	struct age_softc *sc;
1456
1457	sc = device_get_softc(dev);
1458
1459	AGE_LOCK(sc);
1460	age_stop(sc);
1461	age_setwol(sc);
1462	AGE_UNLOCK(sc);
1463
1464	return (0);
1465}
1466
1467static int
1468age_resume(device_t dev)
1469{
1470	struct age_softc *sc;
1471	struct ifnet *ifp;
1472
1473	sc = device_get_softc(dev);
1474
1475	AGE_LOCK(sc);
1476	age_phy_reset(sc);
1477	ifp = sc->age_ifp;
1478	if ((ifp->if_flags & IFF_UP) != 0)
1479		age_init_locked(sc);
1480
1481	AGE_UNLOCK(sc);
1482
1483	return (0);
1484}
1485
1486static int
1487age_encap(struct age_softc *sc, struct mbuf **m_head)
1488{
1489	struct age_txdesc *txd, *txd_last;
1490	struct tx_desc *desc;
1491	struct mbuf *m;
1492	struct ip *ip;
1493	struct tcphdr *tcp;
1494	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1495	bus_dmamap_t map;
1496	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1497	int error, i, nsegs, prod, si;
1498
1499	AGE_LOCK_ASSERT(sc);
1500
1501	M_ASSERTPKTHDR((*m_head));
1502
1503	m = *m_head;
1504	ip = NULL;
1505	tcp = NULL;
1506	cflags = vtag = 0;
1507	ip_off = poff = 0;
1508	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1509		/*
1510		 * L1 requires offset of TCP/UDP payload in its Tx
1511		 * descriptor to perform hardware Tx checksum offload.
1512		 * Additionally, TSO requires IP/TCP header size and
1513		 * modification of IP/TCP header in order to make TSO
1514		 * engine work. This kind of operation takes many CPU
1515		 * cycles on FreeBSD so fast host CPU is needed to get
1516		 * smooth TSO performance.
1517		 */
1518		struct ether_header *eh;
1519
1520		if (M_WRITABLE(m) == 0) {
1521			/* Get a writable copy. */
1522			m = m_dup(*m_head, M_NOWAIT);
1523			/* Release original mbufs. */
1524			m_freem(*m_head);
1525			if (m == NULL) {
1526				*m_head = NULL;
1527				return (ENOBUFS);
1528			}
1529			*m_head = m;
1530		}
1531		ip_off = sizeof(struct ether_header);
1532		m = m_pullup(m, ip_off);
1533		if (m == NULL) {
1534			*m_head = NULL;
1535			return (ENOBUFS);
1536		}
1537		eh = mtod(m, struct ether_header *);
1538		/*
1539		 * Check if hardware VLAN insertion is off.
1540		 * Additional check for LLC/SNAP frame?
1541		 */
1542		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1543			ip_off = sizeof(struct ether_vlan_header);
1544			m = m_pullup(m, ip_off);
1545			if (m == NULL) {
1546				*m_head = NULL;
1547				return (ENOBUFS);
1548			}
1549		}
1550		m = m_pullup(m, ip_off + sizeof(struct ip));
1551		if (m == NULL) {
1552			*m_head = NULL;
1553			return (ENOBUFS);
1554		}
1555		ip = (struct ip *)(mtod(m, char *) + ip_off);
1556		poff = ip_off + (ip->ip_hl << 2);
1557		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1558			m = m_pullup(m, poff + sizeof(struct tcphdr));
1559			if (m == NULL) {
1560				*m_head = NULL;
1561				return (ENOBUFS);
1562			}
1563			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1564			m = m_pullup(m, poff + (tcp->th_off << 2));
1565			if (m == NULL) {
1566				*m_head = NULL;
1567				return (ENOBUFS);
1568			}
1569			/*
1570			 * L1 requires IP/TCP header size and offset as
1571			 * well as TCP pseudo checksum which complicates
1572			 * TSO configuration. I guess this comes from the
1573			 * adherence to Microsoft NDIS Large Send
1574			 * specification which requires insertion of
1575			 * pseudo checksum by upper stack. The pseudo
1576			 * checksum that NDIS refers to doesn't include
1577			 * TCP payload length so age(4) should recompute
1578			 * the pseudo checksum here. Hopefully this wouldn't
1579			 * be much burden on modern CPUs.
1580			 * Reset IP checksum and recompute TCP pseudo
1581			 * checksum as NDIS specification said.
1582			 */
1583			ip = (struct ip *)(mtod(m, char *) + ip_off);
1584			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1585			ip->ip_sum = 0;
1586			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1587			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1588		}
1589		*m_head = m;
1590	}
1591
1592	si = prod = sc->age_cdata.age_tx_prod;
1593	txd = &sc->age_cdata.age_txdesc[prod];
1594	txd_last = txd;
1595	map = txd->tx_dmamap;
1596
1597	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1598	    *m_head, txsegs, &nsegs, 0);
1599	if (error == EFBIG) {
1600		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1601		if (m == NULL) {
1602			m_freem(*m_head);
1603			*m_head = NULL;
1604			return (ENOMEM);
1605		}
1606		*m_head = m;
1607		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1608		    *m_head, txsegs, &nsegs, 0);
1609		if (error != 0) {
1610			m_freem(*m_head);
1611			*m_head = NULL;
1612			return (error);
1613		}
1614	} else if (error != 0)
1615		return (error);
1616	if (nsegs == 0) {
1617		m_freem(*m_head);
1618		*m_head = NULL;
1619		return (EIO);
1620	}
1621
1622	/* Check descriptor overrun. */
1623	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1624		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1625		return (ENOBUFS);
1626	}
1627
1628	m = *m_head;
1629	/* Configure VLAN hardware tag insertion. */
1630	if ((m->m_flags & M_VLANTAG) != 0) {
1631		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1632		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1633		cflags |= AGE_TD_INSERT_VLAN_TAG;
1634	}
1635
1636	desc = NULL;
1637	i = 0;
1638	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1639		/* Request TSO and set MSS. */
1640		cflags |= AGE_TD_TSO_IPV4;
1641		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1642		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1643		    AGE_TD_TSO_MSS_SHIFT);
1644		/* Set IP/TCP header size. */
1645		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1646		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1647		/*
1648		 * L1 requires the first buffer should only hold IP/TCP
1649		 * header data. TCP payload should be handled in other
1650		 * descriptors.
1651		 */
1652		hdrlen = poff + (tcp->th_off << 2);
1653		desc = &sc->age_rdata.age_tx_ring[prod];
1654		desc->addr = htole64(txsegs[0].ds_addr);
1655		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1656		desc->flags = htole32(cflags);
1657		sc->age_cdata.age_tx_cnt++;
1658		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1659		if (m->m_len - hdrlen > 0) {
1660			/* Handle remaining payload of the 1st fragment. */
1661			desc = &sc->age_rdata.age_tx_ring[prod];
1662			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1663			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1664			    vtag);
1665			desc->flags = htole32(cflags);
1666			sc->age_cdata.age_tx_cnt++;
1667			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1668		}
1669		/* Handle remaining fragments. */
1670		i = 1;
1671	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1672		/* Configure Tx IP/TCP/UDP checksum offload. */
1673		cflags |= AGE_TD_CSUM;
1674		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1675			cflags |= AGE_TD_TCPCSUM;
1676		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1677			cflags |= AGE_TD_UDPCSUM;
1678		/* Set checksum start offset. */
1679		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1680		/* Set checksum insertion position of TCP/UDP. */
1681		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1682		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1683	}
1684	for (; i < nsegs; i++) {
1685		desc = &sc->age_rdata.age_tx_ring[prod];
1686		desc->addr = htole64(txsegs[i].ds_addr);
1687		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1688		desc->flags = htole32(cflags);
1689		sc->age_cdata.age_tx_cnt++;
1690		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1691	}
1692	/* Update producer index. */
1693	sc->age_cdata.age_tx_prod = prod;
1694
1695	/* Set EOP on the last descriptor. */
1696	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1697	desc = &sc->age_rdata.age_tx_ring[prod];
1698	desc->flags |= htole32(AGE_TD_EOP);
1699
1700	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1701	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1702		desc = &sc->age_rdata.age_tx_ring[si];
1703		desc->flags |= htole32(AGE_TD_TSO_HDR);
1704	}
1705
1706	/* Swap dmamap of the first and the last. */
1707	txd = &sc->age_cdata.age_txdesc[prod];
1708	map = txd_last->tx_dmamap;
1709	txd_last->tx_dmamap = txd->tx_dmamap;
1710	txd->tx_dmamap = map;
1711	txd->tx_m = m;
1712
1713	/* Sync descriptors. */
1714	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1715	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1716	    sc->age_cdata.age_tx_ring_map,
1717	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1718
1719	return (0);
1720}
1721
1722static void
1723age_start(struct ifnet *ifp)
1724{
1725        struct age_softc *sc;
1726
1727	sc = ifp->if_softc;
1728	AGE_LOCK(sc);
1729	age_start_locked(ifp);
1730	AGE_UNLOCK(sc);
1731}
1732
1733static void
1734age_start_locked(struct ifnet *ifp)
1735{
1736        struct age_softc *sc;
1737        struct mbuf *m_head;
1738	int enq;
1739
1740	sc = ifp->if_softc;
1741
1742	AGE_LOCK_ASSERT(sc);
1743
1744	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1745	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1746		return;
1747
1748	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1749		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1750		if (m_head == NULL)
1751			break;
1752		/*
1753		 * Pack the data into the transmit ring. If we
1754		 * don't have room, set the OACTIVE flag and wait
1755		 * for the NIC to drain the ring.
1756		 */
1757		if (age_encap(sc, &m_head)) {
1758			if (m_head == NULL)
1759				break;
1760			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1761			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1762			break;
1763		}
1764
1765		enq++;
1766		/*
1767		 * If there's a BPF listener, bounce a copy of this frame
1768		 * to him.
1769		 */
1770		ETHER_BPF_MTAP(ifp, m_head);
1771	}
1772
1773	if (enq > 0) {
1774		/* Update mbox. */
1775		AGE_COMMIT_MBOX(sc);
1776		/* Set a timeout in case the chip goes out to lunch. */
1777		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1778	}
1779}
1780
1781static void
1782age_watchdog(struct age_softc *sc)
1783{
1784	struct ifnet *ifp;
1785
1786	AGE_LOCK_ASSERT(sc);
1787
1788	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1789		return;
1790
1791	ifp = sc->age_ifp;
1792	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1793		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1794		if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1795		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1796		age_init_locked(sc);
1797		return;
1798	}
1799	if (sc->age_cdata.age_tx_cnt == 0) {
1800		if_printf(sc->age_ifp,
1801		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1802		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1803			age_start_locked(ifp);
1804		return;
1805	}
1806	if_printf(sc->age_ifp, "watchdog timeout\n");
1807	if_inc_counter(ifp, IFCOUNTER_OERRORS, 1);
1808	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1809	age_init_locked(sc);
1810	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1811		age_start_locked(ifp);
1812}
1813
1814static int
1815age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1816{
1817	struct age_softc *sc;
1818	struct ifreq *ifr;
1819	struct mii_data *mii;
1820	uint32_t reg;
1821	int error, mask;
1822
1823	sc = ifp->if_softc;
1824	ifr = (struct ifreq *)data;
1825	error = 0;
1826	switch (cmd) {
1827	case SIOCSIFMTU:
1828		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1829			error = EINVAL;
1830		else if (ifp->if_mtu != ifr->ifr_mtu) {
1831			AGE_LOCK(sc);
1832			ifp->if_mtu = ifr->ifr_mtu;
1833			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1834				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1835				age_init_locked(sc);
1836			}
1837			AGE_UNLOCK(sc);
1838		}
1839		break;
1840	case SIOCSIFFLAGS:
1841		AGE_LOCK(sc);
1842		if ((ifp->if_flags & IFF_UP) != 0) {
1843			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1844				if (((ifp->if_flags ^ sc->age_if_flags)
1845				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1846					age_rxfilter(sc);
1847			} else {
1848				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1849					age_init_locked(sc);
1850			}
1851		} else {
1852			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1853				age_stop(sc);
1854		}
1855		sc->age_if_flags = ifp->if_flags;
1856		AGE_UNLOCK(sc);
1857		break;
1858	case SIOCADDMULTI:
1859	case SIOCDELMULTI:
1860		AGE_LOCK(sc);
1861		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1862			age_rxfilter(sc);
1863		AGE_UNLOCK(sc);
1864		break;
1865	case SIOCSIFMEDIA:
1866	case SIOCGIFMEDIA:
1867		mii = device_get_softc(sc->age_miibus);
1868		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1869		break;
1870	case SIOCSIFCAP:
1871		AGE_LOCK(sc);
1872		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1873		if ((mask & IFCAP_TXCSUM) != 0 &&
1874		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1875			ifp->if_capenable ^= IFCAP_TXCSUM;
1876			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1877				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1878			else
1879				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1880		}
1881		if ((mask & IFCAP_RXCSUM) != 0 &&
1882		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1883			ifp->if_capenable ^= IFCAP_RXCSUM;
1884			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1885			reg &= ~MAC_CFG_RXCSUM_ENB;
1886			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1887				reg |= MAC_CFG_RXCSUM_ENB;
1888			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1889		}
1890		if ((mask & IFCAP_TSO4) != 0 &&
1891		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1892			ifp->if_capenable ^= IFCAP_TSO4;
1893			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1894				ifp->if_hwassist |= CSUM_TSO;
1895			else
1896				ifp->if_hwassist &= ~CSUM_TSO;
1897		}
1898
1899		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1900		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1901			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1902		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1903		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1904			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1905		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1906		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1907			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1908		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1909		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1910			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1911		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1912		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1913			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1914			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1915				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1916			age_rxvlan(sc);
1917		}
1918		AGE_UNLOCK(sc);
1919		VLAN_CAPABILITIES(ifp);
1920		break;
1921	default:
1922		error = ether_ioctl(ifp, cmd, data);
1923		break;
1924	}
1925
1926	return (error);
1927}
1928
1929static void
1930age_mac_config(struct age_softc *sc)
1931{
1932	struct mii_data *mii;
1933	uint32_t reg;
1934
1935	AGE_LOCK_ASSERT(sc);
1936
1937	mii = device_get_softc(sc->age_miibus);
1938	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1939	reg &= ~MAC_CFG_FULL_DUPLEX;
1940	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1941	reg &= ~MAC_CFG_SPEED_MASK;
1942	/* Reprogram MAC with resolved speed/duplex. */
1943	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1944	case IFM_10_T:
1945	case IFM_100_TX:
1946		reg |= MAC_CFG_SPEED_10_100;
1947		break;
1948	case IFM_1000_T:
1949		reg |= MAC_CFG_SPEED_1000;
1950		break;
1951	}
1952	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1953		reg |= MAC_CFG_FULL_DUPLEX;
1954#ifdef notyet
1955		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1956			reg |= MAC_CFG_TX_FC;
1957		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1958			reg |= MAC_CFG_RX_FC;
1959#endif
1960	}
1961
1962	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1963}
1964
1965static void
1966age_link_task(void *arg, int pending)
1967{
1968	struct age_softc *sc;
1969	struct mii_data *mii;
1970	struct ifnet *ifp;
1971	uint32_t reg;
1972
1973	sc = (struct age_softc *)arg;
1974
1975	AGE_LOCK(sc);
1976	mii = device_get_softc(sc->age_miibus);
1977	ifp = sc->age_ifp;
1978	if (mii == NULL || ifp == NULL ||
1979	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1980		AGE_UNLOCK(sc);
1981		return;
1982	}
1983
1984	sc->age_flags &= ~AGE_FLAG_LINK;
1985	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1986		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1987		case IFM_10_T:
1988		case IFM_100_TX:
1989		case IFM_1000_T:
1990			sc->age_flags |= AGE_FLAG_LINK;
1991			break;
1992		default:
1993			break;
1994		}
1995	}
1996
1997	/* Stop Rx/Tx MACs. */
1998	age_stop_rxmac(sc);
1999	age_stop_txmac(sc);
2000
2001	/* Program MACs with resolved speed/duplex/flow-control. */
2002	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2003		age_mac_config(sc);
2004		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2005		/* Restart DMA engine and Tx/Rx MAC. */
2006		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2007		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2008		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2009		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2010	}
2011
2012	AGE_UNLOCK(sc);
2013}
2014
2015static void
2016age_stats_update(struct age_softc *sc)
2017{
2018	struct age_stats *stat;
2019	struct smb *smb;
2020	struct ifnet *ifp;
2021
2022	AGE_LOCK_ASSERT(sc);
2023
2024	stat = &sc->age_stat;
2025
2026	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2027	    sc->age_cdata.age_smb_block_map,
2028	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2029
2030	smb = sc->age_rdata.age_smb_block;
2031	if (smb->updated == 0)
2032		return;
2033
2034	ifp = sc->age_ifp;
2035	/* Rx stats. */
2036	stat->rx_frames += smb->rx_frames;
2037	stat->rx_bcast_frames += smb->rx_bcast_frames;
2038	stat->rx_mcast_frames += smb->rx_mcast_frames;
2039	stat->rx_pause_frames += smb->rx_pause_frames;
2040	stat->rx_control_frames += smb->rx_control_frames;
2041	stat->rx_crcerrs += smb->rx_crcerrs;
2042	stat->rx_lenerrs += smb->rx_lenerrs;
2043	stat->rx_bytes += smb->rx_bytes;
2044	stat->rx_runts += smb->rx_runts;
2045	stat->rx_fragments += smb->rx_fragments;
2046	stat->rx_pkts_64 += smb->rx_pkts_64;
2047	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2048	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2049	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2050	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2051	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2052	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2053	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2054	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2055	stat->rx_desc_oflows += smb->rx_desc_oflows;
2056	stat->rx_alignerrs += smb->rx_alignerrs;
2057	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2058	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2059	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2060
2061	/* Tx stats. */
2062	stat->tx_frames += smb->tx_frames;
2063	stat->tx_bcast_frames += smb->tx_bcast_frames;
2064	stat->tx_mcast_frames += smb->tx_mcast_frames;
2065	stat->tx_pause_frames += smb->tx_pause_frames;
2066	stat->tx_excess_defer += smb->tx_excess_defer;
2067	stat->tx_control_frames += smb->tx_control_frames;
2068	stat->tx_deferred += smb->tx_deferred;
2069	stat->tx_bytes += smb->tx_bytes;
2070	stat->tx_pkts_64 += smb->tx_pkts_64;
2071	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2072	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2073	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2074	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2075	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2076	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2077	stat->tx_single_colls += smb->tx_single_colls;
2078	stat->tx_multi_colls += smb->tx_multi_colls;
2079	stat->tx_late_colls += smb->tx_late_colls;
2080	stat->tx_excess_colls += smb->tx_excess_colls;
2081	stat->tx_underrun += smb->tx_underrun;
2082	stat->tx_desc_underrun += smb->tx_desc_underrun;
2083	stat->tx_lenerrs += smb->tx_lenerrs;
2084	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2085	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2086	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2087
2088	/* Update counters in ifnet. */
2089	if_inc_counter(ifp, IFCOUNTER_OPACKETS, smb->tx_frames);
2090
2091	if_inc_counter(ifp, IFCOUNTER_COLLISIONS, smb->tx_single_colls +
2092	    smb->tx_multi_colls + smb->tx_late_colls +
2093	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT);
2094
2095	if_inc_counter(ifp, IFCOUNTER_OERRORS, smb->tx_excess_colls +
2096	    smb->tx_late_colls + smb->tx_underrun +
2097	    smb->tx_pkts_truncated);
2098
2099	if_inc_counter(ifp, IFCOUNTER_IPACKETS, smb->rx_frames);
2100
2101	if_inc_counter(ifp, IFCOUNTER_IERRORS, smb->rx_crcerrs +
2102	    smb->rx_lenerrs + smb->rx_runts + smb->rx_pkts_truncated +
2103	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2104	    smb->rx_alignerrs);
2105
2106	/* Update done, clear. */
2107	smb->updated = 0;
2108
2109	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2110	    sc->age_cdata.age_smb_block_map,
2111	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2112}
2113
2114static int
2115age_intr(void *arg)
2116{
2117	struct age_softc *sc;
2118	uint32_t status;
2119
2120	sc = (struct age_softc *)arg;
2121
2122	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2123	if (status == 0 || (status & AGE_INTRS) == 0)
2124		return (FILTER_STRAY);
2125	/* Disable interrupts. */
2126	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2127	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2128
2129	return (FILTER_HANDLED);
2130}
2131
2132static void
2133age_int_task(void *arg, int pending)
2134{
2135	struct age_softc *sc;
2136	struct ifnet *ifp;
2137	struct cmb *cmb;
2138	uint32_t status;
2139
2140	sc = (struct age_softc *)arg;
2141
2142	AGE_LOCK(sc);
2143
2144	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2145	    sc->age_cdata.age_cmb_block_map,
2146	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2147	cmb = sc->age_rdata.age_cmb_block;
2148	status = le32toh(cmb->intr_status);
2149	if (sc->age_morework != 0)
2150		status |= INTR_CMB_RX;
2151	if ((status & AGE_INTRS) == 0)
2152		goto done;
2153
2154	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2155	    TPD_CONS_SHIFT;
2156	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2157	    RRD_PROD_SHIFT;
2158	/* Let hardware know CMB was served. */
2159	cmb->intr_status = 0;
2160	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2161	    sc->age_cdata.age_cmb_block_map,
2162	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2163
2164#if 0
2165	printf("INTR: 0x%08x\n", status);
2166	status &= ~INTR_DIS_DMA;
2167	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2168#endif
2169	ifp = sc->age_ifp;
2170	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2171		if ((status & INTR_CMB_RX) != 0)
2172			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2173			    sc->age_process_limit);
2174		if ((status & INTR_CMB_TX) != 0)
2175			age_txintr(sc, sc->age_tpd_cons);
2176		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2177			if ((status & INTR_DMA_RD_TO_RST) != 0)
2178				device_printf(sc->age_dev,
2179				    "DMA read error! -- resetting\n");
2180			if ((status & INTR_DMA_WR_TO_RST) != 0)
2181				device_printf(sc->age_dev,
2182				    "DMA write error! -- resetting\n");
2183			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2184			age_init_locked(sc);
2185		}
2186		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2187			age_start_locked(ifp);
2188		if ((status & INTR_SMB) != 0)
2189			age_stats_update(sc);
2190	}
2191
2192	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2193	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2194	    sc->age_cdata.age_cmb_block_map,
2195	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2196	status = le32toh(cmb->intr_status);
2197	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2198		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2199		AGE_UNLOCK(sc);
2200		return;
2201	}
2202
2203done:
2204	/* Re-enable interrupts. */
2205	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2206	AGE_UNLOCK(sc);
2207}
2208
2209static void
2210age_txintr(struct age_softc *sc, int tpd_cons)
2211{
2212	struct ifnet *ifp;
2213	struct age_txdesc *txd;
2214	int cons, prog;
2215
2216	AGE_LOCK_ASSERT(sc);
2217
2218	ifp = sc->age_ifp;
2219
2220	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2221	    sc->age_cdata.age_tx_ring_map,
2222	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2223
2224	/*
2225	 * Go through our Tx list and free mbufs for those
2226	 * frames which have been transmitted.
2227	 */
2228	cons = sc->age_cdata.age_tx_cons;
2229	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2230		if (sc->age_cdata.age_tx_cnt <= 0)
2231			break;
2232		prog++;
2233		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2234		sc->age_cdata.age_tx_cnt--;
2235		txd = &sc->age_cdata.age_txdesc[cons];
2236		/*
2237		 * Clear Tx descriptors, it's not required but would
2238		 * help debugging in case of Tx issues.
2239		 */
2240		txd->tx_desc->addr = 0;
2241		txd->tx_desc->len = 0;
2242		txd->tx_desc->flags = 0;
2243
2244		if (txd->tx_m == NULL)
2245			continue;
2246		/* Reclaim transmitted mbufs. */
2247		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2248		    BUS_DMASYNC_POSTWRITE);
2249		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2250		m_freem(txd->tx_m);
2251		txd->tx_m = NULL;
2252	}
2253
2254	if (prog > 0) {
2255		sc->age_cdata.age_tx_cons = cons;
2256
2257		/*
2258		 * Unarm watchdog timer only when there are no pending
2259		 * Tx descriptors in queue.
2260		 */
2261		if (sc->age_cdata.age_tx_cnt == 0)
2262			sc->age_watchdog_timer = 0;
2263		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2264		    sc->age_cdata.age_tx_ring_map,
2265		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2266	}
2267}
2268
2269#ifndef __NO_STRICT_ALIGNMENT
2270static struct mbuf *
2271age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2272{
2273	struct mbuf *n;
2274        int i;
2275        uint16_t *src, *dst;
2276
2277	src = mtod(m, uint16_t *);
2278	dst = src - 3;
2279
2280	if (m->m_next == NULL) {
2281		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2282			*dst++ = *src++;
2283		m->m_data -= 6;
2284		return (m);
2285	}
2286	/*
2287	 * Append a new mbuf to received mbuf chain and copy ethernet
2288	 * header from the mbuf chain. This can save lots of CPU
2289	 * cycles for jumbo frame.
2290	 */
2291	MGETHDR(n, M_NOWAIT, MT_DATA);
2292	if (n == NULL) {
2293		if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2294		m_freem(m);
2295		return (NULL);
2296	}
2297	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2298	m->m_data += ETHER_HDR_LEN;
2299	m->m_len -= ETHER_HDR_LEN;
2300	n->m_len = ETHER_HDR_LEN;
2301	M_MOVE_PKTHDR(n, m);
2302	n->m_next = m;
2303	return (n);
2304}
2305#endif
2306
2307/* Receive a frame. */
2308static void
2309age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2310{
2311	struct age_rxdesc *rxd;
2312	struct ifnet *ifp;
2313	struct mbuf *mp, *m;
2314	uint32_t status, index, vtag;
2315	int count, nsegs;
2316	int rx_cons;
2317
2318	AGE_LOCK_ASSERT(sc);
2319
2320	ifp = sc->age_ifp;
2321	status = le32toh(rxrd->flags);
2322	index = le32toh(rxrd->index);
2323	rx_cons = AGE_RX_CONS(index);
2324	nsegs = AGE_RX_NSEGS(index);
2325
2326	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2327	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2328		/*
2329		 * We want to pass the following frames to upper
2330		 * layer regardless of error status of Rx return
2331		 * ring.
2332		 *
2333		 *  o IP/TCP/UDP checksum is bad.
2334		 *  o frame length and protocol specific length
2335		 *     does not match.
2336		 */
2337		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2338		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2339		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2340			return;
2341	}
2342
2343	for (count = 0; count < nsegs; count++,
2344	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2345		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2346		mp = rxd->rx_m;
2347		/* Add a new receive buffer to the ring. */
2348		if (age_newbuf(sc, rxd) != 0) {
2349			if_inc_counter(ifp, IFCOUNTER_IQDROPS, 1);
2350			/* Reuse Rx buffers. */
2351			if (sc->age_cdata.age_rxhead != NULL)
2352				m_freem(sc->age_cdata.age_rxhead);
2353			break;
2354		}
2355
2356		/*
2357		 * Assume we've received a full sized frame.
2358		 * Actual size is fixed when we encounter the end of
2359		 * multi-segmented frame.
2360		 */
2361		mp->m_len = AGE_RX_BUF_SIZE;
2362
2363		/* Chain received mbufs. */
2364		if (sc->age_cdata.age_rxhead == NULL) {
2365			sc->age_cdata.age_rxhead = mp;
2366			sc->age_cdata.age_rxtail = mp;
2367		} else {
2368			mp->m_flags &= ~M_PKTHDR;
2369			sc->age_cdata.age_rxprev_tail =
2370			    sc->age_cdata.age_rxtail;
2371			sc->age_cdata.age_rxtail->m_next = mp;
2372			sc->age_cdata.age_rxtail = mp;
2373		}
2374
2375		if (count == nsegs - 1) {
2376			/* Last desc. for this frame. */
2377			m = sc->age_cdata.age_rxhead;
2378			m->m_flags |= M_PKTHDR;
2379			/*
2380			 * It seems that L1 controller has no way
2381			 * to tell hardware to strip CRC bytes.
2382			 */
2383			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2384			    ETHER_CRC_LEN;
2385			if (nsegs > 1) {
2386				/* Set last mbuf size. */
2387				mp->m_len = sc->age_cdata.age_rxlen -
2388				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2389				/* Remove the CRC bytes in chained mbufs. */
2390				if (mp->m_len <= ETHER_CRC_LEN) {
2391					sc->age_cdata.age_rxtail =
2392					    sc->age_cdata.age_rxprev_tail;
2393					sc->age_cdata.age_rxtail->m_len -=
2394					    (ETHER_CRC_LEN - mp->m_len);
2395					sc->age_cdata.age_rxtail->m_next = NULL;
2396					m_freem(mp);
2397				} else {
2398					mp->m_len -= ETHER_CRC_LEN;
2399				}
2400			} else
2401				m->m_len = m->m_pkthdr.len;
2402			m->m_pkthdr.rcvif = ifp;
2403			/*
2404			 * Set checksum information.
2405			 * It seems that L1 controller can compute partial
2406			 * checksum. The partial checksum value can be used
2407			 * to accelerate checksum computation for fragmented
2408			 * TCP/UDP packets. Upper network stack already
2409			 * takes advantage of the partial checksum value in
2410			 * IP reassembly stage. But I'm not sure the
2411			 * correctness of the partial hardware checksum
2412			 * assistance due to lack of data sheet. If it is
2413			 * proven to work on L1 I'll enable it.
2414			 */
2415			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2416			    (status & AGE_RRD_IPV4) != 0) {
2417				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2418					m->m_pkthdr.csum_flags |=
2419					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2420				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2421				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2422					m->m_pkthdr.csum_flags |=
2423					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2424					m->m_pkthdr.csum_data = 0xffff;
2425				}
2426				/*
2427				 * Don't mark bad checksum for TCP/UDP frames
2428				 * as fragmented frames may always have set
2429				 * bad checksummed bit of descriptor status.
2430				 */
2431			}
2432
2433			/* Check for VLAN tagged frames. */
2434			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2435			    (status & AGE_RRD_VLAN) != 0) {
2436				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2437				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2438				m->m_flags |= M_VLANTAG;
2439			}
2440#ifndef __NO_STRICT_ALIGNMENT
2441			m = age_fixup_rx(ifp, m);
2442			if (m != NULL)
2443#endif
2444			{
2445			/* Pass it on. */
2446			AGE_UNLOCK(sc);
2447			(*ifp->if_input)(ifp, m);
2448			AGE_LOCK(sc);
2449			}
2450		}
2451	}
2452
2453	/* Reset mbuf chains. */
2454	AGE_RXCHAIN_RESET(sc);
2455}
2456
2457static int
2458age_rxintr(struct age_softc *sc, int rr_prod, int count)
2459{
2460	struct rx_rdesc *rxrd;
2461	int rr_cons, nsegs, pktlen, prog;
2462
2463	AGE_LOCK_ASSERT(sc);
2464
2465	rr_cons = sc->age_cdata.age_rr_cons;
2466	if (rr_cons == rr_prod)
2467		return (0);
2468
2469	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2470	    sc->age_cdata.age_rr_ring_map,
2471	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2472	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2473	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2474
2475	for (prog = 0; rr_cons != rr_prod; prog++) {
2476		if (count-- <= 0)
2477			break;
2478		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2479		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2480		if (nsegs == 0)
2481			break;
2482		/*
2483		 * Check number of segments against received bytes.
2484		 * Non-matching value would indicate that hardware
2485		 * is still trying to update Rx return descriptors.
2486		 * I'm not sure whether this check is really needed.
2487		 */
2488		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2489		if (nsegs != howmany(pktlen, AGE_RX_BUF_SIZE))
2490			break;
2491
2492		/* Received a frame. */
2493		age_rxeof(sc, rxrd);
2494		/* Clear return ring. */
2495		rxrd->index = 0;
2496		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2497		sc->age_cdata.age_rx_cons += nsegs;
2498		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2499	}
2500
2501	if (prog > 0) {
2502		/* Update the consumer index. */
2503		sc->age_cdata.age_rr_cons = rr_cons;
2504
2505		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2506		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2507		/* Sync descriptors. */
2508		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2509		    sc->age_cdata.age_rr_ring_map,
2510		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2511
2512		/* Notify hardware availability of new Rx buffers. */
2513		AGE_COMMIT_MBOX(sc);
2514	}
2515
2516	return (count > 0 ? 0 : EAGAIN);
2517}
2518
2519static void
2520age_tick(void *arg)
2521{
2522	struct age_softc *sc;
2523	struct mii_data *mii;
2524
2525	sc = (struct age_softc *)arg;
2526
2527	AGE_LOCK_ASSERT(sc);
2528
2529	mii = device_get_softc(sc->age_miibus);
2530	mii_tick(mii);
2531	age_watchdog(sc);
2532	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2533}
2534
2535static void
2536age_reset(struct age_softc *sc)
2537{
2538	uint32_t reg;
2539	int i;
2540
2541	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2542	CSR_READ_4(sc, AGE_MASTER_CFG);
2543	DELAY(1000);
2544	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2545		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2546			break;
2547		DELAY(10);
2548	}
2549
2550	if (i == 0)
2551		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2552	/* Initialize PCIe module. From Linux. */
2553	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2554	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2555}
2556
2557static void
2558age_init(void *xsc)
2559{
2560	struct age_softc *sc;
2561
2562	sc = (struct age_softc *)xsc;
2563	AGE_LOCK(sc);
2564	age_init_locked(sc);
2565	AGE_UNLOCK(sc);
2566}
2567
2568static void
2569age_init_locked(struct age_softc *sc)
2570{
2571	struct ifnet *ifp;
2572	struct mii_data *mii;
2573	uint8_t eaddr[ETHER_ADDR_LEN];
2574	bus_addr_t paddr;
2575	uint32_t reg, fsize;
2576	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2577	int error;
2578
2579	AGE_LOCK_ASSERT(sc);
2580
2581	ifp = sc->age_ifp;
2582	mii = device_get_softc(sc->age_miibus);
2583
2584	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2585		return;
2586
2587	/*
2588	 * Cancel any pending I/O.
2589	 */
2590	age_stop(sc);
2591
2592	/*
2593	 * Reset the chip to a known state.
2594	 */
2595	age_reset(sc);
2596
2597	/* Initialize descriptors. */
2598	error = age_init_rx_ring(sc);
2599        if (error != 0) {
2600                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2601                age_stop(sc);
2602		return;
2603        }
2604	age_init_rr_ring(sc);
2605	age_init_tx_ring(sc);
2606	age_init_cmb_block(sc);
2607	age_init_smb_block(sc);
2608
2609	/* Reprogram the station address. */
2610	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2611	CSR_WRITE_4(sc, AGE_PAR0,
2612	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2613	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2614
2615	/* Set descriptor base addresses. */
2616	paddr = sc->age_rdata.age_tx_ring_paddr;
2617	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2618	paddr = sc->age_rdata.age_rx_ring_paddr;
2619	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2620	paddr = sc->age_rdata.age_rr_ring_paddr;
2621	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2622	paddr = sc->age_rdata.age_tx_ring_paddr;
2623	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2624	paddr = sc->age_rdata.age_cmb_block_paddr;
2625	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2626	paddr = sc->age_rdata.age_smb_block_paddr;
2627	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2628	/* Set Rx/Rx return descriptor counter. */
2629	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2630	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2631	    DESC_RRD_CNT_MASK) |
2632	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2633	/* Set Tx descriptor counter. */
2634	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2635	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2636
2637	/* Tell hardware that we're ready to load descriptors. */
2638	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2639
2640	/*
2641	 * Initialize mailbox register.
2642	 * Updated producer/consumer index information is exchanged
2643	 * through this mailbox register. However Tx producer and
2644	 * Rx return consumer/Rx producer are all shared such that
2645	 * it's hard to separate code path between Tx and Rx without
2646	 * locking. If L1 hardware have a separate mail box register
2647	 * for Tx and Rx consumer/producer management we could have
2648	 * indepent Tx/Rx handler which in turn Rx handler could have
2649	 * been run without any locking.
2650	 */
2651	AGE_COMMIT_MBOX(sc);
2652
2653	/* Configure IPG/IFG parameters. */
2654	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2655	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2656	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2657	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2658	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2659
2660	/* Set parameters for half-duplex media. */
2661	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2662	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2663	    HDPX_CFG_LCOL_MASK) |
2664	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2665	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2666	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2667	    HDPX_CFG_ABEBT_MASK) |
2668	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2669	    HDPX_CFG_JAMIPG_MASK));
2670
2671	/* Configure interrupt moderation timer. */
2672	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2673	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2674	reg &= ~MASTER_MTIMER_ENB;
2675	if (AGE_USECS(sc->age_int_mod) == 0)
2676		reg &= ~MASTER_ITIMER_ENB;
2677	else
2678		reg |= MASTER_ITIMER_ENB;
2679	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2680	if (bootverbose)
2681		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2682		    sc->age_int_mod);
2683	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2684
2685	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2686	if (ifp->if_mtu < ETHERMTU)
2687		sc->age_max_frame_size = ETHERMTU;
2688	else
2689		sc->age_max_frame_size = ifp->if_mtu;
2690	sc->age_max_frame_size += ETHER_HDR_LEN +
2691	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2692	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2693	/* Configure jumbo frame. */
2694	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2695	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2696	    (((fsize / sizeof(uint64_t)) <<
2697	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2698	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2699	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2700	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2701	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2702
2703	/* Configure flow-control parameters. From Linux. */
2704	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2705		/*
2706		 * Magic workaround for old-L1.
2707		 * Don't know which hw revision requires this magic.
2708		 */
2709		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2710		/*
2711		 * Another magic workaround for flow-control mode
2712		 * change. From Linux.
2713		 */
2714		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2715	}
2716	/*
2717	 * TODO
2718	 *  Should understand pause parameter relationships between FIFO
2719	 *  size and number of Rx descriptors and Rx return descriptors.
2720	 *
2721	 *  Magic parameters came from Linux.
2722	 */
2723	switch (sc->age_chip_rev) {
2724	case 0x8001:
2725	case 0x9001:
2726	case 0x9002:
2727	case 0x9003:
2728		rxf_hi = AGE_RX_RING_CNT / 16;
2729		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2730		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2731		rrd_lo = AGE_RR_RING_CNT / 16;
2732		break;
2733	default:
2734		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2735		rxf_lo = reg / 16;
2736		if (rxf_lo < 192)
2737			rxf_lo = 192;
2738		rxf_hi = (reg * 7) / 8;
2739		if (rxf_hi < rxf_lo)
2740			rxf_hi = rxf_lo + 16;
2741		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2742		rrd_lo = reg / 8;
2743		rrd_hi = (reg * 7) / 8;
2744		if (rrd_lo < 2)
2745			rrd_lo = 2;
2746		if (rrd_hi < rrd_lo)
2747			rrd_hi = rrd_lo + 3;
2748		break;
2749	}
2750	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2751	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2752	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2753	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2754	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2755	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2756	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2757	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2758	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2759	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2760
2761	/* Configure RxQ. */
2762	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2763	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2764	    RXQ_CFG_RD_BURST_MASK) |
2765	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2766	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2767	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2768	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2769	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2770
2771	/* Configure TxQ. */
2772	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2773	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2774	    TXQ_CFG_TPD_BURST_MASK) |
2775	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2776	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2777	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2778	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2779	    TXQ_CFG_ENB);
2780
2781	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2782	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2783	    TX_JUMBO_TPD_TH_MASK) |
2784	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2785	    TX_JUMBO_TPD_IPG_MASK));
2786	/* Configure DMA parameters. */
2787	CSR_WRITE_4(sc, AGE_DMA_CFG,
2788	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2789	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2790	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2791
2792	/* Configure CMB DMA write threshold. */
2793	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2794	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2795	    CMB_WR_THRESH_RRD_MASK) |
2796	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2797	    CMB_WR_THRESH_TPD_MASK));
2798
2799	/* Set CMB/SMB timer and enable them. */
2800	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2801	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2802	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2803	/* Request SMB updates for every seconds. */
2804	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2805	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2806
2807	/*
2808	 * Disable all WOL bits as WOL can interfere normal Rx
2809	 * operation.
2810	 */
2811	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2812
2813	/*
2814	 * Configure Tx/Rx MACs.
2815	 *  - Auto-padding for short frames.
2816	 *  - Enable CRC generation.
2817	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2818	 *  of MAC is followed after link establishment.
2819	 */
2820	CSR_WRITE_4(sc, AGE_MAC_CFG,
2821	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2822	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2823	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2824	    MAC_CFG_PREAMBLE_MASK));
2825	/* Set up the receive filter. */
2826	age_rxfilter(sc);
2827	age_rxvlan(sc);
2828
2829	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2830	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2831		reg |= MAC_CFG_RXCSUM_ENB;
2832
2833	/* Ack all pending interrupts and clear it. */
2834	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2835	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2836
2837	/* Finally enable Tx/Rx MAC. */
2838	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2839
2840	sc->age_flags &= ~AGE_FLAG_LINK;
2841	/* Switch to the current media. */
2842	mii_mediachg(mii);
2843
2844	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2845
2846	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2847	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2848}
2849
2850static void
2851age_stop(struct age_softc *sc)
2852{
2853	struct ifnet *ifp;
2854	struct age_txdesc *txd;
2855	struct age_rxdesc *rxd;
2856	uint32_t reg;
2857	int i;
2858
2859	AGE_LOCK_ASSERT(sc);
2860	/*
2861	 * Mark the interface down and cancel the watchdog timer.
2862	 */
2863	ifp = sc->age_ifp;
2864	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2865	sc->age_flags &= ~AGE_FLAG_LINK;
2866	callout_stop(&sc->age_tick_ch);
2867	sc->age_watchdog_timer = 0;
2868
2869	/*
2870	 * Disable interrupts.
2871	 */
2872	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2873	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2874	/* Stop CMB/SMB updates. */
2875	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2876	/* Stop Rx/Tx MAC. */
2877	age_stop_rxmac(sc);
2878	age_stop_txmac(sc);
2879	/* Stop DMA. */
2880	CSR_WRITE_4(sc, AGE_DMA_CFG,
2881	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2882	/* Stop TxQ/RxQ. */
2883	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2884	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2885	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2886	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2887	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2888		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2889			break;
2890		DELAY(10);
2891	}
2892	if (i == 0)
2893		device_printf(sc->age_dev,
2894		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2895
2896	 /* Reclaim Rx buffers that have been processed. */
2897	if (sc->age_cdata.age_rxhead != NULL)
2898		m_freem(sc->age_cdata.age_rxhead);
2899	AGE_RXCHAIN_RESET(sc);
2900	/*
2901	 * Free RX and TX mbufs still in the queues.
2902	 */
2903	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2904		rxd = &sc->age_cdata.age_rxdesc[i];
2905		if (rxd->rx_m != NULL) {
2906			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2907			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2908			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2909			    rxd->rx_dmamap);
2910			m_freem(rxd->rx_m);
2911			rxd->rx_m = NULL;
2912		}
2913        }
2914	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2915		txd = &sc->age_cdata.age_txdesc[i];
2916		if (txd->tx_m != NULL) {
2917			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2918			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2919			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2920			    txd->tx_dmamap);
2921			m_freem(txd->tx_m);
2922			txd->tx_m = NULL;
2923		}
2924        }
2925}
2926
2927static void
2928age_stop_txmac(struct age_softc *sc)
2929{
2930	uint32_t reg;
2931	int i;
2932
2933	AGE_LOCK_ASSERT(sc);
2934
2935	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2936	if ((reg & MAC_CFG_TX_ENB) != 0) {
2937		reg &= ~MAC_CFG_TX_ENB;
2938		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2939	}
2940	/* Stop Tx DMA engine. */
2941	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2942	if ((reg & DMA_CFG_RD_ENB) != 0) {
2943		reg &= ~DMA_CFG_RD_ENB;
2944		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2945	}
2946	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2947		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2948		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2949			break;
2950		DELAY(10);
2951	}
2952	if (i == 0)
2953		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2954}
2955
2956static void
2957age_stop_rxmac(struct age_softc *sc)
2958{
2959	uint32_t reg;
2960	int i;
2961
2962	AGE_LOCK_ASSERT(sc);
2963
2964	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2965	if ((reg & MAC_CFG_RX_ENB) != 0) {
2966		reg &= ~MAC_CFG_RX_ENB;
2967		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2968	}
2969	/* Stop Rx DMA engine. */
2970	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2971	if ((reg & DMA_CFG_WR_ENB) != 0) {
2972		reg &= ~DMA_CFG_WR_ENB;
2973		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2974	}
2975	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2976		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2977		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2978			break;
2979		DELAY(10);
2980	}
2981	if (i == 0)
2982		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2983}
2984
2985static void
2986age_init_tx_ring(struct age_softc *sc)
2987{
2988	struct age_ring_data *rd;
2989	struct age_txdesc *txd;
2990	int i;
2991
2992	AGE_LOCK_ASSERT(sc);
2993
2994	sc->age_cdata.age_tx_prod = 0;
2995	sc->age_cdata.age_tx_cons = 0;
2996	sc->age_cdata.age_tx_cnt = 0;
2997
2998	rd = &sc->age_rdata;
2999	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3000	for (i = 0; i < AGE_TX_RING_CNT; i++) {
3001		txd = &sc->age_cdata.age_txdesc[i];
3002		txd->tx_desc = &rd->age_tx_ring[i];
3003		txd->tx_m = NULL;
3004	}
3005
3006	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3007	    sc->age_cdata.age_tx_ring_map,
3008	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3009}
3010
3011static int
3012age_init_rx_ring(struct age_softc *sc)
3013{
3014	struct age_ring_data *rd;
3015	struct age_rxdesc *rxd;
3016	int i;
3017
3018	AGE_LOCK_ASSERT(sc);
3019
3020	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3021	sc->age_morework = 0;
3022	rd = &sc->age_rdata;
3023	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3024	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3025		rxd = &sc->age_cdata.age_rxdesc[i];
3026		rxd->rx_m = NULL;
3027		rxd->rx_desc = &rd->age_rx_ring[i];
3028		if (age_newbuf(sc, rxd) != 0)
3029			return (ENOBUFS);
3030	}
3031
3032	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3033	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3034
3035	return (0);
3036}
3037
3038static void
3039age_init_rr_ring(struct age_softc *sc)
3040{
3041	struct age_ring_data *rd;
3042
3043	AGE_LOCK_ASSERT(sc);
3044
3045	sc->age_cdata.age_rr_cons = 0;
3046	AGE_RXCHAIN_RESET(sc);
3047
3048	rd = &sc->age_rdata;
3049	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3050	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3051	    sc->age_cdata.age_rr_ring_map,
3052	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3053}
3054
3055static void
3056age_init_cmb_block(struct age_softc *sc)
3057{
3058	struct age_ring_data *rd;
3059
3060	AGE_LOCK_ASSERT(sc);
3061
3062	rd = &sc->age_rdata;
3063	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3064	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3065	    sc->age_cdata.age_cmb_block_map,
3066	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3067}
3068
3069static void
3070age_init_smb_block(struct age_softc *sc)
3071{
3072	struct age_ring_data *rd;
3073
3074	AGE_LOCK_ASSERT(sc);
3075
3076	rd = &sc->age_rdata;
3077	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3078	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3079	    sc->age_cdata.age_smb_block_map,
3080	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3081}
3082
3083static int
3084age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3085{
3086	struct rx_desc *desc;
3087	struct mbuf *m;
3088	bus_dma_segment_t segs[1];
3089	bus_dmamap_t map;
3090	int nsegs;
3091
3092	AGE_LOCK_ASSERT(sc);
3093
3094	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3095	if (m == NULL)
3096		return (ENOBUFS);
3097	m->m_len = m->m_pkthdr.len = MCLBYTES;
3098#ifndef __NO_STRICT_ALIGNMENT
3099	m_adj(m, AGE_RX_BUF_ALIGN);
3100#endif
3101
3102	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3103	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3104		m_freem(m);
3105		return (ENOBUFS);
3106	}
3107	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3108
3109	if (rxd->rx_m != NULL) {
3110		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3111		    BUS_DMASYNC_POSTREAD);
3112		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3113	}
3114	map = rxd->rx_dmamap;
3115	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3116	sc->age_cdata.age_rx_sparemap = map;
3117	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3118	    BUS_DMASYNC_PREREAD);
3119	rxd->rx_m = m;
3120
3121	desc = rxd->rx_desc;
3122	desc->addr = htole64(segs[0].ds_addr);
3123	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3124	    AGE_RD_LEN_SHIFT);
3125	return (0);
3126}
3127
3128static void
3129age_rxvlan(struct age_softc *sc)
3130{
3131	struct ifnet *ifp;
3132	uint32_t reg;
3133
3134	AGE_LOCK_ASSERT(sc);
3135
3136	ifp = sc->age_ifp;
3137	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3138	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3139	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3140		reg |= MAC_CFG_VLAN_TAG_STRIP;
3141	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3142}
3143
3144static void
3145age_rxfilter(struct age_softc *sc)
3146{
3147	struct ifnet *ifp;
3148	struct ifmultiaddr *ifma;
3149	uint32_t crc;
3150	uint32_t mchash[2];
3151	uint32_t rxcfg;
3152
3153	AGE_LOCK_ASSERT(sc);
3154
3155	ifp = sc->age_ifp;
3156
3157	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3158	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3159	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3160		rxcfg |= MAC_CFG_BCAST;
3161	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3162		if ((ifp->if_flags & IFF_PROMISC) != 0)
3163			rxcfg |= MAC_CFG_PROMISC;
3164		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3165			rxcfg |= MAC_CFG_ALLMULTI;
3166		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3167		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3168		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3169		return;
3170	}
3171
3172	/* Program new filter. */
3173	bzero(mchash, sizeof(mchash));
3174
3175	if_maddr_rlock(ifp);
3176	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3177		if (ifma->ifma_addr->sa_family != AF_LINK)
3178			continue;
3179		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3180		    ifma->ifma_addr), ETHER_ADDR_LEN);
3181		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3182	}
3183	if_maddr_runlock(ifp);
3184
3185	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3186	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3187	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3188}
3189
3190static int
3191sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3192{
3193	struct age_softc *sc;
3194	struct age_stats *stats;
3195	int error, result;
3196
3197	result = -1;
3198	error = sysctl_handle_int(oidp, &result, 0, req);
3199
3200	if (error != 0 || req->newptr == NULL)
3201		return (error);
3202
3203	if (result != 1)
3204		return (error);
3205
3206	sc = (struct age_softc *)arg1;
3207	stats = &sc->age_stat;
3208	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3209	printf("Transmit good frames : %ju\n",
3210	    (uintmax_t)stats->tx_frames);
3211	printf("Transmit good broadcast frames : %ju\n",
3212	    (uintmax_t)stats->tx_bcast_frames);
3213	printf("Transmit good multicast frames : %ju\n",
3214	    (uintmax_t)stats->tx_mcast_frames);
3215	printf("Transmit pause control frames : %u\n",
3216	    stats->tx_pause_frames);
3217	printf("Transmit control frames : %u\n",
3218	    stats->tx_control_frames);
3219	printf("Transmit frames with excessive deferrals : %u\n",
3220	    stats->tx_excess_defer);
3221	printf("Transmit deferrals : %u\n",
3222	    stats->tx_deferred);
3223	printf("Transmit good octets : %ju\n",
3224	    (uintmax_t)stats->tx_bytes);
3225	printf("Transmit good broadcast octets : %ju\n",
3226	    (uintmax_t)stats->tx_bcast_bytes);
3227	printf("Transmit good multicast octets : %ju\n",
3228	    (uintmax_t)stats->tx_mcast_bytes);
3229	printf("Transmit frames 64 bytes : %ju\n",
3230	    (uintmax_t)stats->tx_pkts_64);
3231	printf("Transmit frames 65 to 127 bytes : %ju\n",
3232	    (uintmax_t)stats->tx_pkts_65_127);
3233	printf("Transmit frames 128 to 255 bytes : %ju\n",
3234	    (uintmax_t)stats->tx_pkts_128_255);
3235	printf("Transmit frames 256 to 511 bytes : %ju\n",
3236	    (uintmax_t)stats->tx_pkts_256_511);
3237	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3238	    (uintmax_t)stats->tx_pkts_512_1023);
3239	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3240	    (uintmax_t)stats->tx_pkts_1024_1518);
3241	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3242	    (uintmax_t)stats->tx_pkts_1519_max);
3243	printf("Transmit single collisions : %u\n",
3244	    stats->tx_single_colls);
3245	printf("Transmit multiple collisions : %u\n",
3246	    stats->tx_multi_colls);
3247	printf("Transmit late collisions : %u\n",
3248	    stats->tx_late_colls);
3249	printf("Transmit abort due to excessive collisions : %u\n",
3250	    stats->tx_excess_colls);
3251	printf("Transmit underruns due to FIFO underruns : %u\n",
3252	    stats->tx_underrun);
3253	printf("Transmit descriptor write-back errors : %u\n",
3254	    stats->tx_desc_underrun);
3255	printf("Transmit frames with length mismatched frame size : %u\n",
3256	    stats->tx_lenerrs);
3257	printf("Transmit frames with truncated due to MTU size : %u\n",
3258	    stats->tx_lenerrs);
3259
3260	printf("Receive good frames : %ju\n",
3261	    (uintmax_t)stats->rx_frames);
3262	printf("Receive good broadcast frames : %ju\n",
3263	    (uintmax_t)stats->rx_bcast_frames);
3264	printf("Receive good multicast frames : %ju\n",
3265	    (uintmax_t)stats->rx_mcast_frames);
3266	printf("Receive pause control frames : %u\n",
3267	    stats->rx_pause_frames);
3268	printf("Receive control frames : %u\n",
3269	    stats->rx_control_frames);
3270	printf("Receive CRC errors : %u\n",
3271	    stats->rx_crcerrs);
3272	printf("Receive frames with length errors : %u\n",
3273	    stats->rx_lenerrs);
3274	printf("Receive good octets : %ju\n",
3275	    (uintmax_t)stats->rx_bytes);
3276	printf("Receive good broadcast octets : %ju\n",
3277	    (uintmax_t)stats->rx_bcast_bytes);
3278	printf("Receive good multicast octets : %ju\n",
3279	    (uintmax_t)stats->rx_mcast_bytes);
3280	printf("Receive frames too short : %u\n",
3281	    stats->rx_runts);
3282	printf("Receive fragmented frames : %ju\n",
3283	    (uintmax_t)stats->rx_fragments);
3284	printf("Receive frames 64 bytes : %ju\n",
3285	    (uintmax_t)stats->rx_pkts_64);
3286	printf("Receive frames 65 to 127 bytes : %ju\n",
3287	    (uintmax_t)stats->rx_pkts_65_127);
3288	printf("Receive frames 128 to 255 bytes : %ju\n",
3289	    (uintmax_t)stats->rx_pkts_128_255);
3290	printf("Receive frames 256 to 511 bytes : %ju\n",
3291	    (uintmax_t)stats->rx_pkts_256_511);
3292	printf("Receive frames 512 to 1024 bytes : %ju\n",
3293	    (uintmax_t)stats->rx_pkts_512_1023);
3294	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3295	    (uintmax_t)stats->rx_pkts_1024_1518);
3296	printf("Receive frames 1519 to MTU bytes : %ju\n",
3297	    (uintmax_t)stats->rx_pkts_1519_max);
3298	printf("Receive frames too long : %ju\n",
3299	    (uint64_t)stats->rx_pkts_truncated);
3300	printf("Receive frames with FIFO overflow : %u\n",
3301	    stats->rx_fifo_oflows);
3302	printf("Receive frames with return descriptor overflow : %u\n",
3303	    stats->rx_desc_oflows);
3304	printf("Receive frames with alignment errors : %u\n",
3305	    stats->rx_alignerrs);
3306	printf("Receive frames dropped due to address filtering : %ju\n",
3307	    (uint64_t)stats->rx_pkts_filtered);
3308
3309	return (error);
3310}
3311
3312static int
3313sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3314{
3315	int error, value;
3316
3317	if (arg1 == NULL)
3318		return (EINVAL);
3319	value = *(int *)arg1;
3320	error = sysctl_handle_int(oidp, &value, 0, req);
3321	if (error || req->newptr == NULL)
3322		return (error);
3323	if (value < low || value > high)
3324		return (EINVAL);
3325        *(int *)arg1 = value;
3326
3327        return (0);
3328}
3329
3330static int
3331sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3332{
3333	return (sysctl_int_range(oidp, arg1, arg2, req,
3334	    AGE_PROC_MIN, AGE_PROC_MAX));
3335}
3336
3337static int
3338sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3339{
3340
3341	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3342	    AGE_IM_TIMER_MAX));
3343}
3344