if_age.c revision 246341
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 246341 2013-02-05 00:37:45Z yongari $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78
79MODULE_DEPEND(age, pci, 1, 1, 1);
80MODULE_DEPEND(age, ether, 1, 1, 1);
81MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83/* Tunables. */
84static int msi_disable = 0;
85static int msix_disable = 0;
86TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89/*
90 * Devices supported by this driver.
91 */
92static struct age_dev {
93	uint16_t	age_vendorid;
94	uint16_t	age_deviceid;
95	const char	*age_name;
96} age_devs[] = {
97	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99};
100
101static int age_miibus_readreg(device_t, int, int);
102static int age_miibus_writereg(device_t, int, int, int);
103static void age_miibus_statchg(device_t);
104static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105static int age_mediachange(struct ifnet *);
106static int age_probe(device_t);
107static void age_get_macaddr(struct age_softc *);
108static void age_phy_reset(struct age_softc *);
109static int age_attach(device_t);
110static int age_detach(device_t);
111static void age_sysctl_node(struct age_softc *);
112static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113static int age_check_boundary(struct age_softc *);
114static int age_dma_alloc(struct age_softc *);
115static void age_dma_free(struct age_softc *);
116static int age_shutdown(device_t);
117static void age_setwol(struct age_softc *);
118static int age_suspend(device_t);
119static int age_resume(device_t);
120static int age_encap(struct age_softc *, struct mbuf **);
121static void age_start(struct ifnet *);
122static void age_start_locked(struct ifnet *);
123static void age_watchdog(struct age_softc *);
124static int age_ioctl(struct ifnet *, u_long, caddr_t);
125static void age_mac_config(struct age_softc *);
126static void age_link_task(void *, int);
127static void age_stats_update(struct age_softc *);
128static int age_intr(void *);
129static void age_int_task(void *, int);
130static void age_txintr(struct age_softc *, int);
131static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132static int age_rxintr(struct age_softc *, int, int);
133static void age_tick(void *);
134static void age_reset(struct age_softc *);
135static void age_init(void *);
136static void age_init_locked(struct age_softc *);
137static void age_stop(struct age_softc *);
138static void age_stop_txmac(struct age_softc *);
139static void age_stop_rxmac(struct age_softc *);
140static void age_init_tx_ring(struct age_softc *);
141static int age_init_rx_ring(struct age_softc *);
142static void age_init_rr_ring(struct age_softc *);
143static void age_init_cmb_block(struct age_softc *);
144static void age_init_smb_block(struct age_softc *);
145#ifndef __NO_STRICT_ALIGNMENT
146static struct mbuf *age_fixup_rx(struct ifnet *, struct mbuf *);
147#endif
148static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149static void age_rxvlan(struct age_softc *);
150static void age_rxfilter(struct age_softc *);
151static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155
156
157static device_method_t age_methods[] = {
158	/* Device interface. */
159	DEVMETHOD(device_probe,		age_probe),
160	DEVMETHOD(device_attach,	age_attach),
161	DEVMETHOD(device_detach,	age_detach),
162	DEVMETHOD(device_shutdown,	age_shutdown),
163	DEVMETHOD(device_suspend,	age_suspend),
164	DEVMETHOD(device_resume,	age_resume),
165
166	/* MII interface. */
167	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
168	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
169	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
170
171	{ NULL, NULL }
172};
173
174static driver_t age_driver = {
175	"age",
176	age_methods,
177	sizeof(struct age_softc)
178};
179
180static devclass_t age_devclass;
181
182DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
183DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
184
185static struct resource_spec age_res_spec_mem[] = {
186	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187	{ -1,			0,		0 }
188};
189
190static struct resource_spec age_irq_spec_legacy[] = {
191	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec age_irq_spec_msi[] = {
196	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static struct resource_spec age_irq_spec_msix[] = {
201	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202	{ -1,			0,		0 }
203};
204
205/*
206 *	Read a PHY register on the MII of the L1.
207 */
208static int
209age_miibus_readreg(device_t dev, int phy, int reg)
210{
211	struct age_softc *sc;
212	uint32_t v;
213	int i;
214
215	sc = device_get_softc(dev);
216
217	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
218	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
219	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
220		DELAY(1);
221		v = CSR_READ_4(sc, AGE_MDIO);
222		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
223			break;
224	}
225
226	if (i == 0) {
227		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
228		return (0);
229	}
230
231	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
232}
233
234/*
235 *	Write a PHY register on the MII of the L1.
236 */
237static int
238age_miibus_writereg(device_t dev, int phy, int reg, int val)
239{
240	struct age_softc *sc;
241	uint32_t v;
242	int i;
243
244	sc = device_get_softc(dev);
245
246	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
247	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
248	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
249	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
250		DELAY(1);
251		v = CSR_READ_4(sc, AGE_MDIO);
252		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
253			break;
254	}
255
256	if (i == 0)
257		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
258
259	return (0);
260}
261
262/*
263 *	Callback from MII layer when media changes.
264 */
265static void
266age_miibus_statchg(device_t dev)
267{
268	struct age_softc *sc;
269
270	sc = device_get_softc(dev);
271	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
272}
273
274/*
275 *	Get the current interface media status.
276 */
277static void
278age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
279{
280	struct age_softc *sc;
281	struct mii_data *mii;
282
283	sc = ifp->if_softc;
284	AGE_LOCK(sc);
285	mii = device_get_softc(sc->age_miibus);
286
287	mii_pollstat(mii);
288	ifmr->ifm_status = mii->mii_media_status;
289	ifmr->ifm_active = mii->mii_media_active;
290	AGE_UNLOCK(sc);
291}
292
293/*
294 *	Set hardware to newly-selected media.
295 */
296static int
297age_mediachange(struct ifnet *ifp)
298{
299	struct age_softc *sc;
300	struct mii_data *mii;
301	struct mii_softc *miisc;
302	int error;
303
304	sc = ifp->if_softc;
305	AGE_LOCK(sc);
306	mii = device_get_softc(sc->age_miibus);
307	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
308		PHY_RESET(miisc);
309	error = mii_mediachg(mii);
310	AGE_UNLOCK(sc);
311
312	return (error);
313}
314
315static int
316age_probe(device_t dev)
317{
318	struct age_dev *sp;
319	int i;
320	uint16_t vendor, devid;
321
322	vendor = pci_get_vendor(dev);
323	devid = pci_get_device(dev);
324	sp = age_devs;
325	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
326	    i++, sp++) {
327		if (vendor == sp->age_vendorid &&
328		    devid == sp->age_deviceid) {
329			device_set_desc(dev, sp->age_name);
330			return (BUS_PROBE_DEFAULT);
331		}
332	}
333
334	return (ENXIO);
335}
336
337static void
338age_get_macaddr(struct age_softc *sc)
339{
340	uint32_t ea[2], reg;
341	int i, vpdc;
342
343	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
344	if ((reg & SPI_VPD_ENB) != 0) {
345		/* Get VPD stored in TWSI EEPROM. */
346		reg &= ~SPI_VPD_ENB;
347		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
348	}
349
350	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
351		/*
352		 * PCI VPD capability found, let TWSI reload EEPROM.
353		 * This will set ethernet address of controller.
354		 */
355		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
356		    TWSI_CTRL_SW_LD_START);
357		for (i = 100; i > 0; i--) {
358			DELAY(1000);
359			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
360			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
361				break;
362		}
363		if (i == 0)
364			device_printf(sc->age_dev,
365			    "reloading EEPROM timeout!\n");
366	} else {
367		if (bootverbose)
368			device_printf(sc->age_dev,
369			    "PCI VPD capability not found!\n");
370	}
371
372	ea[0] = CSR_READ_4(sc, AGE_PAR0);
373	ea[1] = CSR_READ_4(sc, AGE_PAR1);
374	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
375	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
376	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
377	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
378	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
379	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
380}
381
382static void
383age_phy_reset(struct age_softc *sc)
384{
385	uint16_t reg, pn;
386	int i, linkup;
387
388	/* Reset PHY. */
389	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
390	DELAY(2000);
391	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
392	DELAY(2000);
393
394#define	ATPHY_DBG_ADDR		0x1D
395#define	ATPHY_DBG_DATA		0x1E
396#define	ATPHY_CDTC		0x16
397#define	PHY_CDTC_ENB		0x0001
398#define	PHY_CDTC_POFF		8
399#define	ATPHY_CDTS		0x1C
400#define	PHY_CDTS_STAT_OK	0x0000
401#define	PHY_CDTS_STAT_SHORT	0x0100
402#define	PHY_CDTS_STAT_OPEN	0x0200
403#define	PHY_CDTS_STAT_INVAL	0x0300
404#define	PHY_CDTS_STAT_MASK	0x0300
405
406	/* Check power saving mode. Magic from Linux. */
407	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
408	for (linkup = 0, pn = 0; pn < 4; pn++) {
409		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
410		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
411		for (i = 200; i > 0; i--) {
412			DELAY(1000);
413			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
414			    ATPHY_CDTC);
415			if ((reg & PHY_CDTC_ENB) == 0)
416				break;
417		}
418		DELAY(1000);
419		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
420		    ATPHY_CDTS);
421		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
422			linkup++;
423			break;
424		}
425	}
426	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
427	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
428	if (linkup == 0) {
429		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
430		    ATPHY_DBG_ADDR, 0);
431		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
432		    ATPHY_DBG_DATA, 0x124E);
433		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
434		    ATPHY_DBG_ADDR, 1);
435		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
436		    ATPHY_DBG_DATA);
437		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438		    ATPHY_DBG_DATA, reg | 0x03);
439		/* XXX */
440		DELAY(1500 * 1000);
441		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
442		    ATPHY_DBG_ADDR, 0);
443		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444		    ATPHY_DBG_DATA, 0x024E);
445    }
446
447#undef	ATPHY_DBG_ADDR
448#undef	ATPHY_DBG_DATA
449#undef	ATPHY_CDTC
450#undef	PHY_CDTC_ENB
451#undef	PHY_CDTC_POFF
452#undef	ATPHY_CDTS
453#undef	PHY_CDTS_STAT_OK
454#undef	PHY_CDTS_STAT_SHORT
455#undef	PHY_CDTS_STAT_OPEN
456#undef	PHY_CDTS_STAT_INVAL
457#undef	PHY_CDTS_STAT_MASK
458}
459
460static int
461age_attach(device_t dev)
462{
463	struct age_softc *sc;
464	struct ifnet *ifp;
465	uint16_t burst;
466	int error, i, msic, msixc, pmc;
467
468	error = 0;
469	sc = device_get_softc(dev);
470	sc->age_dev = dev;
471
472	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
473	    MTX_DEF);
474	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
475	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
476	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
477
478	/* Map the device. */
479	pci_enable_busmaster(dev);
480	sc->age_res_spec = age_res_spec_mem;
481	sc->age_irq_spec = age_irq_spec_legacy;
482	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
483	if (error != 0) {
484		device_printf(dev, "cannot allocate memory resources.\n");
485		goto fail;
486	}
487
488	/* Set PHY address. */
489	sc->age_phyaddr = AGE_PHY_ADDR;
490
491	/* Reset PHY. */
492	age_phy_reset(sc);
493
494	/* Reset the ethernet controller. */
495	age_reset(sc);
496
497	/* Get PCI and chip id/revision. */
498	sc->age_rev = pci_get_revid(dev);
499	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
500	    MASTER_CHIP_REV_SHIFT;
501	if (bootverbose) {
502		device_printf(dev, "PCI device revision : 0x%04x\n",
503		    sc->age_rev);
504		device_printf(dev, "Chip id/revision : 0x%04x\n",
505		    sc->age_chip_rev);
506	}
507
508	/*
509	 * XXX
510	 * Unintialized hardware returns an invalid chip id/revision
511	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
512	 * unplugged cable results in putting hardware into automatic
513	 * power down mode which in turn returns invalld chip revision.
514	 */
515	if (sc->age_chip_rev == 0xFFFF) {
516		device_printf(dev,"invalid chip revision : 0x%04x -- "
517		    "not initialized?\n", sc->age_chip_rev);
518		error = ENXIO;
519		goto fail;
520	}
521
522	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
523	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
524	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
525
526	/* Allocate IRQ resources. */
527	msixc = pci_msix_count(dev);
528	msic = pci_msi_count(dev);
529	if (bootverbose) {
530		device_printf(dev, "MSIX count : %d\n", msixc);
531		device_printf(dev, "MSI count : %d\n", msic);
532	}
533
534	/* Prefer MSIX over MSI. */
535	if (msix_disable == 0 || msi_disable == 0) {
536		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
537		    pci_alloc_msix(dev, &msixc) == 0) {
538			if (msic == AGE_MSIX_MESSAGES) {
539				device_printf(dev, "Using %d MSIX messages.\n",
540				    msixc);
541				sc->age_flags |= AGE_FLAG_MSIX;
542				sc->age_irq_spec = age_irq_spec_msix;
543			} else
544				pci_release_msi(dev);
545		}
546		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
547		    msic == AGE_MSI_MESSAGES &&
548		    pci_alloc_msi(dev, &msic) == 0) {
549			if (msic == AGE_MSI_MESSAGES) {
550				device_printf(dev, "Using %d MSI messages.\n",
551				    msic);
552				sc->age_flags |= AGE_FLAG_MSI;
553				sc->age_irq_spec = age_irq_spec_msi;
554			} else
555				pci_release_msi(dev);
556		}
557	}
558
559	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
560	if (error != 0) {
561		device_printf(dev, "cannot allocate IRQ resources.\n");
562		goto fail;
563	}
564
565
566	/* Get DMA parameters from PCIe device control register. */
567	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
568		sc->age_flags |= AGE_FLAG_PCIE;
569		burst = pci_read_config(dev, i + 0x08, 2);
570		/* Max read request size. */
571		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
572		    DMA_CFG_RD_BURST_SHIFT;
573		/* Max payload size. */
574		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
575		    DMA_CFG_WR_BURST_SHIFT;
576		if (bootverbose) {
577			device_printf(dev, "Read request size : %d bytes.\n",
578			    128 << ((burst >> 12) & 0x07));
579			device_printf(dev, "TLP payload size : %d bytes.\n",
580			    128 << ((burst >> 5) & 0x07));
581		}
582	} else {
583		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
584		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
585	}
586
587	/* Create device sysctl node. */
588	age_sysctl_node(sc);
589
590	if ((error = age_dma_alloc(sc) != 0))
591		goto fail;
592
593	/* Load station address. */
594	age_get_macaddr(sc);
595
596	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
597	if (ifp == NULL) {
598		device_printf(dev, "cannot allocate ifnet structure.\n");
599		error = ENXIO;
600		goto fail;
601	}
602
603	ifp->if_softc = sc;
604	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
605	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
606	ifp->if_ioctl = age_ioctl;
607	ifp->if_start = age_start;
608	ifp->if_init = age_init;
609	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
610	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
611	IFQ_SET_READY(&ifp->if_snd);
612	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
613	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
614	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
615		sc->age_flags |= AGE_FLAG_PMCAP;
616		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
617	}
618	ifp->if_capenable = ifp->if_capabilities;
619
620	/* Set up MII bus. */
621	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
622	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
623	    0);
624	if (error != 0) {
625		device_printf(dev, "attaching PHYs failed\n");
626		goto fail;
627	}
628
629	ether_ifattach(ifp, sc->age_eaddr);
630
631	/* VLAN capability setup. */
632	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
633	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
634	ifp->if_capenable = ifp->if_capabilities;
635
636	/* Tell the upper layer(s) we support long frames. */
637	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
638
639	/* Create local taskq. */
640	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
641	    taskqueue_thread_enqueue, &sc->age_tq);
642	if (sc->age_tq == NULL) {
643		device_printf(dev, "could not create taskqueue.\n");
644		ether_ifdetach(ifp);
645		error = ENXIO;
646		goto fail;
647	}
648	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
649	    device_get_nameunit(sc->age_dev));
650
651	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
652		msic = AGE_MSIX_MESSAGES;
653	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
654		msic = AGE_MSI_MESSAGES;
655	else
656		msic = 1;
657	for (i = 0; i < msic; i++) {
658		error = bus_setup_intr(dev, sc->age_irq[i],
659		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
660		    &sc->age_intrhand[i]);
661		if (error != 0)
662			break;
663	}
664	if (error != 0) {
665		device_printf(dev, "could not set up interrupt handler.\n");
666		taskqueue_free(sc->age_tq);
667		sc->age_tq = NULL;
668		ether_ifdetach(ifp);
669		goto fail;
670	}
671
672fail:
673	if (error != 0)
674		age_detach(dev);
675
676	return (error);
677}
678
679static int
680age_detach(device_t dev)
681{
682	struct age_softc *sc;
683	struct ifnet *ifp;
684	int i, msic;
685
686	sc = device_get_softc(dev);
687
688	ifp = sc->age_ifp;
689	if (device_is_attached(dev)) {
690		AGE_LOCK(sc);
691		sc->age_flags |= AGE_FLAG_DETACH;
692		age_stop(sc);
693		AGE_UNLOCK(sc);
694		callout_drain(&sc->age_tick_ch);
695		taskqueue_drain(sc->age_tq, &sc->age_int_task);
696		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
697		ether_ifdetach(ifp);
698	}
699
700	if (sc->age_tq != NULL) {
701		taskqueue_drain(sc->age_tq, &sc->age_int_task);
702		taskqueue_free(sc->age_tq);
703		sc->age_tq = NULL;
704	}
705
706	if (sc->age_miibus != NULL) {
707		device_delete_child(dev, sc->age_miibus);
708		sc->age_miibus = NULL;
709	}
710	bus_generic_detach(dev);
711	age_dma_free(sc);
712
713	if (ifp != NULL) {
714		if_free(ifp);
715		sc->age_ifp = NULL;
716	}
717
718	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
719		msic = AGE_MSIX_MESSAGES;
720	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
721		msic = AGE_MSI_MESSAGES;
722	else
723		msic = 1;
724	for (i = 0; i < msic; i++) {
725		if (sc->age_intrhand[i] != NULL) {
726			bus_teardown_intr(dev, sc->age_irq[i],
727			    sc->age_intrhand[i]);
728			sc->age_intrhand[i] = NULL;
729		}
730	}
731
732	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
733	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
734		pci_release_msi(dev);
735	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
736	mtx_destroy(&sc->age_mtx);
737
738	return (0);
739}
740
741static void
742age_sysctl_node(struct age_softc *sc)
743{
744	int error;
745
746	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
747	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
748	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
749	    "I", "Statistics");
750
751	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
752	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
753	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
754	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
755
756	/* Pull in device tunables. */
757	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
758	error = resource_int_value(device_get_name(sc->age_dev),
759	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
760	if (error == 0) {
761		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
762		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
763			device_printf(sc->age_dev,
764			    "int_mod value out of range; using default: %d\n",
765			    AGE_IM_TIMER_DEFAULT);
766			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
767		}
768	}
769
770	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
771	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
772	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
773	    0, sysctl_hw_age_proc_limit, "I",
774	    "max number of Rx events to process");
775
776	/* Pull in device tunables. */
777	sc->age_process_limit = AGE_PROC_DEFAULT;
778	error = resource_int_value(device_get_name(sc->age_dev),
779	    device_get_unit(sc->age_dev), "process_limit",
780	    &sc->age_process_limit);
781	if (error == 0) {
782		if (sc->age_process_limit < AGE_PROC_MIN ||
783		    sc->age_process_limit > AGE_PROC_MAX) {
784			device_printf(sc->age_dev,
785			    "process_limit value out of range; "
786			    "using default: %d\n", AGE_PROC_DEFAULT);
787			sc->age_process_limit = AGE_PROC_DEFAULT;
788		}
789	}
790}
791
792struct age_dmamap_arg {
793	bus_addr_t	age_busaddr;
794};
795
796static void
797age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
798{
799	struct age_dmamap_arg *ctx;
800
801	if (error != 0)
802		return;
803
804	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
805
806	ctx = (struct age_dmamap_arg *)arg;
807	ctx->age_busaddr = segs[0].ds_addr;
808}
809
810/*
811 * Attansic L1 controller have single register to specify high
812 * address part of DMA blocks. So all descriptor structures and
813 * DMA memory blocks should have the same high address of given
814 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
815 */
816static int
817age_check_boundary(struct age_softc *sc)
818{
819	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
820	bus_addr_t cmb_block_end, smb_block_end;
821
822	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
823	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
824	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
825	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
826	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
827	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
828
829	if ((AGE_ADDR_HI(tx_ring_end) !=
830	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
831	    (AGE_ADDR_HI(rx_ring_end) !=
832	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
833	    (AGE_ADDR_HI(rr_ring_end) !=
834	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
835	    (AGE_ADDR_HI(cmb_block_end) !=
836	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
837	    (AGE_ADDR_HI(smb_block_end) !=
838	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
839		return (EFBIG);
840
841	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
842	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
843	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
844	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
845		return (EFBIG);
846
847	return (0);
848}
849
850static int
851age_dma_alloc(struct age_softc *sc)
852{
853	struct age_txdesc *txd;
854	struct age_rxdesc *rxd;
855	bus_addr_t lowaddr;
856	struct age_dmamap_arg ctx;
857	int error, i;
858
859	lowaddr = BUS_SPACE_MAXADDR;
860
861again:
862	/* Create parent ring/DMA block tag. */
863	error = bus_dma_tag_create(
864	    bus_get_dma_tag(sc->age_dev), /* parent */
865	    1, 0,			/* alignment, boundary */
866	    lowaddr,			/* lowaddr */
867	    BUS_SPACE_MAXADDR,		/* highaddr */
868	    NULL, NULL,			/* filter, filterarg */
869	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
870	    0,				/* nsegments */
871	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
872	    0,				/* flags */
873	    NULL, NULL,			/* lockfunc, lockarg */
874	    &sc->age_cdata.age_parent_tag);
875	if (error != 0) {
876		device_printf(sc->age_dev,
877		    "could not create parent DMA tag.\n");
878		goto fail;
879	}
880
881	/* Create tag for Tx ring. */
882	error = bus_dma_tag_create(
883	    sc->age_cdata.age_parent_tag, /* parent */
884	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
885	    BUS_SPACE_MAXADDR,		/* lowaddr */
886	    BUS_SPACE_MAXADDR,		/* highaddr */
887	    NULL, NULL,			/* filter, filterarg */
888	    AGE_TX_RING_SZ,		/* maxsize */
889	    1,				/* nsegments */
890	    AGE_TX_RING_SZ,		/* maxsegsize */
891	    0,				/* flags */
892	    NULL, NULL,			/* lockfunc, lockarg */
893	    &sc->age_cdata.age_tx_ring_tag);
894	if (error != 0) {
895		device_printf(sc->age_dev,
896		    "could not create Tx ring DMA tag.\n");
897		goto fail;
898	}
899
900	/* Create tag for Rx ring. */
901	error = bus_dma_tag_create(
902	    sc->age_cdata.age_parent_tag, /* parent */
903	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
904	    BUS_SPACE_MAXADDR,		/* lowaddr */
905	    BUS_SPACE_MAXADDR,		/* highaddr */
906	    NULL, NULL,			/* filter, filterarg */
907	    AGE_RX_RING_SZ,		/* maxsize */
908	    1,				/* nsegments */
909	    AGE_RX_RING_SZ,		/* maxsegsize */
910	    0,				/* flags */
911	    NULL, NULL,			/* lockfunc, lockarg */
912	    &sc->age_cdata.age_rx_ring_tag);
913	if (error != 0) {
914		device_printf(sc->age_dev,
915		    "could not create Rx ring DMA tag.\n");
916		goto fail;
917	}
918
919	/* Create tag for Rx return ring. */
920	error = bus_dma_tag_create(
921	    sc->age_cdata.age_parent_tag, /* parent */
922	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
923	    BUS_SPACE_MAXADDR,		/* lowaddr */
924	    BUS_SPACE_MAXADDR,		/* highaddr */
925	    NULL, NULL,			/* filter, filterarg */
926	    AGE_RR_RING_SZ,		/* maxsize */
927	    1,				/* nsegments */
928	    AGE_RR_RING_SZ,		/* maxsegsize */
929	    0,				/* flags */
930	    NULL, NULL,			/* lockfunc, lockarg */
931	    &sc->age_cdata.age_rr_ring_tag);
932	if (error != 0) {
933		device_printf(sc->age_dev,
934		    "could not create Rx return ring DMA tag.\n");
935		goto fail;
936	}
937
938	/* Create tag for coalesing message block. */
939	error = bus_dma_tag_create(
940	    sc->age_cdata.age_parent_tag, /* parent */
941	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
942	    BUS_SPACE_MAXADDR,		/* lowaddr */
943	    BUS_SPACE_MAXADDR,		/* highaddr */
944	    NULL, NULL,			/* filter, filterarg */
945	    AGE_CMB_BLOCK_SZ,		/* maxsize */
946	    1,				/* nsegments */
947	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
948	    0,				/* flags */
949	    NULL, NULL,			/* lockfunc, lockarg */
950	    &sc->age_cdata.age_cmb_block_tag);
951	if (error != 0) {
952		device_printf(sc->age_dev,
953		    "could not create CMB DMA tag.\n");
954		goto fail;
955	}
956
957	/* Create tag for statistics message block. */
958	error = bus_dma_tag_create(
959	    sc->age_cdata.age_parent_tag, /* parent */
960	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
961	    BUS_SPACE_MAXADDR,		/* lowaddr */
962	    BUS_SPACE_MAXADDR,		/* highaddr */
963	    NULL, NULL,			/* filter, filterarg */
964	    AGE_SMB_BLOCK_SZ,		/* maxsize */
965	    1,				/* nsegments */
966	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
967	    0,				/* flags */
968	    NULL, NULL,			/* lockfunc, lockarg */
969	    &sc->age_cdata.age_smb_block_tag);
970	if (error != 0) {
971		device_printf(sc->age_dev,
972		    "could not create SMB DMA tag.\n");
973		goto fail;
974	}
975
976	/* Allocate DMA'able memory and load the DMA map. */
977	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
978	    (void **)&sc->age_rdata.age_tx_ring,
979	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
980	    &sc->age_cdata.age_tx_ring_map);
981	if (error != 0) {
982		device_printf(sc->age_dev,
983		    "could not allocate DMA'able memory for Tx ring.\n");
984		goto fail;
985	}
986	ctx.age_busaddr = 0;
987	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
988	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
989	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
990	if (error != 0 || ctx.age_busaddr == 0) {
991		device_printf(sc->age_dev,
992		    "could not load DMA'able memory for Tx ring.\n");
993		goto fail;
994	}
995	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
996	/* Rx ring */
997	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
998	    (void **)&sc->age_rdata.age_rx_ring,
999	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1000	    &sc->age_cdata.age_rx_ring_map);
1001	if (error != 0) {
1002		device_printf(sc->age_dev,
1003		    "could not allocate DMA'able memory for Rx ring.\n");
1004		goto fail;
1005	}
1006	ctx.age_busaddr = 0;
1007	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1008	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1009	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1010	if (error != 0 || ctx.age_busaddr == 0) {
1011		device_printf(sc->age_dev,
1012		    "could not load DMA'able memory for Rx ring.\n");
1013		goto fail;
1014	}
1015	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1016	/* Rx return ring */
1017	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1018	    (void **)&sc->age_rdata.age_rr_ring,
1019	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1020	    &sc->age_cdata.age_rr_ring_map);
1021	if (error != 0) {
1022		device_printf(sc->age_dev,
1023		    "could not allocate DMA'able memory for Rx return ring.\n");
1024		goto fail;
1025	}
1026	ctx.age_busaddr = 0;
1027	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1028	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1029	    AGE_RR_RING_SZ, age_dmamap_cb,
1030	    &ctx, 0);
1031	if (error != 0 || ctx.age_busaddr == 0) {
1032		device_printf(sc->age_dev,
1033		    "could not load DMA'able memory for Rx return ring.\n");
1034		goto fail;
1035	}
1036	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1037	/* CMB block */
1038	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1039	    (void **)&sc->age_rdata.age_cmb_block,
1040	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1041	    &sc->age_cdata.age_cmb_block_map);
1042	if (error != 0) {
1043		device_printf(sc->age_dev,
1044		    "could not allocate DMA'able memory for CMB block.\n");
1045		goto fail;
1046	}
1047	ctx.age_busaddr = 0;
1048	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1049	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1050	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1051	if (error != 0 || ctx.age_busaddr == 0) {
1052		device_printf(sc->age_dev,
1053		    "could not load DMA'able memory for CMB block.\n");
1054		goto fail;
1055	}
1056	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1057	/* SMB block */
1058	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1059	    (void **)&sc->age_rdata.age_smb_block,
1060	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1061	    &sc->age_cdata.age_smb_block_map);
1062	if (error != 0) {
1063		device_printf(sc->age_dev,
1064		    "could not allocate DMA'able memory for SMB block.\n");
1065		goto fail;
1066	}
1067	ctx.age_busaddr = 0;
1068	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1069	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1070	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1071	if (error != 0 || ctx.age_busaddr == 0) {
1072		device_printf(sc->age_dev,
1073		    "could not load DMA'able memory for SMB block.\n");
1074		goto fail;
1075	}
1076	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1077
1078	/*
1079	 * All ring buffer and DMA blocks should have the same
1080	 * high address part of 64bit DMA address space.
1081	 */
1082	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1083	    (error = age_check_boundary(sc)) != 0) {
1084		device_printf(sc->age_dev, "4GB boundary crossed, "
1085		    "switching to 32bit DMA addressing mode.\n");
1086		age_dma_free(sc);
1087		/* Limit DMA address space to 32bit and try again. */
1088		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1089		goto again;
1090	}
1091
1092	/*
1093	 * Create Tx/Rx buffer parent tag.
1094	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1095	 * so it needs separate parent DMA tag.
1096	 * XXX
1097	 * It seems enabling 64bit DMA causes data corruption. Limit
1098	 * DMA address space to 32bit.
1099	 */
1100	error = bus_dma_tag_create(
1101	    bus_get_dma_tag(sc->age_dev), /* parent */
1102	    1, 0,			/* alignment, boundary */
1103	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1104	    BUS_SPACE_MAXADDR,		/* highaddr */
1105	    NULL, NULL,			/* filter, filterarg */
1106	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1107	    0,				/* nsegments */
1108	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1109	    0,				/* flags */
1110	    NULL, NULL,			/* lockfunc, lockarg */
1111	    &sc->age_cdata.age_buffer_tag);
1112	if (error != 0) {
1113		device_printf(sc->age_dev,
1114		    "could not create parent buffer DMA tag.\n");
1115		goto fail;
1116	}
1117
1118	/* Create tag for Tx buffers. */
1119	error = bus_dma_tag_create(
1120	    sc->age_cdata.age_buffer_tag, /* parent */
1121	    1, 0,			/* alignment, boundary */
1122	    BUS_SPACE_MAXADDR,		/* lowaddr */
1123	    BUS_SPACE_MAXADDR,		/* highaddr */
1124	    NULL, NULL,			/* filter, filterarg */
1125	    AGE_TSO_MAXSIZE,		/* maxsize */
1126	    AGE_MAXTXSEGS,		/* nsegments */
1127	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1128	    0,				/* flags */
1129	    NULL, NULL,			/* lockfunc, lockarg */
1130	    &sc->age_cdata.age_tx_tag);
1131	if (error != 0) {
1132		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1133		goto fail;
1134	}
1135
1136	/* Create tag for Rx buffers. */
1137	error = bus_dma_tag_create(
1138	    sc->age_cdata.age_buffer_tag, /* parent */
1139	    AGE_RX_BUF_ALIGN, 0,	/* alignment, boundary */
1140	    BUS_SPACE_MAXADDR,		/* lowaddr */
1141	    BUS_SPACE_MAXADDR,		/* highaddr */
1142	    NULL, NULL,			/* filter, filterarg */
1143	    MCLBYTES,			/* maxsize */
1144	    1,				/* nsegments */
1145	    MCLBYTES,			/* maxsegsize */
1146	    0,				/* flags */
1147	    NULL, NULL,			/* lockfunc, lockarg */
1148	    &sc->age_cdata.age_rx_tag);
1149	if (error != 0) {
1150		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1151		goto fail;
1152	}
1153
1154	/* Create DMA maps for Tx buffers. */
1155	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1156		txd = &sc->age_cdata.age_txdesc[i];
1157		txd->tx_m = NULL;
1158		txd->tx_dmamap = NULL;
1159		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1160		    &txd->tx_dmamap);
1161		if (error != 0) {
1162			device_printf(sc->age_dev,
1163			    "could not create Tx dmamap.\n");
1164			goto fail;
1165		}
1166	}
1167	/* Create DMA maps for Rx buffers. */
1168	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1170		device_printf(sc->age_dev,
1171		    "could not create spare Rx dmamap.\n");
1172		goto fail;
1173	}
1174	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1175		rxd = &sc->age_cdata.age_rxdesc[i];
1176		rxd->rx_m = NULL;
1177		rxd->rx_dmamap = NULL;
1178		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1179		    &rxd->rx_dmamap);
1180		if (error != 0) {
1181			device_printf(sc->age_dev,
1182			    "could not create Rx dmamap.\n");
1183			goto fail;
1184		}
1185	}
1186
1187fail:
1188	return (error);
1189}
1190
1191static void
1192age_dma_free(struct age_softc *sc)
1193{
1194	struct age_txdesc *txd;
1195	struct age_rxdesc *rxd;
1196	int i;
1197
1198	/* Tx buffers */
1199	if (sc->age_cdata.age_tx_tag != NULL) {
1200		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1201			txd = &sc->age_cdata.age_txdesc[i];
1202			if (txd->tx_dmamap != NULL) {
1203				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1204				    txd->tx_dmamap);
1205				txd->tx_dmamap = NULL;
1206			}
1207		}
1208		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1209		sc->age_cdata.age_tx_tag = NULL;
1210	}
1211	/* Rx buffers */
1212	if (sc->age_cdata.age_rx_tag != NULL) {
1213		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1214			rxd = &sc->age_cdata.age_rxdesc[i];
1215			if (rxd->rx_dmamap != NULL) {
1216				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1217				    rxd->rx_dmamap);
1218				rxd->rx_dmamap = NULL;
1219			}
1220		}
1221		if (sc->age_cdata.age_rx_sparemap != NULL) {
1222			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1223			    sc->age_cdata.age_rx_sparemap);
1224			sc->age_cdata.age_rx_sparemap = NULL;
1225		}
1226		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1227		sc->age_cdata.age_rx_tag = NULL;
1228	}
1229	/* Tx ring. */
1230	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1231		if (sc->age_cdata.age_tx_ring_map != NULL)
1232			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1233			    sc->age_cdata.age_tx_ring_map);
1234		if (sc->age_cdata.age_tx_ring_map != NULL &&
1235		    sc->age_rdata.age_tx_ring != NULL)
1236			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1237			    sc->age_rdata.age_tx_ring,
1238			    sc->age_cdata.age_tx_ring_map);
1239		sc->age_rdata.age_tx_ring = NULL;
1240		sc->age_cdata.age_tx_ring_map = NULL;
1241		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1242		sc->age_cdata.age_tx_ring_tag = NULL;
1243	}
1244	/* Rx ring. */
1245	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1246		if (sc->age_cdata.age_rx_ring_map != NULL)
1247			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1248			    sc->age_cdata.age_rx_ring_map);
1249		if (sc->age_cdata.age_rx_ring_map != NULL &&
1250		    sc->age_rdata.age_rx_ring != NULL)
1251			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1252			    sc->age_rdata.age_rx_ring,
1253			    sc->age_cdata.age_rx_ring_map);
1254		sc->age_rdata.age_rx_ring = NULL;
1255		sc->age_cdata.age_rx_ring_map = NULL;
1256		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1257		sc->age_cdata.age_rx_ring_tag = NULL;
1258	}
1259	/* Rx return ring. */
1260	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1261		if (sc->age_cdata.age_rr_ring_map != NULL)
1262			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1263			    sc->age_cdata.age_rr_ring_map);
1264		if (sc->age_cdata.age_rr_ring_map != NULL &&
1265		    sc->age_rdata.age_rr_ring != NULL)
1266			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1267			    sc->age_rdata.age_rr_ring,
1268			    sc->age_cdata.age_rr_ring_map);
1269		sc->age_rdata.age_rr_ring = NULL;
1270		sc->age_cdata.age_rr_ring_map = NULL;
1271		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1272		sc->age_cdata.age_rr_ring_tag = NULL;
1273	}
1274	/* CMB block */
1275	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1276		if (sc->age_cdata.age_cmb_block_map != NULL)
1277			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1278			    sc->age_cdata.age_cmb_block_map);
1279		if (sc->age_cdata.age_cmb_block_map != NULL &&
1280		    sc->age_rdata.age_cmb_block != NULL)
1281			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1282			    sc->age_rdata.age_cmb_block,
1283			    sc->age_cdata.age_cmb_block_map);
1284		sc->age_rdata.age_cmb_block = NULL;
1285		sc->age_cdata.age_cmb_block_map = NULL;
1286		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1287		sc->age_cdata.age_cmb_block_tag = NULL;
1288	}
1289	/* SMB block */
1290	if (sc->age_cdata.age_smb_block_tag != NULL) {
1291		if (sc->age_cdata.age_smb_block_map != NULL)
1292			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1293			    sc->age_cdata.age_smb_block_map);
1294		if (sc->age_cdata.age_smb_block_map != NULL &&
1295		    sc->age_rdata.age_smb_block != NULL)
1296			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1297			    sc->age_rdata.age_smb_block,
1298			    sc->age_cdata.age_smb_block_map);
1299		sc->age_rdata.age_smb_block = NULL;
1300		sc->age_cdata.age_smb_block_map = NULL;
1301		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1302		sc->age_cdata.age_smb_block_tag = NULL;
1303	}
1304
1305	if (sc->age_cdata.age_buffer_tag != NULL) {
1306		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1307		sc->age_cdata.age_buffer_tag = NULL;
1308	}
1309	if (sc->age_cdata.age_parent_tag != NULL) {
1310		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1311		sc->age_cdata.age_parent_tag = NULL;
1312	}
1313}
1314
1315/*
1316 *	Make sure the interface is stopped at reboot time.
1317 */
1318static int
1319age_shutdown(device_t dev)
1320{
1321
1322	return (age_suspend(dev));
1323}
1324
1325static void
1326age_setwol(struct age_softc *sc)
1327{
1328	struct ifnet *ifp;
1329	struct mii_data *mii;
1330	uint32_t reg, pmcs;
1331	uint16_t pmstat;
1332	int aneg, i, pmc;
1333
1334	AGE_LOCK_ASSERT(sc);
1335
1336	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1337		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1338		/*
1339		 * No PME capability, PHY power down.
1340		 * XXX
1341		 * Due to an unknown reason powering down PHY resulted
1342		 * in unexpected results such as inaccessbility of
1343		 * hardware of freshly rebooted system. Disable
1344		 * powering down PHY until I got more information for
1345		 * Attansic/Atheros PHY hardwares.
1346		 */
1347#ifdef notyet
1348		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1349		    MII_BMCR, BMCR_PDOWN);
1350#endif
1351		return;
1352	}
1353
1354	ifp = sc->age_ifp;
1355	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1356		/*
1357		 * Note, this driver resets the link speed to 10/100Mbps with
1358		 * auto-negotiation but we don't know whether that operation
1359		 * would succeed or not as it have no control after powering
1360		 * off. If the renegotiation fail WOL may not work. Running
1361		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1362		 * specified in PCI specification and that would result in
1363		 * complete shutdowning power to ethernet controller.
1364		 *
1365		 * TODO
1366		 *  Save current negotiated media speed/duplex/flow-control
1367		 *  to softc and restore the same link again after resuming.
1368		 *  PHY handling such as power down/resetting to 100Mbps
1369		 *  may be better handled in suspend method in phy driver.
1370		 */
1371		mii = device_get_softc(sc->age_miibus);
1372		mii_pollstat(mii);
1373		aneg = 0;
1374		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1375			switch IFM_SUBTYPE(mii->mii_media_active) {
1376			case IFM_10_T:
1377			case IFM_100_TX:
1378				goto got_link;
1379			case IFM_1000_T:
1380				aneg++;
1381			default:
1382				break;
1383			}
1384		}
1385		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386		    MII_100T2CR, 0);
1387		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1389		    ANAR_10 | ANAR_CSMA);
1390		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1392		DELAY(1000);
1393		if (aneg != 0) {
1394			/* Poll link state until age(4) get a 10/100 link. */
1395			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1396				mii_pollstat(mii);
1397				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1398					switch (IFM_SUBTYPE(
1399					    mii->mii_media_active)) {
1400					case IFM_10_T:
1401					case IFM_100_TX:
1402						age_mac_config(sc);
1403						goto got_link;
1404					default:
1405						break;
1406					}
1407				}
1408				AGE_UNLOCK(sc);
1409				pause("agelnk", hz);
1410				AGE_LOCK(sc);
1411			}
1412			if (i == MII_ANEGTICKS_GIGE)
1413				device_printf(sc->age_dev,
1414				    "establishing link failed, "
1415				    "WOL may not work!");
1416		}
1417		/*
1418		 * No link, force MAC to have 100Mbps, full-duplex link.
1419		 * This is the last resort and may/may not work.
1420		 */
1421		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1422		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1423		age_mac_config(sc);
1424	}
1425
1426got_link:
1427	pmcs = 0;
1428	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1429		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1430	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1431	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1432	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1433	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1434	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1435		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1436	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1437		reg |= MAC_CFG_RX_ENB;
1438		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1439	}
1440
1441	/* Request PME. */
1442	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1443	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1444	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1445		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1446	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1447#ifdef notyet
1448	/* See above for powering down PHY issues. */
1449	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1450		/* No WOL, PHY power down. */
1451		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1452		    MII_BMCR, BMCR_PDOWN);
1453	}
1454#endif
1455}
1456
1457static int
1458age_suspend(device_t dev)
1459{
1460	struct age_softc *sc;
1461
1462	sc = device_get_softc(dev);
1463
1464	AGE_LOCK(sc);
1465	age_stop(sc);
1466	age_setwol(sc);
1467	AGE_UNLOCK(sc);
1468
1469	return (0);
1470}
1471
1472static int
1473age_resume(device_t dev)
1474{
1475	struct age_softc *sc;
1476	struct ifnet *ifp;
1477
1478	sc = device_get_softc(dev);
1479
1480	AGE_LOCK(sc);
1481	age_phy_reset(sc);
1482	ifp = sc->age_ifp;
1483	if ((ifp->if_flags & IFF_UP) != 0)
1484		age_init_locked(sc);
1485
1486	AGE_UNLOCK(sc);
1487
1488	return (0);
1489}
1490
1491static int
1492age_encap(struct age_softc *sc, struct mbuf **m_head)
1493{
1494	struct age_txdesc *txd, *txd_last;
1495	struct tx_desc *desc;
1496	struct mbuf *m;
1497	struct ip *ip;
1498	struct tcphdr *tcp;
1499	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1500	bus_dmamap_t map;
1501	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1502	int error, i, nsegs, prod, si;
1503
1504	AGE_LOCK_ASSERT(sc);
1505
1506	M_ASSERTPKTHDR((*m_head));
1507
1508	m = *m_head;
1509	ip = NULL;
1510	tcp = NULL;
1511	cflags = vtag = 0;
1512	ip_off = poff = 0;
1513	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1514		/*
1515		 * L1 requires offset of TCP/UDP payload in its Tx
1516		 * descriptor to perform hardware Tx checksum offload.
1517		 * Additionally, TSO requires IP/TCP header size and
1518		 * modification of IP/TCP header in order to make TSO
1519		 * engine work. This kind of operation takes many CPU
1520		 * cycles on FreeBSD so fast host CPU is needed to get
1521		 * smooth TSO performance.
1522		 */
1523		struct ether_header *eh;
1524
1525		if (M_WRITABLE(m) == 0) {
1526			/* Get a writable copy. */
1527			m = m_dup(*m_head, M_NOWAIT);
1528			/* Release original mbufs. */
1529			m_freem(*m_head);
1530			if (m == NULL) {
1531				*m_head = NULL;
1532				return (ENOBUFS);
1533			}
1534			*m_head = m;
1535		}
1536		ip_off = sizeof(struct ether_header);
1537		m = m_pullup(m, ip_off);
1538		if (m == NULL) {
1539			*m_head = NULL;
1540			return (ENOBUFS);
1541		}
1542		eh = mtod(m, struct ether_header *);
1543		/*
1544		 * Check if hardware VLAN insertion is off.
1545		 * Additional check for LLC/SNAP frame?
1546		 */
1547		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1548			ip_off = sizeof(struct ether_vlan_header);
1549			m = m_pullup(m, ip_off);
1550			if (m == NULL) {
1551				*m_head = NULL;
1552				return (ENOBUFS);
1553			}
1554		}
1555		m = m_pullup(m, ip_off + sizeof(struct ip));
1556		if (m == NULL) {
1557			*m_head = NULL;
1558			return (ENOBUFS);
1559		}
1560		ip = (struct ip *)(mtod(m, char *) + ip_off);
1561		poff = ip_off + (ip->ip_hl << 2);
1562		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1563			m = m_pullup(m, poff + sizeof(struct tcphdr));
1564			if (m == NULL) {
1565				*m_head = NULL;
1566				return (ENOBUFS);
1567			}
1568			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1569			m = m_pullup(m, poff + (tcp->th_off << 2));
1570			if (m == NULL) {
1571				*m_head = NULL;
1572				return (ENOBUFS);
1573			}
1574			/*
1575			 * L1 requires IP/TCP header size and offset as
1576			 * well as TCP pseudo checksum which complicates
1577			 * TSO configuration. I guess this comes from the
1578			 * adherence to Microsoft NDIS Large Send
1579			 * specification which requires insertion of
1580			 * pseudo checksum by upper stack. The pseudo
1581			 * checksum that NDIS refers to doesn't include
1582			 * TCP payload length so age(4) should recompute
1583			 * the pseudo checksum here. Hopefully this wouldn't
1584			 * be much burden on modern CPUs.
1585			 * Reset IP checksum and recompute TCP pseudo
1586			 * checksum as NDIS specification said.
1587			 */
1588			ip = (struct ip *)(mtod(m, char *) + ip_off);
1589			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1590			ip->ip_sum = 0;
1591			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1592			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1593		}
1594		*m_head = m;
1595	}
1596
1597	si = prod = sc->age_cdata.age_tx_prod;
1598	txd = &sc->age_cdata.age_txdesc[prod];
1599	txd_last = txd;
1600	map = txd->tx_dmamap;
1601
1602	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1603	    *m_head, txsegs, &nsegs, 0);
1604	if (error == EFBIG) {
1605		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1606		if (m == NULL) {
1607			m_freem(*m_head);
1608			*m_head = NULL;
1609			return (ENOMEM);
1610		}
1611		*m_head = m;
1612		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1613		    *m_head, txsegs, &nsegs, 0);
1614		if (error != 0) {
1615			m_freem(*m_head);
1616			*m_head = NULL;
1617			return (error);
1618		}
1619	} else if (error != 0)
1620		return (error);
1621	if (nsegs == 0) {
1622		m_freem(*m_head);
1623		*m_head = NULL;
1624		return (EIO);
1625	}
1626
1627	/* Check descriptor overrun. */
1628	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1629		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1630		return (ENOBUFS);
1631	}
1632
1633	m = *m_head;
1634	/* Configure VLAN hardware tag insertion. */
1635	if ((m->m_flags & M_VLANTAG) != 0) {
1636		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1637		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1638		cflags |= AGE_TD_INSERT_VLAN_TAG;
1639	}
1640
1641	desc = NULL;
1642	i = 0;
1643	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1644		/* Request TSO and set MSS. */
1645		cflags |= AGE_TD_TSO_IPV4;
1646		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1647		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1648		    AGE_TD_TSO_MSS_SHIFT);
1649		/* Set IP/TCP header size. */
1650		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1651		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1652		/*
1653		 * L1 requires the first buffer should only hold IP/TCP
1654		 * header data. TCP payload should be handled in other
1655		 * descriptors.
1656		 */
1657		hdrlen = poff + (tcp->th_off << 2);
1658		desc = &sc->age_rdata.age_tx_ring[prod];
1659		desc->addr = htole64(txsegs[0].ds_addr);
1660		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1661		desc->flags = htole32(cflags);
1662		sc->age_cdata.age_tx_cnt++;
1663		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1664		if (m->m_len - hdrlen > 0) {
1665			/* Handle remaining payload of the 1st fragment. */
1666			desc = &sc->age_rdata.age_tx_ring[prod];
1667			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1668			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1669			    vtag);
1670			desc->flags = htole32(cflags);
1671			sc->age_cdata.age_tx_cnt++;
1672			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1673		}
1674		/* Handle remaining fragments. */
1675		i = 1;
1676	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1677		/* Configure Tx IP/TCP/UDP checksum offload. */
1678		cflags |= AGE_TD_CSUM;
1679		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1680			cflags |= AGE_TD_TCPCSUM;
1681		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1682			cflags |= AGE_TD_UDPCSUM;
1683		/* Set checksum start offset. */
1684		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1685		/* Set checksum insertion position of TCP/UDP. */
1686		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1687		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1688	}
1689	for (; i < nsegs; i++) {
1690		desc = &sc->age_rdata.age_tx_ring[prod];
1691		desc->addr = htole64(txsegs[i].ds_addr);
1692		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1693		desc->flags = htole32(cflags);
1694		sc->age_cdata.age_tx_cnt++;
1695		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1696	}
1697	/* Update producer index. */
1698	sc->age_cdata.age_tx_prod = prod;
1699
1700	/* Set EOP on the last descriptor. */
1701	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1702	desc = &sc->age_rdata.age_tx_ring[prod];
1703	desc->flags |= htole32(AGE_TD_EOP);
1704
1705	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1706	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1707		desc = &sc->age_rdata.age_tx_ring[si];
1708		desc->flags |= htole32(AGE_TD_TSO_HDR);
1709	}
1710
1711	/* Swap dmamap of the first and the last. */
1712	txd = &sc->age_cdata.age_txdesc[prod];
1713	map = txd_last->tx_dmamap;
1714	txd_last->tx_dmamap = txd->tx_dmamap;
1715	txd->tx_dmamap = map;
1716	txd->tx_m = m;
1717
1718	/* Sync descriptors. */
1719	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1720	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1721	    sc->age_cdata.age_tx_ring_map,
1722	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1723
1724	return (0);
1725}
1726
1727static void
1728age_start(struct ifnet *ifp)
1729{
1730        struct age_softc *sc;
1731
1732	sc = ifp->if_softc;
1733	AGE_LOCK(sc);
1734	age_start_locked(ifp);
1735	AGE_UNLOCK(sc);
1736}
1737
1738static void
1739age_start_locked(struct ifnet *ifp)
1740{
1741        struct age_softc *sc;
1742        struct mbuf *m_head;
1743	int enq;
1744
1745	sc = ifp->if_softc;
1746
1747	AGE_LOCK_ASSERT(sc);
1748
1749	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1750	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1751		return;
1752
1753	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1754		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1755		if (m_head == NULL)
1756			break;
1757		/*
1758		 * Pack the data into the transmit ring. If we
1759		 * don't have room, set the OACTIVE flag and wait
1760		 * for the NIC to drain the ring.
1761		 */
1762		if (age_encap(sc, &m_head)) {
1763			if (m_head == NULL)
1764				break;
1765			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1766			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1767			break;
1768		}
1769
1770		enq++;
1771		/*
1772		 * If there's a BPF listener, bounce a copy of this frame
1773		 * to him.
1774		 */
1775		ETHER_BPF_MTAP(ifp, m_head);
1776	}
1777
1778	if (enq > 0) {
1779		/* Update mbox. */
1780		AGE_COMMIT_MBOX(sc);
1781		/* Set a timeout in case the chip goes out to lunch. */
1782		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1783	}
1784}
1785
1786static void
1787age_watchdog(struct age_softc *sc)
1788{
1789	struct ifnet *ifp;
1790
1791	AGE_LOCK_ASSERT(sc);
1792
1793	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1794		return;
1795
1796	ifp = sc->age_ifp;
1797	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1798		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1799		ifp->if_oerrors++;
1800		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1801		age_init_locked(sc);
1802		return;
1803	}
1804	if (sc->age_cdata.age_tx_cnt == 0) {
1805		if_printf(sc->age_ifp,
1806		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1807		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1808			age_start_locked(ifp);
1809		return;
1810	}
1811	if_printf(sc->age_ifp, "watchdog timeout\n");
1812	ifp->if_oerrors++;
1813	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1814	age_init_locked(sc);
1815	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1816		age_start_locked(ifp);
1817}
1818
1819static int
1820age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1821{
1822	struct age_softc *sc;
1823	struct ifreq *ifr;
1824	struct mii_data *mii;
1825	uint32_t reg;
1826	int error, mask;
1827
1828	sc = ifp->if_softc;
1829	ifr = (struct ifreq *)data;
1830	error = 0;
1831	switch (cmd) {
1832	case SIOCSIFMTU:
1833		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1834			error = EINVAL;
1835		else if (ifp->if_mtu != ifr->ifr_mtu) {
1836			AGE_LOCK(sc);
1837			ifp->if_mtu = ifr->ifr_mtu;
1838			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1839				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1840				age_init_locked(sc);
1841			}
1842			AGE_UNLOCK(sc);
1843		}
1844		break;
1845	case SIOCSIFFLAGS:
1846		AGE_LOCK(sc);
1847		if ((ifp->if_flags & IFF_UP) != 0) {
1848			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1849				if (((ifp->if_flags ^ sc->age_if_flags)
1850				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1851					age_rxfilter(sc);
1852			} else {
1853				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1854					age_init_locked(sc);
1855			}
1856		} else {
1857			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1858				age_stop(sc);
1859		}
1860		sc->age_if_flags = ifp->if_flags;
1861		AGE_UNLOCK(sc);
1862		break;
1863	case SIOCADDMULTI:
1864	case SIOCDELMULTI:
1865		AGE_LOCK(sc);
1866		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1867			age_rxfilter(sc);
1868		AGE_UNLOCK(sc);
1869		break;
1870	case SIOCSIFMEDIA:
1871	case SIOCGIFMEDIA:
1872		mii = device_get_softc(sc->age_miibus);
1873		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1874		break;
1875	case SIOCSIFCAP:
1876		AGE_LOCK(sc);
1877		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1878		if ((mask & IFCAP_TXCSUM) != 0 &&
1879		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1880			ifp->if_capenable ^= IFCAP_TXCSUM;
1881			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1882				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1883			else
1884				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1885		}
1886		if ((mask & IFCAP_RXCSUM) != 0 &&
1887		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1888			ifp->if_capenable ^= IFCAP_RXCSUM;
1889			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1890			reg &= ~MAC_CFG_RXCSUM_ENB;
1891			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1892				reg |= MAC_CFG_RXCSUM_ENB;
1893			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1894		}
1895		if ((mask & IFCAP_TSO4) != 0 &&
1896		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1897			ifp->if_capenable ^= IFCAP_TSO4;
1898			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1899				ifp->if_hwassist |= CSUM_TSO;
1900			else
1901				ifp->if_hwassist &= ~CSUM_TSO;
1902		}
1903
1904		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1905		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1906			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1907		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1908		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1909			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1910		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1911		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1912			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1913		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1914		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1915			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1916		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1917		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1918			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1919			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1920				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1921			age_rxvlan(sc);
1922		}
1923		AGE_UNLOCK(sc);
1924		VLAN_CAPABILITIES(ifp);
1925		break;
1926	default:
1927		error = ether_ioctl(ifp, cmd, data);
1928		break;
1929	}
1930
1931	return (error);
1932}
1933
1934static void
1935age_mac_config(struct age_softc *sc)
1936{
1937	struct mii_data *mii;
1938	uint32_t reg;
1939
1940	AGE_LOCK_ASSERT(sc);
1941
1942	mii = device_get_softc(sc->age_miibus);
1943	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1944	reg &= ~MAC_CFG_FULL_DUPLEX;
1945	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1946	reg &= ~MAC_CFG_SPEED_MASK;
1947	/* Reprogram MAC with resolved speed/duplex. */
1948	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1949	case IFM_10_T:
1950	case IFM_100_TX:
1951		reg |= MAC_CFG_SPEED_10_100;
1952		break;
1953	case IFM_1000_T:
1954		reg |= MAC_CFG_SPEED_1000;
1955		break;
1956	}
1957	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1958		reg |= MAC_CFG_FULL_DUPLEX;
1959#ifdef notyet
1960		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1961			reg |= MAC_CFG_TX_FC;
1962		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1963			reg |= MAC_CFG_RX_FC;
1964#endif
1965	}
1966
1967	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1968}
1969
1970static void
1971age_link_task(void *arg, int pending)
1972{
1973	struct age_softc *sc;
1974	struct mii_data *mii;
1975	struct ifnet *ifp;
1976	uint32_t reg;
1977
1978	sc = (struct age_softc *)arg;
1979
1980	AGE_LOCK(sc);
1981	mii = device_get_softc(sc->age_miibus);
1982	ifp = sc->age_ifp;
1983	if (mii == NULL || ifp == NULL ||
1984	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1985		AGE_UNLOCK(sc);
1986		return;
1987	}
1988
1989	sc->age_flags &= ~AGE_FLAG_LINK;
1990	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1991		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1992		case IFM_10_T:
1993		case IFM_100_TX:
1994		case IFM_1000_T:
1995			sc->age_flags |= AGE_FLAG_LINK;
1996			break;
1997		default:
1998			break;
1999		}
2000	}
2001
2002	/* Stop Rx/Tx MACs. */
2003	age_stop_rxmac(sc);
2004	age_stop_txmac(sc);
2005
2006	/* Program MACs with resolved speed/duplex/flow-control. */
2007	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2008		age_mac_config(sc);
2009		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2010		/* Restart DMA engine and Tx/Rx MAC. */
2011		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2012		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2013		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2014		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2015	}
2016
2017	AGE_UNLOCK(sc);
2018}
2019
2020static void
2021age_stats_update(struct age_softc *sc)
2022{
2023	struct age_stats *stat;
2024	struct smb *smb;
2025	struct ifnet *ifp;
2026
2027	AGE_LOCK_ASSERT(sc);
2028
2029	stat = &sc->age_stat;
2030
2031	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2032	    sc->age_cdata.age_smb_block_map,
2033	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2034
2035	smb = sc->age_rdata.age_smb_block;
2036	if (smb->updated == 0)
2037		return;
2038
2039	ifp = sc->age_ifp;
2040	/* Rx stats. */
2041	stat->rx_frames += smb->rx_frames;
2042	stat->rx_bcast_frames += smb->rx_bcast_frames;
2043	stat->rx_mcast_frames += smb->rx_mcast_frames;
2044	stat->rx_pause_frames += smb->rx_pause_frames;
2045	stat->rx_control_frames += smb->rx_control_frames;
2046	stat->rx_crcerrs += smb->rx_crcerrs;
2047	stat->rx_lenerrs += smb->rx_lenerrs;
2048	stat->rx_bytes += smb->rx_bytes;
2049	stat->rx_runts += smb->rx_runts;
2050	stat->rx_fragments += smb->rx_fragments;
2051	stat->rx_pkts_64 += smb->rx_pkts_64;
2052	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2053	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2054	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2055	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2056	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2057	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2058	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2059	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2060	stat->rx_desc_oflows += smb->rx_desc_oflows;
2061	stat->rx_alignerrs += smb->rx_alignerrs;
2062	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2063	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2064	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2065
2066	/* Tx stats. */
2067	stat->tx_frames += smb->tx_frames;
2068	stat->tx_bcast_frames += smb->tx_bcast_frames;
2069	stat->tx_mcast_frames += smb->tx_mcast_frames;
2070	stat->tx_pause_frames += smb->tx_pause_frames;
2071	stat->tx_excess_defer += smb->tx_excess_defer;
2072	stat->tx_control_frames += smb->tx_control_frames;
2073	stat->tx_deferred += smb->tx_deferred;
2074	stat->tx_bytes += smb->tx_bytes;
2075	stat->tx_pkts_64 += smb->tx_pkts_64;
2076	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2077	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2078	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2079	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2080	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2081	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2082	stat->tx_single_colls += smb->tx_single_colls;
2083	stat->tx_multi_colls += smb->tx_multi_colls;
2084	stat->tx_late_colls += smb->tx_late_colls;
2085	stat->tx_excess_colls += smb->tx_excess_colls;
2086	stat->tx_underrun += smb->tx_underrun;
2087	stat->tx_desc_underrun += smb->tx_desc_underrun;
2088	stat->tx_lenerrs += smb->tx_lenerrs;
2089	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2090	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2091	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2092
2093	/* Update counters in ifnet. */
2094	ifp->if_opackets += smb->tx_frames;
2095
2096	ifp->if_collisions += smb->tx_single_colls +
2097	    smb->tx_multi_colls + smb->tx_late_colls +
2098	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2099
2100	ifp->if_oerrors += smb->tx_excess_colls +
2101	    smb->tx_late_colls + smb->tx_underrun +
2102	    smb->tx_pkts_truncated;
2103
2104	ifp->if_ipackets += smb->rx_frames;
2105
2106	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2107	    smb->rx_runts + smb->rx_pkts_truncated +
2108	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2109	    smb->rx_alignerrs;
2110
2111	/* Update done, clear. */
2112	smb->updated = 0;
2113
2114	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2115	    sc->age_cdata.age_smb_block_map,
2116	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2117}
2118
2119static int
2120age_intr(void *arg)
2121{
2122	struct age_softc *sc;
2123	uint32_t status;
2124
2125	sc = (struct age_softc *)arg;
2126
2127	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2128	if (status == 0 || (status & AGE_INTRS) == 0)
2129		return (FILTER_STRAY);
2130	/* Disable interrupts. */
2131	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2132	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2133
2134	return (FILTER_HANDLED);
2135}
2136
2137static void
2138age_int_task(void *arg, int pending)
2139{
2140	struct age_softc *sc;
2141	struct ifnet *ifp;
2142	struct cmb *cmb;
2143	uint32_t status;
2144
2145	sc = (struct age_softc *)arg;
2146
2147	AGE_LOCK(sc);
2148
2149	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2150	    sc->age_cdata.age_cmb_block_map,
2151	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2152	cmb = sc->age_rdata.age_cmb_block;
2153	status = le32toh(cmb->intr_status);
2154	if (sc->age_morework != 0)
2155		status |= INTR_CMB_RX;
2156	if ((status & AGE_INTRS) == 0)
2157		goto done;
2158
2159	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2160	    TPD_CONS_SHIFT;
2161	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2162	    RRD_PROD_SHIFT;
2163	/* Let hardware know CMB was served. */
2164	cmb->intr_status = 0;
2165	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2166	    sc->age_cdata.age_cmb_block_map,
2167	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2168
2169#if 0
2170	printf("INTR: 0x%08x\n", status);
2171	status &= ~INTR_DIS_DMA;
2172	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2173#endif
2174	ifp = sc->age_ifp;
2175	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2176		if ((status & INTR_CMB_RX) != 0)
2177			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2178			    sc->age_process_limit);
2179		if ((status & INTR_CMB_TX) != 0)
2180			age_txintr(sc, sc->age_tpd_cons);
2181		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2182			if ((status & INTR_DMA_RD_TO_RST) != 0)
2183				device_printf(sc->age_dev,
2184				    "DMA read error! -- resetting\n");
2185			if ((status & INTR_DMA_WR_TO_RST) != 0)
2186				device_printf(sc->age_dev,
2187				    "DMA write error! -- resetting\n");
2188			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2189			age_init_locked(sc);
2190		}
2191		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2192			age_start_locked(ifp);
2193		if ((status & INTR_SMB) != 0)
2194			age_stats_update(sc);
2195	}
2196
2197	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2198	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2199	    sc->age_cdata.age_cmb_block_map,
2200	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2201	status = le32toh(cmb->intr_status);
2202	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2203		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2204		AGE_UNLOCK(sc);
2205		return;
2206	}
2207
2208done:
2209	/* Re-enable interrupts. */
2210	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2211	AGE_UNLOCK(sc);
2212}
2213
2214static void
2215age_txintr(struct age_softc *sc, int tpd_cons)
2216{
2217	struct ifnet *ifp;
2218	struct age_txdesc *txd;
2219	int cons, prog;
2220
2221	AGE_LOCK_ASSERT(sc);
2222
2223	ifp = sc->age_ifp;
2224
2225	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2226	    sc->age_cdata.age_tx_ring_map,
2227	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2228
2229	/*
2230	 * Go through our Tx list and free mbufs for those
2231	 * frames which have been transmitted.
2232	 */
2233	cons = sc->age_cdata.age_tx_cons;
2234	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2235		if (sc->age_cdata.age_tx_cnt <= 0)
2236			break;
2237		prog++;
2238		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2239		sc->age_cdata.age_tx_cnt--;
2240		txd = &sc->age_cdata.age_txdesc[cons];
2241		/*
2242		 * Clear Tx descriptors, it's not required but would
2243		 * help debugging in case of Tx issues.
2244		 */
2245		txd->tx_desc->addr = 0;
2246		txd->tx_desc->len = 0;
2247		txd->tx_desc->flags = 0;
2248
2249		if (txd->tx_m == NULL)
2250			continue;
2251		/* Reclaim transmitted mbufs. */
2252		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2253		    BUS_DMASYNC_POSTWRITE);
2254		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2255		m_freem(txd->tx_m);
2256		txd->tx_m = NULL;
2257	}
2258
2259	if (prog > 0) {
2260		sc->age_cdata.age_tx_cons = cons;
2261
2262		/*
2263		 * Unarm watchdog timer only when there are no pending
2264		 * Tx descriptors in queue.
2265		 */
2266		if (sc->age_cdata.age_tx_cnt == 0)
2267			sc->age_watchdog_timer = 0;
2268		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2269		    sc->age_cdata.age_tx_ring_map,
2270		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2271	}
2272}
2273
2274#ifndef __NO_STRICT_ALIGNMENT
2275static struct mbuf *
2276age_fixup_rx(struct ifnet *ifp, struct mbuf *m)
2277{
2278	struct mbuf *n;
2279        int i;
2280        uint16_t *src, *dst;
2281
2282	src = mtod(m, uint16_t *);
2283	dst = src - 3;
2284
2285	if (m->m_next == NULL) {
2286		for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++)
2287			*dst++ = *src++;
2288		m->m_data -= 6;
2289		return (m);
2290	}
2291	/*
2292	 * Append a new mbuf to received mbuf chain and copy ethernet
2293	 * header from the mbuf chain. This can save lots of CPU
2294	 * cycles for jumbo frame.
2295	 */
2296	MGETHDR(n, M_NOWAIT, MT_DATA);
2297	if (n == NULL) {
2298		ifp->if_iqdrops++;
2299		m_freem(m);
2300		return (NULL);
2301	}
2302	bcopy(m->m_data, n->m_data, ETHER_HDR_LEN);
2303	m->m_data += ETHER_HDR_LEN;
2304	m->m_len -= ETHER_HDR_LEN;
2305	n->m_len = ETHER_HDR_LEN;
2306	M_MOVE_PKTHDR(n, m);
2307	n->m_next = m;
2308	return (n);
2309}
2310#endif
2311
2312/* Receive a frame. */
2313static void
2314age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2315{
2316	struct age_rxdesc *rxd;
2317	struct ifnet *ifp;
2318	struct mbuf *mp, *m;
2319	uint32_t status, index, vtag;
2320	int count, nsegs;
2321	int rx_cons;
2322
2323	AGE_LOCK_ASSERT(sc);
2324
2325	ifp = sc->age_ifp;
2326	status = le32toh(rxrd->flags);
2327	index = le32toh(rxrd->index);
2328	rx_cons = AGE_RX_CONS(index);
2329	nsegs = AGE_RX_NSEGS(index);
2330
2331	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2332	if ((status & (AGE_RRD_ERROR | AGE_RRD_LENGTH_NOK)) != 0) {
2333		/*
2334		 * We want to pass the following frames to upper
2335		 * layer regardless of error status of Rx return
2336		 * ring.
2337		 *
2338		 *  o IP/TCP/UDP checksum is bad.
2339		 *  o frame length and protocol specific length
2340		 *     does not match.
2341		 */
2342		status |= AGE_RRD_IPCSUM_NOK | AGE_RRD_TCP_UDPCSUM_NOK;
2343		if ((status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2344		    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0)
2345			return;
2346	}
2347
2348	for (count = 0; count < nsegs; count++,
2349	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2350		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2351		mp = rxd->rx_m;
2352		/* Add a new receive buffer to the ring. */
2353		if (age_newbuf(sc, rxd) != 0) {
2354			ifp->if_iqdrops++;
2355			/* Reuse Rx buffers. */
2356			if (sc->age_cdata.age_rxhead != NULL)
2357				m_freem(sc->age_cdata.age_rxhead);
2358			break;
2359		}
2360
2361		/*
2362		 * Assume we've received a full sized frame.
2363		 * Actual size is fixed when we encounter the end of
2364		 * multi-segmented frame.
2365		 */
2366		mp->m_len = AGE_RX_BUF_SIZE;
2367
2368		/* Chain received mbufs. */
2369		if (sc->age_cdata.age_rxhead == NULL) {
2370			sc->age_cdata.age_rxhead = mp;
2371			sc->age_cdata.age_rxtail = mp;
2372		} else {
2373			mp->m_flags &= ~M_PKTHDR;
2374			sc->age_cdata.age_rxprev_tail =
2375			    sc->age_cdata.age_rxtail;
2376			sc->age_cdata.age_rxtail->m_next = mp;
2377			sc->age_cdata.age_rxtail = mp;
2378		}
2379
2380		if (count == nsegs - 1) {
2381			/* Last desc. for this frame. */
2382			m = sc->age_cdata.age_rxhead;
2383			m->m_flags |= M_PKTHDR;
2384			/*
2385			 * It seems that L1 controller has no way
2386			 * to tell hardware to strip CRC bytes.
2387			 */
2388			m->m_pkthdr.len = sc->age_cdata.age_rxlen -
2389			    ETHER_CRC_LEN;
2390			if (nsegs > 1) {
2391				/* Set last mbuf size. */
2392				mp->m_len = sc->age_cdata.age_rxlen -
2393				    ((nsegs - 1) * AGE_RX_BUF_SIZE);
2394				/* Remove the CRC bytes in chained mbufs. */
2395				if (mp->m_len <= ETHER_CRC_LEN) {
2396					sc->age_cdata.age_rxtail =
2397					    sc->age_cdata.age_rxprev_tail;
2398					sc->age_cdata.age_rxtail->m_len -=
2399					    (ETHER_CRC_LEN - mp->m_len);
2400					sc->age_cdata.age_rxtail->m_next = NULL;
2401					m_freem(mp);
2402				} else {
2403					mp->m_len -= ETHER_CRC_LEN;
2404				}
2405			} else
2406				m->m_len = m->m_pkthdr.len;
2407			m->m_pkthdr.rcvif = ifp;
2408			/*
2409			 * Set checksum information.
2410			 * It seems that L1 controller can compute partial
2411			 * checksum. The partial checksum value can be used
2412			 * to accelerate checksum computation for fragmented
2413			 * TCP/UDP packets. Upper network stack already
2414			 * takes advantage of the partial checksum value in
2415			 * IP reassembly stage. But I'm not sure the
2416			 * correctness of the partial hardware checksum
2417			 * assistance due to lack of data sheet. If it is
2418			 * proven to work on L1 I'll enable it.
2419			 */
2420			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2421			    (status & AGE_RRD_IPV4) != 0) {
2422				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2423					m->m_pkthdr.csum_flags |=
2424					    CSUM_IP_CHECKED | CSUM_IP_VALID;
2425				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2426				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2427					m->m_pkthdr.csum_flags |=
2428					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2429					m->m_pkthdr.csum_data = 0xffff;
2430				}
2431				/*
2432				 * Don't mark bad checksum for TCP/UDP frames
2433				 * as fragmented frames may always have set
2434				 * bad checksummed bit of descriptor status.
2435				 */
2436			}
2437
2438			/* Check for VLAN tagged frames. */
2439			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2440			    (status & AGE_RRD_VLAN) != 0) {
2441				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2442				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2443				m->m_flags |= M_VLANTAG;
2444			}
2445#ifndef __NO_STRICT_ALIGNMENT
2446			m = age_fixup_rx(ifp, m);
2447			if (m != NULL)
2448#endif
2449			{
2450			/* Pass it on. */
2451			AGE_UNLOCK(sc);
2452			(*ifp->if_input)(ifp, m);
2453			AGE_LOCK(sc);
2454			}
2455		}
2456	}
2457
2458	/* Reset mbuf chains. */
2459	AGE_RXCHAIN_RESET(sc);
2460}
2461
2462static int
2463age_rxintr(struct age_softc *sc, int rr_prod, int count)
2464{
2465	struct rx_rdesc *rxrd;
2466	int rr_cons, nsegs, pktlen, prog;
2467
2468	AGE_LOCK_ASSERT(sc);
2469
2470	rr_cons = sc->age_cdata.age_rr_cons;
2471	if (rr_cons == rr_prod)
2472		return (0);
2473
2474	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2475	    sc->age_cdata.age_rr_ring_map,
2476	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2477	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2478	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2479
2480	for (prog = 0; rr_cons != rr_prod; prog++) {
2481		if (count <= 0)
2482			break;
2483		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2484		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2485		if (nsegs == 0)
2486			break;
2487		/*
2488		 * Check number of segments against received bytes.
2489		 * Non-matching value would indicate that hardware
2490		 * is still trying to update Rx return descriptors.
2491		 * I'm not sure whether this check is really needed.
2492		 */
2493		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2494		if (nsegs != (pktlen + (AGE_RX_BUF_SIZE - 1)) / AGE_RX_BUF_SIZE)
2495			break;
2496
2497		/* Received a frame. */
2498		age_rxeof(sc, rxrd);
2499		/* Clear return ring. */
2500		rxrd->index = 0;
2501		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2502		sc->age_cdata.age_rx_cons += nsegs;
2503		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2504	}
2505
2506	if (prog > 0) {
2507		/* Update the consumer index. */
2508		sc->age_cdata.age_rr_cons = rr_cons;
2509
2510		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2511		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2512		/* Sync descriptors. */
2513		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2514		    sc->age_cdata.age_rr_ring_map,
2515		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2516
2517		/* Notify hardware availability of new Rx buffers. */
2518		AGE_COMMIT_MBOX(sc);
2519	}
2520
2521	return (count > 0 ? 0 : EAGAIN);
2522}
2523
2524static void
2525age_tick(void *arg)
2526{
2527	struct age_softc *sc;
2528	struct mii_data *mii;
2529
2530	sc = (struct age_softc *)arg;
2531
2532	AGE_LOCK_ASSERT(sc);
2533
2534	mii = device_get_softc(sc->age_miibus);
2535	mii_tick(mii);
2536	age_watchdog(sc);
2537	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2538}
2539
2540static void
2541age_reset(struct age_softc *sc)
2542{
2543	uint32_t reg;
2544	int i;
2545
2546	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2547	CSR_READ_4(sc, AGE_MASTER_CFG);
2548	DELAY(1000);
2549	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2550		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2551			break;
2552		DELAY(10);
2553	}
2554
2555	if (i == 0)
2556		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2557	/* Initialize PCIe module. From Linux. */
2558	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2559	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2560}
2561
2562static void
2563age_init(void *xsc)
2564{
2565	struct age_softc *sc;
2566
2567	sc = (struct age_softc *)xsc;
2568	AGE_LOCK(sc);
2569	age_init_locked(sc);
2570	AGE_UNLOCK(sc);
2571}
2572
2573static void
2574age_init_locked(struct age_softc *sc)
2575{
2576	struct ifnet *ifp;
2577	struct mii_data *mii;
2578	uint8_t eaddr[ETHER_ADDR_LEN];
2579	bus_addr_t paddr;
2580	uint32_t reg, fsize;
2581	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2582	int error;
2583
2584	AGE_LOCK_ASSERT(sc);
2585
2586	ifp = sc->age_ifp;
2587	mii = device_get_softc(sc->age_miibus);
2588
2589	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2590		return;
2591
2592	/*
2593	 * Cancel any pending I/O.
2594	 */
2595	age_stop(sc);
2596
2597	/*
2598	 * Reset the chip to a known state.
2599	 */
2600	age_reset(sc);
2601
2602	/* Initialize descriptors. */
2603	error = age_init_rx_ring(sc);
2604        if (error != 0) {
2605                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2606                age_stop(sc);
2607		return;
2608        }
2609	age_init_rr_ring(sc);
2610	age_init_tx_ring(sc);
2611	age_init_cmb_block(sc);
2612	age_init_smb_block(sc);
2613
2614	/* Reprogram the station address. */
2615	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2616	CSR_WRITE_4(sc, AGE_PAR0,
2617	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2618	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2619
2620	/* Set descriptor base addresses. */
2621	paddr = sc->age_rdata.age_tx_ring_paddr;
2622	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2623	paddr = sc->age_rdata.age_rx_ring_paddr;
2624	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2625	paddr = sc->age_rdata.age_rr_ring_paddr;
2626	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2627	paddr = sc->age_rdata.age_tx_ring_paddr;
2628	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2629	paddr = sc->age_rdata.age_cmb_block_paddr;
2630	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2631	paddr = sc->age_rdata.age_smb_block_paddr;
2632	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2633	/* Set Rx/Rx return descriptor counter. */
2634	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2635	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2636	    DESC_RRD_CNT_MASK) |
2637	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2638	/* Set Tx descriptor counter. */
2639	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2640	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2641
2642	/* Tell hardware that we're ready to load descriptors. */
2643	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2644
2645	/*
2646	 * Initialize mailbox register.
2647	 * Updated producer/consumer index information is exchanged
2648	 * through this mailbox register. However Tx producer and
2649	 * Rx return consumer/Rx producer are all shared such that
2650	 * it's hard to separate code path between Tx and Rx without
2651	 * locking. If L1 hardware have a separate mail box register
2652	 * for Tx and Rx consumer/producer management we could have
2653	 * indepent Tx/Rx handler which in turn Rx handler could have
2654	 * been run without any locking.
2655	 */
2656	AGE_COMMIT_MBOX(sc);
2657
2658	/* Configure IPG/IFG parameters. */
2659	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2660	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2661	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2662	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2663	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2664
2665	/* Set parameters for half-duplex media. */
2666	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2667	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2668	    HDPX_CFG_LCOL_MASK) |
2669	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2670	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2671	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2672	    HDPX_CFG_ABEBT_MASK) |
2673	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2674	    HDPX_CFG_JAMIPG_MASK));
2675
2676	/* Configure interrupt moderation timer. */
2677	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2678	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2679	reg &= ~MASTER_MTIMER_ENB;
2680	if (AGE_USECS(sc->age_int_mod) == 0)
2681		reg &= ~MASTER_ITIMER_ENB;
2682	else
2683		reg |= MASTER_ITIMER_ENB;
2684	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2685	if (bootverbose)
2686		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2687		    sc->age_int_mod);
2688	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2689
2690	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2691	if (ifp->if_mtu < ETHERMTU)
2692		sc->age_max_frame_size = ETHERMTU;
2693	else
2694		sc->age_max_frame_size = ifp->if_mtu;
2695	sc->age_max_frame_size += ETHER_HDR_LEN +
2696	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2697	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2698	/* Configure jumbo frame. */
2699	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2700	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2701	    (((fsize / sizeof(uint64_t)) <<
2702	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2703	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2704	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2705	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2706	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2707
2708	/* Configure flow-control parameters. From Linux. */
2709	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2710		/*
2711		 * Magic workaround for old-L1.
2712		 * Don't know which hw revision requires this magic.
2713		 */
2714		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2715		/*
2716		 * Another magic workaround for flow-control mode
2717		 * change. From Linux.
2718		 */
2719		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2720	}
2721	/*
2722	 * TODO
2723	 *  Should understand pause parameter relationships between FIFO
2724	 *  size and number of Rx descriptors and Rx return descriptors.
2725	 *
2726	 *  Magic parameters came from Linux.
2727	 */
2728	switch (sc->age_chip_rev) {
2729	case 0x8001:
2730	case 0x9001:
2731	case 0x9002:
2732	case 0x9003:
2733		rxf_hi = AGE_RX_RING_CNT / 16;
2734		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2735		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2736		rrd_lo = AGE_RR_RING_CNT / 16;
2737		break;
2738	default:
2739		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2740		rxf_lo = reg / 16;
2741		if (rxf_lo < 192)
2742			rxf_lo = 192;
2743		rxf_hi = (reg * 7) / 8;
2744		if (rxf_hi < rxf_lo)
2745			rxf_hi = rxf_lo + 16;
2746		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2747		rrd_lo = reg / 8;
2748		rrd_hi = (reg * 7) / 8;
2749		if (rrd_lo < 2)
2750			rrd_lo = 2;
2751		if (rrd_hi < rrd_lo)
2752			rrd_hi = rrd_lo + 3;
2753		break;
2754	}
2755	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2756	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2757	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2758	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2759	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2760	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2761	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2762	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2763	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2764	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2765
2766	/* Configure RxQ. */
2767	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2768	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2769	    RXQ_CFG_RD_BURST_MASK) |
2770	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2771	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2772	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2773	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2774	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2775
2776	/* Configure TxQ. */
2777	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2778	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2779	    TXQ_CFG_TPD_BURST_MASK) |
2780	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2781	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2782	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2783	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2784	    TXQ_CFG_ENB);
2785
2786	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2787	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2788	    TX_JUMBO_TPD_TH_MASK) |
2789	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2790	    TX_JUMBO_TPD_IPG_MASK));
2791	/* Configure DMA parameters. */
2792	CSR_WRITE_4(sc, AGE_DMA_CFG,
2793	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2794	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2795	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2796
2797	/* Configure CMB DMA write threshold. */
2798	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2799	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2800	    CMB_WR_THRESH_RRD_MASK) |
2801	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2802	    CMB_WR_THRESH_TPD_MASK));
2803
2804	/* Set CMB/SMB timer and enable them. */
2805	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2806	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2807	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2808	/* Request SMB updates for every seconds. */
2809	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2810	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2811
2812	/*
2813	 * Disable all WOL bits as WOL can interfere normal Rx
2814	 * operation.
2815	 */
2816	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2817
2818	/*
2819	 * Configure Tx/Rx MACs.
2820	 *  - Auto-padding for short frames.
2821	 *  - Enable CRC generation.
2822	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2823	 *  of MAC is followed after link establishment.
2824	 */
2825	CSR_WRITE_4(sc, AGE_MAC_CFG,
2826	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2827	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2828	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2829	    MAC_CFG_PREAMBLE_MASK));
2830	/* Set up the receive filter. */
2831	age_rxfilter(sc);
2832	age_rxvlan(sc);
2833
2834	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2835	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2836		reg |= MAC_CFG_RXCSUM_ENB;
2837
2838	/* Ack all pending interrupts and clear it. */
2839	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2840	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2841
2842	/* Finally enable Tx/Rx MAC. */
2843	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2844
2845	sc->age_flags &= ~AGE_FLAG_LINK;
2846	/* Switch to the current media. */
2847	mii_mediachg(mii);
2848
2849	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2850
2851	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2852	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2853}
2854
2855static void
2856age_stop(struct age_softc *sc)
2857{
2858	struct ifnet *ifp;
2859	struct age_txdesc *txd;
2860	struct age_rxdesc *rxd;
2861	uint32_t reg;
2862	int i;
2863
2864	AGE_LOCK_ASSERT(sc);
2865	/*
2866	 * Mark the interface down and cancel the watchdog timer.
2867	 */
2868	ifp = sc->age_ifp;
2869	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2870	sc->age_flags &= ~AGE_FLAG_LINK;
2871	callout_stop(&sc->age_tick_ch);
2872	sc->age_watchdog_timer = 0;
2873
2874	/*
2875	 * Disable interrupts.
2876	 */
2877	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2878	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2879	/* Stop CMB/SMB updates. */
2880	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2881	/* Stop Rx/Tx MAC. */
2882	age_stop_rxmac(sc);
2883	age_stop_txmac(sc);
2884	/* Stop DMA. */
2885	CSR_WRITE_4(sc, AGE_DMA_CFG,
2886	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2887	/* Stop TxQ/RxQ. */
2888	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2889	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2890	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2891	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2892	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2893		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2894			break;
2895		DELAY(10);
2896	}
2897	if (i == 0)
2898		device_printf(sc->age_dev,
2899		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2900
2901	 /* Reclaim Rx buffers that have been processed. */
2902	if (sc->age_cdata.age_rxhead != NULL)
2903		m_freem(sc->age_cdata.age_rxhead);
2904	AGE_RXCHAIN_RESET(sc);
2905	/*
2906	 * Free RX and TX mbufs still in the queues.
2907	 */
2908	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2909		rxd = &sc->age_cdata.age_rxdesc[i];
2910		if (rxd->rx_m != NULL) {
2911			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2912			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2913			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2914			    rxd->rx_dmamap);
2915			m_freem(rxd->rx_m);
2916			rxd->rx_m = NULL;
2917		}
2918        }
2919	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2920		txd = &sc->age_cdata.age_txdesc[i];
2921		if (txd->tx_m != NULL) {
2922			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2923			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2924			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2925			    txd->tx_dmamap);
2926			m_freem(txd->tx_m);
2927			txd->tx_m = NULL;
2928		}
2929        }
2930}
2931
2932static void
2933age_stop_txmac(struct age_softc *sc)
2934{
2935	uint32_t reg;
2936	int i;
2937
2938	AGE_LOCK_ASSERT(sc);
2939
2940	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2941	if ((reg & MAC_CFG_TX_ENB) != 0) {
2942		reg &= ~MAC_CFG_TX_ENB;
2943		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2944	}
2945	/* Stop Tx DMA engine. */
2946	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2947	if ((reg & DMA_CFG_RD_ENB) != 0) {
2948		reg &= ~DMA_CFG_RD_ENB;
2949		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2950	}
2951	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2952		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2953		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2954			break;
2955		DELAY(10);
2956	}
2957	if (i == 0)
2958		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2959}
2960
2961static void
2962age_stop_rxmac(struct age_softc *sc)
2963{
2964	uint32_t reg;
2965	int i;
2966
2967	AGE_LOCK_ASSERT(sc);
2968
2969	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2970	if ((reg & MAC_CFG_RX_ENB) != 0) {
2971		reg &= ~MAC_CFG_RX_ENB;
2972		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2973	}
2974	/* Stop Rx DMA engine. */
2975	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2976	if ((reg & DMA_CFG_WR_ENB) != 0) {
2977		reg &= ~DMA_CFG_WR_ENB;
2978		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2979	}
2980	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2981		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2982		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2983			break;
2984		DELAY(10);
2985	}
2986	if (i == 0)
2987		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2988}
2989
2990static void
2991age_init_tx_ring(struct age_softc *sc)
2992{
2993	struct age_ring_data *rd;
2994	struct age_txdesc *txd;
2995	int i;
2996
2997	AGE_LOCK_ASSERT(sc);
2998
2999	sc->age_cdata.age_tx_prod = 0;
3000	sc->age_cdata.age_tx_cons = 0;
3001	sc->age_cdata.age_tx_cnt = 0;
3002
3003	rd = &sc->age_rdata;
3004	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3005	for (i = 0; i < AGE_TX_RING_CNT; i++) {
3006		txd = &sc->age_cdata.age_txdesc[i];
3007		txd->tx_desc = &rd->age_tx_ring[i];
3008		txd->tx_m = NULL;
3009	}
3010
3011	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3012	    sc->age_cdata.age_tx_ring_map,
3013	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3014}
3015
3016static int
3017age_init_rx_ring(struct age_softc *sc)
3018{
3019	struct age_ring_data *rd;
3020	struct age_rxdesc *rxd;
3021	int i;
3022
3023	AGE_LOCK_ASSERT(sc);
3024
3025	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3026	sc->age_morework = 0;
3027	rd = &sc->age_rdata;
3028	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3029	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3030		rxd = &sc->age_cdata.age_rxdesc[i];
3031		rxd->rx_m = NULL;
3032		rxd->rx_desc = &rd->age_rx_ring[i];
3033		if (age_newbuf(sc, rxd) != 0)
3034			return (ENOBUFS);
3035	}
3036
3037	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3038	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3039
3040	return (0);
3041}
3042
3043static void
3044age_init_rr_ring(struct age_softc *sc)
3045{
3046	struct age_ring_data *rd;
3047
3048	AGE_LOCK_ASSERT(sc);
3049
3050	sc->age_cdata.age_rr_cons = 0;
3051	AGE_RXCHAIN_RESET(sc);
3052
3053	rd = &sc->age_rdata;
3054	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3055	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3056	    sc->age_cdata.age_rr_ring_map,
3057	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3058}
3059
3060static void
3061age_init_cmb_block(struct age_softc *sc)
3062{
3063	struct age_ring_data *rd;
3064
3065	AGE_LOCK_ASSERT(sc);
3066
3067	rd = &sc->age_rdata;
3068	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3069	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3070	    sc->age_cdata.age_cmb_block_map,
3071	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3072}
3073
3074static void
3075age_init_smb_block(struct age_softc *sc)
3076{
3077	struct age_ring_data *rd;
3078
3079	AGE_LOCK_ASSERT(sc);
3080
3081	rd = &sc->age_rdata;
3082	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3083	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3084	    sc->age_cdata.age_smb_block_map,
3085	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3086}
3087
3088static int
3089age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3090{
3091	struct rx_desc *desc;
3092	struct mbuf *m;
3093	bus_dma_segment_t segs[1];
3094	bus_dmamap_t map;
3095	int nsegs;
3096
3097	AGE_LOCK_ASSERT(sc);
3098
3099	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3100	if (m == NULL)
3101		return (ENOBUFS);
3102	m->m_len = m->m_pkthdr.len = MCLBYTES;
3103#ifndef __NO_STRICT_ALIGNMENT
3104	m_adj(m, AGE_RX_BUF_ALIGN);
3105#endif
3106
3107	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3108	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3109		m_freem(m);
3110		return (ENOBUFS);
3111	}
3112	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3113
3114	if (rxd->rx_m != NULL) {
3115		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3116		    BUS_DMASYNC_POSTREAD);
3117		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3118	}
3119	map = rxd->rx_dmamap;
3120	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3121	sc->age_cdata.age_rx_sparemap = map;
3122	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3123	    BUS_DMASYNC_PREREAD);
3124	rxd->rx_m = m;
3125
3126	desc = rxd->rx_desc;
3127	desc->addr = htole64(segs[0].ds_addr);
3128	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3129	    AGE_RD_LEN_SHIFT);
3130	return (0);
3131}
3132
3133static void
3134age_rxvlan(struct age_softc *sc)
3135{
3136	struct ifnet *ifp;
3137	uint32_t reg;
3138
3139	AGE_LOCK_ASSERT(sc);
3140
3141	ifp = sc->age_ifp;
3142	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3143	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3144	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3145		reg |= MAC_CFG_VLAN_TAG_STRIP;
3146	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3147}
3148
3149static void
3150age_rxfilter(struct age_softc *sc)
3151{
3152	struct ifnet *ifp;
3153	struct ifmultiaddr *ifma;
3154	uint32_t crc;
3155	uint32_t mchash[2];
3156	uint32_t rxcfg;
3157
3158	AGE_LOCK_ASSERT(sc);
3159
3160	ifp = sc->age_ifp;
3161
3162	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3163	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3164	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3165		rxcfg |= MAC_CFG_BCAST;
3166	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3167		if ((ifp->if_flags & IFF_PROMISC) != 0)
3168			rxcfg |= MAC_CFG_PROMISC;
3169		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3170			rxcfg |= MAC_CFG_ALLMULTI;
3171		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3172		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3173		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3174		return;
3175	}
3176
3177	/* Program new filter. */
3178	bzero(mchash, sizeof(mchash));
3179
3180	if_maddr_rlock(ifp);
3181	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3182		if (ifma->ifma_addr->sa_family != AF_LINK)
3183			continue;
3184		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3185		    ifma->ifma_addr), ETHER_ADDR_LEN);
3186		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3187	}
3188	if_maddr_runlock(ifp);
3189
3190	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3191	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3192	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3193}
3194
3195static int
3196sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3197{
3198	struct age_softc *sc;
3199	struct age_stats *stats;
3200	int error, result;
3201
3202	result = -1;
3203	error = sysctl_handle_int(oidp, &result, 0, req);
3204
3205	if (error != 0 || req->newptr == NULL)
3206		return (error);
3207
3208	if (result != 1)
3209		return (error);
3210
3211	sc = (struct age_softc *)arg1;
3212	stats = &sc->age_stat;
3213	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3214	printf("Transmit good frames : %ju\n",
3215	    (uintmax_t)stats->tx_frames);
3216	printf("Transmit good broadcast frames : %ju\n",
3217	    (uintmax_t)stats->tx_bcast_frames);
3218	printf("Transmit good multicast frames : %ju\n",
3219	    (uintmax_t)stats->tx_mcast_frames);
3220	printf("Transmit pause control frames : %u\n",
3221	    stats->tx_pause_frames);
3222	printf("Transmit control frames : %u\n",
3223	    stats->tx_control_frames);
3224	printf("Transmit frames with excessive deferrals : %u\n",
3225	    stats->tx_excess_defer);
3226	printf("Transmit deferrals : %u\n",
3227	    stats->tx_deferred);
3228	printf("Transmit good octets : %ju\n",
3229	    (uintmax_t)stats->tx_bytes);
3230	printf("Transmit good broadcast octets : %ju\n",
3231	    (uintmax_t)stats->tx_bcast_bytes);
3232	printf("Transmit good multicast octets : %ju\n",
3233	    (uintmax_t)stats->tx_mcast_bytes);
3234	printf("Transmit frames 64 bytes : %ju\n",
3235	    (uintmax_t)stats->tx_pkts_64);
3236	printf("Transmit frames 65 to 127 bytes : %ju\n",
3237	    (uintmax_t)stats->tx_pkts_65_127);
3238	printf("Transmit frames 128 to 255 bytes : %ju\n",
3239	    (uintmax_t)stats->tx_pkts_128_255);
3240	printf("Transmit frames 256 to 511 bytes : %ju\n",
3241	    (uintmax_t)stats->tx_pkts_256_511);
3242	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3243	    (uintmax_t)stats->tx_pkts_512_1023);
3244	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3245	    (uintmax_t)stats->tx_pkts_1024_1518);
3246	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3247	    (uintmax_t)stats->tx_pkts_1519_max);
3248	printf("Transmit single collisions : %u\n",
3249	    stats->tx_single_colls);
3250	printf("Transmit multiple collisions : %u\n",
3251	    stats->tx_multi_colls);
3252	printf("Transmit late collisions : %u\n",
3253	    stats->tx_late_colls);
3254	printf("Transmit abort due to excessive collisions : %u\n",
3255	    stats->tx_excess_colls);
3256	printf("Transmit underruns due to FIFO underruns : %u\n",
3257	    stats->tx_underrun);
3258	printf("Transmit descriptor write-back errors : %u\n",
3259	    stats->tx_desc_underrun);
3260	printf("Transmit frames with length mismatched frame size : %u\n",
3261	    stats->tx_lenerrs);
3262	printf("Transmit frames with truncated due to MTU size : %u\n",
3263	    stats->tx_lenerrs);
3264
3265	printf("Receive good frames : %ju\n",
3266	    (uintmax_t)stats->rx_frames);
3267	printf("Receive good broadcast frames : %ju\n",
3268	    (uintmax_t)stats->rx_bcast_frames);
3269	printf("Receive good multicast frames : %ju\n",
3270	    (uintmax_t)stats->rx_mcast_frames);
3271	printf("Receive pause control frames : %u\n",
3272	    stats->rx_pause_frames);
3273	printf("Receive control frames : %u\n",
3274	    stats->rx_control_frames);
3275	printf("Receive CRC errors : %u\n",
3276	    stats->rx_crcerrs);
3277	printf("Receive frames with length errors : %u\n",
3278	    stats->rx_lenerrs);
3279	printf("Receive good octets : %ju\n",
3280	    (uintmax_t)stats->rx_bytes);
3281	printf("Receive good broadcast octets : %ju\n",
3282	    (uintmax_t)stats->rx_bcast_bytes);
3283	printf("Receive good multicast octets : %ju\n",
3284	    (uintmax_t)stats->rx_mcast_bytes);
3285	printf("Receive frames too short : %u\n",
3286	    stats->rx_runts);
3287	printf("Receive fragmented frames : %ju\n",
3288	    (uintmax_t)stats->rx_fragments);
3289	printf("Receive frames 64 bytes : %ju\n",
3290	    (uintmax_t)stats->rx_pkts_64);
3291	printf("Receive frames 65 to 127 bytes : %ju\n",
3292	    (uintmax_t)stats->rx_pkts_65_127);
3293	printf("Receive frames 128 to 255 bytes : %ju\n",
3294	    (uintmax_t)stats->rx_pkts_128_255);
3295	printf("Receive frames 256 to 511 bytes : %ju\n",
3296	    (uintmax_t)stats->rx_pkts_256_511);
3297	printf("Receive frames 512 to 1024 bytes : %ju\n",
3298	    (uintmax_t)stats->rx_pkts_512_1023);
3299	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3300	    (uintmax_t)stats->rx_pkts_1024_1518);
3301	printf("Receive frames 1519 to MTU bytes : %ju\n",
3302	    (uintmax_t)stats->rx_pkts_1519_max);
3303	printf("Receive frames too long : %ju\n",
3304	    (uint64_t)stats->rx_pkts_truncated);
3305	printf("Receive frames with FIFO overflow : %u\n",
3306	    stats->rx_fifo_oflows);
3307	printf("Receive frames with return descriptor overflow : %u\n",
3308	    stats->rx_desc_oflows);
3309	printf("Receive frames with alignment errors : %u\n",
3310	    stats->rx_alignerrs);
3311	printf("Receive frames dropped due to address filtering : %ju\n",
3312	    (uint64_t)stats->rx_pkts_filtered);
3313
3314	return (error);
3315}
3316
3317static int
3318sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3319{
3320	int error, value;
3321
3322	if (arg1 == NULL)
3323		return (EINVAL);
3324	value = *(int *)arg1;
3325	error = sysctl_handle_int(oidp, &value, 0, req);
3326	if (error || req->newptr == NULL)
3327		return (error);
3328	if (value < low || value > high)
3329		return (EINVAL);
3330        *(int *)arg1 = value;
3331
3332        return (0);
3333}
3334
3335static int
3336sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3337{
3338	return (sysctl_int_range(oidp, arg1, arg2, req,
3339	    AGE_PROC_MIN, AGE_PROC_MAX));
3340}
3341
3342static int
3343sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3344{
3345
3346	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3347	    AGE_IM_TIMER_MAX));
3348}
3349