if_age.c revision 243857
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 243857 2012-12-04 09:32:43Z glebius $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78
79MODULE_DEPEND(age, pci, 1, 1, 1);
80MODULE_DEPEND(age, ether, 1, 1, 1);
81MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83/* Tunables. */
84static int msi_disable = 0;
85static int msix_disable = 0;
86TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89/*
90 * Devices supported by this driver.
91 */
92static struct age_dev {
93	uint16_t	age_vendorid;
94	uint16_t	age_deviceid;
95	const char	*age_name;
96} age_devs[] = {
97	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99};
100
101static int age_miibus_readreg(device_t, int, int);
102static int age_miibus_writereg(device_t, int, int, int);
103static void age_miibus_statchg(device_t);
104static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105static int age_mediachange(struct ifnet *);
106static int age_probe(device_t);
107static void age_get_macaddr(struct age_softc *);
108static void age_phy_reset(struct age_softc *);
109static int age_attach(device_t);
110static int age_detach(device_t);
111static void age_sysctl_node(struct age_softc *);
112static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113static int age_check_boundary(struct age_softc *);
114static int age_dma_alloc(struct age_softc *);
115static void age_dma_free(struct age_softc *);
116static int age_shutdown(device_t);
117static void age_setwol(struct age_softc *);
118static int age_suspend(device_t);
119static int age_resume(device_t);
120static int age_encap(struct age_softc *, struct mbuf **);
121static void age_start(struct ifnet *);
122static void age_start_locked(struct ifnet *);
123static void age_watchdog(struct age_softc *);
124static int age_ioctl(struct ifnet *, u_long, caddr_t);
125static void age_mac_config(struct age_softc *);
126static void age_link_task(void *, int);
127static void age_stats_update(struct age_softc *);
128static int age_intr(void *);
129static void age_int_task(void *, int);
130static void age_txintr(struct age_softc *, int);
131static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132static int age_rxintr(struct age_softc *, int, int);
133static void age_tick(void *);
134static void age_reset(struct age_softc *);
135static void age_init(void *);
136static void age_init_locked(struct age_softc *);
137static void age_stop(struct age_softc *);
138static void age_stop_txmac(struct age_softc *);
139static void age_stop_rxmac(struct age_softc *);
140static void age_init_tx_ring(struct age_softc *);
141static int age_init_rx_ring(struct age_softc *);
142static void age_init_rr_ring(struct age_softc *);
143static void age_init_cmb_block(struct age_softc *);
144static void age_init_smb_block(struct age_softc *);
145static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146static void age_rxvlan(struct age_softc *);
147static void age_rxfilter(struct age_softc *);
148static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152
153
154static device_method_t age_methods[] = {
155	/* Device interface. */
156	DEVMETHOD(device_probe,		age_probe),
157	DEVMETHOD(device_attach,	age_attach),
158	DEVMETHOD(device_detach,	age_detach),
159	DEVMETHOD(device_shutdown,	age_shutdown),
160	DEVMETHOD(device_suspend,	age_suspend),
161	DEVMETHOD(device_resume,	age_resume),
162
163	/* MII interface. */
164	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167
168	{ NULL, NULL }
169};
170
171static driver_t age_driver = {
172	"age",
173	age_methods,
174	sizeof(struct age_softc)
175};
176
177static devclass_t age_devclass;
178
179DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181
182static struct resource_spec age_res_spec_mem[] = {
183	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184	{ -1,			0,		0 }
185};
186
187static struct resource_spec age_irq_spec_legacy[] = {
188	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189	{ -1,			0,		0 }
190};
191
192static struct resource_spec age_irq_spec_msi[] = {
193	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194	{ -1,			0,		0 }
195};
196
197static struct resource_spec age_irq_spec_msix[] = {
198	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199	{ -1,			0,		0 }
200};
201
202/*
203 *	Read a PHY register on the MII of the L1.
204 */
205static int
206age_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct age_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213
214	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
217		DELAY(1);
218		v = CSR_READ_4(sc, AGE_MDIO);
219		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220			break;
221	}
222
223	if (i == 0) {
224		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
225		return (0);
226	}
227
228	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229}
230
231/*
232 *	Write a PHY register on the MII of the L1.
233 */
234static int
235age_miibus_writereg(device_t dev, int phy, int reg, int val)
236{
237	struct age_softc *sc;
238	uint32_t v;
239	int i;
240
241	sc = device_get_softc(dev);
242
243	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
244	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
245	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
247		DELAY(1);
248		v = CSR_READ_4(sc, AGE_MDIO);
249		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250			break;
251	}
252
253	if (i == 0)
254		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
255
256	return (0);
257}
258
259/*
260 *	Callback from MII layer when media changes.
261 */
262static void
263age_miibus_statchg(device_t dev)
264{
265	struct age_softc *sc;
266
267	sc = device_get_softc(dev);
268	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
269}
270
271/*
272 *	Get the current interface media status.
273 */
274static void
275age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276{
277	struct age_softc *sc;
278	struct mii_data *mii;
279
280	sc = ifp->if_softc;
281	AGE_LOCK(sc);
282	mii = device_get_softc(sc->age_miibus);
283
284	mii_pollstat(mii);
285	ifmr->ifm_status = mii->mii_media_status;
286	ifmr->ifm_active = mii->mii_media_active;
287	AGE_UNLOCK(sc);
288}
289
290/*
291 *	Set hardware to newly-selected media.
292 */
293static int
294age_mediachange(struct ifnet *ifp)
295{
296	struct age_softc *sc;
297	struct mii_data *mii;
298	struct mii_softc *miisc;
299	int error;
300
301	sc = ifp->if_softc;
302	AGE_LOCK(sc);
303	mii = device_get_softc(sc->age_miibus);
304	LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
305		PHY_RESET(miisc);
306	error = mii_mediachg(mii);
307	AGE_UNLOCK(sc);
308
309	return (error);
310}
311
312static int
313age_probe(device_t dev)
314{
315	struct age_dev *sp;
316	int i;
317	uint16_t vendor, devid;
318
319	vendor = pci_get_vendor(dev);
320	devid = pci_get_device(dev);
321	sp = age_devs;
322	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
323	    i++, sp++) {
324		if (vendor == sp->age_vendorid &&
325		    devid == sp->age_deviceid) {
326			device_set_desc(dev, sp->age_name);
327			return (BUS_PROBE_DEFAULT);
328		}
329	}
330
331	return (ENXIO);
332}
333
334static void
335age_get_macaddr(struct age_softc *sc)
336{
337	uint32_t ea[2], reg;
338	int i, vpdc;
339
340	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
341	if ((reg & SPI_VPD_ENB) != 0) {
342		/* Get VPD stored in TWSI EEPROM. */
343		reg &= ~SPI_VPD_ENB;
344		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
345	}
346
347	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
348		/*
349		 * PCI VPD capability found, let TWSI reload EEPROM.
350		 * This will set ethernet address of controller.
351		 */
352		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
353		    TWSI_CTRL_SW_LD_START);
354		for (i = 100; i > 0; i--) {
355			DELAY(1000);
356			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
357			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
358				break;
359		}
360		if (i == 0)
361			device_printf(sc->age_dev,
362			    "reloading EEPROM timeout!\n");
363	} else {
364		if (bootverbose)
365			device_printf(sc->age_dev,
366			    "PCI VPD capability not found!\n");
367	}
368
369	ea[0] = CSR_READ_4(sc, AGE_PAR0);
370	ea[1] = CSR_READ_4(sc, AGE_PAR1);
371	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
372	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
373	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
374	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
375	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
376	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
377}
378
379static void
380age_phy_reset(struct age_softc *sc)
381{
382	uint16_t reg, pn;
383	int i, linkup;
384
385	/* Reset PHY. */
386	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
387	DELAY(2000);
388	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
389	DELAY(2000);
390
391#define	ATPHY_DBG_ADDR		0x1D
392#define	ATPHY_DBG_DATA		0x1E
393#define	ATPHY_CDTC		0x16
394#define	PHY_CDTC_ENB		0x0001
395#define	PHY_CDTC_POFF		8
396#define	ATPHY_CDTS		0x1C
397#define	PHY_CDTS_STAT_OK	0x0000
398#define	PHY_CDTS_STAT_SHORT	0x0100
399#define	PHY_CDTS_STAT_OPEN	0x0200
400#define	PHY_CDTS_STAT_INVAL	0x0300
401#define	PHY_CDTS_STAT_MASK	0x0300
402
403	/* Check power saving mode. Magic from Linux. */
404	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
405	for (linkup = 0, pn = 0; pn < 4; pn++) {
406		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
407		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
408		for (i = 200; i > 0; i--) {
409			DELAY(1000);
410			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
411			    ATPHY_CDTC);
412			if ((reg & PHY_CDTC_ENB) == 0)
413				break;
414		}
415		DELAY(1000);
416		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417		    ATPHY_CDTS);
418		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
419			linkup++;
420			break;
421		}
422	}
423	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
424	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
425	if (linkup == 0) {
426		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
427		    ATPHY_DBG_ADDR, 0);
428		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429		    ATPHY_DBG_DATA, 0x124E);
430		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431		    ATPHY_DBG_ADDR, 1);
432		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
433		    ATPHY_DBG_DATA);
434		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435		    ATPHY_DBG_DATA, reg | 0x03);
436		/* XXX */
437		DELAY(1500 * 1000);
438		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
439		    ATPHY_DBG_ADDR, 0);
440		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441		    ATPHY_DBG_DATA, 0x024E);
442    }
443
444#undef	ATPHY_DBG_ADDR
445#undef	ATPHY_DBG_DATA
446#undef	ATPHY_CDTC
447#undef	PHY_CDTC_ENB
448#undef	PHY_CDTC_POFF
449#undef	ATPHY_CDTS
450#undef	PHY_CDTS_STAT_OK
451#undef	PHY_CDTS_STAT_SHORT
452#undef	PHY_CDTS_STAT_OPEN
453#undef	PHY_CDTS_STAT_INVAL
454#undef	PHY_CDTS_STAT_MASK
455}
456
457static int
458age_attach(device_t dev)
459{
460	struct age_softc *sc;
461	struct ifnet *ifp;
462	uint16_t burst;
463	int error, i, msic, msixc, pmc;
464
465	error = 0;
466	sc = device_get_softc(dev);
467	sc->age_dev = dev;
468
469	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
470	    MTX_DEF);
471	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
472	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
473	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
474
475	/* Map the device. */
476	pci_enable_busmaster(dev);
477	sc->age_res_spec = age_res_spec_mem;
478	sc->age_irq_spec = age_irq_spec_legacy;
479	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
480	if (error != 0) {
481		device_printf(dev, "cannot allocate memory resources.\n");
482		goto fail;
483	}
484
485	/* Set PHY address. */
486	sc->age_phyaddr = AGE_PHY_ADDR;
487
488	/* Reset PHY. */
489	age_phy_reset(sc);
490
491	/* Reset the ethernet controller. */
492	age_reset(sc);
493
494	/* Get PCI and chip id/revision. */
495	sc->age_rev = pci_get_revid(dev);
496	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
497	    MASTER_CHIP_REV_SHIFT;
498	if (bootverbose) {
499		device_printf(dev, "PCI device revision : 0x%04x\n",
500		    sc->age_rev);
501		device_printf(dev, "Chip id/revision : 0x%04x\n",
502		    sc->age_chip_rev);
503	}
504
505	/*
506	 * XXX
507	 * Unintialized hardware returns an invalid chip id/revision
508	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
509	 * unplugged cable results in putting hardware into automatic
510	 * power down mode which in turn returns invalld chip revision.
511	 */
512	if (sc->age_chip_rev == 0xFFFF) {
513		device_printf(dev,"invalid chip revision : 0x%04x -- "
514		    "not initialized?\n", sc->age_chip_rev);
515		error = ENXIO;
516		goto fail;
517	}
518
519	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
520	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
521	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
522
523	/* Allocate IRQ resources. */
524	msixc = pci_msix_count(dev);
525	msic = pci_msi_count(dev);
526	if (bootverbose) {
527		device_printf(dev, "MSIX count : %d\n", msixc);
528		device_printf(dev, "MSI count : %d\n", msic);
529	}
530
531	/* Prefer MSIX over MSI. */
532	if (msix_disable == 0 || msi_disable == 0) {
533		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
534		    pci_alloc_msix(dev, &msixc) == 0) {
535			if (msic == AGE_MSIX_MESSAGES) {
536				device_printf(dev, "Using %d MSIX messages.\n",
537				    msixc);
538				sc->age_flags |= AGE_FLAG_MSIX;
539				sc->age_irq_spec = age_irq_spec_msix;
540			} else
541				pci_release_msi(dev);
542		}
543		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
544		    msic == AGE_MSI_MESSAGES &&
545		    pci_alloc_msi(dev, &msic) == 0) {
546			if (msic == AGE_MSI_MESSAGES) {
547				device_printf(dev, "Using %d MSI messages.\n",
548				    msic);
549				sc->age_flags |= AGE_FLAG_MSI;
550				sc->age_irq_spec = age_irq_spec_msi;
551			} else
552				pci_release_msi(dev);
553		}
554	}
555
556	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
557	if (error != 0) {
558		device_printf(dev, "cannot allocate IRQ resources.\n");
559		goto fail;
560	}
561
562
563	/* Get DMA parameters from PCIe device control register. */
564	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
565		sc->age_flags |= AGE_FLAG_PCIE;
566		burst = pci_read_config(dev, i + 0x08, 2);
567		/* Max read request size. */
568		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
569		    DMA_CFG_RD_BURST_SHIFT;
570		/* Max payload size. */
571		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
572		    DMA_CFG_WR_BURST_SHIFT;
573		if (bootverbose) {
574			device_printf(dev, "Read request size : %d bytes.\n",
575			    128 << ((burst >> 12) & 0x07));
576			device_printf(dev, "TLP payload size : %d bytes.\n",
577			    128 << ((burst >> 5) & 0x07));
578		}
579	} else {
580		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
581		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
582	}
583
584	/* Create device sysctl node. */
585	age_sysctl_node(sc);
586
587	if ((error = age_dma_alloc(sc) != 0))
588		goto fail;
589
590	/* Load station address. */
591	age_get_macaddr(sc);
592
593	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
594	if (ifp == NULL) {
595		device_printf(dev, "cannot allocate ifnet structure.\n");
596		error = ENXIO;
597		goto fail;
598	}
599
600	ifp->if_softc = sc;
601	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
602	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
603	ifp->if_ioctl = age_ioctl;
604	ifp->if_start = age_start;
605	ifp->if_init = age_init;
606	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
607	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
608	IFQ_SET_READY(&ifp->if_snd);
609	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
610	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
611	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
612		sc->age_flags |= AGE_FLAG_PMCAP;
613		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
614	}
615	ifp->if_capenable = ifp->if_capabilities;
616
617	/* Set up MII bus. */
618	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
619	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
620	    0);
621	if (error != 0) {
622		device_printf(dev, "attaching PHYs failed\n");
623		goto fail;
624	}
625
626	ether_ifattach(ifp, sc->age_eaddr);
627
628	/* VLAN capability setup. */
629	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
630	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
631	ifp->if_capenable = ifp->if_capabilities;
632
633	/* Tell the upper layer(s) we support long frames. */
634	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
635
636	/* Create local taskq. */
637	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
638	    taskqueue_thread_enqueue, &sc->age_tq);
639	if (sc->age_tq == NULL) {
640		device_printf(dev, "could not create taskqueue.\n");
641		ether_ifdetach(ifp);
642		error = ENXIO;
643		goto fail;
644	}
645	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
646	    device_get_nameunit(sc->age_dev));
647
648	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
649		msic = AGE_MSIX_MESSAGES;
650	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
651		msic = AGE_MSI_MESSAGES;
652	else
653		msic = 1;
654	for (i = 0; i < msic; i++) {
655		error = bus_setup_intr(dev, sc->age_irq[i],
656		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
657		    &sc->age_intrhand[i]);
658		if (error != 0)
659			break;
660	}
661	if (error != 0) {
662		device_printf(dev, "could not set up interrupt handler.\n");
663		taskqueue_free(sc->age_tq);
664		sc->age_tq = NULL;
665		ether_ifdetach(ifp);
666		goto fail;
667	}
668
669fail:
670	if (error != 0)
671		age_detach(dev);
672
673	return (error);
674}
675
676static int
677age_detach(device_t dev)
678{
679	struct age_softc *sc;
680	struct ifnet *ifp;
681	int i, msic;
682
683	sc = device_get_softc(dev);
684
685	ifp = sc->age_ifp;
686	if (device_is_attached(dev)) {
687		AGE_LOCK(sc);
688		sc->age_flags |= AGE_FLAG_DETACH;
689		age_stop(sc);
690		AGE_UNLOCK(sc);
691		callout_drain(&sc->age_tick_ch);
692		taskqueue_drain(sc->age_tq, &sc->age_int_task);
693		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
694		ether_ifdetach(ifp);
695	}
696
697	if (sc->age_tq != NULL) {
698		taskqueue_drain(sc->age_tq, &sc->age_int_task);
699		taskqueue_free(sc->age_tq);
700		sc->age_tq = NULL;
701	}
702
703	if (sc->age_miibus != NULL) {
704		device_delete_child(dev, sc->age_miibus);
705		sc->age_miibus = NULL;
706	}
707	bus_generic_detach(dev);
708	age_dma_free(sc);
709
710	if (ifp != NULL) {
711		if_free(ifp);
712		sc->age_ifp = NULL;
713	}
714
715	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
716		msic = AGE_MSIX_MESSAGES;
717	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
718		msic = AGE_MSI_MESSAGES;
719	else
720		msic = 1;
721	for (i = 0; i < msic; i++) {
722		if (sc->age_intrhand[i] != NULL) {
723			bus_teardown_intr(dev, sc->age_irq[i],
724			    sc->age_intrhand[i]);
725			sc->age_intrhand[i] = NULL;
726		}
727	}
728
729	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
730	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
731		pci_release_msi(dev);
732	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
733	mtx_destroy(&sc->age_mtx);
734
735	return (0);
736}
737
738static void
739age_sysctl_node(struct age_softc *sc)
740{
741	int error;
742
743	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
744	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
745	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
746	    "I", "Statistics");
747
748	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
749	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
750	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
751	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
752
753	/* Pull in device tunables. */
754	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
755	error = resource_int_value(device_get_name(sc->age_dev),
756	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
757	if (error == 0) {
758		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
759		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
760			device_printf(sc->age_dev,
761			    "int_mod value out of range; using default: %d\n",
762			    AGE_IM_TIMER_DEFAULT);
763			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
764		}
765	}
766
767	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
768	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
769	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
770	    0, sysctl_hw_age_proc_limit, "I",
771	    "max number of Rx events to process");
772
773	/* Pull in device tunables. */
774	sc->age_process_limit = AGE_PROC_DEFAULT;
775	error = resource_int_value(device_get_name(sc->age_dev),
776	    device_get_unit(sc->age_dev), "process_limit",
777	    &sc->age_process_limit);
778	if (error == 0) {
779		if (sc->age_process_limit < AGE_PROC_MIN ||
780		    sc->age_process_limit > AGE_PROC_MAX) {
781			device_printf(sc->age_dev,
782			    "process_limit value out of range; "
783			    "using default: %d\n", AGE_PROC_DEFAULT);
784			sc->age_process_limit = AGE_PROC_DEFAULT;
785		}
786	}
787}
788
789struct age_dmamap_arg {
790	bus_addr_t	age_busaddr;
791};
792
793static void
794age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
795{
796	struct age_dmamap_arg *ctx;
797
798	if (error != 0)
799		return;
800
801	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
802
803	ctx = (struct age_dmamap_arg *)arg;
804	ctx->age_busaddr = segs[0].ds_addr;
805}
806
807/*
808 * Attansic L1 controller have single register to specify high
809 * address part of DMA blocks. So all descriptor structures and
810 * DMA memory blocks should have the same high address of given
811 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
812 */
813static int
814age_check_boundary(struct age_softc *sc)
815{
816	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
817	bus_addr_t cmb_block_end, smb_block_end;
818
819	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
820	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
821	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
822	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
823	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
824	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
825
826	if ((AGE_ADDR_HI(tx_ring_end) !=
827	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
828	    (AGE_ADDR_HI(rx_ring_end) !=
829	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
830	    (AGE_ADDR_HI(rr_ring_end) !=
831	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
832	    (AGE_ADDR_HI(cmb_block_end) !=
833	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
834	    (AGE_ADDR_HI(smb_block_end) !=
835	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
836		return (EFBIG);
837
838	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
839	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
840	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
841	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
842		return (EFBIG);
843
844	return (0);
845}
846
847static int
848age_dma_alloc(struct age_softc *sc)
849{
850	struct age_txdesc *txd;
851	struct age_rxdesc *rxd;
852	bus_addr_t lowaddr;
853	struct age_dmamap_arg ctx;
854	int error, i;
855
856	lowaddr = BUS_SPACE_MAXADDR;
857
858again:
859	/* Create parent ring/DMA block tag. */
860	error = bus_dma_tag_create(
861	    bus_get_dma_tag(sc->age_dev), /* parent */
862	    1, 0,			/* alignment, boundary */
863	    lowaddr,			/* lowaddr */
864	    BUS_SPACE_MAXADDR,		/* highaddr */
865	    NULL, NULL,			/* filter, filterarg */
866	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
867	    0,				/* nsegments */
868	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
869	    0,				/* flags */
870	    NULL, NULL,			/* lockfunc, lockarg */
871	    &sc->age_cdata.age_parent_tag);
872	if (error != 0) {
873		device_printf(sc->age_dev,
874		    "could not create parent DMA tag.\n");
875		goto fail;
876	}
877
878	/* Create tag for Tx ring. */
879	error = bus_dma_tag_create(
880	    sc->age_cdata.age_parent_tag, /* parent */
881	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
882	    BUS_SPACE_MAXADDR,		/* lowaddr */
883	    BUS_SPACE_MAXADDR,		/* highaddr */
884	    NULL, NULL,			/* filter, filterarg */
885	    AGE_TX_RING_SZ,		/* maxsize */
886	    1,				/* nsegments */
887	    AGE_TX_RING_SZ,		/* maxsegsize */
888	    0,				/* flags */
889	    NULL, NULL,			/* lockfunc, lockarg */
890	    &sc->age_cdata.age_tx_ring_tag);
891	if (error != 0) {
892		device_printf(sc->age_dev,
893		    "could not create Tx ring DMA tag.\n");
894		goto fail;
895	}
896
897	/* Create tag for Rx ring. */
898	error = bus_dma_tag_create(
899	    sc->age_cdata.age_parent_tag, /* parent */
900	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
901	    BUS_SPACE_MAXADDR,		/* lowaddr */
902	    BUS_SPACE_MAXADDR,		/* highaddr */
903	    NULL, NULL,			/* filter, filterarg */
904	    AGE_RX_RING_SZ,		/* maxsize */
905	    1,				/* nsegments */
906	    AGE_RX_RING_SZ,		/* maxsegsize */
907	    0,				/* flags */
908	    NULL, NULL,			/* lockfunc, lockarg */
909	    &sc->age_cdata.age_rx_ring_tag);
910	if (error != 0) {
911		device_printf(sc->age_dev,
912		    "could not create Rx ring DMA tag.\n");
913		goto fail;
914	}
915
916	/* Create tag for Rx return ring. */
917	error = bus_dma_tag_create(
918	    sc->age_cdata.age_parent_tag, /* parent */
919	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
920	    BUS_SPACE_MAXADDR,		/* lowaddr */
921	    BUS_SPACE_MAXADDR,		/* highaddr */
922	    NULL, NULL,			/* filter, filterarg */
923	    AGE_RR_RING_SZ,		/* maxsize */
924	    1,				/* nsegments */
925	    AGE_RR_RING_SZ,		/* maxsegsize */
926	    0,				/* flags */
927	    NULL, NULL,			/* lockfunc, lockarg */
928	    &sc->age_cdata.age_rr_ring_tag);
929	if (error != 0) {
930		device_printf(sc->age_dev,
931		    "could not create Rx return ring DMA tag.\n");
932		goto fail;
933	}
934
935	/* Create tag for coalesing message block. */
936	error = bus_dma_tag_create(
937	    sc->age_cdata.age_parent_tag, /* parent */
938	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
939	    BUS_SPACE_MAXADDR,		/* lowaddr */
940	    BUS_SPACE_MAXADDR,		/* highaddr */
941	    NULL, NULL,			/* filter, filterarg */
942	    AGE_CMB_BLOCK_SZ,		/* maxsize */
943	    1,				/* nsegments */
944	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
945	    0,				/* flags */
946	    NULL, NULL,			/* lockfunc, lockarg */
947	    &sc->age_cdata.age_cmb_block_tag);
948	if (error != 0) {
949		device_printf(sc->age_dev,
950		    "could not create CMB DMA tag.\n");
951		goto fail;
952	}
953
954	/* Create tag for statistics message block. */
955	error = bus_dma_tag_create(
956	    sc->age_cdata.age_parent_tag, /* parent */
957	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
958	    BUS_SPACE_MAXADDR,		/* lowaddr */
959	    BUS_SPACE_MAXADDR,		/* highaddr */
960	    NULL, NULL,			/* filter, filterarg */
961	    AGE_SMB_BLOCK_SZ,		/* maxsize */
962	    1,				/* nsegments */
963	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
964	    0,				/* flags */
965	    NULL, NULL,			/* lockfunc, lockarg */
966	    &sc->age_cdata.age_smb_block_tag);
967	if (error != 0) {
968		device_printf(sc->age_dev,
969		    "could not create SMB DMA tag.\n");
970		goto fail;
971	}
972
973	/* Allocate DMA'able memory and load the DMA map. */
974	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
975	    (void **)&sc->age_rdata.age_tx_ring,
976	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
977	    &sc->age_cdata.age_tx_ring_map);
978	if (error != 0) {
979		device_printf(sc->age_dev,
980		    "could not allocate DMA'able memory for Tx ring.\n");
981		goto fail;
982	}
983	ctx.age_busaddr = 0;
984	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
985	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
986	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
987	if (error != 0 || ctx.age_busaddr == 0) {
988		device_printf(sc->age_dev,
989		    "could not load DMA'able memory for Tx ring.\n");
990		goto fail;
991	}
992	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
993	/* Rx ring */
994	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
995	    (void **)&sc->age_rdata.age_rx_ring,
996	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
997	    &sc->age_cdata.age_rx_ring_map);
998	if (error != 0) {
999		device_printf(sc->age_dev,
1000		    "could not allocate DMA'able memory for Rx ring.\n");
1001		goto fail;
1002	}
1003	ctx.age_busaddr = 0;
1004	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1005	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1006	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1007	if (error != 0 || ctx.age_busaddr == 0) {
1008		device_printf(sc->age_dev,
1009		    "could not load DMA'able memory for Rx ring.\n");
1010		goto fail;
1011	}
1012	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1013	/* Rx return ring */
1014	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1015	    (void **)&sc->age_rdata.age_rr_ring,
1016	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1017	    &sc->age_cdata.age_rr_ring_map);
1018	if (error != 0) {
1019		device_printf(sc->age_dev,
1020		    "could not allocate DMA'able memory for Rx return ring.\n");
1021		goto fail;
1022	}
1023	ctx.age_busaddr = 0;
1024	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1025	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1026	    AGE_RR_RING_SZ, age_dmamap_cb,
1027	    &ctx, 0);
1028	if (error != 0 || ctx.age_busaddr == 0) {
1029		device_printf(sc->age_dev,
1030		    "could not load DMA'able memory for Rx return ring.\n");
1031		goto fail;
1032	}
1033	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1034	/* CMB block */
1035	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1036	    (void **)&sc->age_rdata.age_cmb_block,
1037	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1038	    &sc->age_cdata.age_cmb_block_map);
1039	if (error != 0) {
1040		device_printf(sc->age_dev,
1041		    "could not allocate DMA'able memory for CMB block.\n");
1042		goto fail;
1043	}
1044	ctx.age_busaddr = 0;
1045	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1046	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1047	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1048	if (error != 0 || ctx.age_busaddr == 0) {
1049		device_printf(sc->age_dev,
1050		    "could not load DMA'able memory for CMB block.\n");
1051		goto fail;
1052	}
1053	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1054	/* SMB block */
1055	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1056	    (void **)&sc->age_rdata.age_smb_block,
1057	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1058	    &sc->age_cdata.age_smb_block_map);
1059	if (error != 0) {
1060		device_printf(sc->age_dev,
1061		    "could not allocate DMA'able memory for SMB block.\n");
1062		goto fail;
1063	}
1064	ctx.age_busaddr = 0;
1065	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1066	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1067	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1068	if (error != 0 || ctx.age_busaddr == 0) {
1069		device_printf(sc->age_dev,
1070		    "could not load DMA'able memory for SMB block.\n");
1071		goto fail;
1072	}
1073	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1074
1075	/*
1076	 * All ring buffer and DMA blocks should have the same
1077	 * high address part of 64bit DMA address space.
1078	 */
1079	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1080	    (error = age_check_boundary(sc)) != 0) {
1081		device_printf(sc->age_dev, "4GB boundary crossed, "
1082		    "switching to 32bit DMA addressing mode.\n");
1083		age_dma_free(sc);
1084		/* Limit DMA address space to 32bit and try again. */
1085		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1086		goto again;
1087	}
1088
1089	/*
1090	 * Create Tx/Rx buffer parent tag.
1091	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1092	 * so it needs separate parent DMA tag.
1093	 * XXX
1094	 * It seems enabling 64bit DMA causes data corruption. Limit
1095	 * DMA address space to 32bit.
1096	 */
1097	error = bus_dma_tag_create(
1098	    bus_get_dma_tag(sc->age_dev), /* parent */
1099	    1, 0,			/* alignment, boundary */
1100	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1101	    BUS_SPACE_MAXADDR,		/* highaddr */
1102	    NULL, NULL,			/* filter, filterarg */
1103	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1104	    0,				/* nsegments */
1105	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1106	    0,				/* flags */
1107	    NULL, NULL,			/* lockfunc, lockarg */
1108	    &sc->age_cdata.age_buffer_tag);
1109	if (error != 0) {
1110		device_printf(sc->age_dev,
1111		    "could not create parent buffer DMA tag.\n");
1112		goto fail;
1113	}
1114
1115	/* Create tag for Tx buffers. */
1116	error = bus_dma_tag_create(
1117	    sc->age_cdata.age_buffer_tag, /* parent */
1118	    1, 0,			/* alignment, boundary */
1119	    BUS_SPACE_MAXADDR,		/* lowaddr */
1120	    BUS_SPACE_MAXADDR,		/* highaddr */
1121	    NULL, NULL,			/* filter, filterarg */
1122	    AGE_TSO_MAXSIZE,		/* maxsize */
1123	    AGE_MAXTXSEGS,		/* nsegments */
1124	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1125	    0,				/* flags */
1126	    NULL, NULL,			/* lockfunc, lockarg */
1127	    &sc->age_cdata.age_tx_tag);
1128	if (error != 0) {
1129		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1130		goto fail;
1131	}
1132
1133	/* Create tag for Rx buffers. */
1134	error = bus_dma_tag_create(
1135	    sc->age_cdata.age_buffer_tag, /* parent */
1136	    1, 0,			/* alignment, boundary */
1137	    BUS_SPACE_MAXADDR,		/* lowaddr */
1138	    BUS_SPACE_MAXADDR,		/* highaddr */
1139	    NULL, NULL,			/* filter, filterarg */
1140	    MCLBYTES,			/* maxsize */
1141	    1,				/* nsegments */
1142	    MCLBYTES,			/* maxsegsize */
1143	    0,				/* flags */
1144	    NULL, NULL,			/* lockfunc, lockarg */
1145	    &sc->age_cdata.age_rx_tag);
1146	if (error != 0) {
1147		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1148		goto fail;
1149	}
1150
1151	/* Create DMA maps for Tx buffers. */
1152	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1153		txd = &sc->age_cdata.age_txdesc[i];
1154		txd->tx_m = NULL;
1155		txd->tx_dmamap = NULL;
1156		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1157		    &txd->tx_dmamap);
1158		if (error != 0) {
1159			device_printf(sc->age_dev,
1160			    "could not create Tx dmamap.\n");
1161			goto fail;
1162		}
1163	}
1164	/* Create DMA maps for Rx buffers. */
1165	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1166	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1167		device_printf(sc->age_dev,
1168		    "could not create spare Rx dmamap.\n");
1169		goto fail;
1170	}
1171	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1172		rxd = &sc->age_cdata.age_rxdesc[i];
1173		rxd->rx_m = NULL;
1174		rxd->rx_dmamap = NULL;
1175		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1176		    &rxd->rx_dmamap);
1177		if (error != 0) {
1178			device_printf(sc->age_dev,
1179			    "could not create Rx dmamap.\n");
1180			goto fail;
1181		}
1182	}
1183
1184fail:
1185	return (error);
1186}
1187
1188static void
1189age_dma_free(struct age_softc *sc)
1190{
1191	struct age_txdesc *txd;
1192	struct age_rxdesc *rxd;
1193	int i;
1194
1195	/* Tx buffers */
1196	if (sc->age_cdata.age_tx_tag != NULL) {
1197		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1198			txd = &sc->age_cdata.age_txdesc[i];
1199			if (txd->tx_dmamap != NULL) {
1200				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1201				    txd->tx_dmamap);
1202				txd->tx_dmamap = NULL;
1203			}
1204		}
1205		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1206		sc->age_cdata.age_tx_tag = NULL;
1207	}
1208	/* Rx buffers */
1209	if (sc->age_cdata.age_rx_tag != NULL) {
1210		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1211			rxd = &sc->age_cdata.age_rxdesc[i];
1212			if (rxd->rx_dmamap != NULL) {
1213				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1214				    rxd->rx_dmamap);
1215				rxd->rx_dmamap = NULL;
1216			}
1217		}
1218		if (sc->age_cdata.age_rx_sparemap != NULL) {
1219			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1220			    sc->age_cdata.age_rx_sparemap);
1221			sc->age_cdata.age_rx_sparemap = NULL;
1222		}
1223		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1224		sc->age_cdata.age_rx_tag = NULL;
1225	}
1226	/* Tx ring. */
1227	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1228		if (sc->age_cdata.age_tx_ring_map != NULL)
1229			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1230			    sc->age_cdata.age_tx_ring_map);
1231		if (sc->age_cdata.age_tx_ring_map != NULL &&
1232		    sc->age_rdata.age_tx_ring != NULL)
1233			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1234			    sc->age_rdata.age_tx_ring,
1235			    sc->age_cdata.age_tx_ring_map);
1236		sc->age_rdata.age_tx_ring = NULL;
1237		sc->age_cdata.age_tx_ring_map = NULL;
1238		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1239		sc->age_cdata.age_tx_ring_tag = NULL;
1240	}
1241	/* Rx ring. */
1242	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1243		if (sc->age_cdata.age_rx_ring_map != NULL)
1244			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1245			    sc->age_cdata.age_rx_ring_map);
1246		if (sc->age_cdata.age_rx_ring_map != NULL &&
1247		    sc->age_rdata.age_rx_ring != NULL)
1248			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1249			    sc->age_rdata.age_rx_ring,
1250			    sc->age_cdata.age_rx_ring_map);
1251		sc->age_rdata.age_rx_ring = NULL;
1252		sc->age_cdata.age_rx_ring_map = NULL;
1253		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1254		sc->age_cdata.age_rx_ring_tag = NULL;
1255	}
1256	/* Rx return ring. */
1257	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1258		if (sc->age_cdata.age_rr_ring_map != NULL)
1259			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1260			    sc->age_cdata.age_rr_ring_map);
1261		if (sc->age_cdata.age_rr_ring_map != NULL &&
1262		    sc->age_rdata.age_rr_ring != NULL)
1263			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1264			    sc->age_rdata.age_rr_ring,
1265			    sc->age_cdata.age_rr_ring_map);
1266		sc->age_rdata.age_rr_ring = NULL;
1267		sc->age_cdata.age_rr_ring_map = NULL;
1268		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1269		sc->age_cdata.age_rr_ring_tag = NULL;
1270	}
1271	/* CMB block */
1272	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1273		if (sc->age_cdata.age_cmb_block_map != NULL)
1274			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1275			    sc->age_cdata.age_cmb_block_map);
1276		if (sc->age_cdata.age_cmb_block_map != NULL &&
1277		    sc->age_rdata.age_cmb_block != NULL)
1278			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1279			    sc->age_rdata.age_cmb_block,
1280			    sc->age_cdata.age_cmb_block_map);
1281		sc->age_rdata.age_cmb_block = NULL;
1282		sc->age_cdata.age_cmb_block_map = NULL;
1283		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1284		sc->age_cdata.age_cmb_block_tag = NULL;
1285	}
1286	/* SMB block */
1287	if (sc->age_cdata.age_smb_block_tag != NULL) {
1288		if (sc->age_cdata.age_smb_block_map != NULL)
1289			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1290			    sc->age_cdata.age_smb_block_map);
1291		if (sc->age_cdata.age_smb_block_map != NULL &&
1292		    sc->age_rdata.age_smb_block != NULL)
1293			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1294			    sc->age_rdata.age_smb_block,
1295			    sc->age_cdata.age_smb_block_map);
1296		sc->age_rdata.age_smb_block = NULL;
1297		sc->age_cdata.age_smb_block_map = NULL;
1298		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1299		sc->age_cdata.age_smb_block_tag = NULL;
1300	}
1301
1302	if (sc->age_cdata.age_buffer_tag != NULL) {
1303		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1304		sc->age_cdata.age_buffer_tag = NULL;
1305	}
1306	if (sc->age_cdata.age_parent_tag != NULL) {
1307		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1308		sc->age_cdata.age_parent_tag = NULL;
1309	}
1310}
1311
1312/*
1313 *	Make sure the interface is stopped at reboot time.
1314 */
1315static int
1316age_shutdown(device_t dev)
1317{
1318
1319	return (age_suspend(dev));
1320}
1321
1322static void
1323age_setwol(struct age_softc *sc)
1324{
1325	struct ifnet *ifp;
1326	struct mii_data *mii;
1327	uint32_t reg, pmcs;
1328	uint16_t pmstat;
1329	int aneg, i, pmc;
1330
1331	AGE_LOCK_ASSERT(sc);
1332
1333	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1334		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1335		/*
1336		 * No PME capability, PHY power down.
1337		 * XXX
1338		 * Due to an unknown reason powering down PHY resulted
1339		 * in unexpected results such as inaccessbility of
1340		 * hardware of freshly rebooted system. Disable
1341		 * powering down PHY until I got more information for
1342		 * Attansic/Atheros PHY hardwares.
1343		 */
1344#ifdef notyet
1345		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1346		    MII_BMCR, BMCR_PDOWN);
1347#endif
1348		return;
1349	}
1350
1351	ifp = sc->age_ifp;
1352	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1353		/*
1354		 * Note, this driver resets the link speed to 10/100Mbps with
1355		 * auto-negotiation but we don't know whether that operation
1356		 * would succeed or not as it have no control after powering
1357		 * off. If the renegotiation fail WOL may not work. Running
1358		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1359		 * specified in PCI specification and that would result in
1360		 * complete shutdowning power to ethernet controller.
1361		 *
1362		 * TODO
1363		 *  Save current negotiated media speed/duplex/flow-control
1364		 *  to softc and restore the same link again after resuming.
1365		 *  PHY handling such as power down/resetting to 100Mbps
1366		 *  may be better handled in suspend method in phy driver.
1367		 */
1368		mii = device_get_softc(sc->age_miibus);
1369		mii_pollstat(mii);
1370		aneg = 0;
1371		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1372			switch IFM_SUBTYPE(mii->mii_media_active) {
1373			case IFM_10_T:
1374			case IFM_100_TX:
1375				goto got_link;
1376			case IFM_1000_T:
1377				aneg++;
1378			default:
1379				break;
1380			}
1381		}
1382		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1383		    MII_100T2CR, 0);
1384		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1386		    ANAR_10 | ANAR_CSMA);
1387		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1389		DELAY(1000);
1390		if (aneg != 0) {
1391			/* Poll link state until age(4) get a 10/100 link. */
1392			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1393				mii_pollstat(mii);
1394				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1395					switch (IFM_SUBTYPE(
1396					    mii->mii_media_active)) {
1397					case IFM_10_T:
1398					case IFM_100_TX:
1399						age_mac_config(sc);
1400						goto got_link;
1401					default:
1402						break;
1403					}
1404				}
1405				AGE_UNLOCK(sc);
1406				pause("agelnk", hz);
1407				AGE_LOCK(sc);
1408			}
1409			if (i == MII_ANEGTICKS_GIGE)
1410				device_printf(sc->age_dev,
1411				    "establishing link failed, "
1412				    "WOL may not work!");
1413		}
1414		/*
1415		 * No link, force MAC to have 100Mbps, full-duplex link.
1416		 * This is the last resort and may/may not work.
1417		 */
1418		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1419		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1420		age_mac_config(sc);
1421	}
1422
1423got_link:
1424	pmcs = 0;
1425	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1426		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1427	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1428	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1429	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1430	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1431	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1432		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1433	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1434		reg |= MAC_CFG_RX_ENB;
1435		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1436	}
1437
1438	/* Request PME. */
1439	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1440	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1441	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1442		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1443	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1444#ifdef notyet
1445	/* See above for powering down PHY issues. */
1446	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1447		/* No WOL, PHY power down. */
1448		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1449		    MII_BMCR, BMCR_PDOWN);
1450	}
1451#endif
1452}
1453
1454static int
1455age_suspend(device_t dev)
1456{
1457	struct age_softc *sc;
1458
1459	sc = device_get_softc(dev);
1460
1461	AGE_LOCK(sc);
1462	age_stop(sc);
1463	age_setwol(sc);
1464	AGE_UNLOCK(sc);
1465
1466	return (0);
1467}
1468
1469static int
1470age_resume(device_t dev)
1471{
1472	struct age_softc *sc;
1473	struct ifnet *ifp;
1474
1475	sc = device_get_softc(dev);
1476
1477	AGE_LOCK(sc);
1478	age_phy_reset(sc);
1479	ifp = sc->age_ifp;
1480	if ((ifp->if_flags & IFF_UP) != 0)
1481		age_init_locked(sc);
1482
1483	AGE_UNLOCK(sc);
1484
1485	return (0);
1486}
1487
1488static int
1489age_encap(struct age_softc *sc, struct mbuf **m_head)
1490{
1491	struct age_txdesc *txd, *txd_last;
1492	struct tx_desc *desc;
1493	struct mbuf *m;
1494	struct ip *ip;
1495	struct tcphdr *tcp;
1496	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1497	bus_dmamap_t map;
1498	uint32_t cflags, hdrlen, ip_off, poff, vtag;
1499	int error, i, nsegs, prod, si;
1500
1501	AGE_LOCK_ASSERT(sc);
1502
1503	M_ASSERTPKTHDR((*m_head));
1504
1505	m = *m_head;
1506	ip = NULL;
1507	tcp = NULL;
1508	cflags = vtag = 0;
1509	ip_off = poff = 0;
1510	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1511		/*
1512		 * L1 requires offset of TCP/UDP payload in its Tx
1513		 * descriptor to perform hardware Tx checksum offload.
1514		 * Additionally, TSO requires IP/TCP header size and
1515		 * modification of IP/TCP header in order to make TSO
1516		 * engine work. This kind of operation takes many CPU
1517		 * cycles on FreeBSD so fast host CPU is needed to get
1518		 * smooth TSO performance.
1519		 */
1520		struct ether_header *eh;
1521
1522		if (M_WRITABLE(m) == 0) {
1523			/* Get a writable copy. */
1524			m = m_dup(*m_head, M_NOWAIT);
1525			/* Release original mbufs. */
1526			m_freem(*m_head);
1527			if (m == NULL) {
1528				*m_head = NULL;
1529				return (ENOBUFS);
1530			}
1531			*m_head = m;
1532		}
1533		ip_off = sizeof(struct ether_header);
1534		m = m_pullup(m, ip_off);
1535		if (m == NULL) {
1536			*m_head = NULL;
1537			return (ENOBUFS);
1538		}
1539		eh = mtod(m, struct ether_header *);
1540		/*
1541		 * Check if hardware VLAN insertion is off.
1542		 * Additional check for LLC/SNAP frame?
1543		 */
1544		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1545			ip_off = sizeof(struct ether_vlan_header);
1546			m = m_pullup(m, ip_off);
1547			if (m == NULL) {
1548				*m_head = NULL;
1549				return (ENOBUFS);
1550			}
1551		}
1552		m = m_pullup(m, ip_off + sizeof(struct ip));
1553		if (m == NULL) {
1554			*m_head = NULL;
1555			return (ENOBUFS);
1556		}
1557		ip = (struct ip *)(mtod(m, char *) + ip_off);
1558		poff = ip_off + (ip->ip_hl << 2);
1559		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1560			m = m_pullup(m, poff + sizeof(struct tcphdr));
1561			if (m == NULL) {
1562				*m_head = NULL;
1563				return (ENOBUFS);
1564			}
1565			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1566			m = m_pullup(m, poff + (tcp->th_off << 2));
1567			if (m == NULL) {
1568				*m_head = NULL;
1569				return (ENOBUFS);
1570			}
1571			/*
1572			 * L1 requires IP/TCP header size and offset as
1573			 * well as TCP pseudo checksum which complicates
1574			 * TSO configuration. I guess this comes from the
1575			 * adherence to Microsoft NDIS Large Send
1576			 * specification which requires insertion of
1577			 * pseudo checksum by upper stack. The pseudo
1578			 * checksum that NDIS refers to doesn't include
1579			 * TCP payload length so age(4) should recompute
1580			 * the pseudo checksum here. Hopefully this wouldn't
1581			 * be much burden on modern CPUs.
1582			 * Reset IP checksum and recompute TCP pseudo
1583			 * checksum as NDIS specification said.
1584			 */
1585			ip = (struct ip *)(mtod(m, char *) + ip_off);
1586			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1587			ip->ip_sum = 0;
1588			tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1589			    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1590		}
1591		*m_head = m;
1592	}
1593
1594	si = prod = sc->age_cdata.age_tx_prod;
1595	txd = &sc->age_cdata.age_txdesc[prod];
1596	txd_last = txd;
1597	map = txd->tx_dmamap;
1598
1599	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1600	    *m_head, txsegs, &nsegs, 0);
1601	if (error == EFBIG) {
1602		m = m_collapse(*m_head, M_NOWAIT, AGE_MAXTXSEGS);
1603		if (m == NULL) {
1604			m_freem(*m_head);
1605			*m_head = NULL;
1606			return (ENOMEM);
1607		}
1608		*m_head = m;
1609		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1610		    *m_head, txsegs, &nsegs, 0);
1611		if (error != 0) {
1612			m_freem(*m_head);
1613			*m_head = NULL;
1614			return (error);
1615		}
1616	} else if (error != 0)
1617		return (error);
1618	if (nsegs == 0) {
1619		m_freem(*m_head);
1620		*m_head = NULL;
1621		return (EIO);
1622	}
1623
1624	/* Check descriptor overrun. */
1625	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1626		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1627		return (ENOBUFS);
1628	}
1629
1630	m = *m_head;
1631	/* Configure VLAN hardware tag insertion. */
1632	if ((m->m_flags & M_VLANTAG) != 0) {
1633		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1634		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1635		cflags |= AGE_TD_INSERT_VLAN_TAG;
1636	}
1637
1638	desc = NULL;
1639	i = 0;
1640	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1641		/* Request TSO and set MSS. */
1642		cflags |= AGE_TD_TSO_IPV4;
1643		cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1644		cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1645		    AGE_TD_TSO_MSS_SHIFT);
1646		/* Set IP/TCP header size. */
1647		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1648		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1649		/*
1650		 * L1 requires the first buffer should only hold IP/TCP
1651		 * header data. TCP payload should be handled in other
1652		 * descriptors.
1653		 */
1654		hdrlen = poff + (tcp->th_off << 2);
1655		desc = &sc->age_rdata.age_tx_ring[prod];
1656		desc->addr = htole64(txsegs[0].ds_addr);
1657		desc->len = htole32(AGE_TX_BYTES(hdrlen) | vtag);
1658		desc->flags = htole32(cflags);
1659		sc->age_cdata.age_tx_cnt++;
1660		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1661		if (m->m_len - hdrlen > 0) {
1662			/* Handle remaining payload of the 1st fragment. */
1663			desc = &sc->age_rdata.age_tx_ring[prod];
1664			desc->addr = htole64(txsegs[0].ds_addr + hdrlen);
1665			desc->len = htole32(AGE_TX_BYTES(m->m_len - hdrlen) |
1666			    vtag);
1667			desc->flags = htole32(cflags);
1668			sc->age_cdata.age_tx_cnt++;
1669			AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1670		}
1671		/* Handle remaining fragments. */
1672		i = 1;
1673	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1674		/* Configure Tx IP/TCP/UDP checksum offload. */
1675		cflags |= AGE_TD_CSUM;
1676		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1677			cflags |= AGE_TD_TCPCSUM;
1678		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1679			cflags |= AGE_TD_UDPCSUM;
1680		/* Set checksum start offset. */
1681		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1682		/* Set checksum insertion position of TCP/UDP. */
1683		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1684		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1685	}
1686	for (; i < nsegs; i++) {
1687		desc = &sc->age_rdata.age_tx_ring[prod];
1688		desc->addr = htole64(txsegs[i].ds_addr);
1689		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1690		desc->flags = htole32(cflags);
1691		sc->age_cdata.age_tx_cnt++;
1692		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1693	}
1694	/* Update producer index. */
1695	sc->age_cdata.age_tx_prod = prod;
1696
1697	/* Set EOP on the last descriptor. */
1698	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1699	desc = &sc->age_rdata.age_tx_ring[prod];
1700	desc->flags |= htole32(AGE_TD_EOP);
1701
1702	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1703	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1704		desc = &sc->age_rdata.age_tx_ring[si];
1705		desc->flags |= htole32(AGE_TD_TSO_HDR);
1706	}
1707
1708	/* Swap dmamap of the first and the last. */
1709	txd = &sc->age_cdata.age_txdesc[prod];
1710	map = txd_last->tx_dmamap;
1711	txd_last->tx_dmamap = txd->tx_dmamap;
1712	txd->tx_dmamap = map;
1713	txd->tx_m = m;
1714
1715	/* Sync descriptors. */
1716	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1717	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1718	    sc->age_cdata.age_tx_ring_map,
1719	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1720
1721	return (0);
1722}
1723
1724static void
1725age_start(struct ifnet *ifp)
1726{
1727        struct age_softc *sc;
1728
1729	sc = ifp->if_softc;
1730	AGE_LOCK(sc);
1731	age_start_locked(ifp);
1732	AGE_UNLOCK(sc);
1733}
1734
1735static void
1736age_start_locked(struct ifnet *ifp)
1737{
1738        struct age_softc *sc;
1739        struct mbuf *m_head;
1740	int enq;
1741
1742	sc = ifp->if_softc;
1743
1744	AGE_LOCK_ASSERT(sc);
1745
1746	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1747	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1748		return;
1749
1750	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1751		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1752		if (m_head == NULL)
1753			break;
1754		/*
1755		 * Pack the data into the transmit ring. If we
1756		 * don't have room, set the OACTIVE flag and wait
1757		 * for the NIC to drain the ring.
1758		 */
1759		if (age_encap(sc, &m_head)) {
1760			if (m_head == NULL)
1761				break;
1762			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1763			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1764			break;
1765		}
1766
1767		enq++;
1768		/*
1769		 * If there's a BPF listener, bounce a copy of this frame
1770		 * to him.
1771		 */
1772		ETHER_BPF_MTAP(ifp, m_head);
1773	}
1774
1775	if (enq > 0) {
1776		/* Update mbox. */
1777		AGE_COMMIT_MBOX(sc);
1778		/* Set a timeout in case the chip goes out to lunch. */
1779		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1780	}
1781}
1782
1783static void
1784age_watchdog(struct age_softc *sc)
1785{
1786	struct ifnet *ifp;
1787
1788	AGE_LOCK_ASSERT(sc);
1789
1790	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1791		return;
1792
1793	ifp = sc->age_ifp;
1794	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1795		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1796		ifp->if_oerrors++;
1797		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1798		age_init_locked(sc);
1799		return;
1800	}
1801	if (sc->age_cdata.age_tx_cnt == 0) {
1802		if_printf(sc->age_ifp,
1803		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1804		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1805			age_start_locked(ifp);
1806		return;
1807	}
1808	if_printf(sc->age_ifp, "watchdog timeout\n");
1809	ifp->if_oerrors++;
1810	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1811	age_init_locked(sc);
1812	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1813		age_start_locked(ifp);
1814}
1815
1816static int
1817age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1818{
1819	struct age_softc *sc;
1820	struct ifreq *ifr;
1821	struct mii_data *mii;
1822	uint32_t reg;
1823	int error, mask;
1824
1825	sc = ifp->if_softc;
1826	ifr = (struct ifreq *)data;
1827	error = 0;
1828	switch (cmd) {
1829	case SIOCSIFMTU:
1830		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1831			error = EINVAL;
1832		else if (ifp->if_mtu != ifr->ifr_mtu) {
1833			AGE_LOCK(sc);
1834			ifp->if_mtu = ifr->ifr_mtu;
1835			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1836				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1837				age_init_locked(sc);
1838			}
1839			AGE_UNLOCK(sc);
1840		}
1841		break;
1842	case SIOCSIFFLAGS:
1843		AGE_LOCK(sc);
1844		if ((ifp->if_flags & IFF_UP) != 0) {
1845			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1846				if (((ifp->if_flags ^ sc->age_if_flags)
1847				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1848					age_rxfilter(sc);
1849			} else {
1850				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1851					age_init_locked(sc);
1852			}
1853		} else {
1854			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1855				age_stop(sc);
1856		}
1857		sc->age_if_flags = ifp->if_flags;
1858		AGE_UNLOCK(sc);
1859		break;
1860	case SIOCADDMULTI:
1861	case SIOCDELMULTI:
1862		AGE_LOCK(sc);
1863		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1864			age_rxfilter(sc);
1865		AGE_UNLOCK(sc);
1866		break;
1867	case SIOCSIFMEDIA:
1868	case SIOCGIFMEDIA:
1869		mii = device_get_softc(sc->age_miibus);
1870		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1871		break;
1872	case SIOCSIFCAP:
1873		AGE_LOCK(sc);
1874		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1875		if ((mask & IFCAP_TXCSUM) != 0 &&
1876		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1877			ifp->if_capenable ^= IFCAP_TXCSUM;
1878			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1879				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1880			else
1881				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1882		}
1883		if ((mask & IFCAP_RXCSUM) != 0 &&
1884		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1885			ifp->if_capenable ^= IFCAP_RXCSUM;
1886			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1887			reg &= ~MAC_CFG_RXCSUM_ENB;
1888			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1889				reg |= MAC_CFG_RXCSUM_ENB;
1890			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1891		}
1892		if ((mask & IFCAP_TSO4) != 0 &&
1893		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1894			ifp->if_capenable ^= IFCAP_TSO4;
1895			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1896				ifp->if_hwassist |= CSUM_TSO;
1897			else
1898				ifp->if_hwassist &= ~CSUM_TSO;
1899		}
1900
1901		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1902		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1903			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1904		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1905		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1906			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1907		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1908		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1909			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1910		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1911		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1912			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1913		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1914		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1915			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1916			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1917				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1918			age_rxvlan(sc);
1919		}
1920		AGE_UNLOCK(sc);
1921		VLAN_CAPABILITIES(ifp);
1922		break;
1923	default:
1924		error = ether_ioctl(ifp, cmd, data);
1925		break;
1926	}
1927
1928	return (error);
1929}
1930
1931static void
1932age_mac_config(struct age_softc *sc)
1933{
1934	struct mii_data *mii;
1935	uint32_t reg;
1936
1937	AGE_LOCK_ASSERT(sc);
1938
1939	mii = device_get_softc(sc->age_miibus);
1940	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1941	reg &= ~MAC_CFG_FULL_DUPLEX;
1942	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1943	reg &= ~MAC_CFG_SPEED_MASK;
1944	/* Reprogram MAC with resolved speed/duplex. */
1945	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1946	case IFM_10_T:
1947	case IFM_100_TX:
1948		reg |= MAC_CFG_SPEED_10_100;
1949		break;
1950	case IFM_1000_T:
1951		reg |= MAC_CFG_SPEED_1000;
1952		break;
1953	}
1954	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1955		reg |= MAC_CFG_FULL_DUPLEX;
1956#ifdef notyet
1957		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1958			reg |= MAC_CFG_TX_FC;
1959		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1960			reg |= MAC_CFG_RX_FC;
1961#endif
1962	}
1963
1964	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1965}
1966
1967static void
1968age_link_task(void *arg, int pending)
1969{
1970	struct age_softc *sc;
1971	struct mii_data *mii;
1972	struct ifnet *ifp;
1973	uint32_t reg;
1974
1975	sc = (struct age_softc *)arg;
1976
1977	AGE_LOCK(sc);
1978	mii = device_get_softc(sc->age_miibus);
1979	ifp = sc->age_ifp;
1980	if (mii == NULL || ifp == NULL ||
1981	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1982		AGE_UNLOCK(sc);
1983		return;
1984	}
1985
1986	sc->age_flags &= ~AGE_FLAG_LINK;
1987	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1988		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1989		case IFM_10_T:
1990		case IFM_100_TX:
1991		case IFM_1000_T:
1992			sc->age_flags |= AGE_FLAG_LINK;
1993			break;
1994		default:
1995			break;
1996		}
1997	}
1998
1999	/* Stop Rx/Tx MACs. */
2000	age_stop_rxmac(sc);
2001	age_stop_txmac(sc);
2002
2003	/* Program MACs with resolved speed/duplex/flow-control. */
2004	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2005		age_mac_config(sc);
2006		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2007		/* Restart DMA engine and Tx/Rx MAC. */
2008		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2009		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2010		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2011		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2012	}
2013
2014	AGE_UNLOCK(sc);
2015}
2016
2017static void
2018age_stats_update(struct age_softc *sc)
2019{
2020	struct age_stats *stat;
2021	struct smb *smb;
2022	struct ifnet *ifp;
2023
2024	AGE_LOCK_ASSERT(sc);
2025
2026	stat = &sc->age_stat;
2027
2028	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2029	    sc->age_cdata.age_smb_block_map,
2030	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2031
2032	smb = sc->age_rdata.age_smb_block;
2033	if (smb->updated == 0)
2034		return;
2035
2036	ifp = sc->age_ifp;
2037	/* Rx stats. */
2038	stat->rx_frames += smb->rx_frames;
2039	stat->rx_bcast_frames += smb->rx_bcast_frames;
2040	stat->rx_mcast_frames += smb->rx_mcast_frames;
2041	stat->rx_pause_frames += smb->rx_pause_frames;
2042	stat->rx_control_frames += smb->rx_control_frames;
2043	stat->rx_crcerrs += smb->rx_crcerrs;
2044	stat->rx_lenerrs += smb->rx_lenerrs;
2045	stat->rx_bytes += smb->rx_bytes;
2046	stat->rx_runts += smb->rx_runts;
2047	stat->rx_fragments += smb->rx_fragments;
2048	stat->rx_pkts_64 += smb->rx_pkts_64;
2049	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2050	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2051	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2052	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2053	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2054	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2055	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2056	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2057	stat->rx_desc_oflows += smb->rx_desc_oflows;
2058	stat->rx_alignerrs += smb->rx_alignerrs;
2059	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2060	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2061	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2062
2063	/* Tx stats. */
2064	stat->tx_frames += smb->tx_frames;
2065	stat->tx_bcast_frames += smb->tx_bcast_frames;
2066	stat->tx_mcast_frames += smb->tx_mcast_frames;
2067	stat->tx_pause_frames += smb->tx_pause_frames;
2068	stat->tx_excess_defer += smb->tx_excess_defer;
2069	stat->tx_control_frames += smb->tx_control_frames;
2070	stat->tx_deferred += smb->tx_deferred;
2071	stat->tx_bytes += smb->tx_bytes;
2072	stat->tx_pkts_64 += smb->tx_pkts_64;
2073	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2074	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2075	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2076	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2077	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2078	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2079	stat->tx_single_colls += smb->tx_single_colls;
2080	stat->tx_multi_colls += smb->tx_multi_colls;
2081	stat->tx_late_colls += smb->tx_late_colls;
2082	stat->tx_excess_colls += smb->tx_excess_colls;
2083	stat->tx_underrun += smb->tx_underrun;
2084	stat->tx_desc_underrun += smb->tx_desc_underrun;
2085	stat->tx_lenerrs += smb->tx_lenerrs;
2086	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2087	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2088	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2089
2090	/* Update counters in ifnet. */
2091	ifp->if_opackets += smb->tx_frames;
2092
2093	ifp->if_collisions += smb->tx_single_colls +
2094	    smb->tx_multi_colls + smb->tx_late_colls +
2095	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2096
2097	ifp->if_oerrors += smb->tx_excess_colls +
2098	    smb->tx_late_colls + smb->tx_underrun +
2099	    smb->tx_pkts_truncated;
2100
2101	ifp->if_ipackets += smb->rx_frames;
2102
2103	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2104	    smb->rx_runts + smb->rx_pkts_truncated +
2105	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2106	    smb->rx_alignerrs;
2107
2108	/* Update done, clear. */
2109	smb->updated = 0;
2110
2111	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2112	    sc->age_cdata.age_smb_block_map,
2113	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2114}
2115
2116static int
2117age_intr(void *arg)
2118{
2119	struct age_softc *sc;
2120	uint32_t status;
2121
2122	sc = (struct age_softc *)arg;
2123
2124	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2125	if (status == 0 || (status & AGE_INTRS) == 0)
2126		return (FILTER_STRAY);
2127	/* Disable interrupts. */
2128	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2129	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2130
2131	return (FILTER_HANDLED);
2132}
2133
2134static void
2135age_int_task(void *arg, int pending)
2136{
2137	struct age_softc *sc;
2138	struct ifnet *ifp;
2139	struct cmb *cmb;
2140	uint32_t status;
2141
2142	sc = (struct age_softc *)arg;
2143
2144	AGE_LOCK(sc);
2145
2146	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2147	    sc->age_cdata.age_cmb_block_map,
2148	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2149	cmb = sc->age_rdata.age_cmb_block;
2150	status = le32toh(cmb->intr_status);
2151	if (sc->age_morework != 0)
2152		status |= INTR_CMB_RX;
2153	if ((status & AGE_INTRS) == 0)
2154		goto done;
2155
2156	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2157	    TPD_CONS_SHIFT;
2158	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2159	    RRD_PROD_SHIFT;
2160	/* Let hardware know CMB was served. */
2161	cmb->intr_status = 0;
2162	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2163	    sc->age_cdata.age_cmb_block_map,
2164	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2165
2166#if 0
2167	printf("INTR: 0x%08x\n", status);
2168	status &= ~INTR_DIS_DMA;
2169	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2170#endif
2171	ifp = sc->age_ifp;
2172	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2173		if ((status & INTR_CMB_RX) != 0)
2174			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2175			    sc->age_process_limit);
2176		if ((status & INTR_CMB_TX) != 0)
2177			age_txintr(sc, sc->age_tpd_cons);
2178		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2179			if ((status & INTR_DMA_RD_TO_RST) != 0)
2180				device_printf(sc->age_dev,
2181				    "DMA read error! -- resetting\n");
2182			if ((status & INTR_DMA_WR_TO_RST) != 0)
2183				device_printf(sc->age_dev,
2184				    "DMA write error! -- resetting\n");
2185			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2186			age_init_locked(sc);
2187		}
2188		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2189			age_start_locked(ifp);
2190		if ((status & INTR_SMB) != 0)
2191			age_stats_update(sc);
2192	}
2193
2194	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2195	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2196	    sc->age_cdata.age_cmb_block_map,
2197	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2198	status = le32toh(cmb->intr_status);
2199	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2200		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2201		AGE_UNLOCK(sc);
2202		return;
2203	}
2204
2205done:
2206	/* Re-enable interrupts. */
2207	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2208	AGE_UNLOCK(sc);
2209}
2210
2211static void
2212age_txintr(struct age_softc *sc, int tpd_cons)
2213{
2214	struct ifnet *ifp;
2215	struct age_txdesc *txd;
2216	int cons, prog;
2217
2218	AGE_LOCK_ASSERT(sc);
2219
2220	ifp = sc->age_ifp;
2221
2222	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2223	    sc->age_cdata.age_tx_ring_map,
2224	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2225
2226	/*
2227	 * Go through our Tx list and free mbufs for those
2228	 * frames which have been transmitted.
2229	 */
2230	cons = sc->age_cdata.age_tx_cons;
2231	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2232		if (sc->age_cdata.age_tx_cnt <= 0)
2233			break;
2234		prog++;
2235		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2236		sc->age_cdata.age_tx_cnt--;
2237		txd = &sc->age_cdata.age_txdesc[cons];
2238		/*
2239		 * Clear Tx descriptors, it's not required but would
2240		 * help debugging in case of Tx issues.
2241		 */
2242		txd->tx_desc->addr = 0;
2243		txd->tx_desc->len = 0;
2244		txd->tx_desc->flags = 0;
2245
2246		if (txd->tx_m == NULL)
2247			continue;
2248		/* Reclaim transmitted mbufs. */
2249		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2250		    BUS_DMASYNC_POSTWRITE);
2251		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2252		m_freem(txd->tx_m);
2253		txd->tx_m = NULL;
2254	}
2255
2256	if (prog > 0) {
2257		sc->age_cdata.age_tx_cons = cons;
2258
2259		/*
2260		 * Unarm watchdog timer only when there are no pending
2261		 * Tx descriptors in queue.
2262		 */
2263		if (sc->age_cdata.age_tx_cnt == 0)
2264			sc->age_watchdog_timer = 0;
2265		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2266		    sc->age_cdata.age_tx_ring_map,
2267		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2268	}
2269}
2270
2271/* Receive a frame. */
2272static void
2273age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2274{
2275	struct age_rxdesc *rxd;
2276	struct rx_desc *desc;
2277	struct ifnet *ifp;
2278	struct mbuf *mp, *m;
2279	uint32_t status, index, vtag;
2280	int count, nsegs, pktlen;
2281	int rx_cons;
2282
2283	AGE_LOCK_ASSERT(sc);
2284
2285	ifp = sc->age_ifp;
2286	status = le32toh(rxrd->flags);
2287	index = le32toh(rxrd->index);
2288	rx_cons = AGE_RX_CONS(index);
2289	nsegs = AGE_RX_NSEGS(index);
2290
2291	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2292	if ((status & AGE_RRD_ERROR) != 0 &&
2293	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2294	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2295		/*
2296		 * We want to pass the following frames to upper
2297		 * layer regardless of error status of Rx return
2298		 * ring.
2299		 *
2300		 *  o IP/TCP/UDP checksum is bad.
2301		 *  o frame length and protocol specific length
2302		 *     does not match.
2303		 */
2304		sc->age_cdata.age_rx_cons += nsegs;
2305		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2306		return;
2307	}
2308
2309	pktlen = 0;
2310	for (count = 0; count < nsegs; count++,
2311	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2312		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2313		mp = rxd->rx_m;
2314		desc = rxd->rx_desc;
2315		/* Add a new receive buffer to the ring. */
2316		if (age_newbuf(sc, rxd) != 0) {
2317			ifp->if_iqdrops++;
2318			/* Reuse Rx buffers. */
2319			if (sc->age_cdata.age_rxhead != NULL) {
2320				m_freem(sc->age_cdata.age_rxhead);
2321				AGE_RXCHAIN_RESET(sc);
2322			}
2323			break;
2324		}
2325
2326		/* The length of the first mbuf is computed last. */
2327		if (count != 0) {
2328			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2329			pktlen += mp->m_len;
2330		}
2331
2332		/* Chain received mbufs. */
2333		if (sc->age_cdata.age_rxhead == NULL) {
2334			sc->age_cdata.age_rxhead = mp;
2335			sc->age_cdata.age_rxtail = mp;
2336		} else {
2337			mp->m_flags &= ~M_PKTHDR;
2338			sc->age_cdata.age_rxprev_tail =
2339			    sc->age_cdata.age_rxtail;
2340			sc->age_cdata.age_rxtail->m_next = mp;
2341			sc->age_cdata.age_rxtail = mp;
2342		}
2343
2344		if (count == nsegs - 1) {
2345			/*
2346			 * It seems that L1 controller has no way
2347			 * to tell hardware to strip CRC bytes.
2348			 */
2349			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2350			if (nsegs > 1) {
2351				/* Remove the CRC bytes in chained mbufs. */
2352				pktlen -= ETHER_CRC_LEN;
2353				if (mp->m_len <= ETHER_CRC_LEN) {
2354					sc->age_cdata.age_rxtail =
2355					    sc->age_cdata.age_rxprev_tail;
2356					sc->age_cdata.age_rxtail->m_len -=
2357					    (ETHER_CRC_LEN - mp->m_len);
2358					sc->age_cdata.age_rxtail->m_next = NULL;
2359					m_freem(mp);
2360				} else {
2361					mp->m_len -= ETHER_CRC_LEN;
2362				}
2363			}
2364
2365			m = sc->age_cdata.age_rxhead;
2366			m->m_flags |= M_PKTHDR;
2367			m->m_pkthdr.rcvif = ifp;
2368			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2369			/* Set the first mbuf length. */
2370			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2371
2372			/*
2373			 * Set checksum information.
2374			 * It seems that L1 controller can compute partial
2375			 * checksum. The partial checksum value can be used
2376			 * to accelerate checksum computation for fragmented
2377			 * TCP/UDP packets. Upper network stack already
2378			 * takes advantage of the partial checksum value in
2379			 * IP reassembly stage. But I'm not sure the
2380			 * correctness of the partial hardware checksum
2381			 * assistance due to lack of data sheet. If it is
2382			 * proven to work on L1 I'll enable it.
2383			 */
2384			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2385			    (status & AGE_RRD_IPV4) != 0) {
2386				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2387				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2388					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2389				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2390				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2391					m->m_pkthdr.csum_flags |=
2392					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2393					m->m_pkthdr.csum_data = 0xffff;
2394				}
2395				/*
2396				 * Don't mark bad checksum for TCP/UDP frames
2397				 * as fragmented frames may always have set
2398				 * bad checksummed bit of descriptor status.
2399				 */
2400			}
2401
2402			/* Check for VLAN tagged frames. */
2403			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2404			    (status & AGE_RRD_VLAN) != 0) {
2405				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2406				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2407				m->m_flags |= M_VLANTAG;
2408			}
2409
2410			/* Pass it on. */
2411			AGE_UNLOCK(sc);
2412			(*ifp->if_input)(ifp, m);
2413			AGE_LOCK(sc);
2414
2415			/* Reset mbuf chains. */
2416			AGE_RXCHAIN_RESET(sc);
2417		}
2418	}
2419
2420	if (count != nsegs) {
2421		sc->age_cdata.age_rx_cons += nsegs;
2422		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2423	} else
2424		sc->age_cdata.age_rx_cons = rx_cons;
2425}
2426
2427static int
2428age_rxintr(struct age_softc *sc, int rr_prod, int count)
2429{
2430	struct rx_rdesc *rxrd;
2431	int rr_cons, nsegs, pktlen, prog;
2432
2433	AGE_LOCK_ASSERT(sc);
2434
2435	rr_cons = sc->age_cdata.age_rr_cons;
2436	if (rr_cons == rr_prod)
2437		return (0);
2438
2439	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2440	    sc->age_cdata.age_rr_ring_map,
2441	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2442	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2443	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2444
2445	for (prog = 0; rr_cons != rr_prod; prog++) {
2446		if (count <= 0)
2447			break;
2448		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2449		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2450		if (nsegs == 0)
2451			break;
2452		/*
2453		 * Check number of segments against received bytes.
2454		 * Non-matching value would indicate that hardware
2455		 * is still trying to update Rx return descriptors.
2456		 * I'm not sure whether this check is really needed.
2457		 */
2458		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2459		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2460		    (MCLBYTES - ETHER_ALIGN)))
2461			break;
2462
2463		prog++;
2464		/* Received a frame. */
2465		age_rxeof(sc, rxrd);
2466		/* Clear return ring. */
2467		rxrd->index = 0;
2468		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2469	}
2470
2471	if (prog > 0) {
2472		/* Update the consumer index. */
2473		sc->age_cdata.age_rr_cons = rr_cons;
2474
2475		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2476		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2477		/* Sync descriptors. */
2478		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2479		    sc->age_cdata.age_rr_ring_map,
2480		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2481
2482		/* Notify hardware availability of new Rx buffers. */
2483		AGE_COMMIT_MBOX(sc);
2484	}
2485
2486	return (count > 0 ? 0 : EAGAIN);
2487}
2488
2489static void
2490age_tick(void *arg)
2491{
2492	struct age_softc *sc;
2493	struct mii_data *mii;
2494
2495	sc = (struct age_softc *)arg;
2496
2497	AGE_LOCK_ASSERT(sc);
2498
2499	mii = device_get_softc(sc->age_miibus);
2500	mii_tick(mii);
2501	age_watchdog(sc);
2502	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2503}
2504
2505static void
2506age_reset(struct age_softc *sc)
2507{
2508	uint32_t reg;
2509	int i;
2510
2511	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2512	CSR_READ_4(sc, AGE_MASTER_CFG);
2513	DELAY(1000);
2514	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2515		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2516			break;
2517		DELAY(10);
2518	}
2519
2520	if (i == 0)
2521		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2522	/* Initialize PCIe module. From Linux. */
2523	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2524	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2525}
2526
2527static void
2528age_init(void *xsc)
2529{
2530	struct age_softc *sc;
2531
2532	sc = (struct age_softc *)xsc;
2533	AGE_LOCK(sc);
2534	age_init_locked(sc);
2535	AGE_UNLOCK(sc);
2536}
2537
2538static void
2539age_init_locked(struct age_softc *sc)
2540{
2541	struct ifnet *ifp;
2542	struct mii_data *mii;
2543	uint8_t eaddr[ETHER_ADDR_LEN];
2544	bus_addr_t paddr;
2545	uint32_t reg, fsize;
2546	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2547	int error;
2548
2549	AGE_LOCK_ASSERT(sc);
2550
2551	ifp = sc->age_ifp;
2552	mii = device_get_softc(sc->age_miibus);
2553
2554	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2555		return;
2556
2557	/*
2558	 * Cancel any pending I/O.
2559	 */
2560	age_stop(sc);
2561
2562	/*
2563	 * Reset the chip to a known state.
2564	 */
2565	age_reset(sc);
2566
2567	/* Initialize descriptors. */
2568	error = age_init_rx_ring(sc);
2569        if (error != 0) {
2570                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2571                age_stop(sc);
2572		return;
2573        }
2574	age_init_rr_ring(sc);
2575	age_init_tx_ring(sc);
2576	age_init_cmb_block(sc);
2577	age_init_smb_block(sc);
2578
2579	/* Reprogram the station address. */
2580	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2581	CSR_WRITE_4(sc, AGE_PAR0,
2582	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2583	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2584
2585	/* Set descriptor base addresses. */
2586	paddr = sc->age_rdata.age_tx_ring_paddr;
2587	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2588	paddr = sc->age_rdata.age_rx_ring_paddr;
2589	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2590	paddr = sc->age_rdata.age_rr_ring_paddr;
2591	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2592	paddr = sc->age_rdata.age_tx_ring_paddr;
2593	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2594	paddr = sc->age_rdata.age_cmb_block_paddr;
2595	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2596	paddr = sc->age_rdata.age_smb_block_paddr;
2597	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2598	/* Set Rx/Rx return descriptor counter. */
2599	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2600	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2601	    DESC_RRD_CNT_MASK) |
2602	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2603	/* Set Tx descriptor counter. */
2604	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2605	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2606
2607	/* Tell hardware that we're ready to load descriptors. */
2608	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2609
2610	/*
2611	 * Initialize mailbox register.
2612	 * Updated producer/consumer index information is exchanged
2613	 * through this mailbox register. However Tx producer and
2614	 * Rx return consumer/Rx producer are all shared such that
2615	 * it's hard to separate code path between Tx and Rx without
2616	 * locking. If L1 hardware have a separate mail box register
2617	 * for Tx and Rx consumer/producer management we could have
2618	 * indepent Tx/Rx handler which in turn Rx handler could have
2619	 * been run without any locking.
2620	 */
2621	AGE_COMMIT_MBOX(sc);
2622
2623	/* Configure IPG/IFG parameters. */
2624	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2625	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2626	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2627	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2628	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2629
2630	/* Set parameters for half-duplex media. */
2631	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2632	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2633	    HDPX_CFG_LCOL_MASK) |
2634	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2635	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2636	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2637	    HDPX_CFG_ABEBT_MASK) |
2638	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2639	    HDPX_CFG_JAMIPG_MASK));
2640
2641	/* Configure interrupt moderation timer. */
2642	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2643	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2644	reg &= ~MASTER_MTIMER_ENB;
2645	if (AGE_USECS(sc->age_int_mod) == 0)
2646		reg &= ~MASTER_ITIMER_ENB;
2647	else
2648		reg |= MASTER_ITIMER_ENB;
2649	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2650	if (bootverbose)
2651		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2652		    sc->age_int_mod);
2653	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2654
2655	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2656	if (ifp->if_mtu < ETHERMTU)
2657		sc->age_max_frame_size = ETHERMTU;
2658	else
2659		sc->age_max_frame_size = ifp->if_mtu;
2660	sc->age_max_frame_size += ETHER_HDR_LEN +
2661	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2662	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2663	/* Configure jumbo frame. */
2664	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2665	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2666	    (((fsize / sizeof(uint64_t)) <<
2667	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2668	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2669	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2670	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2671	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2672
2673	/* Configure flow-control parameters. From Linux. */
2674	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2675		/*
2676		 * Magic workaround for old-L1.
2677		 * Don't know which hw revision requires this magic.
2678		 */
2679		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2680		/*
2681		 * Another magic workaround for flow-control mode
2682		 * change. From Linux.
2683		 */
2684		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2685	}
2686	/*
2687	 * TODO
2688	 *  Should understand pause parameter relationships between FIFO
2689	 *  size and number of Rx descriptors and Rx return descriptors.
2690	 *
2691	 *  Magic parameters came from Linux.
2692	 */
2693	switch (sc->age_chip_rev) {
2694	case 0x8001:
2695	case 0x9001:
2696	case 0x9002:
2697	case 0x9003:
2698		rxf_hi = AGE_RX_RING_CNT / 16;
2699		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2700		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2701		rrd_lo = AGE_RR_RING_CNT / 16;
2702		break;
2703	default:
2704		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2705		rxf_lo = reg / 16;
2706		if (rxf_lo < 192)
2707			rxf_lo = 192;
2708		rxf_hi = (reg * 7) / 8;
2709		if (rxf_hi < rxf_lo)
2710			rxf_hi = rxf_lo + 16;
2711		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2712		rrd_lo = reg / 8;
2713		rrd_hi = (reg * 7) / 8;
2714		if (rrd_lo < 2)
2715			rrd_lo = 2;
2716		if (rrd_hi < rrd_lo)
2717			rrd_hi = rrd_lo + 3;
2718		break;
2719	}
2720	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2721	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2722	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2723	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2724	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2725	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2726	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2727	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2728	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2729	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2730
2731	/* Configure RxQ. */
2732	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2733	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2734	    RXQ_CFG_RD_BURST_MASK) |
2735	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2736	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2737	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2738	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2739	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2740
2741	/* Configure TxQ. */
2742	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2743	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2744	    TXQ_CFG_TPD_BURST_MASK) |
2745	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2746	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2747	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2748	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2749	    TXQ_CFG_ENB);
2750
2751	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2752	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2753	    TX_JUMBO_TPD_TH_MASK) |
2754	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2755	    TX_JUMBO_TPD_IPG_MASK));
2756	/* Configure DMA parameters. */
2757	CSR_WRITE_4(sc, AGE_DMA_CFG,
2758	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2759	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2760	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2761
2762	/* Configure CMB DMA write threshold. */
2763	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2764	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2765	    CMB_WR_THRESH_RRD_MASK) |
2766	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2767	    CMB_WR_THRESH_TPD_MASK));
2768
2769	/* Set CMB/SMB timer and enable them. */
2770	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2771	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2772	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2773	/* Request SMB updates for every seconds. */
2774	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2775	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2776
2777	/*
2778	 * Disable all WOL bits as WOL can interfere normal Rx
2779	 * operation.
2780	 */
2781	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2782
2783	/*
2784	 * Configure Tx/Rx MACs.
2785	 *  - Auto-padding for short frames.
2786	 *  - Enable CRC generation.
2787	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2788	 *  of MAC is followed after link establishment.
2789	 */
2790	CSR_WRITE_4(sc, AGE_MAC_CFG,
2791	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2792	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2793	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2794	    MAC_CFG_PREAMBLE_MASK));
2795	/* Set up the receive filter. */
2796	age_rxfilter(sc);
2797	age_rxvlan(sc);
2798
2799	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2800	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2801		reg |= MAC_CFG_RXCSUM_ENB;
2802
2803	/* Ack all pending interrupts and clear it. */
2804	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2805	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2806
2807	/* Finally enable Tx/Rx MAC. */
2808	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2809
2810	sc->age_flags &= ~AGE_FLAG_LINK;
2811	/* Switch to the current media. */
2812	mii_mediachg(mii);
2813
2814	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2815
2816	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2817	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2818}
2819
2820static void
2821age_stop(struct age_softc *sc)
2822{
2823	struct ifnet *ifp;
2824	struct age_txdesc *txd;
2825	struct age_rxdesc *rxd;
2826	uint32_t reg;
2827	int i;
2828
2829	AGE_LOCK_ASSERT(sc);
2830	/*
2831	 * Mark the interface down and cancel the watchdog timer.
2832	 */
2833	ifp = sc->age_ifp;
2834	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2835	sc->age_flags &= ~AGE_FLAG_LINK;
2836	callout_stop(&sc->age_tick_ch);
2837	sc->age_watchdog_timer = 0;
2838
2839	/*
2840	 * Disable interrupts.
2841	 */
2842	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2843	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2844	/* Stop CMB/SMB updates. */
2845	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2846	/* Stop Rx/Tx MAC. */
2847	age_stop_rxmac(sc);
2848	age_stop_txmac(sc);
2849	/* Stop DMA. */
2850	CSR_WRITE_4(sc, AGE_DMA_CFG,
2851	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2852	/* Stop TxQ/RxQ. */
2853	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2854	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2855	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2856	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2857	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2858		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2859			break;
2860		DELAY(10);
2861	}
2862	if (i == 0)
2863		device_printf(sc->age_dev,
2864		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2865
2866	 /* Reclaim Rx buffers that have been processed. */
2867	if (sc->age_cdata.age_rxhead != NULL)
2868		m_freem(sc->age_cdata.age_rxhead);
2869	AGE_RXCHAIN_RESET(sc);
2870	/*
2871	 * Free RX and TX mbufs still in the queues.
2872	 */
2873	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2874		rxd = &sc->age_cdata.age_rxdesc[i];
2875		if (rxd->rx_m != NULL) {
2876			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2877			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2878			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2879			    rxd->rx_dmamap);
2880			m_freem(rxd->rx_m);
2881			rxd->rx_m = NULL;
2882		}
2883        }
2884	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2885		txd = &sc->age_cdata.age_txdesc[i];
2886		if (txd->tx_m != NULL) {
2887			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2888			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2889			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2890			    txd->tx_dmamap);
2891			m_freem(txd->tx_m);
2892			txd->tx_m = NULL;
2893		}
2894        }
2895}
2896
2897static void
2898age_stop_txmac(struct age_softc *sc)
2899{
2900	uint32_t reg;
2901	int i;
2902
2903	AGE_LOCK_ASSERT(sc);
2904
2905	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2906	if ((reg & MAC_CFG_TX_ENB) != 0) {
2907		reg &= ~MAC_CFG_TX_ENB;
2908		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2909	}
2910	/* Stop Tx DMA engine. */
2911	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2912	if ((reg & DMA_CFG_RD_ENB) != 0) {
2913		reg &= ~DMA_CFG_RD_ENB;
2914		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2915	}
2916	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2917		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2918		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2919			break;
2920		DELAY(10);
2921	}
2922	if (i == 0)
2923		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2924}
2925
2926static void
2927age_stop_rxmac(struct age_softc *sc)
2928{
2929	uint32_t reg;
2930	int i;
2931
2932	AGE_LOCK_ASSERT(sc);
2933
2934	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2935	if ((reg & MAC_CFG_RX_ENB) != 0) {
2936		reg &= ~MAC_CFG_RX_ENB;
2937		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2938	}
2939	/* Stop Rx DMA engine. */
2940	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2941	if ((reg & DMA_CFG_WR_ENB) != 0) {
2942		reg &= ~DMA_CFG_WR_ENB;
2943		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2944	}
2945	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2946		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2947		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2948			break;
2949		DELAY(10);
2950	}
2951	if (i == 0)
2952		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2953}
2954
2955static void
2956age_init_tx_ring(struct age_softc *sc)
2957{
2958	struct age_ring_data *rd;
2959	struct age_txdesc *txd;
2960	int i;
2961
2962	AGE_LOCK_ASSERT(sc);
2963
2964	sc->age_cdata.age_tx_prod = 0;
2965	sc->age_cdata.age_tx_cons = 0;
2966	sc->age_cdata.age_tx_cnt = 0;
2967
2968	rd = &sc->age_rdata;
2969	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2970	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2971		txd = &sc->age_cdata.age_txdesc[i];
2972		txd->tx_desc = &rd->age_tx_ring[i];
2973		txd->tx_m = NULL;
2974	}
2975
2976	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2977	    sc->age_cdata.age_tx_ring_map,
2978	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2979}
2980
2981static int
2982age_init_rx_ring(struct age_softc *sc)
2983{
2984	struct age_ring_data *rd;
2985	struct age_rxdesc *rxd;
2986	int i;
2987
2988	AGE_LOCK_ASSERT(sc);
2989
2990	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2991	sc->age_morework = 0;
2992	rd = &sc->age_rdata;
2993	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2994	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2995		rxd = &sc->age_cdata.age_rxdesc[i];
2996		rxd->rx_m = NULL;
2997		rxd->rx_desc = &rd->age_rx_ring[i];
2998		if (age_newbuf(sc, rxd) != 0)
2999			return (ENOBUFS);
3000	}
3001
3002	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3003	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
3004
3005	return (0);
3006}
3007
3008static void
3009age_init_rr_ring(struct age_softc *sc)
3010{
3011	struct age_ring_data *rd;
3012
3013	AGE_LOCK_ASSERT(sc);
3014
3015	sc->age_cdata.age_rr_cons = 0;
3016	AGE_RXCHAIN_RESET(sc);
3017
3018	rd = &sc->age_rdata;
3019	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3020	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3021	    sc->age_cdata.age_rr_ring_map,
3022	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3023}
3024
3025static void
3026age_init_cmb_block(struct age_softc *sc)
3027{
3028	struct age_ring_data *rd;
3029
3030	AGE_LOCK_ASSERT(sc);
3031
3032	rd = &sc->age_rdata;
3033	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3034	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3035	    sc->age_cdata.age_cmb_block_map,
3036	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3037}
3038
3039static void
3040age_init_smb_block(struct age_softc *sc)
3041{
3042	struct age_ring_data *rd;
3043
3044	AGE_LOCK_ASSERT(sc);
3045
3046	rd = &sc->age_rdata;
3047	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3048	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3049	    sc->age_cdata.age_smb_block_map,
3050	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3051}
3052
3053static int
3054age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3055{
3056	struct rx_desc *desc;
3057	struct mbuf *m;
3058	bus_dma_segment_t segs[1];
3059	bus_dmamap_t map;
3060	int nsegs;
3061
3062	AGE_LOCK_ASSERT(sc);
3063
3064	m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR);
3065	if (m == NULL)
3066		return (ENOBUFS);
3067	m->m_len = m->m_pkthdr.len = MCLBYTES;
3068	m_adj(m, ETHER_ALIGN);
3069
3070	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3071	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3072		m_freem(m);
3073		return (ENOBUFS);
3074	}
3075	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3076
3077	if (rxd->rx_m != NULL) {
3078		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3079		    BUS_DMASYNC_POSTREAD);
3080		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3081	}
3082	map = rxd->rx_dmamap;
3083	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3084	sc->age_cdata.age_rx_sparemap = map;
3085	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3086	    BUS_DMASYNC_PREREAD);
3087	rxd->rx_m = m;
3088
3089	desc = rxd->rx_desc;
3090	desc->addr = htole64(segs[0].ds_addr);
3091	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3092	    AGE_RD_LEN_SHIFT);
3093	return (0);
3094}
3095
3096static void
3097age_rxvlan(struct age_softc *sc)
3098{
3099	struct ifnet *ifp;
3100	uint32_t reg;
3101
3102	AGE_LOCK_ASSERT(sc);
3103
3104	ifp = sc->age_ifp;
3105	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3106	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3107	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3108		reg |= MAC_CFG_VLAN_TAG_STRIP;
3109	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3110}
3111
3112static void
3113age_rxfilter(struct age_softc *sc)
3114{
3115	struct ifnet *ifp;
3116	struct ifmultiaddr *ifma;
3117	uint32_t crc;
3118	uint32_t mchash[2];
3119	uint32_t rxcfg;
3120
3121	AGE_LOCK_ASSERT(sc);
3122
3123	ifp = sc->age_ifp;
3124
3125	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3126	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3127	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3128		rxcfg |= MAC_CFG_BCAST;
3129	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3130		if ((ifp->if_flags & IFF_PROMISC) != 0)
3131			rxcfg |= MAC_CFG_PROMISC;
3132		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3133			rxcfg |= MAC_CFG_ALLMULTI;
3134		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3135		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3136		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3137		return;
3138	}
3139
3140	/* Program new filter. */
3141	bzero(mchash, sizeof(mchash));
3142
3143	if_maddr_rlock(ifp);
3144	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3145		if (ifma->ifma_addr->sa_family != AF_LINK)
3146			continue;
3147		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3148		    ifma->ifma_addr), ETHER_ADDR_LEN);
3149		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3150	}
3151	if_maddr_runlock(ifp);
3152
3153	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3154	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3155	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3156}
3157
3158static int
3159sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3160{
3161	struct age_softc *sc;
3162	struct age_stats *stats;
3163	int error, result;
3164
3165	result = -1;
3166	error = sysctl_handle_int(oidp, &result, 0, req);
3167
3168	if (error != 0 || req->newptr == NULL)
3169		return (error);
3170
3171	if (result != 1)
3172		return (error);
3173
3174	sc = (struct age_softc *)arg1;
3175	stats = &sc->age_stat;
3176	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3177	printf("Transmit good frames : %ju\n",
3178	    (uintmax_t)stats->tx_frames);
3179	printf("Transmit good broadcast frames : %ju\n",
3180	    (uintmax_t)stats->tx_bcast_frames);
3181	printf("Transmit good multicast frames : %ju\n",
3182	    (uintmax_t)stats->tx_mcast_frames);
3183	printf("Transmit pause control frames : %u\n",
3184	    stats->tx_pause_frames);
3185	printf("Transmit control frames : %u\n",
3186	    stats->tx_control_frames);
3187	printf("Transmit frames with excessive deferrals : %u\n",
3188	    stats->tx_excess_defer);
3189	printf("Transmit deferrals : %u\n",
3190	    stats->tx_deferred);
3191	printf("Transmit good octets : %ju\n",
3192	    (uintmax_t)stats->tx_bytes);
3193	printf("Transmit good broadcast octets : %ju\n",
3194	    (uintmax_t)stats->tx_bcast_bytes);
3195	printf("Transmit good multicast octets : %ju\n",
3196	    (uintmax_t)stats->tx_mcast_bytes);
3197	printf("Transmit frames 64 bytes : %ju\n",
3198	    (uintmax_t)stats->tx_pkts_64);
3199	printf("Transmit frames 65 to 127 bytes : %ju\n",
3200	    (uintmax_t)stats->tx_pkts_65_127);
3201	printf("Transmit frames 128 to 255 bytes : %ju\n",
3202	    (uintmax_t)stats->tx_pkts_128_255);
3203	printf("Transmit frames 256 to 511 bytes : %ju\n",
3204	    (uintmax_t)stats->tx_pkts_256_511);
3205	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3206	    (uintmax_t)stats->tx_pkts_512_1023);
3207	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3208	    (uintmax_t)stats->tx_pkts_1024_1518);
3209	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3210	    (uintmax_t)stats->tx_pkts_1519_max);
3211	printf("Transmit single collisions : %u\n",
3212	    stats->tx_single_colls);
3213	printf("Transmit multiple collisions : %u\n",
3214	    stats->tx_multi_colls);
3215	printf("Transmit late collisions : %u\n",
3216	    stats->tx_late_colls);
3217	printf("Transmit abort due to excessive collisions : %u\n",
3218	    stats->tx_excess_colls);
3219	printf("Transmit underruns due to FIFO underruns : %u\n",
3220	    stats->tx_underrun);
3221	printf("Transmit descriptor write-back errors : %u\n",
3222	    stats->tx_desc_underrun);
3223	printf("Transmit frames with length mismatched frame size : %u\n",
3224	    stats->tx_lenerrs);
3225	printf("Transmit frames with truncated due to MTU size : %u\n",
3226	    stats->tx_lenerrs);
3227
3228	printf("Receive good frames : %ju\n",
3229	    (uintmax_t)stats->rx_frames);
3230	printf("Receive good broadcast frames : %ju\n",
3231	    (uintmax_t)stats->rx_bcast_frames);
3232	printf("Receive good multicast frames : %ju\n",
3233	    (uintmax_t)stats->rx_mcast_frames);
3234	printf("Receive pause control frames : %u\n",
3235	    stats->rx_pause_frames);
3236	printf("Receive control frames : %u\n",
3237	    stats->rx_control_frames);
3238	printf("Receive CRC errors : %u\n",
3239	    stats->rx_crcerrs);
3240	printf("Receive frames with length errors : %u\n",
3241	    stats->rx_lenerrs);
3242	printf("Receive good octets : %ju\n",
3243	    (uintmax_t)stats->rx_bytes);
3244	printf("Receive good broadcast octets : %ju\n",
3245	    (uintmax_t)stats->rx_bcast_bytes);
3246	printf("Receive good multicast octets : %ju\n",
3247	    (uintmax_t)stats->rx_mcast_bytes);
3248	printf("Receive frames too short : %u\n",
3249	    stats->rx_runts);
3250	printf("Receive fragmented frames : %ju\n",
3251	    (uintmax_t)stats->rx_fragments);
3252	printf("Receive frames 64 bytes : %ju\n",
3253	    (uintmax_t)stats->rx_pkts_64);
3254	printf("Receive frames 65 to 127 bytes : %ju\n",
3255	    (uintmax_t)stats->rx_pkts_65_127);
3256	printf("Receive frames 128 to 255 bytes : %ju\n",
3257	    (uintmax_t)stats->rx_pkts_128_255);
3258	printf("Receive frames 256 to 511 bytes : %ju\n",
3259	    (uintmax_t)stats->rx_pkts_256_511);
3260	printf("Receive frames 512 to 1024 bytes : %ju\n",
3261	    (uintmax_t)stats->rx_pkts_512_1023);
3262	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3263	    (uintmax_t)stats->rx_pkts_1024_1518);
3264	printf("Receive frames 1519 to MTU bytes : %ju\n",
3265	    (uintmax_t)stats->rx_pkts_1519_max);
3266	printf("Receive frames too long : %ju\n",
3267	    (uint64_t)stats->rx_pkts_truncated);
3268	printf("Receive frames with FIFO overflow : %u\n",
3269	    stats->rx_fifo_oflows);
3270	printf("Receive frames with return descriptor overflow : %u\n",
3271	    stats->rx_desc_oflows);
3272	printf("Receive frames with alignment errors : %u\n",
3273	    stats->rx_alignerrs);
3274	printf("Receive frames dropped due to address filtering : %ju\n",
3275	    (uint64_t)stats->rx_pkts_filtered);
3276
3277	return (error);
3278}
3279
3280static int
3281sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3282{
3283	int error, value;
3284
3285	if (arg1 == NULL)
3286		return (EINVAL);
3287	value = *(int *)arg1;
3288	error = sysctl_handle_int(oidp, &value, 0, req);
3289	if (error || req->newptr == NULL)
3290		return (error);
3291	if (value < low || value > high)
3292		return (EINVAL);
3293        *(int *)arg1 = value;
3294
3295        return (0);
3296}
3297
3298static int
3299sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3300{
3301	return (sysctl_int_range(oidp, arg1, arg2, req,
3302	    AGE_PROC_MIN, AGE_PROC_MAX));
3303}
3304
3305static int
3306sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3307{
3308
3309	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3310	    AGE_IM_TIMER_MAX));
3311}
3312