if_age.c revision 195049
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 195049 2009-06-26 11:45:06Z rwatson $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#ifndef	IFCAP_VLAN_HWTSO
78#define	IFCAP_VLAN_HWTSO	0
79#endif
80#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81
82MODULE_DEPEND(age, pci, 1, 1, 1);
83MODULE_DEPEND(age, ether, 1, 1, 1);
84MODULE_DEPEND(age, miibus, 1, 1, 1);
85
86/* Tunables. */
87static int msi_disable = 0;
88static int msix_disable = 0;
89TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91
92/*
93 * Devices supported by this driver.
94 */
95static struct age_dev {
96	uint16_t	age_vendorid;
97	uint16_t	age_deviceid;
98	const char	*age_name;
99} age_devs[] = {
100	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
102};
103
104static int age_miibus_readreg(device_t, int, int);
105static int age_miibus_writereg(device_t, int, int, int);
106static void age_miibus_statchg(device_t);
107static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108static int age_mediachange(struct ifnet *);
109static int age_probe(device_t);
110static void age_get_macaddr(struct age_softc *);
111static void age_phy_reset(struct age_softc *);
112static int age_attach(device_t);
113static int age_detach(device_t);
114static void age_sysctl_node(struct age_softc *);
115static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116static int age_check_boundary(struct age_softc *);
117static int age_dma_alloc(struct age_softc *);
118static void age_dma_free(struct age_softc *);
119static int age_shutdown(device_t);
120static void age_setwol(struct age_softc *);
121static int age_suspend(device_t);
122static int age_resume(device_t);
123static int age_encap(struct age_softc *, struct mbuf **);
124static void age_tx_task(void *, int);
125static void age_start(struct ifnet *);
126static void age_watchdog(struct age_softc *);
127static int age_ioctl(struct ifnet *, u_long, caddr_t);
128static void age_mac_config(struct age_softc *);
129static void age_link_task(void *, int);
130static void age_stats_update(struct age_softc *);
131static int age_intr(void *);
132static void age_int_task(void *, int);
133static void age_txintr(struct age_softc *, int);
134static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135static int age_rxintr(struct age_softc *, int, int);
136static void age_tick(void *);
137static void age_reset(struct age_softc *);
138static void age_init(void *);
139static void age_init_locked(struct age_softc *);
140static void age_stop(struct age_softc *);
141static void age_stop_txmac(struct age_softc *);
142static void age_stop_rxmac(struct age_softc *);
143static void age_init_tx_ring(struct age_softc *);
144static int age_init_rx_ring(struct age_softc *);
145static void age_init_rr_ring(struct age_softc *);
146static void age_init_cmb_block(struct age_softc *);
147static void age_init_smb_block(struct age_softc *);
148static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149static void age_rxvlan(struct age_softc *);
150static void age_rxfilter(struct age_softc *);
151static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155
156
157static device_method_t age_methods[] = {
158	/* Device interface. */
159	DEVMETHOD(device_probe,		age_probe),
160	DEVMETHOD(device_attach,	age_attach),
161	DEVMETHOD(device_detach,	age_detach),
162	DEVMETHOD(device_shutdown,	age_shutdown),
163	DEVMETHOD(device_suspend,	age_suspend),
164	DEVMETHOD(device_resume,	age_resume),
165
166	/* MII interface. */
167	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
168	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
169	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
170
171	{ NULL, NULL }
172};
173
174static driver_t age_driver = {
175	"age",
176	age_methods,
177	sizeof(struct age_softc)
178};
179
180static devclass_t age_devclass;
181
182DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
183DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
184
185static struct resource_spec age_res_spec_mem[] = {
186	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187	{ -1,			0,		0 }
188};
189
190static struct resource_spec age_irq_spec_legacy[] = {
191	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec age_irq_spec_msi[] = {
196	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static struct resource_spec age_irq_spec_msix[] = {
201	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202	{ -1,			0,		0 }
203};
204
205/*
206 *	Read a PHY register on the MII of the L1.
207 */
208static int
209age_miibus_readreg(device_t dev, int phy, int reg)
210{
211	struct age_softc *sc;
212	uint32_t v;
213	int i;
214
215	sc = device_get_softc(dev);
216	if (phy != sc->age_phyaddr)
217		return (0);
218
219	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
220	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
221	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
222		DELAY(1);
223		v = CSR_READ_4(sc, AGE_MDIO);
224		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
225			break;
226	}
227
228	if (i == 0) {
229		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
230		return (0);
231	}
232
233	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
234}
235
236/*
237 *	Write a PHY register on the MII of the L1.
238 */
239static int
240age_miibus_writereg(device_t dev, int phy, int reg, int val)
241{
242	struct age_softc *sc;
243	uint32_t v;
244	int i;
245
246	sc = device_get_softc(dev);
247	if (phy != sc->age_phyaddr)
248		return (0);
249
250	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
251	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
252	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
253	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
254		DELAY(1);
255		v = CSR_READ_4(sc, AGE_MDIO);
256		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
257			break;
258	}
259
260	if (i == 0)
261		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
262
263	return (0);
264}
265
266/*
267 *	Callback from MII layer when media changes.
268 */
269static void
270age_miibus_statchg(device_t dev)
271{
272	struct age_softc *sc;
273
274	sc = device_get_softc(dev);
275	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
276}
277
278/*
279 *	Get the current interface media status.
280 */
281static void
282age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
283{
284	struct age_softc *sc;
285	struct mii_data *mii;
286
287	sc = ifp->if_softc;
288	AGE_LOCK(sc);
289	mii = device_get_softc(sc->age_miibus);
290
291	mii_pollstat(mii);
292	AGE_UNLOCK(sc);
293	ifmr->ifm_status = mii->mii_media_status;
294	ifmr->ifm_active = mii->mii_media_active;
295}
296
297/*
298 *	Set hardware to newly-selected media.
299 */
300static int
301age_mediachange(struct ifnet *ifp)
302{
303	struct age_softc *sc;
304	struct mii_data *mii;
305	struct mii_softc *miisc;
306	int error;
307
308	sc = ifp->if_softc;
309	AGE_LOCK(sc);
310	mii = device_get_softc(sc->age_miibus);
311	if (mii->mii_instance != 0) {
312		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313			mii_phy_reset(miisc);
314	}
315	error = mii_mediachg(mii);
316	AGE_UNLOCK(sc);
317
318	return (error);
319}
320
321static int
322age_probe(device_t dev)
323{
324	struct age_dev *sp;
325	int i;
326	uint16_t vendor, devid;
327
328	vendor = pci_get_vendor(dev);
329	devid = pci_get_device(dev);
330	sp = age_devs;
331	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
332	    i++, sp++) {
333		if (vendor == sp->age_vendorid &&
334		    devid == sp->age_deviceid) {
335			device_set_desc(dev, sp->age_name);
336			return (BUS_PROBE_DEFAULT);
337		}
338	}
339
340	return (ENXIO);
341}
342
343static void
344age_get_macaddr(struct age_softc *sc)
345{
346	uint32_t ea[2], reg;
347	int i, vpdc;
348
349	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
350	if ((reg & SPI_VPD_ENB) != 0) {
351		/* Get VPD stored in TWSI EEPROM. */
352		reg &= ~SPI_VPD_ENB;
353		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
354	}
355
356	if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
357		/*
358		 * PCI VPD capability found, let TWSI reload EEPROM.
359		 * This will set ethernet address of controller.
360		 */
361		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
362		    TWSI_CTRL_SW_LD_START);
363		for (i = 100; i > 0; i--) {
364			DELAY(1000);
365			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
366			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
367				break;
368		}
369		if (i == 0)
370			device_printf(sc->age_dev,
371			    "reloading EEPROM timeout!\n");
372	} else {
373		if (bootverbose)
374			device_printf(sc->age_dev,
375			    "PCI VPD capability not found!\n");
376	}
377
378	ea[0] = CSR_READ_4(sc, AGE_PAR0);
379	ea[1] = CSR_READ_4(sc, AGE_PAR1);
380	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
381	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
382	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
383	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
384	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
385	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
386}
387
388static void
389age_phy_reset(struct age_softc *sc)
390{
391	uint16_t reg, pn;
392	int i, linkup;
393
394	/* Reset PHY. */
395	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
396	DELAY(2000);
397	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
398	DELAY(2000);
399
400#define	ATPHY_DBG_ADDR		0x1D
401#define	ATPHY_DBG_DATA		0x1E
402#define	ATPHY_CDTC		0x16
403#define	PHY_CDTC_ENB		0x0001
404#define	PHY_CDTC_POFF		8
405#define	ATPHY_CDTS		0x1C
406#define	PHY_CDTS_STAT_OK	0x0000
407#define	PHY_CDTS_STAT_SHORT	0x0100
408#define	PHY_CDTS_STAT_OPEN	0x0200
409#define	PHY_CDTS_STAT_INVAL	0x0300
410#define	PHY_CDTS_STAT_MASK	0x0300
411
412	/* Check power saving mode. Magic from Linux. */
413	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
414	for (linkup = 0, pn = 0; pn < 4; pn++) {
415		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
416		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
417		for (i = 200; i > 0; i--) {
418			DELAY(1000);
419			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
420			    ATPHY_CDTC);
421			if ((reg & PHY_CDTC_ENB) == 0)
422				break;
423		}
424		DELAY(1000);
425		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
426		    ATPHY_CDTS);
427		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
428			linkup++;
429			break;
430		}
431	}
432	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
433	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
434	if (linkup == 0) {
435		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436		    ATPHY_DBG_ADDR, 0);
437		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438		    ATPHY_DBG_DATA, 0x124E);
439		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
440		    ATPHY_DBG_ADDR, 1);
441		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
442		    ATPHY_DBG_DATA);
443		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444		    ATPHY_DBG_DATA, reg | 0x03);
445		/* XXX */
446		DELAY(1500 * 1000);
447		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
448		    ATPHY_DBG_ADDR, 0);
449		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
450		    ATPHY_DBG_DATA, 0x024E);
451    }
452
453#undef	ATPHY_DBG_ADDR
454#undef	ATPHY_DBG_DATA
455#undef	ATPHY_CDTC
456#undef	PHY_CDTC_ENB
457#undef	PHY_CDTC_POFF
458#undef	ATPHY_CDTS
459#undef	PHY_CDTS_STAT_OK
460#undef	PHY_CDTS_STAT_SHORT
461#undef	PHY_CDTS_STAT_OPEN
462#undef	PHY_CDTS_STAT_INVAL
463#undef	PHY_CDTS_STAT_MASK
464}
465
466static int
467age_attach(device_t dev)
468{
469	struct age_softc *sc;
470	struct ifnet *ifp;
471	uint16_t burst;
472	int error, i, msic, msixc, pmc;
473
474	error = 0;
475	sc = device_get_softc(dev);
476	sc->age_dev = dev;
477
478	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
479	    MTX_DEF);
480	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
481	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
482	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
483
484	/* Map the device. */
485	pci_enable_busmaster(dev);
486	sc->age_res_spec = age_res_spec_mem;
487	sc->age_irq_spec = age_irq_spec_legacy;
488	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
489	if (error != 0) {
490		device_printf(dev, "cannot allocate memory resources.\n");
491		goto fail;
492	}
493
494	/* Set PHY address. */
495	sc->age_phyaddr = AGE_PHY_ADDR;
496
497	/* Reset PHY. */
498	age_phy_reset(sc);
499
500	/* Reset the ethernet controller. */
501	age_reset(sc);
502
503	/* Get PCI and chip id/revision. */
504	sc->age_rev = pci_get_revid(dev);
505	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
506	    MASTER_CHIP_REV_SHIFT;
507	if (bootverbose) {
508		device_printf(dev, "PCI device revision : 0x%04x\n",
509		    sc->age_rev);
510		device_printf(dev, "Chip id/revision : 0x%04x\n",
511		    sc->age_chip_rev);
512	}
513
514	/*
515	 * XXX
516	 * Unintialized hardware returns an invalid chip id/revision
517	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
518	 * unplugged cable results in putting hardware into automatic
519	 * power down mode which in turn returns invalld chip revision.
520	 */
521	if (sc->age_chip_rev == 0xFFFF) {
522		device_printf(dev,"invalid chip revision : 0x%04x -- "
523		    "not initialized?\n", sc->age_chip_rev);
524		error = ENXIO;
525		goto fail;
526	}
527
528	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
529	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
530	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
531
532	/* Allocate IRQ resources. */
533	msixc = pci_msix_count(dev);
534	msic = pci_msi_count(dev);
535	if (bootverbose) {
536		device_printf(dev, "MSIX count : %d\n", msixc);
537		device_printf(dev, "MSI count : %d\n", msic);
538	}
539
540	/* Prefer MSIX over MSI. */
541	if (msix_disable == 0 || msi_disable == 0) {
542		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
543		    pci_alloc_msix(dev, &msixc) == 0) {
544			if (msic == AGE_MSIX_MESSAGES) {
545				device_printf(dev, "Using %d MSIX messages.\n",
546				    msixc);
547				sc->age_flags |= AGE_FLAG_MSIX;
548				sc->age_irq_spec = age_irq_spec_msix;
549			} else
550				pci_release_msi(dev);
551		}
552		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
553		    msic == AGE_MSI_MESSAGES &&
554		    pci_alloc_msi(dev, &msic) == 0) {
555			if (msic == AGE_MSI_MESSAGES) {
556				device_printf(dev, "Using %d MSI messages.\n",
557				    msic);
558				sc->age_flags |= AGE_FLAG_MSI;
559				sc->age_irq_spec = age_irq_spec_msi;
560			} else
561				pci_release_msi(dev);
562		}
563	}
564
565	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
566	if (error != 0) {
567		device_printf(dev, "cannot allocate IRQ resources.\n");
568		goto fail;
569	}
570
571
572	/* Get DMA parameters from PCIe device control register. */
573	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
574		sc->age_flags |= AGE_FLAG_PCIE;
575		burst = pci_read_config(dev, i + 0x08, 2);
576		/* Max read request size. */
577		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
578		    DMA_CFG_RD_BURST_SHIFT;
579		/* Max payload size. */
580		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
581		    DMA_CFG_WR_BURST_SHIFT;
582		if (bootverbose) {
583			device_printf(dev, "Read request size : %d bytes.\n",
584			    128 << ((burst >> 12) & 0x07));
585			device_printf(dev, "TLP payload size : %d bytes.\n",
586			    128 << ((burst >> 5) & 0x07));
587		}
588	} else {
589		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
590		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
591	}
592
593	/* Create device sysctl node. */
594	age_sysctl_node(sc);
595
596	if ((error = age_dma_alloc(sc) != 0))
597		goto fail;
598
599	/* Load station address. */
600	age_get_macaddr(sc);
601
602	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
603	if (ifp == NULL) {
604		device_printf(dev, "cannot allocate ifnet structure.\n");
605		error = ENXIO;
606		goto fail;
607	}
608
609	ifp->if_softc = sc;
610	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
611	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
612	ifp->if_ioctl = age_ioctl;
613	ifp->if_start = age_start;
614	ifp->if_init = age_init;
615	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
616	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
617	IFQ_SET_READY(&ifp->if_snd);
618	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
619	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
620	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
621		sc->age_flags |= AGE_FLAG_PMCAP;
622		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
623	}
624	ifp->if_capenable = ifp->if_capabilities;
625
626	/* Set up MII bus. */
627	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
628	    age_mediastatus)) != 0) {
629		device_printf(dev, "no PHY found!\n");
630		goto fail;
631	}
632
633	ether_ifattach(ifp, sc->age_eaddr);
634
635	/* VLAN capability setup. */
636	ifp->if_capabilities |= IFCAP_VLAN_MTU;
637	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
638	ifp->if_capenable = ifp->if_capabilities;
639
640	/* Tell the upper layer(s) we support long frames. */
641	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
642
643	/* Create local taskq. */
644	TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
645	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
646	    taskqueue_thread_enqueue, &sc->age_tq);
647	if (sc->age_tq == NULL) {
648		device_printf(dev, "could not create taskqueue.\n");
649		ether_ifdetach(ifp);
650		error = ENXIO;
651		goto fail;
652	}
653	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
654	    device_get_nameunit(sc->age_dev));
655
656	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
657		msic = AGE_MSIX_MESSAGES;
658	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
659		msic = AGE_MSI_MESSAGES;
660	else
661		msic = 1;
662	for (i = 0; i < msic; i++) {
663		error = bus_setup_intr(dev, sc->age_irq[i],
664		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
665		    &sc->age_intrhand[i]);
666		if (error != 0)
667			break;
668	}
669	if (error != 0) {
670		device_printf(dev, "could not set up interrupt handler.\n");
671		taskqueue_free(sc->age_tq);
672		sc->age_tq = NULL;
673		ether_ifdetach(ifp);
674		goto fail;
675	}
676
677fail:
678	if (error != 0)
679		age_detach(dev);
680
681	return (error);
682}
683
684static int
685age_detach(device_t dev)
686{
687	struct age_softc *sc;
688	struct ifnet *ifp;
689	int i, msic;
690
691	sc = device_get_softc(dev);
692
693	ifp = sc->age_ifp;
694	if (device_is_attached(dev)) {
695		AGE_LOCK(sc);
696		sc->age_flags |= AGE_FLAG_DETACH;
697		age_stop(sc);
698		AGE_UNLOCK(sc);
699		callout_drain(&sc->age_tick_ch);
700		taskqueue_drain(sc->age_tq, &sc->age_int_task);
701		taskqueue_drain(sc->age_tq, &sc->age_tx_task);
702		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
703		ether_ifdetach(ifp);
704	}
705
706	if (sc->age_tq != NULL) {
707		taskqueue_drain(sc->age_tq, &sc->age_int_task);
708		taskqueue_free(sc->age_tq);
709		sc->age_tq = NULL;
710	}
711
712	if (sc->age_miibus != NULL) {
713		device_delete_child(dev, sc->age_miibus);
714		sc->age_miibus = NULL;
715	}
716	bus_generic_detach(dev);
717	age_dma_free(sc);
718
719	if (ifp != NULL) {
720		if_free(ifp);
721		sc->age_ifp = NULL;
722	}
723
724	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
725		msic = AGE_MSIX_MESSAGES;
726	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
727		msic = AGE_MSI_MESSAGES;
728	else
729		msic = 1;
730	for (i = 0; i < msic; i++) {
731		if (sc->age_intrhand[i] != NULL) {
732			bus_teardown_intr(dev, sc->age_irq[i],
733			    sc->age_intrhand[i]);
734			sc->age_intrhand[i] = NULL;
735		}
736	}
737
738	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
739	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
740		pci_release_msi(dev);
741	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
742	mtx_destroy(&sc->age_mtx);
743
744	return (0);
745}
746
747static void
748age_sysctl_node(struct age_softc *sc)
749{
750	int error;
751
752	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
753	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
754	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
755	    "I", "Statistics");
756
757	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
758	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
759	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
760	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
761
762	/* Pull in device tunables. */
763	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
764	error = resource_int_value(device_get_name(sc->age_dev),
765	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
766	if (error == 0) {
767		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
768		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
769			device_printf(sc->age_dev,
770			    "int_mod value out of range; using default: %d\n",
771			    AGE_IM_TIMER_DEFAULT);
772			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
773		}
774	}
775
776	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
777	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
778	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
779	    0, sysctl_hw_age_proc_limit, "I",
780	    "max number of Rx events to process");
781
782	/* Pull in device tunables. */
783	sc->age_process_limit = AGE_PROC_DEFAULT;
784	error = resource_int_value(device_get_name(sc->age_dev),
785	    device_get_unit(sc->age_dev), "process_limit",
786	    &sc->age_process_limit);
787	if (error == 0) {
788		if (sc->age_process_limit < AGE_PROC_MIN ||
789		    sc->age_process_limit > AGE_PROC_MAX) {
790			device_printf(sc->age_dev,
791			    "process_limit value out of range; "
792			    "using default: %d\n", AGE_PROC_DEFAULT);
793			sc->age_process_limit = AGE_PROC_DEFAULT;
794		}
795	}
796}
797
798struct age_dmamap_arg {
799	bus_addr_t	age_busaddr;
800};
801
802static void
803age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
804{
805	struct age_dmamap_arg *ctx;
806
807	if (error != 0)
808		return;
809
810	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
811
812	ctx = (struct age_dmamap_arg *)arg;
813	ctx->age_busaddr = segs[0].ds_addr;
814}
815
816/*
817 * Attansic L1 controller have single register to specify high
818 * address part of DMA blocks. So all descriptor structures and
819 * DMA memory blocks should have the same high address of given
820 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
821 */
822static int
823age_check_boundary(struct age_softc *sc)
824{
825	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
826	bus_addr_t cmb_block_end, smb_block_end;
827
828	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
829	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
830	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
831	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
832	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
833	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
834
835	if ((AGE_ADDR_HI(tx_ring_end) !=
836	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
837	    (AGE_ADDR_HI(rx_ring_end) !=
838	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
839	    (AGE_ADDR_HI(rr_ring_end) !=
840	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
841	    (AGE_ADDR_HI(cmb_block_end) !=
842	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
843	    (AGE_ADDR_HI(smb_block_end) !=
844	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
845		return (EFBIG);
846
847	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
848	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
849	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
850	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
851		return (EFBIG);
852
853	return (0);
854}
855
856static int
857age_dma_alloc(struct age_softc *sc)
858{
859	struct age_txdesc *txd;
860	struct age_rxdesc *rxd;
861	bus_addr_t lowaddr;
862	struct age_dmamap_arg ctx;
863	int error, i;
864
865	lowaddr = BUS_SPACE_MAXADDR;
866
867again:
868	/* Create parent ring/DMA block tag. */
869	error = bus_dma_tag_create(
870	    bus_get_dma_tag(sc->age_dev), /* parent */
871	    1, 0,			/* alignment, boundary */
872	    lowaddr,			/* lowaddr */
873	    BUS_SPACE_MAXADDR,		/* highaddr */
874	    NULL, NULL,			/* filter, filterarg */
875	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
876	    0,				/* nsegments */
877	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
878	    0,				/* flags */
879	    NULL, NULL,			/* lockfunc, lockarg */
880	    &sc->age_cdata.age_parent_tag);
881	if (error != 0) {
882		device_printf(sc->age_dev,
883		    "could not create parent DMA tag.\n");
884		goto fail;
885	}
886
887	/* Create tag for Tx ring. */
888	error = bus_dma_tag_create(
889	    sc->age_cdata.age_parent_tag, /* parent */
890	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
891	    BUS_SPACE_MAXADDR,		/* lowaddr */
892	    BUS_SPACE_MAXADDR,		/* highaddr */
893	    NULL, NULL,			/* filter, filterarg */
894	    AGE_TX_RING_SZ,		/* maxsize */
895	    1,				/* nsegments */
896	    AGE_TX_RING_SZ,		/* maxsegsize */
897	    0,				/* flags */
898	    NULL, NULL,			/* lockfunc, lockarg */
899	    &sc->age_cdata.age_tx_ring_tag);
900	if (error != 0) {
901		device_printf(sc->age_dev,
902		    "could not create Tx ring DMA tag.\n");
903		goto fail;
904	}
905
906	/* Create tag for Rx ring. */
907	error = bus_dma_tag_create(
908	    sc->age_cdata.age_parent_tag, /* parent */
909	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
910	    BUS_SPACE_MAXADDR,		/* lowaddr */
911	    BUS_SPACE_MAXADDR,		/* highaddr */
912	    NULL, NULL,			/* filter, filterarg */
913	    AGE_RX_RING_SZ,		/* maxsize */
914	    1,				/* nsegments */
915	    AGE_RX_RING_SZ,		/* maxsegsize */
916	    0,				/* flags */
917	    NULL, NULL,			/* lockfunc, lockarg */
918	    &sc->age_cdata.age_rx_ring_tag);
919	if (error != 0) {
920		device_printf(sc->age_dev,
921		    "could not create Rx ring DMA tag.\n");
922		goto fail;
923	}
924
925	/* Create tag for Rx return ring. */
926	error = bus_dma_tag_create(
927	    sc->age_cdata.age_parent_tag, /* parent */
928	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
929	    BUS_SPACE_MAXADDR,		/* lowaddr */
930	    BUS_SPACE_MAXADDR,		/* highaddr */
931	    NULL, NULL,			/* filter, filterarg */
932	    AGE_RR_RING_SZ,		/* maxsize */
933	    1,				/* nsegments */
934	    AGE_RR_RING_SZ,		/* maxsegsize */
935	    0,				/* flags */
936	    NULL, NULL,			/* lockfunc, lockarg */
937	    &sc->age_cdata.age_rr_ring_tag);
938	if (error != 0) {
939		device_printf(sc->age_dev,
940		    "could not create Rx return ring DMA tag.\n");
941		goto fail;
942	}
943
944	/* Create tag for coalesing message block. */
945	error = bus_dma_tag_create(
946	    sc->age_cdata.age_parent_tag, /* parent */
947	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
948	    BUS_SPACE_MAXADDR,		/* lowaddr */
949	    BUS_SPACE_MAXADDR,		/* highaddr */
950	    NULL, NULL,			/* filter, filterarg */
951	    AGE_CMB_BLOCK_SZ,		/* maxsize */
952	    1,				/* nsegments */
953	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
954	    0,				/* flags */
955	    NULL, NULL,			/* lockfunc, lockarg */
956	    &sc->age_cdata.age_cmb_block_tag);
957	if (error != 0) {
958		device_printf(sc->age_dev,
959		    "could not create CMB DMA tag.\n");
960		goto fail;
961	}
962
963	/* Create tag for statistics message block. */
964	error = bus_dma_tag_create(
965	    sc->age_cdata.age_parent_tag, /* parent */
966	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
967	    BUS_SPACE_MAXADDR,		/* lowaddr */
968	    BUS_SPACE_MAXADDR,		/* highaddr */
969	    NULL, NULL,			/* filter, filterarg */
970	    AGE_SMB_BLOCK_SZ,		/* maxsize */
971	    1,				/* nsegments */
972	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
973	    0,				/* flags */
974	    NULL, NULL,			/* lockfunc, lockarg */
975	    &sc->age_cdata.age_smb_block_tag);
976	if (error != 0) {
977		device_printf(sc->age_dev,
978		    "could not create SMB DMA tag.\n");
979		goto fail;
980	}
981
982	/* Allocate DMA'able memory and load the DMA map. */
983	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
984	    (void **)&sc->age_rdata.age_tx_ring,
985	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
986	    &sc->age_cdata.age_tx_ring_map);
987	if (error != 0) {
988		device_printf(sc->age_dev,
989		    "could not allocate DMA'able memory for Tx ring.\n");
990		goto fail;
991	}
992	ctx.age_busaddr = 0;
993	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
994	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
995	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
996	if (error != 0 || ctx.age_busaddr == 0) {
997		device_printf(sc->age_dev,
998		    "could not load DMA'able memory for Tx ring.\n");
999		goto fail;
1000	}
1001	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1002	/* Rx ring */
1003	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1004	    (void **)&sc->age_rdata.age_rx_ring,
1005	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1006	    &sc->age_cdata.age_rx_ring_map);
1007	if (error != 0) {
1008		device_printf(sc->age_dev,
1009		    "could not allocate DMA'able memory for Rx ring.\n");
1010		goto fail;
1011	}
1012	ctx.age_busaddr = 0;
1013	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1014	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1015	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1016	if (error != 0 || ctx.age_busaddr == 0) {
1017		device_printf(sc->age_dev,
1018		    "could not load DMA'able memory for Rx ring.\n");
1019		goto fail;
1020	}
1021	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1022	/* Rx return ring */
1023	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1024	    (void **)&sc->age_rdata.age_rr_ring,
1025	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1026	    &sc->age_cdata.age_rr_ring_map);
1027	if (error != 0) {
1028		device_printf(sc->age_dev,
1029		    "could not allocate DMA'able memory for Rx return ring.\n");
1030		goto fail;
1031	}
1032	ctx.age_busaddr = 0;
1033	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1034	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1035	    AGE_RR_RING_SZ, age_dmamap_cb,
1036	    &ctx, 0);
1037	if (error != 0 || ctx.age_busaddr == 0) {
1038		device_printf(sc->age_dev,
1039		    "could not load DMA'able memory for Rx return ring.\n");
1040		goto fail;
1041	}
1042	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1043	/* CMB block */
1044	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1045	    (void **)&sc->age_rdata.age_cmb_block,
1046	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1047	    &sc->age_cdata.age_cmb_block_map);
1048	if (error != 0) {
1049		device_printf(sc->age_dev,
1050		    "could not allocate DMA'able memory for CMB block.\n");
1051		goto fail;
1052	}
1053	ctx.age_busaddr = 0;
1054	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1055	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1056	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1057	if (error != 0 || ctx.age_busaddr == 0) {
1058		device_printf(sc->age_dev,
1059		    "could not load DMA'able memory for CMB block.\n");
1060		goto fail;
1061	}
1062	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1063	/* SMB block */
1064	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1065	    (void **)&sc->age_rdata.age_smb_block,
1066	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1067	    &sc->age_cdata.age_smb_block_map);
1068	if (error != 0) {
1069		device_printf(sc->age_dev,
1070		    "could not allocate DMA'able memory for SMB block.\n");
1071		goto fail;
1072	}
1073	ctx.age_busaddr = 0;
1074	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1075	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1076	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1077	if (error != 0 || ctx.age_busaddr == 0) {
1078		device_printf(sc->age_dev,
1079		    "could not load DMA'able memory for SMB block.\n");
1080		goto fail;
1081	}
1082	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1083
1084	/*
1085	 * All ring buffer and DMA blocks should have the same
1086	 * high address part of 64bit DMA address space.
1087	 */
1088	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1089	    (error = age_check_boundary(sc)) != 0) {
1090		device_printf(sc->age_dev, "4GB boundary crossed, "
1091		    "switching to 32bit DMA addressing mode.\n");
1092		age_dma_free(sc);
1093		/* Limit DMA address space to 32bit and try again. */
1094		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1095		goto again;
1096	}
1097
1098	/*
1099	 * Create Tx/Rx buffer parent tag.
1100	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1101	 * so it needs separate parent DMA tag.
1102	 */
1103	error = bus_dma_tag_create(
1104	    bus_get_dma_tag(sc->age_dev), /* parent */
1105	    1, 0,			/* alignment, boundary */
1106	    BUS_SPACE_MAXADDR,		/* lowaddr */
1107	    BUS_SPACE_MAXADDR,		/* highaddr */
1108	    NULL, NULL,			/* filter, filterarg */
1109	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1110	    0,				/* nsegments */
1111	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1112	    0,				/* flags */
1113	    NULL, NULL,			/* lockfunc, lockarg */
1114	    &sc->age_cdata.age_buffer_tag);
1115	if (error != 0) {
1116		device_printf(sc->age_dev,
1117		    "could not create parent buffer DMA tag.\n");
1118		goto fail;
1119	}
1120
1121	/* Create tag for Tx buffers. */
1122	error = bus_dma_tag_create(
1123	    sc->age_cdata.age_buffer_tag, /* parent */
1124	    1, 0,			/* alignment, boundary */
1125	    BUS_SPACE_MAXADDR,		/* lowaddr */
1126	    BUS_SPACE_MAXADDR,		/* highaddr */
1127	    NULL, NULL,			/* filter, filterarg */
1128	    AGE_TSO_MAXSIZE,		/* maxsize */
1129	    AGE_MAXTXSEGS,		/* nsegments */
1130	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1131	    0,				/* flags */
1132	    NULL, NULL,			/* lockfunc, lockarg */
1133	    &sc->age_cdata.age_tx_tag);
1134	if (error != 0) {
1135		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1136		goto fail;
1137	}
1138
1139	/* Create tag for Rx buffers. */
1140	error = bus_dma_tag_create(
1141	    sc->age_cdata.age_buffer_tag, /* parent */
1142	    1, 0,			/* alignment, boundary */
1143	    BUS_SPACE_MAXADDR,		/* lowaddr */
1144	    BUS_SPACE_MAXADDR,		/* highaddr */
1145	    NULL, NULL,			/* filter, filterarg */
1146	    MCLBYTES,			/* maxsize */
1147	    1,				/* nsegments */
1148	    MCLBYTES,			/* maxsegsize */
1149	    0,				/* flags */
1150	    NULL, NULL,			/* lockfunc, lockarg */
1151	    &sc->age_cdata.age_rx_tag);
1152	if (error != 0) {
1153		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1154		goto fail;
1155	}
1156
1157	/* Create DMA maps for Tx buffers. */
1158	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1159		txd = &sc->age_cdata.age_txdesc[i];
1160		txd->tx_m = NULL;
1161		txd->tx_dmamap = NULL;
1162		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1163		    &txd->tx_dmamap);
1164		if (error != 0) {
1165			device_printf(sc->age_dev,
1166			    "could not create Tx dmamap.\n");
1167			goto fail;
1168		}
1169	}
1170	/* Create DMA maps for Rx buffers. */
1171	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1172	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1173		device_printf(sc->age_dev,
1174		    "could not create spare Rx dmamap.\n");
1175		goto fail;
1176	}
1177	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1178		rxd = &sc->age_cdata.age_rxdesc[i];
1179		rxd->rx_m = NULL;
1180		rxd->rx_dmamap = NULL;
1181		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1182		    &rxd->rx_dmamap);
1183		if (error != 0) {
1184			device_printf(sc->age_dev,
1185			    "could not create Rx dmamap.\n");
1186			goto fail;
1187		}
1188	}
1189
1190fail:
1191	return (error);
1192}
1193
1194static void
1195age_dma_free(struct age_softc *sc)
1196{
1197	struct age_txdesc *txd;
1198	struct age_rxdesc *rxd;
1199	int i;
1200
1201	/* Tx buffers */
1202	if (sc->age_cdata.age_tx_tag != NULL) {
1203		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1204			txd = &sc->age_cdata.age_txdesc[i];
1205			if (txd->tx_dmamap != NULL) {
1206				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1207				    txd->tx_dmamap);
1208				txd->tx_dmamap = NULL;
1209			}
1210		}
1211		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1212		sc->age_cdata.age_tx_tag = NULL;
1213	}
1214	/* Rx buffers */
1215	if (sc->age_cdata.age_rx_tag != NULL) {
1216		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1217			rxd = &sc->age_cdata.age_rxdesc[i];
1218			if (rxd->rx_dmamap != NULL) {
1219				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1220				    rxd->rx_dmamap);
1221				rxd->rx_dmamap = NULL;
1222			}
1223		}
1224		if (sc->age_cdata.age_rx_sparemap != NULL) {
1225			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1226			    sc->age_cdata.age_rx_sparemap);
1227			sc->age_cdata.age_rx_sparemap = NULL;
1228		}
1229		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1230		sc->age_cdata.age_rx_tag = NULL;
1231	}
1232	/* Tx ring. */
1233	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1234		if (sc->age_cdata.age_tx_ring_map != NULL)
1235			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1236			    sc->age_cdata.age_tx_ring_map);
1237		if (sc->age_cdata.age_tx_ring_map != NULL &&
1238		    sc->age_rdata.age_tx_ring != NULL)
1239			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1240			    sc->age_rdata.age_tx_ring,
1241			    sc->age_cdata.age_tx_ring_map);
1242		sc->age_rdata.age_tx_ring = NULL;
1243		sc->age_cdata.age_tx_ring_map = NULL;
1244		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1245		sc->age_cdata.age_tx_ring_tag = NULL;
1246	}
1247	/* Rx ring. */
1248	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1249		if (sc->age_cdata.age_rx_ring_map != NULL)
1250			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1251			    sc->age_cdata.age_rx_ring_map);
1252		if (sc->age_cdata.age_rx_ring_map != NULL &&
1253		    sc->age_rdata.age_rx_ring != NULL)
1254			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1255			    sc->age_rdata.age_rx_ring,
1256			    sc->age_cdata.age_rx_ring_map);
1257		sc->age_rdata.age_rx_ring = NULL;
1258		sc->age_cdata.age_rx_ring_map = NULL;
1259		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1260		sc->age_cdata.age_rx_ring_tag = NULL;
1261	}
1262	/* Rx return ring. */
1263	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1264		if (sc->age_cdata.age_rr_ring_map != NULL)
1265			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1266			    sc->age_cdata.age_rr_ring_map);
1267		if (sc->age_cdata.age_rr_ring_map != NULL &&
1268		    sc->age_rdata.age_rr_ring != NULL)
1269			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1270			    sc->age_rdata.age_rr_ring,
1271			    sc->age_cdata.age_rr_ring_map);
1272		sc->age_rdata.age_rr_ring = NULL;
1273		sc->age_cdata.age_rr_ring_map = NULL;
1274		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1275		sc->age_cdata.age_rr_ring_tag = NULL;
1276	}
1277	/* CMB block */
1278	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1279		if (sc->age_cdata.age_cmb_block_map != NULL)
1280			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1281			    sc->age_cdata.age_cmb_block_map);
1282		if (sc->age_cdata.age_cmb_block_map != NULL &&
1283		    sc->age_rdata.age_cmb_block != NULL)
1284			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1285			    sc->age_rdata.age_cmb_block,
1286			    sc->age_cdata.age_cmb_block_map);
1287		sc->age_rdata.age_cmb_block = NULL;
1288		sc->age_cdata.age_cmb_block_map = NULL;
1289		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1290		sc->age_cdata.age_cmb_block_tag = NULL;
1291	}
1292	/* SMB block */
1293	if (sc->age_cdata.age_smb_block_tag != NULL) {
1294		if (sc->age_cdata.age_smb_block_map != NULL)
1295			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1296			    sc->age_cdata.age_smb_block_map);
1297		if (sc->age_cdata.age_smb_block_map != NULL &&
1298		    sc->age_rdata.age_smb_block != NULL)
1299			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1300			    sc->age_rdata.age_smb_block,
1301			    sc->age_cdata.age_smb_block_map);
1302		sc->age_rdata.age_smb_block = NULL;
1303		sc->age_cdata.age_smb_block_map = NULL;
1304		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1305		sc->age_cdata.age_smb_block_tag = NULL;
1306	}
1307
1308	if (sc->age_cdata.age_buffer_tag != NULL) {
1309		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1310		sc->age_cdata.age_buffer_tag = NULL;
1311	}
1312	if (sc->age_cdata.age_parent_tag != NULL) {
1313		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1314		sc->age_cdata.age_parent_tag = NULL;
1315	}
1316}
1317
1318/*
1319 *	Make sure the interface is stopped at reboot time.
1320 */
1321static int
1322age_shutdown(device_t dev)
1323{
1324
1325	return (age_suspend(dev));
1326}
1327
1328static void
1329age_setwol(struct age_softc *sc)
1330{
1331	struct ifnet *ifp;
1332	struct mii_data *mii;
1333	uint32_t reg, pmcs;
1334	uint16_t pmstat;
1335	int aneg, i, pmc;
1336
1337	AGE_LOCK_ASSERT(sc);
1338
1339	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1340		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1341		/*
1342		 * No PME capability, PHY power down.
1343		 * XXX
1344		 * Due to an unknown reason powering down PHY resulted
1345		 * in unexpected results such as inaccessbility of
1346		 * hardware of freshly rebooted system. Disable
1347		 * powering down PHY until I got more information for
1348		 * Attansic/Atheros PHY hardwares.
1349		 */
1350#ifdef notyet
1351		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1352		    MII_BMCR, BMCR_PDOWN);
1353#endif
1354		return;
1355	}
1356
1357	ifp = sc->age_ifp;
1358	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1359		/*
1360		 * Note, this driver resets the link speed to 10/100Mbps with
1361		 * auto-negotiation but we don't know whether that operation
1362		 * would succeed or not as it have no control after powering
1363		 * off. If the renegotiation fail WOL may not work. Running
1364		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1365		 * specified in PCI specification and that would result in
1366		 * complete shutdowning power to ethernet controller.
1367		 *
1368		 * TODO
1369		 *  Save current negotiated media speed/duplex/flow-control
1370		 *  to softc and restore the same link again after resuming.
1371		 *  PHY handling such as power down/resetting to 100Mbps
1372		 *  may be better handled in suspend method in phy driver.
1373		 */
1374		mii = device_get_softc(sc->age_miibus);
1375		mii_pollstat(mii);
1376		aneg = 0;
1377		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1378			switch IFM_SUBTYPE(mii->mii_media_active) {
1379			case IFM_10_T:
1380			case IFM_100_TX:
1381				goto got_link;
1382			case IFM_1000_T:
1383				aneg++;
1384			default:
1385				break;
1386			}
1387		}
1388		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1389		    MII_100T2CR, 0);
1390		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1392		    ANAR_10 | ANAR_CSMA);
1393		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1394		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1395		DELAY(1000);
1396		if (aneg != 0) {
1397			/* Poll link state until age(4) get a 10/100 link. */
1398			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1399				mii_pollstat(mii);
1400				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1401					switch (IFM_SUBTYPE(
1402					    mii->mii_media_active)) {
1403					case IFM_10_T:
1404					case IFM_100_TX:
1405						age_mac_config(sc);
1406						goto got_link;
1407					default:
1408						break;
1409					}
1410				}
1411				AGE_UNLOCK(sc);
1412				pause("agelnk", hz);
1413				AGE_LOCK(sc);
1414			}
1415			if (i == MII_ANEGTICKS_GIGE)
1416				device_printf(sc->age_dev,
1417				    "establishing link failed, "
1418				    "WOL may not work!");
1419		}
1420		/*
1421		 * No link, force MAC to have 100Mbps, full-duplex link.
1422		 * This is the last resort and may/may not work.
1423		 */
1424		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1425		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1426		age_mac_config(sc);
1427	}
1428
1429got_link:
1430	pmcs = 0;
1431	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1432		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1433	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1434	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1435	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1436	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1437	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1438		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1439	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1440		reg |= MAC_CFG_RX_ENB;
1441		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1442	}
1443
1444	/* Request PME. */
1445	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1446	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1447	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1448		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1449	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1450#ifdef notyet
1451	/* See above for powering down PHY issues. */
1452	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1453		/* No WOL, PHY power down. */
1454		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1455		    MII_BMCR, BMCR_PDOWN);
1456	}
1457#endif
1458}
1459
1460static int
1461age_suspend(device_t dev)
1462{
1463	struct age_softc *sc;
1464
1465	sc = device_get_softc(dev);
1466
1467	AGE_LOCK(sc);
1468	age_stop(sc);
1469	age_setwol(sc);
1470	AGE_UNLOCK(sc);
1471
1472	return (0);
1473}
1474
1475static int
1476age_resume(device_t dev)
1477{
1478	struct age_softc *sc;
1479	struct ifnet *ifp;
1480
1481	sc = device_get_softc(dev);
1482
1483	AGE_LOCK(sc);
1484	age_phy_reset(sc);
1485	ifp = sc->age_ifp;
1486	if ((ifp->if_flags & IFF_UP) != 0)
1487		age_init_locked(sc);
1488
1489	AGE_UNLOCK(sc);
1490
1491	return (0);
1492}
1493
1494static int
1495age_encap(struct age_softc *sc, struct mbuf **m_head)
1496{
1497	struct age_txdesc *txd, *txd_last;
1498	struct tx_desc *desc;
1499	struct mbuf *m;
1500	struct ip *ip;
1501	struct tcphdr *tcp;
1502	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1503	bus_dmamap_t map;
1504	uint32_t cflags, ip_off, poff, vtag;
1505	int error, i, nsegs, prod, si;
1506
1507	AGE_LOCK_ASSERT(sc);
1508
1509	M_ASSERTPKTHDR((*m_head));
1510
1511	m = *m_head;
1512	ip = NULL;
1513	tcp = NULL;
1514	cflags = vtag = 0;
1515	ip_off = poff = 0;
1516	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1517		/*
1518		 * L1 requires offset of TCP/UDP payload in its Tx
1519		 * descriptor to perform hardware Tx checksum offload.
1520		 * Additionally, TSO requires IP/TCP header size and
1521		 * modification of IP/TCP header in order to make TSO
1522		 * engine work. This kind of operation takes many CPU
1523		 * cycles on FreeBSD so fast host CPU is needed to get
1524		 * smooth TSO performance.
1525		 */
1526		struct ether_header *eh;
1527
1528		if (M_WRITABLE(m) == 0) {
1529			/* Get a writable copy. */
1530			m = m_dup(*m_head, M_DONTWAIT);
1531			/* Release original mbufs. */
1532			m_freem(*m_head);
1533			if (m == NULL) {
1534				*m_head = NULL;
1535				return (ENOBUFS);
1536			}
1537			*m_head = m;
1538		}
1539		ip_off = sizeof(struct ether_header);
1540		m = m_pullup(m, ip_off);
1541		if (m == NULL) {
1542			*m_head = NULL;
1543			return (ENOBUFS);
1544		}
1545		eh = mtod(m, struct ether_header *);
1546		/*
1547		 * Check if hardware VLAN insertion is off.
1548		 * Additional check for LLC/SNAP frame?
1549		 */
1550		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1551			ip_off = sizeof(struct ether_vlan_header);
1552			m = m_pullup(m, ip_off);
1553			if (m == NULL) {
1554				*m_head = NULL;
1555				return (ENOBUFS);
1556			}
1557		}
1558		m = m_pullup(m, ip_off + sizeof(struct ip));
1559		if (m == NULL) {
1560			*m_head = NULL;
1561			return (ENOBUFS);
1562		}
1563		ip = (struct ip *)(mtod(m, char *) + ip_off);
1564		poff = ip_off + (ip->ip_hl << 2);
1565		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1566			m = m_pullup(m, poff + sizeof(struct tcphdr));
1567			if (m == NULL) {
1568				*m_head = NULL;
1569				return (ENOBUFS);
1570			}
1571			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1572			/*
1573			 * L1 requires IP/TCP header size and offset as
1574			 * well as TCP pseudo checksum which complicates
1575			 * TSO configuration. I guess this comes from the
1576			 * adherence to Microsoft NDIS Large Send
1577			 * specification which requires insertion of
1578			 * pseudo checksum by upper stack. The pseudo
1579			 * checksum that NDIS refers to doesn't include
1580			 * TCP payload length so age(4) should recompute
1581			 * the pseudo checksum here. Hopefully this wouldn't
1582			 * be much burden on modern CPUs.
1583			 * Reset IP checksum and recompute TCP pseudo
1584			 * checksum as NDIS specification said.
1585			 */
1586			ip->ip_sum = 0;
1587			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1588				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1589				    ip->ip_dst.s_addr,
1590				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1591			else
1592				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1593				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1594		}
1595		*m_head = m;
1596	}
1597
1598	si = prod = sc->age_cdata.age_tx_prod;
1599	txd = &sc->age_cdata.age_txdesc[prod];
1600	txd_last = txd;
1601	map = txd->tx_dmamap;
1602
1603	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1604	    *m_head, txsegs, &nsegs, 0);
1605	if (error == EFBIG) {
1606		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1607		if (m == NULL) {
1608			m_freem(*m_head);
1609			*m_head = NULL;
1610			return (ENOMEM);
1611		}
1612		*m_head = m;
1613		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1614		    *m_head, txsegs, &nsegs, 0);
1615		if (error != 0) {
1616			m_freem(*m_head);
1617			*m_head = NULL;
1618			return (error);
1619		}
1620	} else if (error != 0)
1621		return (error);
1622	if (nsegs == 0) {
1623		m_freem(*m_head);
1624		*m_head = NULL;
1625		return (EIO);
1626	}
1627
1628	/* Check descriptor overrun. */
1629	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1630		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1631		return (ENOBUFS);
1632	}
1633
1634	m = *m_head;
1635	/* Configure Tx IP/TCP/UDP checksum offload. */
1636	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1637		cflags |= AGE_TD_CSUM;
1638		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1639			cflags |= AGE_TD_TCPCSUM;
1640		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1641			cflags |= AGE_TD_UDPCSUM;
1642		/* Set checksum start offset. */
1643		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1644		/* Set checksum insertion position of TCP/UDP. */
1645		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1646		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1647	}
1648
1649	/* Configure TSO. */
1650	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1651		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1652			/* Not TSO but IP/TCP checksum offload. */
1653			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1654			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1655			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1656		} else {
1657			/* Request TSO and set MSS. */
1658			cflags |= AGE_TD_TSO_IPV4;
1659			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1660			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1661			    AGE_TD_TSO_MSS_SHIFT);
1662		}
1663		/* Set IP/TCP header size. */
1664		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1665		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1666	}
1667
1668	/* Configure VLAN hardware tag insertion. */
1669	if ((m->m_flags & M_VLANTAG) != 0) {
1670		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1671		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1672		cflags |= AGE_TD_INSERT_VLAN_TAG;
1673	}
1674
1675	desc = NULL;
1676	for (i = 0; i < nsegs; i++) {
1677		desc = &sc->age_rdata.age_tx_ring[prod];
1678		desc->addr = htole64(txsegs[i].ds_addr);
1679		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1680		desc->flags = htole32(cflags);
1681		sc->age_cdata.age_tx_cnt++;
1682		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1683	}
1684	/* Update producer index. */
1685	sc->age_cdata.age_tx_prod = prod;
1686
1687	/* Set EOP on the last descriptor. */
1688	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1689	desc = &sc->age_rdata.age_tx_ring[prod];
1690	desc->flags |= htole32(AGE_TD_EOP);
1691
1692	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1693	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1694		desc = &sc->age_rdata.age_tx_ring[si];
1695		desc->flags |= htole32(AGE_TD_TSO_HDR);
1696	}
1697
1698	/* Swap dmamap of the first and the last. */
1699	txd = &sc->age_cdata.age_txdesc[prod];
1700	map = txd_last->tx_dmamap;
1701	txd_last->tx_dmamap = txd->tx_dmamap;
1702	txd->tx_dmamap = map;
1703	txd->tx_m = m;
1704
1705	/* Sync descriptors. */
1706	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1707	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1708	    sc->age_cdata.age_tx_ring_map,
1709	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1710
1711	return (0);
1712}
1713
1714static void
1715age_tx_task(void *arg, int pending)
1716{
1717	struct ifnet *ifp;
1718
1719	ifp = (struct ifnet *)arg;
1720	age_start(ifp);
1721}
1722
1723static void
1724age_start(struct ifnet *ifp)
1725{
1726        struct age_softc *sc;
1727        struct mbuf *m_head;
1728	int enq;
1729
1730	sc = ifp->if_softc;
1731
1732	AGE_LOCK(sc);
1733
1734	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1735	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1736		AGE_UNLOCK(sc);
1737		return;
1738	}
1739
1740	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1741		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1742		if (m_head == NULL)
1743			break;
1744		/*
1745		 * Pack the data into the transmit ring. If we
1746		 * don't have room, set the OACTIVE flag and wait
1747		 * for the NIC to drain the ring.
1748		 */
1749		if (age_encap(sc, &m_head)) {
1750			if (m_head == NULL)
1751				break;
1752			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1753			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1754			break;
1755		}
1756
1757		enq++;
1758		/*
1759		 * If there's a BPF listener, bounce a copy of this frame
1760		 * to him.
1761		 */
1762		ETHER_BPF_MTAP(ifp, m_head);
1763	}
1764
1765	if (enq > 0) {
1766		/* Update mbox. */
1767		AGE_COMMIT_MBOX(sc);
1768		/* Set a timeout in case the chip goes out to lunch. */
1769		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1770	}
1771
1772	AGE_UNLOCK(sc);
1773}
1774
1775static void
1776age_watchdog(struct age_softc *sc)
1777{
1778	struct ifnet *ifp;
1779
1780	AGE_LOCK_ASSERT(sc);
1781
1782	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1783		return;
1784
1785	ifp = sc->age_ifp;
1786	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1787		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1788		ifp->if_oerrors++;
1789		age_init_locked(sc);
1790		return;
1791	}
1792	if (sc->age_cdata.age_tx_cnt == 0) {
1793		if_printf(sc->age_ifp,
1794		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1795		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1796			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1797		return;
1798	}
1799	if_printf(sc->age_ifp, "watchdog timeout\n");
1800	ifp->if_oerrors++;
1801	age_init_locked(sc);
1802	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1803		taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1804}
1805
1806static int
1807age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1808{
1809	struct age_softc *sc;
1810	struct ifreq *ifr;
1811	struct mii_data *mii;
1812	uint32_t reg;
1813	int error, mask;
1814
1815	sc = ifp->if_softc;
1816	ifr = (struct ifreq *)data;
1817	error = 0;
1818	switch (cmd) {
1819	case SIOCSIFMTU:
1820		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1821			error = EINVAL;
1822		else if (ifp->if_mtu != ifr->ifr_mtu) {
1823			AGE_LOCK(sc);
1824			ifp->if_mtu = ifr->ifr_mtu;
1825			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1826				age_init_locked(sc);
1827			AGE_UNLOCK(sc);
1828		}
1829		break;
1830	case SIOCSIFFLAGS:
1831		AGE_LOCK(sc);
1832		if ((ifp->if_flags & IFF_UP) != 0) {
1833			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1834				if (((ifp->if_flags ^ sc->age_if_flags)
1835				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1836					age_rxfilter(sc);
1837			} else {
1838				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1839					age_init_locked(sc);
1840			}
1841		} else {
1842			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1843				age_stop(sc);
1844		}
1845		sc->age_if_flags = ifp->if_flags;
1846		AGE_UNLOCK(sc);
1847		break;
1848	case SIOCADDMULTI:
1849	case SIOCDELMULTI:
1850		AGE_LOCK(sc);
1851		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1852			age_rxfilter(sc);
1853		AGE_UNLOCK(sc);
1854		break;
1855	case SIOCSIFMEDIA:
1856	case SIOCGIFMEDIA:
1857		mii = device_get_softc(sc->age_miibus);
1858		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1859		break;
1860	case SIOCSIFCAP:
1861		AGE_LOCK(sc);
1862		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1863		if ((mask & IFCAP_TXCSUM) != 0 &&
1864		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1865			ifp->if_capenable ^= IFCAP_TXCSUM;
1866			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1867				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1868			else
1869				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1870		}
1871		if ((mask & IFCAP_RXCSUM) != 0 &&
1872		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1873			ifp->if_capenable ^= IFCAP_RXCSUM;
1874			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1875			reg &= ~MAC_CFG_RXCSUM_ENB;
1876			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1877				reg |= MAC_CFG_RXCSUM_ENB;
1878			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1879		}
1880		if ((mask & IFCAP_TSO4) != 0 &&
1881		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1882			ifp->if_capenable ^= IFCAP_TSO4;
1883			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1884				ifp->if_hwassist |= CSUM_TSO;
1885			else
1886				ifp->if_hwassist &= ~CSUM_TSO;
1887		}
1888
1889		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1890		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1891			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1892		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1893		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1894			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1895
1896		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1897		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1898			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1899			age_rxvlan(sc);
1900		}
1901		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1902		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1903			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1904		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1905		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1906			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1907		/*
1908		 * VLAN hardware tagging is required to do checksum
1909		 * offload or TSO on VLAN interface. Checksum offload
1910		 * on VLAN interface also requires hardware assistance
1911		 * of parent interface.
1912		 */
1913		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
1914			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
1915		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1916			ifp->if_capenable &=
1917			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1918		AGE_UNLOCK(sc);
1919		VLAN_CAPABILITIES(ifp);
1920		break;
1921	default:
1922		error = ether_ioctl(ifp, cmd, data);
1923		break;
1924	}
1925
1926	return (error);
1927}
1928
1929static void
1930age_mac_config(struct age_softc *sc)
1931{
1932	struct mii_data *mii;
1933	uint32_t reg;
1934
1935	AGE_LOCK_ASSERT(sc);
1936
1937	mii = device_get_softc(sc->age_miibus);
1938	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1939	reg &= ~MAC_CFG_FULL_DUPLEX;
1940	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1941	reg &= ~MAC_CFG_SPEED_MASK;
1942	/* Reprogram MAC with resolved speed/duplex. */
1943	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1944	case IFM_10_T:
1945	case IFM_100_TX:
1946		reg |= MAC_CFG_SPEED_10_100;
1947		break;
1948	case IFM_1000_T:
1949		reg |= MAC_CFG_SPEED_1000;
1950		break;
1951	}
1952	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1953		reg |= MAC_CFG_FULL_DUPLEX;
1954#ifdef notyet
1955		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1956			reg |= MAC_CFG_TX_FC;
1957		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1958			reg |= MAC_CFG_RX_FC;
1959#endif
1960	}
1961
1962	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1963}
1964
1965static void
1966age_link_task(void *arg, int pending)
1967{
1968	struct age_softc *sc;
1969	struct mii_data *mii;
1970	struct ifnet *ifp;
1971	uint32_t reg;
1972
1973	sc = (struct age_softc *)arg;
1974
1975	AGE_LOCK(sc);
1976	mii = device_get_softc(sc->age_miibus);
1977	ifp = sc->age_ifp;
1978	if (mii == NULL || ifp == NULL ||
1979	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1980		AGE_UNLOCK(sc);
1981		return;
1982	}
1983
1984	sc->age_flags &= ~AGE_FLAG_LINK;
1985	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1986		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1987		case IFM_10_T:
1988		case IFM_100_TX:
1989		case IFM_1000_T:
1990			sc->age_flags |= AGE_FLAG_LINK;
1991			break;
1992		default:
1993			break;
1994		}
1995	}
1996
1997	/* Stop Rx/Tx MACs. */
1998	age_stop_rxmac(sc);
1999	age_stop_txmac(sc);
2000
2001	/* Program MACs with resolved speed/duplex/flow-control. */
2002	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2003		age_mac_config(sc);
2004		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2005		/* Restart DMA engine and Tx/Rx MAC. */
2006		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2007		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2008		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2009		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2010	}
2011
2012	AGE_UNLOCK(sc);
2013}
2014
2015static void
2016age_stats_update(struct age_softc *sc)
2017{
2018	struct age_stats *stat;
2019	struct smb *smb;
2020	struct ifnet *ifp;
2021
2022	AGE_LOCK_ASSERT(sc);
2023
2024	stat = &sc->age_stat;
2025
2026	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2027	    sc->age_cdata.age_smb_block_map,
2028	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2029
2030	smb = sc->age_rdata.age_smb_block;
2031	if (smb->updated == 0)
2032		return;
2033
2034	ifp = sc->age_ifp;
2035	/* Rx stats. */
2036	stat->rx_frames += smb->rx_frames;
2037	stat->rx_bcast_frames += smb->rx_bcast_frames;
2038	stat->rx_mcast_frames += smb->rx_mcast_frames;
2039	stat->rx_pause_frames += smb->rx_pause_frames;
2040	stat->rx_control_frames += smb->rx_control_frames;
2041	stat->rx_crcerrs += smb->rx_crcerrs;
2042	stat->rx_lenerrs += smb->rx_lenerrs;
2043	stat->rx_bytes += smb->rx_bytes;
2044	stat->rx_runts += smb->rx_runts;
2045	stat->rx_fragments += smb->rx_fragments;
2046	stat->rx_pkts_64 += smb->rx_pkts_64;
2047	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2048	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2049	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2050	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2051	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2052	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2053	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2054	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2055	stat->rx_desc_oflows += smb->rx_desc_oflows;
2056	stat->rx_alignerrs += smb->rx_alignerrs;
2057	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2058	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2059	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2060
2061	/* Tx stats. */
2062	stat->tx_frames += smb->tx_frames;
2063	stat->tx_bcast_frames += smb->tx_bcast_frames;
2064	stat->tx_mcast_frames += smb->tx_mcast_frames;
2065	stat->tx_pause_frames += smb->tx_pause_frames;
2066	stat->tx_excess_defer += smb->tx_excess_defer;
2067	stat->tx_control_frames += smb->tx_control_frames;
2068	stat->tx_deferred += smb->tx_deferred;
2069	stat->tx_bytes += smb->tx_bytes;
2070	stat->tx_pkts_64 += smb->tx_pkts_64;
2071	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2072	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2073	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2074	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2075	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2076	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2077	stat->tx_single_colls += smb->tx_single_colls;
2078	stat->tx_multi_colls += smb->tx_multi_colls;
2079	stat->tx_late_colls += smb->tx_late_colls;
2080	stat->tx_excess_colls += smb->tx_excess_colls;
2081	stat->tx_underrun += smb->tx_underrun;
2082	stat->tx_desc_underrun += smb->tx_desc_underrun;
2083	stat->tx_lenerrs += smb->tx_lenerrs;
2084	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2085	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2086	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2087
2088	/* Update counters in ifnet. */
2089	ifp->if_opackets += smb->tx_frames;
2090
2091	ifp->if_collisions += smb->tx_single_colls +
2092	    smb->tx_multi_colls + smb->tx_late_colls +
2093	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2094
2095	ifp->if_oerrors += smb->tx_excess_colls +
2096	    smb->tx_late_colls + smb->tx_underrun +
2097	    smb->tx_pkts_truncated;
2098
2099	ifp->if_ipackets += smb->rx_frames;
2100
2101	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2102	    smb->rx_runts + smb->rx_pkts_truncated +
2103	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2104	    smb->rx_alignerrs;
2105
2106	/* Update done, clear. */
2107	smb->updated = 0;
2108
2109	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2110	    sc->age_cdata.age_smb_block_map,
2111	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2112}
2113
2114static int
2115age_intr(void *arg)
2116{
2117	struct age_softc *sc;
2118	uint32_t status;
2119
2120	sc = (struct age_softc *)arg;
2121
2122	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2123	if (status == 0 || (status & AGE_INTRS) == 0)
2124		return (FILTER_STRAY);
2125	/* Disable interrupts. */
2126	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2127	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2128
2129	return (FILTER_HANDLED);
2130}
2131
2132static void
2133age_int_task(void *arg, int pending)
2134{
2135	struct age_softc *sc;
2136	struct ifnet *ifp;
2137	struct cmb *cmb;
2138	uint32_t status;
2139
2140	sc = (struct age_softc *)arg;
2141
2142	AGE_LOCK(sc);
2143
2144	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2145	    sc->age_cdata.age_cmb_block_map,
2146	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2147	cmb = sc->age_rdata.age_cmb_block;
2148	status = le32toh(cmb->intr_status);
2149	if (sc->age_morework != 0)
2150		status |= INTR_CMB_RX;
2151	if ((status & AGE_INTRS) == 0)
2152		goto done;
2153
2154	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2155	    TPD_CONS_SHIFT;
2156	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2157	    RRD_PROD_SHIFT;
2158	/* Let hardware know CMB was served. */
2159	cmb->intr_status = 0;
2160	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2161	    sc->age_cdata.age_cmb_block_map,
2162	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2163
2164#if 0
2165	printf("INTR: 0x%08x\n", status);
2166	status &= ~INTR_DIS_DMA;
2167	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2168#endif
2169	ifp = sc->age_ifp;
2170	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2171		if ((status & INTR_CMB_RX) != 0)
2172			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2173			    sc->age_process_limit);
2174		if ((status & INTR_CMB_TX) != 0)
2175			age_txintr(sc, sc->age_tpd_cons);
2176		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2177			if ((status & INTR_DMA_RD_TO_RST) != 0)
2178				device_printf(sc->age_dev,
2179				    "DMA read error! -- resetting\n");
2180			if ((status & INTR_DMA_WR_TO_RST) != 0)
2181				device_printf(sc->age_dev,
2182				    "DMA write error! -- resetting\n");
2183			age_init_locked(sc);
2184		}
2185		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2186			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2187		if ((status & INTR_SMB) != 0)
2188			age_stats_update(sc);
2189	}
2190
2191	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2192	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2193	    sc->age_cdata.age_cmb_block_map,
2194	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2195	status = le32toh(cmb->intr_status);
2196	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2197		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2198		AGE_UNLOCK(sc);
2199		return;
2200	}
2201
2202done:
2203	/* Re-enable interrupts. */
2204	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2205	AGE_UNLOCK(sc);
2206}
2207
2208static void
2209age_txintr(struct age_softc *sc, int tpd_cons)
2210{
2211	struct ifnet *ifp;
2212	struct age_txdesc *txd;
2213	int cons, prog;
2214
2215	AGE_LOCK_ASSERT(sc);
2216
2217	ifp = sc->age_ifp;
2218
2219	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2220	    sc->age_cdata.age_tx_ring_map,
2221	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2222
2223	/*
2224	 * Go through our Tx list and free mbufs for those
2225	 * frames which have been transmitted.
2226	 */
2227	cons = sc->age_cdata.age_tx_cons;
2228	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2229		if (sc->age_cdata.age_tx_cnt <= 0)
2230			break;
2231		prog++;
2232		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2233		sc->age_cdata.age_tx_cnt--;
2234		txd = &sc->age_cdata.age_txdesc[cons];
2235		/*
2236		 * Clear Tx descriptors, it's not required but would
2237		 * help debugging in case of Tx issues.
2238		 */
2239		txd->tx_desc->addr = 0;
2240		txd->tx_desc->len = 0;
2241		txd->tx_desc->flags = 0;
2242
2243		if (txd->tx_m == NULL)
2244			continue;
2245		/* Reclaim transmitted mbufs. */
2246		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2247		    BUS_DMASYNC_POSTWRITE);
2248		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2249		m_freem(txd->tx_m);
2250		txd->tx_m = NULL;
2251	}
2252
2253	if (prog > 0) {
2254		sc->age_cdata.age_tx_cons = cons;
2255
2256		/*
2257		 * Unarm watchdog timer only when there are no pending
2258		 * Tx descriptors in queue.
2259		 */
2260		if (sc->age_cdata.age_tx_cnt == 0)
2261			sc->age_watchdog_timer = 0;
2262		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2263		    sc->age_cdata.age_tx_ring_map,
2264		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2265	}
2266}
2267
2268/* Receive a frame. */
2269static void
2270age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2271{
2272	struct age_rxdesc *rxd;
2273	struct rx_desc *desc;
2274	struct ifnet *ifp;
2275	struct mbuf *mp, *m;
2276	uint32_t status, index, vtag;
2277	int count, nsegs, pktlen;
2278	int rx_cons;
2279
2280	AGE_LOCK_ASSERT(sc);
2281
2282	ifp = sc->age_ifp;
2283	status = le32toh(rxrd->flags);
2284	index = le32toh(rxrd->index);
2285	rx_cons = AGE_RX_CONS(index);
2286	nsegs = AGE_RX_NSEGS(index);
2287
2288	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2289	if ((status & AGE_RRD_ERROR) != 0 &&
2290	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2291	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2292		/*
2293		 * We want to pass the following frames to upper
2294		 * layer regardless of error status of Rx return
2295		 * ring.
2296		 *
2297		 *  o IP/TCP/UDP checksum is bad.
2298		 *  o frame length and protocol specific length
2299		 *     does not match.
2300		 */
2301		sc->age_cdata.age_rx_cons += nsegs;
2302		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2303		return;
2304	}
2305
2306	pktlen = 0;
2307	for (count = 0; count < nsegs; count++,
2308	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2309		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2310		mp = rxd->rx_m;
2311		desc = rxd->rx_desc;
2312		/* Add a new receive buffer to the ring. */
2313		if (age_newbuf(sc, rxd) != 0) {
2314			ifp->if_iqdrops++;
2315			/* Reuse Rx buffers. */
2316			if (sc->age_cdata.age_rxhead != NULL) {
2317				m_freem(sc->age_cdata.age_rxhead);
2318				AGE_RXCHAIN_RESET(sc);
2319			}
2320			break;
2321		}
2322
2323		/* The length of the first mbuf is computed last. */
2324		if (count != 0) {
2325			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2326			pktlen += mp->m_len;
2327		}
2328
2329		/* Chain received mbufs. */
2330		if (sc->age_cdata.age_rxhead == NULL) {
2331			sc->age_cdata.age_rxhead = mp;
2332			sc->age_cdata.age_rxtail = mp;
2333		} else {
2334			mp->m_flags &= ~M_PKTHDR;
2335			sc->age_cdata.age_rxprev_tail =
2336			    sc->age_cdata.age_rxtail;
2337			sc->age_cdata.age_rxtail->m_next = mp;
2338			sc->age_cdata.age_rxtail = mp;
2339		}
2340
2341		if (count == nsegs - 1) {
2342			/*
2343			 * It seems that L1 controller has no way
2344			 * to tell hardware to strip CRC bytes.
2345			 */
2346			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2347			if (nsegs > 1) {
2348				/* Remove the CRC bytes in chained mbufs. */
2349				pktlen -= ETHER_CRC_LEN;
2350				if (mp->m_len <= ETHER_CRC_LEN) {
2351					sc->age_cdata.age_rxtail =
2352					    sc->age_cdata.age_rxprev_tail;
2353					sc->age_cdata.age_rxtail->m_len -=
2354					    (ETHER_CRC_LEN - mp->m_len);
2355					sc->age_cdata.age_rxtail->m_next = NULL;
2356					m_freem(mp);
2357				} else {
2358					mp->m_len -= ETHER_CRC_LEN;
2359				}
2360			}
2361
2362			m = sc->age_cdata.age_rxhead;
2363			m->m_flags |= M_PKTHDR;
2364			m->m_pkthdr.rcvif = ifp;
2365			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2366			/* Set the first mbuf length. */
2367			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2368
2369			/*
2370			 * Set checksum information.
2371			 * It seems that L1 controller can compute partial
2372			 * checksum. The partial checksum value can be used
2373			 * to accelerate checksum computation for fragmented
2374			 * TCP/UDP packets. Upper network stack already
2375			 * takes advantage of the partial checksum value in
2376			 * IP reassembly stage. But I'm not sure the
2377			 * correctness of the partial hardware checksum
2378			 * assistance due to lack of data sheet. If it is
2379			 * proven to work on L1 I'll enable it.
2380			 */
2381			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2382			    (status & AGE_RRD_IPV4) != 0) {
2383				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2384				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2385					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2386				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2387				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2388					m->m_pkthdr.csum_flags |=
2389					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2390					m->m_pkthdr.csum_data = 0xffff;
2391				}
2392				/*
2393				 * Don't mark bad checksum for TCP/UDP frames
2394				 * as fragmented frames may always have set
2395				 * bad checksummed bit of descriptor status.
2396				 */
2397			}
2398
2399			/* Check for VLAN tagged frames. */
2400			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2401			    (status & AGE_RRD_VLAN) != 0) {
2402				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2403				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2404				m->m_flags |= M_VLANTAG;
2405			}
2406
2407			/* Pass it on. */
2408			AGE_UNLOCK(sc);
2409			(*ifp->if_input)(ifp, m);
2410			AGE_LOCK(sc);
2411
2412			/* Reset mbuf chains. */
2413			AGE_RXCHAIN_RESET(sc);
2414		}
2415	}
2416
2417	if (count != nsegs) {
2418		sc->age_cdata.age_rx_cons += nsegs;
2419		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2420	} else
2421		sc->age_cdata.age_rx_cons = rx_cons;
2422}
2423
2424static int
2425age_rxintr(struct age_softc *sc, int rr_prod, int count)
2426{
2427	struct rx_rdesc *rxrd;
2428	int rr_cons, nsegs, pktlen, prog;
2429
2430	AGE_LOCK_ASSERT(sc);
2431
2432	rr_cons = sc->age_cdata.age_rr_cons;
2433	if (rr_cons == rr_prod)
2434		return (0);
2435
2436	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2437	    sc->age_cdata.age_rr_ring_map,
2438	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2439
2440	for (prog = 0; rr_cons != rr_prod; prog++) {
2441		if (count <= 0)
2442			break;
2443		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2444		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2445		if (nsegs == 0)
2446			break;
2447		/*
2448		 * Check number of segments against received bytes.
2449		 * Non-matching value would indicate that hardware
2450		 * is still trying to update Rx return descriptors.
2451		 * I'm not sure whether this check is really needed.
2452		 */
2453		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2454		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2455		    (MCLBYTES - ETHER_ALIGN)))
2456			break;
2457
2458		prog++;
2459		/* Received a frame. */
2460		age_rxeof(sc, rxrd);
2461		/* Clear return ring. */
2462		rxrd->index = 0;
2463		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2464	}
2465
2466	if (prog > 0) {
2467		/* Update the consumer index. */
2468		sc->age_cdata.age_rr_cons = rr_cons;
2469
2470		/* Sync descriptors. */
2471		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2472		    sc->age_cdata.age_rr_ring_map,
2473		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2474
2475		/* Notify hardware availability of new Rx buffers. */
2476		AGE_COMMIT_MBOX(sc);
2477	}
2478
2479	return (count > 0 ? 0 : EAGAIN);
2480}
2481
2482static void
2483age_tick(void *arg)
2484{
2485	struct age_softc *sc;
2486	struct mii_data *mii;
2487
2488	sc = (struct age_softc *)arg;
2489
2490	AGE_LOCK_ASSERT(sc);
2491
2492	mii = device_get_softc(sc->age_miibus);
2493	mii_tick(mii);
2494	age_watchdog(sc);
2495	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2496}
2497
2498static void
2499age_reset(struct age_softc *sc)
2500{
2501	uint32_t reg;
2502	int i;
2503
2504	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2505	CSR_READ_4(sc, AGE_MASTER_CFG);
2506	DELAY(1000);
2507	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2508		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2509			break;
2510		DELAY(10);
2511	}
2512
2513	if (i == 0)
2514		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2515	/* Initialize PCIe module. From Linux. */
2516	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2517	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2518}
2519
2520static void
2521age_init(void *xsc)
2522{
2523	struct age_softc *sc;
2524
2525	sc = (struct age_softc *)xsc;
2526	AGE_LOCK(sc);
2527	age_init_locked(sc);
2528	AGE_UNLOCK(sc);
2529}
2530
2531static void
2532age_init_locked(struct age_softc *sc)
2533{
2534	struct ifnet *ifp;
2535	struct mii_data *mii;
2536	uint8_t eaddr[ETHER_ADDR_LEN];
2537	bus_addr_t paddr;
2538	uint32_t reg, fsize;
2539	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2540	int error;
2541
2542	AGE_LOCK_ASSERT(sc);
2543
2544	ifp = sc->age_ifp;
2545	mii = device_get_softc(sc->age_miibus);
2546
2547	/*
2548	 * Cancel any pending I/O.
2549	 */
2550	age_stop(sc);
2551
2552	/*
2553	 * Reset the chip to a known state.
2554	 */
2555	age_reset(sc);
2556
2557	/* Initialize descriptors. */
2558	error = age_init_rx_ring(sc);
2559        if (error != 0) {
2560                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2561                age_stop(sc);
2562		return;
2563        }
2564	age_init_rr_ring(sc);
2565	age_init_tx_ring(sc);
2566	age_init_cmb_block(sc);
2567	age_init_smb_block(sc);
2568
2569	/* Reprogram the station address. */
2570	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2571	CSR_WRITE_4(sc, AGE_PAR0,
2572	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2573	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2574
2575	/* Set descriptor base addresses. */
2576	paddr = sc->age_rdata.age_tx_ring_paddr;
2577	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2578	paddr = sc->age_rdata.age_rx_ring_paddr;
2579	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2580	paddr = sc->age_rdata.age_rr_ring_paddr;
2581	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2582	paddr = sc->age_rdata.age_tx_ring_paddr;
2583	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2584	paddr = sc->age_rdata.age_cmb_block_paddr;
2585	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2586	paddr = sc->age_rdata.age_smb_block_paddr;
2587	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2588	/* Set Rx/Rx return descriptor counter. */
2589	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2590	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2591	    DESC_RRD_CNT_MASK) |
2592	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2593	/* Set Tx descriptor counter. */
2594	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2595	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2596
2597	/* Tell hardware that we're ready to load descriptors. */
2598	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2599
2600	/*
2601	 * Initialize mailbox register.
2602	 * Updated producer/consumer index information is exchanged
2603	 * through this mailbox register. However Tx producer and
2604	 * Rx return consumer/Rx producer are all shared such that
2605	 * it's hard to separate code path between Tx and Rx without
2606	 * locking. If L1 hardware have a separate mail box register
2607	 * for Tx and Rx consumer/producer management we could have
2608	 * indepent Tx/Rx handler which in turn Rx handler could have
2609	 * been run without any locking.
2610	 */
2611	AGE_COMMIT_MBOX(sc);
2612
2613	/* Configure IPG/IFG parameters. */
2614	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2615	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2616	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2617	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2618	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2619
2620	/* Set parameters for half-duplex media. */
2621	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2622	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2623	    HDPX_CFG_LCOL_MASK) |
2624	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2625	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2626	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2627	    HDPX_CFG_ABEBT_MASK) |
2628	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2629	    HDPX_CFG_JAMIPG_MASK));
2630
2631	/* Configure interrupt moderation timer. */
2632	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2633	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2634	reg &= ~MASTER_MTIMER_ENB;
2635	if (AGE_USECS(sc->age_int_mod) == 0)
2636		reg &= ~MASTER_ITIMER_ENB;
2637	else
2638		reg |= MASTER_ITIMER_ENB;
2639	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2640	if (bootverbose)
2641		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2642		    sc->age_int_mod);
2643	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2644
2645	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2646	if (ifp->if_mtu < ETHERMTU)
2647		sc->age_max_frame_size = ETHERMTU;
2648	else
2649		sc->age_max_frame_size = ifp->if_mtu;
2650	sc->age_max_frame_size += ETHER_HDR_LEN +
2651	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2652	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2653	/* Configure jumbo frame. */
2654	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2655	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2656	    (((fsize / sizeof(uint64_t)) <<
2657	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2658	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2659	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2660	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2661	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2662
2663	/* Configure flow-control parameters. From Linux. */
2664	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2665		/*
2666		 * Magic workaround for old-L1.
2667		 * Don't know which hw revision requires this magic.
2668		 */
2669		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2670		/*
2671		 * Another magic workaround for flow-control mode
2672		 * change. From Linux.
2673		 */
2674		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2675	}
2676	/*
2677	 * TODO
2678	 *  Should understand pause parameter relationships between FIFO
2679	 *  size and number of Rx descriptors and Rx return descriptors.
2680	 *
2681	 *  Magic parameters came from Linux.
2682	 */
2683	switch (sc->age_chip_rev) {
2684	case 0x8001:
2685	case 0x9001:
2686	case 0x9002:
2687	case 0x9003:
2688		rxf_hi = AGE_RX_RING_CNT / 16;
2689		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2690		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2691		rrd_lo = AGE_RR_RING_CNT / 16;
2692		break;
2693	default:
2694		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2695		rxf_lo = reg / 16;
2696		if (rxf_lo < 192)
2697			rxf_lo = 192;
2698		rxf_hi = (reg * 7) / 8;
2699		if (rxf_hi < rxf_lo)
2700			rxf_hi = rxf_lo + 16;
2701		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2702		rrd_lo = reg / 8;
2703		rrd_hi = (reg * 7) / 8;
2704		if (rrd_lo < 2)
2705			rrd_lo = 2;
2706		if (rrd_hi < rrd_lo)
2707			rrd_hi = rrd_lo + 3;
2708		break;
2709	}
2710	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2711	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2712	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2713	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2714	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2715	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2716	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2717	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2718	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2719	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2720
2721	/* Configure RxQ. */
2722	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2723	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2724	    RXQ_CFG_RD_BURST_MASK) |
2725	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2726	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2727	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2728	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2729	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2730
2731	/* Configure TxQ. */
2732	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2733	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2734	    TXQ_CFG_TPD_BURST_MASK) |
2735	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2736	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2737	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2738	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2739	    TXQ_CFG_ENB);
2740
2741	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2742	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2743	    TX_JUMBO_TPD_TH_MASK) |
2744	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2745	    TX_JUMBO_TPD_IPG_MASK));
2746	/* Configure DMA parameters. */
2747	CSR_WRITE_4(sc, AGE_DMA_CFG,
2748	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2749	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2750	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2751
2752	/* Configure CMB DMA write threshold. */
2753	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2754	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2755	    CMB_WR_THRESH_RRD_MASK) |
2756	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2757	    CMB_WR_THRESH_TPD_MASK));
2758
2759	/* Set CMB/SMB timer and enable them. */
2760	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2761	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2762	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2763	/* Request SMB updates for every seconds. */
2764	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2765	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2766
2767	/*
2768	 * Disable all WOL bits as WOL can interfere normal Rx
2769	 * operation.
2770	 */
2771	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2772
2773	/*
2774	 * Configure Tx/Rx MACs.
2775	 *  - Auto-padding for short frames.
2776	 *  - Enable CRC generation.
2777	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2778	 *  of MAC is followed after link establishment.
2779	 */
2780	CSR_WRITE_4(sc, AGE_MAC_CFG,
2781	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2782	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2783	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2784	    MAC_CFG_PREAMBLE_MASK));
2785	/* Set up the receive filter. */
2786	age_rxfilter(sc);
2787	age_rxvlan(sc);
2788
2789	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2790	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2791		reg |= MAC_CFG_RXCSUM_ENB;
2792
2793	/* Ack all pending interrupts and clear it. */
2794	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2795	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2796
2797	/* Finally enable Tx/Rx MAC. */
2798	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2799
2800	sc->age_flags &= ~AGE_FLAG_LINK;
2801	/* Switch to the current media. */
2802	mii_mediachg(mii);
2803
2804	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2805
2806	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2807	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2808}
2809
2810static void
2811age_stop(struct age_softc *sc)
2812{
2813	struct ifnet *ifp;
2814	struct age_txdesc *txd;
2815	struct age_rxdesc *rxd;
2816	uint32_t reg;
2817	int i;
2818
2819	AGE_LOCK_ASSERT(sc);
2820	/*
2821	 * Mark the interface down and cancel the watchdog timer.
2822	 */
2823	ifp = sc->age_ifp;
2824	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2825	sc->age_flags &= ~AGE_FLAG_LINK;
2826	callout_stop(&sc->age_tick_ch);
2827	sc->age_watchdog_timer = 0;
2828
2829	/*
2830	 * Disable interrupts.
2831	 */
2832	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2833	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2834	/* Stop CMB/SMB updates. */
2835	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2836	/* Stop Rx/Tx MAC. */
2837	age_stop_rxmac(sc);
2838	age_stop_txmac(sc);
2839	/* Stop DMA. */
2840	CSR_WRITE_4(sc, AGE_DMA_CFG,
2841	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2842	/* Stop TxQ/RxQ. */
2843	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2844	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2845	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2846	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2847	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2848		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2849			break;
2850		DELAY(10);
2851	}
2852	if (i == 0)
2853		device_printf(sc->age_dev,
2854		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2855
2856	 /* Reclaim Rx buffers that have been processed. */
2857	if (sc->age_cdata.age_rxhead != NULL)
2858		m_freem(sc->age_cdata.age_rxhead);
2859	AGE_RXCHAIN_RESET(sc);
2860	/*
2861	 * Free RX and TX mbufs still in the queues.
2862	 */
2863	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2864		rxd = &sc->age_cdata.age_rxdesc[i];
2865		if (rxd->rx_m != NULL) {
2866			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2867			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2868			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2869			    rxd->rx_dmamap);
2870			m_freem(rxd->rx_m);
2871			rxd->rx_m = NULL;
2872		}
2873        }
2874	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2875		txd = &sc->age_cdata.age_txdesc[i];
2876		if (txd->tx_m != NULL) {
2877			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2878			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2879			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2880			    txd->tx_dmamap);
2881			m_freem(txd->tx_m);
2882			txd->tx_m = NULL;
2883		}
2884        }
2885}
2886
2887static void
2888age_stop_txmac(struct age_softc *sc)
2889{
2890	uint32_t reg;
2891	int i;
2892
2893	AGE_LOCK_ASSERT(sc);
2894
2895	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2896	if ((reg & MAC_CFG_TX_ENB) != 0) {
2897		reg &= ~MAC_CFG_TX_ENB;
2898		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2899	}
2900	/* Stop Tx DMA engine. */
2901	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2902	if ((reg & DMA_CFG_RD_ENB) != 0) {
2903		reg &= ~DMA_CFG_RD_ENB;
2904		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2905	}
2906	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2907		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2908		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2909			break;
2910		DELAY(10);
2911	}
2912	if (i == 0)
2913		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2914}
2915
2916static void
2917age_stop_rxmac(struct age_softc *sc)
2918{
2919	uint32_t reg;
2920	int i;
2921
2922	AGE_LOCK_ASSERT(sc);
2923
2924	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2925	if ((reg & MAC_CFG_RX_ENB) != 0) {
2926		reg &= ~MAC_CFG_RX_ENB;
2927		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2928	}
2929	/* Stop Rx DMA engine. */
2930	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2931	if ((reg & DMA_CFG_WR_ENB) != 0) {
2932		reg &= ~DMA_CFG_WR_ENB;
2933		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2934	}
2935	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2936		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2937		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2938			break;
2939		DELAY(10);
2940	}
2941	if (i == 0)
2942		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2943}
2944
2945static void
2946age_init_tx_ring(struct age_softc *sc)
2947{
2948	struct age_ring_data *rd;
2949	struct age_txdesc *txd;
2950	int i;
2951
2952	AGE_LOCK_ASSERT(sc);
2953
2954	sc->age_cdata.age_tx_prod = 0;
2955	sc->age_cdata.age_tx_cons = 0;
2956	sc->age_cdata.age_tx_cnt = 0;
2957
2958	rd = &sc->age_rdata;
2959	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2960	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2961		txd = &sc->age_cdata.age_txdesc[i];
2962		txd->tx_desc = &rd->age_tx_ring[i];
2963		txd->tx_m = NULL;
2964	}
2965
2966	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2967	    sc->age_cdata.age_tx_ring_map,
2968	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2969}
2970
2971static int
2972age_init_rx_ring(struct age_softc *sc)
2973{
2974	struct age_ring_data *rd;
2975	struct age_rxdesc *rxd;
2976	int i;
2977
2978	AGE_LOCK_ASSERT(sc);
2979
2980	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2981	sc->age_morework = 0;
2982	rd = &sc->age_rdata;
2983	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2984	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2985		rxd = &sc->age_cdata.age_rxdesc[i];
2986		rxd->rx_m = NULL;
2987		rxd->rx_desc = &rd->age_rx_ring[i];
2988		if (age_newbuf(sc, rxd) != 0)
2989			return (ENOBUFS);
2990	}
2991
2992	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2993	    sc->age_cdata.age_rx_ring_map,
2994	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2995
2996	return (0);
2997}
2998
2999static void
3000age_init_rr_ring(struct age_softc *sc)
3001{
3002	struct age_ring_data *rd;
3003
3004	AGE_LOCK_ASSERT(sc);
3005
3006	sc->age_cdata.age_rr_cons = 0;
3007	AGE_RXCHAIN_RESET(sc);
3008
3009	rd = &sc->age_rdata;
3010	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3011	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3012	    sc->age_cdata.age_rr_ring_map,
3013	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3014}
3015
3016static void
3017age_init_cmb_block(struct age_softc *sc)
3018{
3019	struct age_ring_data *rd;
3020
3021	AGE_LOCK_ASSERT(sc);
3022
3023	rd = &sc->age_rdata;
3024	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3025	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3026	    sc->age_cdata.age_cmb_block_map,
3027	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3028}
3029
3030static void
3031age_init_smb_block(struct age_softc *sc)
3032{
3033	struct age_ring_data *rd;
3034
3035	AGE_LOCK_ASSERT(sc);
3036
3037	rd = &sc->age_rdata;
3038	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3039	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3040	    sc->age_cdata.age_smb_block_map,
3041	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3042}
3043
3044static int
3045age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3046{
3047	struct rx_desc *desc;
3048	struct mbuf *m;
3049	bus_dma_segment_t segs[1];
3050	bus_dmamap_t map;
3051	int nsegs;
3052
3053	AGE_LOCK_ASSERT(sc);
3054
3055	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3056	if (m == NULL)
3057		return (ENOBUFS);
3058	m->m_len = m->m_pkthdr.len = MCLBYTES;
3059	m_adj(m, ETHER_ALIGN);
3060
3061	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3062	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3063		m_freem(m);
3064		return (ENOBUFS);
3065	}
3066	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3067
3068	if (rxd->rx_m != NULL) {
3069		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3070		    BUS_DMASYNC_POSTREAD);
3071		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3072	}
3073	map = rxd->rx_dmamap;
3074	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3075	sc->age_cdata.age_rx_sparemap = map;
3076	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3077	    BUS_DMASYNC_PREREAD);
3078	rxd->rx_m = m;
3079
3080	desc = rxd->rx_desc;
3081	desc->addr = htole64(segs[0].ds_addr);
3082	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3083	    AGE_RD_LEN_SHIFT);
3084	return (0);
3085}
3086
3087static void
3088age_rxvlan(struct age_softc *sc)
3089{
3090	struct ifnet *ifp;
3091	uint32_t reg;
3092
3093	AGE_LOCK_ASSERT(sc);
3094
3095	ifp = sc->age_ifp;
3096	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3097	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3098	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3099		reg |= MAC_CFG_VLAN_TAG_STRIP;
3100	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3101}
3102
3103static void
3104age_rxfilter(struct age_softc *sc)
3105{
3106	struct ifnet *ifp;
3107	struct ifmultiaddr *ifma;
3108	uint32_t crc;
3109	uint32_t mchash[2];
3110	uint32_t rxcfg;
3111
3112	AGE_LOCK_ASSERT(sc);
3113
3114	ifp = sc->age_ifp;
3115
3116	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3117	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3118	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3119		rxcfg |= MAC_CFG_BCAST;
3120	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3121		if ((ifp->if_flags & IFF_PROMISC) != 0)
3122			rxcfg |= MAC_CFG_PROMISC;
3123		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3124			rxcfg |= MAC_CFG_ALLMULTI;
3125		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3126		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3127		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3128		return;
3129	}
3130
3131	/* Program new filter. */
3132	bzero(mchash, sizeof(mchash));
3133
3134	if_maddr_rlock(ifp);
3135	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3136		if (ifma->ifma_addr->sa_family != AF_LINK)
3137			continue;
3138		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
3139		    ifma->ifma_addr), ETHER_ADDR_LEN);
3140		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3141	}
3142	if_maddr_runlock(ifp);
3143
3144	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3145	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3146	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3147}
3148
3149static int
3150sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3151{
3152	struct age_softc *sc;
3153	struct age_stats *stats;
3154	int error, result;
3155
3156	result = -1;
3157	error = sysctl_handle_int(oidp, &result, 0, req);
3158
3159	if (error != 0 || req->newptr == NULL)
3160		return (error);
3161
3162	if (result != 1)
3163		return (error);
3164
3165	sc = (struct age_softc *)arg1;
3166	stats = &sc->age_stat;
3167	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3168	printf("Transmit good frames : %ju\n",
3169	    (uintmax_t)stats->tx_frames);
3170	printf("Transmit good broadcast frames : %ju\n",
3171	    (uintmax_t)stats->tx_bcast_frames);
3172	printf("Transmit good multicast frames : %ju\n",
3173	    (uintmax_t)stats->tx_mcast_frames);
3174	printf("Transmit pause control frames : %u\n",
3175	    stats->tx_pause_frames);
3176	printf("Transmit control frames : %u\n",
3177	    stats->tx_control_frames);
3178	printf("Transmit frames with excessive deferrals : %u\n",
3179	    stats->tx_excess_defer);
3180	printf("Transmit deferrals : %u\n",
3181	    stats->tx_deferred);
3182	printf("Transmit good octets : %ju\n",
3183	    (uintmax_t)stats->tx_bytes);
3184	printf("Transmit good broadcast octets : %ju\n",
3185	    (uintmax_t)stats->tx_bcast_bytes);
3186	printf("Transmit good multicast octets : %ju\n",
3187	    (uintmax_t)stats->tx_mcast_bytes);
3188	printf("Transmit frames 64 bytes : %ju\n",
3189	    (uintmax_t)stats->tx_pkts_64);
3190	printf("Transmit frames 65 to 127 bytes : %ju\n",
3191	    (uintmax_t)stats->tx_pkts_65_127);
3192	printf("Transmit frames 128 to 255 bytes : %ju\n",
3193	    (uintmax_t)stats->tx_pkts_128_255);
3194	printf("Transmit frames 256 to 511 bytes : %ju\n",
3195	    (uintmax_t)stats->tx_pkts_256_511);
3196	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3197	    (uintmax_t)stats->tx_pkts_512_1023);
3198	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3199	    (uintmax_t)stats->tx_pkts_1024_1518);
3200	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3201	    (uintmax_t)stats->tx_pkts_1519_max);
3202	printf("Transmit single collisions : %u\n",
3203	    stats->tx_single_colls);
3204	printf("Transmit multiple collisions : %u\n",
3205	    stats->tx_multi_colls);
3206	printf("Transmit late collisions : %u\n",
3207	    stats->tx_late_colls);
3208	printf("Transmit abort due to excessive collisions : %u\n",
3209	    stats->tx_excess_colls);
3210	printf("Transmit underruns due to FIFO underruns : %u\n",
3211	    stats->tx_underrun);
3212	printf("Transmit descriptor write-back errors : %u\n",
3213	    stats->tx_desc_underrun);
3214	printf("Transmit frames with length mismatched frame size : %u\n",
3215	    stats->tx_lenerrs);
3216	printf("Transmit frames with truncated due to MTU size : %u\n",
3217	    stats->tx_lenerrs);
3218
3219	printf("Receive good frames : %ju\n",
3220	    (uintmax_t)stats->rx_frames);
3221	printf("Receive good broadcast frames : %ju\n",
3222	    (uintmax_t)stats->rx_bcast_frames);
3223	printf("Receive good multicast frames : %ju\n",
3224	    (uintmax_t)stats->rx_mcast_frames);
3225	printf("Receive pause control frames : %u\n",
3226	    stats->rx_pause_frames);
3227	printf("Receive control frames : %u\n",
3228	    stats->rx_control_frames);
3229	printf("Receive CRC errors : %u\n",
3230	    stats->rx_crcerrs);
3231	printf("Receive frames with length errors : %u\n",
3232	    stats->rx_lenerrs);
3233	printf("Receive good octets : %ju\n",
3234	    (uintmax_t)stats->rx_bytes);
3235	printf("Receive good broadcast octets : %ju\n",
3236	    (uintmax_t)stats->rx_bcast_bytes);
3237	printf("Receive good multicast octets : %ju\n",
3238	    (uintmax_t)stats->rx_mcast_bytes);
3239	printf("Receive frames too short : %u\n",
3240	    stats->rx_runts);
3241	printf("Receive fragmented frames : %ju\n",
3242	    (uintmax_t)stats->rx_fragments);
3243	printf("Receive frames 64 bytes : %ju\n",
3244	    (uintmax_t)stats->rx_pkts_64);
3245	printf("Receive frames 65 to 127 bytes : %ju\n",
3246	    (uintmax_t)stats->rx_pkts_65_127);
3247	printf("Receive frames 128 to 255 bytes : %ju\n",
3248	    (uintmax_t)stats->rx_pkts_128_255);
3249	printf("Receive frames 256 to 511 bytes : %ju\n",
3250	    (uintmax_t)stats->rx_pkts_256_511);
3251	printf("Receive frames 512 to 1024 bytes : %ju\n",
3252	    (uintmax_t)stats->rx_pkts_512_1023);
3253	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3254	    (uintmax_t)stats->rx_pkts_1024_1518);
3255	printf("Receive frames 1519 to MTU bytes : %ju\n",
3256	    (uintmax_t)stats->rx_pkts_1519_max);
3257	printf("Receive frames too long : %ju\n",
3258	    (uint64_t)stats->rx_pkts_truncated);
3259	printf("Receive frames with FIFO overflow : %u\n",
3260	    stats->rx_fifo_oflows);
3261	printf("Receive frames with return descriptor overflow : %u\n",
3262	    stats->rx_desc_oflows);
3263	printf("Receive frames with alignment errors : %u\n",
3264	    stats->rx_alignerrs);
3265	printf("Receive frames dropped due to address filtering : %ju\n",
3266	    (uint64_t)stats->rx_pkts_filtered);
3267
3268	return (error);
3269}
3270
3271static int
3272sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3273{
3274	int error, value;
3275
3276	if (arg1 == NULL)
3277		return (EINVAL);
3278	value = *(int *)arg1;
3279	error = sysctl_handle_int(oidp, &value, 0, req);
3280	if (error || req->newptr == NULL)
3281		return (error);
3282	if (value < low || value > high)
3283		return (EINVAL);
3284        *(int *)arg1 = value;
3285
3286        return (0);
3287}
3288
3289static int
3290sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3291{
3292	return (sysctl_int_range(oidp, arg1, arg2, req,
3293	    AGE_PROC_MIN, AGE_PROC_MAX));
3294}
3295
3296static int
3297sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3298{
3299
3300	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3301	    AGE_IM_TIMER_MAX));
3302}
3303