if_age.c revision 179100
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 179100 2008-05-19 01:39:59Z yongari $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#ifndef	IFCAP_VLAN_HWTSO
78#define	IFCAP_VLAN_HWTSO	0
79#endif
80#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81
82MODULE_DEPEND(age, pci, 1, 1, 1);
83MODULE_DEPEND(age, ether, 1, 1, 1);
84MODULE_DEPEND(age, miibus, 1, 1, 1);
85
86/* Tunables. */
87static int msi_disable = 0;
88static int msix_disable = 0;
89TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91
92/*
93 * Devices supported by this driver.
94 */
95static struct age_dev {
96	uint16_t	age_vendorid;
97	uint16_t	age_deviceid;
98	const char	*age_name;
99} age_devs[] = {
100	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
102};
103
104static int age_miibus_readreg(device_t, int, int);
105static int age_miibus_writereg(device_t, int, int, int);
106static void age_miibus_statchg(device_t);
107static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108static int age_mediachange(struct ifnet *);
109static int age_read_vpd_word(struct age_softc *, uint32_t, uint32_t,
110    uint32_t *);
111static int age_probe(device_t);
112static void age_get_macaddr(struct age_softc *);
113static void age_phy_reset(struct age_softc *);
114static int age_attach(device_t);
115static int age_detach(device_t);
116static void age_sysctl_node(struct age_softc *);
117static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
118static int age_check_boundary(struct age_softc *);
119static int age_dma_alloc(struct age_softc *);
120static void age_dma_free(struct age_softc *);
121static int age_shutdown(device_t);
122static void age_setwol(struct age_softc *);
123static int age_suspend(device_t);
124static int age_resume(device_t);
125static int age_encap(struct age_softc *, struct mbuf **);
126static void age_tx_task(void *, int);
127static void age_start(struct ifnet *);
128static void age_watchdog(struct age_softc *);
129static int age_ioctl(struct ifnet *, u_long, caddr_t);
130static void age_mac_config(struct age_softc *);
131static void age_link_task(void *, int);
132static void age_stats_update(struct age_softc *);
133static int age_intr(void *);
134static void age_int_task(void *, int);
135static void age_txintr(struct age_softc *, int);
136static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
137static int age_rxintr(struct age_softc *, int, int);
138static void age_tick(void *);
139static void age_reset(struct age_softc *);
140static void age_init(void *);
141static void age_init_locked(struct age_softc *);
142static void age_stop(struct age_softc *);
143static void age_stop_txmac(struct age_softc *);
144static void age_stop_rxmac(struct age_softc *);
145static void age_init_tx_ring(struct age_softc *);
146static int age_init_rx_ring(struct age_softc *);
147static void age_init_rr_ring(struct age_softc *);
148static void age_init_cmb_block(struct age_softc *);
149static void age_init_smb_block(struct age_softc *);
150static int age_newbuf(struct age_softc *, struct age_rxdesc *);
151static void age_rxvlan(struct age_softc *);
152static void age_rxfilter(struct age_softc *);
153static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
154static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
155static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
156static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
157
158
159static device_method_t age_methods[] = {
160	/* Device interface. */
161	DEVMETHOD(device_probe,		age_probe),
162	DEVMETHOD(device_attach,	age_attach),
163	DEVMETHOD(device_detach,	age_detach),
164	DEVMETHOD(device_shutdown,	age_shutdown),
165	DEVMETHOD(device_suspend,	age_suspend),
166	DEVMETHOD(device_resume,	age_resume),
167
168	/* MII interface. */
169	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
170	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
171	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
172
173	{ NULL, NULL }
174};
175
176static driver_t age_driver = {
177	"age",
178	age_methods,
179	sizeof(struct age_softc)
180};
181
182static devclass_t age_devclass;
183
184DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
185DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
186
187static struct resource_spec age_res_spec_mem[] = {
188	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
189	{ -1,			0,		0 }
190};
191
192static struct resource_spec age_irq_spec_legacy[] = {
193	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
194	{ -1,			0,		0 }
195};
196
197static struct resource_spec age_irq_spec_msi[] = {
198	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199	{ -1,			0,		0 }
200};
201
202static struct resource_spec age_irq_spec_msix[] = {
203	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
204	{ -1,			0,		0 }
205};
206
207/*
208 *	Read a PHY register on the MII of the L1.
209 */
210static int
211age_miibus_readreg(device_t dev, int phy, int reg)
212{
213	struct age_softc *sc;
214	uint32_t v;
215	int i;
216
217	sc = device_get_softc(dev);
218	if (phy != sc->age_phyaddr)
219		return (0);
220
221	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
222	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
223	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
224		DELAY(1);
225		v = CSR_READ_4(sc, AGE_MDIO);
226		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
227			break;
228	}
229
230	if (i == 0) {
231		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
232		return (0);
233	}
234
235	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
236}
237
238/*
239 *	Write a PHY register on the MII of the L1.
240 */
241static int
242age_miibus_writereg(device_t dev, int phy, int reg, int val)
243{
244	struct age_softc *sc;
245	uint32_t v;
246	int i;
247
248	sc = device_get_softc(dev);
249	if (phy != sc->age_phyaddr)
250		return (0);
251
252	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
253	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
254	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
255	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
256		DELAY(1);
257		v = CSR_READ_4(sc, AGE_MDIO);
258		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
259			break;
260	}
261
262	if (i == 0)
263		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
264
265	return (0);
266}
267
268/*
269 *	Callback from MII layer when media changes.
270 */
271static void
272age_miibus_statchg(device_t dev)
273{
274	struct age_softc *sc;
275
276	sc = device_get_softc(dev);
277	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
278}
279
280/*
281 *	Get the current interface media status.
282 */
283static void
284age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
285{
286	struct age_softc *sc;
287	struct mii_data *mii;
288
289	sc = ifp->if_softc;
290	AGE_LOCK(sc);
291	mii = device_get_softc(sc->age_miibus);
292
293	mii_pollstat(mii);
294	AGE_UNLOCK(sc);
295	ifmr->ifm_status = mii->mii_media_status;
296	ifmr->ifm_active = mii->mii_media_active;
297}
298
299/*
300 *	Set hardware to newly-selected media.
301 */
302static int
303age_mediachange(struct ifnet *ifp)
304{
305	struct age_softc *sc;
306	struct mii_data *mii;
307	struct mii_softc *miisc;
308	int error;
309
310	sc = ifp->if_softc;
311	AGE_LOCK(sc);
312	mii = device_get_softc(sc->age_miibus);
313	if (mii->mii_instance != 0) {
314		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
315			mii_phy_reset(miisc);
316	}
317	error = mii_mediachg(mii);
318	AGE_UNLOCK(sc);
319
320	return (error);
321}
322
323static int
324age_read_vpd_word(struct age_softc *sc, uint32_t vpdc, uint32_t offset,
325    uint32_t *word)
326{
327	int i;
328
329	pci_write_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, offset, 2);
330	for (i = AGE_TIMEOUT; i > 0; i--) {
331		DELAY(10);
332		if ((pci_read_config(sc->age_dev, vpdc + PCIR_VPD_ADDR, 2) &
333		    0x8000) == 0x8000)
334			break;
335	}
336	if (i == 0) {
337		device_printf(sc->age_dev, "VPD read timeout!\n");
338		*word = 0;
339		return (ETIMEDOUT);
340	}
341
342	*word = pci_read_config(sc->age_dev, vpdc + PCIR_VPD_DATA, 4);
343	return (0);
344}
345
346static int
347age_probe(device_t dev)
348{
349	struct age_dev *sp;
350	int i;
351	uint16_t vendor, devid;
352
353	vendor = pci_get_vendor(dev);
354	devid = pci_get_device(dev);
355	sp = age_devs;
356	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
357	    i++, sp++) {
358		if (vendor == sp->age_vendorid &&
359		    devid == sp->age_deviceid) {
360			device_set_desc(dev, sp->age_name);
361			return (BUS_PROBE_DEFAULT);
362		}
363	}
364
365	return (ENXIO);
366}
367
368static void
369age_get_macaddr(struct age_softc *sc)
370{
371	uint32_t ea[2], off, reg, word;
372	int vpd_error, match, vpdc;
373
374	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
375	if ((reg & SPI_VPD_ENB) != 0) {
376		/* Get VPD stored in TWSI EEPROM. */
377		reg &= ~SPI_VPD_ENB;
378		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
379	}
380
381	vpd_error = 0;
382	ea[0] = ea[1] = 0;
383	if ((vpd_error = pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc)) == 0) {
384		/*
385		 * PCI VPD capability exists, but it seems that it's
386		 * not in the standard form as stated in PCI VPD
387		 * specification such that driver could not use
388		 * pci_get_vpd_readonly(9) with keyword 'NA'.
389		 * Search VPD data starting at address 0x0100. The data
390		 * chwould be used as initializers to set AGE_PAR0,
391		 * AGE_PAR1 register including other PCI configuration
392		 * registers.
393		 */
394		word = 0;
395		match = 0;
396		reg = 0;
397		for (off = AGE_VPD_REG_CONF_START; off < AGE_VPD_REG_CONF_END;
398		    off += sizeof(uint32_t)) {
399			vpd_error = age_read_vpd_word(sc, vpdc, off, &word);
400			if (vpd_error != 0)
401				break;
402			if (match != 0) {
403				switch (reg) {
404				case AGE_PAR0:
405					ea[0] = word;
406					break;
407				case AGE_PAR1:
408					ea[1] = word;
409					break;
410				default:
411					break;
412				}
413				match = 0;
414			} else if ((word & 0xFF) == AGE_VPD_REG_CONF_SIG) {
415				match = 1;
416				reg = word >> 16;
417			} else
418				break;
419		}
420		if (off >= AGE_VPD_REG_CONF_END)
421			vpd_error = ENOENT;
422		if (vpd_error == 0) {
423			/*
424			 * Don't blindly trust ethernet address obtained
425			 * from VPD. Check whether ethernet address is
426			 * valid one. Otherwise fall-back to reading
427			 * PAR register.
428			 */
429			ea[1] &= 0xFFFF;
430			if ((ea[0] == 0 && ea[1] == 0) ||
431			    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
432				if (1 || bootverbose)
433					device_printf(sc->age_dev,
434					    "invalid ethernet address "
435					    "returned from VPD.\n");
436				vpd_error = EINVAL;
437			}
438		}
439		if (vpd_error != 0 && (1 || bootverbose))
440			device_printf(sc->age_dev, "VPD access failure!\n");
441	} else {
442		if (1 || bootverbose)
443			device_printf(sc->age_dev,
444			    "PCI VPD capability not found!\n");
445	}
446
447	/*
448	 * It seems that L1 also provides a way to extract ethernet
449	 * address via SPI flash interface. Because SPI flash memory
450	 * device of different vendors vary in their instruction
451	 * codes for read ID instruction, it's very hard to get
452	 * instructions codes without detailed information for the
453	 * flash memory device used on ethernet controller. To simplify
454	 * code, just read AGE_PAR0/AGE_PAR1 register to get ethernet
455	 * address which is supposed to be set by hardware during
456	 * power on reset.
457	 */
458	if (vpd_error != 0) {
459		/*
460		 * VPD is mapped to SPI flash memory or BIOS set it.
461		 */
462		ea[0] = CSR_READ_4(sc, AGE_PAR0);
463		ea[1] = CSR_READ_4(sc, AGE_PAR1);
464	}
465
466	ea[1] &= 0xFFFF;
467	if ((ea[0] == 0 && ea[1]  == 0) ||
468	    (ea[0] == 0xFFFFFFFF && ea[1] == 0xFFFF)) {
469		device_printf(sc->age_dev,
470		    "generating fake ethernet address.\n");
471		ea[0] = arc4random();
472		/* Set OUI to ASUSTek COMPUTER INC. */
473		sc->age_eaddr[0] = 0x00;
474		sc->age_eaddr[1] = 0x1B;
475		sc->age_eaddr[2] = 0xFC;
476		sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
477		sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
478		sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
479	} else {
480		sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
481		sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
482		sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
483		sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
484		sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
485		sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
486	}
487}
488
489static void
490age_phy_reset(struct age_softc *sc)
491{
492
493	/* Reset PHY. */
494	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
495	pause("agephy", hz / 1000);
496	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
497	pause("agephy", hz / 1000);
498}
499
500static int
501age_attach(device_t dev)
502{
503	struct age_softc *sc;
504	struct ifnet *ifp;
505	uint16_t burst;
506	int error, i, msic, msixc, pmc;
507
508	error = 0;
509	sc = device_get_softc(dev);
510	sc->age_dev = dev;
511
512	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
513	    MTX_DEF);
514	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
515	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
516	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
517
518	/* Map the device. */
519	pci_enable_busmaster(dev);
520	sc->age_res_spec = age_res_spec_mem;
521	sc->age_irq_spec = age_irq_spec_legacy;
522	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
523	if (error != 0) {
524		device_printf(dev, "cannot allocate memory resources.\n");
525		goto fail;
526	}
527
528	/* Set PHY address. */
529	sc->age_phyaddr = AGE_PHY_ADDR;
530
531	/* Reset PHY. */
532	age_phy_reset(sc);
533
534	/* Reset the ethernet controller. */
535	age_reset(sc);
536
537	/* Get PCI and chip id/revision. */
538	sc->age_rev = pci_get_revid(dev);
539	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
540	    MASTER_CHIP_REV_SHIFT;
541	if (1 || bootverbose) {
542		device_printf(dev, "PCI device revision : 0x%04x\n", sc->age_rev);
543		device_printf(dev, "Chip id/revision : 0x%04x\n",
544		    sc->age_chip_rev);
545	}
546
547	/*
548	 * XXX
549	 * Unintialized hardware returns an invalid chip id/revision
550	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
551	 * unplugged cable results in putting hardware into automatic
552	 * power down mode which in turn returns invalld chip revision.
553	 */
554	if (sc->age_chip_rev == 0xFFFF) {
555		device_printf(dev,"invalid chip revision : 0x%04x -- "
556		    "not initialized?\n", sc->age_chip_rev);
557		error = ENXIO;
558		goto fail;
559	}
560
561	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
562	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
563	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
564
565	/* Allocate IRQ resources. */
566	msixc = pci_msix_count(dev);
567	msic = pci_msi_count(dev);
568	if (1 || bootverbose) {
569		device_printf(dev, "MSIX count : %d\n", msixc);
570		device_printf(dev, "MSI count : %d\n", msic);
571	}
572
573	/* Prefer MSIX over MSI. */
574	if (msix_disable == 0 || msi_disable == 0) {
575		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
576		    pci_alloc_msix(dev, &msixc) == 0) {
577			if (msic == AGE_MSIX_MESSAGES) {
578				device_printf(dev, "Using %d MSIX messages.\n",
579				    msixc);
580				sc->age_flags |= AGE_FLAG_MSIX;
581				sc->age_irq_spec = age_irq_spec_msix;
582			} else
583				pci_release_msi(dev);
584		}
585		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
586		    msic == AGE_MSI_MESSAGES &&
587		    pci_alloc_msi(dev, &msic) == 0) {
588			if (msic == AGE_MSI_MESSAGES) {
589				device_printf(dev, "Using %d MSI messages.\n",
590				    msic);
591				sc->age_flags |= AGE_FLAG_MSI;
592				sc->age_irq_spec = age_irq_spec_msi;
593			} else
594				pci_release_msi(dev);
595		}
596	}
597
598	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
599	if (error != 0) {
600		device_printf(dev, "cannot allocate IRQ resources.\n");
601		goto fail;
602	}
603
604
605	/* Get DMA parameters from PCIe device control register. */
606	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
607		sc->age_flags |= AGE_FLAG_PCIE;
608		burst = pci_read_config(dev, i + 0x08, 2);
609		/* Max read request size. */
610		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
611		    DMA_CFG_RD_BURST_SHIFT;
612		/* Max payload size. */
613		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
614		    DMA_CFG_WR_BURST_SHIFT;
615		if (1 || bootverbose) {
616			device_printf(dev, "Read request size : %d bytes.\n",
617			    128 << ((burst >> 12) & 0x07));
618			device_printf(dev, "TLP payload size : %d bytes.\n",
619			    128 << ((burst >> 5) & 0x07));
620		}
621	} else {
622		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
623		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
624	}
625
626	/* Create device sysctl node. */
627	age_sysctl_node(sc);
628
629	if ((error = age_dma_alloc(sc) != 0))
630		goto fail;
631
632	/* Load station address. */
633	age_get_macaddr(sc);
634
635	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
636	if (ifp == NULL) {
637		device_printf(dev, "cannot allocate ifnet structure.\n");
638		error = ENXIO;
639		goto fail;
640	}
641
642	ifp->if_softc = sc;
643	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
644	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
645	ifp->if_ioctl = age_ioctl;
646	ifp->if_start = age_start;
647	ifp->if_init = age_init;
648	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
649	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
650	IFQ_SET_READY(&ifp->if_snd);
651	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
652	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
653	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
654		sc->age_flags |= AGE_FLAG_PMCAP;
655		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
656	}
657	ifp->if_capenable = ifp->if_capabilities;
658
659	/* Set up MII bus. */
660	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
661	    age_mediastatus)) != 0) {
662		device_printf(dev, "no PHY found!\n");
663		goto fail;
664	}
665
666	ether_ifattach(ifp, sc->age_eaddr);
667
668	/* VLAN capability setup. */
669	ifp->if_capabilities |= IFCAP_VLAN_MTU;
670	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
671	ifp->if_capenable = ifp->if_capabilities;
672
673	/* Tell the upper layer(s) we support long frames. */
674	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
675
676	/* Create local taskq. */
677	TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
678	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
679	    taskqueue_thread_enqueue, &sc->age_tq);
680	if (sc->age_tq == NULL) {
681		device_printf(dev, "could not create taskqueue.\n");
682		ether_ifdetach(ifp);
683		error = ENXIO;
684		goto fail;
685	}
686	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
687	    device_get_nameunit(sc->age_dev));
688
689	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
690		msic = AGE_MSIX_MESSAGES;
691	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
692		msic = AGE_MSI_MESSAGES;
693	else
694		msic = 1;
695	for (i = 0; i < msic; i++) {
696		error = bus_setup_intr(dev, sc->age_irq[i],
697		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
698		    &sc->age_intrhand[i]);
699		if (error != 0)
700			break;
701	}
702	if (error != 0) {
703		device_printf(dev, "could not set up interrupt handler.\n");
704		taskqueue_free(sc->age_tq);
705		sc->age_tq = NULL;
706		ether_ifdetach(ifp);
707		goto fail;
708	}
709
710fail:
711	if (error != 0)
712		age_detach(dev);
713
714	return (error);
715}
716
717static int
718age_detach(device_t dev)
719{
720	struct age_softc *sc;
721	struct ifnet *ifp;
722	int i, msic;
723
724	sc = device_get_softc(dev);
725
726	ifp = sc->age_ifp;
727	if (device_is_attached(dev)) {
728		AGE_LOCK(sc);
729		sc->age_flags |= AGE_FLAG_DETACH;
730		age_stop(sc);
731		AGE_UNLOCK(sc);
732		callout_drain(&sc->age_tick_ch);
733		taskqueue_drain(sc->age_tq, &sc->age_int_task);
734		taskqueue_drain(sc->age_tq, &sc->age_tx_task);
735		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
736		ether_ifdetach(ifp);
737	}
738
739	if (sc->age_tq != NULL) {
740		taskqueue_drain(sc->age_tq, &sc->age_int_task);
741		taskqueue_free(sc->age_tq);
742		sc->age_tq = NULL;
743	}
744
745	if (sc->age_miibus != NULL) {
746		device_delete_child(dev, sc->age_miibus);
747		sc->age_miibus = NULL;
748	}
749	bus_generic_detach(dev);
750	age_dma_free(sc);
751
752	if (ifp != NULL) {
753		if_free(ifp);
754		sc->age_ifp = NULL;
755	}
756
757	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
758		msic = AGE_MSIX_MESSAGES;
759	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
760		msic = AGE_MSI_MESSAGES;
761	else
762		msic = 1;
763	for (i = 0; i < msic; i++) {
764		if (sc->age_intrhand[i] != NULL) {
765			bus_teardown_intr(dev, sc->age_irq[i],
766			    sc->age_intrhand[i]);
767			sc->age_intrhand[i] = NULL;
768		}
769	}
770
771	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
772	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
773		pci_release_msi(dev);
774	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
775	mtx_destroy(&sc->age_mtx);
776
777	return (0);
778}
779
780static void
781age_sysctl_node(struct age_softc *sc)
782{
783	int error;
784
785	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
786	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
787	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
788	    "I", "Statistics");
789
790	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
791	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
792	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
793	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
794
795	/* Pull in device tunables. */
796	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
797	error = resource_int_value(device_get_name(sc->age_dev),
798	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
799	if (error == 0) {
800		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
801		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
802			device_printf(sc->age_dev,
803			    "int_mod value out of range; using default: %d\n",
804			    AGE_IM_TIMER_DEFAULT);
805			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
806		}
807	}
808
809	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
810	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
811	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
812	    0, sysctl_hw_age_proc_limit, "I",
813	    "max number of Rx events to process");
814
815	/* Pull in device tunables. */
816	sc->age_process_limit = AGE_PROC_DEFAULT;
817	error = resource_int_value(device_get_name(sc->age_dev),
818	    device_get_unit(sc->age_dev), "process_limit",
819	    &sc->age_process_limit);
820	if (error == 0) {
821		if (sc->age_process_limit < AGE_PROC_MIN ||
822		    sc->age_process_limit > AGE_PROC_MAX) {
823			device_printf(sc->age_dev,
824			    "process_limit value out of range; "
825			    "using default: %d\n", AGE_PROC_DEFAULT);
826			sc->age_process_limit = AGE_PROC_DEFAULT;
827		}
828	}
829}
830
831struct age_dmamap_arg {
832	bus_addr_t	age_busaddr;
833};
834
835static void
836age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
837{
838	struct age_dmamap_arg *ctx;
839
840	if (error != 0)
841		return;
842
843	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
844
845	ctx = (struct age_dmamap_arg *)arg;
846	ctx->age_busaddr = segs[0].ds_addr;
847}
848
849/*
850 * Attansic L1 controller have single register to specify high
851 * address part of DMA blocks. So all descriptor structures and
852 * DMA memory blocks should have the same high address of given
853 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
854 */
855static int
856age_check_boundary(struct age_softc *sc)
857{
858	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
859	bus_addr_t cmb_block_end, smb_block_end;
860
861	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
862	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
863	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
864	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
865	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
866	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
867
868	if ((AGE_ADDR_HI(tx_ring_end) !=
869	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
870	    (AGE_ADDR_HI(rx_ring_end) !=
871	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
872	    (AGE_ADDR_HI(rr_ring_end) !=
873	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
874	    (AGE_ADDR_HI(cmb_block_end) !=
875	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
876	    (AGE_ADDR_HI(smb_block_end) !=
877	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
878		return (EFBIG);
879
880	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
881	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
882	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
883	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
884		return (EFBIG);
885
886	return (0);
887}
888
889static int
890age_dma_alloc(struct age_softc *sc)
891{
892	struct age_txdesc *txd;
893	struct age_rxdesc *rxd;
894	bus_addr_t lowaddr;
895	struct age_dmamap_arg ctx;
896	int error, i;
897
898	lowaddr = BUS_SPACE_MAXADDR;
899
900again:
901	/* Create parent ring/DMA block tag. */
902	error = bus_dma_tag_create(
903	    bus_get_dma_tag(sc->age_dev), /* parent */
904	    1, 0,			/* alignment, boundary */
905	    lowaddr,			/* lowaddr */
906	    BUS_SPACE_MAXADDR,		/* highaddr */
907	    NULL, NULL,			/* filter, filterarg */
908	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
909	    0,				/* nsegments */
910	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
911	    0,				/* flags */
912	    NULL, NULL,			/* lockfunc, lockarg */
913	    &sc->age_cdata.age_parent_tag);
914	if (error != 0) {
915		device_printf(sc->age_dev,
916		    "could not create parent DMA tag.\n");
917		goto fail;
918	}
919
920	/* Create tag for Tx ring. */
921	error = bus_dma_tag_create(
922	    sc->age_cdata.age_parent_tag, /* parent */
923	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
924	    BUS_SPACE_MAXADDR,		/* lowaddr */
925	    BUS_SPACE_MAXADDR,		/* highaddr */
926	    NULL, NULL,			/* filter, filterarg */
927	    AGE_TX_RING_SZ,		/* maxsize */
928	    1,				/* nsegments */
929	    AGE_TX_RING_SZ,		/* maxsegsize */
930	    0,				/* flags */
931	    NULL, NULL,			/* lockfunc, lockarg */
932	    &sc->age_cdata.age_tx_ring_tag);
933	if (error != 0) {
934		device_printf(sc->age_dev,
935		    "could not create Tx ring DMA tag.\n");
936		goto fail;
937	}
938
939	/* Create tag for Rx ring. */
940	error = bus_dma_tag_create(
941	    sc->age_cdata.age_parent_tag, /* parent */
942	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
943	    BUS_SPACE_MAXADDR,		/* lowaddr */
944	    BUS_SPACE_MAXADDR,		/* highaddr */
945	    NULL, NULL,			/* filter, filterarg */
946	    AGE_RX_RING_SZ,		/* maxsize */
947	    1,				/* nsegments */
948	    AGE_RX_RING_SZ,		/* maxsegsize */
949	    0,				/* flags */
950	    NULL, NULL,			/* lockfunc, lockarg */
951	    &sc->age_cdata.age_rx_ring_tag);
952	if (error != 0) {
953		device_printf(sc->age_dev,
954		    "could not create Rx ring DMA tag.\n");
955		goto fail;
956	}
957
958	/* Create tag for Rx return ring. */
959	error = bus_dma_tag_create(
960	    sc->age_cdata.age_parent_tag, /* parent */
961	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
962	    BUS_SPACE_MAXADDR,		/* lowaddr */
963	    BUS_SPACE_MAXADDR,		/* highaddr */
964	    NULL, NULL,			/* filter, filterarg */
965	    AGE_RR_RING_SZ,		/* maxsize */
966	    1,				/* nsegments */
967	    AGE_RR_RING_SZ,		/* maxsegsize */
968	    0,				/* flags */
969	    NULL, NULL,			/* lockfunc, lockarg */
970	    &sc->age_cdata.age_rr_ring_tag);
971	if (error != 0) {
972		device_printf(sc->age_dev,
973		    "could not create Rx return ring DMA tag.\n");
974		goto fail;
975	}
976
977	/* Create tag for coalesing message block. */
978	error = bus_dma_tag_create(
979	    sc->age_cdata.age_parent_tag, /* parent */
980	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
981	    BUS_SPACE_MAXADDR,		/* lowaddr */
982	    BUS_SPACE_MAXADDR,		/* highaddr */
983	    NULL, NULL,			/* filter, filterarg */
984	    AGE_CMB_BLOCK_SZ,		/* maxsize */
985	    1,				/* nsegments */
986	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
987	    0,				/* flags */
988	    NULL, NULL,			/* lockfunc, lockarg */
989	    &sc->age_cdata.age_cmb_block_tag);
990	if (error != 0) {
991		device_printf(sc->age_dev,
992		    "could not create CMB DMA tag.\n");
993		goto fail;
994	}
995
996	/* Create tag for statistics message block. */
997	error = bus_dma_tag_create(
998	    sc->age_cdata.age_parent_tag, /* parent */
999	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
1000	    BUS_SPACE_MAXADDR,		/* lowaddr */
1001	    BUS_SPACE_MAXADDR,		/* highaddr */
1002	    NULL, NULL,			/* filter, filterarg */
1003	    AGE_SMB_BLOCK_SZ,		/* maxsize */
1004	    1,				/* nsegments */
1005	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
1006	    0,				/* flags */
1007	    NULL, NULL,			/* lockfunc, lockarg */
1008	    &sc->age_cdata.age_smb_block_tag);
1009	if (error != 0) {
1010		device_printf(sc->age_dev,
1011		    "could not create SMB DMA tag.\n");
1012		goto fail;
1013	}
1014
1015	/* Allocate DMA'able memory and load the DMA map. */
1016	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
1017	    (void **)&sc->age_rdata.age_tx_ring,
1018	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1019	    &sc->age_cdata.age_tx_ring_map);
1020	if (error != 0) {
1021		device_printf(sc->age_dev,
1022		    "could not allocate DMA'able memory for Tx ring.\n");
1023		goto fail;
1024	}
1025	ctx.age_busaddr = 0;
1026	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
1027	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
1028	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
1029	if (error != 0 || ctx.age_busaddr == 0) {
1030		device_printf(sc->age_dev,
1031		    "could not load DMA'able memory for Tx ring.\n");
1032		goto fail;
1033	}
1034	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1035	/* Rx ring */
1036	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1037	    (void **)&sc->age_rdata.age_rx_ring,
1038	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1039	    &sc->age_cdata.age_rx_ring_map);
1040	if (error != 0) {
1041		device_printf(sc->age_dev,
1042		    "could not allocate DMA'able memory for Rx ring.\n");
1043		goto fail;
1044	}
1045	ctx.age_busaddr = 0;
1046	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1047	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1048	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1049	if (error != 0 || ctx.age_busaddr == 0) {
1050		device_printf(sc->age_dev,
1051		    "could not load DMA'able memory for Rx ring.\n");
1052		goto fail;
1053	}
1054	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1055	/* Rx return ring */
1056	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1057	    (void **)&sc->age_rdata.age_rr_ring,
1058	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1059	    &sc->age_cdata.age_rr_ring_map);
1060	if (error != 0) {
1061		device_printf(sc->age_dev,
1062		    "could not allocate DMA'able memory for Rx return ring.\n");
1063		goto fail;
1064	}
1065	ctx.age_busaddr = 0;
1066	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1067	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1068	    AGE_RR_RING_SZ, age_dmamap_cb,
1069	    &ctx, 0);
1070	if (error != 0 || ctx.age_busaddr == 0) {
1071		device_printf(sc->age_dev,
1072		    "could not load DMA'able memory for Rx return ring.\n");
1073		goto fail;
1074	}
1075	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1076	/* CMB block */
1077	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1078	    (void **)&sc->age_rdata.age_cmb_block,
1079	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1080	    &sc->age_cdata.age_cmb_block_map);
1081	if (error != 0) {
1082		device_printf(sc->age_dev,
1083		    "could not allocate DMA'able memory for CMB block.\n");
1084		goto fail;
1085	}
1086	ctx.age_busaddr = 0;
1087	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1088	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1089	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1090	if (error != 0 || ctx.age_busaddr == 0) {
1091		device_printf(sc->age_dev,
1092		    "could not load DMA'able memory for CMB block.\n");
1093		goto fail;
1094	}
1095	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1096	/* SMB block */
1097	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1098	    (void **)&sc->age_rdata.age_smb_block,
1099	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1100	    &sc->age_cdata.age_smb_block_map);
1101	if (error != 0) {
1102		device_printf(sc->age_dev,
1103		    "could not allocate DMA'able memory for SMB block.\n");
1104		goto fail;
1105	}
1106	ctx.age_busaddr = 0;
1107	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1108	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1109	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1110	if (error != 0 || ctx.age_busaddr == 0) {
1111		device_printf(sc->age_dev,
1112		    "could not load DMA'able memory for SMB block.\n");
1113		goto fail;
1114	}
1115	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1116
1117	/*
1118	 * All ring buffer and DMA blocks should have the same
1119	 * high address part of 64bit DMA address space.
1120	 */
1121	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1122	    (error = age_check_boundary(sc)) != 0) {
1123		device_printf(sc->age_dev, "4GB boundary crossed, "
1124		    "switching to 32bit DMA addressing mode.\n");
1125		age_dma_free(sc);
1126		/* Limit DMA address space to 32bit and try again. */
1127		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1128		goto again;
1129	}
1130
1131	/*
1132	 * Create Tx/Rx buffer parent tag.
1133	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1134	 * so it needs separate parent DMA tag.
1135	 */
1136	error = bus_dma_tag_create(
1137	    bus_get_dma_tag(sc->age_dev), /* parent */
1138	    1, 0,			/* alignment, boundary */
1139	    BUS_SPACE_MAXADDR,		/* lowaddr */
1140	    BUS_SPACE_MAXADDR,		/* highaddr */
1141	    NULL, NULL,			/* filter, filterarg */
1142	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1143	    0,				/* nsegments */
1144	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1145	    0,				/* flags */
1146	    NULL, NULL,			/* lockfunc, lockarg */
1147	    &sc->age_cdata.age_buffer_tag);
1148	if (error != 0) {
1149		device_printf(sc->age_dev,
1150		    "could not create parent buffer DMA tag.\n");
1151		goto fail;
1152	}
1153
1154	/* Create tag for Tx buffers. */
1155	error = bus_dma_tag_create(
1156	    sc->age_cdata.age_buffer_tag, /* parent */
1157	    1, 0,			/* alignment, boundary */
1158	    BUS_SPACE_MAXADDR,		/* lowaddr */
1159	    BUS_SPACE_MAXADDR,		/* highaddr */
1160	    NULL, NULL,			/* filter, filterarg */
1161	    AGE_TSO_MAXSIZE,		/* maxsize */
1162	    AGE_MAXTXSEGS,		/* nsegments */
1163	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1164	    0,				/* flags */
1165	    NULL, NULL,			/* lockfunc, lockarg */
1166	    &sc->age_cdata.age_tx_tag);
1167	if (error != 0) {
1168		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1169		goto fail;
1170	}
1171
1172	/* Create tag for Rx buffers. */
1173	error = bus_dma_tag_create(
1174	    sc->age_cdata.age_buffer_tag, /* parent */
1175	    1, 0,			/* alignment, boundary */
1176	    BUS_SPACE_MAXADDR,		/* lowaddr */
1177	    BUS_SPACE_MAXADDR,		/* highaddr */
1178	    NULL, NULL,			/* filter, filterarg */
1179	    MCLBYTES,			/* maxsize */
1180	    1,				/* nsegments */
1181	    MCLBYTES,			/* maxsegsize */
1182	    0,				/* flags */
1183	    NULL, NULL,			/* lockfunc, lockarg */
1184	    &sc->age_cdata.age_rx_tag);
1185	if (error != 0) {
1186		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1187		goto fail;
1188	}
1189
1190	/* Create DMA maps for Tx buffers. */
1191	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1192		txd = &sc->age_cdata.age_txdesc[i];
1193		txd->tx_m = NULL;
1194		txd->tx_dmamap = NULL;
1195		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1196		    &txd->tx_dmamap);
1197		if (error != 0) {
1198			device_printf(sc->age_dev,
1199			    "could not create Tx dmamap.\n");
1200			goto fail;
1201		}
1202	}
1203	/* Create DMA maps for Rx buffers. */
1204	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1205	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1206		device_printf(sc->age_dev,
1207		    "could not create spare Rx dmamap.\n");
1208		goto fail;
1209	}
1210	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1211		rxd = &sc->age_cdata.age_rxdesc[i];
1212		rxd->rx_m = NULL;
1213		rxd->rx_dmamap = NULL;
1214		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1215		    &rxd->rx_dmamap);
1216		if (error != 0) {
1217			device_printf(sc->age_dev,
1218			    "could not create Rx dmamap.\n");
1219			goto fail;
1220		}
1221	}
1222
1223fail:
1224	return (error);
1225}
1226
1227static void
1228age_dma_free(struct age_softc *sc)
1229{
1230	struct age_txdesc *txd;
1231	struct age_rxdesc *rxd;
1232	int i;
1233
1234	/* Tx buffers */
1235	if (sc->age_cdata.age_tx_tag != NULL) {
1236		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1237			txd = &sc->age_cdata.age_txdesc[i];
1238			if (txd->tx_dmamap != NULL) {
1239				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1240				    txd->tx_dmamap);
1241				txd->tx_dmamap = NULL;
1242			}
1243		}
1244		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1245		sc->age_cdata.age_tx_tag = NULL;
1246	}
1247	/* Rx buffers */
1248	if (sc->age_cdata.age_rx_tag != NULL) {
1249		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1250			rxd = &sc->age_cdata.age_rxdesc[i];
1251			if (rxd->rx_dmamap != NULL) {
1252				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1253				    rxd->rx_dmamap);
1254				rxd->rx_dmamap = NULL;
1255			}
1256		}
1257		if (sc->age_cdata.age_rx_sparemap != NULL) {
1258			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1259			    sc->age_cdata.age_rx_sparemap);
1260			sc->age_cdata.age_rx_sparemap = NULL;
1261		}
1262		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1263		sc->age_cdata.age_rx_tag = NULL;
1264	}
1265	/* Tx ring. */
1266	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1267		if (sc->age_cdata.age_tx_ring_map != NULL)
1268			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1269			    sc->age_cdata.age_tx_ring_map);
1270		if (sc->age_cdata.age_tx_ring_map != NULL &&
1271		    sc->age_rdata.age_tx_ring != NULL)
1272			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1273			    sc->age_rdata.age_tx_ring,
1274			    sc->age_cdata.age_tx_ring_map);
1275		sc->age_rdata.age_tx_ring = NULL;
1276		sc->age_cdata.age_tx_ring_map = NULL;
1277		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1278		sc->age_cdata.age_tx_ring_tag = NULL;
1279	}
1280	/* Rx ring. */
1281	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1282		if (sc->age_cdata.age_rx_ring_map != NULL)
1283			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1284			    sc->age_cdata.age_rx_ring_map);
1285		if (sc->age_cdata.age_rx_ring_map != NULL &&
1286		    sc->age_rdata.age_rx_ring != NULL)
1287			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1288			    sc->age_rdata.age_rx_ring,
1289			    sc->age_cdata.age_rx_ring_map);
1290		sc->age_rdata.age_rx_ring = NULL;
1291		sc->age_cdata.age_rx_ring_map = NULL;
1292		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1293		sc->age_cdata.age_rx_ring_tag = NULL;
1294	}
1295	/* Rx return ring. */
1296	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1297		if (sc->age_cdata.age_rr_ring_map != NULL)
1298			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1299			    sc->age_cdata.age_rr_ring_map);
1300		if (sc->age_cdata.age_rr_ring_map != NULL &&
1301		    sc->age_rdata.age_rr_ring != NULL)
1302			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1303			    sc->age_rdata.age_rr_ring,
1304			    sc->age_cdata.age_rr_ring_map);
1305		sc->age_rdata.age_rr_ring = NULL;
1306		sc->age_cdata.age_rr_ring_map = NULL;
1307		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1308		sc->age_cdata.age_rr_ring_tag = NULL;
1309	}
1310	/* CMB block */
1311	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1312		if (sc->age_cdata.age_cmb_block_map != NULL)
1313			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1314			    sc->age_cdata.age_cmb_block_map);
1315		if (sc->age_cdata.age_cmb_block_map != NULL &&
1316		    sc->age_rdata.age_cmb_block != NULL)
1317			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1318			    sc->age_rdata.age_cmb_block,
1319			    sc->age_cdata.age_cmb_block_map);
1320		sc->age_rdata.age_cmb_block = NULL;
1321		sc->age_cdata.age_cmb_block_map = NULL;
1322		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1323		sc->age_cdata.age_cmb_block_tag = NULL;
1324	}
1325	/* SMB block */
1326	if (sc->age_cdata.age_smb_block_tag != NULL) {
1327		if (sc->age_cdata.age_smb_block_map != NULL)
1328			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1329			    sc->age_cdata.age_smb_block_map);
1330		if (sc->age_cdata.age_smb_block_map != NULL &&
1331		    sc->age_rdata.age_smb_block != NULL)
1332			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1333			    sc->age_rdata.age_smb_block,
1334			    sc->age_cdata.age_smb_block_map);
1335		sc->age_rdata.age_smb_block = NULL;
1336		sc->age_cdata.age_smb_block_map = NULL;
1337		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1338		sc->age_cdata.age_smb_block_tag = NULL;
1339	}
1340
1341	if (sc->age_cdata.age_buffer_tag != NULL) {
1342		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1343		sc->age_cdata.age_buffer_tag = NULL;
1344	}
1345	if (sc->age_cdata.age_parent_tag != NULL) {
1346		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1347		sc->age_cdata.age_parent_tag = NULL;
1348	}
1349}
1350
1351/*
1352 *	Make sure the interface is stopped at reboot time.
1353 */
1354static int
1355age_shutdown(device_t dev)
1356{
1357
1358	return (age_suspend(dev));
1359}
1360
1361static void
1362age_setwol(struct age_softc *sc)
1363{
1364	struct ifnet *ifp;
1365	struct mii_data *mii;
1366	uint32_t reg, pmcs;
1367	uint16_t pmstat;
1368	int aneg, i, pmc;
1369
1370	AGE_LOCK_ASSERT(sc);
1371
1372	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) == 0) {
1373		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1374		/*
1375		 * No PME capability, PHY power down.
1376		 * XXX
1377		 * Due to an unknown reason powering down PHY resulted
1378		 * in unexpected results such as inaccessbility of
1379		 * hardware of freshly rebooted system. Disable
1380		 * powering down PHY until I got more information for
1381		 * Attansic/Atheros PHY hardwares.
1382		 */
1383#ifdef notyet
1384		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385		    MII_BMCR, BMCR_PDOWN);
1386#endif
1387		return;
1388	}
1389
1390	ifp = sc->age_ifp;
1391	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1392		/*
1393		 * Note, this driver resets the link speed to 10/100Mbps with
1394		 * auto-negotiation but we don't know whether that operation
1395		 * would succeed or not as it have no control after powering
1396		 * off. If the renegotiation fail WOL may not work. Running
1397		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1398		 * specified in PCI specification and that would result in
1399		 * complete shutdowning power to ethernet controller.
1400		 *
1401		 * TODO
1402		 *  Save current negotiated media speed/duplex/flow-control
1403		 *  to softc and restore the same link again after resuming.
1404		 *  PHY handling such as power down/resetting to 100Mbps
1405		 *  may be better handled in suspend method in phy driver.
1406		 */
1407		mii = device_get_softc(sc->age_miibus);
1408		mii_pollstat(mii);
1409		aneg = 0;
1410		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1411			switch IFM_SUBTYPE(mii->mii_media_active) {
1412			case IFM_10_T:
1413			case IFM_100_TX:
1414				goto got_link;
1415			case IFM_1000_T:
1416				aneg++;
1417			default:
1418				break;
1419			}
1420		}
1421		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1422		    MII_100T2CR, 0);
1423		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1424		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1425		    ANAR_10 | ANAR_CSMA);
1426		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1427		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1428		DELAY(1000);
1429		if (aneg != 0) {
1430			/* Poll link state until jme(4) get a 10/100 link. */
1431			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1432				mii_pollstat(mii);
1433				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1434					switch (IFM_SUBTYPE(
1435					    mii->mii_media_active)) {
1436					case IFM_10_T:
1437					case IFM_100_TX:
1438						age_mac_config(sc);
1439						goto got_link;
1440					default:
1441						break;
1442					}
1443				}
1444				AGE_UNLOCK(sc);
1445				pause("agelnk", hz);
1446				AGE_LOCK(sc);
1447			}
1448			if (i == MII_ANEGTICKS_GIGE)
1449				device_printf(sc->age_dev,
1450				    "establishing link failed, "
1451				    "WOL may not work!");
1452		}
1453		/*
1454		 * No link, force MAC to have 100Mbps, full-duplex link.
1455		 * This is the last resort and may/may not work.
1456		 */
1457		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1458		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1459		age_mac_config(sc);
1460	}
1461
1462got_link:
1463	pmcs = 0;
1464	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1465		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1466	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1467	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1468	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1469	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1470	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1471		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1472	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1473		reg |= MAC_CFG_RX_ENB;
1474		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1475	}
1476
1477	/* Request PME. */
1478	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1479	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1480	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1481		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1482	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1483#ifdef notyet
1484	/* See above for powering down PHY issues. */
1485	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1486		/* No WOL, PHY power down. */
1487		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1488		    MII_BMCR, BMCR_PDOWN);
1489	}
1490#endif
1491}
1492
1493static int
1494age_suspend(device_t dev)
1495{
1496	struct age_softc *sc;
1497
1498	sc = device_get_softc(dev);
1499
1500	AGE_LOCK(sc);
1501	age_stop(sc);
1502	age_setwol(sc);
1503	AGE_UNLOCK(sc);
1504
1505	return (0);
1506}
1507
1508static int
1509age_resume(device_t dev)
1510{
1511	struct age_softc *sc;
1512	struct ifnet *ifp;
1513	uint16_t cmd;
1514
1515	sc = device_get_softc(dev);
1516
1517	AGE_LOCK(sc);
1518	/*
1519	 * Clear INTx emulation disable for hardwares that
1520	 * is set in resume event. From Linux.
1521	 */
1522	cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1523	if ((cmd & 0x0400) != 0) {
1524		cmd &= ~0x0400;
1525		pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1526	}
1527	ifp = sc->age_ifp;
1528	if ((ifp->if_flags & IFF_UP) != 0)
1529		age_init_locked(sc);
1530
1531	AGE_UNLOCK(sc);
1532
1533	return (0);
1534}
1535
1536static int
1537age_encap(struct age_softc *sc, struct mbuf **m_head)
1538{
1539	struct age_txdesc *txd, *txd_last;
1540	struct tx_desc *desc;
1541	struct mbuf *m;
1542	struct ip *ip;
1543	struct tcphdr *tcp;
1544	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1545	bus_dmamap_t map;
1546	uint32_t cflags, ip_off, poff, vtag;
1547	int error, i, nsegs, prod, si;
1548
1549	AGE_LOCK_ASSERT(sc);
1550
1551	M_ASSERTPKTHDR((*m_head));
1552
1553	m = *m_head;
1554	ip = NULL;
1555	tcp = NULL;
1556	cflags = vtag = 0;
1557	ip_off = poff = 0;
1558	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1559		/*
1560		 * L1 requires offset of TCP/UDP payload in its Tx
1561		 * descriptor to perform hardware Tx checksum offload.
1562		 * Additionally, TSO requires IP/TCP header size and
1563		 * modification of IP/TCP header in order to make TSO
1564		 * engine work. This kind of operation takes many CPU
1565		 * cycles on FreeBSD so fast host CPU is needed to get
1566		 * smooth TSO performance.
1567		 */
1568		struct ether_header *eh;
1569
1570		if (M_WRITABLE(m) == 0) {
1571			/* Get a writable copy. */
1572			m = m_dup(*m_head, M_DONTWAIT);
1573			/* Release original mbufs. */
1574			m_freem(*m_head);
1575			if (m == NULL) {
1576				*m_head = NULL;
1577				return (ENOBUFS);
1578			}
1579			*m_head = m;
1580		}
1581		ip_off = sizeof(struct ether_header);
1582		m = m_pullup(m, ip_off);
1583		if (m == NULL) {
1584			*m_head = NULL;
1585			return (ENOBUFS);
1586		}
1587		eh = mtod(m, struct ether_header *);
1588		/*
1589		 * Check if hardware VLAN insertion is off.
1590		 * Additional check for LLC/SNAP frame?
1591		 */
1592		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1593			ip_off = sizeof(struct ether_vlan_header);
1594			m = m_pullup(m, ip_off);
1595			if (m == NULL) {
1596				*m_head = NULL;
1597				return (ENOBUFS);
1598			}
1599		}
1600		m = m_pullup(m, ip_off + sizeof(struct ip));
1601		if (m == NULL) {
1602			*m_head = NULL;
1603			return (ENOBUFS);
1604		}
1605		ip = (struct ip *)(mtod(m, char *) + ip_off);
1606		poff = ip_off + (ip->ip_hl << 2);
1607		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1608			m = m_pullup(m, poff + sizeof(struct tcphdr));
1609			if (m == NULL) {
1610				*m_head = NULL;
1611				return (ENOBUFS);
1612			}
1613			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1614			/*
1615			 * L1 requires IP/TCP header size and offset as
1616			 * well as TCP pseudo checksum which complicates
1617			 * TSO configuration. I guess this comes from the
1618			 * adherence to Microsoft NDIS Large Send
1619			 * specification which requires insertion of
1620			 * pseudo checksum by upper stack. The pseudo
1621			 * checksum that NDIS refers to doesn't include
1622			 * TCP payload length so age(4) should recompute
1623			 * the pseudo checksum here. Hopefully this wouldn't
1624			 * be much burden on modern CPUs.
1625			 * Reset IP checksum and recompute TCP pseudo
1626			 * checksum as NDIS specification said.
1627			 */
1628			ip->ip_sum = 0;
1629			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1630				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1631				    ip->ip_dst.s_addr,
1632				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1633			else
1634				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1635				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1636		}
1637		*m_head = m;
1638	}
1639
1640	si = prod = sc->age_cdata.age_tx_prod;
1641	txd = &sc->age_cdata.age_txdesc[prod];
1642	txd_last = txd;
1643	map = txd->tx_dmamap;
1644
1645	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1646	    *m_head, txsegs, &nsegs, 0);
1647	if (error == EFBIG) {
1648		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1649		if (m == NULL) {
1650			m_freem(*m_head);
1651			*m_head = NULL;
1652			return (ENOMEM);
1653		}
1654		*m_head = m;
1655		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1656		    *m_head, txsegs, &nsegs, 0);
1657		if (error != 0) {
1658			m_freem(*m_head);
1659			*m_head = NULL;
1660			return (error);
1661		}
1662	} else if (error != 0)
1663		return (error);
1664	if (nsegs == 0) {
1665		m_freem(*m_head);
1666		*m_head = NULL;
1667		return (EIO);
1668	}
1669
1670	/* Check descriptor overrun. */
1671	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1672		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1673		return (ENOBUFS);
1674	}
1675
1676	m = *m_head;
1677	/* Configure Tx IP/TCP/UDP checksum offload. */
1678	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1679		cflags |= AGE_TD_CSUM;
1680		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1681			cflags |= AGE_TD_TCPCSUM;
1682		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1683			cflags |= AGE_TD_UDPCSUM;
1684		/* Set checksum start offset. */
1685		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1686		/* Set checksum insertion position of TCP/UDP. */
1687		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1688		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1689	}
1690
1691	/* Configure TSO. */
1692	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1693		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1694			/* Not TSO but IP/TCP checksum offload. */
1695			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1696			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1697			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1698		} else {
1699			/* Request TSO and set MSS. */
1700			cflags |= AGE_TD_TSO_IPV4;
1701			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1702			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1703			    AGE_TD_TSO_MSS_SHIFT);
1704		}
1705		/* Set IP/TCP header size. */
1706		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1707		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1708	}
1709
1710	/* Configure VLAN hardware tag insertion. */
1711	if ((m->m_flags & M_VLANTAG) != 0) {
1712		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1713		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1714		cflags |= AGE_TD_INSERT_VLAN_TAG;
1715	}
1716
1717	desc = NULL;
1718	for (i = 0; i < nsegs; i++) {
1719		desc = &sc->age_rdata.age_tx_ring[prod];
1720		desc->addr = htole64(txsegs[i].ds_addr);
1721		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1722		desc->flags = htole32(cflags);
1723		sc->age_cdata.age_tx_cnt++;
1724		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1725	}
1726	/* Update producer index. */
1727	sc->age_cdata.age_tx_prod = prod;
1728
1729	/* Set EOP on the last descriptor. */
1730	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1731	desc = &sc->age_rdata.age_tx_ring[prod];
1732	desc->flags |= htole32(AGE_TD_EOP);
1733
1734	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1735	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1736		desc = &sc->age_rdata.age_tx_ring[si];
1737		desc->flags |= htole32(AGE_TD_TSO_HDR);
1738	}
1739
1740	/* Swap dmamap of the first and the last. */
1741	txd = &sc->age_cdata.age_txdesc[prod];
1742	map = txd_last->tx_dmamap;
1743	txd_last->tx_dmamap = txd->tx_dmamap;
1744	txd->tx_dmamap = map;
1745	txd->tx_m = m;
1746
1747	/* Sync descriptors. */
1748	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1749	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1750	    sc->age_cdata.age_tx_ring_map,
1751	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1752
1753	return (0);
1754}
1755
1756static void
1757age_tx_task(void *arg, int pending)
1758{
1759	struct ifnet *ifp;
1760
1761	ifp = (struct ifnet *)arg;
1762	age_start(ifp);
1763}
1764
1765static void
1766age_start(struct ifnet *ifp)
1767{
1768        struct age_softc *sc;
1769        struct mbuf *m_head;
1770	int enq;
1771
1772	sc = ifp->if_softc;
1773
1774	AGE_LOCK(sc);
1775
1776	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1777	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1778		AGE_UNLOCK(sc);
1779		return;
1780	}
1781
1782	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1783		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1784		if (m_head == NULL)
1785			break;
1786		/*
1787		 * Pack the data into the transmit ring. If we
1788		 * don't have room, set the OACTIVE flag and wait
1789		 * for the NIC to drain the ring.
1790		 */
1791		if (age_encap(sc, &m_head)) {
1792			if (m_head == NULL)
1793				break;
1794			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1795			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1796			break;
1797		}
1798
1799		enq++;
1800		/*
1801		 * If there's a BPF listener, bounce a copy of this frame
1802		 * to him.
1803		 */
1804		ETHER_BPF_MTAP(ifp, m_head);
1805	}
1806
1807	if (enq > 0) {
1808		/* Update mbox. */
1809		AGE_COMMIT_MBOX(sc);
1810		/* Set a timeout in case the chip goes out to lunch. */
1811		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1812	}
1813
1814	AGE_UNLOCK(sc);
1815}
1816
1817static void
1818age_watchdog(struct age_softc *sc)
1819{
1820	struct ifnet *ifp;
1821
1822	AGE_LOCK_ASSERT(sc);
1823
1824	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1825		return;
1826
1827	ifp = sc->age_ifp;
1828	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1829		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1830		ifp->if_oerrors++;
1831		age_init_locked(sc);
1832		return;
1833	}
1834	if (sc->age_cdata.age_tx_cnt == 0) {
1835		if_printf(sc->age_ifp,
1836		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1837		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1838			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1839		return;
1840	}
1841	if_printf(sc->age_ifp, "watchdog timeout\n");
1842	ifp->if_oerrors++;
1843	age_init_locked(sc);
1844	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1845		taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1846}
1847
1848static int
1849age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1850{
1851	struct age_softc *sc;
1852	struct ifreq *ifr;
1853	struct mii_data *mii;
1854	uint32_t reg;
1855	int error, mask;
1856
1857	sc = ifp->if_softc;
1858	ifr = (struct ifreq *)data;
1859	error = 0;
1860	switch (cmd) {
1861	case SIOCSIFMTU:
1862		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1863			error = EINVAL;
1864		else if (ifp->if_mtu != ifr->ifr_mtu) {
1865			AGE_LOCK(sc);
1866			ifp->if_mtu = ifr->ifr_mtu;
1867			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1868				age_init_locked(sc);
1869			AGE_UNLOCK(sc);
1870		}
1871		break;
1872	case SIOCSIFFLAGS:
1873		AGE_LOCK(sc);
1874		if ((ifp->if_flags & IFF_UP) != 0) {
1875			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1876				if (((ifp->if_flags ^ sc->age_if_flags)
1877				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1878					age_rxfilter(sc);
1879			} else {
1880				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1881					age_init_locked(sc);
1882			}
1883		} else {
1884			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1885				age_stop(sc);
1886		}
1887		sc->age_if_flags = ifp->if_flags;
1888		AGE_UNLOCK(sc);
1889		break;
1890	case SIOCADDMULTI:
1891	case SIOCDELMULTI:
1892		AGE_LOCK(sc);
1893		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1894			age_rxfilter(sc);
1895		AGE_UNLOCK(sc);
1896		break;
1897	case SIOCSIFMEDIA:
1898	case SIOCGIFMEDIA:
1899		mii = device_get_softc(sc->age_miibus);
1900		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1901		break;
1902	case SIOCSIFCAP:
1903		AGE_LOCK(sc);
1904		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1905		if ((mask & IFCAP_TXCSUM) != 0 &&
1906		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1907			ifp->if_capenable ^= IFCAP_TXCSUM;
1908			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1909				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1910			else
1911				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1912		}
1913		if ((mask & IFCAP_RXCSUM) != 0 &&
1914		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1915			ifp->if_capenable ^= IFCAP_RXCSUM;
1916			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1917			reg &= ~MAC_CFG_RXCSUM_ENB;
1918			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1919				reg |= MAC_CFG_RXCSUM_ENB;
1920			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1921		}
1922		if ((mask & IFCAP_TSO4) != 0 &&
1923		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1924			ifp->if_capenable ^= IFCAP_TSO4;
1925			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1926				ifp->if_hwassist |= CSUM_TSO;
1927			else
1928				ifp->if_hwassist &= ~CSUM_TSO;
1929		}
1930
1931		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1932		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1933			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1934		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1935		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1936			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1937
1938		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1939		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1940			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1941			age_rxvlan(sc);
1942		}
1943		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1944		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1945			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1946		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1947		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1948			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1949		/*
1950		 * VLAN hardware tagging is required to do checksum
1951		 * offload or TSO on VLAN interface. Checksum offload
1952		 * on VLAN interface also requires hardware assistance
1953		 * of parent interface.
1954		 */
1955		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
1956			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
1957		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1958			ifp->if_capenable &=
1959			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1960		AGE_UNLOCK(sc);
1961		VLAN_CAPABILITIES(ifp);
1962		break;
1963	default:
1964		error = ether_ioctl(ifp, cmd, data);
1965		break;
1966	}
1967
1968	return (error);
1969}
1970
1971static void
1972age_mac_config(struct age_softc *sc)
1973{
1974	struct mii_data *mii;
1975	uint32_t reg;
1976
1977	AGE_LOCK_ASSERT(sc);
1978
1979	mii = device_get_softc(sc->age_miibus);
1980	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1981	reg &= ~MAC_CFG_FULL_DUPLEX;
1982	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1983	reg &= ~MAC_CFG_SPEED_MASK;
1984	/* Reprogram MAC with resolved speed/duplex. */
1985	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1986	case IFM_10_T:
1987	case IFM_100_TX:
1988		reg |= MAC_CFG_SPEED_10_100;
1989		break;
1990	case IFM_1000_T:
1991		reg |= MAC_CFG_SPEED_1000;
1992		break;
1993	}
1994	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1995		reg |= MAC_CFG_FULL_DUPLEX;
1996#ifdef notyet
1997		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1998			reg |= MAC_CFG_TX_FC;
1999		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
2000			reg |= MAC_CFG_RX_FC;
2001#endif
2002	}
2003
2004	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2005}
2006
2007static void
2008age_link_task(void *arg, int pending)
2009{
2010	struct age_softc *sc;
2011	struct mii_data *mii;
2012	struct ifnet *ifp;
2013	uint32_t reg;
2014
2015	sc = (struct age_softc *)arg;
2016
2017	AGE_LOCK(sc);
2018	mii = device_get_softc(sc->age_miibus);
2019	ifp = sc->age_ifp;
2020	if (mii == NULL || ifp == NULL ||
2021	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
2022		AGE_UNLOCK(sc);
2023		return;
2024	}
2025
2026	sc->age_flags &= ~AGE_FLAG_LINK;
2027	if ((mii->mii_media_status & IFM_AVALID) != 0) {
2028		switch (IFM_SUBTYPE(mii->mii_media_active)) {
2029		case IFM_10_T:
2030		case IFM_100_TX:
2031		case IFM_1000_T:
2032			sc->age_flags |= AGE_FLAG_LINK;
2033			break;
2034		default:
2035			break;
2036		}
2037	}
2038
2039	/* Stop Rx/Tx MACs. */
2040	age_stop_rxmac(sc);
2041	age_stop_txmac(sc);
2042
2043	/* Program MACs with resolved speed/duplex/flow-control. */
2044	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2045		age_mac_config(sc);
2046		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2047		/* Restart DMA engine and Tx/Rx MAC. */
2048		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2049		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2050		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2051		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2052	}
2053
2054	AGE_UNLOCK(sc);
2055}
2056
2057static void
2058age_stats_update(struct age_softc *sc)
2059{
2060	struct age_stats *stat;
2061	struct smb *smb;
2062	struct ifnet *ifp;
2063
2064	AGE_LOCK_ASSERT(sc);
2065
2066	stat = &sc->age_stat;
2067
2068	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2069	    sc->age_cdata.age_smb_block_map,
2070	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2071
2072	smb = sc->age_rdata.age_smb_block;
2073	if (smb->updated == 0)
2074		return;
2075
2076	ifp = sc->age_ifp;
2077	/* Rx stats. */
2078	stat->rx_frames += smb->rx_frames;
2079	stat->rx_bcast_frames += smb->rx_bcast_frames;
2080	stat->rx_mcast_frames += smb->rx_mcast_frames;
2081	stat->rx_pause_frames += smb->rx_pause_frames;
2082	stat->rx_control_frames += smb->rx_control_frames;
2083	stat->rx_crcerrs += smb->rx_crcerrs;
2084	stat->rx_lenerrs += smb->rx_lenerrs;
2085	stat->rx_bytes += smb->rx_bytes;
2086	stat->rx_runts += smb->rx_runts;
2087	stat->rx_fragments += smb->rx_fragments;
2088	stat->rx_pkts_64 += smb->rx_pkts_64;
2089	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2090	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2091	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2092	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2093	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2094	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2095	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2096	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2097	stat->rx_desc_oflows += smb->rx_desc_oflows;
2098	stat->rx_alignerrs += smb->rx_alignerrs;
2099	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2100	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2101	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2102
2103	/* Tx stats. */
2104	stat->tx_frames += smb->tx_frames;
2105	stat->tx_bcast_frames += smb->tx_bcast_frames;
2106	stat->tx_mcast_frames += smb->tx_mcast_frames;
2107	stat->tx_pause_frames += smb->tx_pause_frames;
2108	stat->tx_excess_defer += smb->tx_excess_defer;
2109	stat->tx_control_frames += smb->tx_control_frames;
2110	stat->tx_deferred += smb->tx_deferred;
2111	stat->tx_bytes += smb->tx_bytes;
2112	stat->tx_pkts_64 += smb->tx_pkts_64;
2113	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2114	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2115	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2116	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2117	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2118	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2119	stat->tx_single_colls += smb->tx_single_colls;
2120	stat->tx_multi_colls += smb->tx_multi_colls;
2121	stat->tx_late_colls += smb->tx_late_colls;
2122	stat->tx_excess_colls += smb->tx_excess_colls;
2123	stat->tx_underrun += smb->tx_underrun;
2124	stat->tx_desc_underrun += smb->tx_desc_underrun;
2125	stat->tx_lenerrs += smb->tx_lenerrs;
2126	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2127	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2128	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2129
2130	/* Update counters in ifnet. */
2131	ifp->if_opackets += smb->tx_frames;
2132
2133	ifp->if_collisions += smb->tx_single_colls +
2134	    smb->tx_multi_colls + smb->tx_late_colls +
2135	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2136
2137	ifp->if_oerrors += smb->tx_excess_colls +
2138	    smb->tx_late_colls + smb->tx_underrun +
2139	    smb->tx_pkts_truncated;
2140
2141	ifp->if_ipackets += smb->rx_frames;
2142
2143	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2144	    smb->rx_runts + smb->rx_pkts_truncated +
2145	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2146	    smb->rx_alignerrs;
2147
2148	/* Update done, clear. */
2149	smb->updated = 0;
2150
2151	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2152	    sc->age_cdata.age_smb_block_map,
2153	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2154}
2155
2156static int
2157age_intr(void *arg)
2158{
2159	struct age_softc *sc;
2160	uint32_t status;
2161
2162	sc = (struct age_softc *)arg;
2163
2164	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2165	if (status == 0 || (status & AGE_INTRS) == 0)
2166		return (FILTER_STRAY);
2167	/* Disable interrupts. */
2168	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2169	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2170
2171	return (FILTER_HANDLED);
2172}
2173
2174static void
2175age_int_task(void *arg, int pending)
2176{
2177	struct age_softc *sc;
2178	struct ifnet *ifp;
2179	struct cmb *cmb;
2180	uint32_t status;
2181
2182	sc = (struct age_softc *)arg;
2183
2184	AGE_LOCK(sc);
2185
2186	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2187	    sc->age_cdata.age_cmb_block_map,
2188	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2189	cmb = sc->age_rdata.age_cmb_block;
2190	status = le32toh(cmb->intr_status);
2191	if (sc->age_morework != 0)
2192		status |= INTR_CMB_RX;
2193	if ((status & AGE_INTRS) == 0)
2194		goto done;
2195
2196	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2197	    TPD_CONS_SHIFT;
2198	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2199	    RRD_PROD_SHIFT;
2200	/* Let hardware know CMB was served. */
2201	cmb->intr_status = 0;
2202	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2203	    sc->age_cdata.age_cmb_block_map,
2204	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2205
2206#if 0
2207	printf("INTR: 0x%08x\n", status);
2208	status &= ~INTR_DIS_DMA;
2209	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2210#endif
2211	ifp = sc->age_ifp;
2212	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2213		if ((status & INTR_CMB_RX) != 0)
2214			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2215			    sc->age_process_limit);
2216		if ((status & INTR_CMB_TX) != 0)
2217			age_txintr(sc, sc->age_tpd_cons);
2218		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2219			if ((status & INTR_DMA_RD_TO_RST) != 0)
2220				device_printf(sc->age_dev,
2221				    "DMA read error! -- resetting\n");
2222			if ((status & INTR_DMA_WR_TO_RST) != 0)
2223				device_printf(sc->age_dev,
2224				    "DMA write error! -- resetting\n");
2225			age_init_locked(sc);
2226		}
2227		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2228			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2229		if ((status & INTR_SMB) != 0)
2230			age_stats_update(sc);
2231	}
2232
2233	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2234	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2235	    sc->age_cdata.age_cmb_block_map,
2236	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2237	status = le32toh(cmb->intr_status);
2238	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2239		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2240		AGE_UNLOCK(sc);
2241		return;
2242	}
2243
2244done:
2245	/* Re-enable interrupts. */
2246	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2247	AGE_UNLOCK(sc);
2248}
2249
2250static void
2251age_txintr(struct age_softc *sc, int tpd_cons)
2252{
2253	struct ifnet *ifp;
2254	struct age_txdesc *txd;
2255	int cons, prog;
2256
2257	AGE_LOCK_ASSERT(sc);
2258
2259	ifp = sc->age_ifp;
2260
2261	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2262	    sc->age_cdata.age_tx_ring_map,
2263	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2264
2265	/*
2266	 * Go through our Tx list and free mbufs for those
2267	 * frames which have been transmitted.
2268	 */
2269	cons = sc->age_cdata.age_tx_cons;
2270	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2271		if (sc->age_cdata.age_tx_cnt <= 0)
2272			break;
2273		prog++;
2274		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2275		sc->age_cdata.age_tx_cnt--;
2276		txd = &sc->age_cdata.age_txdesc[cons];
2277		/*
2278		 * Clear Tx descriptors, it's not required but would
2279		 * help debugging in case of Tx issues.
2280		 */
2281		txd->tx_desc->addr = 0;
2282		txd->tx_desc->len = 0;
2283		txd->tx_desc->flags = 0;
2284
2285		if (txd->tx_m == NULL)
2286			continue;
2287		/* Reclaim transmitted mbufs. */
2288		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2289		    BUS_DMASYNC_POSTWRITE);
2290		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2291		m_freem(txd->tx_m);
2292		txd->tx_m = NULL;
2293	}
2294
2295	if (prog > 0) {
2296		sc->age_cdata.age_tx_cons = cons;
2297
2298		/*
2299		 * Unarm watchdog timer only when there are no pending
2300		 * Tx descriptors in queue.
2301		 */
2302		if (sc->age_cdata.age_tx_cnt == 0)
2303			sc->age_watchdog_timer = 0;
2304		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2305		    sc->age_cdata.age_tx_ring_map,
2306		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2307	}
2308}
2309
2310/* Receive a frame. */
2311static void
2312age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2313{
2314	struct age_rxdesc *rxd;
2315	struct rx_desc *desc;
2316	struct ifnet *ifp;
2317	struct mbuf *mp, *m;
2318	uint32_t status, index, vtag;
2319	int count, nsegs, pktlen;
2320	int rx_cons;
2321
2322	AGE_LOCK_ASSERT(sc);
2323
2324	ifp = sc->age_ifp;
2325	status = le32toh(rxrd->flags);
2326	index = le32toh(rxrd->index);
2327	rx_cons = AGE_RX_CONS(index);
2328	nsegs = AGE_RX_NSEGS(index);
2329
2330	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2331	if ((status & AGE_RRD_ERROR) != 0 &&
2332	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2333	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2334		/*
2335		 * We want to pass the following frames to upper
2336		 * layer regardless of error status of Rx return
2337		 * ring.
2338		 *
2339		 *  o IP/TCP/UDP checksum is bad.
2340		 *  o frame length and protocol specific length
2341		 *     does not match.
2342		 */
2343		sc->age_cdata.age_rx_cons += nsegs;
2344		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2345		return;
2346	}
2347
2348	pktlen = 0;
2349	for (count = 0; count < nsegs; count++,
2350	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2351		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2352		mp = rxd->rx_m;
2353		desc = rxd->rx_desc;
2354		/* Add a new receive buffer to the ring. */
2355		if (age_newbuf(sc, rxd) != 0) {
2356			ifp->if_iqdrops++;
2357			/* Reuse Rx buffers. */
2358			if (sc->age_cdata.age_rxhead != NULL) {
2359				m_freem(sc->age_cdata.age_rxhead);
2360				AGE_RXCHAIN_RESET(sc);
2361			}
2362			break;
2363		}
2364
2365		/* The length of the first mbuf is computed last. */
2366		if (count != 0) {
2367			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2368			pktlen += mp->m_len;
2369		}
2370
2371		/* Chain received mbufs. */
2372		if (sc->age_cdata.age_rxhead == NULL) {
2373			sc->age_cdata.age_rxhead = mp;
2374			sc->age_cdata.age_rxtail = mp;
2375		} else {
2376			mp->m_flags &= ~M_PKTHDR;
2377			sc->age_cdata.age_rxprev_tail =
2378			    sc->age_cdata.age_rxtail;
2379			sc->age_cdata.age_rxtail->m_next = mp;
2380			sc->age_cdata.age_rxtail = mp;
2381		}
2382
2383		if (count == nsegs - 1) {
2384			/*
2385			 * It seems that L1 controller has no way
2386			 * to tell hardware to strip CRC bytes.
2387			 */
2388			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2389			if (nsegs > 1) {
2390				/* Remove the CRC bytes in chained mbufs. */
2391				pktlen -= ETHER_CRC_LEN;
2392				if (mp->m_len <= ETHER_CRC_LEN) {
2393					sc->age_cdata.age_rxtail =
2394					    sc->age_cdata.age_rxprev_tail;
2395					sc->age_cdata.age_rxtail->m_len -=
2396					    (ETHER_CRC_LEN - mp->m_len);
2397					sc->age_cdata.age_rxtail->m_next = NULL;
2398					m_freem(mp);
2399				} else {
2400					mp->m_len -= ETHER_CRC_LEN;
2401				}
2402			}
2403
2404			m = sc->age_cdata.age_rxhead;
2405			m->m_flags |= M_PKTHDR;
2406			m->m_pkthdr.rcvif = ifp;
2407			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2408			/* Set the first mbuf length. */
2409			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2410
2411			/*
2412			 * Set checksum information.
2413			 * It seems that L1 controller can compute partial
2414			 * checksum. The partial checksum value can be used
2415			 * to accelerate checksum computation for fragmented
2416			 * TCP/UDP packets. Upper network stack already
2417			 * takes advantage of the partial checksum value in
2418			 * IP reassembly stage. But I'm not sure the
2419			 * correctness of the partial hardware checksum
2420			 * assistance due to lack of data sheet. If it is
2421			 * proven to work on L1 I'll enable it.
2422			 */
2423			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2424			    (status & AGE_RRD_IPV4) != 0) {
2425				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2426				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2427					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2428				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2429				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2430					m->m_pkthdr.csum_flags |=
2431					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2432					m->m_pkthdr.csum_data = 0xffff;
2433				}
2434				/*
2435				 * Don't mark bad checksum for TCP/UDP frames
2436				 * as fragmented frames may always have set
2437				 * bad checksummed bit of descriptor status.
2438				 */
2439			}
2440
2441			/* Check for VLAN tagged frames. */
2442			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2443			    (status & AGE_RRD_VLAN) != 0) {
2444				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2445				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2446				m->m_flags |= M_VLANTAG;
2447			}
2448
2449			/* Pass it on. */
2450			AGE_UNLOCK(sc);
2451			(*ifp->if_input)(ifp, m);
2452			AGE_LOCK(sc);
2453
2454			/* Reset mbuf chains. */
2455			AGE_RXCHAIN_RESET(sc);
2456		}
2457	}
2458
2459	if (count != nsegs) {
2460		sc->age_cdata.age_rx_cons += nsegs;
2461		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2462	} else
2463		sc->age_cdata.age_rx_cons = rx_cons;
2464}
2465
2466static int
2467age_rxintr(struct age_softc *sc, int rr_prod, int count)
2468{
2469	struct rx_rdesc *rxrd;
2470	int rr_cons, nsegs, pktlen, prog;
2471
2472	AGE_LOCK_ASSERT(sc);
2473
2474	rr_cons = sc->age_cdata.age_rr_cons;
2475	if (rr_cons == rr_prod)
2476		return (0);
2477
2478	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2479	    sc->age_cdata.age_rr_ring_map,
2480	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2481	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2482	    sc->age_cdata.age_rx_ring_map,
2483	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2484
2485	for (prog = 0; rr_cons != rr_prod; prog++) {
2486		if (count <= 0)
2487			break;
2488		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2489		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2490		if (nsegs == 0)
2491			break;
2492		/*
2493		 * Check number of segments against received bytes.
2494		 * Non-matching value would indicate that hardware
2495		 * is still trying to update Rx return descriptors.
2496		 * I'm not sure whether this check is really needed.
2497		 */
2498		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2499		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2500		    (MCLBYTES - ETHER_ALIGN)))
2501			break;
2502
2503		prog++;
2504		/* Received a frame. */
2505		age_rxeof(sc, rxrd);
2506		/* Clear return ring. */
2507		rxrd->index = 0;
2508		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2509	}
2510
2511	if (prog > 0) {
2512		/* Update the consumer index. */
2513		sc->age_cdata.age_rr_cons = rr_cons;
2514
2515		/* Sync descriptors. */
2516		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2517		    sc->age_cdata.age_rx_ring_map,
2518		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2519		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2520		    sc->age_cdata.age_rr_ring_map,
2521		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2522
2523		/* Notify hardware availability of new Rx buffers. */
2524		AGE_COMMIT_MBOX(sc);
2525	}
2526
2527	return (count > 0 ? 0 : EAGAIN);
2528}
2529
2530static void
2531age_tick(void *arg)
2532{
2533	struct age_softc *sc;
2534	struct mii_data *mii;
2535
2536	sc = (struct age_softc *)arg;
2537
2538	AGE_LOCK_ASSERT(sc);
2539
2540	mii = device_get_softc(sc->age_miibus);
2541	mii_tick(mii);
2542	age_watchdog(sc);
2543	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2544}
2545
2546static void
2547age_reset(struct age_softc *sc)
2548{
2549	uint32_t reg;
2550	int i;
2551
2552	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2553	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2554		DELAY(1);
2555		if ((CSR_READ_4(sc, AGE_MASTER_CFG) & MASTER_RESET) == 0)
2556			break;
2557	}
2558	if (i == 0)
2559		device_printf(sc->age_dev, "master reset timeout!\n");
2560
2561	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2562		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2563			break;
2564		DELAY(10);
2565	}
2566
2567	if (i == 0)
2568		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2569	/* Initialize PCIe module. From Linux. */
2570	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2571	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2572}
2573
2574static void
2575age_init(void *xsc)
2576{
2577	struct age_softc *sc;
2578
2579	sc = (struct age_softc *)xsc;
2580	AGE_LOCK(sc);
2581	age_init_locked(sc);
2582	AGE_UNLOCK(sc);
2583}
2584
2585static void
2586age_init_locked(struct age_softc *sc)
2587{
2588	struct ifnet *ifp;
2589	struct mii_data *mii;
2590	uint8_t eaddr[ETHER_ADDR_LEN];
2591	bus_addr_t paddr;
2592	uint32_t reg, fsize;
2593	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2594	int error;
2595
2596	AGE_LOCK_ASSERT(sc);
2597
2598	ifp = sc->age_ifp;
2599	mii = device_get_softc(sc->age_miibus);
2600
2601	/*
2602	 * Cancel any pending I/O.
2603	 */
2604	age_stop(sc);
2605
2606	/*
2607	 * Reset the chip to a known state.
2608	 */
2609	age_reset(sc);
2610
2611	/* Initialize descriptors. */
2612	error = age_init_rx_ring(sc);
2613        if (error != 0) {
2614                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2615                age_stop(sc);
2616		return;
2617        }
2618	age_init_rr_ring(sc);
2619	age_init_tx_ring(sc);
2620	age_init_cmb_block(sc);
2621	age_init_smb_block(sc);
2622
2623	/* Reprogram the station address. */
2624	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2625	CSR_WRITE_4(sc, AGE_PAR0,
2626	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2627	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2628
2629	/* Set descriptor base addresses. */
2630	paddr = sc->age_rdata.age_tx_ring_paddr;
2631	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2632	paddr = sc->age_rdata.age_rx_ring_paddr;
2633	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2634	paddr = sc->age_rdata.age_rr_ring_paddr;
2635	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2636	paddr = sc->age_rdata.age_tx_ring_paddr;
2637	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2638	paddr = sc->age_rdata.age_cmb_block_paddr;
2639	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2640	paddr = sc->age_rdata.age_smb_block_paddr;
2641	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2642	/* Set Rx/Rx return descriptor counter. */
2643	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2644	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2645	    DESC_RRD_CNT_MASK) |
2646	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2647	/* Set Tx descriptor counter. */
2648	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2649	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2650
2651	/* Tell hardware that we're ready to load descriptors. */
2652	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2653
2654	/*
2655	 * Initialize mailbox register.
2656	 * Updated producer/consumer index information is exchanged
2657	 * through this mailbox register. However Tx producer and
2658	 * Rx return consumer/Rx producer are all shared such that
2659	 * it's hard to separate code path between Tx and Rx without
2660	 * locking. If L1 hardware have a separate mail box register
2661	 * for Tx and Rx consumer/producer management we could have
2662	 * indepent Tx/Rx handler which in turn Rx handler could have
2663	 * been run without any locking.
2664	 */
2665	AGE_COMMIT_MBOX(sc);
2666
2667	/* Configure IPG/IFG parameters. */
2668	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2669	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2670	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2671	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2672	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2673
2674	/* Set parameters for half-duplex media. */
2675	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2676	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2677	    HDPX_CFG_LCOL_MASK) |
2678	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2679	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2680	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2681	    HDPX_CFG_ABEBT_MASK) |
2682	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2683	    HDPX_CFG_JAMIPG_MASK));
2684
2685	/* Configure interrupt moderation timer. */
2686	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2687	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2688	reg &= ~MASTER_MTIMER_ENB;
2689	if (AGE_USECS(sc->age_int_mod) == 0)
2690		reg &= ~MASTER_ITIMER_ENB;
2691	else
2692		reg |= MASTER_ITIMER_ENB;
2693	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2694	if (1 || bootverbose)
2695		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2696		    sc->age_int_mod);
2697	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2698
2699	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2700	if (ifp->if_mtu < ETHERMTU)
2701		sc->age_max_frame_size = ETHERMTU;
2702	else
2703		sc->age_max_frame_size = ifp->if_mtu;
2704	sc->age_max_frame_size += ETHER_HDR_LEN +
2705	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2706	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2707	/* Configure jumbo frame. */
2708	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2709	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2710	    (((fsize / sizeof(uint64_t)) <<
2711	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2712	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2713	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2714	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2715	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2716
2717	/* Configure flow-control parameters. From Linux. */
2718	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2719		/*
2720		 * Magic workaround for old-L1.
2721		 * Don't know which hw revision requires this magic.
2722		 */
2723		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2724		/*
2725		 * Another magic workaround for flow-control mode
2726		 * change. From Linux.
2727		 */
2728		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2729	}
2730	/*
2731	 * TODO
2732	 *  Should understand pause parameter relationships between FIFO
2733	 *  size and number of Rx descriptors and Rx return descriptors.
2734	 *
2735	 *  Magic parameters came from Linux.
2736	 */
2737	switch (sc->age_chip_rev) {
2738	case 0x8001:
2739	case 0x9001:
2740	case 0x9002:
2741	case 0x9003:
2742		rxf_hi = AGE_RX_RING_CNT / 16;
2743		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2744		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2745		rrd_lo = AGE_RR_RING_CNT / 16;
2746		break;
2747	default:
2748		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2749		rxf_lo = reg / 16;
2750		if (rxf_lo < 192)
2751			rxf_lo = 192;
2752		rxf_hi = (reg * 7) / 8;
2753		if (rxf_hi < rxf_lo)
2754			rxf_hi = rxf_lo + 16;
2755		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2756		rrd_lo = reg / 8;
2757		rrd_hi = (reg * 7) / 8;
2758		if (rrd_lo < 2)
2759			rrd_lo = 2;
2760		if (rrd_hi < rrd_lo)
2761			rrd_hi = rrd_lo + 3;
2762		break;
2763	}
2764	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2765	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2766	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2767	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2768	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2769	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2770	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2771	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2772	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2773	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2774
2775	/* Configure RxQ. */
2776	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2777	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2778	    RXQ_CFG_RD_BURST_MASK) |
2779	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2780	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2781	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2782	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2783	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2784
2785	/* Configure TxQ. */
2786	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2787	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2788	    TXQ_CFG_TPD_BURST_MASK) |
2789	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2790	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2791	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2792	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2793	    TXQ_CFG_ENB);
2794
2795	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2796	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2797	    TX_JUMBO_TPD_TH_MASK) |
2798	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2799	    TX_JUMBO_TPD_IPG_MASK));
2800	/* Configure DMA parameters. */
2801	CSR_WRITE_4(sc, AGE_DMA_CFG,
2802	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2803	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2804	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2805
2806	/* Configure CMB DMA write threshold. */
2807	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2808	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2809	    CMB_WR_THRESH_RRD_MASK) |
2810	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2811	    CMB_WR_THRESH_TPD_MASK));
2812
2813	/* Set CMB/SMB timer and enable them. */
2814	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2815	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2816	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2817	/* Request SMB updates for every seconds. */
2818	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2819	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2820
2821	/*
2822	 * Disable all WOL bits as WOL can interfere normal Rx
2823	 * operation.
2824	 */
2825	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2826
2827	/*
2828	 * Configure Tx/Rx MACs.
2829	 *  - Auto-padding for short frames.
2830	 *  - Enable CRC generation.
2831	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2832	 *  of MAC is followed after link establishment.
2833	 */
2834	CSR_WRITE_4(sc, AGE_MAC_CFG,
2835	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2836	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2837	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2838	    MAC_CFG_PREAMBLE_MASK));
2839	/* Set up the receive filter. */
2840	age_rxfilter(sc);
2841	age_rxvlan(sc);
2842
2843	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2844	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2845		reg |= MAC_CFG_RXCSUM_ENB;
2846
2847	/* Ack all pending interrupts and clear it. */
2848	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2849	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2850
2851	/* Finally enable Tx/Rx MAC. */
2852	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2853
2854	sc->age_flags &= ~AGE_FLAG_LINK;
2855	/* Switch to the current media. */
2856	mii_mediachg(mii);
2857
2858	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2859
2860	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2861	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2862}
2863
2864static void
2865age_stop(struct age_softc *sc)
2866{
2867	struct ifnet *ifp;
2868	struct age_txdesc *txd;
2869	struct age_rxdesc *rxd;
2870	uint32_t reg;
2871	int i;
2872
2873	AGE_LOCK_ASSERT(sc);
2874	/*
2875	 * Mark the interface down and cancel the watchdog timer.
2876	 */
2877	ifp = sc->age_ifp;
2878	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2879	sc->age_flags &= ~AGE_FLAG_LINK;
2880	callout_stop(&sc->age_tick_ch);
2881	sc->age_watchdog_timer = 0;
2882
2883	/*
2884	 * Disable interrupts.
2885	 */
2886	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2887	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2888	/* Stop CMB/SMB updates. */
2889	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2890	/* Stop Rx/Tx MAC. */
2891	age_stop_rxmac(sc);
2892	age_stop_txmac(sc);
2893	/* Stop DMA. */
2894	CSR_WRITE_4(sc, AGE_DMA_CFG,
2895	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2896	/* Stop TxQ/RxQ. */
2897	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2898	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2899	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2900	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2901	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2902		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2903			break;
2904		DELAY(10);
2905	}
2906	if (i == 0)
2907		device_printf(sc->age_dev,
2908		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2909
2910	 /* Reclaim Rx buffers that have been processed. */
2911	if (sc->age_cdata.age_rxhead != NULL)
2912		m_freem(sc->age_cdata.age_rxhead);
2913	AGE_RXCHAIN_RESET(sc);
2914	/*
2915	 * Free RX and TX mbufs still in the queues.
2916	 */
2917	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2918		rxd = &sc->age_cdata.age_rxdesc[i];
2919		if (rxd->rx_m != NULL) {
2920			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2921			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2922			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2923			    rxd->rx_dmamap);
2924			m_freem(rxd->rx_m);
2925			rxd->rx_m = NULL;
2926		}
2927        }
2928	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2929		txd = &sc->age_cdata.age_txdesc[i];
2930		if (txd->tx_m != NULL) {
2931			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2932			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2933			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2934			    txd->tx_dmamap);
2935			m_freem(txd->tx_m);
2936			txd->tx_m = NULL;
2937		}
2938        }
2939}
2940
2941static void
2942age_stop_txmac(struct age_softc *sc)
2943{
2944	uint32_t reg;
2945	int i;
2946
2947	AGE_LOCK_ASSERT(sc);
2948
2949	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2950	if ((reg & MAC_CFG_TX_ENB) != 0) {
2951		reg &= ~MAC_CFG_TX_ENB;
2952		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2953	}
2954	/* Stop Tx DMA engine. */
2955	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2956	if ((reg & DMA_CFG_RD_ENB) != 0) {
2957		reg &= ~DMA_CFG_RD_ENB;
2958		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2959	}
2960	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2961		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2962		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2963			break;
2964		DELAY(10);
2965	}
2966	if (i == 0)
2967		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2968}
2969
2970static void
2971age_stop_rxmac(struct age_softc *sc)
2972{
2973	uint32_t reg;
2974	int i;
2975
2976	AGE_LOCK_ASSERT(sc);
2977
2978	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2979	if ((reg & MAC_CFG_RX_ENB) != 0) {
2980		reg &= ~MAC_CFG_RX_ENB;
2981		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2982	}
2983	/* Stop Rx DMA engine. */
2984	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2985	if ((reg & DMA_CFG_WR_ENB) != 0) {
2986		reg &= ~DMA_CFG_WR_ENB;
2987		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2988	}
2989	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2990		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2991		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2992			break;
2993		DELAY(10);
2994	}
2995	if (i == 0)
2996		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2997}
2998
2999static void
3000age_init_tx_ring(struct age_softc *sc)
3001{
3002	struct age_ring_data *rd;
3003	struct age_txdesc *txd;
3004	int i;
3005
3006	AGE_LOCK_ASSERT(sc);
3007
3008	sc->age_cdata.age_tx_prod = 0;
3009	sc->age_cdata.age_tx_cons = 0;
3010	sc->age_cdata.age_tx_cnt = 0;
3011
3012	rd = &sc->age_rdata;
3013	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
3014	for (i = 0; i < AGE_TX_RING_CNT; i++) {
3015		txd = &sc->age_cdata.age_txdesc[i];
3016		txd->tx_desc = &rd->age_tx_ring[i];
3017		txd->tx_m = NULL;
3018	}
3019
3020	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
3021	    sc->age_cdata.age_tx_ring_map,
3022	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3023}
3024
3025static int
3026age_init_rx_ring(struct age_softc *sc)
3027{
3028	struct age_ring_data *rd;
3029	struct age_rxdesc *rxd;
3030	int i;
3031
3032	AGE_LOCK_ASSERT(sc);
3033
3034	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
3035	sc->age_morework = 0;
3036	rd = &sc->age_rdata;
3037	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
3038	for (i = 0; i < AGE_RX_RING_CNT; i++) {
3039		rxd = &sc->age_cdata.age_rxdesc[i];
3040		rxd->rx_m = NULL;
3041		rxd->rx_desc = &rd->age_rx_ring[i];
3042		if (age_newbuf(sc, rxd) != 0)
3043			return (ENOBUFS);
3044	}
3045
3046	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3047	    sc->age_cdata.age_rx_ring_map,
3048	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3049
3050	return (0);
3051}
3052
3053static void
3054age_init_rr_ring(struct age_softc *sc)
3055{
3056	struct age_ring_data *rd;
3057
3058	AGE_LOCK_ASSERT(sc);
3059
3060	sc->age_cdata.age_rr_cons = 0;
3061	AGE_RXCHAIN_RESET(sc);
3062
3063	rd = &sc->age_rdata;
3064	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3065	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3066	    sc->age_cdata.age_rr_ring_map,
3067	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3068}
3069
3070static void
3071age_init_cmb_block(struct age_softc *sc)
3072{
3073	struct age_ring_data *rd;
3074
3075	AGE_LOCK_ASSERT(sc);
3076
3077	rd = &sc->age_rdata;
3078	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3079	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3080	    sc->age_cdata.age_cmb_block_map,
3081	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3082}
3083
3084static void
3085age_init_smb_block(struct age_softc *sc)
3086{
3087	struct age_ring_data *rd;
3088
3089	AGE_LOCK_ASSERT(sc);
3090
3091	rd = &sc->age_rdata;
3092	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3093	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3094	    sc->age_cdata.age_smb_block_map,
3095	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3096}
3097
3098static int
3099age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3100{
3101	struct rx_desc *desc;
3102	struct mbuf *m;
3103	bus_dma_segment_t segs[1];
3104	bus_dmamap_t map;
3105	int nsegs;
3106
3107	AGE_LOCK_ASSERT(sc);
3108
3109	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3110	if (m == NULL)
3111		return (ENOBUFS);
3112	m->m_len = m->m_pkthdr.len = MCLBYTES;
3113	m_adj(m, ETHER_ALIGN);
3114
3115	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3116	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3117		m_freem(m);
3118		return (ENOBUFS);
3119	}
3120	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3121
3122	if (rxd->rx_m != NULL) {
3123		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3124		    BUS_DMASYNC_POSTREAD);
3125		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3126	}
3127	map = rxd->rx_dmamap;
3128	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3129	sc->age_cdata.age_rx_sparemap = map;
3130	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3131	    BUS_DMASYNC_PREREAD);
3132	rxd->rx_m = m;
3133
3134	desc = rxd->rx_desc;
3135	desc->addr = htole64(segs[0].ds_addr);
3136	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3137	    AGE_RD_LEN_SHIFT);
3138	return (0);
3139}
3140
3141static void
3142age_rxvlan(struct age_softc *sc)
3143{
3144	struct ifnet *ifp;
3145	uint32_t reg;
3146
3147	AGE_LOCK_ASSERT(sc);
3148
3149	ifp = sc->age_ifp;
3150	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3151	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3152	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3153		reg |= MAC_CFG_VLAN_TAG_STRIP;
3154	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3155}
3156
3157static void
3158age_rxfilter(struct age_softc *sc)
3159{
3160	struct ifnet *ifp;
3161	struct ifmultiaddr *ifma;
3162	uint32_t crc;
3163	uint32_t mchash[2];
3164	uint32_t rxcfg;
3165
3166	AGE_LOCK_ASSERT(sc);
3167
3168	ifp = sc->age_ifp;
3169
3170	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3171	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3172	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3173		rxcfg |= MAC_CFG_BCAST;
3174	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3175		if ((ifp->if_flags & IFF_PROMISC) != 0)
3176			rxcfg |= MAC_CFG_PROMISC;
3177		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3178			rxcfg |= MAC_CFG_ALLMULTI;
3179		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3180		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3181		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3182		return;
3183	}
3184
3185	/* Program new filter. */
3186	bzero(mchash, sizeof(mchash));
3187
3188	IF_ADDR_LOCK(ifp);
3189	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3190		if (ifma->ifma_addr->sa_family != AF_LINK)
3191			continue;
3192		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
3193		    ifma->ifma_addr), ETHER_ADDR_LEN);
3194		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3195	}
3196	IF_ADDR_UNLOCK(ifp);
3197
3198	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3199	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3200	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3201}
3202
3203static int
3204sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3205{
3206	struct age_softc *sc;
3207	struct age_stats *stats;
3208	int error, result;
3209
3210	result = -1;
3211	error = sysctl_handle_int(oidp, &result, 0, req);
3212
3213	if (error != 0 || req->newptr == NULL)
3214		return (error);
3215
3216	if (result != 1)
3217		return (error);
3218
3219	sc = (struct age_softc *)arg1;
3220	stats = &sc->age_stat;
3221	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3222	printf("Transmit good frames : %ju\n",
3223	    (uintmax_t)stats->tx_frames);
3224	printf("Transmit good broadcast frames : %ju\n",
3225	    (uintmax_t)stats->tx_bcast_frames);
3226	printf("Transmit good multicast frames : %ju\n",
3227	    (uintmax_t)stats->tx_mcast_frames);
3228	printf("Transmit pause control frames : %u\n",
3229	    stats->tx_pause_frames);
3230	printf("Transmit control frames : %u\n",
3231	    stats->tx_control_frames);
3232	printf("Transmit frames with excessive deferrals : %u\n",
3233	    stats->tx_excess_defer);
3234	printf("Transmit deferrals : %u\n",
3235	    stats->tx_deferred);
3236	printf("Transmit good octets : %ju\n",
3237	    (uintmax_t)stats->tx_bytes);
3238	printf("Transmit good broadcast octets : %ju\n",
3239	    (uintmax_t)stats->tx_bcast_bytes);
3240	printf("Transmit good multicast octets : %ju\n",
3241	    (uintmax_t)stats->tx_mcast_bytes);
3242	printf("Transmit frames 64 bytes : %ju\n",
3243	    (uintmax_t)stats->tx_pkts_64);
3244	printf("Transmit frames 65 to 127 bytes : %ju\n",
3245	    (uintmax_t)stats->tx_pkts_65_127);
3246	printf("Transmit frames 128 to 255 bytes : %ju\n",
3247	    (uintmax_t)stats->tx_pkts_128_255);
3248	printf("Transmit frames 256 to 511 bytes : %ju\n",
3249	    (uintmax_t)stats->tx_pkts_256_511);
3250	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3251	    (uintmax_t)stats->tx_pkts_512_1023);
3252	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3253	    (uintmax_t)stats->tx_pkts_1024_1518);
3254	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3255	    (uintmax_t)stats->tx_pkts_1519_max);
3256	printf("Transmit single collisions : %u\n",
3257	    stats->tx_single_colls);
3258	printf("Transmit multiple collisions : %u\n",
3259	    stats->tx_multi_colls);
3260	printf("Transmit late collisions : %u\n",
3261	    stats->tx_late_colls);
3262	printf("Transmit abort due to excessive collisions : %u\n",
3263	    stats->tx_excess_colls);
3264	printf("Transmit underruns due to FIFO underruns : %u\n",
3265	    stats->tx_underrun);
3266	printf("Transmit descriptor write-back errors : %u\n",
3267	    stats->tx_desc_underrun);
3268	printf("Transmit frames with length mismatched frame size : %u\n",
3269	    stats->tx_lenerrs);
3270	printf("Transmit frames with truncated due to MTU size : %u\n",
3271	    stats->tx_lenerrs);
3272
3273	printf("Receive good frames : %ju\n",
3274	    (uintmax_t)stats->rx_frames);
3275	printf("Receive good broadcast frames : %ju\n",
3276	    (uintmax_t)stats->rx_bcast_frames);
3277	printf("Receive good multicast frames : %ju\n",
3278	    (uintmax_t)stats->rx_mcast_frames);
3279	printf("Receive pause control frames : %u\n",
3280	    stats->rx_pause_frames);
3281	printf("Receive control frames : %u\n",
3282	    stats->rx_control_frames);
3283	printf("Receive CRC errors : %u\n",
3284	    stats->rx_crcerrs);
3285	printf("Receive frames with length errors : %u\n",
3286	    stats->rx_lenerrs);
3287	printf("Receive good octets : %ju\n",
3288	    (uintmax_t)stats->rx_bytes);
3289	printf("Receive good broadcast octets : %ju\n",
3290	    (uintmax_t)stats->rx_bcast_bytes);
3291	printf("Receive good multicast octets : %ju\n",
3292	    (uintmax_t)stats->rx_mcast_bytes);
3293	printf("Receive frames too short : %u\n",
3294	    stats->rx_runts);
3295	printf("Receive fragmented frames : %ju\n",
3296	    (uintmax_t)stats->rx_fragments);
3297	printf("Receive frames 64 bytes : %ju\n",
3298	    (uintmax_t)stats->rx_pkts_64);
3299	printf("Receive frames 65 to 127 bytes : %ju\n",
3300	    (uintmax_t)stats->rx_pkts_65_127);
3301	printf("Receive frames 128 to 255 bytes : %ju\n",
3302	    (uintmax_t)stats->rx_pkts_128_255);
3303	printf("Receive frames 256 to 511 bytes : %ju\n",
3304	    (uintmax_t)stats->rx_pkts_256_511);
3305	printf("Receive frames 512 to 1024 bytes : %ju\n",
3306	    (uintmax_t)stats->rx_pkts_512_1023);
3307	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3308	    (uintmax_t)stats->rx_pkts_1024_1518);
3309	printf("Receive frames 1519 to MTU bytes : %ju\n",
3310	    (uintmax_t)stats->rx_pkts_1519_max);
3311	printf("Receive frames too long : %ju\n",
3312	    (uint64_t)stats->rx_pkts_truncated);
3313	printf("Receive frames with FIFO overflow : %u\n",
3314	    stats->rx_fifo_oflows);
3315	printf("Receive frames with return descriptor overflow : %u\n",
3316	    stats->rx_desc_oflows);
3317	printf("Receive frames with alignment errors : %u\n",
3318	    stats->rx_alignerrs);
3319	printf("Receive frames dropped due to address filtering : %ju\n",
3320	    (uint64_t)stats->rx_pkts_filtered);
3321
3322	return (error);
3323}
3324
3325static int
3326sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3327{
3328	int error, value;
3329
3330	if (arg1 == NULL)
3331		return (EINVAL);
3332	value = *(int *)arg1;
3333	error = sysctl_handle_int(oidp, &value, 0, req);
3334	if (error || req->newptr == NULL)
3335		return (error);
3336	if (value < low || value > high)
3337		return (EINVAL);
3338        *(int *)arg1 = value;
3339
3340        return (0);
3341}
3342
3343static int
3344sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3345{
3346	return (sysctl_int_range(oidp, arg1, arg2, req,
3347	    AGE_PROC_MIN, AGE_PROC_MAX));
3348}
3349
3350static int
3351sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3352{
3353
3354	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3355	    AGE_IM_TIMER_MAX));
3356}
3357