if_age.c revision 220252
133965Sjdp/*-
233965Sjdp * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
389857Sobrien * All rights reserved.
489857Sobrien *
589857Sobrien * Redistribution and use in source and binary forms, with or without
689857Sobrien * modification, are permitted provided that the following conditions
789857Sobrien * are met:
833965Sjdp * 1. Redistributions of source code must retain the above copyright
933965Sjdp *    notice unmodified, this list of conditions, and the following
1033965Sjdp *    disclaimer.
1133965Sjdp * 2. Redistributions in binary form must reproduce the above copyright
1233965Sjdp *    notice, this list of conditions and the following disclaimer in the
1333965Sjdp *    documentation and/or other materials provided with the distribution.
1433965Sjdp *
1533965Sjdp * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
1633965Sjdp * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
1733965Sjdp * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
1833965Sjdp * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
1933965Sjdp * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
2033965Sjdp * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
2133965Sjdp * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
2233965Sjdp * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
2333965Sjdp * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
2433965Sjdp * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
2533965Sjdp * SUCH DAMAGE.
2633965Sjdp */
2733965Sjdp
2833965Sjdp/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
2933965Sjdp
3033965Sjdp#include <sys/cdefs.h>
3133965Sjdp__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 220252 2011-04-01 18:53:41Z yongari $");
3233965Sjdp
3333965Sjdp#include <sys/param.h>
3489857Sobrien#include <sys/systm.h>
3533965Sjdp#include <sys/bus.h>
3633965Sjdp#include <sys/endian.h>
3733965Sjdp#include <sys/kernel.h>
3833965Sjdp#include <sys/malloc.h>
3933965Sjdp#include <sys/mbuf.h>
4033965Sjdp#include <sys/rman.h>
4133965Sjdp#include <sys/module.h>
4233965Sjdp#include <sys/queue.h>
4333965Sjdp#include <sys/socket.h>
4433965Sjdp#include <sys/sockio.h>
4533965Sjdp#include <sys/sysctl.h>
4633965Sjdp#include <sys/taskqueue.h>
4733965Sjdp
4833965Sjdp#include <net/bpf.h>
4933965Sjdp#include <net/if.h>
5033965Sjdp#include <net/if_arp.h>
5133965Sjdp#include <net/ethernet.h>
5233965Sjdp#include <net/if_dl.h>
5333965Sjdp#include <net/if_media.h>
5433965Sjdp#include <net/if_types.h>
5533965Sjdp#include <net/if_vlan_var.h>
5633965Sjdp
5733965Sjdp#include <netinet/in.h>
5833965Sjdp#include <netinet/in_systm.h>
5933965Sjdp#include <netinet/ip.h>
6033965Sjdp#include <netinet/tcp.h>
6133965Sjdp
6233965Sjdp#include <dev/mii/mii.h>
6333965Sjdp#include <dev/mii/miivar.h>
6433965Sjdp
6533965Sjdp#include <dev/pci/pcireg.h>
6633965Sjdp#include <dev/pci/pcivar.h>
6733965Sjdp
6833965Sjdp#include <machine/bus.h>
6933965Sjdp#include <machine/in_cksum.h>
7033965Sjdp
7133965Sjdp#include <dev/age/if_agereg.h>
7233965Sjdp#include <dev/age/if_agevar.h>
7333965Sjdp
7433965Sjdp/* "device miibus" required.  See GENERIC if you get errors here. */
7533965Sjdp#include "miibus_if.h"
7633965Sjdp
7733965Sjdp#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
7833965Sjdp
7933965SjdpMODULE_DEPEND(age, pci, 1, 1, 1);
8033965SjdpMODULE_DEPEND(age, ether, 1, 1, 1);
8133965SjdpMODULE_DEPEND(age, miibus, 1, 1, 1);
8233965Sjdp
8333965Sjdp/* Tunables. */
8433965Sjdpstatic int msi_disable = 0;
8533965Sjdpstatic int msix_disable = 0;
8633965SjdpTUNABLE_INT("hw.age.msi_disable", &msi_disable);
8733965SjdpTUNABLE_INT("hw.age.msix_disable", &msix_disable);
8833965Sjdp
8933965Sjdp/*
9033965Sjdp * Devices supported by this driver.
9133965Sjdp */
9233965Sjdpstatic struct age_dev {
9333965Sjdp	uint16_t	age_vendorid;
9433965Sjdp	uint16_t	age_deviceid;
9533965Sjdp	const char	*age_name;
9633965Sjdp} age_devs[] = {
9733965Sjdp	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
9833965Sjdp	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
9933965Sjdp};
10033965Sjdp
10133965Sjdpstatic int age_miibus_readreg(device_t, int, int);
10233965Sjdpstatic int age_miibus_writereg(device_t, int, int, int);
10333965Sjdpstatic void age_miibus_statchg(device_t);
10433965Sjdpstatic void age_mediastatus(struct ifnet *, struct ifmediareq *);
10533965Sjdpstatic int age_mediachange(struct ifnet *);
10633965Sjdpstatic int age_probe(device_t);
10733965Sjdpstatic void age_get_macaddr(struct age_softc *);
10833965Sjdpstatic void age_phy_reset(struct age_softc *);
10933965Sjdpstatic int age_attach(device_t);
11033965Sjdpstatic int age_detach(device_t);
11133965Sjdpstatic void age_sysctl_node(struct age_softc *);
11233965Sjdpstatic void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
11333965Sjdpstatic int age_check_boundary(struct age_softc *);
11433965Sjdpstatic int age_dma_alloc(struct age_softc *);
11533965Sjdpstatic void age_dma_free(struct age_softc *);
11633965Sjdpstatic int age_shutdown(device_t);
11733965Sjdpstatic void age_setwol(struct age_softc *);
11833965Sjdpstatic int age_suspend(device_t);
11933965Sjdpstatic int age_resume(device_t);
12033965Sjdpstatic int age_encap(struct age_softc *, struct mbuf **);
12133965Sjdpstatic void age_start(struct ifnet *);
12233965Sjdpstatic void age_start_locked(struct ifnet *);
12333965Sjdpstatic void age_watchdog(struct age_softc *);
12433965Sjdpstatic int age_ioctl(struct ifnet *, u_long, caddr_t);
12533965Sjdpstatic void age_mac_config(struct age_softc *);
12633965Sjdpstatic void age_link_task(void *, int);
12733965Sjdpstatic void age_stats_update(struct age_softc *);
12833965Sjdpstatic int age_intr(void *);
12933965Sjdpstatic void age_int_task(void *, int);
13033965Sjdpstatic void age_txintr(struct age_softc *, int);
13133965Sjdpstatic void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
13233965Sjdpstatic int age_rxintr(struct age_softc *, int, int);
13333965Sjdpstatic void age_tick(void *);
13433965Sjdpstatic void age_reset(struct age_softc *);
13533965Sjdpstatic void age_init(void *);
13633965Sjdpstatic void age_init_locked(struct age_softc *);
13733965Sjdpstatic void age_stop(struct age_softc *);
13833965Sjdpstatic void age_stop_txmac(struct age_softc *);
13933965Sjdpstatic void age_stop_rxmac(struct age_softc *);
14033965Sjdpstatic void age_init_tx_ring(struct age_softc *);
14133965Sjdpstatic int age_init_rx_ring(struct age_softc *);
14233965Sjdpstatic void age_init_rr_ring(struct age_softc *);
14333965Sjdpstatic void age_init_cmb_block(struct age_softc *);
14433965Sjdpstatic void age_init_smb_block(struct age_softc *);
14533965Sjdpstatic int age_newbuf(struct age_softc *, struct age_rxdesc *);
14633965Sjdpstatic void age_rxvlan(struct age_softc *);
14733965Sjdpstatic void age_rxfilter(struct age_softc *);
14833965Sjdpstatic int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
14933965Sjdpstatic int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
15033965Sjdpstatic int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
15133965Sjdpstatic int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
15233965Sjdp
15333965Sjdp
15433965Sjdpstatic device_method_t age_methods[] = {
15533965Sjdp	/* Device interface. */
15689857Sobrien	DEVMETHOD(device_probe,		age_probe),
15733965Sjdp	DEVMETHOD(device_attach,	age_attach),
158130561Sobrien	DEVMETHOD(device_detach,	age_detach),
15989857Sobrien	DEVMETHOD(device_shutdown,	age_shutdown),
16089857Sobrien	DEVMETHOD(device_suspend,	age_suspend),
16189857Sobrien	DEVMETHOD(device_resume,	age_resume),
16289857Sobrien
16389857Sobrien	/* MII interface. */
164130561Sobrien	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167
168	{ NULL, NULL }
169};
170
171static driver_t age_driver = {
172	"age",
173	age_methods,
174	sizeof(struct age_softc)
175};
176
177static devclass_t age_devclass;
178
179DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181
182static struct resource_spec age_res_spec_mem[] = {
183	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184	{ -1,			0,		0 }
185};
186
187static struct resource_spec age_irq_spec_legacy[] = {
188	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189	{ -1,			0,		0 }
190};
191
192static struct resource_spec age_irq_spec_msi[] = {
193	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194	{ -1,			0,		0 }
195};
196
197static struct resource_spec age_irq_spec_msix[] = {
198	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199	{ -1,			0,		0 }
200};
201
202/*
203 *	Read a PHY register on the MII of the L1.
204 */
205static int
206age_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct age_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213
214	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
215	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
216	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
217		DELAY(1);
218		v = CSR_READ_4(sc, AGE_MDIO);
219		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
220			break;
221	}
222
223	if (i == 0) {
224		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
225		return (0);
226	}
227
228	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
229}
230
231/*
232 *	Write a PHY register on the MII of the L1.
233 */
234static int
235age_miibus_writereg(device_t dev, int phy, int reg, int val)
236{
237	struct age_softc *sc;
238	uint32_t v;
239	int i;
240
241	sc = device_get_softc(dev);
242
243	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
244	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
245	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
246	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
247		DELAY(1);
248		v = CSR_READ_4(sc, AGE_MDIO);
249		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
250			break;
251	}
252
253	if (i == 0)
254		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
255
256	return (0);
257}
258
259/*
260 *	Callback from MII layer when media changes.
261 */
262static void
263age_miibus_statchg(device_t dev)
264{
265	struct age_softc *sc;
266
267	sc = device_get_softc(dev);
268	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
269}
270
271/*
272 *	Get the current interface media status.
273 */
274static void
275age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
276{
277	struct age_softc *sc;
278	struct mii_data *mii;
279
280	sc = ifp->if_softc;
281	AGE_LOCK(sc);
282	mii = device_get_softc(sc->age_miibus);
283
284	mii_pollstat(mii);
285	AGE_UNLOCK(sc);
286	ifmr->ifm_status = mii->mii_media_status;
287	ifmr->ifm_active = mii->mii_media_active;
288}
289
290/*
291 *	Set hardware to newly-selected media.
292 */
293static int
294age_mediachange(struct ifnet *ifp)
295{
296	struct age_softc *sc;
297	struct mii_data *mii;
298	struct mii_softc *miisc;
299	int error;
300
301	sc = ifp->if_softc;
302	AGE_LOCK(sc);
303	mii = device_get_softc(sc->age_miibus);
304	if (mii->mii_instance != 0) {
305		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
306			mii_phy_reset(miisc);
307	}
308	error = mii_mediachg(mii);
309	AGE_UNLOCK(sc);
310
311	return (error);
312}
313
314static int
315age_probe(device_t dev)
316{
317	struct age_dev *sp;
318	int i;
319	uint16_t vendor, devid;
320
321	vendor = pci_get_vendor(dev);
322	devid = pci_get_device(dev);
323	sp = age_devs;
324	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
325	    i++, sp++) {
326		if (vendor == sp->age_vendorid &&
327		    devid == sp->age_deviceid) {
328			device_set_desc(dev, sp->age_name);
329			return (BUS_PROBE_DEFAULT);
330		}
331	}
332
333	return (ENXIO);
334}
335
336static void
337age_get_macaddr(struct age_softc *sc)
338{
339	uint32_t ea[2], reg;
340	int i, vpdc;
341
342	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
343	if ((reg & SPI_VPD_ENB) != 0) {
344		/* Get VPD stored in TWSI EEPROM. */
345		reg &= ~SPI_VPD_ENB;
346		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
347	}
348
349	if (pci_find_cap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
350		/*
351		 * PCI VPD capability found, let TWSI reload EEPROM.
352		 * This will set ethernet address of controller.
353		 */
354		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
355		    TWSI_CTRL_SW_LD_START);
356		for (i = 100; i > 0; i--) {
357			DELAY(1000);
358			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
359			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
360				break;
361		}
362		if (i == 0)
363			device_printf(sc->age_dev,
364			    "reloading EEPROM timeout!\n");
365	} else {
366		if (bootverbose)
367			device_printf(sc->age_dev,
368			    "PCI VPD capability not found!\n");
369	}
370
371	ea[0] = CSR_READ_4(sc, AGE_PAR0);
372	ea[1] = CSR_READ_4(sc, AGE_PAR1);
373	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
374	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
375	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
376	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
377	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
378	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
379}
380
381static void
382age_phy_reset(struct age_softc *sc)
383{
384	uint16_t reg, pn;
385	int i, linkup;
386
387	/* Reset PHY. */
388	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
389	DELAY(2000);
390	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
391	DELAY(2000);
392
393#define	ATPHY_DBG_ADDR		0x1D
394#define	ATPHY_DBG_DATA		0x1E
395#define	ATPHY_CDTC		0x16
396#define	PHY_CDTC_ENB		0x0001
397#define	PHY_CDTC_POFF		8
398#define	ATPHY_CDTS		0x1C
399#define	PHY_CDTS_STAT_OK	0x0000
400#define	PHY_CDTS_STAT_SHORT	0x0100
401#define	PHY_CDTS_STAT_OPEN	0x0200
402#define	PHY_CDTS_STAT_INVAL	0x0300
403#define	PHY_CDTS_STAT_MASK	0x0300
404
405	/* Check power saving mode. Magic from Linux. */
406	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
407	for (linkup = 0, pn = 0; pn < 4; pn++) {
408		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
409		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
410		for (i = 200; i > 0; i--) {
411			DELAY(1000);
412			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
413			    ATPHY_CDTC);
414			if ((reg & PHY_CDTC_ENB) == 0)
415				break;
416		}
417		DELAY(1000);
418		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
419		    ATPHY_CDTS);
420		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
421			linkup++;
422			break;
423		}
424	}
425	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
426	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
427	if (linkup == 0) {
428		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
429		    ATPHY_DBG_ADDR, 0);
430		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
431		    ATPHY_DBG_DATA, 0x124E);
432		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433		    ATPHY_DBG_ADDR, 1);
434		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
435		    ATPHY_DBG_DATA);
436		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
437		    ATPHY_DBG_DATA, reg | 0x03);
438		/* XXX */
439		DELAY(1500 * 1000);
440		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441		    ATPHY_DBG_ADDR, 0);
442		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
443		    ATPHY_DBG_DATA, 0x024E);
444    }
445
446#undef	ATPHY_DBG_ADDR
447#undef	ATPHY_DBG_DATA
448#undef	ATPHY_CDTC
449#undef	PHY_CDTC_ENB
450#undef	PHY_CDTC_POFF
451#undef	ATPHY_CDTS
452#undef	PHY_CDTS_STAT_OK
453#undef	PHY_CDTS_STAT_SHORT
454#undef	PHY_CDTS_STAT_OPEN
455#undef	PHY_CDTS_STAT_INVAL
456#undef	PHY_CDTS_STAT_MASK
457}
458
459static int
460age_attach(device_t dev)
461{
462	struct age_softc *sc;
463	struct ifnet *ifp;
464	uint16_t burst;
465	int error, i, msic, msixc, pmc;
466
467	error = 0;
468	sc = device_get_softc(dev);
469	sc->age_dev = dev;
470
471	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
472	    MTX_DEF);
473	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
474	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
475	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
476
477	/* Map the device. */
478	pci_enable_busmaster(dev);
479	sc->age_res_spec = age_res_spec_mem;
480	sc->age_irq_spec = age_irq_spec_legacy;
481	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
482	if (error != 0) {
483		device_printf(dev, "cannot allocate memory resources.\n");
484		goto fail;
485	}
486
487	/* Set PHY address. */
488	sc->age_phyaddr = AGE_PHY_ADDR;
489
490	/* Reset PHY. */
491	age_phy_reset(sc);
492
493	/* Reset the ethernet controller. */
494	age_reset(sc);
495
496	/* Get PCI and chip id/revision. */
497	sc->age_rev = pci_get_revid(dev);
498	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
499	    MASTER_CHIP_REV_SHIFT;
500	if (bootverbose) {
501		device_printf(dev, "PCI device revision : 0x%04x\n",
502		    sc->age_rev);
503		device_printf(dev, "Chip id/revision : 0x%04x\n",
504		    sc->age_chip_rev);
505	}
506
507	/*
508	 * XXX
509	 * Unintialized hardware returns an invalid chip id/revision
510	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
511	 * unplugged cable results in putting hardware into automatic
512	 * power down mode which in turn returns invalld chip revision.
513	 */
514	if (sc->age_chip_rev == 0xFFFF) {
515		device_printf(dev,"invalid chip revision : 0x%04x -- "
516		    "not initialized?\n", sc->age_chip_rev);
517		error = ENXIO;
518		goto fail;
519	}
520
521	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
522	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
523	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
524
525	/* Allocate IRQ resources. */
526	msixc = pci_msix_count(dev);
527	msic = pci_msi_count(dev);
528	if (bootverbose) {
529		device_printf(dev, "MSIX count : %d\n", msixc);
530		device_printf(dev, "MSI count : %d\n", msic);
531	}
532
533	/* Prefer MSIX over MSI. */
534	if (msix_disable == 0 || msi_disable == 0) {
535		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
536		    pci_alloc_msix(dev, &msixc) == 0) {
537			if (msic == AGE_MSIX_MESSAGES) {
538				device_printf(dev, "Using %d MSIX messages.\n",
539				    msixc);
540				sc->age_flags |= AGE_FLAG_MSIX;
541				sc->age_irq_spec = age_irq_spec_msix;
542			} else
543				pci_release_msi(dev);
544		}
545		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
546		    msic == AGE_MSI_MESSAGES &&
547		    pci_alloc_msi(dev, &msic) == 0) {
548			if (msic == AGE_MSI_MESSAGES) {
549				device_printf(dev, "Using %d MSI messages.\n",
550				    msic);
551				sc->age_flags |= AGE_FLAG_MSI;
552				sc->age_irq_spec = age_irq_spec_msi;
553			} else
554				pci_release_msi(dev);
555		}
556	}
557
558	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
559	if (error != 0) {
560		device_printf(dev, "cannot allocate IRQ resources.\n");
561		goto fail;
562	}
563
564
565	/* Get DMA parameters from PCIe device control register. */
566	if (pci_find_cap(dev, PCIY_EXPRESS, &i) == 0) {
567		sc->age_flags |= AGE_FLAG_PCIE;
568		burst = pci_read_config(dev, i + 0x08, 2);
569		/* Max read request size. */
570		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
571		    DMA_CFG_RD_BURST_SHIFT;
572		/* Max payload size. */
573		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
574		    DMA_CFG_WR_BURST_SHIFT;
575		if (bootverbose) {
576			device_printf(dev, "Read request size : %d bytes.\n",
577			    128 << ((burst >> 12) & 0x07));
578			device_printf(dev, "TLP payload size : %d bytes.\n",
579			    128 << ((burst >> 5) & 0x07));
580		}
581	} else {
582		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
583		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
584	}
585
586	/* Create device sysctl node. */
587	age_sysctl_node(sc);
588
589	if ((error = age_dma_alloc(sc) != 0))
590		goto fail;
591
592	/* Load station address. */
593	age_get_macaddr(sc);
594
595	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
596	if (ifp == NULL) {
597		device_printf(dev, "cannot allocate ifnet structure.\n");
598		error = ENXIO;
599		goto fail;
600	}
601
602	ifp->if_softc = sc;
603	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
604	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
605	ifp->if_ioctl = age_ioctl;
606	ifp->if_start = age_start;
607	ifp->if_init = age_init;
608	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
609	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
610	IFQ_SET_READY(&ifp->if_snd);
611	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
612	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
613	if (pci_find_cap(dev, PCIY_PMG, &pmc) == 0) {
614		sc->age_flags |= AGE_FLAG_PMCAP;
615		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
616	}
617	ifp->if_capenable = ifp->if_capabilities;
618
619	/* Set up MII bus. */
620	error = mii_attach(dev, &sc->age_miibus, ifp, age_mediachange,
621	    age_mediastatus, BMSR_DEFCAPMASK, sc->age_phyaddr, MII_OFFSET_ANY,
622	    0);
623	if (error != 0) {
624		device_printf(dev, "attaching PHYs failed\n");
625		goto fail;
626	}
627
628	ether_ifattach(ifp, sc->age_eaddr);
629
630	/* VLAN capability setup. */
631	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
632	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
633	ifp->if_capenable = ifp->if_capabilities;
634
635	/* Tell the upper layer(s) we support long frames. */
636	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
637
638	/* Create local taskq. */
639	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
640	    taskqueue_thread_enqueue, &sc->age_tq);
641	if (sc->age_tq == NULL) {
642		device_printf(dev, "could not create taskqueue.\n");
643		ether_ifdetach(ifp);
644		error = ENXIO;
645		goto fail;
646	}
647	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
648	    device_get_nameunit(sc->age_dev));
649
650	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
651		msic = AGE_MSIX_MESSAGES;
652	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
653		msic = AGE_MSI_MESSAGES;
654	else
655		msic = 1;
656	for (i = 0; i < msic; i++) {
657		error = bus_setup_intr(dev, sc->age_irq[i],
658		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
659		    &sc->age_intrhand[i]);
660		if (error != 0)
661			break;
662	}
663	if (error != 0) {
664		device_printf(dev, "could not set up interrupt handler.\n");
665		taskqueue_free(sc->age_tq);
666		sc->age_tq = NULL;
667		ether_ifdetach(ifp);
668		goto fail;
669	}
670
671fail:
672	if (error != 0)
673		age_detach(dev);
674
675	return (error);
676}
677
678static int
679age_detach(device_t dev)
680{
681	struct age_softc *sc;
682	struct ifnet *ifp;
683	int i, msic;
684
685	sc = device_get_softc(dev);
686
687	ifp = sc->age_ifp;
688	if (device_is_attached(dev)) {
689		AGE_LOCK(sc);
690		sc->age_flags |= AGE_FLAG_DETACH;
691		age_stop(sc);
692		AGE_UNLOCK(sc);
693		callout_drain(&sc->age_tick_ch);
694		taskqueue_drain(sc->age_tq, &sc->age_int_task);
695		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
696		ether_ifdetach(ifp);
697	}
698
699	if (sc->age_tq != NULL) {
700		taskqueue_drain(sc->age_tq, &sc->age_int_task);
701		taskqueue_free(sc->age_tq);
702		sc->age_tq = NULL;
703	}
704
705	if (sc->age_miibus != NULL) {
706		device_delete_child(dev, sc->age_miibus);
707		sc->age_miibus = NULL;
708	}
709	bus_generic_detach(dev);
710	age_dma_free(sc);
711
712	if (ifp != NULL) {
713		if_free(ifp);
714		sc->age_ifp = NULL;
715	}
716
717	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
718		msic = AGE_MSIX_MESSAGES;
719	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
720		msic = AGE_MSI_MESSAGES;
721	else
722		msic = 1;
723	for (i = 0; i < msic; i++) {
724		if (sc->age_intrhand[i] != NULL) {
725			bus_teardown_intr(dev, sc->age_irq[i],
726			    sc->age_intrhand[i]);
727			sc->age_intrhand[i] = NULL;
728		}
729	}
730
731	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
732	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
733		pci_release_msi(dev);
734	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
735	mtx_destroy(&sc->age_mtx);
736
737	return (0);
738}
739
740static void
741age_sysctl_node(struct age_softc *sc)
742{
743	int error;
744
745	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
746	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
747	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
748	    "I", "Statistics");
749
750	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
751	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
752	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
753	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
754
755	/* Pull in device tunables. */
756	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
757	error = resource_int_value(device_get_name(sc->age_dev),
758	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
759	if (error == 0) {
760		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
761		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
762			device_printf(sc->age_dev,
763			    "int_mod value out of range; using default: %d\n",
764			    AGE_IM_TIMER_DEFAULT);
765			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
766		}
767	}
768
769	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
770	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
771	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
772	    0, sysctl_hw_age_proc_limit, "I",
773	    "max number of Rx events to process");
774
775	/* Pull in device tunables. */
776	sc->age_process_limit = AGE_PROC_DEFAULT;
777	error = resource_int_value(device_get_name(sc->age_dev),
778	    device_get_unit(sc->age_dev), "process_limit",
779	    &sc->age_process_limit);
780	if (error == 0) {
781		if (sc->age_process_limit < AGE_PROC_MIN ||
782		    sc->age_process_limit > AGE_PROC_MAX) {
783			device_printf(sc->age_dev,
784			    "process_limit value out of range; "
785			    "using default: %d\n", AGE_PROC_DEFAULT);
786			sc->age_process_limit = AGE_PROC_DEFAULT;
787		}
788	}
789}
790
791struct age_dmamap_arg {
792	bus_addr_t	age_busaddr;
793};
794
795static void
796age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
797{
798	struct age_dmamap_arg *ctx;
799
800	if (error != 0)
801		return;
802
803	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
804
805	ctx = (struct age_dmamap_arg *)arg;
806	ctx->age_busaddr = segs[0].ds_addr;
807}
808
809/*
810 * Attansic L1 controller have single register to specify high
811 * address part of DMA blocks. So all descriptor structures and
812 * DMA memory blocks should have the same high address of given
813 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
814 */
815static int
816age_check_boundary(struct age_softc *sc)
817{
818	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
819	bus_addr_t cmb_block_end, smb_block_end;
820
821	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
822	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
823	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
824	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
825	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
826	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
827
828	if ((AGE_ADDR_HI(tx_ring_end) !=
829	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
830	    (AGE_ADDR_HI(rx_ring_end) !=
831	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
832	    (AGE_ADDR_HI(rr_ring_end) !=
833	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
834	    (AGE_ADDR_HI(cmb_block_end) !=
835	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
836	    (AGE_ADDR_HI(smb_block_end) !=
837	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
838		return (EFBIG);
839
840	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
841	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
842	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
843	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
844		return (EFBIG);
845
846	return (0);
847}
848
849static int
850age_dma_alloc(struct age_softc *sc)
851{
852	struct age_txdesc *txd;
853	struct age_rxdesc *rxd;
854	bus_addr_t lowaddr;
855	struct age_dmamap_arg ctx;
856	int error, i;
857
858	lowaddr = BUS_SPACE_MAXADDR;
859
860again:
861	/* Create parent ring/DMA block tag. */
862	error = bus_dma_tag_create(
863	    bus_get_dma_tag(sc->age_dev), /* parent */
864	    1, 0,			/* alignment, boundary */
865	    lowaddr,			/* lowaddr */
866	    BUS_SPACE_MAXADDR,		/* highaddr */
867	    NULL, NULL,			/* filter, filterarg */
868	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
869	    0,				/* nsegments */
870	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
871	    0,				/* flags */
872	    NULL, NULL,			/* lockfunc, lockarg */
873	    &sc->age_cdata.age_parent_tag);
874	if (error != 0) {
875		device_printf(sc->age_dev,
876		    "could not create parent DMA tag.\n");
877		goto fail;
878	}
879
880	/* Create tag for Tx ring. */
881	error = bus_dma_tag_create(
882	    sc->age_cdata.age_parent_tag, /* parent */
883	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
884	    BUS_SPACE_MAXADDR,		/* lowaddr */
885	    BUS_SPACE_MAXADDR,		/* highaddr */
886	    NULL, NULL,			/* filter, filterarg */
887	    AGE_TX_RING_SZ,		/* maxsize */
888	    1,				/* nsegments */
889	    AGE_TX_RING_SZ,		/* maxsegsize */
890	    0,				/* flags */
891	    NULL, NULL,			/* lockfunc, lockarg */
892	    &sc->age_cdata.age_tx_ring_tag);
893	if (error != 0) {
894		device_printf(sc->age_dev,
895		    "could not create Tx ring DMA tag.\n");
896		goto fail;
897	}
898
899	/* Create tag for Rx ring. */
900	error = bus_dma_tag_create(
901	    sc->age_cdata.age_parent_tag, /* parent */
902	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
903	    BUS_SPACE_MAXADDR,		/* lowaddr */
904	    BUS_SPACE_MAXADDR,		/* highaddr */
905	    NULL, NULL,			/* filter, filterarg */
906	    AGE_RX_RING_SZ,		/* maxsize */
907	    1,				/* nsegments */
908	    AGE_RX_RING_SZ,		/* maxsegsize */
909	    0,				/* flags */
910	    NULL, NULL,			/* lockfunc, lockarg */
911	    &sc->age_cdata.age_rx_ring_tag);
912	if (error != 0) {
913		device_printf(sc->age_dev,
914		    "could not create Rx ring DMA tag.\n");
915		goto fail;
916	}
917
918	/* Create tag for Rx return ring. */
919	error = bus_dma_tag_create(
920	    sc->age_cdata.age_parent_tag, /* parent */
921	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
922	    BUS_SPACE_MAXADDR,		/* lowaddr */
923	    BUS_SPACE_MAXADDR,		/* highaddr */
924	    NULL, NULL,			/* filter, filterarg */
925	    AGE_RR_RING_SZ,		/* maxsize */
926	    1,				/* nsegments */
927	    AGE_RR_RING_SZ,		/* maxsegsize */
928	    0,				/* flags */
929	    NULL, NULL,			/* lockfunc, lockarg */
930	    &sc->age_cdata.age_rr_ring_tag);
931	if (error != 0) {
932		device_printf(sc->age_dev,
933		    "could not create Rx return ring DMA tag.\n");
934		goto fail;
935	}
936
937	/* Create tag for coalesing message block. */
938	error = bus_dma_tag_create(
939	    sc->age_cdata.age_parent_tag, /* parent */
940	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
941	    BUS_SPACE_MAXADDR,		/* lowaddr */
942	    BUS_SPACE_MAXADDR,		/* highaddr */
943	    NULL, NULL,			/* filter, filterarg */
944	    AGE_CMB_BLOCK_SZ,		/* maxsize */
945	    1,				/* nsegments */
946	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
947	    0,				/* flags */
948	    NULL, NULL,			/* lockfunc, lockarg */
949	    &sc->age_cdata.age_cmb_block_tag);
950	if (error != 0) {
951		device_printf(sc->age_dev,
952		    "could not create CMB DMA tag.\n");
953		goto fail;
954	}
955
956	/* Create tag for statistics message block. */
957	error = bus_dma_tag_create(
958	    sc->age_cdata.age_parent_tag, /* parent */
959	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
960	    BUS_SPACE_MAXADDR,		/* lowaddr */
961	    BUS_SPACE_MAXADDR,		/* highaddr */
962	    NULL, NULL,			/* filter, filterarg */
963	    AGE_SMB_BLOCK_SZ,		/* maxsize */
964	    1,				/* nsegments */
965	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
966	    0,				/* flags */
967	    NULL, NULL,			/* lockfunc, lockarg */
968	    &sc->age_cdata.age_smb_block_tag);
969	if (error != 0) {
970		device_printf(sc->age_dev,
971		    "could not create SMB DMA tag.\n");
972		goto fail;
973	}
974
975	/* Allocate DMA'able memory and load the DMA map. */
976	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
977	    (void **)&sc->age_rdata.age_tx_ring,
978	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
979	    &sc->age_cdata.age_tx_ring_map);
980	if (error != 0) {
981		device_printf(sc->age_dev,
982		    "could not allocate DMA'able memory for Tx ring.\n");
983		goto fail;
984	}
985	ctx.age_busaddr = 0;
986	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
987	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
988	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
989	if (error != 0 || ctx.age_busaddr == 0) {
990		device_printf(sc->age_dev,
991		    "could not load DMA'able memory for Tx ring.\n");
992		goto fail;
993	}
994	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
995	/* Rx ring */
996	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
997	    (void **)&sc->age_rdata.age_rx_ring,
998	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
999	    &sc->age_cdata.age_rx_ring_map);
1000	if (error != 0) {
1001		device_printf(sc->age_dev,
1002		    "could not allocate DMA'able memory for Rx ring.\n");
1003		goto fail;
1004	}
1005	ctx.age_busaddr = 0;
1006	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1007	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1008	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1009	if (error != 0 || ctx.age_busaddr == 0) {
1010		device_printf(sc->age_dev,
1011		    "could not load DMA'able memory for Rx ring.\n");
1012		goto fail;
1013	}
1014	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1015	/* Rx return ring */
1016	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1017	    (void **)&sc->age_rdata.age_rr_ring,
1018	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1019	    &sc->age_cdata.age_rr_ring_map);
1020	if (error != 0) {
1021		device_printf(sc->age_dev,
1022		    "could not allocate DMA'able memory for Rx return ring.\n");
1023		goto fail;
1024	}
1025	ctx.age_busaddr = 0;
1026	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1027	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1028	    AGE_RR_RING_SZ, age_dmamap_cb,
1029	    &ctx, 0);
1030	if (error != 0 || ctx.age_busaddr == 0) {
1031		device_printf(sc->age_dev,
1032		    "could not load DMA'able memory for Rx return ring.\n");
1033		goto fail;
1034	}
1035	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1036	/* CMB block */
1037	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1038	    (void **)&sc->age_rdata.age_cmb_block,
1039	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1040	    &sc->age_cdata.age_cmb_block_map);
1041	if (error != 0) {
1042		device_printf(sc->age_dev,
1043		    "could not allocate DMA'able memory for CMB block.\n");
1044		goto fail;
1045	}
1046	ctx.age_busaddr = 0;
1047	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1048	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1049	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1050	if (error != 0 || ctx.age_busaddr == 0) {
1051		device_printf(sc->age_dev,
1052		    "could not load DMA'able memory for CMB block.\n");
1053		goto fail;
1054	}
1055	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1056	/* SMB block */
1057	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1058	    (void **)&sc->age_rdata.age_smb_block,
1059	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1060	    &sc->age_cdata.age_smb_block_map);
1061	if (error != 0) {
1062		device_printf(sc->age_dev,
1063		    "could not allocate DMA'able memory for SMB block.\n");
1064		goto fail;
1065	}
1066	ctx.age_busaddr = 0;
1067	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1068	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1069	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1070	if (error != 0 || ctx.age_busaddr == 0) {
1071		device_printf(sc->age_dev,
1072		    "could not load DMA'able memory for SMB block.\n");
1073		goto fail;
1074	}
1075	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1076
1077	/*
1078	 * All ring buffer and DMA blocks should have the same
1079	 * high address part of 64bit DMA address space.
1080	 */
1081	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1082	    (error = age_check_boundary(sc)) != 0) {
1083		device_printf(sc->age_dev, "4GB boundary crossed, "
1084		    "switching to 32bit DMA addressing mode.\n");
1085		age_dma_free(sc);
1086		/* Limit DMA address space to 32bit and try again. */
1087		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1088		goto again;
1089	}
1090
1091	/*
1092	 * Create Tx/Rx buffer parent tag.
1093	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1094	 * so it needs separate parent DMA tag.
1095	 * XXX
1096	 * It seems enabling 64bit DMA causes data corruption. Limit
1097	 * DMA address space to 32bit.
1098	 */
1099	error = bus_dma_tag_create(
1100	    bus_get_dma_tag(sc->age_dev), /* parent */
1101	    1, 0,			/* alignment, boundary */
1102	    BUS_SPACE_MAXADDR_32BIT,	/* lowaddr */
1103	    BUS_SPACE_MAXADDR,		/* highaddr */
1104	    NULL, NULL,			/* filter, filterarg */
1105	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1106	    0,				/* nsegments */
1107	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1108	    0,				/* flags */
1109	    NULL, NULL,			/* lockfunc, lockarg */
1110	    &sc->age_cdata.age_buffer_tag);
1111	if (error != 0) {
1112		device_printf(sc->age_dev,
1113		    "could not create parent buffer DMA tag.\n");
1114		goto fail;
1115	}
1116
1117	/* Create tag for Tx buffers. */
1118	error = bus_dma_tag_create(
1119	    sc->age_cdata.age_buffer_tag, /* parent */
1120	    1, 0,			/* alignment, boundary */
1121	    BUS_SPACE_MAXADDR,		/* lowaddr */
1122	    BUS_SPACE_MAXADDR,		/* highaddr */
1123	    NULL, NULL,			/* filter, filterarg */
1124	    AGE_TSO_MAXSIZE,		/* maxsize */
1125	    AGE_MAXTXSEGS,		/* nsegments */
1126	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1127	    0,				/* flags */
1128	    NULL, NULL,			/* lockfunc, lockarg */
1129	    &sc->age_cdata.age_tx_tag);
1130	if (error != 0) {
1131		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1132		goto fail;
1133	}
1134
1135	/* Create tag for Rx buffers. */
1136	error = bus_dma_tag_create(
1137	    sc->age_cdata.age_buffer_tag, /* parent */
1138	    1, 0,			/* alignment, boundary */
1139	    BUS_SPACE_MAXADDR,		/* lowaddr */
1140	    BUS_SPACE_MAXADDR,		/* highaddr */
1141	    NULL, NULL,			/* filter, filterarg */
1142	    MCLBYTES,			/* maxsize */
1143	    1,				/* nsegments */
1144	    MCLBYTES,			/* maxsegsize */
1145	    0,				/* flags */
1146	    NULL, NULL,			/* lockfunc, lockarg */
1147	    &sc->age_cdata.age_rx_tag);
1148	if (error != 0) {
1149		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1150		goto fail;
1151	}
1152
1153	/* Create DMA maps for Tx buffers. */
1154	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1155		txd = &sc->age_cdata.age_txdesc[i];
1156		txd->tx_m = NULL;
1157		txd->tx_dmamap = NULL;
1158		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1159		    &txd->tx_dmamap);
1160		if (error != 0) {
1161			device_printf(sc->age_dev,
1162			    "could not create Tx dmamap.\n");
1163			goto fail;
1164		}
1165	}
1166	/* Create DMA maps for Rx buffers. */
1167	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1168	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1169		device_printf(sc->age_dev,
1170		    "could not create spare Rx dmamap.\n");
1171		goto fail;
1172	}
1173	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1174		rxd = &sc->age_cdata.age_rxdesc[i];
1175		rxd->rx_m = NULL;
1176		rxd->rx_dmamap = NULL;
1177		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1178		    &rxd->rx_dmamap);
1179		if (error != 0) {
1180			device_printf(sc->age_dev,
1181			    "could not create Rx dmamap.\n");
1182			goto fail;
1183		}
1184	}
1185
1186fail:
1187	return (error);
1188}
1189
1190static void
1191age_dma_free(struct age_softc *sc)
1192{
1193	struct age_txdesc *txd;
1194	struct age_rxdesc *rxd;
1195	int i;
1196
1197	/* Tx buffers */
1198	if (sc->age_cdata.age_tx_tag != NULL) {
1199		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1200			txd = &sc->age_cdata.age_txdesc[i];
1201			if (txd->tx_dmamap != NULL) {
1202				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1203				    txd->tx_dmamap);
1204				txd->tx_dmamap = NULL;
1205			}
1206		}
1207		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1208		sc->age_cdata.age_tx_tag = NULL;
1209	}
1210	/* Rx buffers */
1211	if (sc->age_cdata.age_rx_tag != NULL) {
1212		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1213			rxd = &sc->age_cdata.age_rxdesc[i];
1214			if (rxd->rx_dmamap != NULL) {
1215				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1216				    rxd->rx_dmamap);
1217				rxd->rx_dmamap = NULL;
1218			}
1219		}
1220		if (sc->age_cdata.age_rx_sparemap != NULL) {
1221			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1222			    sc->age_cdata.age_rx_sparemap);
1223			sc->age_cdata.age_rx_sparemap = NULL;
1224		}
1225		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1226		sc->age_cdata.age_rx_tag = NULL;
1227	}
1228	/* Tx ring. */
1229	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1230		if (sc->age_cdata.age_tx_ring_map != NULL)
1231			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1232			    sc->age_cdata.age_tx_ring_map);
1233		if (sc->age_cdata.age_tx_ring_map != NULL &&
1234		    sc->age_rdata.age_tx_ring != NULL)
1235			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1236			    sc->age_rdata.age_tx_ring,
1237			    sc->age_cdata.age_tx_ring_map);
1238		sc->age_rdata.age_tx_ring = NULL;
1239		sc->age_cdata.age_tx_ring_map = NULL;
1240		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1241		sc->age_cdata.age_tx_ring_tag = NULL;
1242	}
1243	/* Rx ring. */
1244	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1245		if (sc->age_cdata.age_rx_ring_map != NULL)
1246			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1247			    sc->age_cdata.age_rx_ring_map);
1248		if (sc->age_cdata.age_rx_ring_map != NULL &&
1249		    sc->age_rdata.age_rx_ring != NULL)
1250			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1251			    sc->age_rdata.age_rx_ring,
1252			    sc->age_cdata.age_rx_ring_map);
1253		sc->age_rdata.age_rx_ring = NULL;
1254		sc->age_cdata.age_rx_ring_map = NULL;
1255		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1256		sc->age_cdata.age_rx_ring_tag = NULL;
1257	}
1258	/* Rx return ring. */
1259	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1260		if (sc->age_cdata.age_rr_ring_map != NULL)
1261			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1262			    sc->age_cdata.age_rr_ring_map);
1263		if (sc->age_cdata.age_rr_ring_map != NULL &&
1264		    sc->age_rdata.age_rr_ring != NULL)
1265			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1266			    sc->age_rdata.age_rr_ring,
1267			    sc->age_cdata.age_rr_ring_map);
1268		sc->age_rdata.age_rr_ring = NULL;
1269		sc->age_cdata.age_rr_ring_map = NULL;
1270		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1271		sc->age_cdata.age_rr_ring_tag = NULL;
1272	}
1273	/* CMB block */
1274	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1275		if (sc->age_cdata.age_cmb_block_map != NULL)
1276			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1277			    sc->age_cdata.age_cmb_block_map);
1278		if (sc->age_cdata.age_cmb_block_map != NULL &&
1279		    sc->age_rdata.age_cmb_block != NULL)
1280			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1281			    sc->age_rdata.age_cmb_block,
1282			    sc->age_cdata.age_cmb_block_map);
1283		sc->age_rdata.age_cmb_block = NULL;
1284		sc->age_cdata.age_cmb_block_map = NULL;
1285		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1286		sc->age_cdata.age_cmb_block_tag = NULL;
1287	}
1288	/* SMB block */
1289	if (sc->age_cdata.age_smb_block_tag != NULL) {
1290		if (sc->age_cdata.age_smb_block_map != NULL)
1291			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1292			    sc->age_cdata.age_smb_block_map);
1293		if (sc->age_cdata.age_smb_block_map != NULL &&
1294		    sc->age_rdata.age_smb_block != NULL)
1295			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1296			    sc->age_rdata.age_smb_block,
1297			    sc->age_cdata.age_smb_block_map);
1298		sc->age_rdata.age_smb_block = NULL;
1299		sc->age_cdata.age_smb_block_map = NULL;
1300		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1301		sc->age_cdata.age_smb_block_tag = NULL;
1302	}
1303
1304	if (sc->age_cdata.age_buffer_tag != NULL) {
1305		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1306		sc->age_cdata.age_buffer_tag = NULL;
1307	}
1308	if (sc->age_cdata.age_parent_tag != NULL) {
1309		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1310		sc->age_cdata.age_parent_tag = NULL;
1311	}
1312}
1313
1314/*
1315 *	Make sure the interface is stopped at reboot time.
1316 */
1317static int
1318age_shutdown(device_t dev)
1319{
1320
1321	return (age_suspend(dev));
1322}
1323
1324static void
1325age_setwol(struct age_softc *sc)
1326{
1327	struct ifnet *ifp;
1328	struct mii_data *mii;
1329	uint32_t reg, pmcs;
1330	uint16_t pmstat;
1331	int aneg, i, pmc;
1332
1333	AGE_LOCK_ASSERT(sc);
1334
1335	if (pci_find_cap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1336		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1337		/*
1338		 * No PME capability, PHY power down.
1339		 * XXX
1340		 * Due to an unknown reason powering down PHY resulted
1341		 * in unexpected results such as inaccessbility of
1342		 * hardware of freshly rebooted system. Disable
1343		 * powering down PHY until I got more information for
1344		 * Attansic/Atheros PHY hardwares.
1345		 */
1346#ifdef notyet
1347		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1348		    MII_BMCR, BMCR_PDOWN);
1349#endif
1350		return;
1351	}
1352
1353	ifp = sc->age_ifp;
1354	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1355		/*
1356		 * Note, this driver resets the link speed to 10/100Mbps with
1357		 * auto-negotiation but we don't know whether that operation
1358		 * would succeed or not as it have no control after powering
1359		 * off. If the renegotiation fail WOL may not work. Running
1360		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1361		 * specified in PCI specification and that would result in
1362		 * complete shutdowning power to ethernet controller.
1363		 *
1364		 * TODO
1365		 *  Save current negotiated media speed/duplex/flow-control
1366		 *  to softc and restore the same link again after resuming.
1367		 *  PHY handling such as power down/resetting to 100Mbps
1368		 *  may be better handled in suspend method in phy driver.
1369		 */
1370		mii = device_get_softc(sc->age_miibus);
1371		mii_pollstat(mii);
1372		aneg = 0;
1373		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1374			switch IFM_SUBTYPE(mii->mii_media_active) {
1375			case IFM_10_T:
1376			case IFM_100_TX:
1377				goto got_link;
1378			case IFM_1000_T:
1379				aneg++;
1380			default:
1381				break;
1382			}
1383		}
1384		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1385		    MII_100T2CR, 0);
1386		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1387		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1388		    ANAR_10 | ANAR_CSMA);
1389		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1390		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1391		DELAY(1000);
1392		if (aneg != 0) {
1393			/* Poll link state until age(4) get a 10/100 link. */
1394			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1395				mii_pollstat(mii);
1396				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1397					switch (IFM_SUBTYPE(
1398					    mii->mii_media_active)) {
1399					case IFM_10_T:
1400					case IFM_100_TX:
1401						age_mac_config(sc);
1402						goto got_link;
1403					default:
1404						break;
1405					}
1406				}
1407				AGE_UNLOCK(sc);
1408				pause("agelnk", hz);
1409				AGE_LOCK(sc);
1410			}
1411			if (i == MII_ANEGTICKS_GIGE)
1412				device_printf(sc->age_dev,
1413				    "establishing link failed, "
1414				    "WOL may not work!");
1415		}
1416		/*
1417		 * No link, force MAC to have 100Mbps, full-duplex link.
1418		 * This is the last resort and may/may not work.
1419		 */
1420		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1421		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1422		age_mac_config(sc);
1423	}
1424
1425got_link:
1426	pmcs = 0;
1427	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1428		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1429	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1430	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1431	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1432	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1433	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1434		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1435	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1436		reg |= MAC_CFG_RX_ENB;
1437		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1438	}
1439
1440	/* Request PME. */
1441	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1442	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1443	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1444		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1445	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1446#ifdef notyet
1447	/* See above for powering down PHY issues. */
1448	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1449		/* No WOL, PHY power down. */
1450		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1451		    MII_BMCR, BMCR_PDOWN);
1452	}
1453#endif
1454}
1455
1456static int
1457age_suspend(device_t dev)
1458{
1459	struct age_softc *sc;
1460
1461	sc = device_get_softc(dev);
1462
1463	AGE_LOCK(sc);
1464	age_stop(sc);
1465	age_setwol(sc);
1466	AGE_UNLOCK(sc);
1467
1468	return (0);
1469}
1470
1471static int
1472age_resume(device_t dev)
1473{
1474	struct age_softc *sc;
1475	struct ifnet *ifp;
1476
1477	sc = device_get_softc(dev);
1478
1479	AGE_LOCK(sc);
1480	age_phy_reset(sc);
1481	ifp = sc->age_ifp;
1482	if ((ifp->if_flags & IFF_UP) != 0)
1483		age_init_locked(sc);
1484
1485	AGE_UNLOCK(sc);
1486
1487	return (0);
1488}
1489
1490static int
1491age_encap(struct age_softc *sc, struct mbuf **m_head)
1492{
1493	struct age_txdesc *txd, *txd_last;
1494	struct tx_desc *desc;
1495	struct mbuf *m;
1496	struct ip *ip;
1497	struct tcphdr *tcp;
1498	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1499	bus_dmamap_t map;
1500	uint32_t cflags, ip_off, poff, vtag;
1501	int error, i, nsegs, prod, si;
1502
1503	AGE_LOCK_ASSERT(sc);
1504
1505	M_ASSERTPKTHDR((*m_head));
1506
1507	m = *m_head;
1508	ip = NULL;
1509	tcp = NULL;
1510	cflags = vtag = 0;
1511	ip_off = poff = 0;
1512	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1513		/*
1514		 * L1 requires offset of TCP/UDP payload in its Tx
1515		 * descriptor to perform hardware Tx checksum offload.
1516		 * Additionally, TSO requires IP/TCP header size and
1517		 * modification of IP/TCP header in order to make TSO
1518		 * engine work. This kind of operation takes many CPU
1519		 * cycles on FreeBSD so fast host CPU is needed to get
1520		 * smooth TSO performance.
1521		 */
1522		struct ether_header *eh;
1523
1524		if (M_WRITABLE(m) == 0) {
1525			/* Get a writable copy. */
1526			m = m_dup(*m_head, M_DONTWAIT);
1527			/* Release original mbufs. */
1528			m_freem(*m_head);
1529			if (m == NULL) {
1530				*m_head = NULL;
1531				return (ENOBUFS);
1532			}
1533			*m_head = m;
1534		}
1535		ip_off = sizeof(struct ether_header);
1536		m = m_pullup(m, ip_off);
1537		if (m == NULL) {
1538			*m_head = NULL;
1539			return (ENOBUFS);
1540		}
1541		eh = mtod(m, struct ether_header *);
1542		/*
1543		 * Check if hardware VLAN insertion is off.
1544		 * Additional check for LLC/SNAP frame?
1545		 */
1546		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1547			ip_off = sizeof(struct ether_vlan_header);
1548			m = m_pullup(m, ip_off);
1549			if (m == NULL) {
1550				*m_head = NULL;
1551				return (ENOBUFS);
1552			}
1553		}
1554		m = m_pullup(m, ip_off + sizeof(struct ip));
1555		if (m == NULL) {
1556			*m_head = NULL;
1557			return (ENOBUFS);
1558		}
1559		ip = (struct ip *)(mtod(m, char *) + ip_off);
1560		poff = ip_off + (ip->ip_hl << 2);
1561		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1562			m = m_pullup(m, poff + sizeof(struct tcphdr));
1563			if (m == NULL) {
1564				*m_head = NULL;
1565				return (ENOBUFS);
1566			}
1567			ip = (struct ip *)(mtod(m, char *) + ip_off);
1568			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1569			/*
1570			 * L1 requires IP/TCP header size and offset as
1571			 * well as TCP pseudo checksum which complicates
1572			 * TSO configuration. I guess this comes from the
1573			 * adherence to Microsoft NDIS Large Send
1574			 * specification which requires insertion of
1575			 * pseudo checksum by upper stack. The pseudo
1576			 * checksum that NDIS refers to doesn't include
1577			 * TCP payload length so age(4) should recompute
1578			 * the pseudo checksum here. Hopefully this wouldn't
1579			 * be much burden on modern CPUs.
1580			 * Reset IP checksum and recompute TCP pseudo
1581			 * checksum as NDIS specification said.
1582			 */
1583			ip->ip_sum = 0;
1584			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1585				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1586				    ip->ip_dst.s_addr,
1587				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1588			else
1589				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1590				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1591		}
1592		*m_head = m;
1593	}
1594
1595	si = prod = sc->age_cdata.age_tx_prod;
1596	txd = &sc->age_cdata.age_txdesc[prod];
1597	txd_last = txd;
1598	map = txd->tx_dmamap;
1599
1600	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1601	    *m_head, txsegs, &nsegs, 0);
1602	if (error == EFBIG) {
1603		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1604		if (m == NULL) {
1605			m_freem(*m_head);
1606			*m_head = NULL;
1607			return (ENOMEM);
1608		}
1609		*m_head = m;
1610		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1611		    *m_head, txsegs, &nsegs, 0);
1612		if (error != 0) {
1613			m_freem(*m_head);
1614			*m_head = NULL;
1615			return (error);
1616		}
1617	} else if (error != 0)
1618		return (error);
1619	if (nsegs == 0) {
1620		m_freem(*m_head);
1621		*m_head = NULL;
1622		return (EIO);
1623	}
1624
1625	/* Check descriptor overrun. */
1626	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1627		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1628		return (ENOBUFS);
1629	}
1630
1631	m = *m_head;
1632	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1633		/* Configure TSO. */
1634		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1635			/* Not TSO but IP/TCP checksum offload. */
1636			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1637			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1638			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1639		} else {
1640			/* Request TSO and set MSS. */
1641			cflags |= AGE_TD_TSO_IPV4;
1642			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1643			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1644			    AGE_TD_TSO_MSS_SHIFT);
1645		}
1646		/* Set IP/TCP header size. */
1647		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1648		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1649	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1650		/* Configure Tx IP/TCP/UDP checksum offload. */
1651		cflags |= AGE_TD_CSUM;
1652		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1653			cflags |= AGE_TD_TCPCSUM;
1654		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1655			cflags |= AGE_TD_UDPCSUM;
1656		/* Set checksum start offset. */
1657		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1658		/* Set checksum insertion position of TCP/UDP. */
1659		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1660		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1661	}
1662
1663	/* Configure VLAN hardware tag insertion. */
1664	if ((m->m_flags & M_VLANTAG) != 0) {
1665		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1666		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1667		cflags |= AGE_TD_INSERT_VLAN_TAG;
1668	}
1669
1670	desc = NULL;
1671	for (i = 0; i < nsegs; i++) {
1672		desc = &sc->age_rdata.age_tx_ring[prod];
1673		desc->addr = htole64(txsegs[i].ds_addr);
1674		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1675		desc->flags = htole32(cflags);
1676		sc->age_cdata.age_tx_cnt++;
1677		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1678	}
1679	/* Update producer index. */
1680	sc->age_cdata.age_tx_prod = prod;
1681
1682	/* Set EOP on the last descriptor. */
1683	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1684	desc = &sc->age_rdata.age_tx_ring[prod];
1685	desc->flags |= htole32(AGE_TD_EOP);
1686
1687	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1688	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1689		desc = &sc->age_rdata.age_tx_ring[si];
1690		desc->flags |= htole32(AGE_TD_TSO_HDR);
1691	}
1692
1693	/* Swap dmamap of the first and the last. */
1694	txd = &sc->age_cdata.age_txdesc[prod];
1695	map = txd_last->tx_dmamap;
1696	txd_last->tx_dmamap = txd->tx_dmamap;
1697	txd->tx_dmamap = map;
1698	txd->tx_m = m;
1699
1700	/* Sync descriptors. */
1701	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1702	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1703	    sc->age_cdata.age_tx_ring_map,
1704	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1705
1706	return (0);
1707}
1708
1709static void
1710age_start(struct ifnet *ifp)
1711{
1712        struct age_softc *sc;
1713
1714	sc = ifp->if_softc;
1715	AGE_LOCK(sc);
1716	age_start_locked(ifp);
1717	AGE_UNLOCK(sc);
1718}
1719
1720static void
1721age_start_locked(struct ifnet *ifp)
1722{
1723        struct age_softc *sc;
1724        struct mbuf *m_head;
1725	int enq;
1726
1727	sc = ifp->if_softc;
1728
1729	AGE_LOCK_ASSERT(sc);
1730
1731	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1732	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0)
1733		return;
1734
1735	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1736		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1737		if (m_head == NULL)
1738			break;
1739		/*
1740		 * Pack the data into the transmit ring. If we
1741		 * don't have room, set the OACTIVE flag and wait
1742		 * for the NIC to drain the ring.
1743		 */
1744		if (age_encap(sc, &m_head)) {
1745			if (m_head == NULL)
1746				break;
1747			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1748			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1749			break;
1750		}
1751
1752		enq++;
1753		/*
1754		 * If there's a BPF listener, bounce a copy of this frame
1755		 * to him.
1756		 */
1757		ETHER_BPF_MTAP(ifp, m_head);
1758	}
1759
1760	if (enq > 0) {
1761		/* Update mbox. */
1762		AGE_COMMIT_MBOX(sc);
1763		/* Set a timeout in case the chip goes out to lunch. */
1764		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1765	}
1766}
1767
1768static void
1769age_watchdog(struct age_softc *sc)
1770{
1771	struct ifnet *ifp;
1772
1773	AGE_LOCK_ASSERT(sc);
1774
1775	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1776		return;
1777
1778	ifp = sc->age_ifp;
1779	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1780		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1781		ifp->if_oerrors++;
1782		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1783		age_init_locked(sc);
1784		return;
1785	}
1786	if (sc->age_cdata.age_tx_cnt == 0) {
1787		if_printf(sc->age_ifp,
1788		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1789		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1790			age_start_locked(ifp);
1791		return;
1792	}
1793	if_printf(sc->age_ifp, "watchdog timeout\n");
1794	ifp->if_oerrors++;
1795	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1796	age_init_locked(sc);
1797	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1798		age_start_locked(ifp);
1799}
1800
1801static int
1802age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1803{
1804	struct age_softc *sc;
1805	struct ifreq *ifr;
1806	struct mii_data *mii;
1807	uint32_t reg;
1808	int error, mask;
1809
1810	sc = ifp->if_softc;
1811	ifr = (struct ifreq *)data;
1812	error = 0;
1813	switch (cmd) {
1814	case SIOCSIFMTU:
1815		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1816			error = EINVAL;
1817		else if (ifp->if_mtu != ifr->ifr_mtu) {
1818			AGE_LOCK(sc);
1819			ifp->if_mtu = ifr->ifr_mtu;
1820			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1821				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1822				age_init_locked(sc);
1823			}
1824			AGE_UNLOCK(sc);
1825		}
1826		break;
1827	case SIOCSIFFLAGS:
1828		AGE_LOCK(sc);
1829		if ((ifp->if_flags & IFF_UP) != 0) {
1830			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1831				if (((ifp->if_flags ^ sc->age_if_flags)
1832				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1833					age_rxfilter(sc);
1834			} else {
1835				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1836					age_init_locked(sc);
1837			}
1838		} else {
1839			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1840				age_stop(sc);
1841		}
1842		sc->age_if_flags = ifp->if_flags;
1843		AGE_UNLOCK(sc);
1844		break;
1845	case SIOCADDMULTI:
1846	case SIOCDELMULTI:
1847		AGE_LOCK(sc);
1848		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1849			age_rxfilter(sc);
1850		AGE_UNLOCK(sc);
1851		break;
1852	case SIOCSIFMEDIA:
1853	case SIOCGIFMEDIA:
1854		mii = device_get_softc(sc->age_miibus);
1855		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1856		break;
1857	case SIOCSIFCAP:
1858		AGE_LOCK(sc);
1859		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1860		if ((mask & IFCAP_TXCSUM) != 0 &&
1861		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1862			ifp->if_capenable ^= IFCAP_TXCSUM;
1863			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1864				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1865			else
1866				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1867		}
1868		if ((mask & IFCAP_RXCSUM) != 0 &&
1869		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1870			ifp->if_capenable ^= IFCAP_RXCSUM;
1871			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1872			reg &= ~MAC_CFG_RXCSUM_ENB;
1873			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1874				reg |= MAC_CFG_RXCSUM_ENB;
1875			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1876		}
1877		if ((mask & IFCAP_TSO4) != 0 &&
1878		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1879			ifp->if_capenable ^= IFCAP_TSO4;
1880			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1881				ifp->if_hwassist |= CSUM_TSO;
1882			else
1883				ifp->if_hwassist &= ~CSUM_TSO;
1884		}
1885
1886		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1887		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1888			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1889		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1890		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1891			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1892		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1893		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1894			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1895		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1896		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1897			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1898		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1899		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1900			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1901			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1902				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1903			age_rxvlan(sc);
1904		}
1905		AGE_UNLOCK(sc);
1906		VLAN_CAPABILITIES(ifp);
1907		break;
1908	default:
1909		error = ether_ioctl(ifp, cmd, data);
1910		break;
1911	}
1912
1913	return (error);
1914}
1915
1916static void
1917age_mac_config(struct age_softc *sc)
1918{
1919	struct mii_data *mii;
1920	uint32_t reg;
1921
1922	AGE_LOCK_ASSERT(sc);
1923
1924	mii = device_get_softc(sc->age_miibus);
1925	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1926	reg &= ~MAC_CFG_FULL_DUPLEX;
1927	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1928	reg &= ~MAC_CFG_SPEED_MASK;
1929	/* Reprogram MAC with resolved speed/duplex. */
1930	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1931	case IFM_10_T:
1932	case IFM_100_TX:
1933		reg |= MAC_CFG_SPEED_10_100;
1934		break;
1935	case IFM_1000_T:
1936		reg |= MAC_CFG_SPEED_1000;
1937		break;
1938	}
1939	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1940		reg |= MAC_CFG_FULL_DUPLEX;
1941#ifdef notyet
1942		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1943			reg |= MAC_CFG_TX_FC;
1944		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1945			reg |= MAC_CFG_RX_FC;
1946#endif
1947	}
1948
1949	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1950}
1951
1952static void
1953age_link_task(void *arg, int pending)
1954{
1955	struct age_softc *sc;
1956	struct mii_data *mii;
1957	struct ifnet *ifp;
1958	uint32_t reg;
1959
1960	sc = (struct age_softc *)arg;
1961
1962	AGE_LOCK(sc);
1963	mii = device_get_softc(sc->age_miibus);
1964	ifp = sc->age_ifp;
1965	if (mii == NULL || ifp == NULL ||
1966	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1967		AGE_UNLOCK(sc);
1968		return;
1969	}
1970
1971	sc->age_flags &= ~AGE_FLAG_LINK;
1972	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1973		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1974		case IFM_10_T:
1975		case IFM_100_TX:
1976		case IFM_1000_T:
1977			sc->age_flags |= AGE_FLAG_LINK;
1978			break;
1979		default:
1980			break;
1981		}
1982	}
1983
1984	/* Stop Rx/Tx MACs. */
1985	age_stop_rxmac(sc);
1986	age_stop_txmac(sc);
1987
1988	/* Program MACs with resolved speed/duplex/flow-control. */
1989	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1990		age_mac_config(sc);
1991		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1992		/* Restart DMA engine and Tx/Rx MAC. */
1993		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1994		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1995		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1996		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1997	}
1998
1999	AGE_UNLOCK(sc);
2000}
2001
2002static void
2003age_stats_update(struct age_softc *sc)
2004{
2005	struct age_stats *stat;
2006	struct smb *smb;
2007	struct ifnet *ifp;
2008
2009	AGE_LOCK_ASSERT(sc);
2010
2011	stat = &sc->age_stat;
2012
2013	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2014	    sc->age_cdata.age_smb_block_map,
2015	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2016
2017	smb = sc->age_rdata.age_smb_block;
2018	if (smb->updated == 0)
2019		return;
2020
2021	ifp = sc->age_ifp;
2022	/* Rx stats. */
2023	stat->rx_frames += smb->rx_frames;
2024	stat->rx_bcast_frames += smb->rx_bcast_frames;
2025	stat->rx_mcast_frames += smb->rx_mcast_frames;
2026	stat->rx_pause_frames += smb->rx_pause_frames;
2027	stat->rx_control_frames += smb->rx_control_frames;
2028	stat->rx_crcerrs += smb->rx_crcerrs;
2029	stat->rx_lenerrs += smb->rx_lenerrs;
2030	stat->rx_bytes += smb->rx_bytes;
2031	stat->rx_runts += smb->rx_runts;
2032	stat->rx_fragments += smb->rx_fragments;
2033	stat->rx_pkts_64 += smb->rx_pkts_64;
2034	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2035	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2036	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2037	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2038	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2039	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2040	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2041	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2042	stat->rx_desc_oflows += smb->rx_desc_oflows;
2043	stat->rx_alignerrs += smb->rx_alignerrs;
2044	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2045	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2046	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2047
2048	/* Tx stats. */
2049	stat->tx_frames += smb->tx_frames;
2050	stat->tx_bcast_frames += smb->tx_bcast_frames;
2051	stat->tx_mcast_frames += smb->tx_mcast_frames;
2052	stat->tx_pause_frames += smb->tx_pause_frames;
2053	stat->tx_excess_defer += smb->tx_excess_defer;
2054	stat->tx_control_frames += smb->tx_control_frames;
2055	stat->tx_deferred += smb->tx_deferred;
2056	stat->tx_bytes += smb->tx_bytes;
2057	stat->tx_pkts_64 += smb->tx_pkts_64;
2058	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2059	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2060	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2061	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2062	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2063	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2064	stat->tx_single_colls += smb->tx_single_colls;
2065	stat->tx_multi_colls += smb->tx_multi_colls;
2066	stat->tx_late_colls += smb->tx_late_colls;
2067	stat->tx_excess_colls += smb->tx_excess_colls;
2068	stat->tx_underrun += smb->tx_underrun;
2069	stat->tx_desc_underrun += smb->tx_desc_underrun;
2070	stat->tx_lenerrs += smb->tx_lenerrs;
2071	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2072	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2073	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2074
2075	/* Update counters in ifnet. */
2076	ifp->if_opackets += smb->tx_frames;
2077
2078	ifp->if_collisions += smb->tx_single_colls +
2079	    smb->tx_multi_colls + smb->tx_late_colls +
2080	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2081
2082	ifp->if_oerrors += smb->tx_excess_colls +
2083	    smb->tx_late_colls + smb->tx_underrun +
2084	    smb->tx_pkts_truncated;
2085
2086	ifp->if_ipackets += smb->rx_frames;
2087
2088	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2089	    smb->rx_runts + smb->rx_pkts_truncated +
2090	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2091	    smb->rx_alignerrs;
2092
2093	/* Update done, clear. */
2094	smb->updated = 0;
2095
2096	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2097	    sc->age_cdata.age_smb_block_map,
2098	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2099}
2100
2101static int
2102age_intr(void *arg)
2103{
2104	struct age_softc *sc;
2105	uint32_t status;
2106
2107	sc = (struct age_softc *)arg;
2108
2109	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2110	if (status == 0 || (status & AGE_INTRS) == 0)
2111		return (FILTER_STRAY);
2112	/* Disable interrupts. */
2113	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2114	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2115
2116	return (FILTER_HANDLED);
2117}
2118
2119static void
2120age_int_task(void *arg, int pending)
2121{
2122	struct age_softc *sc;
2123	struct ifnet *ifp;
2124	struct cmb *cmb;
2125	uint32_t status;
2126
2127	sc = (struct age_softc *)arg;
2128
2129	AGE_LOCK(sc);
2130
2131	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2132	    sc->age_cdata.age_cmb_block_map,
2133	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2134	cmb = sc->age_rdata.age_cmb_block;
2135	status = le32toh(cmb->intr_status);
2136	if (sc->age_morework != 0)
2137		status |= INTR_CMB_RX;
2138	if ((status & AGE_INTRS) == 0)
2139		goto done;
2140
2141	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2142	    TPD_CONS_SHIFT;
2143	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2144	    RRD_PROD_SHIFT;
2145	/* Let hardware know CMB was served. */
2146	cmb->intr_status = 0;
2147	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2148	    sc->age_cdata.age_cmb_block_map,
2149	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2150
2151#if 0
2152	printf("INTR: 0x%08x\n", status);
2153	status &= ~INTR_DIS_DMA;
2154	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2155#endif
2156	ifp = sc->age_ifp;
2157	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2158		if ((status & INTR_CMB_RX) != 0)
2159			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2160			    sc->age_process_limit);
2161		if ((status & INTR_CMB_TX) != 0)
2162			age_txintr(sc, sc->age_tpd_cons);
2163		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2164			if ((status & INTR_DMA_RD_TO_RST) != 0)
2165				device_printf(sc->age_dev,
2166				    "DMA read error! -- resetting\n");
2167			if ((status & INTR_DMA_WR_TO_RST) != 0)
2168				device_printf(sc->age_dev,
2169				    "DMA write error! -- resetting\n");
2170			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2171			age_init_locked(sc);
2172		}
2173		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2174			age_start_locked(ifp);
2175		if ((status & INTR_SMB) != 0)
2176			age_stats_update(sc);
2177	}
2178
2179	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2180	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2181	    sc->age_cdata.age_cmb_block_map,
2182	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2183	status = le32toh(cmb->intr_status);
2184	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2185		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2186		AGE_UNLOCK(sc);
2187		return;
2188	}
2189
2190done:
2191	/* Re-enable interrupts. */
2192	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2193	AGE_UNLOCK(sc);
2194}
2195
2196static void
2197age_txintr(struct age_softc *sc, int tpd_cons)
2198{
2199	struct ifnet *ifp;
2200	struct age_txdesc *txd;
2201	int cons, prog;
2202
2203	AGE_LOCK_ASSERT(sc);
2204
2205	ifp = sc->age_ifp;
2206
2207	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2208	    sc->age_cdata.age_tx_ring_map,
2209	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2210
2211	/*
2212	 * Go through our Tx list and free mbufs for those
2213	 * frames which have been transmitted.
2214	 */
2215	cons = sc->age_cdata.age_tx_cons;
2216	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2217		if (sc->age_cdata.age_tx_cnt <= 0)
2218			break;
2219		prog++;
2220		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2221		sc->age_cdata.age_tx_cnt--;
2222		txd = &sc->age_cdata.age_txdesc[cons];
2223		/*
2224		 * Clear Tx descriptors, it's not required but would
2225		 * help debugging in case of Tx issues.
2226		 */
2227		txd->tx_desc->addr = 0;
2228		txd->tx_desc->len = 0;
2229		txd->tx_desc->flags = 0;
2230
2231		if (txd->tx_m == NULL)
2232			continue;
2233		/* Reclaim transmitted mbufs. */
2234		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2235		    BUS_DMASYNC_POSTWRITE);
2236		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2237		m_freem(txd->tx_m);
2238		txd->tx_m = NULL;
2239	}
2240
2241	if (prog > 0) {
2242		sc->age_cdata.age_tx_cons = cons;
2243
2244		/*
2245		 * Unarm watchdog timer only when there are no pending
2246		 * Tx descriptors in queue.
2247		 */
2248		if (sc->age_cdata.age_tx_cnt == 0)
2249			sc->age_watchdog_timer = 0;
2250		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2251		    sc->age_cdata.age_tx_ring_map,
2252		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2253	}
2254}
2255
2256/* Receive a frame. */
2257static void
2258age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2259{
2260	struct age_rxdesc *rxd;
2261	struct rx_desc *desc;
2262	struct ifnet *ifp;
2263	struct mbuf *mp, *m;
2264	uint32_t status, index, vtag;
2265	int count, nsegs, pktlen;
2266	int rx_cons;
2267
2268	AGE_LOCK_ASSERT(sc);
2269
2270	ifp = sc->age_ifp;
2271	status = le32toh(rxrd->flags);
2272	index = le32toh(rxrd->index);
2273	rx_cons = AGE_RX_CONS(index);
2274	nsegs = AGE_RX_NSEGS(index);
2275
2276	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2277	if ((status & AGE_RRD_ERROR) != 0 &&
2278	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2279	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2280		/*
2281		 * We want to pass the following frames to upper
2282		 * layer regardless of error status of Rx return
2283		 * ring.
2284		 *
2285		 *  o IP/TCP/UDP checksum is bad.
2286		 *  o frame length and protocol specific length
2287		 *     does not match.
2288		 */
2289		sc->age_cdata.age_rx_cons += nsegs;
2290		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2291		return;
2292	}
2293
2294	pktlen = 0;
2295	for (count = 0; count < nsegs; count++,
2296	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2297		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2298		mp = rxd->rx_m;
2299		desc = rxd->rx_desc;
2300		/* Add a new receive buffer to the ring. */
2301		if (age_newbuf(sc, rxd) != 0) {
2302			ifp->if_iqdrops++;
2303			/* Reuse Rx buffers. */
2304			if (sc->age_cdata.age_rxhead != NULL) {
2305				m_freem(sc->age_cdata.age_rxhead);
2306				AGE_RXCHAIN_RESET(sc);
2307			}
2308			break;
2309		}
2310
2311		/* The length of the first mbuf is computed last. */
2312		if (count != 0) {
2313			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2314			pktlen += mp->m_len;
2315		}
2316
2317		/* Chain received mbufs. */
2318		if (sc->age_cdata.age_rxhead == NULL) {
2319			sc->age_cdata.age_rxhead = mp;
2320			sc->age_cdata.age_rxtail = mp;
2321		} else {
2322			mp->m_flags &= ~M_PKTHDR;
2323			sc->age_cdata.age_rxprev_tail =
2324			    sc->age_cdata.age_rxtail;
2325			sc->age_cdata.age_rxtail->m_next = mp;
2326			sc->age_cdata.age_rxtail = mp;
2327		}
2328
2329		if (count == nsegs - 1) {
2330			/*
2331			 * It seems that L1 controller has no way
2332			 * to tell hardware to strip CRC bytes.
2333			 */
2334			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2335			if (nsegs > 1) {
2336				/* Remove the CRC bytes in chained mbufs. */
2337				pktlen -= ETHER_CRC_LEN;
2338				if (mp->m_len <= ETHER_CRC_LEN) {
2339					sc->age_cdata.age_rxtail =
2340					    sc->age_cdata.age_rxprev_tail;
2341					sc->age_cdata.age_rxtail->m_len -=
2342					    (ETHER_CRC_LEN - mp->m_len);
2343					sc->age_cdata.age_rxtail->m_next = NULL;
2344					m_freem(mp);
2345				} else {
2346					mp->m_len -= ETHER_CRC_LEN;
2347				}
2348			}
2349
2350			m = sc->age_cdata.age_rxhead;
2351			m->m_flags |= M_PKTHDR;
2352			m->m_pkthdr.rcvif = ifp;
2353			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2354			/* Set the first mbuf length. */
2355			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2356
2357			/*
2358			 * Set checksum information.
2359			 * It seems that L1 controller can compute partial
2360			 * checksum. The partial checksum value can be used
2361			 * to accelerate checksum computation for fragmented
2362			 * TCP/UDP packets. Upper network stack already
2363			 * takes advantage of the partial checksum value in
2364			 * IP reassembly stage. But I'm not sure the
2365			 * correctness of the partial hardware checksum
2366			 * assistance due to lack of data sheet. If it is
2367			 * proven to work on L1 I'll enable it.
2368			 */
2369			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2370			    (status & AGE_RRD_IPV4) != 0) {
2371				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2372				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2373					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2374				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2375				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2376					m->m_pkthdr.csum_flags |=
2377					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2378					m->m_pkthdr.csum_data = 0xffff;
2379				}
2380				/*
2381				 * Don't mark bad checksum for TCP/UDP frames
2382				 * as fragmented frames may always have set
2383				 * bad checksummed bit of descriptor status.
2384				 */
2385			}
2386
2387			/* Check for VLAN tagged frames. */
2388			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2389			    (status & AGE_RRD_VLAN) != 0) {
2390				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2391				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2392				m->m_flags |= M_VLANTAG;
2393			}
2394
2395			/* Pass it on. */
2396			AGE_UNLOCK(sc);
2397			(*ifp->if_input)(ifp, m);
2398			AGE_LOCK(sc);
2399
2400			/* Reset mbuf chains. */
2401			AGE_RXCHAIN_RESET(sc);
2402		}
2403	}
2404
2405	if (count != nsegs) {
2406		sc->age_cdata.age_rx_cons += nsegs;
2407		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2408	} else
2409		sc->age_cdata.age_rx_cons = rx_cons;
2410}
2411
2412static int
2413age_rxintr(struct age_softc *sc, int rr_prod, int count)
2414{
2415	struct rx_rdesc *rxrd;
2416	int rr_cons, nsegs, pktlen, prog;
2417
2418	AGE_LOCK_ASSERT(sc);
2419
2420	rr_cons = sc->age_cdata.age_rr_cons;
2421	if (rr_cons == rr_prod)
2422		return (0);
2423
2424	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2425	    sc->age_cdata.age_rr_ring_map,
2426	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2427	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2428	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_POSTWRITE);
2429
2430	for (prog = 0; rr_cons != rr_prod; prog++) {
2431		if (count <= 0)
2432			break;
2433		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2434		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2435		if (nsegs == 0)
2436			break;
2437		/*
2438		 * Check number of segments against received bytes.
2439		 * Non-matching value would indicate that hardware
2440		 * is still trying to update Rx return descriptors.
2441		 * I'm not sure whether this check is really needed.
2442		 */
2443		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2444		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2445		    (MCLBYTES - ETHER_ALIGN)))
2446			break;
2447
2448		prog++;
2449		/* Received a frame. */
2450		age_rxeof(sc, rxrd);
2451		/* Clear return ring. */
2452		rxrd->index = 0;
2453		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2454	}
2455
2456	if (prog > 0) {
2457		/* Update the consumer index. */
2458		sc->age_cdata.age_rr_cons = rr_cons;
2459
2460		bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2461		    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2462		/* Sync descriptors. */
2463		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2464		    sc->age_cdata.age_rr_ring_map,
2465		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2466
2467		/* Notify hardware availability of new Rx buffers. */
2468		AGE_COMMIT_MBOX(sc);
2469	}
2470
2471	return (count > 0 ? 0 : EAGAIN);
2472}
2473
2474static void
2475age_tick(void *arg)
2476{
2477	struct age_softc *sc;
2478	struct mii_data *mii;
2479
2480	sc = (struct age_softc *)arg;
2481
2482	AGE_LOCK_ASSERT(sc);
2483
2484	mii = device_get_softc(sc->age_miibus);
2485	mii_tick(mii);
2486	age_watchdog(sc);
2487	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2488}
2489
2490static void
2491age_reset(struct age_softc *sc)
2492{
2493	uint32_t reg;
2494	int i;
2495
2496	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2497	CSR_READ_4(sc, AGE_MASTER_CFG);
2498	DELAY(1000);
2499	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2500		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2501			break;
2502		DELAY(10);
2503	}
2504
2505	if (i == 0)
2506		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2507	/* Initialize PCIe module. From Linux. */
2508	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2509	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2510}
2511
2512static void
2513age_init(void *xsc)
2514{
2515	struct age_softc *sc;
2516
2517	sc = (struct age_softc *)xsc;
2518	AGE_LOCK(sc);
2519	age_init_locked(sc);
2520	AGE_UNLOCK(sc);
2521}
2522
2523static void
2524age_init_locked(struct age_softc *sc)
2525{
2526	struct ifnet *ifp;
2527	struct mii_data *mii;
2528	uint8_t eaddr[ETHER_ADDR_LEN];
2529	bus_addr_t paddr;
2530	uint32_t reg, fsize;
2531	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2532	int error;
2533
2534	AGE_LOCK_ASSERT(sc);
2535
2536	ifp = sc->age_ifp;
2537	mii = device_get_softc(sc->age_miibus);
2538
2539	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2540		return;
2541
2542	/*
2543	 * Cancel any pending I/O.
2544	 */
2545	age_stop(sc);
2546
2547	/*
2548	 * Reset the chip to a known state.
2549	 */
2550	age_reset(sc);
2551
2552	/* Initialize descriptors. */
2553	error = age_init_rx_ring(sc);
2554        if (error != 0) {
2555                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2556                age_stop(sc);
2557		return;
2558        }
2559	age_init_rr_ring(sc);
2560	age_init_tx_ring(sc);
2561	age_init_cmb_block(sc);
2562	age_init_smb_block(sc);
2563
2564	/* Reprogram the station address. */
2565	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2566	CSR_WRITE_4(sc, AGE_PAR0,
2567	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2568	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2569
2570	/* Set descriptor base addresses. */
2571	paddr = sc->age_rdata.age_tx_ring_paddr;
2572	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2573	paddr = sc->age_rdata.age_rx_ring_paddr;
2574	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2575	paddr = sc->age_rdata.age_rr_ring_paddr;
2576	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2577	paddr = sc->age_rdata.age_tx_ring_paddr;
2578	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2579	paddr = sc->age_rdata.age_cmb_block_paddr;
2580	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2581	paddr = sc->age_rdata.age_smb_block_paddr;
2582	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2583	/* Set Rx/Rx return descriptor counter. */
2584	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2585	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2586	    DESC_RRD_CNT_MASK) |
2587	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2588	/* Set Tx descriptor counter. */
2589	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2590	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2591
2592	/* Tell hardware that we're ready to load descriptors. */
2593	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2594
2595	/*
2596	 * Initialize mailbox register.
2597	 * Updated producer/consumer index information is exchanged
2598	 * through this mailbox register. However Tx producer and
2599	 * Rx return consumer/Rx producer are all shared such that
2600	 * it's hard to separate code path between Tx and Rx without
2601	 * locking. If L1 hardware have a separate mail box register
2602	 * for Tx and Rx consumer/producer management we could have
2603	 * indepent Tx/Rx handler which in turn Rx handler could have
2604	 * been run without any locking.
2605	 */
2606	AGE_COMMIT_MBOX(sc);
2607
2608	/* Configure IPG/IFG parameters. */
2609	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2610	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2611	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2612	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2613	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2614
2615	/* Set parameters for half-duplex media. */
2616	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2617	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2618	    HDPX_CFG_LCOL_MASK) |
2619	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2620	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2621	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2622	    HDPX_CFG_ABEBT_MASK) |
2623	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2624	    HDPX_CFG_JAMIPG_MASK));
2625
2626	/* Configure interrupt moderation timer. */
2627	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2628	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2629	reg &= ~MASTER_MTIMER_ENB;
2630	if (AGE_USECS(sc->age_int_mod) == 0)
2631		reg &= ~MASTER_ITIMER_ENB;
2632	else
2633		reg |= MASTER_ITIMER_ENB;
2634	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2635	if (bootverbose)
2636		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2637		    sc->age_int_mod);
2638	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2639
2640	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2641	if (ifp->if_mtu < ETHERMTU)
2642		sc->age_max_frame_size = ETHERMTU;
2643	else
2644		sc->age_max_frame_size = ifp->if_mtu;
2645	sc->age_max_frame_size += ETHER_HDR_LEN +
2646	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2647	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2648	/* Configure jumbo frame. */
2649	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2650	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2651	    (((fsize / sizeof(uint64_t)) <<
2652	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2653	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2654	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2655	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2656	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2657
2658	/* Configure flow-control parameters. From Linux. */
2659	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2660		/*
2661		 * Magic workaround for old-L1.
2662		 * Don't know which hw revision requires this magic.
2663		 */
2664		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2665		/*
2666		 * Another magic workaround for flow-control mode
2667		 * change. From Linux.
2668		 */
2669		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2670	}
2671	/*
2672	 * TODO
2673	 *  Should understand pause parameter relationships between FIFO
2674	 *  size and number of Rx descriptors and Rx return descriptors.
2675	 *
2676	 *  Magic parameters came from Linux.
2677	 */
2678	switch (sc->age_chip_rev) {
2679	case 0x8001:
2680	case 0x9001:
2681	case 0x9002:
2682	case 0x9003:
2683		rxf_hi = AGE_RX_RING_CNT / 16;
2684		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2685		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2686		rrd_lo = AGE_RR_RING_CNT / 16;
2687		break;
2688	default:
2689		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2690		rxf_lo = reg / 16;
2691		if (rxf_lo < 192)
2692			rxf_lo = 192;
2693		rxf_hi = (reg * 7) / 8;
2694		if (rxf_hi < rxf_lo)
2695			rxf_hi = rxf_lo + 16;
2696		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2697		rrd_lo = reg / 8;
2698		rrd_hi = (reg * 7) / 8;
2699		if (rrd_lo < 2)
2700			rrd_lo = 2;
2701		if (rrd_hi < rrd_lo)
2702			rrd_hi = rrd_lo + 3;
2703		break;
2704	}
2705	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2706	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2707	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2708	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2709	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2710	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2711	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2712	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2713	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2714	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2715
2716	/* Configure RxQ. */
2717	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2718	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2719	    RXQ_CFG_RD_BURST_MASK) |
2720	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2721	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2722	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2723	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2724	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2725
2726	/* Configure TxQ. */
2727	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2728	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2729	    TXQ_CFG_TPD_BURST_MASK) |
2730	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2731	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2732	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2733	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2734	    TXQ_CFG_ENB);
2735
2736	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2737	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2738	    TX_JUMBO_TPD_TH_MASK) |
2739	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2740	    TX_JUMBO_TPD_IPG_MASK));
2741	/* Configure DMA parameters. */
2742	CSR_WRITE_4(sc, AGE_DMA_CFG,
2743	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2744	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2745	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2746
2747	/* Configure CMB DMA write threshold. */
2748	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2749	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2750	    CMB_WR_THRESH_RRD_MASK) |
2751	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2752	    CMB_WR_THRESH_TPD_MASK));
2753
2754	/* Set CMB/SMB timer and enable them. */
2755	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2756	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2757	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2758	/* Request SMB updates for every seconds. */
2759	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2760	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2761
2762	/*
2763	 * Disable all WOL bits as WOL can interfere normal Rx
2764	 * operation.
2765	 */
2766	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2767
2768	/*
2769	 * Configure Tx/Rx MACs.
2770	 *  - Auto-padding for short frames.
2771	 *  - Enable CRC generation.
2772	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2773	 *  of MAC is followed after link establishment.
2774	 */
2775	CSR_WRITE_4(sc, AGE_MAC_CFG,
2776	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2777	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2778	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2779	    MAC_CFG_PREAMBLE_MASK));
2780	/* Set up the receive filter. */
2781	age_rxfilter(sc);
2782	age_rxvlan(sc);
2783
2784	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2785	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2786		reg |= MAC_CFG_RXCSUM_ENB;
2787
2788	/* Ack all pending interrupts and clear it. */
2789	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2790	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2791
2792	/* Finally enable Tx/Rx MAC. */
2793	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2794
2795	sc->age_flags &= ~AGE_FLAG_LINK;
2796	/* Switch to the current media. */
2797	mii_mediachg(mii);
2798
2799	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2800
2801	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2802	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2803}
2804
2805static void
2806age_stop(struct age_softc *sc)
2807{
2808	struct ifnet *ifp;
2809	struct age_txdesc *txd;
2810	struct age_rxdesc *rxd;
2811	uint32_t reg;
2812	int i;
2813
2814	AGE_LOCK_ASSERT(sc);
2815	/*
2816	 * Mark the interface down and cancel the watchdog timer.
2817	 */
2818	ifp = sc->age_ifp;
2819	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2820	sc->age_flags &= ~AGE_FLAG_LINK;
2821	callout_stop(&sc->age_tick_ch);
2822	sc->age_watchdog_timer = 0;
2823
2824	/*
2825	 * Disable interrupts.
2826	 */
2827	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2828	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2829	/* Stop CMB/SMB updates. */
2830	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2831	/* Stop Rx/Tx MAC. */
2832	age_stop_rxmac(sc);
2833	age_stop_txmac(sc);
2834	/* Stop DMA. */
2835	CSR_WRITE_4(sc, AGE_DMA_CFG,
2836	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2837	/* Stop TxQ/RxQ. */
2838	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2839	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2840	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2841	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2842	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2843		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2844			break;
2845		DELAY(10);
2846	}
2847	if (i == 0)
2848		device_printf(sc->age_dev,
2849		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2850
2851	 /* Reclaim Rx buffers that have been processed. */
2852	if (sc->age_cdata.age_rxhead != NULL)
2853		m_freem(sc->age_cdata.age_rxhead);
2854	AGE_RXCHAIN_RESET(sc);
2855	/*
2856	 * Free RX and TX mbufs still in the queues.
2857	 */
2858	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2859		rxd = &sc->age_cdata.age_rxdesc[i];
2860		if (rxd->rx_m != NULL) {
2861			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2862			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2863			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2864			    rxd->rx_dmamap);
2865			m_freem(rxd->rx_m);
2866			rxd->rx_m = NULL;
2867		}
2868        }
2869	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2870		txd = &sc->age_cdata.age_txdesc[i];
2871		if (txd->tx_m != NULL) {
2872			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2873			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2874			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2875			    txd->tx_dmamap);
2876			m_freem(txd->tx_m);
2877			txd->tx_m = NULL;
2878		}
2879        }
2880}
2881
2882static void
2883age_stop_txmac(struct age_softc *sc)
2884{
2885	uint32_t reg;
2886	int i;
2887
2888	AGE_LOCK_ASSERT(sc);
2889
2890	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2891	if ((reg & MAC_CFG_TX_ENB) != 0) {
2892		reg &= ~MAC_CFG_TX_ENB;
2893		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2894	}
2895	/* Stop Tx DMA engine. */
2896	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2897	if ((reg & DMA_CFG_RD_ENB) != 0) {
2898		reg &= ~DMA_CFG_RD_ENB;
2899		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2900	}
2901	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2902		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2903		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2904			break;
2905		DELAY(10);
2906	}
2907	if (i == 0)
2908		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2909}
2910
2911static void
2912age_stop_rxmac(struct age_softc *sc)
2913{
2914	uint32_t reg;
2915	int i;
2916
2917	AGE_LOCK_ASSERT(sc);
2918
2919	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2920	if ((reg & MAC_CFG_RX_ENB) != 0) {
2921		reg &= ~MAC_CFG_RX_ENB;
2922		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2923	}
2924	/* Stop Rx DMA engine. */
2925	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2926	if ((reg & DMA_CFG_WR_ENB) != 0) {
2927		reg &= ~DMA_CFG_WR_ENB;
2928		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2929	}
2930	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2931		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2932		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2933			break;
2934		DELAY(10);
2935	}
2936	if (i == 0)
2937		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2938}
2939
2940static void
2941age_init_tx_ring(struct age_softc *sc)
2942{
2943	struct age_ring_data *rd;
2944	struct age_txdesc *txd;
2945	int i;
2946
2947	AGE_LOCK_ASSERT(sc);
2948
2949	sc->age_cdata.age_tx_prod = 0;
2950	sc->age_cdata.age_tx_cons = 0;
2951	sc->age_cdata.age_tx_cnt = 0;
2952
2953	rd = &sc->age_rdata;
2954	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2955	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2956		txd = &sc->age_cdata.age_txdesc[i];
2957		txd->tx_desc = &rd->age_tx_ring[i];
2958		txd->tx_m = NULL;
2959	}
2960
2961	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2962	    sc->age_cdata.age_tx_ring_map,
2963	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2964}
2965
2966static int
2967age_init_rx_ring(struct age_softc *sc)
2968{
2969	struct age_ring_data *rd;
2970	struct age_rxdesc *rxd;
2971	int i;
2972
2973	AGE_LOCK_ASSERT(sc);
2974
2975	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2976	sc->age_morework = 0;
2977	rd = &sc->age_rdata;
2978	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2979	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2980		rxd = &sc->age_cdata.age_rxdesc[i];
2981		rxd->rx_m = NULL;
2982		rxd->rx_desc = &rd->age_rx_ring[i];
2983		if (age_newbuf(sc, rxd) != 0)
2984			return (ENOBUFS);
2985	}
2986
2987	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2988	    sc->age_cdata.age_rx_ring_map, BUS_DMASYNC_PREWRITE);
2989
2990	return (0);
2991}
2992
2993static void
2994age_init_rr_ring(struct age_softc *sc)
2995{
2996	struct age_ring_data *rd;
2997
2998	AGE_LOCK_ASSERT(sc);
2999
3000	sc->age_cdata.age_rr_cons = 0;
3001	AGE_RXCHAIN_RESET(sc);
3002
3003	rd = &sc->age_rdata;
3004	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3005	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3006	    sc->age_cdata.age_rr_ring_map,
3007	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3008}
3009
3010static void
3011age_init_cmb_block(struct age_softc *sc)
3012{
3013	struct age_ring_data *rd;
3014
3015	AGE_LOCK_ASSERT(sc);
3016
3017	rd = &sc->age_rdata;
3018	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3019	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3020	    sc->age_cdata.age_cmb_block_map,
3021	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3022}
3023
3024static void
3025age_init_smb_block(struct age_softc *sc)
3026{
3027	struct age_ring_data *rd;
3028
3029	AGE_LOCK_ASSERT(sc);
3030
3031	rd = &sc->age_rdata;
3032	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3033	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3034	    sc->age_cdata.age_smb_block_map,
3035	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3036}
3037
3038static int
3039age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3040{
3041	struct rx_desc *desc;
3042	struct mbuf *m;
3043	bus_dma_segment_t segs[1];
3044	bus_dmamap_t map;
3045	int nsegs;
3046
3047	AGE_LOCK_ASSERT(sc);
3048
3049	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3050	if (m == NULL)
3051		return (ENOBUFS);
3052	m->m_len = m->m_pkthdr.len = MCLBYTES;
3053	m_adj(m, ETHER_ALIGN);
3054
3055	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3056	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3057		m_freem(m);
3058		return (ENOBUFS);
3059	}
3060	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3061
3062	if (rxd->rx_m != NULL) {
3063		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3064		    BUS_DMASYNC_POSTREAD);
3065		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3066	}
3067	map = rxd->rx_dmamap;
3068	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3069	sc->age_cdata.age_rx_sparemap = map;
3070	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3071	    BUS_DMASYNC_PREREAD);
3072	rxd->rx_m = m;
3073
3074	desc = rxd->rx_desc;
3075	desc->addr = htole64(segs[0].ds_addr);
3076	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3077	    AGE_RD_LEN_SHIFT);
3078	return (0);
3079}
3080
3081static void
3082age_rxvlan(struct age_softc *sc)
3083{
3084	struct ifnet *ifp;
3085	uint32_t reg;
3086
3087	AGE_LOCK_ASSERT(sc);
3088
3089	ifp = sc->age_ifp;
3090	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3091	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3092	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3093		reg |= MAC_CFG_VLAN_TAG_STRIP;
3094	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3095}
3096
3097static void
3098age_rxfilter(struct age_softc *sc)
3099{
3100	struct ifnet *ifp;
3101	struct ifmultiaddr *ifma;
3102	uint32_t crc;
3103	uint32_t mchash[2];
3104	uint32_t rxcfg;
3105
3106	AGE_LOCK_ASSERT(sc);
3107
3108	ifp = sc->age_ifp;
3109
3110	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3111	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3112	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3113		rxcfg |= MAC_CFG_BCAST;
3114	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3115		if ((ifp->if_flags & IFF_PROMISC) != 0)
3116			rxcfg |= MAC_CFG_PROMISC;
3117		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3118			rxcfg |= MAC_CFG_ALLMULTI;
3119		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3120		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3121		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3122		return;
3123	}
3124
3125	/* Program new filter. */
3126	bzero(mchash, sizeof(mchash));
3127
3128	if_maddr_rlock(ifp);
3129	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3130		if (ifma->ifma_addr->sa_family != AF_LINK)
3131			continue;
3132		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3133		    ifma->ifma_addr), ETHER_ADDR_LEN);
3134		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3135	}
3136	if_maddr_runlock(ifp);
3137
3138	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3139	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3140	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3141}
3142
3143static int
3144sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3145{
3146	struct age_softc *sc;
3147	struct age_stats *stats;
3148	int error, result;
3149
3150	result = -1;
3151	error = sysctl_handle_int(oidp, &result, 0, req);
3152
3153	if (error != 0 || req->newptr == NULL)
3154		return (error);
3155
3156	if (result != 1)
3157		return (error);
3158
3159	sc = (struct age_softc *)arg1;
3160	stats = &sc->age_stat;
3161	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3162	printf("Transmit good frames : %ju\n",
3163	    (uintmax_t)stats->tx_frames);
3164	printf("Transmit good broadcast frames : %ju\n",
3165	    (uintmax_t)stats->tx_bcast_frames);
3166	printf("Transmit good multicast frames : %ju\n",
3167	    (uintmax_t)stats->tx_mcast_frames);
3168	printf("Transmit pause control frames : %u\n",
3169	    stats->tx_pause_frames);
3170	printf("Transmit control frames : %u\n",
3171	    stats->tx_control_frames);
3172	printf("Transmit frames with excessive deferrals : %u\n",
3173	    stats->tx_excess_defer);
3174	printf("Transmit deferrals : %u\n",
3175	    stats->tx_deferred);
3176	printf("Transmit good octets : %ju\n",
3177	    (uintmax_t)stats->tx_bytes);
3178	printf("Transmit good broadcast octets : %ju\n",
3179	    (uintmax_t)stats->tx_bcast_bytes);
3180	printf("Transmit good multicast octets : %ju\n",
3181	    (uintmax_t)stats->tx_mcast_bytes);
3182	printf("Transmit frames 64 bytes : %ju\n",
3183	    (uintmax_t)stats->tx_pkts_64);
3184	printf("Transmit frames 65 to 127 bytes : %ju\n",
3185	    (uintmax_t)stats->tx_pkts_65_127);
3186	printf("Transmit frames 128 to 255 bytes : %ju\n",
3187	    (uintmax_t)stats->tx_pkts_128_255);
3188	printf("Transmit frames 256 to 511 bytes : %ju\n",
3189	    (uintmax_t)stats->tx_pkts_256_511);
3190	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3191	    (uintmax_t)stats->tx_pkts_512_1023);
3192	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3193	    (uintmax_t)stats->tx_pkts_1024_1518);
3194	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3195	    (uintmax_t)stats->tx_pkts_1519_max);
3196	printf("Transmit single collisions : %u\n",
3197	    stats->tx_single_colls);
3198	printf("Transmit multiple collisions : %u\n",
3199	    stats->tx_multi_colls);
3200	printf("Transmit late collisions : %u\n",
3201	    stats->tx_late_colls);
3202	printf("Transmit abort due to excessive collisions : %u\n",
3203	    stats->tx_excess_colls);
3204	printf("Transmit underruns due to FIFO underruns : %u\n",
3205	    stats->tx_underrun);
3206	printf("Transmit descriptor write-back errors : %u\n",
3207	    stats->tx_desc_underrun);
3208	printf("Transmit frames with length mismatched frame size : %u\n",
3209	    stats->tx_lenerrs);
3210	printf("Transmit frames with truncated due to MTU size : %u\n",
3211	    stats->tx_lenerrs);
3212
3213	printf("Receive good frames : %ju\n",
3214	    (uintmax_t)stats->rx_frames);
3215	printf("Receive good broadcast frames : %ju\n",
3216	    (uintmax_t)stats->rx_bcast_frames);
3217	printf("Receive good multicast frames : %ju\n",
3218	    (uintmax_t)stats->rx_mcast_frames);
3219	printf("Receive pause control frames : %u\n",
3220	    stats->rx_pause_frames);
3221	printf("Receive control frames : %u\n",
3222	    stats->rx_control_frames);
3223	printf("Receive CRC errors : %u\n",
3224	    stats->rx_crcerrs);
3225	printf("Receive frames with length errors : %u\n",
3226	    stats->rx_lenerrs);
3227	printf("Receive good octets : %ju\n",
3228	    (uintmax_t)stats->rx_bytes);
3229	printf("Receive good broadcast octets : %ju\n",
3230	    (uintmax_t)stats->rx_bcast_bytes);
3231	printf("Receive good multicast octets : %ju\n",
3232	    (uintmax_t)stats->rx_mcast_bytes);
3233	printf("Receive frames too short : %u\n",
3234	    stats->rx_runts);
3235	printf("Receive fragmented frames : %ju\n",
3236	    (uintmax_t)stats->rx_fragments);
3237	printf("Receive frames 64 bytes : %ju\n",
3238	    (uintmax_t)stats->rx_pkts_64);
3239	printf("Receive frames 65 to 127 bytes : %ju\n",
3240	    (uintmax_t)stats->rx_pkts_65_127);
3241	printf("Receive frames 128 to 255 bytes : %ju\n",
3242	    (uintmax_t)stats->rx_pkts_128_255);
3243	printf("Receive frames 256 to 511 bytes : %ju\n",
3244	    (uintmax_t)stats->rx_pkts_256_511);
3245	printf("Receive frames 512 to 1024 bytes : %ju\n",
3246	    (uintmax_t)stats->rx_pkts_512_1023);
3247	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3248	    (uintmax_t)stats->rx_pkts_1024_1518);
3249	printf("Receive frames 1519 to MTU bytes : %ju\n",
3250	    (uintmax_t)stats->rx_pkts_1519_max);
3251	printf("Receive frames too long : %ju\n",
3252	    (uint64_t)stats->rx_pkts_truncated);
3253	printf("Receive frames with FIFO overflow : %u\n",
3254	    stats->rx_fifo_oflows);
3255	printf("Receive frames with return descriptor overflow : %u\n",
3256	    stats->rx_desc_oflows);
3257	printf("Receive frames with alignment errors : %u\n",
3258	    stats->rx_alignerrs);
3259	printf("Receive frames dropped due to address filtering : %ju\n",
3260	    (uint64_t)stats->rx_pkts_filtered);
3261
3262	return (error);
3263}
3264
3265static int
3266sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3267{
3268	int error, value;
3269
3270	if (arg1 == NULL)
3271		return (EINVAL);
3272	value = *(int *)arg1;
3273	error = sysctl_handle_int(oidp, &value, 0, req);
3274	if (error || req->newptr == NULL)
3275		return (error);
3276	if (value < low || value > high)
3277		return (EINVAL);
3278        *(int *)arg1 = value;
3279
3280        return (0);
3281}
3282
3283static int
3284sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3285{
3286	return (sysctl_int_range(oidp, arg1, arg2, req,
3287	    AGE_PROC_MIN, AGE_PROC_MAX));
3288}
3289
3290static int
3291sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3292{
3293
3294	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3295	    AGE_IM_TIMER_MAX));
3296}
3297