if_age.c revision 213844
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 213844 2010-10-14 18:31:40Z yongari $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
78
79MODULE_DEPEND(age, pci, 1, 1, 1);
80MODULE_DEPEND(age, ether, 1, 1, 1);
81MODULE_DEPEND(age, miibus, 1, 1, 1);
82
83/* Tunables. */
84static int msi_disable = 0;
85static int msix_disable = 0;
86TUNABLE_INT("hw.age.msi_disable", &msi_disable);
87TUNABLE_INT("hw.age.msix_disable", &msix_disable);
88
89/*
90 * Devices supported by this driver.
91 */
92static struct age_dev {
93	uint16_t	age_vendorid;
94	uint16_t	age_deviceid;
95	const char	*age_name;
96} age_devs[] = {
97	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
98	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
99};
100
101static int age_miibus_readreg(device_t, int, int);
102static int age_miibus_writereg(device_t, int, int, int);
103static void age_miibus_statchg(device_t);
104static void age_mediastatus(struct ifnet *, struct ifmediareq *);
105static int age_mediachange(struct ifnet *);
106static int age_probe(device_t);
107static void age_get_macaddr(struct age_softc *);
108static void age_phy_reset(struct age_softc *);
109static int age_attach(device_t);
110static int age_detach(device_t);
111static void age_sysctl_node(struct age_softc *);
112static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
113static int age_check_boundary(struct age_softc *);
114static int age_dma_alloc(struct age_softc *);
115static void age_dma_free(struct age_softc *);
116static int age_shutdown(device_t);
117static void age_setwol(struct age_softc *);
118static int age_suspend(device_t);
119static int age_resume(device_t);
120static int age_encap(struct age_softc *, struct mbuf **);
121static void age_tx_task(void *, int);
122static void age_start(struct ifnet *);
123static void age_watchdog(struct age_softc *);
124static int age_ioctl(struct ifnet *, u_long, caddr_t);
125static void age_mac_config(struct age_softc *);
126static void age_link_task(void *, int);
127static void age_stats_update(struct age_softc *);
128static int age_intr(void *);
129static void age_int_task(void *, int);
130static void age_txintr(struct age_softc *, int);
131static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
132static int age_rxintr(struct age_softc *, int, int);
133static void age_tick(void *);
134static void age_reset(struct age_softc *);
135static void age_init(void *);
136static void age_init_locked(struct age_softc *);
137static void age_stop(struct age_softc *);
138static void age_stop_txmac(struct age_softc *);
139static void age_stop_rxmac(struct age_softc *);
140static void age_init_tx_ring(struct age_softc *);
141static int age_init_rx_ring(struct age_softc *);
142static void age_init_rr_ring(struct age_softc *);
143static void age_init_cmb_block(struct age_softc *);
144static void age_init_smb_block(struct age_softc *);
145static int age_newbuf(struct age_softc *, struct age_rxdesc *);
146static void age_rxvlan(struct age_softc *);
147static void age_rxfilter(struct age_softc *);
148static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
149static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
150static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
151static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
152
153
154static device_method_t age_methods[] = {
155	/* Device interface. */
156	DEVMETHOD(device_probe,		age_probe),
157	DEVMETHOD(device_attach,	age_attach),
158	DEVMETHOD(device_detach,	age_detach),
159	DEVMETHOD(device_shutdown,	age_shutdown),
160	DEVMETHOD(device_suspend,	age_suspend),
161	DEVMETHOD(device_resume,	age_resume),
162
163	/* MII interface. */
164	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
165	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
166	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
167
168	{ NULL, NULL }
169};
170
171static driver_t age_driver = {
172	"age",
173	age_methods,
174	sizeof(struct age_softc)
175};
176
177static devclass_t age_devclass;
178
179DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
180DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
181
182static struct resource_spec age_res_spec_mem[] = {
183	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
184	{ -1,			0,		0 }
185};
186
187static struct resource_spec age_irq_spec_legacy[] = {
188	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
189	{ -1,			0,		0 }
190};
191
192static struct resource_spec age_irq_spec_msi[] = {
193	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
194	{ -1,			0,		0 }
195};
196
197static struct resource_spec age_irq_spec_msix[] = {
198	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
199	{ -1,			0,		0 }
200};
201
202/*
203 *	Read a PHY register on the MII of the L1.
204 */
205static int
206age_miibus_readreg(device_t dev, int phy, int reg)
207{
208	struct age_softc *sc;
209	uint32_t v;
210	int i;
211
212	sc = device_get_softc(dev);
213	if (phy != sc->age_phyaddr)
214		return (0);
215
216	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
217	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
218	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
219		DELAY(1);
220		v = CSR_READ_4(sc, AGE_MDIO);
221		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
222			break;
223	}
224
225	if (i == 0) {
226		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
227		return (0);
228	}
229
230	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
231}
232
233/*
234 *	Write a PHY register on the MII of the L1.
235 */
236static int
237age_miibus_writereg(device_t dev, int phy, int reg, int val)
238{
239	struct age_softc *sc;
240	uint32_t v;
241	int i;
242
243	sc = device_get_softc(dev);
244	if (phy != sc->age_phyaddr)
245		return (0);
246
247	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
248	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
249	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
250	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
251		DELAY(1);
252		v = CSR_READ_4(sc, AGE_MDIO);
253		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
254			break;
255	}
256
257	if (i == 0)
258		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
259
260	return (0);
261}
262
263/*
264 *	Callback from MII layer when media changes.
265 */
266static void
267age_miibus_statchg(device_t dev)
268{
269	struct age_softc *sc;
270
271	sc = device_get_softc(dev);
272	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
273}
274
275/*
276 *	Get the current interface media status.
277 */
278static void
279age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
280{
281	struct age_softc *sc;
282	struct mii_data *mii;
283
284	sc = ifp->if_softc;
285	AGE_LOCK(sc);
286	mii = device_get_softc(sc->age_miibus);
287
288	mii_pollstat(mii);
289	AGE_UNLOCK(sc);
290	ifmr->ifm_status = mii->mii_media_status;
291	ifmr->ifm_active = mii->mii_media_active;
292}
293
294/*
295 *	Set hardware to newly-selected media.
296 */
297static int
298age_mediachange(struct ifnet *ifp)
299{
300	struct age_softc *sc;
301	struct mii_data *mii;
302	struct mii_softc *miisc;
303	int error;
304
305	sc = ifp->if_softc;
306	AGE_LOCK(sc);
307	mii = device_get_softc(sc->age_miibus);
308	if (mii->mii_instance != 0) {
309		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
310			mii_phy_reset(miisc);
311	}
312	error = mii_mediachg(mii);
313	AGE_UNLOCK(sc);
314
315	return (error);
316}
317
318static int
319age_probe(device_t dev)
320{
321	struct age_dev *sp;
322	int i;
323	uint16_t vendor, devid;
324
325	vendor = pci_get_vendor(dev);
326	devid = pci_get_device(dev);
327	sp = age_devs;
328	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
329	    i++, sp++) {
330		if (vendor == sp->age_vendorid &&
331		    devid == sp->age_deviceid) {
332			device_set_desc(dev, sp->age_name);
333			return (BUS_PROBE_DEFAULT);
334		}
335	}
336
337	return (ENXIO);
338}
339
340static void
341age_get_macaddr(struct age_softc *sc)
342{
343	uint32_t ea[2], reg;
344	int i, vpdc;
345
346	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
347	if ((reg & SPI_VPD_ENB) != 0) {
348		/* Get VPD stored in TWSI EEPROM. */
349		reg &= ~SPI_VPD_ENB;
350		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
351	}
352
353	if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
354		/*
355		 * PCI VPD capability found, let TWSI reload EEPROM.
356		 * This will set ethernet address of controller.
357		 */
358		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
359		    TWSI_CTRL_SW_LD_START);
360		for (i = 100; i > 0; i--) {
361			DELAY(1000);
362			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
363			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
364				break;
365		}
366		if (i == 0)
367			device_printf(sc->age_dev,
368			    "reloading EEPROM timeout!\n");
369	} else {
370		if (bootverbose)
371			device_printf(sc->age_dev,
372			    "PCI VPD capability not found!\n");
373	}
374
375	ea[0] = CSR_READ_4(sc, AGE_PAR0);
376	ea[1] = CSR_READ_4(sc, AGE_PAR1);
377	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
378	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
379	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
380	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
381	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
382	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
383}
384
385static void
386age_phy_reset(struct age_softc *sc)
387{
388	uint16_t reg, pn;
389	int i, linkup;
390
391	/* Reset PHY. */
392	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
393	DELAY(2000);
394	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
395	DELAY(2000);
396
397#define	ATPHY_DBG_ADDR		0x1D
398#define	ATPHY_DBG_DATA		0x1E
399#define	ATPHY_CDTC		0x16
400#define	PHY_CDTC_ENB		0x0001
401#define	PHY_CDTC_POFF		8
402#define	ATPHY_CDTS		0x1C
403#define	PHY_CDTS_STAT_OK	0x0000
404#define	PHY_CDTS_STAT_SHORT	0x0100
405#define	PHY_CDTS_STAT_OPEN	0x0200
406#define	PHY_CDTS_STAT_INVAL	0x0300
407#define	PHY_CDTS_STAT_MASK	0x0300
408
409	/* Check power saving mode. Magic from Linux. */
410	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
411	for (linkup = 0, pn = 0; pn < 4; pn++) {
412		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
413		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
414		for (i = 200; i > 0; i--) {
415			DELAY(1000);
416			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
417			    ATPHY_CDTC);
418			if ((reg & PHY_CDTC_ENB) == 0)
419				break;
420		}
421		DELAY(1000);
422		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
423		    ATPHY_CDTS);
424		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
425			linkup++;
426			break;
427		}
428	}
429	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
430	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
431	if (linkup == 0) {
432		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
433		    ATPHY_DBG_ADDR, 0);
434		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
435		    ATPHY_DBG_DATA, 0x124E);
436		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
437		    ATPHY_DBG_ADDR, 1);
438		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
439		    ATPHY_DBG_DATA);
440		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
441		    ATPHY_DBG_DATA, reg | 0x03);
442		/* XXX */
443		DELAY(1500 * 1000);
444		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
445		    ATPHY_DBG_ADDR, 0);
446		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
447		    ATPHY_DBG_DATA, 0x024E);
448    }
449
450#undef	ATPHY_DBG_ADDR
451#undef	ATPHY_DBG_DATA
452#undef	ATPHY_CDTC
453#undef	PHY_CDTC_ENB
454#undef	PHY_CDTC_POFF
455#undef	ATPHY_CDTS
456#undef	PHY_CDTS_STAT_OK
457#undef	PHY_CDTS_STAT_SHORT
458#undef	PHY_CDTS_STAT_OPEN
459#undef	PHY_CDTS_STAT_INVAL
460#undef	PHY_CDTS_STAT_MASK
461}
462
463static int
464age_attach(device_t dev)
465{
466	struct age_softc *sc;
467	struct ifnet *ifp;
468	uint16_t burst;
469	int error, i, msic, msixc, pmc;
470
471	error = 0;
472	sc = device_get_softc(dev);
473	sc->age_dev = dev;
474
475	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
476	    MTX_DEF);
477	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
478	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
479	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
480
481	/* Map the device. */
482	pci_enable_busmaster(dev);
483	sc->age_res_spec = age_res_spec_mem;
484	sc->age_irq_spec = age_irq_spec_legacy;
485	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
486	if (error != 0) {
487		device_printf(dev, "cannot allocate memory resources.\n");
488		goto fail;
489	}
490
491	/* Set PHY address. */
492	sc->age_phyaddr = AGE_PHY_ADDR;
493
494	/* Reset PHY. */
495	age_phy_reset(sc);
496
497	/* Reset the ethernet controller. */
498	age_reset(sc);
499
500	/* Get PCI and chip id/revision. */
501	sc->age_rev = pci_get_revid(dev);
502	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
503	    MASTER_CHIP_REV_SHIFT;
504	if (bootverbose) {
505		device_printf(dev, "PCI device revision : 0x%04x\n",
506		    sc->age_rev);
507		device_printf(dev, "Chip id/revision : 0x%04x\n",
508		    sc->age_chip_rev);
509	}
510
511	/*
512	 * XXX
513	 * Unintialized hardware returns an invalid chip id/revision
514	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
515	 * unplugged cable results in putting hardware into automatic
516	 * power down mode which in turn returns invalld chip revision.
517	 */
518	if (sc->age_chip_rev == 0xFFFF) {
519		device_printf(dev,"invalid chip revision : 0x%04x -- "
520		    "not initialized?\n", sc->age_chip_rev);
521		error = ENXIO;
522		goto fail;
523	}
524
525	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
526	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
527	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
528
529	/* Allocate IRQ resources. */
530	msixc = pci_msix_count(dev);
531	msic = pci_msi_count(dev);
532	if (bootverbose) {
533		device_printf(dev, "MSIX count : %d\n", msixc);
534		device_printf(dev, "MSI count : %d\n", msic);
535	}
536
537	/* Prefer MSIX over MSI. */
538	if (msix_disable == 0 || msi_disable == 0) {
539		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
540		    pci_alloc_msix(dev, &msixc) == 0) {
541			if (msic == AGE_MSIX_MESSAGES) {
542				device_printf(dev, "Using %d MSIX messages.\n",
543				    msixc);
544				sc->age_flags |= AGE_FLAG_MSIX;
545				sc->age_irq_spec = age_irq_spec_msix;
546			} else
547				pci_release_msi(dev);
548		}
549		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
550		    msic == AGE_MSI_MESSAGES &&
551		    pci_alloc_msi(dev, &msic) == 0) {
552			if (msic == AGE_MSI_MESSAGES) {
553				device_printf(dev, "Using %d MSI messages.\n",
554				    msic);
555				sc->age_flags |= AGE_FLAG_MSI;
556				sc->age_irq_spec = age_irq_spec_msi;
557			} else
558				pci_release_msi(dev);
559		}
560	}
561
562	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
563	if (error != 0) {
564		device_printf(dev, "cannot allocate IRQ resources.\n");
565		goto fail;
566	}
567
568
569	/* Get DMA parameters from PCIe device control register. */
570	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
571		sc->age_flags |= AGE_FLAG_PCIE;
572		burst = pci_read_config(dev, i + 0x08, 2);
573		/* Max read request size. */
574		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
575		    DMA_CFG_RD_BURST_SHIFT;
576		/* Max payload size. */
577		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
578		    DMA_CFG_WR_BURST_SHIFT;
579		if (bootverbose) {
580			device_printf(dev, "Read request size : %d bytes.\n",
581			    128 << ((burst >> 12) & 0x07));
582			device_printf(dev, "TLP payload size : %d bytes.\n",
583			    128 << ((burst >> 5) & 0x07));
584		}
585	} else {
586		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
587		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
588	}
589
590	/* Create device sysctl node. */
591	age_sysctl_node(sc);
592
593	if ((error = age_dma_alloc(sc) != 0))
594		goto fail;
595
596	/* Load station address. */
597	age_get_macaddr(sc);
598
599	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
600	if (ifp == NULL) {
601		device_printf(dev, "cannot allocate ifnet structure.\n");
602		error = ENXIO;
603		goto fail;
604	}
605
606	ifp->if_softc = sc;
607	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
608	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
609	ifp->if_ioctl = age_ioctl;
610	ifp->if_start = age_start;
611	ifp->if_init = age_init;
612	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
613	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
614	IFQ_SET_READY(&ifp->if_snd);
615	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
616	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
617	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
618		sc->age_flags |= AGE_FLAG_PMCAP;
619		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
620	}
621	ifp->if_capenable = ifp->if_capabilities;
622
623	/* Set up MII bus. */
624	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
625	    age_mediastatus)) != 0) {
626		device_printf(dev, "no PHY found!\n");
627		goto fail;
628	}
629
630	ether_ifattach(ifp, sc->age_eaddr);
631
632	/* VLAN capability setup. */
633	ifp->if_capabilities |= IFCAP_VLAN_MTU | IFCAP_VLAN_HWTAGGING |
634	    IFCAP_VLAN_HWCSUM | IFCAP_VLAN_HWTSO;
635	ifp->if_capenable = ifp->if_capabilities;
636
637	/* Tell the upper layer(s) we support long frames. */
638	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
639
640	/* Create local taskq. */
641	TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
642	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
643	    taskqueue_thread_enqueue, &sc->age_tq);
644	if (sc->age_tq == NULL) {
645		device_printf(dev, "could not create taskqueue.\n");
646		ether_ifdetach(ifp);
647		error = ENXIO;
648		goto fail;
649	}
650	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
651	    device_get_nameunit(sc->age_dev));
652
653	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
654		msic = AGE_MSIX_MESSAGES;
655	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
656		msic = AGE_MSI_MESSAGES;
657	else
658		msic = 1;
659	for (i = 0; i < msic; i++) {
660		error = bus_setup_intr(dev, sc->age_irq[i],
661		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
662		    &sc->age_intrhand[i]);
663		if (error != 0)
664			break;
665	}
666	if (error != 0) {
667		device_printf(dev, "could not set up interrupt handler.\n");
668		taskqueue_free(sc->age_tq);
669		sc->age_tq = NULL;
670		ether_ifdetach(ifp);
671		goto fail;
672	}
673
674fail:
675	if (error != 0)
676		age_detach(dev);
677
678	return (error);
679}
680
681static int
682age_detach(device_t dev)
683{
684	struct age_softc *sc;
685	struct ifnet *ifp;
686	int i, msic;
687
688	sc = device_get_softc(dev);
689
690	ifp = sc->age_ifp;
691	if (device_is_attached(dev)) {
692		AGE_LOCK(sc);
693		sc->age_flags |= AGE_FLAG_DETACH;
694		age_stop(sc);
695		AGE_UNLOCK(sc);
696		callout_drain(&sc->age_tick_ch);
697		taskqueue_drain(sc->age_tq, &sc->age_int_task);
698		taskqueue_drain(sc->age_tq, &sc->age_tx_task);
699		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
700		ether_ifdetach(ifp);
701	}
702
703	if (sc->age_tq != NULL) {
704		taskqueue_drain(sc->age_tq, &sc->age_int_task);
705		taskqueue_free(sc->age_tq);
706		sc->age_tq = NULL;
707	}
708
709	if (sc->age_miibus != NULL) {
710		device_delete_child(dev, sc->age_miibus);
711		sc->age_miibus = NULL;
712	}
713	bus_generic_detach(dev);
714	age_dma_free(sc);
715
716	if (ifp != NULL) {
717		if_free(ifp);
718		sc->age_ifp = NULL;
719	}
720
721	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
722		msic = AGE_MSIX_MESSAGES;
723	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
724		msic = AGE_MSI_MESSAGES;
725	else
726		msic = 1;
727	for (i = 0; i < msic; i++) {
728		if (sc->age_intrhand[i] != NULL) {
729			bus_teardown_intr(dev, sc->age_irq[i],
730			    sc->age_intrhand[i]);
731			sc->age_intrhand[i] = NULL;
732		}
733	}
734
735	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
736	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
737		pci_release_msi(dev);
738	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
739	mtx_destroy(&sc->age_mtx);
740
741	return (0);
742}
743
744static void
745age_sysctl_node(struct age_softc *sc)
746{
747	int error;
748
749	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
750	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
751	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
752	    "I", "Statistics");
753
754	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
755	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
756	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
757	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
758
759	/* Pull in device tunables. */
760	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
761	error = resource_int_value(device_get_name(sc->age_dev),
762	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
763	if (error == 0) {
764		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
765		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
766			device_printf(sc->age_dev,
767			    "int_mod value out of range; using default: %d\n",
768			    AGE_IM_TIMER_DEFAULT);
769			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
770		}
771	}
772
773	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
774	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
775	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
776	    0, sysctl_hw_age_proc_limit, "I",
777	    "max number of Rx events to process");
778
779	/* Pull in device tunables. */
780	sc->age_process_limit = AGE_PROC_DEFAULT;
781	error = resource_int_value(device_get_name(sc->age_dev),
782	    device_get_unit(sc->age_dev), "process_limit",
783	    &sc->age_process_limit);
784	if (error == 0) {
785		if (sc->age_process_limit < AGE_PROC_MIN ||
786		    sc->age_process_limit > AGE_PROC_MAX) {
787			device_printf(sc->age_dev,
788			    "process_limit value out of range; "
789			    "using default: %d\n", AGE_PROC_DEFAULT);
790			sc->age_process_limit = AGE_PROC_DEFAULT;
791		}
792	}
793}
794
795struct age_dmamap_arg {
796	bus_addr_t	age_busaddr;
797};
798
799static void
800age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
801{
802	struct age_dmamap_arg *ctx;
803
804	if (error != 0)
805		return;
806
807	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
808
809	ctx = (struct age_dmamap_arg *)arg;
810	ctx->age_busaddr = segs[0].ds_addr;
811}
812
813/*
814 * Attansic L1 controller have single register to specify high
815 * address part of DMA blocks. So all descriptor structures and
816 * DMA memory blocks should have the same high address of given
817 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
818 */
819static int
820age_check_boundary(struct age_softc *sc)
821{
822	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
823	bus_addr_t cmb_block_end, smb_block_end;
824
825	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
826	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
827	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
828	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
829	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
830	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
831
832	if ((AGE_ADDR_HI(tx_ring_end) !=
833	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
834	    (AGE_ADDR_HI(rx_ring_end) !=
835	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
836	    (AGE_ADDR_HI(rr_ring_end) !=
837	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
838	    (AGE_ADDR_HI(cmb_block_end) !=
839	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
840	    (AGE_ADDR_HI(smb_block_end) !=
841	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
842		return (EFBIG);
843
844	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
845	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
846	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
847	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
848		return (EFBIG);
849
850	return (0);
851}
852
853static int
854age_dma_alloc(struct age_softc *sc)
855{
856	struct age_txdesc *txd;
857	struct age_rxdesc *rxd;
858	bus_addr_t lowaddr;
859	struct age_dmamap_arg ctx;
860	int error, i;
861
862	lowaddr = BUS_SPACE_MAXADDR;
863
864again:
865	/* Create parent ring/DMA block tag. */
866	error = bus_dma_tag_create(
867	    bus_get_dma_tag(sc->age_dev), /* parent */
868	    1, 0,			/* alignment, boundary */
869	    lowaddr,			/* lowaddr */
870	    BUS_SPACE_MAXADDR,		/* highaddr */
871	    NULL, NULL,			/* filter, filterarg */
872	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
873	    0,				/* nsegments */
874	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
875	    0,				/* flags */
876	    NULL, NULL,			/* lockfunc, lockarg */
877	    &sc->age_cdata.age_parent_tag);
878	if (error != 0) {
879		device_printf(sc->age_dev,
880		    "could not create parent DMA tag.\n");
881		goto fail;
882	}
883
884	/* Create tag for Tx ring. */
885	error = bus_dma_tag_create(
886	    sc->age_cdata.age_parent_tag, /* parent */
887	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
888	    BUS_SPACE_MAXADDR,		/* lowaddr */
889	    BUS_SPACE_MAXADDR,		/* highaddr */
890	    NULL, NULL,			/* filter, filterarg */
891	    AGE_TX_RING_SZ,		/* maxsize */
892	    1,				/* nsegments */
893	    AGE_TX_RING_SZ,		/* maxsegsize */
894	    0,				/* flags */
895	    NULL, NULL,			/* lockfunc, lockarg */
896	    &sc->age_cdata.age_tx_ring_tag);
897	if (error != 0) {
898		device_printf(sc->age_dev,
899		    "could not create Tx ring DMA tag.\n");
900		goto fail;
901	}
902
903	/* Create tag for Rx ring. */
904	error = bus_dma_tag_create(
905	    sc->age_cdata.age_parent_tag, /* parent */
906	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
907	    BUS_SPACE_MAXADDR,		/* lowaddr */
908	    BUS_SPACE_MAXADDR,		/* highaddr */
909	    NULL, NULL,			/* filter, filterarg */
910	    AGE_RX_RING_SZ,		/* maxsize */
911	    1,				/* nsegments */
912	    AGE_RX_RING_SZ,		/* maxsegsize */
913	    0,				/* flags */
914	    NULL, NULL,			/* lockfunc, lockarg */
915	    &sc->age_cdata.age_rx_ring_tag);
916	if (error != 0) {
917		device_printf(sc->age_dev,
918		    "could not create Rx ring DMA tag.\n");
919		goto fail;
920	}
921
922	/* Create tag for Rx return ring. */
923	error = bus_dma_tag_create(
924	    sc->age_cdata.age_parent_tag, /* parent */
925	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
926	    BUS_SPACE_MAXADDR,		/* lowaddr */
927	    BUS_SPACE_MAXADDR,		/* highaddr */
928	    NULL, NULL,			/* filter, filterarg */
929	    AGE_RR_RING_SZ,		/* maxsize */
930	    1,				/* nsegments */
931	    AGE_RR_RING_SZ,		/* maxsegsize */
932	    0,				/* flags */
933	    NULL, NULL,			/* lockfunc, lockarg */
934	    &sc->age_cdata.age_rr_ring_tag);
935	if (error != 0) {
936		device_printf(sc->age_dev,
937		    "could not create Rx return ring DMA tag.\n");
938		goto fail;
939	}
940
941	/* Create tag for coalesing message block. */
942	error = bus_dma_tag_create(
943	    sc->age_cdata.age_parent_tag, /* parent */
944	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
945	    BUS_SPACE_MAXADDR,		/* lowaddr */
946	    BUS_SPACE_MAXADDR,		/* highaddr */
947	    NULL, NULL,			/* filter, filterarg */
948	    AGE_CMB_BLOCK_SZ,		/* maxsize */
949	    1,				/* nsegments */
950	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
951	    0,				/* flags */
952	    NULL, NULL,			/* lockfunc, lockarg */
953	    &sc->age_cdata.age_cmb_block_tag);
954	if (error != 0) {
955		device_printf(sc->age_dev,
956		    "could not create CMB DMA tag.\n");
957		goto fail;
958	}
959
960	/* Create tag for statistics message block. */
961	error = bus_dma_tag_create(
962	    sc->age_cdata.age_parent_tag, /* parent */
963	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
964	    BUS_SPACE_MAXADDR,		/* lowaddr */
965	    BUS_SPACE_MAXADDR,		/* highaddr */
966	    NULL, NULL,			/* filter, filterarg */
967	    AGE_SMB_BLOCK_SZ,		/* maxsize */
968	    1,				/* nsegments */
969	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
970	    0,				/* flags */
971	    NULL, NULL,			/* lockfunc, lockarg */
972	    &sc->age_cdata.age_smb_block_tag);
973	if (error != 0) {
974		device_printf(sc->age_dev,
975		    "could not create SMB DMA tag.\n");
976		goto fail;
977	}
978
979	/* Allocate DMA'able memory and load the DMA map. */
980	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
981	    (void **)&sc->age_rdata.age_tx_ring,
982	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
983	    &sc->age_cdata.age_tx_ring_map);
984	if (error != 0) {
985		device_printf(sc->age_dev,
986		    "could not allocate DMA'able memory for Tx ring.\n");
987		goto fail;
988	}
989	ctx.age_busaddr = 0;
990	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
991	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
992	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
993	if (error != 0 || ctx.age_busaddr == 0) {
994		device_printf(sc->age_dev,
995		    "could not load DMA'able memory for Tx ring.\n");
996		goto fail;
997	}
998	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
999	/* Rx ring */
1000	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1001	    (void **)&sc->age_rdata.age_rx_ring,
1002	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1003	    &sc->age_cdata.age_rx_ring_map);
1004	if (error != 0) {
1005		device_printf(sc->age_dev,
1006		    "could not allocate DMA'able memory for Rx ring.\n");
1007		goto fail;
1008	}
1009	ctx.age_busaddr = 0;
1010	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1011	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1012	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1013	if (error != 0 || ctx.age_busaddr == 0) {
1014		device_printf(sc->age_dev,
1015		    "could not load DMA'able memory for Rx ring.\n");
1016		goto fail;
1017	}
1018	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1019	/* Rx return ring */
1020	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1021	    (void **)&sc->age_rdata.age_rr_ring,
1022	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1023	    &sc->age_cdata.age_rr_ring_map);
1024	if (error != 0) {
1025		device_printf(sc->age_dev,
1026		    "could not allocate DMA'able memory for Rx return ring.\n");
1027		goto fail;
1028	}
1029	ctx.age_busaddr = 0;
1030	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1031	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1032	    AGE_RR_RING_SZ, age_dmamap_cb,
1033	    &ctx, 0);
1034	if (error != 0 || ctx.age_busaddr == 0) {
1035		device_printf(sc->age_dev,
1036		    "could not load DMA'able memory for Rx return ring.\n");
1037		goto fail;
1038	}
1039	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1040	/* CMB block */
1041	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1042	    (void **)&sc->age_rdata.age_cmb_block,
1043	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1044	    &sc->age_cdata.age_cmb_block_map);
1045	if (error != 0) {
1046		device_printf(sc->age_dev,
1047		    "could not allocate DMA'able memory for CMB block.\n");
1048		goto fail;
1049	}
1050	ctx.age_busaddr = 0;
1051	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1052	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1053	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1054	if (error != 0 || ctx.age_busaddr == 0) {
1055		device_printf(sc->age_dev,
1056		    "could not load DMA'able memory for CMB block.\n");
1057		goto fail;
1058	}
1059	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1060	/* SMB block */
1061	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1062	    (void **)&sc->age_rdata.age_smb_block,
1063	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1064	    &sc->age_cdata.age_smb_block_map);
1065	if (error != 0) {
1066		device_printf(sc->age_dev,
1067		    "could not allocate DMA'able memory for SMB block.\n");
1068		goto fail;
1069	}
1070	ctx.age_busaddr = 0;
1071	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1072	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1073	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1074	if (error != 0 || ctx.age_busaddr == 0) {
1075		device_printf(sc->age_dev,
1076		    "could not load DMA'able memory for SMB block.\n");
1077		goto fail;
1078	}
1079	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1080
1081	/*
1082	 * All ring buffer and DMA blocks should have the same
1083	 * high address part of 64bit DMA address space.
1084	 */
1085	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1086	    (error = age_check_boundary(sc)) != 0) {
1087		device_printf(sc->age_dev, "4GB boundary crossed, "
1088		    "switching to 32bit DMA addressing mode.\n");
1089		age_dma_free(sc);
1090		/* Limit DMA address space to 32bit and try again. */
1091		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1092		goto again;
1093	}
1094
1095	/*
1096	 * Create Tx/Rx buffer parent tag.
1097	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1098	 * so it needs separate parent DMA tag.
1099	 */
1100	error = bus_dma_tag_create(
1101	    bus_get_dma_tag(sc->age_dev), /* parent */
1102	    1, 0,			/* alignment, boundary */
1103	    BUS_SPACE_MAXADDR,		/* lowaddr */
1104	    BUS_SPACE_MAXADDR,		/* highaddr */
1105	    NULL, NULL,			/* filter, filterarg */
1106	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1107	    0,				/* nsegments */
1108	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1109	    0,				/* flags */
1110	    NULL, NULL,			/* lockfunc, lockarg */
1111	    &sc->age_cdata.age_buffer_tag);
1112	if (error != 0) {
1113		device_printf(sc->age_dev,
1114		    "could not create parent buffer DMA tag.\n");
1115		goto fail;
1116	}
1117
1118	/* Create tag for Tx buffers. */
1119	error = bus_dma_tag_create(
1120	    sc->age_cdata.age_buffer_tag, /* parent */
1121	    1, 0,			/* alignment, boundary */
1122	    BUS_SPACE_MAXADDR,		/* lowaddr */
1123	    BUS_SPACE_MAXADDR,		/* highaddr */
1124	    NULL, NULL,			/* filter, filterarg */
1125	    AGE_TSO_MAXSIZE,		/* maxsize */
1126	    AGE_MAXTXSEGS,		/* nsegments */
1127	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1128	    0,				/* flags */
1129	    NULL, NULL,			/* lockfunc, lockarg */
1130	    &sc->age_cdata.age_tx_tag);
1131	if (error != 0) {
1132		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1133		goto fail;
1134	}
1135
1136	/* Create tag for Rx buffers. */
1137	error = bus_dma_tag_create(
1138	    sc->age_cdata.age_buffer_tag, /* parent */
1139	    1, 0,			/* alignment, boundary */
1140	    BUS_SPACE_MAXADDR,		/* lowaddr */
1141	    BUS_SPACE_MAXADDR,		/* highaddr */
1142	    NULL, NULL,			/* filter, filterarg */
1143	    MCLBYTES,			/* maxsize */
1144	    1,				/* nsegments */
1145	    MCLBYTES,			/* maxsegsize */
1146	    0,				/* flags */
1147	    NULL, NULL,			/* lockfunc, lockarg */
1148	    &sc->age_cdata.age_rx_tag);
1149	if (error != 0) {
1150		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1151		goto fail;
1152	}
1153
1154	/* Create DMA maps for Tx buffers. */
1155	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1156		txd = &sc->age_cdata.age_txdesc[i];
1157		txd->tx_m = NULL;
1158		txd->tx_dmamap = NULL;
1159		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1160		    &txd->tx_dmamap);
1161		if (error != 0) {
1162			device_printf(sc->age_dev,
1163			    "could not create Tx dmamap.\n");
1164			goto fail;
1165		}
1166	}
1167	/* Create DMA maps for Rx buffers. */
1168	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1169	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1170		device_printf(sc->age_dev,
1171		    "could not create spare Rx dmamap.\n");
1172		goto fail;
1173	}
1174	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1175		rxd = &sc->age_cdata.age_rxdesc[i];
1176		rxd->rx_m = NULL;
1177		rxd->rx_dmamap = NULL;
1178		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1179		    &rxd->rx_dmamap);
1180		if (error != 0) {
1181			device_printf(sc->age_dev,
1182			    "could not create Rx dmamap.\n");
1183			goto fail;
1184		}
1185	}
1186
1187fail:
1188	return (error);
1189}
1190
1191static void
1192age_dma_free(struct age_softc *sc)
1193{
1194	struct age_txdesc *txd;
1195	struct age_rxdesc *rxd;
1196	int i;
1197
1198	/* Tx buffers */
1199	if (sc->age_cdata.age_tx_tag != NULL) {
1200		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1201			txd = &sc->age_cdata.age_txdesc[i];
1202			if (txd->tx_dmamap != NULL) {
1203				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1204				    txd->tx_dmamap);
1205				txd->tx_dmamap = NULL;
1206			}
1207		}
1208		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1209		sc->age_cdata.age_tx_tag = NULL;
1210	}
1211	/* Rx buffers */
1212	if (sc->age_cdata.age_rx_tag != NULL) {
1213		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1214			rxd = &sc->age_cdata.age_rxdesc[i];
1215			if (rxd->rx_dmamap != NULL) {
1216				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1217				    rxd->rx_dmamap);
1218				rxd->rx_dmamap = NULL;
1219			}
1220		}
1221		if (sc->age_cdata.age_rx_sparemap != NULL) {
1222			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1223			    sc->age_cdata.age_rx_sparemap);
1224			sc->age_cdata.age_rx_sparemap = NULL;
1225		}
1226		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1227		sc->age_cdata.age_rx_tag = NULL;
1228	}
1229	/* Tx ring. */
1230	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1231		if (sc->age_cdata.age_tx_ring_map != NULL)
1232			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1233			    sc->age_cdata.age_tx_ring_map);
1234		if (sc->age_cdata.age_tx_ring_map != NULL &&
1235		    sc->age_rdata.age_tx_ring != NULL)
1236			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1237			    sc->age_rdata.age_tx_ring,
1238			    sc->age_cdata.age_tx_ring_map);
1239		sc->age_rdata.age_tx_ring = NULL;
1240		sc->age_cdata.age_tx_ring_map = NULL;
1241		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1242		sc->age_cdata.age_tx_ring_tag = NULL;
1243	}
1244	/* Rx ring. */
1245	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1246		if (sc->age_cdata.age_rx_ring_map != NULL)
1247			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1248			    sc->age_cdata.age_rx_ring_map);
1249		if (sc->age_cdata.age_rx_ring_map != NULL &&
1250		    sc->age_rdata.age_rx_ring != NULL)
1251			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1252			    sc->age_rdata.age_rx_ring,
1253			    sc->age_cdata.age_rx_ring_map);
1254		sc->age_rdata.age_rx_ring = NULL;
1255		sc->age_cdata.age_rx_ring_map = NULL;
1256		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1257		sc->age_cdata.age_rx_ring_tag = NULL;
1258	}
1259	/* Rx return ring. */
1260	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1261		if (sc->age_cdata.age_rr_ring_map != NULL)
1262			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1263			    sc->age_cdata.age_rr_ring_map);
1264		if (sc->age_cdata.age_rr_ring_map != NULL &&
1265		    sc->age_rdata.age_rr_ring != NULL)
1266			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1267			    sc->age_rdata.age_rr_ring,
1268			    sc->age_cdata.age_rr_ring_map);
1269		sc->age_rdata.age_rr_ring = NULL;
1270		sc->age_cdata.age_rr_ring_map = NULL;
1271		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1272		sc->age_cdata.age_rr_ring_tag = NULL;
1273	}
1274	/* CMB block */
1275	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1276		if (sc->age_cdata.age_cmb_block_map != NULL)
1277			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1278			    sc->age_cdata.age_cmb_block_map);
1279		if (sc->age_cdata.age_cmb_block_map != NULL &&
1280		    sc->age_rdata.age_cmb_block != NULL)
1281			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1282			    sc->age_rdata.age_cmb_block,
1283			    sc->age_cdata.age_cmb_block_map);
1284		sc->age_rdata.age_cmb_block = NULL;
1285		sc->age_cdata.age_cmb_block_map = NULL;
1286		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1287		sc->age_cdata.age_cmb_block_tag = NULL;
1288	}
1289	/* SMB block */
1290	if (sc->age_cdata.age_smb_block_tag != NULL) {
1291		if (sc->age_cdata.age_smb_block_map != NULL)
1292			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1293			    sc->age_cdata.age_smb_block_map);
1294		if (sc->age_cdata.age_smb_block_map != NULL &&
1295		    sc->age_rdata.age_smb_block != NULL)
1296			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1297			    sc->age_rdata.age_smb_block,
1298			    sc->age_cdata.age_smb_block_map);
1299		sc->age_rdata.age_smb_block = NULL;
1300		sc->age_cdata.age_smb_block_map = NULL;
1301		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1302		sc->age_cdata.age_smb_block_tag = NULL;
1303	}
1304
1305	if (sc->age_cdata.age_buffer_tag != NULL) {
1306		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1307		sc->age_cdata.age_buffer_tag = NULL;
1308	}
1309	if (sc->age_cdata.age_parent_tag != NULL) {
1310		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1311		sc->age_cdata.age_parent_tag = NULL;
1312	}
1313}
1314
1315/*
1316 *	Make sure the interface is stopped at reboot time.
1317 */
1318static int
1319age_shutdown(device_t dev)
1320{
1321
1322	return (age_suspend(dev));
1323}
1324
1325static void
1326age_setwol(struct age_softc *sc)
1327{
1328	struct ifnet *ifp;
1329	struct mii_data *mii;
1330	uint32_t reg, pmcs;
1331	uint16_t pmstat;
1332	int aneg, i, pmc;
1333
1334	AGE_LOCK_ASSERT(sc);
1335
1336	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1337		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1338		/*
1339		 * No PME capability, PHY power down.
1340		 * XXX
1341		 * Due to an unknown reason powering down PHY resulted
1342		 * in unexpected results such as inaccessbility of
1343		 * hardware of freshly rebooted system. Disable
1344		 * powering down PHY until I got more information for
1345		 * Attansic/Atheros PHY hardwares.
1346		 */
1347#ifdef notyet
1348		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1349		    MII_BMCR, BMCR_PDOWN);
1350#endif
1351		return;
1352	}
1353
1354	ifp = sc->age_ifp;
1355	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1356		/*
1357		 * Note, this driver resets the link speed to 10/100Mbps with
1358		 * auto-negotiation but we don't know whether that operation
1359		 * would succeed or not as it have no control after powering
1360		 * off. If the renegotiation fail WOL may not work. Running
1361		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1362		 * specified in PCI specification and that would result in
1363		 * complete shutdowning power to ethernet controller.
1364		 *
1365		 * TODO
1366		 *  Save current negotiated media speed/duplex/flow-control
1367		 *  to softc and restore the same link again after resuming.
1368		 *  PHY handling such as power down/resetting to 100Mbps
1369		 *  may be better handled in suspend method in phy driver.
1370		 */
1371		mii = device_get_softc(sc->age_miibus);
1372		mii_pollstat(mii);
1373		aneg = 0;
1374		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1375			switch IFM_SUBTYPE(mii->mii_media_active) {
1376			case IFM_10_T:
1377			case IFM_100_TX:
1378				goto got_link;
1379			case IFM_1000_T:
1380				aneg++;
1381			default:
1382				break;
1383			}
1384		}
1385		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1386		    MII_100T2CR, 0);
1387		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1388		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1389		    ANAR_10 | ANAR_CSMA);
1390		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1392		DELAY(1000);
1393		if (aneg != 0) {
1394			/* Poll link state until age(4) get a 10/100 link. */
1395			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1396				mii_pollstat(mii);
1397				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1398					switch (IFM_SUBTYPE(
1399					    mii->mii_media_active)) {
1400					case IFM_10_T:
1401					case IFM_100_TX:
1402						age_mac_config(sc);
1403						goto got_link;
1404					default:
1405						break;
1406					}
1407				}
1408				AGE_UNLOCK(sc);
1409				pause("agelnk", hz);
1410				AGE_LOCK(sc);
1411			}
1412			if (i == MII_ANEGTICKS_GIGE)
1413				device_printf(sc->age_dev,
1414				    "establishing link failed, "
1415				    "WOL may not work!");
1416		}
1417		/*
1418		 * No link, force MAC to have 100Mbps, full-duplex link.
1419		 * This is the last resort and may/may not work.
1420		 */
1421		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1422		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1423		age_mac_config(sc);
1424	}
1425
1426got_link:
1427	pmcs = 0;
1428	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1429		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1430	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1431	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1432	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1433	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1434	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1435		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1436	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1437		reg |= MAC_CFG_RX_ENB;
1438		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1439	}
1440
1441	/* Request PME. */
1442	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1443	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1444	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1445		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1446	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1447#ifdef notyet
1448	/* See above for powering down PHY issues. */
1449	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1450		/* No WOL, PHY power down. */
1451		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1452		    MII_BMCR, BMCR_PDOWN);
1453	}
1454#endif
1455}
1456
1457static int
1458age_suspend(device_t dev)
1459{
1460	struct age_softc *sc;
1461
1462	sc = device_get_softc(dev);
1463
1464	AGE_LOCK(sc);
1465	age_stop(sc);
1466	age_setwol(sc);
1467	AGE_UNLOCK(sc);
1468
1469	return (0);
1470}
1471
1472static int
1473age_resume(device_t dev)
1474{
1475	struct age_softc *sc;
1476	struct ifnet *ifp;
1477
1478	sc = device_get_softc(dev);
1479
1480	AGE_LOCK(sc);
1481	age_phy_reset(sc);
1482	ifp = sc->age_ifp;
1483	if ((ifp->if_flags & IFF_UP) != 0)
1484		age_init_locked(sc);
1485
1486	AGE_UNLOCK(sc);
1487
1488	return (0);
1489}
1490
1491static int
1492age_encap(struct age_softc *sc, struct mbuf **m_head)
1493{
1494	struct age_txdesc *txd, *txd_last;
1495	struct tx_desc *desc;
1496	struct mbuf *m;
1497	struct ip *ip;
1498	struct tcphdr *tcp;
1499	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1500	bus_dmamap_t map;
1501	uint32_t cflags, ip_off, poff, vtag;
1502	int error, i, nsegs, prod, si;
1503
1504	AGE_LOCK_ASSERT(sc);
1505
1506	M_ASSERTPKTHDR((*m_head));
1507
1508	m = *m_head;
1509	ip = NULL;
1510	tcp = NULL;
1511	cflags = vtag = 0;
1512	ip_off = poff = 0;
1513	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1514		/*
1515		 * L1 requires offset of TCP/UDP payload in its Tx
1516		 * descriptor to perform hardware Tx checksum offload.
1517		 * Additionally, TSO requires IP/TCP header size and
1518		 * modification of IP/TCP header in order to make TSO
1519		 * engine work. This kind of operation takes many CPU
1520		 * cycles on FreeBSD so fast host CPU is needed to get
1521		 * smooth TSO performance.
1522		 */
1523		struct ether_header *eh;
1524
1525		if (M_WRITABLE(m) == 0) {
1526			/* Get a writable copy. */
1527			m = m_dup(*m_head, M_DONTWAIT);
1528			/* Release original mbufs. */
1529			m_freem(*m_head);
1530			if (m == NULL) {
1531				*m_head = NULL;
1532				return (ENOBUFS);
1533			}
1534			*m_head = m;
1535		}
1536		ip_off = sizeof(struct ether_header);
1537		m = m_pullup(m, ip_off);
1538		if (m == NULL) {
1539			*m_head = NULL;
1540			return (ENOBUFS);
1541		}
1542		eh = mtod(m, struct ether_header *);
1543		/*
1544		 * Check if hardware VLAN insertion is off.
1545		 * Additional check for LLC/SNAP frame?
1546		 */
1547		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1548			ip_off = sizeof(struct ether_vlan_header);
1549			m = m_pullup(m, ip_off);
1550			if (m == NULL) {
1551				*m_head = NULL;
1552				return (ENOBUFS);
1553			}
1554		}
1555		m = m_pullup(m, ip_off + sizeof(struct ip));
1556		if (m == NULL) {
1557			*m_head = NULL;
1558			return (ENOBUFS);
1559		}
1560		ip = (struct ip *)(mtod(m, char *) + ip_off);
1561		poff = ip_off + (ip->ip_hl << 2);
1562		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1563			m = m_pullup(m, poff + sizeof(struct tcphdr));
1564			if (m == NULL) {
1565				*m_head = NULL;
1566				return (ENOBUFS);
1567			}
1568			ip = (struct ip *)(mtod(m, char *) + ip_off);
1569			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1570			/*
1571			 * L1 requires IP/TCP header size and offset as
1572			 * well as TCP pseudo checksum which complicates
1573			 * TSO configuration. I guess this comes from the
1574			 * adherence to Microsoft NDIS Large Send
1575			 * specification which requires insertion of
1576			 * pseudo checksum by upper stack. The pseudo
1577			 * checksum that NDIS refers to doesn't include
1578			 * TCP payload length so age(4) should recompute
1579			 * the pseudo checksum here. Hopefully this wouldn't
1580			 * be much burden on modern CPUs.
1581			 * Reset IP checksum and recompute TCP pseudo
1582			 * checksum as NDIS specification said.
1583			 */
1584			ip->ip_sum = 0;
1585			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1586				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1587				    ip->ip_dst.s_addr,
1588				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1589			else
1590				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1591				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1592		}
1593		*m_head = m;
1594	}
1595
1596	si = prod = sc->age_cdata.age_tx_prod;
1597	txd = &sc->age_cdata.age_txdesc[prod];
1598	txd_last = txd;
1599	map = txd->tx_dmamap;
1600
1601	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1602	    *m_head, txsegs, &nsegs, 0);
1603	if (error == EFBIG) {
1604		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1605		if (m == NULL) {
1606			m_freem(*m_head);
1607			*m_head = NULL;
1608			return (ENOMEM);
1609		}
1610		*m_head = m;
1611		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1612		    *m_head, txsegs, &nsegs, 0);
1613		if (error != 0) {
1614			m_freem(*m_head);
1615			*m_head = NULL;
1616			return (error);
1617		}
1618	} else if (error != 0)
1619		return (error);
1620	if (nsegs == 0) {
1621		m_freem(*m_head);
1622		*m_head = NULL;
1623		return (EIO);
1624	}
1625
1626	/* Check descriptor overrun. */
1627	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1628		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1629		return (ENOBUFS);
1630	}
1631
1632	m = *m_head;
1633	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1634		/* Configure TSO. */
1635		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1636			/* Not TSO but IP/TCP checksum offload. */
1637			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1638			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1639			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1640		} else {
1641			/* Request TSO and set MSS. */
1642			cflags |= AGE_TD_TSO_IPV4;
1643			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1644			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1645			    AGE_TD_TSO_MSS_SHIFT);
1646		}
1647		/* Set IP/TCP header size. */
1648		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1649		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1650	} else if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1651		/* Configure Tx IP/TCP/UDP checksum offload. */
1652		cflags |= AGE_TD_CSUM;
1653		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1654			cflags |= AGE_TD_TCPCSUM;
1655		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1656			cflags |= AGE_TD_UDPCSUM;
1657		/* Set checksum start offset. */
1658		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1659		/* Set checksum insertion position of TCP/UDP. */
1660		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1661		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1662	}
1663
1664	/* Configure VLAN hardware tag insertion. */
1665	if ((m->m_flags & M_VLANTAG) != 0) {
1666		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1667		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1668		cflags |= AGE_TD_INSERT_VLAN_TAG;
1669	}
1670
1671	desc = NULL;
1672	for (i = 0; i < nsegs; i++) {
1673		desc = &sc->age_rdata.age_tx_ring[prod];
1674		desc->addr = htole64(txsegs[i].ds_addr);
1675		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1676		desc->flags = htole32(cflags);
1677		sc->age_cdata.age_tx_cnt++;
1678		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1679	}
1680	/* Update producer index. */
1681	sc->age_cdata.age_tx_prod = prod;
1682
1683	/* Set EOP on the last descriptor. */
1684	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1685	desc = &sc->age_rdata.age_tx_ring[prod];
1686	desc->flags |= htole32(AGE_TD_EOP);
1687
1688	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1689	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1690		desc = &sc->age_rdata.age_tx_ring[si];
1691		desc->flags |= htole32(AGE_TD_TSO_HDR);
1692	}
1693
1694	/* Swap dmamap of the first and the last. */
1695	txd = &sc->age_cdata.age_txdesc[prod];
1696	map = txd_last->tx_dmamap;
1697	txd_last->tx_dmamap = txd->tx_dmamap;
1698	txd->tx_dmamap = map;
1699	txd->tx_m = m;
1700
1701	/* Sync descriptors. */
1702	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1703	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1704	    sc->age_cdata.age_tx_ring_map,
1705	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1706
1707	return (0);
1708}
1709
1710static void
1711age_tx_task(void *arg, int pending)
1712{
1713	struct ifnet *ifp;
1714
1715	ifp = (struct ifnet *)arg;
1716	age_start(ifp);
1717}
1718
1719static void
1720age_start(struct ifnet *ifp)
1721{
1722        struct age_softc *sc;
1723        struct mbuf *m_head;
1724	int enq;
1725
1726	sc = ifp->if_softc;
1727
1728	AGE_LOCK(sc);
1729
1730	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1731	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1732		AGE_UNLOCK(sc);
1733		return;
1734	}
1735
1736	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1737		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1738		if (m_head == NULL)
1739			break;
1740		/*
1741		 * Pack the data into the transmit ring. If we
1742		 * don't have room, set the OACTIVE flag and wait
1743		 * for the NIC to drain the ring.
1744		 */
1745		if (age_encap(sc, &m_head)) {
1746			if (m_head == NULL)
1747				break;
1748			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1749			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1750			break;
1751		}
1752
1753		enq++;
1754		/*
1755		 * If there's a BPF listener, bounce a copy of this frame
1756		 * to him.
1757		 */
1758		ETHER_BPF_MTAP(ifp, m_head);
1759	}
1760
1761	if (enq > 0) {
1762		/* Update mbox. */
1763		AGE_COMMIT_MBOX(sc);
1764		/* Set a timeout in case the chip goes out to lunch. */
1765		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1766	}
1767
1768	AGE_UNLOCK(sc);
1769}
1770
1771static void
1772age_watchdog(struct age_softc *sc)
1773{
1774	struct ifnet *ifp;
1775
1776	AGE_LOCK_ASSERT(sc);
1777
1778	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1779		return;
1780
1781	ifp = sc->age_ifp;
1782	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1783		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1784		ifp->if_oerrors++;
1785		ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1786		age_init_locked(sc);
1787		return;
1788	}
1789	if (sc->age_cdata.age_tx_cnt == 0) {
1790		if_printf(sc->age_ifp,
1791		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1792		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1793			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1794		return;
1795	}
1796	if_printf(sc->age_ifp, "watchdog timeout\n");
1797	ifp->if_oerrors++;
1798	ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1799	age_init_locked(sc);
1800	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1801		taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1802}
1803
1804static int
1805age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1806{
1807	struct age_softc *sc;
1808	struct ifreq *ifr;
1809	struct mii_data *mii;
1810	uint32_t reg;
1811	int error, mask;
1812
1813	sc = ifp->if_softc;
1814	ifr = (struct ifreq *)data;
1815	error = 0;
1816	switch (cmd) {
1817	case SIOCSIFMTU:
1818		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1819			error = EINVAL;
1820		else if (ifp->if_mtu != ifr->ifr_mtu) {
1821			AGE_LOCK(sc);
1822			ifp->if_mtu = ifr->ifr_mtu;
1823			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1824				ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
1825				age_init_locked(sc);
1826			}
1827			AGE_UNLOCK(sc);
1828		}
1829		break;
1830	case SIOCSIFFLAGS:
1831		AGE_LOCK(sc);
1832		if ((ifp->if_flags & IFF_UP) != 0) {
1833			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1834				if (((ifp->if_flags ^ sc->age_if_flags)
1835				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1836					age_rxfilter(sc);
1837			} else {
1838				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1839					age_init_locked(sc);
1840			}
1841		} else {
1842			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1843				age_stop(sc);
1844		}
1845		sc->age_if_flags = ifp->if_flags;
1846		AGE_UNLOCK(sc);
1847		break;
1848	case SIOCADDMULTI:
1849	case SIOCDELMULTI:
1850		AGE_LOCK(sc);
1851		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1852			age_rxfilter(sc);
1853		AGE_UNLOCK(sc);
1854		break;
1855	case SIOCSIFMEDIA:
1856	case SIOCGIFMEDIA:
1857		mii = device_get_softc(sc->age_miibus);
1858		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1859		break;
1860	case SIOCSIFCAP:
1861		AGE_LOCK(sc);
1862		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1863		if ((mask & IFCAP_TXCSUM) != 0 &&
1864		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1865			ifp->if_capenable ^= IFCAP_TXCSUM;
1866			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1867				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1868			else
1869				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1870		}
1871		if ((mask & IFCAP_RXCSUM) != 0 &&
1872		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1873			ifp->if_capenable ^= IFCAP_RXCSUM;
1874			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1875			reg &= ~MAC_CFG_RXCSUM_ENB;
1876			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1877				reg |= MAC_CFG_RXCSUM_ENB;
1878			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1879		}
1880		if ((mask & IFCAP_TSO4) != 0 &&
1881		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1882			ifp->if_capenable ^= IFCAP_TSO4;
1883			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1884				ifp->if_hwassist |= CSUM_TSO;
1885			else
1886				ifp->if_hwassist &= ~CSUM_TSO;
1887		}
1888
1889		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1890		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1891			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1892		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1893		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1894			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1895		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1896		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1897			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1898		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1899		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1900			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1901		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1902		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1903			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1904			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1905				ifp->if_capenable &= ~IFCAP_VLAN_HWTSO;
1906			age_rxvlan(sc);
1907		}
1908		AGE_UNLOCK(sc);
1909		VLAN_CAPABILITIES(ifp);
1910		break;
1911	default:
1912		error = ether_ioctl(ifp, cmd, data);
1913		break;
1914	}
1915
1916	return (error);
1917}
1918
1919static void
1920age_mac_config(struct age_softc *sc)
1921{
1922	struct mii_data *mii;
1923	uint32_t reg;
1924
1925	AGE_LOCK_ASSERT(sc);
1926
1927	mii = device_get_softc(sc->age_miibus);
1928	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1929	reg &= ~MAC_CFG_FULL_DUPLEX;
1930	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1931	reg &= ~MAC_CFG_SPEED_MASK;
1932	/* Reprogram MAC with resolved speed/duplex. */
1933	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1934	case IFM_10_T:
1935	case IFM_100_TX:
1936		reg |= MAC_CFG_SPEED_10_100;
1937		break;
1938	case IFM_1000_T:
1939		reg |= MAC_CFG_SPEED_1000;
1940		break;
1941	}
1942	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1943		reg |= MAC_CFG_FULL_DUPLEX;
1944#ifdef notyet
1945		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1946			reg |= MAC_CFG_TX_FC;
1947		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1948			reg |= MAC_CFG_RX_FC;
1949#endif
1950	}
1951
1952	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1953}
1954
1955static void
1956age_link_task(void *arg, int pending)
1957{
1958	struct age_softc *sc;
1959	struct mii_data *mii;
1960	struct ifnet *ifp;
1961	uint32_t reg;
1962
1963	sc = (struct age_softc *)arg;
1964
1965	AGE_LOCK(sc);
1966	mii = device_get_softc(sc->age_miibus);
1967	ifp = sc->age_ifp;
1968	if (mii == NULL || ifp == NULL ||
1969	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1970		AGE_UNLOCK(sc);
1971		return;
1972	}
1973
1974	sc->age_flags &= ~AGE_FLAG_LINK;
1975	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1976		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1977		case IFM_10_T:
1978		case IFM_100_TX:
1979		case IFM_1000_T:
1980			sc->age_flags |= AGE_FLAG_LINK;
1981			break;
1982		default:
1983			break;
1984		}
1985	}
1986
1987	/* Stop Rx/Tx MACs. */
1988	age_stop_rxmac(sc);
1989	age_stop_txmac(sc);
1990
1991	/* Program MACs with resolved speed/duplex/flow-control. */
1992	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
1993		age_mac_config(sc);
1994		reg = CSR_READ_4(sc, AGE_MAC_CFG);
1995		/* Restart DMA engine and Tx/Rx MAC. */
1996		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
1997		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
1998		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
1999		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2000	}
2001
2002	AGE_UNLOCK(sc);
2003}
2004
2005static void
2006age_stats_update(struct age_softc *sc)
2007{
2008	struct age_stats *stat;
2009	struct smb *smb;
2010	struct ifnet *ifp;
2011
2012	AGE_LOCK_ASSERT(sc);
2013
2014	stat = &sc->age_stat;
2015
2016	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2017	    sc->age_cdata.age_smb_block_map,
2018	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2019
2020	smb = sc->age_rdata.age_smb_block;
2021	if (smb->updated == 0)
2022		return;
2023
2024	ifp = sc->age_ifp;
2025	/* Rx stats. */
2026	stat->rx_frames += smb->rx_frames;
2027	stat->rx_bcast_frames += smb->rx_bcast_frames;
2028	stat->rx_mcast_frames += smb->rx_mcast_frames;
2029	stat->rx_pause_frames += smb->rx_pause_frames;
2030	stat->rx_control_frames += smb->rx_control_frames;
2031	stat->rx_crcerrs += smb->rx_crcerrs;
2032	stat->rx_lenerrs += smb->rx_lenerrs;
2033	stat->rx_bytes += smb->rx_bytes;
2034	stat->rx_runts += smb->rx_runts;
2035	stat->rx_fragments += smb->rx_fragments;
2036	stat->rx_pkts_64 += smb->rx_pkts_64;
2037	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2038	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2039	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2040	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2041	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2042	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2043	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2044	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2045	stat->rx_desc_oflows += smb->rx_desc_oflows;
2046	stat->rx_alignerrs += smb->rx_alignerrs;
2047	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2048	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2049	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2050
2051	/* Tx stats. */
2052	stat->tx_frames += smb->tx_frames;
2053	stat->tx_bcast_frames += smb->tx_bcast_frames;
2054	stat->tx_mcast_frames += smb->tx_mcast_frames;
2055	stat->tx_pause_frames += smb->tx_pause_frames;
2056	stat->tx_excess_defer += smb->tx_excess_defer;
2057	stat->tx_control_frames += smb->tx_control_frames;
2058	stat->tx_deferred += smb->tx_deferred;
2059	stat->tx_bytes += smb->tx_bytes;
2060	stat->tx_pkts_64 += smb->tx_pkts_64;
2061	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2062	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2063	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2064	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2065	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2066	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2067	stat->tx_single_colls += smb->tx_single_colls;
2068	stat->tx_multi_colls += smb->tx_multi_colls;
2069	stat->tx_late_colls += smb->tx_late_colls;
2070	stat->tx_excess_colls += smb->tx_excess_colls;
2071	stat->tx_underrun += smb->tx_underrun;
2072	stat->tx_desc_underrun += smb->tx_desc_underrun;
2073	stat->tx_lenerrs += smb->tx_lenerrs;
2074	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2075	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2076	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2077
2078	/* Update counters in ifnet. */
2079	ifp->if_opackets += smb->tx_frames;
2080
2081	ifp->if_collisions += smb->tx_single_colls +
2082	    smb->tx_multi_colls + smb->tx_late_colls +
2083	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2084
2085	ifp->if_oerrors += smb->tx_excess_colls +
2086	    smb->tx_late_colls + smb->tx_underrun +
2087	    smb->tx_pkts_truncated;
2088
2089	ifp->if_ipackets += smb->rx_frames;
2090
2091	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2092	    smb->rx_runts + smb->rx_pkts_truncated +
2093	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2094	    smb->rx_alignerrs;
2095
2096	/* Update done, clear. */
2097	smb->updated = 0;
2098
2099	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2100	    sc->age_cdata.age_smb_block_map,
2101	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2102}
2103
2104static int
2105age_intr(void *arg)
2106{
2107	struct age_softc *sc;
2108	uint32_t status;
2109
2110	sc = (struct age_softc *)arg;
2111
2112	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2113	if (status == 0 || (status & AGE_INTRS) == 0)
2114		return (FILTER_STRAY);
2115	/* Disable interrupts. */
2116	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2117	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2118
2119	return (FILTER_HANDLED);
2120}
2121
2122static void
2123age_int_task(void *arg, int pending)
2124{
2125	struct age_softc *sc;
2126	struct ifnet *ifp;
2127	struct cmb *cmb;
2128	uint32_t status;
2129
2130	sc = (struct age_softc *)arg;
2131
2132	AGE_LOCK(sc);
2133
2134	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2135	    sc->age_cdata.age_cmb_block_map,
2136	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2137	cmb = sc->age_rdata.age_cmb_block;
2138	status = le32toh(cmb->intr_status);
2139	if (sc->age_morework != 0)
2140		status |= INTR_CMB_RX;
2141	if ((status & AGE_INTRS) == 0)
2142		goto done;
2143
2144	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2145	    TPD_CONS_SHIFT;
2146	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2147	    RRD_PROD_SHIFT;
2148	/* Let hardware know CMB was served. */
2149	cmb->intr_status = 0;
2150	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2151	    sc->age_cdata.age_cmb_block_map,
2152	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2153
2154#if 0
2155	printf("INTR: 0x%08x\n", status);
2156	status &= ~INTR_DIS_DMA;
2157	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2158#endif
2159	ifp = sc->age_ifp;
2160	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2161		if ((status & INTR_CMB_RX) != 0)
2162			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2163			    sc->age_process_limit);
2164		if ((status & INTR_CMB_TX) != 0)
2165			age_txintr(sc, sc->age_tpd_cons);
2166		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2167			if ((status & INTR_DMA_RD_TO_RST) != 0)
2168				device_printf(sc->age_dev,
2169				    "DMA read error! -- resetting\n");
2170			if ((status & INTR_DMA_WR_TO_RST) != 0)
2171				device_printf(sc->age_dev,
2172				    "DMA write error! -- resetting\n");
2173			ifp->if_drv_flags &= ~IFF_DRV_RUNNING;
2174			age_init_locked(sc);
2175		}
2176		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2177			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2178		if ((status & INTR_SMB) != 0)
2179			age_stats_update(sc);
2180	}
2181
2182	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2183	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2184	    sc->age_cdata.age_cmb_block_map,
2185	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2186	status = le32toh(cmb->intr_status);
2187	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2188		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2189		AGE_UNLOCK(sc);
2190		return;
2191	}
2192
2193done:
2194	/* Re-enable interrupts. */
2195	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2196	AGE_UNLOCK(sc);
2197}
2198
2199static void
2200age_txintr(struct age_softc *sc, int tpd_cons)
2201{
2202	struct ifnet *ifp;
2203	struct age_txdesc *txd;
2204	int cons, prog;
2205
2206	AGE_LOCK_ASSERT(sc);
2207
2208	ifp = sc->age_ifp;
2209
2210	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2211	    sc->age_cdata.age_tx_ring_map,
2212	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2213
2214	/*
2215	 * Go through our Tx list and free mbufs for those
2216	 * frames which have been transmitted.
2217	 */
2218	cons = sc->age_cdata.age_tx_cons;
2219	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2220		if (sc->age_cdata.age_tx_cnt <= 0)
2221			break;
2222		prog++;
2223		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2224		sc->age_cdata.age_tx_cnt--;
2225		txd = &sc->age_cdata.age_txdesc[cons];
2226		/*
2227		 * Clear Tx descriptors, it's not required but would
2228		 * help debugging in case of Tx issues.
2229		 */
2230		txd->tx_desc->addr = 0;
2231		txd->tx_desc->len = 0;
2232		txd->tx_desc->flags = 0;
2233
2234		if (txd->tx_m == NULL)
2235			continue;
2236		/* Reclaim transmitted mbufs. */
2237		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2238		    BUS_DMASYNC_POSTWRITE);
2239		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2240		m_freem(txd->tx_m);
2241		txd->tx_m = NULL;
2242	}
2243
2244	if (prog > 0) {
2245		sc->age_cdata.age_tx_cons = cons;
2246
2247		/*
2248		 * Unarm watchdog timer only when there are no pending
2249		 * Tx descriptors in queue.
2250		 */
2251		if (sc->age_cdata.age_tx_cnt == 0)
2252			sc->age_watchdog_timer = 0;
2253		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2254		    sc->age_cdata.age_tx_ring_map,
2255		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2256	}
2257}
2258
2259/* Receive a frame. */
2260static void
2261age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2262{
2263	struct age_rxdesc *rxd;
2264	struct rx_desc *desc;
2265	struct ifnet *ifp;
2266	struct mbuf *mp, *m;
2267	uint32_t status, index, vtag;
2268	int count, nsegs, pktlen;
2269	int rx_cons;
2270
2271	AGE_LOCK_ASSERT(sc);
2272
2273	ifp = sc->age_ifp;
2274	status = le32toh(rxrd->flags);
2275	index = le32toh(rxrd->index);
2276	rx_cons = AGE_RX_CONS(index);
2277	nsegs = AGE_RX_NSEGS(index);
2278
2279	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2280	if ((status & AGE_RRD_ERROR) != 0 &&
2281	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2282	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2283		/*
2284		 * We want to pass the following frames to upper
2285		 * layer regardless of error status of Rx return
2286		 * ring.
2287		 *
2288		 *  o IP/TCP/UDP checksum is bad.
2289		 *  o frame length and protocol specific length
2290		 *     does not match.
2291		 */
2292		sc->age_cdata.age_rx_cons += nsegs;
2293		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2294		return;
2295	}
2296
2297	pktlen = 0;
2298	for (count = 0; count < nsegs; count++,
2299	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2300		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2301		mp = rxd->rx_m;
2302		desc = rxd->rx_desc;
2303		/* Add a new receive buffer to the ring. */
2304		if (age_newbuf(sc, rxd) != 0) {
2305			ifp->if_iqdrops++;
2306			/* Reuse Rx buffers. */
2307			if (sc->age_cdata.age_rxhead != NULL) {
2308				m_freem(sc->age_cdata.age_rxhead);
2309				AGE_RXCHAIN_RESET(sc);
2310			}
2311			break;
2312		}
2313
2314		/* The length of the first mbuf is computed last. */
2315		if (count != 0) {
2316			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2317			pktlen += mp->m_len;
2318		}
2319
2320		/* Chain received mbufs. */
2321		if (sc->age_cdata.age_rxhead == NULL) {
2322			sc->age_cdata.age_rxhead = mp;
2323			sc->age_cdata.age_rxtail = mp;
2324		} else {
2325			mp->m_flags &= ~M_PKTHDR;
2326			sc->age_cdata.age_rxprev_tail =
2327			    sc->age_cdata.age_rxtail;
2328			sc->age_cdata.age_rxtail->m_next = mp;
2329			sc->age_cdata.age_rxtail = mp;
2330		}
2331
2332		if (count == nsegs - 1) {
2333			/*
2334			 * It seems that L1 controller has no way
2335			 * to tell hardware to strip CRC bytes.
2336			 */
2337			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2338			if (nsegs > 1) {
2339				/* Remove the CRC bytes in chained mbufs. */
2340				pktlen -= ETHER_CRC_LEN;
2341				if (mp->m_len <= ETHER_CRC_LEN) {
2342					sc->age_cdata.age_rxtail =
2343					    sc->age_cdata.age_rxprev_tail;
2344					sc->age_cdata.age_rxtail->m_len -=
2345					    (ETHER_CRC_LEN - mp->m_len);
2346					sc->age_cdata.age_rxtail->m_next = NULL;
2347					m_freem(mp);
2348				} else {
2349					mp->m_len -= ETHER_CRC_LEN;
2350				}
2351			}
2352
2353			m = sc->age_cdata.age_rxhead;
2354			m->m_flags |= M_PKTHDR;
2355			m->m_pkthdr.rcvif = ifp;
2356			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2357			/* Set the first mbuf length. */
2358			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2359
2360			/*
2361			 * Set checksum information.
2362			 * It seems that L1 controller can compute partial
2363			 * checksum. The partial checksum value can be used
2364			 * to accelerate checksum computation for fragmented
2365			 * TCP/UDP packets. Upper network stack already
2366			 * takes advantage of the partial checksum value in
2367			 * IP reassembly stage. But I'm not sure the
2368			 * correctness of the partial hardware checksum
2369			 * assistance due to lack of data sheet. If it is
2370			 * proven to work on L1 I'll enable it.
2371			 */
2372			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2373			    (status & AGE_RRD_IPV4) != 0) {
2374				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2375				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2376					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2377				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2378				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2379					m->m_pkthdr.csum_flags |=
2380					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2381					m->m_pkthdr.csum_data = 0xffff;
2382				}
2383				/*
2384				 * Don't mark bad checksum for TCP/UDP frames
2385				 * as fragmented frames may always have set
2386				 * bad checksummed bit of descriptor status.
2387				 */
2388			}
2389
2390			/* Check for VLAN tagged frames. */
2391			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2392			    (status & AGE_RRD_VLAN) != 0) {
2393				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2394				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2395				m->m_flags |= M_VLANTAG;
2396			}
2397
2398			/* Pass it on. */
2399			AGE_UNLOCK(sc);
2400			(*ifp->if_input)(ifp, m);
2401			AGE_LOCK(sc);
2402
2403			/* Reset mbuf chains. */
2404			AGE_RXCHAIN_RESET(sc);
2405		}
2406	}
2407
2408	if (count != nsegs) {
2409		sc->age_cdata.age_rx_cons += nsegs;
2410		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2411	} else
2412		sc->age_cdata.age_rx_cons = rx_cons;
2413}
2414
2415static int
2416age_rxintr(struct age_softc *sc, int rr_prod, int count)
2417{
2418	struct rx_rdesc *rxrd;
2419	int rr_cons, nsegs, pktlen, prog;
2420
2421	AGE_LOCK_ASSERT(sc);
2422
2423	rr_cons = sc->age_cdata.age_rr_cons;
2424	if (rr_cons == rr_prod)
2425		return (0);
2426
2427	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2428	    sc->age_cdata.age_rr_ring_map,
2429	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2430
2431	for (prog = 0; rr_cons != rr_prod; prog++) {
2432		if (count <= 0)
2433			break;
2434		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2435		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2436		if (nsegs == 0)
2437			break;
2438		/*
2439		 * Check number of segments against received bytes.
2440		 * Non-matching value would indicate that hardware
2441		 * is still trying to update Rx return descriptors.
2442		 * I'm not sure whether this check is really needed.
2443		 */
2444		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2445		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2446		    (MCLBYTES - ETHER_ALIGN)))
2447			break;
2448
2449		prog++;
2450		/* Received a frame. */
2451		age_rxeof(sc, rxrd);
2452		/* Clear return ring. */
2453		rxrd->index = 0;
2454		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2455	}
2456
2457	if (prog > 0) {
2458		/* Update the consumer index. */
2459		sc->age_cdata.age_rr_cons = rr_cons;
2460
2461		/* Sync descriptors. */
2462		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2463		    sc->age_cdata.age_rr_ring_map,
2464		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2465
2466		/* Notify hardware availability of new Rx buffers. */
2467		AGE_COMMIT_MBOX(sc);
2468	}
2469
2470	return (count > 0 ? 0 : EAGAIN);
2471}
2472
2473static void
2474age_tick(void *arg)
2475{
2476	struct age_softc *sc;
2477	struct mii_data *mii;
2478
2479	sc = (struct age_softc *)arg;
2480
2481	AGE_LOCK_ASSERT(sc);
2482
2483	mii = device_get_softc(sc->age_miibus);
2484	mii_tick(mii);
2485	age_watchdog(sc);
2486	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2487}
2488
2489static void
2490age_reset(struct age_softc *sc)
2491{
2492	uint32_t reg;
2493	int i;
2494
2495	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2496	CSR_READ_4(sc, AGE_MASTER_CFG);
2497	DELAY(1000);
2498	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2499		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2500			break;
2501		DELAY(10);
2502	}
2503
2504	if (i == 0)
2505		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2506	/* Initialize PCIe module. From Linux. */
2507	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2508	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2509}
2510
2511static void
2512age_init(void *xsc)
2513{
2514	struct age_softc *sc;
2515
2516	sc = (struct age_softc *)xsc;
2517	AGE_LOCK(sc);
2518	age_init_locked(sc);
2519	AGE_UNLOCK(sc);
2520}
2521
2522static void
2523age_init_locked(struct age_softc *sc)
2524{
2525	struct ifnet *ifp;
2526	struct mii_data *mii;
2527	uint8_t eaddr[ETHER_ADDR_LEN];
2528	bus_addr_t paddr;
2529	uint32_t reg, fsize;
2530	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2531	int error;
2532
2533	AGE_LOCK_ASSERT(sc);
2534
2535	ifp = sc->age_ifp;
2536	mii = device_get_softc(sc->age_miibus);
2537
2538	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
2539		return;
2540
2541	/*
2542	 * Cancel any pending I/O.
2543	 */
2544	age_stop(sc);
2545
2546	/*
2547	 * Reset the chip to a known state.
2548	 */
2549	age_reset(sc);
2550
2551	/* Initialize descriptors. */
2552	error = age_init_rx_ring(sc);
2553        if (error != 0) {
2554                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2555                age_stop(sc);
2556		return;
2557        }
2558	age_init_rr_ring(sc);
2559	age_init_tx_ring(sc);
2560	age_init_cmb_block(sc);
2561	age_init_smb_block(sc);
2562
2563	/* Reprogram the station address. */
2564	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2565	CSR_WRITE_4(sc, AGE_PAR0,
2566	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2567	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2568
2569	/* Set descriptor base addresses. */
2570	paddr = sc->age_rdata.age_tx_ring_paddr;
2571	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2572	paddr = sc->age_rdata.age_rx_ring_paddr;
2573	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2574	paddr = sc->age_rdata.age_rr_ring_paddr;
2575	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2576	paddr = sc->age_rdata.age_tx_ring_paddr;
2577	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2578	paddr = sc->age_rdata.age_cmb_block_paddr;
2579	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2580	paddr = sc->age_rdata.age_smb_block_paddr;
2581	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2582	/* Set Rx/Rx return descriptor counter. */
2583	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2584	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2585	    DESC_RRD_CNT_MASK) |
2586	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2587	/* Set Tx descriptor counter. */
2588	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2589	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2590
2591	/* Tell hardware that we're ready to load descriptors. */
2592	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2593
2594	/*
2595	 * Initialize mailbox register.
2596	 * Updated producer/consumer index information is exchanged
2597	 * through this mailbox register. However Tx producer and
2598	 * Rx return consumer/Rx producer are all shared such that
2599	 * it's hard to separate code path between Tx and Rx without
2600	 * locking. If L1 hardware have a separate mail box register
2601	 * for Tx and Rx consumer/producer management we could have
2602	 * indepent Tx/Rx handler which in turn Rx handler could have
2603	 * been run without any locking.
2604	 */
2605	AGE_COMMIT_MBOX(sc);
2606
2607	/* Configure IPG/IFG parameters. */
2608	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2609	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2610	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2611	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2612	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2613
2614	/* Set parameters for half-duplex media. */
2615	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2616	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2617	    HDPX_CFG_LCOL_MASK) |
2618	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2619	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2620	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2621	    HDPX_CFG_ABEBT_MASK) |
2622	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2623	    HDPX_CFG_JAMIPG_MASK));
2624
2625	/* Configure interrupt moderation timer. */
2626	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2627	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2628	reg &= ~MASTER_MTIMER_ENB;
2629	if (AGE_USECS(sc->age_int_mod) == 0)
2630		reg &= ~MASTER_ITIMER_ENB;
2631	else
2632		reg |= MASTER_ITIMER_ENB;
2633	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2634	if (bootverbose)
2635		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2636		    sc->age_int_mod);
2637	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2638
2639	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2640	if (ifp->if_mtu < ETHERMTU)
2641		sc->age_max_frame_size = ETHERMTU;
2642	else
2643		sc->age_max_frame_size = ifp->if_mtu;
2644	sc->age_max_frame_size += ETHER_HDR_LEN +
2645	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2646	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2647	/* Configure jumbo frame. */
2648	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2649	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2650	    (((fsize / sizeof(uint64_t)) <<
2651	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2652	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2653	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2654	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2655	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2656
2657	/* Configure flow-control parameters. From Linux. */
2658	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2659		/*
2660		 * Magic workaround for old-L1.
2661		 * Don't know which hw revision requires this magic.
2662		 */
2663		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2664		/*
2665		 * Another magic workaround for flow-control mode
2666		 * change. From Linux.
2667		 */
2668		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2669	}
2670	/*
2671	 * TODO
2672	 *  Should understand pause parameter relationships between FIFO
2673	 *  size and number of Rx descriptors and Rx return descriptors.
2674	 *
2675	 *  Magic parameters came from Linux.
2676	 */
2677	switch (sc->age_chip_rev) {
2678	case 0x8001:
2679	case 0x9001:
2680	case 0x9002:
2681	case 0x9003:
2682		rxf_hi = AGE_RX_RING_CNT / 16;
2683		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2684		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2685		rrd_lo = AGE_RR_RING_CNT / 16;
2686		break;
2687	default:
2688		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2689		rxf_lo = reg / 16;
2690		if (rxf_lo < 192)
2691			rxf_lo = 192;
2692		rxf_hi = (reg * 7) / 8;
2693		if (rxf_hi < rxf_lo)
2694			rxf_hi = rxf_lo + 16;
2695		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2696		rrd_lo = reg / 8;
2697		rrd_hi = (reg * 7) / 8;
2698		if (rrd_lo < 2)
2699			rrd_lo = 2;
2700		if (rrd_hi < rrd_lo)
2701			rrd_hi = rrd_lo + 3;
2702		break;
2703	}
2704	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2705	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2706	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2707	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2708	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2709	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2710	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2711	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2712	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2713	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2714
2715	/* Configure RxQ. */
2716	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2717	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2718	    RXQ_CFG_RD_BURST_MASK) |
2719	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2720	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2721	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2722	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2723	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2724
2725	/* Configure TxQ. */
2726	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2727	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2728	    TXQ_CFG_TPD_BURST_MASK) |
2729	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2730	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2731	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2732	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2733	    TXQ_CFG_ENB);
2734
2735	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2736	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2737	    TX_JUMBO_TPD_TH_MASK) |
2738	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2739	    TX_JUMBO_TPD_IPG_MASK));
2740	/* Configure DMA parameters. */
2741	CSR_WRITE_4(sc, AGE_DMA_CFG,
2742	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2743	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2744	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2745
2746	/* Configure CMB DMA write threshold. */
2747	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2748	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2749	    CMB_WR_THRESH_RRD_MASK) |
2750	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2751	    CMB_WR_THRESH_TPD_MASK));
2752
2753	/* Set CMB/SMB timer and enable them. */
2754	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2755	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2756	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2757	/* Request SMB updates for every seconds. */
2758	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2759	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2760
2761	/*
2762	 * Disable all WOL bits as WOL can interfere normal Rx
2763	 * operation.
2764	 */
2765	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2766
2767	/*
2768	 * Configure Tx/Rx MACs.
2769	 *  - Auto-padding for short frames.
2770	 *  - Enable CRC generation.
2771	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2772	 *  of MAC is followed after link establishment.
2773	 */
2774	CSR_WRITE_4(sc, AGE_MAC_CFG,
2775	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2776	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2777	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2778	    MAC_CFG_PREAMBLE_MASK));
2779	/* Set up the receive filter. */
2780	age_rxfilter(sc);
2781	age_rxvlan(sc);
2782
2783	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2784	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2785		reg |= MAC_CFG_RXCSUM_ENB;
2786
2787	/* Ack all pending interrupts and clear it. */
2788	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2789	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2790
2791	/* Finally enable Tx/Rx MAC. */
2792	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2793
2794	sc->age_flags &= ~AGE_FLAG_LINK;
2795	/* Switch to the current media. */
2796	mii_mediachg(mii);
2797
2798	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2799
2800	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2801	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2802}
2803
2804static void
2805age_stop(struct age_softc *sc)
2806{
2807	struct ifnet *ifp;
2808	struct age_txdesc *txd;
2809	struct age_rxdesc *rxd;
2810	uint32_t reg;
2811	int i;
2812
2813	AGE_LOCK_ASSERT(sc);
2814	/*
2815	 * Mark the interface down and cancel the watchdog timer.
2816	 */
2817	ifp = sc->age_ifp;
2818	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2819	sc->age_flags &= ~AGE_FLAG_LINK;
2820	callout_stop(&sc->age_tick_ch);
2821	sc->age_watchdog_timer = 0;
2822
2823	/*
2824	 * Disable interrupts.
2825	 */
2826	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2827	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2828	/* Stop CMB/SMB updates. */
2829	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2830	/* Stop Rx/Tx MAC. */
2831	age_stop_rxmac(sc);
2832	age_stop_txmac(sc);
2833	/* Stop DMA. */
2834	CSR_WRITE_4(sc, AGE_DMA_CFG,
2835	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2836	/* Stop TxQ/RxQ. */
2837	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2838	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2839	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2840	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2841	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2842		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2843			break;
2844		DELAY(10);
2845	}
2846	if (i == 0)
2847		device_printf(sc->age_dev,
2848		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2849
2850	 /* Reclaim Rx buffers that have been processed. */
2851	if (sc->age_cdata.age_rxhead != NULL)
2852		m_freem(sc->age_cdata.age_rxhead);
2853	AGE_RXCHAIN_RESET(sc);
2854	/*
2855	 * Free RX and TX mbufs still in the queues.
2856	 */
2857	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2858		rxd = &sc->age_cdata.age_rxdesc[i];
2859		if (rxd->rx_m != NULL) {
2860			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2861			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2862			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2863			    rxd->rx_dmamap);
2864			m_freem(rxd->rx_m);
2865			rxd->rx_m = NULL;
2866		}
2867        }
2868	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2869		txd = &sc->age_cdata.age_txdesc[i];
2870		if (txd->tx_m != NULL) {
2871			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2872			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2873			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2874			    txd->tx_dmamap);
2875			m_freem(txd->tx_m);
2876			txd->tx_m = NULL;
2877		}
2878        }
2879}
2880
2881static void
2882age_stop_txmac(struct age_softc *sc)
2883{
2884	uint32_t reg;
2885	int i;
2886
2887	AGE_LOCK_ASSERT(sc);
2888
2889	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2890	if ((reg & MAC_CFG_TX_ENB) != 0) {
2891		reg &= ~MAC_CFG_TX_ENB;
2892		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2893	}
2894	/* Stop Tx DMA engine. */
2895	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2896	if ((reg & DMA_CFG_RD_ENB) != 0) {
2897		reg &= ~DMA_CFG_RD_ENB;
2898		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2899	}
2900	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2901		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2902		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2903			break;
2904		DELAY(10);
2905	}
2906	if (i == 0)
2907		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2908}
2909
2910static void
2911age_stop_rxmac(struct age_softc *sc)
2912{
2913	uint32_t reg;
2914	int i;
2915
2916	AGE_LOCK_ASSERT(sc);
2917
2918	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2919	if ((reg & MAC_CFG_RX_ENB) != 0) {
2920		reg &= ~MAC_CFG_RX_ENB;
2921		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2922	}
2923	/* Stop Rx DMA engine. */
2924	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2925	if ((reg & DMA_CFG_WR_ENB) != 0) {
2926		reg &= ~DMA_CFG_WR_ENB;
2927		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2928	}
2929	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2930		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2931		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2932			break;
2933		DELAY(10);
2934	}
2935	if (i == 0)
2936		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2937}
2938
2939static void
2940age_init_tx_ring(struct age_softc *sc)
2941{
2942	struct age_ring_data *rd;
2943	struct age_txdesc *txd;
2944	int i;
2945
2946	AGE_LOCK_ASSERT(sc);
2947
2948	sc->age_cdata.age_tx_prod = 0;
2949	sc->age_cdata.age_tx_cons = 0;
2950	sc->age_cdata.age_tx_cnt = 0;
2951
2952	rd = &sc->age_rdata;
2953	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2954	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2955		txd = &sc->age_cdata.age_txdesc[i];
2956		txd->tx_desc = &rd->age_tx_ring[i];
2957		txd->tx_m = NULL;
2958	}
2959
2960	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2961	    sc->age_cdata.age_tx_ring_map,
2962	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2963}
2964
2965static int
2966age_init_rx_ring(struct age_softc *sc)
2967{
2968	struct age_ring_data *rd;
2969	struct age_rxdesc *rxd;
2970	int i;
2971
2972	AGE_LOCK_ASSERT(sc);
2973
2974	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2975	sc->age_morework = 0;
2976	rd = &sc->age_rdata;
2977	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2978	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2979		rxd = &sc->age_cdata.age_rxdesc[i];
2980		rxd->rx_m = NULL;
2981		rxd->rx_desc = &rd->age_rx_ring[i];
2982		if (age_newbuf(sc, rxd) != 0)
2983			return (ENOBUFS);
2984	}
2985
2986	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
2987	    sc->age_cdata.age_rx_ring_map,
2988	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2989
2990	return (0);
2991}
2992
2993static void
2994age_init_rr_ring(struct age_softc *sc)
2995{
2996	struct age_ring_data *rd;
2997
2998	AGE_LOCK_ASSERT(sc);
2999
3000	sc->age_cdata.age_rr_cons = 0;
3001	AGE_RXCHAIN_RESET(sc);
3002
3003	rd = &sc->age_rdata;
3004	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3005	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3006	    sc->age_cdata.age_rr_ring_map,
3007	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3008}
3009
3010static void
3011age_init_cmb_block(struct age_softc *sc)
3012{
3013	struct age_ring_data *rd;
3014
3015	AGE_LOCK_ASSERT(sc);
3016
3017	rd = &sc->age_rdata;
3018	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3019	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3020	    sc->age_cdata.age_cmb_block_map,
3021	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3022}
3023
3024static void
3025age_init_smb_block(struct age_softc *sc)
3026{
3027	struct age_ring_data *rd;
3028
3029	AGE_LOCK_ASSERT(sc);
3030
3031	rd = &sc->age_rdata;
3032	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3033	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3034	    sc->age_cdata.age_smb_block_map,
3035	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3036}
3037
3038static int
3039age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3040{
3041	struct rx_desc *desc;
3042	struct mbuf *m;
3043	bus_dma_segment_t segs[1];
3044	bus_dmamap_t map;
3045	int nsegs;
3046
3047	AGE_LOCK_ASSERT(sc);
3048
3049	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3050	if (m == NULL)
3051		return (ENOBUFS);
3052	m->m_len = m->m_pkthdr.len = MCLBYTES;
3053	m_adj(m, ETHER_ALIGN);
3054
3055	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3056	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3057		m_freem(m);
3058		return (ENOBUFS);
3059	}
3060	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3061
3062	if (rxd->rx_m != NULL) {
3063		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3064		    BUS_DMASYNC_POSTREAD);
3065		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3066	}
3067	map = rxd->rx_dmamap;
3068	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3069	sc->age_cdata.age_rx_sparemap = map;
3070	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3071	    BUS_DMASYNC_PREREAD);
3072	rxd->rx_m = m;
3073
3074	desc = rxd->rx_desc;
3075	desc->addr = htole64(segs[0].ds_addr);
3076	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3077	    AGE_RD_LEN_SHIFT);
3078	return (0);
3079}
3080
3081static void
3082age_rxvlan(struct age_softc *sc)
3083{
3084	struct ifnet *ifp;
3085	uint32_t reg;
3086
3087	AGE_LOCK_ASSERT(sc);
3088
3089	ifp = sc->age_ifp;
3090	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3091	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3092	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3093		reg |= MAC_CFG_VLAN_TAG_STRIP;
3094	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3095}
3096
3097static void
3098age_rxfilter(struct age_softc *sc)
3099{
3100	struct ifnet *ifp;
3101	struct ifmultiaddr *ifma;
3102	uint32_t crc;
3103	uint32_t mchash[2];
3104	uint32_t rxcfg;
3105
3106	AGE_LOCK_ASSERT(sc);
3107
3108	ifp = sc->age_ifp;
3109
3110	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3111	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3112	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3113		rxcfg |= MAC_CFG_BCAST;
3114	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3115		if ((ifp->if_flags & IFF_PROMISC) != 0)
3116			rxcfg |= MAC_CFG_PROMISC;
3117		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3118			rxcfg |= MAC_CFG_ALLMULTI;
3119		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3120		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3121		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3122		return;
3123	}
3124
3125	/* Program new filter. */
3126	bzero(mchash, sizeof(mchash));
3127
3128	if_maddr_rlock(ifp);
3129	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3130		if (ifma->ifma_addr->sa_family != AF_LINK)
3131			continue;
3132		crc = ether_crc32_be(LLADDR((struct sockaddr_dl *)
3133		    ifma->ifma_addr), ETHER_ADDR_LEN);
3134		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3135	}
3136	if_maddr_runlock(ifp);
3137
3138	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3139	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3140	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3141}
3142
3143static int
3144sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3145{
3146	struct age_softc *sc;
3147	struct age_stats *stats;
3148	int error, result;
3149
3150	result = -1;
3151	error = sysctl_handle_int(oidp, &result, 0, req);
3152
3153	if (error != 0 || req->newptr == NULL)
3154		return (error);
3155
3156	if (result != 1)
3157		return (error);
3158
3159	sc = (struct age_softc *)arg1;
3160	stats = &sc->age_stat;
3161	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3162	printf("Transmit good frames : %ju\n",
3163	    (uintmax_t)stats->tx_frames);
3164	printf("Transmit good broadcast frames : %ju\n",
3165	    (uintmax_t)stats->tx_bcast_frames);
3166	printf("Transmit good multicast frames : %ju\n",
3167	    (uintmax_t)stats->tx_mcast_frames);
3168	printf("Transmit pause control frames : %u\n",
3169	    stats->tx_pause_frames);
3170	printf("Transmit control frames : %u\n",
3171	    stats->tx_control_frames);
3172	printf("Transmit frames with excessive deferrals : %u\n",
3173	    stats->tx_excess_defer);
3174	printf("Transmit deferrals : %u\n",
3175	    stats->tx_deferred);
3176	printf("Transmit good octets : %ju\n",
3177	    (uintmax_t)stats->tx_bytes);
3178	printf("Transmit good broadcast octets : %ju\n",
3179	    (uintmax_t)stats->tx_bcast_bytes);
3180	printf("Transmit good multicast octets : %ju\n",
3181	    (uintmax_t)stats->tx_mcast_bytes);
3182	printf("Transmit frames 64 bytes : %ju\n",
3183	    (uintmax_t)stats->tx_pkts_64);
3184	printf("Transmit frames 65 to 127 bytes : %ju\n",
3185	    (uintmax_t)stats->tx_pkts_65_127);
3186	printf("Transmit frames 128 to 255 bytes : %ju\n",
3187	    (uintmax_t)stats->tx_pkts_128_255);
3188	printf("Transmit frames 256 to 511 bytes : %ju\n",
3189	    (uintmax_t)stats->tx_pkts_256_511);
3190	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3191	    (uintmax_t)stats->tx_pkts_512_1023);
3192	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3193	    (uintmax_t)stats->tx_pkts_1024_1518);
3194	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3195	    (uintmax_t)stats->tx_pkts_1519_max);
3196	printf("Transmit single collisions : %u\n",
3197	    stats->tx_single_colls);
3198	printf("Transmit multiple collisions : %u\n",
3199	    stats->tx_multi_colls);
3200	printf("Transmit late collisions : %u\n",
3201	    stats->tx_late_colls);
3202	printf("Transmit abort due to excessive collisions : %u\n",
3203	    stats->tx_excess_colls);
3204	printf("Transmit underruns due to FIFO underruns : %u\n",
3205	    stats->tx_underrun);
3206	printf("Transmit descriptor write-back errors : %u\n",
3207	    stats->tx_desc_underrun);
3208	printf("Transmit frames with length mismatched frame size : %u\n",
3209	    stats->tx_lenerrs);
3210	printf("Transmit frames with truncated due to MTU size : %u\n",
3211	    stats->tx_lenerrs);
3212
3213	printf("Receive good frames : %ju\n",
3214	    (uintmax_t)stats->rx_frames);
3215	printf("Receive good broadcast frames : %ju\n",
3216	    (uintmax_t)stats->rx_bcast_frames);
3217	printf("Receive good multicast frames : %ju\n",
3218	    (uintmax_t)stats->rx_mcast_frames);
3219	printf("Receive pause control frames : %u\n",
3220	    stats->rx_pause_frames);
3221	printf("Receive control frames : %u\n",
3222	    stats->rx_control_frames);
3223	printf("Receive CRC errors : %u\n",
3224	    stats->rx_crcerrs);
3225	printf("Receive frames with length errors : %u\n",
3226	    stats->rx_lenerrs);
3227	printf("Receive good octets : %ju\n",
3228	    (uintmax_t)stats->rx_bytes);
3229	printf("Receive good broadcast octets : %ju\n",
3230	    (uintmax_t)stats->rx_bcast_bytes);
3231	printf("Receive good multicast octets : %ju\n",
3232	    (uintmax_t)stats->rx_mcast_bytes);
3233	printf("Receive frames too short : %u\n",
3234	    stats->rx_runts);
3235	printf("Receive fragmented frames : %ju\n",
3236	    (uintmax_t)stats->rx_fragments);
3237	printf("Receive frames 64 bytes : %ju\n",
3238	    (uintmax_t)stats->rx_pkts_64);
3239	printf("Receive frames 65 to 127 bytes : %ju\n",
3240	    (uintmax_t)stats->rx_pkts_65_127);
3241	printf("Receive frames 128 to 255 bytes : %ju\n",
3242	    (uintmax_t)stats->rx_pkts_128_255);
3243	printf("Receive frames 256 to 511 bytes : %ju\n",
3244	    (uintmax_t)stats->rx_pkts_256_511);
3245	printf("Receive frames 512 to 1024 bytes : %ju\n",
3246	    (uintmax_t)stats->rx_pkts_512_1023);
3247	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3248	    (uintmax_t)stats->rx_pkts_1024_1518);
3249	printf("Receive frames 1519 to MTU bytes : %ju\n",
3250	    (uintmax_t)stats->rx_pkts_1519_max);
3251	printf("Receive frames too long : %ju\n",
3252	    (uint64_t)stats->rx_pkts_truncated);
3253	printf("Receive frames with FIFO overflow : %u\n",
3254	    stats->rx_fifo_oflows);
3255	printf("Receive frames with return descriptor overflow : %u\n",
3256	    stats->rx_desc_oflows);
3257	printf("Receive frames with alignment errors : %u\n",
3258	    stats->rx_alignerrs);
3259	printf("Receive frames dropped due to address filtering : %ju\n",
3260	    (uint64_t)stats->rx_pkts_filtered);
3261
3262	return (error);
3263}
3264
3265static int
3266sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3267{
3268	int error, value;
3269
3270	if (arg1 == NULL)
3271		return (EINVAL);
3272	value = *(int *)arg1;
3273	error = sysctl_handle_int(oidp, &value, 0, req);
3274	if (error || req->newptr == NULL)
3275		return (error);
3276	if (value < low || value > high)
3277		return (EINVAL);
3278        *(int *)arg1 = value;
3279
3280        return (0);
3281}
3282
3283static int
3284sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3285{
3286	return (sysctl_int_range(oidp, arg1, arg2, req,
3287	    AGE_PROC_MIN, AGE_PROC_MAX));
3288}
3289
3290static int
3291sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3292{
3293
3294	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3295	    AGE_IM_TIMER_MAX));
3296}
3297