if_age.c revision 190499
1/*-
2 * Copyright (c) 2008, Pyun YongHyeon <yongari@FreeBSD.org>
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 *    notice unmodified, this list of conditions, and the following
10 *    disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28/* Driver for Attansic Technology Corp. L1 Gigabit Ethernet. */
29
30#include <sys/cdefs.h>
31__FBSDID("$FreeBSD: head/sys/dev/age/if_age.c 190499 2009-03-28 07:39:35Z yongari $");
32
33#include <sys/param.h>
34#include <sys/systm.h>
35#include <sys/bus.h>
36#include <sys/endian.h>
37#include <sys/kernel.h>
38#include <sys/malloc.h>
39#include <sys/mbuf.h>
40#include <sys/rman.h>
41#include <sys/module.h>
42#include <sys/queue.h>
43#include <sys/socket.h>
44#include <sys/sockio.h>
45#include <sys/sysctl.h>
46#include <sys/taskqueue.h>
47
48#include <net/bpf.h>
49#include <net/if.h>
50#include <net/if_arp.h>
51#include <net/ethernet.h>
52#include <net/if_dl.h>
53#include <net/if_media.h>
54#include <net/if_types.h>
55#include <net/if_vlan_var.h>
56
57#include <netinet/in.h>
58#include <netinet/in_systm.h>
59#include <netinet/ip.h>
60#include <netinet/tcp.h>
61
62#include <dev/mii/mii.h>
63#include <dev/mii/miivar.h>
64
65#include <dev/pci/pcireg.h>
66#include <dev/pci/pcivar.h>
67
68#include <machine/bus.h>
69#include <machine/in_cksum.h>
70
71#include <dev/age/if_agereg.h>
72#include <dev/age/if_agevar.h>
73
74/* "device miibus" required.  See GENERIC if you get errors here. */
75#include "miibus_if.h"
76
77#ifndef	IFCAP_VLAN_HWTSO
78#define	IFCAP_VLAN_HWTSO	0
79#endif
80#define	AGE_CSUM_FEATURES	(CSUM_TCP | CSUM_UDP)
81
82MODULE_DEPEND(age, pci, 1, 1, 1);
83MODULE_DEPEND(age, ether, 1, 1, 1);
84MODULE_DEPEND(age, miibus, 1, 1, 1);
85
86/* Tunables. */
87static int msi_disable = 0;
88static int msix_disable = 0;
89TUNABLE_INT("hw.age.msi_disable", &msi_disable);
90TUNABLE_INT("hw.age.msix_disable", &msix_disable);
91
92/*
93 * Devices supported by this driver.
94 */
95static struct age_dev {
96	uint16_t	age_vendorid;
97	uint16_t	age_deviceid;
98	const char	*age_name;
99} age_devs[] = {
100	{ VENDORID_ATTANSIC, DEVICEID_ATTANSIC_L1,
101	    "Attansic Technology Corp, L1 Gigabit Ethernet" },
102};
103
104static int age_miibus_readreg(device_t, int, int);
105static int age_miibus_writereg(device_t, int, int, int);
106static void age_miibus_statchg(device_t);
107static void age_mediastatus(struct ifnet *, struct ifmediareq *);
108static int age_mediachange(struct ifnet *);
109static int age_probe(device_t);
110static void age_get_macaddr(struct age_softc *);
111static void age_phy_reset(struct age_softc *);
112static int age_attach(device_t);
113static int age_detach(device_t);
114static void age_sysctl_node(struct age_softc *);
115static void age_dmamap_cb(void *, bus_dma_segment_t *, int, int);
116static int age_check_boundary(struct age_softc *);
117static int age_dma_alloc(struct age_softc *);
118static void age_dma_free(struct age_softc *);
119static int age_shutdown(device_t);
120static void age_setwol(struct age_softc *);
121static int age_suspend(device_t);
122static int age_resume(device_t);
123static int age_encap(struct age_softc *, struct mbuf **);
124static void age_tx_task(void *, int);
125static void age_start(struct ifnet *);
126static void age_watchdog(struct age_softc *);
127static int age_ioctl(struct ifnet *, u_long, caddr_t);
128static void age_mac_config(struct age_softc *);
129static void age_link_task(void *, int);
130static void age_stats_update(struct age_softc *);
131static int age_intr(void *);
132static void age_int_task(void *, int);
133static void age_txintr(struct age_softc *, int);
134static void age_rxeof(struct age_softc *sc, struct rx_rdesc *);
135static int age_rxintr(struct age_softc *, int, int);
136static void age_tick(void *);
137static void age_reset(struct age_softc *);
138static void age_init(void *);
139static void age_init_locked(struct age_softc *);
140static void age_stop(struct age_softc *);
141static void age_stop_txmac(struct age_softc *);
142static void age_stop_rxmac(struct age_softc *);
143static void age_init_tx_ring(struct age_softc *);
144static int age_init_rx_ring(struct age_softc *);
145static void age_init_rr_ring(struct age_softc *);
146static void age_init_cmb_block(struct age_softc *);
147static void age_init_smb_block(struct age_softc *);
148static int age_newbuf(struct age_softc *, struct age_rxdesc *);
149static void age_rxvlan(struct age_softc *);
150static void age_rxfilter(struct age_softc *);
151static int sysctl_age_stats(SYSCTL_HANDLER_ARGS);
152static int sysctl_int_range(SYSCTL_HANDLER_ARGS, int, int);
153static int sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS);
154static int sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS);
155
156
157static device_method_t age_methods[] = {
158	/* Device interface. */
159	DEVMETHOD(device_probe,		age_probe),
160	DEVMETHOD(device_attach,	age_attach),
161	DEVMETHOD(device_detach,	age_detach),
162	DEVMETHOD(device_shutdown,	age_shutdown),
163	DEVMETHOD(device_suspend,	age_suspend),
164	DEVMETHOD(device_resume,	age_resume),
165
166	/* MII interface. */
167	DEVMETHOD(miibus_readreg,	age_miibus_readreg),
168	DEVMETHOD(miibus_writereg,	age_miibus_writereg),
169	DEVMETHOD(miibus_statchg,	age_miibus_statchg),
170
171	{ NULL, NULL }
172};
173
174static driver_t age_driver = {
175	"age",
176	age_methods,
177	sizeof(struct age_softc)
178};
179
180static devclass_t age_devclass;
181
182DRIVER_MODULE(age, pci, age_driver, age_devclass, 0, 0);
183DRIVER_MODULE(miibus, age, miibus_driver, miibus_devclass, 0, 0);
184
185static struct resource_spec age_res_spec_mem[] = {
186	{ SYS_RES_MEMORY,	PCIR_BAR(0),	RF_ACTIVE },
187	{ -1,			0,		0 }
188};
189
190static struct resource_spec age_irq_spec_legacy[] = {
191	{ SYS_RES_IRQ,		0,		RF_ACTIVE | RF_SHAREABLE },
192	{ -1,			0,		0 }
193};
194
195static struct resource_spec age_irq_spec_msi[] = {
196	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
197	{ -1,			0,		0 }
198};
199
200static struct resource_spec age_irq_spec_msix[] = {
201	{ SYS_RES_IRQ,		1,		RF_ACTIVE },
202	{ -1,			0,		0 }
203};
204
205/*
206 *	Read a PHY register on the MII of the L1.
207 */
208static int
209age_miibus_readreg(device_t dev, int phy, int reg)
210{
211	struct age_softc *sc;
212	uint32_t v;
213	int i;
214
215	sc = device_get_softc(dev);
216	if (phy != sc->age_phyaddr)
217		return (0);
218
219	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_READ |
220	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
221	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
222		DELAY(1);
223		v = CSR_READ_4(sc, AGE_MDIO);
224		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
225			break;
226	}
227
228	if (i == 0) {
229		device_printf(sc->age_dev, "phy read timeout : %d\n", reg);
230		return (0);
231	}
232
233	return ((v & MDIO_DATA_MASK) >> MDIO_DATA_SHIFT);
234}
235
236/*
237 *	Write a PHY register on the MII of the L1.
238 */
239static int
240age_miibus_writereg(device_t dev, int phy, int reg, int val)
241{
242	struct age_softc *sc;
243	uint32_t v;
244	int i;
245
246	sc = device_get_softc(dev);
247	if (phy != sc->age_phyaddr)
248		return (0);
249
250	CSR_WRITE_4(sc, AGE_MDIO, MDIO_OP_EXECUTE | MDIO_OP_WRITE |
251	    (val & MDIO_DATA_MASK) << MDIO_DATA_SHIFT |
252	    MDIO_SUP_PREAMBLE | MDIO_CLK_25_4 | MDIO_REG_ADDR(reg));
253	for (i = AGE_PHY_TIMEOUT; i > 0; i--) {
254		DELAY(1);
255		v = CSR_READ_4(sc, AGE_MDIO);
256		if ((v & (MDIO_OP_EXECUTE | MDIO_OP_BUSY)) == 0)
257			break;
258	}
259
260	if (i == 0)
261		device_printf(sc->age_dev, "phy write timeout : %d\n", reg);
262
263	return (0);
264}
265
266/*
267 *	Callback from MII layer when media changes.
268 */
269static void
270age_miibus_statchg(device_t dev)
271{
272	struct age_softc *sc;
273
274	sc = device_get_softc(dev);
275	taskqueue_enqueue(taskqueue_swi, &sc->age_link_task);
276}
277
278/*
279 *	Get the current interface media status.
280 */
281static void
282age_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
283{
284	struct age_softc *sc;
285	struct mii_data *mii;
286
287	sc = ifp->if_softc;
288	AGE_LOCK(sc);
289	mii = device_get_softc(sc->age_miibus);
290
291	mii_pollstat(mii);
292	AGE_UNLOCK(sc);
293	ifmr->ifm_status = mii->mii_media_status;
294	ifmr->ifm_active = mii->mii_media_active;
295}
296
297/*
298 *	Set hardware to newly-selected media.
299 */
300static int
301age_mediachange(struct ifnet *ifp)
302{
303	struct age_softc *sc;
304	struct mii_data *mii;
305	struct mii_softc *miisc;
306	int error;
307
308	sc = ifp->if_softc;
309	AGE_LOCK(sc);
310	mii = device_get_softc(sc->age_miibus);
311	if (mii->mii_instance != 0) {
312		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
313			mii_phy_reset(miisc);
314	}
315	error = mii_mediachg(mii);
316	AGE_UNLOCK(sc);
317
318	return (error);
319}
320
321static int
322age_probe(device_t dev)
323{
324	struct age_dev *sp;
325	int i;
326	uint16_t vendor, devid;
327
328	vendor = pci_get_vendor(dev);
329	devid = pci_get_device(dev);
330	sp = age_devs;
331	for (i = 0; i < sizeof(age_devs) / sizeof(age_devs[0]);
332	    i++, sp++) {
333		if (vendor == sp->age_vendorid &&
334		    devid == sp->age_deviceid) {
335			device_set_desc(dev, sp->age_name);
336			return (BUS_PROBE_DEFAULT);
337		}
338	}
339
340	return (ENXIO);
341}
342
343static void
344age_get_macaddr(struct age_softc *sc)
345{
346	uint32_t ea[2], reg;
347	int i, vpdc;
348
349	reg = CSR_READ_4(sc, AGE_SPI_CTRL);
350	if ((reg & SPI_VPD_ENB) != 0) {
351		/* Get VPD stored in TWSI EEPROM. */
352		reg &= ~SPI_VPD_ENB;
353		CSR_WRITE_4(sc, AGE_SPI_CTRL, reg);
354	}
355
356	if (pci_find_extcap(sc->age_dev, PCIY_VPD, &vpdc) == 0) {
357		/*
358		 * PCI VPD capability found, let TWSI reload EEPROM.
359		 * This will set ethernet address of controller.
360		 */
361		CSR_WRITE_4(sc, AGE_TWSI_CTRL, CSR_READ_4(sc, AGE_TWSI_CTRL) |
362		    TWSI_CTRL_SW_LD_START);
363		for (i = 100; i > 0; i--) {
364			DELAY(1000);
365			reg = CSR_READ_4(sc, AGE_TWSI_CTRL);
366			if ((reg & TWSI_CTRL_SW_LD_START) == 0)
367				break;
368		}
369		if (i == 0)
370			device_printf(sc->age_dev,
371			    "reloading EEPROM timeout!\n");
372	} else {
373		if (bootverbose)
374			device_printf(sc->age_dev,
375			    "PCI VPD capability not found!\n");
376	}
377
378	ea[0] = CSR_READ_4(sc, AGE_PAR0);
379	ea[1] = CSR_READ_4(sc, AGE_PAR1);
380	sc->age_eaddr[0] = (ea[1] >> 8) & 0xFF;
381	sc->age_eaddr[1] = (ea[1] >> 0) & 0xFF;
382	sc->age_eaddr[2] = (ea[0] >> 24) & 0xFF;
383	sc->age_eaddr[3] = (ea[0] >> 16) & 0xFF;
384	sc->age_eaddr[4] = (ea[0] >> 8) & 0xFF;
385	sc->age_eaddr[5] = (ea[0] >> 0) & 0xFF;
386}
387
388static void
389age_phy_reset(struct age_softc *sc)
390{
391	uint16_t reg, pn;
392	int i, linkup;
393
394	/* Reset PHY. */
395	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_RST);
396	DELAY(2000);
397	CSR_WRITE_4(sc, AGE_GPHY_CTRL, GPHY_CTRL_CLR);
398	DELAY(2000);
399
400#define	ATPHY_DBG_ADDR		0x1D
401#define	ATPHY_DBG_DATA		0x1E
402#define	ATPHY_CDTC		0x16
403#define	PHY_CDTC_ENB		0x0001
404#define	PHY_CDTC_POFF		8
405#define	ATPHY_CDTS		0x1C
406#define	PHY_CDTS_STAT_OK	0x0000
407#define	PHY_CDTS_STAT_SHORT	0x0100
408#define	PHY_CDTS_STAT_OPEN	0x0200
409#define	PHY_CDTS_STAT_INVAL	0x0300
410#define	PHY_CDTS_STAT_MASK	0x0300
411
412	/* Check power saving mode. Magic from Linux. */
413	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR, BMCR_RESET);
414	for (linkup = 0, pn = 0; pn < 4; pn++) {
415		age_miibus_writereg(sc->age_dev, sc->age_phyaddr, ATPHY_CDTC,
416		    (pn << PHY_CDTC_POFF) | PHY_CDTC_ENB);
417		for (i = 200; i > 0; i--) {
418			DELAY(1000);
419			reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
420			    ATPHY_CDTC);
421			if ((reg & PHY_CDTC_ENB) == 0)
422				break;
423		}
424		DELAY(1000);
425		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
426		    ATPHY_CDTS);
427		if ((reg & PHY_CDTS_STAT_MASK) != PHY_CDTS_STAT_OPEN) {
428			linkup++;
429			break;
430		}
431	}
432	age_miibus_writereg(sc->age_dev, sc->age_phyaddr, MII_BMCR,
433	    BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
434	if (linkup == 0) {
435		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
436		    ATPHY_DBG_ADDR, 0);
437		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
438		    ATPHY_DBG_DATA, 0x124E);
439		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
440		    ATPHY_DBG_ADDR, 1);
441		reg = age_miibus_readreg(sc->age_dev, sc->age_phyaddr,
442		    ATPHY_DBG_DATA);
443		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
444		    ATPHY_DBG_DATA, reg | 0x03);
445		/* XXX */
446		DELAY(1500 * 1000);
447		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
448		    ATPHY_DBG_ADDR, 0);
449		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
450		    ATPHY_DBG_DATA, 0x024E);
451    }
452
453#undef	ATPHY_DBG_ADDR
454#undef	ATPHY_DBG_DATA
455#undef	ATPHY_CDTC
456#undef	PHY_CDTC_ENB
457#undef	PHY_CDTC_POFF
458#undef	ATPHY_CDTS
459#undef	PHY_CDTS_STAT_OK
460#undef	PHY_CDTS_STAT_SHORT
461#undef	PHY_CDTS_STAT_OPEN
462#undef	PHY_CDTS_STAT_INVAL
463#undef	PHY_CDTS_STAT_MASK
464}
465
466static int
467age_attach(device_t dev)
468{
469	struct age_softc *sc;
470	struct ifnet *ifp;
471	uint16_t burst;
472	int error, i, msic, msixc, pmc;
473
474	error = 0;
475	sc = device_get_softc(dev);
476	sc->age_dev = dev;
477
478	mtx_init(&sc->age_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK,
479	    MTX_DEF);
480	callout_init_mtx(&sc->age_tick_ch, &sc->age_mtx, 0);
481	TASK_INIT(&sc->age_int_task, 0, age_int_task, sc);
482	TASK_INIT(&sc->age_link_task, 0, age_link_task, sc);
483
484	/* Map the device. */
485	pci_enable_busmaster(dev);
486	sc->age_res_spec = age_res_spec_mem;
487	sc->age_irq_spec = age_irq_spec_legacy;
488	error = bus_alloc_resources(dev, sc->age_res_spec, sc->age_res);
489	if (error != 0) {
490		device_printf(dev, "cannot allocate memory resources.\n");
491		goto fail;
492	}
493
494	/* Set PHY address. */
495	sc->age_phyaddr = AGE_PHY_ADDR;
496
497	/* Reset PHY. */
498	age_phy_reset(sc);
499
500	/* Reset the ethernet controller. */
501	age_reset(sc);
502
503	/* Get PCI and chip id/revision. */
504	sc->age_rev = pci_get_revid(dev);
505	sc->age_chip_rev = CSR_READ_4(sc, AGE_MASTER_CFG) >>
506	    MASTER_CHIP_REV_SHIFT;
507	if (bootverbose) {
508		device_printf(dev, "PCI device revision : 0x%04x\n",
509		    sc->age_rev);
510		device_printf(dev, "Chip id/revision : 0x%04x\n",
511		    sc->age_chip_rev);
512	}
513
514	/*
515	 * XXX
516	 * Unintialized hardware returns an invalid chip id/revision
517	 * as well as 0xFFFFFFFF for Tx/Rx fifo length. It seems that
518	 * unplugged cable results in putting hardware into automatic
519	 * power down mode which in turn returns invalld chip revision.
520	 */
521	if (sc->age_chip_rev == 0xFFFF) {
522		device_printf(dev,"invalid chip revision : 0x%04x -- "
523		    "not initialized?\n", sc->age_chip_rev);
524		error = ENXIO;
525		goto fail;
526	}
527
528	device_printf(dev, "%d Tx FIFO, %d Rx FIFO\n",
529	    CSR_READ_4(sc, AGE_SRAM_TX_FIFO_LEN),
530	    CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN));
531
532	/* Allocate IRQ resources. */
533	msixc = pci_msix_count(dev);
534	msic = pci_msi_count(dev);
535	if (bootverbose) {
536		device_printf(dev, "MSIX count : %d\n", msixc);
537		device_printf(dev, "MSI count : %d\n", msic);
538	}
539
540	/* Prefer MSIX over MSI. */
541	if (msix_disable == 0 || msi_disable == 0) {
542		if (msix_disable == 0 && msixc == AGE_MSIX_MESSAGES &&
543		    pci_alloc_msix(dev, &msixc) == 0) {
544			if (msic == AGE_MSIX_MESSAGES) {
545				device_printf(dev, "Using %d MSIX messages.\n",
546				    msixc);
547				sc->age_flags |= AGE_FLAG_MSIX;
548				sc->age_irq_spec = age_irq_spec_msix;
549			} else
550				pci_release_msi(dev);
551		}
552		if (msi_disable == 0 && (sc->age_flags & AGE_FLAG_MSIX) == 0 &&
553		    msic == AGE_MSI_MESSAGES &&
554		    pci_alloc_msi(dev, &msic) == 0) {
555			if (msic == AGE_MSI_MESSAGES) {
556				device_printf(dev, "Using %d MSI messages.\n",
557				    msic);
558				sc->age_flags |= AGE_FLAG_MSI;
559				sc->age_irq_spec = age_irq_spec_msi;
560			} else
561				pci_release_msi(dev);
562		}
563	}
564
565	error = bus_alloc_resources(dev, sc->age_irq_spec, sc->age_irq);
566	if (error != 0) {
567		device_printf(dev, "cannot allocate IRQ resources.\n");
568		goto fail;
569	}
570
571
572	/* Get DMA parameters from PCIe device control register. */
573	if (pci_find_extcap(dev, PCIY_EXPRESS, &i) == 0) {
574		sc->age_flags |= AGE_FLAG_PCIE;
575		burst = pci_read_config(dev, i + 0x08, 2);
576		/* Max read request size. */
577		sc->age_dma_rd_burst = ((burst >> 12) & 0x07) <<
578		    DMA_CFG_RD_BURST_SHIFT;
579		/* Max payload size. */
580		sc->age_dma_wr_burst = ((burst >> 5) & 0x07) <<
581		    DMA_CFG_WR_BURST_SHIFT;
582		if (bootverbose) {
583			device_printf(dev, "Read request size : %d bytes.\n",
584			    128 << ((burst >> 12) & 0x07));
585			device_printf(dev, "TLP payload size : %d bytes.\n",
586			    128 << ((burst >> 5) & 0x07));
587		}
588	} else {
589		sc->age_dma_rd_burst = DMA_CFG_RD_BURST_128;
590		sc->age_dma_wr_burst = DMA_CFG_WR_BURST_128;
591	}
592
593	/* Create device sysctl node. */
594	age_sysctl_node(sc);
595
596	if ((error = age_dma_alloc(sc) != 0))
597		goto fail;
598
599	/* Load station address. */
600	age_get_macaddr(sc);
601
602	ifp = sc->age_ifp = if_alloc(IFT_ETHER);
603	if (ifp == NULL) {
604		device_printf(dev, "cannot allocate ifnet structure.\n");
605		error = ENXIO;
606		goto fail;
607	}
608
609	ifp->if_softc = sc;
610	if_initname(ifp, device_get_name(dev), device_get_unit(dev));
611	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
612	ifp->if_ioctl = age_ioctl;
613	ifp->if_start = age_start;
614	ifp->if_init = age_init;
615	ifp->if_snd.ifq_drv_maxlen = AGE_TX_RING_CNT - 1;
616	IFQ_SET_MAXLEN(&ifp->if_snd, ifp->if_snd.ifq_drv_maxlen);
617	IFQ_SET_READY(&ifp->if_snd);
618	ifp->if_capabilities = IFCAP_HWCSUM | IFCAP_TSO4;
619	ifp->if_hwassist = AGE_CSUM_FEATURES | CSUM_TSO;
620	if (pci_find_extcap(dev, PCIY_PMG, &pmc) == 0) {
621		sc->age_flags |= AGE_FLAG_PMCAP;
622		ifp->if_capabilities |= IFCAP_WOL_MAGIC | IFCAP_WOL_MCAST;
623	}
624	ifp->if_capenable = ifp->if_capabilities;
625
626	/* Set up MII bus. */
627	if ((error = mii_phy_probe(dev, &sc->age_miibus, age_mediachange,
628	    age_mediastatus)) != 0) {
629		device_printf(dev, "no PHY found!\n");
630		goto fail;
631	}
632
633	ether_ifattach(ifp, sc->age_eaddr);
634
635	/* VLAN capability setup. */
636	ifp->if_capabilities |= IFCAP_VLAN_MTU;
637	ifp->if_capabilities |= IFCAP_VLAN_HWTAGGING | IFCAP_VLAN_HWCSUM;
638	ifp->if_capenable = ifp->if_capabilities;
639
640	/* Tell the upper layer(s) we support long frames. */
641	ifp->if_data.ifi_hdrlen = sizeof(struct ether_vlan_header);
642
643	/* Create local taskq. */
644	TASK_INIT(&sc->age_tx_task, 1, age_tx_task, ifp);
645	sc->age_tq = taskqueue_create_fast("age_taskq", M_WAITOK,
646	    taskqueue_thread_enqueue, &sc->age_tq);
647	if (sc->age_tq == NULL) {
648		device_printf(dev, "could not create taskqueue.\n");
649		ether_ifdetach(ifp);
650		error = ENXIO;
651		goto fail;
652	}
653	taskqueue_start_threads(&sc->age_tq, 1, PI_NET, "%s taskq",
654	    device_get_nameunit(sc->age_dev));
655
656	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
657		msic = AGE_MSIX_MESSAGES;
658	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
659		msic = AGE_MSI_MESSAGES;
660	else
661		msic = 1;
662	for (i = 0; i < msic; i++) {
663		error = bus_setup_intr(dev, sc->age_irq[i],
664		    INTR_TYPE_NET | INTR_MPSAFE, age_intr, NULL, sc,
665		    &sc->age_intrhand[i]);
666		if (error != 0)
667			break;
668	}
669	if (error != 0) {
670		device_printf(dev, "could not set up interrupt handler.\n");
671		taskqueue_free(sc->age_tq);
672		sc->age_tq = NULL;
673		ether_ifdetach(ifp);
674		goto fail;
675	}
676
677fail:
678	if (error != 0)
679		age_detach(dev);
680
681	return (error);
682}
683
684static int
685age_detach(device_t dev)
686{
687	struct age_softc *sc;
688	struct ifnet *ifp;
689	int i, msic;
690
691	sc = device_get_softc(dev);
692
693	ifp = sc->age_ifp;
694	if (device_is_attached(dev)) {
695		AGE_LOCK(sc);
696		sc->age_flags |= AGE_FLAG_DETACH;
697		age_stop(sc);
698		AGE_UNLOCK(sc);
699		callout_drain(&sc->age_tick_ch);
700		taskqueue_drain(sc->age_tq, &sc->age_int_task);
701		taskqueue_drain(sc->age_tq, &sc->age_tx_task);
702		taskqueue_drain(taskqueue_swi, &sc->age_link_task);
703		ether_ifdetach(ifp);
704	}
705
706	if (sc->age_tq != NULL) {
707		taskqueue_drain(sc->age_tq, &sc->age_int_task);
708		taskqueue_free(sc->age_tq);
709		sc->age_tq = NULL;
710	}
711
712	if (sc->age_miibus != NULL) {
713		device_delete_child(dev, sc->age_miibus);
714		sc->age_miibus = NULL;
715	}
716	bus_generic_detach(dev);
717	age_dma_free(sc);
718
719	if (ifp != NULL) {
720		if_free(ifp);
721		sc->age_ifp = NULL;
722	}
723
724	if ((sc->age_flags & AGE_FLAG_MSIX) != 0)
725		msic = AGE_MSIX_MESSAGES;
726	else if ((sc->age_flags & AGE_FLAG_MSI) != 0)
727		msic = AGE_MSI_MESSAGES;
728	else
729		msic = 1;
730	for (i = 0; i < msic; i++) {
731		if (sc->age_intrhand[i] != NULL) {
732			bus_teardown_intr(dev, sc->age_irq[i],
733			    sc->age_intrhand[i]);
734			sc->age_intrhand[i] = NULL;
735		}
736	}
737
738	bus_release_resources(dev, sc->age_irq_spec, sc->age_irq);
739	if ((sc->age_flags & (AGE_FLAG_MSI | AGE_FLAG_MSIX)) != 0)
740		pci_release_msi(dev);
741	bus_release_resources(dev, sc->age_res_spec, sc->age_res);
742	mtx_destroy(&sc->age_mtx);
743
744	return (0);
745}
746
747static void
748age_sysctl_node(struct age_softc *sc)
749{
750	int error;
751
752	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
753	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
754	    "stats", CTLTYPE_INT | CTLFLAG_RW, sc, 0, sysctl_age_stats,
755	    "I", "Statistics");
756
757	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
758	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
759	    "int_mod", CTLTYPE_INT | CTLFLAG_RW, &sc->age_int_mod, 0,
760	    sysctl_hw_age_int_mod, "I", "age interrupt moderation");
761
762	/* Pull in device tunables. */
763	sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
764	error = resource_int_value(device_get_name(sc->age_dev),
765	    device_get_unit(sc->age_dev), "int_mod", &sc->age_int_mod);
766	if (error == 0) {
767		if (sc->age_int_mod < AGE_IM_TIMER_MIN ||
768		    sc->age_int_mod > AGE_IM_TIMER_MAX) {
769			device_printf(sc->age_dev,
770			    "int_mod value out of range; using default: %d\n",
771			    AGE_IM_TIMER_DEFAULT);
772			sc->age_int_mod = AGE_IM_TIMER_DEFAULT;
773		}
774	}
775
776	SYSCTL_ADD_PROC(device_get_sysctl_ctx(sc->age_dev),
777	    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->age_dev)), OID_AUTO,
778	    "process_limit", CTLTYPE_INT | CTLFLAG_RW, &sc->age_process_limit,
779	    0, sysctl_hw_age_proc_limit, "I",
780	    "max number of Rx events to process");
781
782	/* Pull in device tunables. */
783	sc->age_process_limit = AGE_PROC_DEFAULT;
784	error = resource_int_value(device_get_name(sc->age_dev),
785	    device_get_unit(sc->age_dev), "process_limit",
786	    &sc->age_process_limit);
787	if (error == 0) {
788		if (sc->age_process_limit < AGE_PROC_MIN ||
789		    sc->age_process_limit > AGE_PROC_MAX) {
790			device_printf(sc->age_dev,
791			    "process_limit value out of range; "
792			    "using default: %d\n", AGE_PROC_DEFAULT);
793			sc->age_process_limit = AGE_PROC_DEFAULT;
794		}
795	}
796}
797
798struct age_dmamap_arg {
799	bus_addr_t	age_busaddr;
800};
801
802static void
803age_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nsegs, int error)
804{
805	struct age_dmamap_arg *ctx;
806
807	if (error != 0)
808		return;
809
810	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
811
812	ctx = (struct age_dmamap_arg *)arg;
813	ctx->age_busaddr = segs[0].ds_addr;
814}
815
816/*
817 * Attansic L1 controller have single register to specify high
818 * address part of DMA blocks. So all descriptor structures and
819 * DMA memory blocks should have the same high address of given
820 * 4GB address space(i.e. crossing 4GB boundary is not allowed).
821 */
822static int
823age_check_boundary(struct age_softc *sc)
824{
825	bus_addr_t rx_ring_end, rr_ring_end, tx_ring_end;
826	bus_addr_t cmb_block_end, smb_block_end;
827
828	/* Tx/Rx descriptor queue should reside within 4GB boundary. */
829	tx_ring_end = sc->age_rdata.age_tx_ring_paddr + AGE_TX_RING_SZ;
830	rx_ring_end = sc->age_rdata.age_rx_ring_paddr + AGE_RX_RING_SZ;
831	rr_ring_end = sc->age_rdata.age_rr_ring_paddr + AGE_RR_RING_SZ;
832	cmb_block_end = sc->age_rdata.age_cmb_block_paddr + AGE_CMB_BLOCK_SZ;
833	smb_block_end = sc->age_rdata.age_smb_block_paddr + AGE_SMB_BLOCK_SZ;
834
835	if ((AGE_ADDR_HI(tx_ring_end) !=
836	    AGE_ADDR_HI(sc->age_rdata.age_tx_ring_paddr)) ||
837	    (AGE_ADDR_HI(rx_ring_end) !=
838	    AGE_ADDR_HI(sc->age_rdata.age_rx_ring_paddr)) ||
839	    (AGE_ADDR_HI(rr_ring_end) !=
840	    AGE_ADDR_HI(sc->age_rdata.age_rr_ring_paddr)) ||
841	    (AGE_ADDR_HI(cmb_block_end) !=
842	    AGE_ADDR_HI(sc->age_rdata.age_cmb_block_paddr)) ||
843	    (AGE_ADDR_HI(smb_block_end) !=
844	    AGE_ADDR_HI(sc->age_rdata.age_smb_block_paddr)))
845		return (EFBIG);
846
847	if ((AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rx_ring_end)) ||
848	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(rr_ring_end)) ||
849	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(cmb_block_end)) ||
850	    (AGE_ADDR_HI(tx_ring_end) != AGE_ADDR_HI(smb_block_end)))
851		return (EFBIG);
852
853	return (0);
854}
855
856static int
857age_dma_alloc(struct age_softc *sc)
858{
859	struct age_txdesc *txd;
860	struct age_rxdesc *rxd;
861	bus_addr_t lowaddr;
862	struct age_dmamap_arg ctx;
863	int error, i;
864
865	lowaddr = BUS_SPACE_MAXADDR;
866
867again:
868	/* Create parent ring/DMA block tag. */
869	error = bus_dma_tag_create(
870	    bus_get_dma_tag(sc->age_dev), /* parent */
871	    1, 0,			/* alignment, boundary */
872	    lowaddr,			/* lowaddr */
873	    BUS_SPACE_MAXADDR,		/* highaddr */
874	    NULL, NULL,			/* filter, filterarg */
875	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
876	    0,				/* nsegments */
877	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
878	    0,				/* flags */
879	    NULL, NULL,			/* lockfunc, lockarg */
880	    &sc->age_cdata.age_parent_tag);
881	if (error != 0) {
882		device_printf(sc->age_dev,
883		    "could not create parent DMA tag.\n");
884		goto fail;
885	}
886
887	/* Create tag for Tx ring. */
888	error = bus_dma_tag_create(
889	    sc->age_cdata.age_parent_tag, /* parent */
890	    AGE_TX_RING_ALIGN, 0,	/* alignment, boundary */
891	    BUS_SPACE_MAXADDR,		/* lowaddr */
892	    BUS_SPACE_MAXADDR,		/* highaddr */
893	    NULL, NULL,			/* filter, filterarg */
894	    AGE_TX_RING_SZ,		/* maxsize */
895	    1,				/* nsegments */
896	    AGE_TX_RING_SZ,		/* maxsegsize */
897	    0,				/* flags */
898	    NULL, NULL,			/* lockfunc, lockarg */
899	    &sc->age_cdata.age_tx_ring_tag);
900	if (error != 0) {
901		device_printf(sc->age_dev,
902		    "could not create Tx ring DMA tag.\n");
903		goto fail;
904	}
905
906	/* Create tag for Rx ring. */
907	error = bus_dma_tag_create(
908	    sc->age_cdata.age_parent_tag, /* parent */
909	    AGE_RX_RING_ALIGN, 0,	/* alignment, boundary */
910	    BUS_SPACE_MAXADDR,		/* lowaddr */
911	    BUS_SPACE_MAXADDR,		/* highaddr */
912	    NULL, NULL,			/* filter, filterarg */
913	    AGE_RX_RING_SZ,		/* maxsize */
914	    1,				/* nsegments */
915	    AGE_RX_RING_SZ,		/* maxsegsize */
916	    0,				/* flags */
917	    NULL, NULL,			/* lockfunc, lockarg */
918	    &sc->age_cdata.age_rx_ring_tag);
919	if (error != 0) {
920		device_printf(sc->age_dev,
921		    "could not create Rx ring DMA tag.\n");
922		goto fail;
923	}
924
925	/* Create tag for Rx return ring. */
926	error = bus_dma_tag_create(
927	    sc->age_cdata.age_parent_tag, /* parent */
928	    AGE_RR_RING_ALIGN, 0,	/* alignment, boundary */
929	    BUS_SPACE_MAXADDR,		/* lowaddr */
930	    BUS_SPACE_MAXADDR,		/* highaddr */
931	    NULL, NULL,			/* filter, filterarg */
932	    AGE_RR_RING_SZ,		/* maxsize */
933	    1,				/* nsegments */
934	    AGE_RR_RING_SZ,		/* maxsegsize */
935	    0,				/* flags */
936	    NULL, NULL,			/* lockfunc, lockarg */
937	    &sc->age_cdata.age_rr_ring_tag);
938	if (error != 0) {
939		device_printf(sc->age_dev,
940		    "could not create Rx return ring DMA tag.\n");
941		goto fail;
942	}
943
944	/* Create tag for coalesing message block. */
945	error = bus_dma_tag_create(
946	    sc->age_cdata.age_parent_tag, /* parent */
947	    AGE_CMB_ALIGN, 0,		/* alignment, boundary */
948	    BUS_SPACE_MAXADDR,		/* lowaddr */
949	    BUS_SPACE_MAXADDR,		/* highaddr */
950	    NULL, NULL,			/* filter, filterarg */
951	    AGE_CMB_BLOCK_SZ,		/* maxsize */
952	    1,				/* nsegments */
953	    AGE_CMB_BLOCK_SZ,		/* maxsegsize */
954	    0,				/* flags */
955	    NULL, NULL,			/* lockfunc, lockarg */
956	    &sc->age_cdata.age_cmb_block_tag);
957	if (error != 0) {
958		device_printf(sc->age_dev,
959		    "could not create CMB DMA tag.\n");
960		goto fail;
961	}
962
963	/* Create tag for statistics message block. */
964	error = bus_dma_tag_create(
965	    sc->age_cdata.age_parent_tag, /* parent */
966	    AGE_SMB_ALIGN, 0,		/* alignment, boundary */
967	    BUS_SPACE_MAXADDR,		/* lowaddr */
968	    BUS_SPACE_MAXADDR,		/* highaddr */
969	    NULL, NULL,			/* filter, filterarg */
970	    AGE_SMB_BLOCK_SZ,		/* maxsize */
971	    1,				/* nsegments */
972	    AGE_SMB_BLOCK_SZ,		/* maxsegsize */
973	    0,				/* flags */
974	    NULL, NULL,			/* lockfunc, lockarg */
975	    &sc->age_cdata.age_smb_block_tag);
976	if (error != 0) {
977		device_printf(sc->age_dev,
978		    "could not create SMB DMA tag.\n");
979		goto fail;
980	}
981
982	/* Allocate DMA'able memory and load the DMA map. */
983	error = bus_dmamem_alloc(sc->age_cdata.age_tx_ring_tag,
984	    (void **)&sc->age_rdata.age_tx_ring,
985	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
986	    &sc->age_cdata.age_tx_ring_map);
987	if (error != 0) {
988		device_printf(sc->age_dev,
989		    "could not allocate DMA'able memory for Tx ring.\n");
990		goto fail;
991	}
992	ctx.age_busaddr = 0;
993	error = bus_dmamap_load(sc->age_cdata.age_tx_ring_tag,
994	    sc->age_cdata.age_tx_ring_map, sc->age_rdata.age_tx_ring,
995	    AGE_TX_RING_SZ, age_dmamap_cb, &ctx, 0);
996	if (error != 0 || ctx.age_busaddr == 0) {
997		device_printf(sc->age_dev,
998		    "could not load DMA'able memory for Tx ring.\n");
999		goto fail;
1000	}
1001	sc->age_rdata.age_tx_ring_paddr = ctx.age_busaddr;
1002	/* Rx ring */
1003	error = bus_dmamem_alloc(sc->age_cdata.age_rx_ring_tag,
1004	    (void **)&sc->age_rdata.age_rx_ring,
1005	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1006	    &sc->age_cdata.age_rx_ring_map);
1007	if (error != 0) {
1008		device_printf(sc->age_dev,
1009		    "could not allocate DMA'able memory for Rx ring.\n");
1010		goto fail;
1011	}
1012	ctx.age_busaddr = 0;
1013	error = bus_dmamap_load(sc->age_cdata.age_rx_ring_tag,
1014	    sc->age_cdata.age_rx_ring_map, sc->age_rdata.age_rx_ring,
1015	    AGE_RX_RING_SZ, age_dmamap_cb, &ctx, 0);
1016	if (error != 0 || ctx.age_busaddr == 0) {
1017		device_printf(sc->age_dev,
1018		    "could not load DMA'able memory for Rx ring.\n");
1019		goto fail;
1020	}
1021	sc->age_rdata.age_rx_ring_paddr = ctx.age_busaddr;
1022	/* Rx return ring */
1023	error = bus_dmamem_alloc(sc->age_cdata.age_rr_ring_tag,
1024	    (void **)&sc->age_rdata.age_rr_ring,
1025	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1026	    &sc->age_cdata.age_rr_ring_map);
1027	if (error != 0) {
1028		device_printf(sc->age_dev,
1029		    "could not allocate DMA'able memory for Rx return ring.\n");
1030		goto fail;
1031	}
1032	ctx.age_busaddr = 0;
1033	error = bus_dmamap_load(sc->age_cdata.age_rr_ring_tag,
1034	    sc->age_cdata.age_rr_ring_map, sc->age_rdata.age_rr_ring,
1035	    AGE_RR_RING_SZ, age_dmamap_cb,
1036	    &ctx, 0);
1037	if (error != 0 || ctx.age_busaddr == 0) {
1038		device_printf(sc->age_dev,
1039		    "could not load DMA'able memory for Rx return ring.\n");
1040		goto fail;
1041	}
1042	sc->age_rdata.age_rr_ring_paddr = ctx.age_busaddr;
1043	/* CMB block */
1044	error = bus_dmamem_alloc(sc->age_cdata.age_cmb_block_tag,
1045	    (void **)&sc->age_rdata.age_cmb_block,
1046	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1047	    &sc->age_cdata.age_cmb_block_map);
1048	if (error != 0) {
1049		device_printf(sc->age_dev,
1050		    "could not allocate DMA'able memory for CMB block.\n");
1051		goto fail;
1052	}
1053	ctx.age_busaddr = 0;
1054	error = bus_dmamap_load(sc->age_cdata.age_cmb_block_tag,
1055	    sc->age_cdata.age_cmb_block_map, sc->age_rdata.age_cmb_block,
1056	    AGE_CMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1057	if (error != 0 || ctx.age_busaddr == 0) {
1058		device_printf(sc->age_dev,
1059		    "could not load DMA'able memory for CMB block.\n");
1060		goto fail;
1061	}
1062	sc->age_rdata.age_cmb_block_paddr = ctx.age_busaddr;
1063	/* SMB block */
1064	error = bus_dmamem_alloc(sc->age_cdata.age_smb_block_tag,
1065	    (void **)&sc->age_rdata.age_smb_block,
1066	    BUS_DMA_WAITOK | BUS_DMA_ZERO | BUS_DMA_COHERENT,
1067	    &sc->age_cdata.age_smb_block_map);
1068	if (error != 0) {
1069		device_printf(sc->age_dev,
1070		    "could not allocate DMA'able memory for SMB block.\n");
1071		goto fail;
1072	}
1073	ctx.age_busaddr = 0;
1074	error = bus_dmamap_load(sc->age_cdata.age_smb_block_tag,
1075	    sc->age_cdata.age_smb_block_map, sc->age_rdata.age_smb_block,
1076	    AGE_SMB_BLOCK_SZ, age_dmamap_cb, &ctx, 0);
1077	if (error != 0 || ctx.age_busaddr == 0) {
1078		device_printf(sc->age_dev,
1079		    "could not load DMA'able memory for SMB block.\n");
1080		goto fail;
1081	}
1082	sc->age_rdata.age_smb_block_paddr = ctx.age_busaddr;
1083
1084	/*
1085	 * All ring buffer and DMA blocks should have the same
1086	 * high address part of 64bit DMA address space.
1087	 */
1088	if (lowaddr != BUS_SPACE_MAXADDR_32BIT &&
1089	    (error = age_check_boundary(sc)) != 0) {
1090		device_printf(sc->age_dev, "4GB boundary crossed, "
1091		    "switching to 32bit DMA addressing mode.\n");
1092		age_dma_free(sc);
1093		/* Limit DMA address space to 32bit and try again. */
1094		lowaddr = BUS_SPACE_MAXADDR_32BIT;
1095		goto again;
1096	}
1097
1098	/*
1099	 * Create Tx/Rx buffer parent tag.
1100	 * L1 supports full 64bit DMA addressing in Tx/Rx buffers
1101	 * so it needs separate parent DMA tag.
1102	 */
1103	error = bus_dma_tag_create(
1104	    bus_get_dma_tag(sc->age_dev), /* parent */
1105	    1, 0,			/* alignment, boundary */
1106	    BUS_SPACE_MAXADDR,		/* lowaddr */
1107	    BUS_SPACE_MAXADDR,		/* highaddr */
1108	    NULL, NULL,			/* filter, filterarg */
1109	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsize */
1110	    0,				/* nsegments */
1111	    BUS_SPACE_MAXSIZE_32BIT,	/* maxsegsize */
1112	    0,				/* flags */
1113	    NULL, NULL,			/* lockfunc, lockarg */
1114	    &sc->age_cdata.age_buffer_tag);
1115	if (error != 0) {
1116		device_printf(sc->age_dev,
1117		    "could not create parent buffer DMA tag.\n");
1118		goto fail;
1119	}
1120
1121	/* Create tag for Tx buffers. */
1122	error = bus_dma_tag_create(
1123	    sc->age_cdata.age_buffer_tag, /* parent */
1124	    1, 0,			/* alignment, boundary */
1125	    BUS_SPACE_MAXADDR,		/* lowaddr */
1126	    BUS_SPACE_MAXADDR,		/* highaddr */
1127	    NULL, NULL,			/* filter, filterarg */
1128	    AGE_TSO_MAXSIZE,		/* maxsize */
1129	    AGE_MAXTXSEGS,		/* nsegments */
1130	    AGE_TSO_MAXSEGSIZE,		/* maxsegsize */
1131	    0,				/* flags */
1132	    NULL, NULL,			/* lockfunc, lockarg */
1133	    &sc->age_cdata.age_tx_tag);
1134	if (error != 0) {
1135		device_printf(sc->age_dev, "could not create Tx DMA tag.\n");
1136		goto fail;
1137	}
1138
1139	/* Create tag for Rx buffers. */
1140	error = bus_dma_tag_create(
1141	    sc->age_cdata.age_buffer_tag, /* parent */
1142	    1, 0,			/* alignment, boundary */
1143	    BUS_SPACE_MAXADDR,		/* lowaddr */
1144	    BUS_SPACE_MAXADDR,		/* highaddr */
1145	    NULL, NULL,			/* filter, filterarg */
1146	    MCLBYTES,			/* maxsize */
1147	    1,				/* nsegments */
1148	    MCLBYTES,			/* maxsegsize */
1149	    0,				/* flags */
1150	    NULL, NULL,			/* lockfunc, lockarg */
1151	    &sc->age_cdata.age_rx_tag);
1152	if (error != 0) {
1153		device_printf(sc->age_dev, "could not create Rx DMA tag.\n");
1154		goto fail;
1155	}
1156
1157	/* Create DMA maps for Tx buffers. */
1158	for (i = 0; i < AGE_TX_RING_CNT; i++) {
1159		txd = &sc->age_cdata.age_txdesc[i];
1160		txd->tx_m = NULL;
1161		txd->tx_dmamap = NULL;
1162		error = bus_dmamap_create(sc->age_cdata.age_tx_tag, 0,
1163		    &txd->tx_dmamap);
1164		if (error != 0) {
1165			device_printf(sc->age_dev,
1166			    "could not create Tx dmamap.\n");
1167			goto fail;
1168		}
1169	}
1170	/* Create DMA maps for Rx buffers. */
1171	if ((error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1172	    &sc->age_cdata.age_rx_sparemap)) != 0) {
1173		device_printf(sc->age_dev,
1174		    "could not create spare Rx dmamap.\n");
1175		goto fail;
1176	}
1177	for (i = 0; i < AGE_RX_RING_CNT; i++) {
1178		rxd = &sc->age_cdata.age_rxdesc[i];
1179		rxd->rx_m = NULL;
1180		rxd->rx_dmamap = NULL;
1181		error = bus_dmamap_create(sc->age_cdata.age_rx_tag, 0,
1182		    &rxd->rx_dmamap);
1183		if (error != 0) {
1184			device_printf(sc->age_dev,
1185			    "could not create Rx dmamap.\n");
1186			goto fail;
1187		}
1188	}
1189
1190fail:
1191	return (error);
1192}
1193
1194static void
1195age_dma_free(struct age_softc *sc)
1196{
1197	struct age_txdesc *txd;
1198	struct age_rxdesc *rxd;
1199	int i;
1200
1201	/* Tx buffers */
1202	if (sc->age_cdata.age_tx_tag != NULL) {
1203		for (i = 0; i < AGE_TX_RING_CNT; i++) {
1204			txd = &sc->age_cdata.age_txdesc[i];
1205			if (txd->tx_dmamap != NULL) {
1206				bus_dmamap_destroy(sc->age_cdata.age_tx_tag,
1207				    txd->tx_dmamap);
1208				txd->tx_dmamap = NULL;
1209			}
1210		}
1211		bus_dma_tag_destroy(sc->age_cdata.age_tx_tag);
1212		sc->age_cdata.age_tx_tag = NULL;
1213	}
1214	/* Rx buffers */
1215	if (sc->age_cdata.age_rx_tag != NULL) {
1216		for (i = 0; i < AGE_RX_RING_CNT; i++) {
1217			rxd = &sc->age_cdata.age_rxdesc[i];
1218			if (rxd->rx_dmamap != NULL) {
1219				bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1220				    rxd->rx_dmamap);
1221				rxd->rx_dmamap = NULL;
1222			}
1223		}
1224		if (sc->age_cdata.age_rx_sparemap != NULL) {
1225			bus_dmamap_destroy(sc->age_cdata.age_rx_tag,
1226			    sc->age_cdata.age_rx_sparemap);
1227			sc->age_cdata.age_rx_sparemap = NULL;
1228		}
1229		bus_dma_tag_destroy(sc->age_cdata.age_rx_tag);
1230		sc->age_cdata.age_rx_tag = NULL;
1231	}
1232	/* Tx ring. */
1233	if (sc->age_cdata.age_tx_ring_tag != NULL) {
1234		if (sc->age_cdata.age_tx_ring_map != NULL)
1235			bus_dmamap_unload(sc->age_cdata.age_tx_ring_tag,
1236			    sc->age_cdata.age_tx_ring_map);
1237		if (sc->age_cdata.age_tx_ring_map != NULL &&
1238		    sc->age_rdata.age_tx_ring != NULL)
1239			bus_dmamem_free(sc->age_cdata.age_tx_ring_tag,
1240			    sc->age_rdata.age_tx_ring,
1241			    sc->age_cdata.age_tx_ring_map);
1242		sc->age_rdata.age_tx_ring = NULL;
1243		sc->age_cdata.age_tx_ring_map = NULL;
1244		bus_dma_tag_destroy(sc->age_cdata.age_tx_ring_tag);
1245		sc->age_cdata.age_tx_ring_tag = NULL;
1246	}
1247	/* Rx ring. */
1248	if (sc->age_cdata.age_rx_ring_tag != NULL) {
1249		if (sc->age_cdata.age_rx_ring_map != NULL)
1250			bus_dmamap_unload(sc->age_cdata.age_rx_ring_tag,
1251			    sc->age_cdata.age_rx_ring_map);
1252		if (sc->age_cdata.age_rx_ring_map != NULL &&
1253		    sc->age_rdata.age_rx_ring != NULL)
1254			bus_dmamem_free(sc->age_cdata.age_rx_ring_tag,
1255			    sc->age_rdata.age_rx_ring,
1256			    sc->age_cdata.age_rx_ring_map);
1257		sc->age_rdata.age_rx_ring = NULL;
1258		sc->age_cdata.age_rx_ring_map = NULL;
1259		bus_dma_tag_destroy(sc->age_cdata.age_rx_ring_tag);
1260		sc->age_cdata.age_rx_ring_tag = NULL;
1261	}
1262	/* Rx return ring. */
1263	if (sc->age_cdata.age_rr_ring_tag != NULL) {
1264		if (sc->age_cdata.age_rr_ring_map != NULL)
1265			bus_dmamap_unload(sc->age_cdata.age_rr_ring_tag,
1266			    sc->age_cdata.age_rr_ring_map);
1267		if (sc->age_cdata.age_rr_ring_map != NULL &&
1268		    sc->age_rdata.age_rr_ring != NULL)
1269			bus_dmamem_free(sc->age_cdata.age_rr_ring_tag,
1270			    sc->age_rdata.age_rr_ring,
1271			    sc->age_cdata.age_rr_ring_map);
1272		sc->age_rdata.age_rr_ring = NULL;
1273		sc->age_cdata.age_rr_ring_map = NULL;
1274		bus_dma_tag_destroy(sc->age_cdata.age_rr_ring_tag);
1275		sc->age_cdata.age_rr_ring_tag = NULL;
1276	}
1277	/* CMB block */
1278	if (sc->age_cdata.age_cmb_block_tag != NULL) {
1279		if (sc->age_cdata.age_cmb_block_map != NULL)
1280			bus_dmamap_unload(sc->age_cdata.age_cmb_block_tag,
1281			    sc->age_cdata.age_cmb_block_map);
1282		if (sc->age_cdata.age_cmb_block_map != NULL &&
1283		    sc->age_rdata.age_cmb_block != NULL)
1284			bus_dmamem_free(sc->age_cdata.age_cmb_block_tag,
1285			    sc->age_rdata.age_cmb_block,
1286			    sc->age_cdata.age_cmb_block_map);
1287		sc->age_rdata.age_cmb_block = NULL;
1288		sc->age_cdata.age_cmb_block_map = NULL;
1289		bus_dma_tag_destroy(sc->age_cdata.age_cmb_block_tag);
1290		sc->age_cdata.age_cmb_block_tag = NULL;
1291	}
1292	/* SMB block */
1293	if (sc->age_cdata.age_smb_block_tag != NULL) {
1294		if (sc->age_cdata.age_smb_block_map != NULL)
1295			bus_dmamap_unload(sc->age_cdata.age_smb_block_tag,
1296			    sc->age_cdata.age_smb_block_map);
1297		if (sc->age_cdata.age_smb_block_map != NULL &&
1298		    sc->age_rdata.age_smb_block != NULL)
1299			bus_dmamem_free(sc->age_cdata.age_smb_block_tag,
1300			    sc->age_rdata.age_smb_block,
1301			    sc->age_cdata.age_smb_block_map);
1302		sc->age_rdata.age_smb_block = NULL;
1303		sc->age_cdata.age_smb_block_map = NULL;
1304		bus_dma_tag_destroy(sc->age_cdata.age_smb_block_tag);
1305		sc->age_cdata.age_smb_block_tag = NULL;
1306	}
1307
1308	if (sc->age_cdata.age_buffer_tag != NULL) {
1309		bus_dma_tag_destroy(sc->age_cdata.age_buffer_tag);
1310		sc->age_cdata.age_buffer_tag = NULL;
1311	}
1312	if (sc->age_cdata.age_parent_tag != NULL) {
1313		bus_dma_tag_destroy(sc->age_cdata.age_parent_tag);
1314		sc->age_cdata.age_parent_tag = NULL;
1315	}
1316}
1317
1318/*
1319 *	Make sure the interface is stopped at reboot time.
1320 */
1321static int
1322age_shutdown(device_t dev)
1323{
1324
1325	return (age_suspend(dev));
1326}
1327
1328static void
1329age_setwol(struct age_softc *sc)
1330{
1331	struct ifnet *ifp;
1332	struct mii_data *mii;
1333	uint32_t reg, pmcs;
1334	uint16_t pmstat;
1335	int aneg, i, pmc;
1336
1337	AGE_LOCK_ASSERT(sc);
1338
1339	if (pci_find_extcap(sc->age_dev, PCIY_PMG, &pmc) != 0) {
1340		CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
1341		/*
1342		 * No PME capability, PHY power down.
1343		 * XXX
1344		 * Due to an unknown reason powering down PHY resulted
1345		 * in unexpected results such as inaccessbility of
1346		 * hardware of freshly rebooted system. Disable
1347		 * powering down PHY until I got more information for
1348		 * Attansic/Atheros PHY hardwares.
1349		 */
1350#ifdef notyet
1351		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1352		    MII_BMCR, BMCR_PDOWN);
1353#endif
1354		return;
1355	}
1356
1357	ifp = sc->age_ifp;
1358	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1359		/*
1360		 * Note, this driver resets the link speed to 10/100Mbps with
1361		 * auto-negotiation but we don't know whether that operation
1362		 * would succeed or not as it have no control after powering
1363		 * off. If the renegotiation fail WOL may not work. Running
1364		 * at 1Gbps will draw more power than 375mA at 3.3V which is
1365		 * specified in PCI specification and that would result in
1366		 * complete shutdowning power to ethernet controller.
1367		 *
1368		 * TODO
1369		 *  Save current negotiated media speed/duplex/flow-control
1370		 *  to softc and restore the same link again after resuming.
1371		 *  PHY handling such as power down/resetting to 100Mbps
1372		 *  may be better handled in suspend method in phy driver.
1373		 */
1374		mii = device_get_softc(sc->age_miibus);
1375		mii_pollstat(mii);
1376		aneg = 0;
1377		if ((mii->mii_media_status & IFM_AVALID) != 0) {
1378			switch IFM_SUBTYPE(mii->mii_media_active) {
1379			case IFM_10_T:
1380			case IFM_100_TX:
1381				goto got_link;
1382			case IFM_1000_T:
1383				aneg++;
1384			default:
1385				break;
1386			}
1387		}
1388		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1389		    MII_100T2CR, 0);
1390		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1391		    MII_ANAR, ANAR_TX_FD | ANAR_TX | ANAR_10_FD |
1392		    ANAR_10 | ANAR_CSMA);
1393		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1394		    MII_BMCR, BMCR_RESET | BMCR_AUTOEN | BMCR_STARTNEG);
1395		DELAY(1000);
1396		if (aneg != 0) {
1397			/* Poll link state until age(4) get a 10/100 link. */
1398			for (i = 0; i < MII_ANEGTICKS_GIGE; i++) {
1399				mii_pollstat(mii);
1400				if ((mii->mii_media_status & IFM_AVALID) != 0) {
1401					switch (IFM_SUBTYPE(
1402					    mii->mii_media_active)) {
1403					case IFM_10_T:
1404					case IFM_100_TX:
1405						age_mac_config(sc);
1406						goto got_link;
1407					default:
1408						break;
1409					}
1410				}
1411				AGE_UNLOCK(sc);
1412				pause("agelnk", hz);
1413				AGE_LOCK(sc);
1414			}
1415			if (i == MII_ANEGTICKS_GIGE)
1416				device_printf(sc->age_dev,
1417				    "establishing link failed, "
1418				    "WOL may not work!");
1419		}
1420		/*
1421		 * No link, force MAC to have 100Mbps, full-duplex link.
1422		 * This is the last resort and may/may not work.
1423		 */
1424		mii->mii_media_status = IFM_AVALID | IFM_ACTIVE;
1425		mii->mii_media_active = IFM_ETHER | IFM_100_TX | IFM_FDX;
1426		age_mac_config(sc);
1427	}
1428
1429got_link:
1430	pmcs = 0;
1431	if ((ifp->if_capenable & IFCAP_WOL_MAGIC) != 0)
1432		pmcs |= WOL_CFG_MAGIC | WOL_CFG_MAGIC_ENB;
1433	CSR_WRITE_4(sc, AGE_WOL_CFG, pmcs);
1434	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1435	reg &= ~(MAC_CFG_DBG | MAC_CFG_PROMISC);
1436	reg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST);
1437	if ((ifp->if_capenable & IFCAP_WOL_MCAST) != 0)
1438		reg |= MAC_CFG_ALLMULTI | MAC_CFG_BCAST;
1439	if ((ifp->if_capenable & IFCAP_WOL) != 0) {
1440		reg |= MAC_CFG_RX_ENB;
1441		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1442	}
1443
1444	/* Request PME. */
1445	pmstat = pci_read_config(sc->age_dev, pmc + PCIR_POWER_STATUS, 2);
1446	pmstat &= ~(PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE);
1447	if ((ifp->if_capenable & IFCAP_WOL) != 0)
1448		pmstat |= PCIM_PSTAT_PME | PCIM_PSTAT_PMEENABLE;
1449	pci_write_config(sc->age_dev, pmc + PCIR_POWER_STATUS, pmstat, 2);
1450#ifdef notyet
1451	/* See above for powering down PHY issues. */
1452	if ((ifp->if_capenable & IFCAP_WOL) == 0) {
1453		/* No WOL, PHY power down. */
1454		age_miibus_writereg(sc->age_dev, sc->age_phyaddr,
1455		    MII_BMCR, BMCR_PDOWN);
1456	}
1457#endif
1458}
1459
1460static int
1461age_suspend(device_t dev)
1462{
1463	struct age_softc *sc;
1464
1465	sc = device_get_softc(dev);
1466
1467	AGE_LOCK(sc);
1468	age_stop(sc);
1469	age_setwol(sc);
1470	AGE_UNLOCK(sc);
1471
1472	return (0);
1473}
1474
1475static int
1476age_resume(device_t dev)
1477{
1478	struct age_softc *sc;
1479	struct ifnet *ifp;
1480	uint16_t cmd;
1481
1482	sc = device_get_softc(dev);
1483
1484	AGE_LOCK(sc);
1485	/*
1486	 * Clear INTx emulation disable for hardwares that
1487	 * is set in resume event. From Linux.
1488	 */
1489	cmd = pci_read_config(sc->age_dev, PCIR_COMMAND, 2);
1490	if ((cmd & 0x0400) != 0) {
1491		cmd &= ~0x0400;
1492		pci_write_config(sc->age_dev, PCIR_COMMAND, cmd, 2);
1493	}
1494	AGE_UNLOCK(sc);
1495	age_phy_reset(sc);
1496	AGE_LOCK(sc);
1497	ifp = sc->age_ifp;
1498	if ((ifp->if_flags & IFF_UP) != 0)
1499		age_init_locked(sc);
1500
1501	AGE_UNLOCK(sc);
1502
1503	return (0);
1504}
1505
1506static int
1507age_encap(struct age_softc *sc, struct mbuf **m_head)
1508{
1509	struct age_txdesc *txd, *txd_last;
1510	struct tx_desc *desc;
1511	struct mbuf *m;
1512	struct ip *ip;
1513	struct tcphdr *tcp;
1514	bus_dma_segment_t txsegs[AGE_MAXTXSEGS];
1515	bus_dmamap_t map;
1516	uint32_t cflags, ip_off, poff, vtag;
1517	int error, i, nsegs, prod, si;
1518
1519	AGE_LOCK_ASSERT(sc);
1520
1521	M_ASSERTPKTHDR((*m_head));
1522
1523	m = *m_head;
1524	ip = NULL;
1525	tcp = NULL;
1526	cflags = vtag = 0;
1527	ip_off = poff = 0;
1528	if ((m->m_pkthdr.csum_flags & (AGE_CSUM_FEATURES | CSUM_TSO)) != 0) {
1529		/*
1530		 * L1 requires offset of TCP/UDP payload in its Tx
1531		 * descriptor to perform hardware Tx checksum offload.
1532		 * Additionally, TSO requires IP/TCP header size and
1533		 * modification of IP/TCP header in order to make TSO
1534		 * engine work. This kind of operation takes many CPU
1535		 * cycles on FreeBSD so fast host CPU is needed to get
1536		 * smooth TSO performance.
1537		 */
1538		struct ether_header *eh;
1539
1540		if (M_WRITABLE(m) == 0) {
1541			/* Get a writable copy. */
1542			m = m_dup(*m_head, M_DONTWAIT);
1543			/* Release original mbufs. */
1544			m_freem(*m_head);
1545			if (m == NULL) {
1546				*m_head = NULL;
1547				return (ENOBUFS);
1548			}
1549			*m_head = m;
1550		}
1551		ip_off = sizeof(struct ether_header);
1552		m = m_pullup(m, ip_off);
1553		if (m == NULL) {
1554			*m_head = NULL;
1555			return (ENOBUFS);
1556		}
1557		eh = mtod(m, struct ether_header *);
1558		/*
1559		 * Check if hardware VLAN insertion is off.
1560		 * Additional check for LLC/SNAP frame?
1561		 */
1562		if (eh->ether_type == htons(ETHERTYPE_VLAN)) {
1563			ip_off = sizeof(struct ether_vlan_header);
1564			m = m_pullup(m, ip_off);
1565			if (m == NULL) {
1566				*m_head = NULL;
1567				return (ENOBUFS);
1568			}
1569		}
1570		m = m_pullup(m, ip_off + sizeof(struct ip));
1571		if (m == NULL) {
1572			*m_head = NULL;
1573			return (ENOBUFS);
1574		}
1575		ip = (struct ip *)(mtod(m, char *) + ip_off);
1576		poff = ip_off + (ip->ip_hl << 2);
1577		if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1578			m = m_pullup(m, poff + sizeof(struct tcphdr));
1579			if (m == NULL) {
1580				*m_head = NULL;
1581				return (ENOBUFS);
1582			}
1583			tcp = (struct tcphdr *)(mtod(m, char *) + poff);
1584			/*
1585			 * L1 requires IP/TCP header size and offset as
1586			 * well as TCP pseudo checksum which complicates
1587			 * TSO configuration. I guess this comes from the
1588			 * adherence to Microsoft NDIS Large Send
1589			 * specification which requires insertion of
1590			 * pseudo checksum by upper stack. The pseudo
1591			 * checksum that NDIS refers to doesn't include
1592			 * TCP payload length so age(4) should recompute
1593			 * the pseudo checksum here. Hopefully this wouldn't
1594			 * be much burden on modern CPUs.
1595			 * Reset IP checksum and recompute TCP pseudo
1596			 * checksum as NDIS specification said.
1597			 */
1598			ip->ip_sum = 0;
1599			if (poff + (tcp->th_off << 2) == m->m_pkthdr.len)
1600				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1601				    ip->ip_dst.s_addr,
1602				    htons((tcp->th_off << 2) + IPPROTO_TCP));
1603			else
1604				tcp->th_sum = in_pseudo(ip->ip_src.s_addr,
1605				    ip->ip_dst.s_addr, htons(IPPROTO_TCP));
1606		}
1607		*m_head = m;
1608	}
1609
1610	si = prod = sc->age_cdata.age_tx_prod;
1611	txd = &sc->age_cdata.age_txdesc[prod];
1612	txd_last = txd;
1613	map = txd->tx_dmamap;
1614
1615	error =  bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1616	    *m_head, txsegs, &nsegs, 0);
1617	if (error == EFBIG) {
1618		m = m_collapse(*m_head, M_DONTWAIT, AGE_MAXTXSEGS);
1619		if (m == NULL) {
1620			m_freem(*m_head);
1621			*m_head = NULL;
1622			return (ENOMEM);
1623		}
1624		*m_head = m;
1625		error = bus_dmamap_load_mbuf_sg(sc->age_cdata.age_tx_tag, map,
1626		    *m_head, txsegs, &nsegs, 0);
1627		if (error != 0) {
1628			m_freem(*m_head);
1629			*m_head = NULL;
1630			return (error);
1631		}
1632	} else if (error != 0)
1633		return (error);
1634	if (nsegs == 0) {
1635		m_freem(*m_head);
1636		*m_head = NULL;
1637		return (EIO);
1638	}
1639
1640	/* Check descriptor overrun. */
1641	if (sc->age_cdata.age_tx_cnt + nsegs >= AGE_TX_RING_CNT - 2) {
1642		bus_dmamap_unload(sc->age_cdata.age_tx_tag, map);
1643		return (ENOBUFS);
1644	}
1645
1646	m = *m_head;
1647	/* Configure Tx IP/TCP/UDP checksum offload. */
1648	if ((m->m_pkthdr.csum_flags & AGE_CSUM_FEATURES) != 0) {
1649		cflags |= AGE_TD_CSUM;
1650		if ((m->m_pkthdr.csum_flags & CSUM_TCP) != 0)
1651			cflags |= AGE_TD_TCPCSUM;
1652		if ((m->m_pkthdr.csum_flags & CSUM_UDP) != 0)
1653			cflags |= AGE_TD_UDPCSUM;
1654		/* Set checksum start offset. */
1655		cflags |= (poff << AGE_TD_CSUM_PLOADOFFSET_SHIFT);
1656		/* Set checksum insertion position of TCP/UDP. */
1657		cflags |= ((poff + m->m_pkthdr.csum_data) <<
1658		    AGE_TD_CSUM_XSUMOFFSET_SHIFT);
1659	}
1660
1661	/* Configure TSO. */
1662	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1663		if (poff + (tcp->th_off << 2) == m->m_pkthdr.len) {
1664			/* Not TSO but IP/TCP checksum offload. */
1665			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1666			/* Clear TSO in order not to set AGE_TD_TSO_HDR. */
1667			m->m_pkthdr.csum_flags &= ~CSUM_TSO;
1668		} else {
1669			/* Request TSO and set MSS. */
1670			cflags |= AGE_TD_TSO_IPV4;
1671			cflags |= AGE_TD_IPCSUM | AGE_TD_TCPCSUM;
1672			cflags |= ((uint32_t)m->m_pkthdr.tso_segsz <<
1673			    AGE_TD_TSO_MSS_SHIFT);
1674		}
1675		/* Set IP/TCP header size. */
1676		cflags |= ip->ip_hl << AGE_TD_IPHDR_LEN_SHIFT;
1677		cflags |= tcp->th_off << AGE_TD_TSO_TCPHDR_LEN_SHIFT;
1678	}
1679
1680	/* Configure VLAN hardware tag insertion. */
1681	if ((m->m_flags & M_VLANTAG) != 0) {
1682		vtag = AGE_TX_VLAN_TAG(m->m_pkthdr.ether_vtag);
1683		vtag = ((vtag << AGE_TD_VLAN_SHIFT) & AGE_TD_VLAN_MASK);
1684		cflags |= AGE_TD_INSERT_VLAN_TAG;
1685	}
1686
1687	desc = NULL;
1688	for (i = 0; i < nsegs; i++) {
1689		desc = &sc->age_rdata.age_tx_ring[prod];
1690		desc->addr = htole64(txsegs[i].ds_addr);
1691		desc->len = htole32(AGE_TX_BYTES(txsegs[i].ds_len) | vtag);
1692		desc->flags = htole32(cflags);
1693		sc->age_cdata.age_tx_cnt++;
1694		AGE_DESC_INC(prod, AGE_TX_RING_CNT);
1695	}
1696	/* Update producer index. */
1697	sc->age_cdata.age_tx_prod = prod;
1698
1699	/* Set EOP on the last descriptor. */
1700	prod = (prod + AGE_TX_RING_CNT - 1) % AGE_TX_RING_CNT;
1701	desc = &sc->age_rdata.age_tx_ring[prod];
1702	desc->flags |= htole32(AGE_TD_EOP);
1703
1704	/* Lastly set TSO header and modify IP/TCP header for TSO operation. */
1705	if ((m->m_pkthdr.csum_flags & CSUM_TSO) != 0) {
1706		desc = &sc->age_rdata.age_tx_ring[si];
1707		desc->flags |= htole32(AGE_TD_TSO_HDR);
1708	}
1709
1710	/* Swap dmamap of the first and the last. */
1711	txd = &sc->age_cdata.age_txdesc[prod];
1712	map = txd_last->tx_dmamap;
1713	txd_last->tx_dmamap = txd->tx_dmamap;
1714	txd->tx_dmamap = map;
1715	txd->tx_m = m;
1716
1717	/* Sync descriptors. */
1718	bus_dmamap_sync(sc->age_cdata.age_tx_tag, map, BUS_DMASYNC_PREWRITE);
1719	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
1720	    sc->age_cdata.age_tx_ring_map,
1721	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
1722
1723	return (0);
1724}
1725
1726static void
1727age_tx_task(void *arg, int pending)
1728{
1729	struct ifnet *ifp;
1730
1731	ifp = (struct ifnet *)arg;
1732	age_start(ifp);
1733}
1734
1735static void
1736age_start(struct ifnet *ifp)
1737{
1738        struct age_softc *sc;
1739        struct mbuf *m_head;
1740	int enq;
1741
1742	sc = ifp->if_softc;
1743
1744	AGE_LOCK(sc);
1745
1746	if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) !=
1747	    IFF_DRV_RUNNING || (sc->age_flags & AGE_FLAG_LINK) == 0) {
1748		AGE_UNLOCK(sc);
1749		return;
1750	}
1751
1752	for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd); ) {
1753		IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head);
1754		if (m_head == NULL)
1755			break;
1756		/*
1757		 * Pack the data into the transmit ring. If we
1758		 * don't have room, set the OACTIVE flag and wait
1759		 * for the NIC to drain the ring.
1760		 */
1761		if (age_encap(sc, &m_head)) {
1762			if (m_head == NULL)
1763				break;
1764			IFQ_DRV_PREPEND(&ifp->if_snd, m_head);
1765			ifp->if_drv_flags |= IFF_DRV_OACTIVE;
1766			break;
1767		}
1768
1769		enq++;
1770		/*
1771		 * If there's a BPF listener, bounce a copy of this frame
1772		 * to him.
1773		 */
1774		ETHER_BPF_MTAP(ifp, m_head);
1775	}
1776
1777	if (enq > 0) {
1778		/* Update mbox. */
1779		AGE_COMMIT_MBOX(sc);
1780		/* Set a timeout in case the chip goes out to lunch. */
1781		sc->age_watchdog_timer = AGE_TX_TIMEOUT;
1782	}
1783
1784	AGE_UNLOCK(sc);
1785}
1786
1787static void
1788age_watchdog(struct age_softc *sc)
1789{
1790	struct ifnet *ifp;
1791
1792	AGE_LOCK_ASSERT(sc);
1793
1794	if (sc->age_watchdog_timer == 0 || --sc->age_watchdog_timer)
1795		return;
1796
1797	ifp = sc->age_ifp;
1798	if ((sc->age_flags & AGE_FLAG_LINK) == 0) {
1799		if_printf(sc->age_ifp, "watchdog timeout (missed link)\n");
1800		ifp->if_oerrors++;
1801		age_init_locked(sc);
1802		return;
1803	}
1804	if (sc->age_cdata.age_tx_cnt == 0) {
1805		if_printf(sc->age_ifp,
1806		    "watchdog timeout (missed Tx interrupts) -- recovering\n");
1807		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1808			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1809		return;
1810	}
1811	if_printf(sc->age_ifp, "watchdog timeout\n");
1812	ifp->if_oerrors++;
1813	age_init_locked(sc);
1814	if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
1815		taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
1816}
1817
1818static int
1819age_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
1820{
1821	struct age_softc *sc;
1822	struct ifreq *ifr;
1823	struct mii_data *mii;
1824	uint32_t reg;
1825	int error, mask;
1826
1827	sc = ifp->if_softc;
1828	ifr = (struct ifreq *)data;
1829	error = 0;
1830	switch (cmd) {
1831	case SIOCSIFMTU:
1832		if (ifr->ifr_mtu < ETHERMIN || ifr->ifr_mtu > AGE_JUMBO_MTU)
1833			error = EINVAL;
1834		else if (ifp->if_mtu != ifr->ifr_mtu) {
1835			AGE_LOCK(sc);
1836			ifp->if_mtu = ifr->ifr_mtu;
1837			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1838				age_init_locked(sc);
1839			AGE_UNLOCK(sc);
1840		}
1841		break;
1842	case SIOCSIFFLAGS:
1843		AGE_LOCK(sc);
1844		if ((ifp->if_flags & IFF_UP) != 0) {
1845			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
1846				if (((ifp->if_flags ^ sc->age_if_flags)
1847				    & (IFF_PROMISC | IFF_ALLMULTI)) != 0)
1848					age_rxfilter(sc);
1849			} else {
1850				if ((sc->age_flags & AGE_FLAG_DETACH) == 0)
1851					age_init_locked(sc);
1852			}
1853		} else {
1854			if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1855				age_stop(sc);
1856		}
1857		sc->age_if_flags = ifp->if_flags;
1858		AGE_UNLOCK(sc);
1859		break;
1860	case SIOCADDMULTI:
1861	case SIOCDELMULTI:
1862		AGE_LOCK(sc);
1863		if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0)
1864			age_rxfilter(sc);
1865		AGE_UNLOCK(sc);
1866		break;
1867	case SIOCSIFMEDIA:
1868	case SIOCGIFMEDIA:
1869		mii = device_get_softc(sc->age_miibus);
1870		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, cmd);
1871		break;
1872	case SIOCSIFCAP:
1873		AGE_LOCK(sc);
1874		mask = ifr->ifr_reqcap ^ ifp->if_capenable;
1875		if ((mask & IFCAP_TXCSUM) != 0 &&
1876		    (ifp->if_capabilities & IFCAP_TXCSUM) != 0) {
1877			ifp->if_capenable ^= IFCAP_TXCSUM;
1878			if ((ifp->if_capenable & IFCAP_TXCSUM) != 0)
1879				ifp->if_hwassist |= AGE_CSUM_FEATURES;
1880			else
1881				ifp->if_hwassist &= ~AGE_CSUM_FEATURES;
1882		}
1883		if ((mask & IFCAP_RXCSUM) != 0 &&
1884		    (ifp->if_capabilities & IFCAP_RXCSUM) != 0) {
1885			ifp->if_capenable ^= IFCAP_RXCSUM;
1886			reg = CSR_READ_4(sc, AGE_MAC_CFG);
1887			reg &= ~MAC_CFG_RXCSUM_ENB;
1888			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
1889				reg |= MAC_CFG_RXCSUM_ENB;
1890			CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1891		}
1892		if ((mask & IFCAP_TSO4) != 0 &&
1893		    (ifp->if_capabilities & IFCAP_TSO4) != 0) {
1894			ifp->if_capenable ^= IFCAP_TSO4;
1895			if ((ifp->if_capenable & IFCAP_TSO4) != 0)
1896				ifp->if_hwassist |= CSUM_TSO;
1897			else
1898				ifp->if_hwassist &= ~CSUM_TSO;
1899		}
1900
1901		if ((mask & IFCAP_WOL_MCAST) != 0 &&
1902		    (ifp->if_capabilities & IFCAP_WOL_MCAST) != 0)
1903			ifp->if_capenable ^= IFCAP_WOL_MCAST;
1904		if ((mask & IFCAP_WOL_MAGIC) != 0 &&
1905		    (ifp->if_capabilities & IFCAP_WOL_MAGIC) != 0)
1906			ifp->if_capenable ^= IFCAP_WOL_MAGIC;
1907
1908		if ((mask & IFCAP_VLAN_HWTAGGING) != 0 &&
1909		    (ifp->if_capabilities & IFCAP_VLAN_HWTAGGING) != 0) {
1910			ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING;
1911			age_rxvlan(sc);
1912		}
1913		if ((mask & IFCAP_VLAN_HWCSUM) != 0 &&
1914		    (ifp->if_capabilities & IFCAP_VLAN_HWCSUM) != 0)
1915			ifp->if_capenable ^= IFCAP_VLAN_HWCSUM;
1916		if ((mask & IFCAP_VLAN_HWTSO) != 0 &&
1917		    (ifp->if_capabilities & IFCAP_VLAN_HWTSO) != 0)
1918			ifp->if_capenable ^= IFCAP_VLAN_HWTSO;
1919		/*
1920		 * VLAN hardware tagging is required to do checksum
1921		 * offload or TSO on VLAN interface. Checksum offload
1922		 * on VLAN interface also requires hardware assistance
1923		 * of parent interface.
1924		 */
1925		if ((ifp->if_capenable & IFCAP_TXCSUM) == 0)
1926			ifp->if_capenable &= ~IFCAP_VLAN_HWCSUM;
1927		if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) == 0)
1928			ifp->if_capenable &=
1929			    ~(IFCAP_VLAN_HWTSO | IFCAP_VLAN_HWCSUM);
1930		AGE_UNLOCK(sc);
1931		VLAN_CAPABILITIES(ifp);
1932		break;
1933	default:
1934		error = ether_ioctl(ifp, cmd, data);
1935		break;
1936	}
1937
1938	return (error);
1939}
1940
1941static void
1942age_mac_config(struct age_softc *sc)
1943{
1944	struct mii_data *mii;
1945	uint32_t reg;
1946
1947	AGE_LOCK_ASSERT(sc);
1948
1949	mii = device_get_softc(sc->age_miibus);
1950	reg = CSR_READ_4(sc, AGE_MAC_CFG);
1951	reg &= ~MAC_CFG_FULL_DUPLEX;
1952	reg &= ~(MAC_CFG_TX_FC | MAC_CFG_RX_FC);
1953	reg &= ~MAC_CFG_SPEED_MASK;
1954	/* Reprogram MAC with resolved speed/duplex. */
1955	switch (IFM_SUBTYPE(mii->mii_media_active)) {
1956	case IFM_10_T:
1957	case IFM_100_TX:
1958		reg |= MAC_CFG_SPEED_10_100;
1959		break;
1960	case IFM_1000_T:
1961		reg |= MAC_CFG_SPEED_1000;
1962		break;
1963	}
1964	if ((IFM_OPTIONS(mii->mii_media_active) & IFM_FDX) != 0) {
1965		reg |= MAC_CFG_FULL_DUPLEX;
1966#ifdef notyet
1967		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_TXPAUSE) != 0)
1968			reg |= MAC_CFG_TX_FC;
1969		if ((IFM_OPTIONS(mii->mii_media_active) & IFM_ETH_RXPAUSE) != 0)
1970			reg |= MAC_CFG_RX_FC;
1971#endif
1972	}
1973
1974	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
1975}
1976
1977static void
1978age_link_task(void *arg, int pending)
1979{
1980	struct age_softc *sc;
1981	struct mii_data *mii;
1982	struct ifnet *ifp;
1983	uint32_t reg;
1984
1985	sc = (struct age_softc *)arg;
1986
1987	AGE_LOCK(sc);
1988	mii = device_get_softc(sc->age_miibus);
1989	ifp = sc->age_ifp;
1990	if (mii == NULL || ifp == NULL ||
1991	    (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) {
1992		AGE_UNLOCK(sc);
1993		return;
1994	}
1995
1996	sc->age_flags &= ~AGE_FLAG_LINK;
1997	if ((mii->mii_media_status & IFM_AVALID) != 0) {
1998		switch (IFM_SUBTYPE(mii->mii_media_active)) {
1999		case IFM_10_T:
2000		case IFM_100_TX:
2001		case IFM_1000_T:
2002			sc->age_flags |= AGE_FLAG_LINK;
2003			break;
2004		default:
2005			break;
2006		}
2007	}
2008
2009	/* Stop Rx/Tx MACs. */
2010	age_stop_rxmac(sc);
2011	age_stop_txmac(sc);
2012
2013	/* Program MACs with resolved speed/duplex/flow-control. */
2014	if ((sc->age_flags & AGE_FLAG_LINK) != 0) {
2015		age_mac_config(sc);
2016		reg = CSR_READ_4(sc, AGE_MAC_CFG);
2017		/* Restart DMA engine and Tx/Rx MAC. */
2018		CSR_WRITE_4(sc, AGE_DMA_CFG, CSR_READ_4(sc, AGE_DMA_CFG) |
2019		    DMA_CFG_RD_ENB | DMA_CFG_WR_ENB);
2020		reg |= MAC_CFG_TX_ENB | MAC_CFG_RX_ENB;
2021		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2022	}
2023
2024	AGE_UNLOCK(sc);
2025}
2026
2027static void
2028age_stats_update(struct age_softc *sc)
2029{
2030	struct age_stats *stat;
2031	struct smb *smb;
2032	struct ifnet *ifp;
2033
2034	AGE_LOCK_ASSERT(sc);
2035
2036	stat = &sc->age_stat;
2037
2038	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2039	    sc->age_cdata.age_smb_block_map,
2040	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2041
2042	smb = sc->age_rdata.age_smb_block;
2043	if (smb->updated == 0)
2044		return;
2045
2046	ifp = sc->age_ifp;
2047	/* Rx stats. */
2048	stat->rx_frames += smb->rx_frames;
2049	stat->rx_bcast_frames += smb->rx_bcast_frames;
2050	stat->rx_mcast_frames += smb->rx_mcast_frames;
2051	stat->rx_pause_frames += smb->rx_pause_frames;
2052	stat->rx_control_frames += smb->rx_control_frames;
2053	stat->rx_crcerrs += smb->rx_crcerrs;
2054	stat->rx_lenerrs += smb->rx_lenerrs;
2055	stat->rx_bytes += smb->rx_bytes;
2056	stat->rx_runts += smb->rx_runts;
2057	stat->rx_fragments += smb->rx_fragments;
2058	stat->rx_pkts_64 += smb->rx_pkts_64;
2059	stat->rx_pkts_65_127 += smb->rx_pkts_65_127;
2060	stat->rx_pkts_128_255 += smb->rx_pkts_128_255;
2061	stat->rx_pkts_256_511 += smb->rx_pkts_256_511;
2062	stat->rx_pkts_512_1023 += smb->rx_pkts_512_1023;
2063	stat->rx_pkts_1024_1518 += smb->rx_pkts_1024_1518;
2064	stat->rx_pkts_1519_max += smb->rx_pkts_1519_max;
2065	stat->rx_pkts_truncated += smb->rx_pkts_truncated;
2066	stat->rx_fifo_oflows += smb->rx_fifo_oflows;
2067	stat->rx_desc_oflows += smb->rx_desc_oflows;
2068	stat->rx_alignerrs += smb->rx_alignerrs;
2069	stat->rx_bcast_bytes += smb->rx_bcast_bytes;
2070	stat->rx_mcast_bytes += smb->rx_mcast_bytes;
2071	stat->rx_pkts_filtered += smb->rx_pkts_filtered;
2072
2073	/* Tx stats. */
2074	stat->tx_frames += smb->tx_frames;
2075	stat->tx_bcast_frames += smb->tx_bcast_frames;
2076	stat->tx_mcast_frames += smb->tx_mcast_frames;
2077	stat->tx_pause_frames += smb->tx_pause_frames;
2078	stat->tx_excess_defer += smb->tx_excess_defer;
2079	stat->tx_control_frames += smb->tx_control_frames;
2080	stat->tx_deferred += smb->tx_deferred;
2081	stat->tx_bytes += smb->tx_bytes;
2082	stat->tx_pkts_64 += smb->tx_pkts_64;
2083	stat->tx_pkts_65_127 += smb->tx_pkts_65_127;
2084	stat->tx_pkts_128_255 += smb->tx_pkts_128_255;
2085	stat->tx_pkts_256_511 += smb->tx_pkts_256_511;
2086	stat->tx_pkts_512_1023 += smb->tx_pkts_512_1023;
2087	stat->tx_pkts_1024_1518 += smb->tx_pkts_1024_1518;
2088	stat->tx_pkts_1519_max += smb->tx_pkts_1519_max;
2089	stat->tx_single_colls += smb->tx_single_colls;
2090	stat->tx_multi_colls += smb->tx_multi_colls;
2091	stat->tx_late_colls += smb->tx_late_colls;
2092	stat->tx_excess_colls += smb->tx_excess_colls;
2093	stat->tx_underrun += smb->tx_underrun;
2094	stat->tx_desc_underrun += smb->tx_desc_underrun;
2095	stat->tx_lenerrs += smb->tx_lenerrs;
2096	stat->tx_pkts_truncated += smb->tx_pkts_truncated;
2097	stat->tx_bcast_bytes += smb->tx_bcast_bytes;
2098	stat->tx_mcast_bytes += smb->tx_mcast_bytes;
2099
2100	/* Update counters in ifnet. */
2101	ifp->if_opackets += smb->tx_frames;
2102
2103	ifp->if_collisions += smb->tx_single_colls +
2104	    smb->tx_multi_colls + smb->tx_late_colls +
2105	    smb->tx_excess_colls * HDPX_CFG_RETRY_DEFAULT;
2106
2107	ifp->if_oerrors += smb->tx_excess_colls +
2108	    smb->tx_late_colls + smb->tx_underrun +
2109	    smb->tx_pkts_truncated;
2110
2111	ifp->if_ipackets += smb->rx_frames;
2112
2113	ifp->if_ierrors += smb->rx_crcerrs + smb->rx_lenerrs +
2114	    smb->rx_runts + smb->rx_pkts_truncated +
2115	    smb->rx_fifo_oflows + smb->rx_desc_oflows +
2116	    smb->rx_alignerrs;
2117
2118	/* Update done, clear. */
2119	smb->updated = 0;
2120
2121	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
2122	    sc->age_cdata.age_smb_block_map,
2123	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2124}
2125
2126static int
2127age_intr(void *arg)
2128{
2129	struct age_softc *sc;
2130	uint32_t status;
2131
2132	sc = (struct age_softc *)arg;
2133
2134	status = CSR_READ_4(sc, AGE_INTR_STATUS);
2135	if (status == 0 || (status & AGE_INTRS) == 0)
2136		return (FILTER_STRAY);
2137	/* Disable interrupts. */
2138	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2139	taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2140
2141	return (FILTER_HANDLED);
2142}
2143
2144static void
2145age_int_task(void *arg, int pending)
2146{
2147	struct age_softc *sc;
2148	struct ifnet *ifp;
2149	struct cmb *cmb;
2150	uint32_t status;
2151
2152	sc = (struct age_softc *)arg;
2153
2154	AGE_LOCK(sc);
2155
2156	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2157	    sc->age_cdata.age_cmb_block_map,
2158	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2159	cmb = sc->age_rdata.age_cmb_block;
2160	status = le32toh(cmb->intr_status);
2161	if (sc->age_morework != 0)
2162		status |= INTR_CMB_RX;
2163	if ((status & AGE_INTRS) == 0)
2164		goto done;
2165
2166	sc->age_tpd_cons = (le32toh(cmb->tpd_cons) & TPD_CONS_MASK) >>
2167	    TPD_CONS_SHIFT;
2168	sc->age_rr_prod = (le32toh(cmb->rprod_cons) & RRD_PROD_MASK) >>
2169	    RRD_PROD_SHIFT;
2170	/* Let hardware know CMB was served. */
2171	cmb->intr_status = 0;
2172	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2173	    sc->age_cdata.age_cmb_block_map,
2174	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2175
2176#if 0
2177	printf("INTR: 0x%08x\n", status);
2178	status &= ~INTR_DIS_DMA;
2179	CSR_WRITE_4(sc, AGE_INTR_STATUS, status | INTR_DIS_INT);
2180#endif
2181	ifp = sc->age_ifp;
2182	if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) {
2183		if ((status & INTR_CMB_RX) != 0)
2184			sc->age_morework = age_rxintr(sc, sc->age_rr_prod,
2185			    sc->age_process_limit);
2186		if ((status & INTR_CMB_TX) != 0)
2187			age_txintr(sc, sc->age_tpd_cons);
2188		if ((status & (INTR_DMA_RD_TO_RST | INTR_DMA_WR_TO_RST)) != 0) {
2189			if ((status & INTR_DMA_RD_TO_RST) != 0)
2190				device_printf(sc->age_dev,
2191				    "DMA read error! -- resetting\n");
2192			if ((status & INTR_DMA_WR_TO_RST) != 0)
2193				device_printf(sc->age_dev,
2194				    "DMA write error! -- resetting\n");
2195			age_init_locked(sc);
2196		}
2197		if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd))
2198			taskqueue_enqueue(sc->age_tq, &sc->age_tx_task);
2199		if ((status & INTR_SMB) != 0)
2200			age_stats_update(sc);
2201	}
2202
2203	/* Check whether CMB was updated while serving Tx/Rx/SMB handler. */
2204	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
2205	    sc->age_cdata.age_cmb_block_map,
2206	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2207	status = le32toh(cmb->intr_status);
2208	if (sc->age_morework != 0 || (status & AGE_INTRS) != 0) {
2209		taskqueue_enqueue(sc->age_tq, &sc->age_int_task);
2210		AGE_UNLOCK(sc);
2211		return;
2212	}
2213
2214done:
2215	/* Re-enable interrupts. */
2216	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2217	AGE_UNLOCK(sc);
2218}
2219
2220static void
2221age_txintr(struct age_softc *sc, int tpd_cons)
2222{
2223	struct ifnet *ifp;
2224	struct age_txdesc *txd;
2225	int cons, prog;
2226
2227	AGE_LOCK_ASSERT(sc);
2228
2229	ifp = sc->age_ifp;
2230
2231	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2232	    sc->age_cdata.age_tx_ring_map,
2233	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2234
2235	/*
2236	 * Go through our Tx list and free mbufs for those
2237	 * frames which have been transmitted.
2238	 */
2239	cons = sc->age_cdata.age_tx_cons;
2240	for (prog = 0; cons != tpd_cons; AGE_DESC_INC(cons, AGE_TX_RING_CNT)) {
2241		if (sc->age_cdata.age_tx_cnt <= 0)
2242			break;
2243		prog++;
2244		ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2245		sc->age_cdata.age_tx_cnt--;
2246		txd = &sc->age_cdata.age_txdesc[cons];
2247		/*
2248		 * Clear Tx descriptors, it's not required but would
2249		 * help debugging in case of Tx issues.
2250		 */
2251		txd->tx_desc->addr = 0;
2252		txd->tx_desc->len = 0;
2253		txd->tx_desc->flags = 0;
2254
2255		if (txd->tx_m == NULL)
2256			continue;
2257		/* Reclaim transmitted mbufs. */
2258		bus_dmamap_sync(sc->age_cdata.age_tx_tag, txd->tx_dmamap,
2259		    BUS_DMASYNC_POSTWRITE);
2260		bus_dmamap_unload(sc->age_cdata.age_tx_tag, txd->tx_dmamap);
2261		m_freem(txd->tx_m);
2262		txd->tx_m = NULL;
2263	}
2264
2265	if (prog > 0) {
2266		sc->age_cdata.age_tx_cons = cons;
2267
2268		/*
2269		 * Unarm watchdog timer only when there are no pending
2270		 * Tx descriptors in queue.
2271		 */
2272		if (sc->age_cdata.age_tx_cnt == 0)
2273			sc->age_watchdog_timer = 0;
2274		bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2275		    sc->age_cdata.age_tx_ring_map,
2276		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2277	}
2278}
2279
2280/* Receive a frame. */
2281static void
2282age_rxeof(struct age_softc *sc, struct rx_rdesc *rxrd)
2283{
2284	struct age_rxdesc *rxd;
2285	struct rx_desc *desc;
2286	struct ifnet *ifp;
2287	struct mbuf *mp, *m;
2288	uint32_t status, index, vtag;
2289	int count, nsegs, pktlen;
2290	int rx_cons;
2291
2292	AGE_LOCK_ASSERT(sc);
2293
2294	ifp = sc->age_ifp;
2295	status = le32toh(rxrd->flags);
2296	index = le32toh(rxrd->index);
2297	rx_cons = AGE_RX_CONS(index);
2298	nsegs = AGE_RX_NSEGS(index);
2299
2300	sc->age_cdata.age_rxlen = AGE_RX_BYTES(le32toh(rxrd->len));
2301	if ((status & AGE_RRD_ERROR) != 0 &&
2302	    (status & (AGE_RRD_CRC | AGE_RRD_CODE | AGE_RRD_DRIBBLE |
2303	    AGE_RRD_RUNT | AGE_RRD_OFLOW | AGE_RRD_TRUNC)) != 0) {
2304		/*
2305		 * We want to pass the following frames to upper
2306		 * layer regardless of error status of Rx return
2307		 * ring.
2308		 *
2309		 *  o IP/TCP/UDP checksum is bad.
2310		 *  o frame length and protocol specific length
2311		 *     does not match.
2312		 */
2313		sc->age_cdata.age_rx_cons += nsegs;
2314		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2315		return;
2316	}
2317
2318	pktlen = 0;
2319	for (count = 0; count < nsegs; count++,
2320	    AGE_DESC_INC(rx_cons, AGE_RX_RING_CNT)) {
2321		rxd = &sc->age_cdata.age_rxdesc[rx_cons];
2322		mp = rxd->rx_m;
2323		desc = rxd->rx_desc;
2324		/* Add a new receive buffer to the ring. */
2325		if (age_newbuf(sc, rxd) != 0) {
2326			ifp->if_iqdrops++;
2327			/* Reuse Rx buffers. */
2328			if (sc->age_cdata.age_rxhead != NULL) {
2329				m_freem(sc->age_cdata.age_rxhead);
2330				AGE_RXCHAIN_RESET(sc);
2331			}
2332			break;
2333		}
2334
2335		/* The length of the first mbuf is computed last. */
2336		if (count != 0) {
2337			mp->m_len = AGE_RX_BYTES(le32toh(desc->len));
2338			pktlen += mp->m_len;
2339		}
2340
2341		/* Chain received mbufs. */
2342		if (sc->age_cdata.age_rxhead == NULL) {
2343			sc->age_cdata.age_rxhead = mp;
2344			sc->age_cdata.age_rxtail = mp;
2345		} else {
2346			mp->m_flags &= ~M_PKTHDR;
2347			sc->age_cdata.age_rxprev_tail =
2348			    sc->age_cdata.age_rxtail;
2349			sc->age_cdata.age_rxtail->m_next = mp;
2350			sc->age_cdata.age_rxtail = mp;
2351		}
2352
2353		if (count == nsegs - 1) {
2354			/*
2355			 * It seems that L1 controller has no way
2356			 * to tell hardware to strip CRC bytes.
2357			 */
2358			sc->age_cdata.age_rxlen -= ETHER_CRC_LEN;
2359			if (nsegs > 1) {
2360				/* Remove the CRC bytes in chained mbufs. */
2361				pktlen -= ETHER_CRC_LEN;
2362				if (mp->m_len <= ETHER_CRC_LEN) {
2363					sc->age_cdata.age_rxtail =
2364					    sc->age_cdata.age_rxprev_tail;
2365					sc->age_cdata.age_rxtail->m_len -=
2366					    (ETHER_CRC_LEN - mp->m_len);
2367					sc->age_cdata.age_rxtail->m_next = NULL;
2368					m_freem(mp);
2369				} else {
2370					mp->m_len -= ETHER_CRC_LEN;
2371				}
2372			}
2373
2374			m = sc->age_cdata.age_rxhead;
2375			m->m_flags |= M_PKTHDR;
2376			m->m_pkthdr.rcvif = ifp;
2377			m->m_pkthdr.len = sc->age_cdata.age_rxlen;
2378			/* Set the first mbuf length. */
2379			m->m_len = sc->age_cdata.age_rxlen - pktlen;
2380
2381			/*
2382			 * Set checksum information.
2383			 * It seems that L1 controller can compute partial
2384			 * checksum. The partial checksum value can be used
2385			 * to accelerate checksum computation for fragmented
2386			 * TCP/UDP packets. Upper network stack already
2387			 * takes advantage of the partial checksum value in
2388			 * IP reassembly stage. But I'm not sure the
2389			 * correctness of the partial hardware checksum
2390			 * assistance due to lack of data sheet. If it is
2391			 * proven to work on L1 I'll enable it.
2392			 */
2393			if ((ifp->if_capenable & IFCAP_RXCSUM) != 0 &&
2394			    (status & AGE_RRD_IPV4) != 0) {
2395				m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED;
2396				if ((status & AGE_RRD_IPCSUM_NOK) == 0)
2397					m->m_pkthdr.csum_flags |= CSUM_IP_VALID;
2398				if ((status & (AGE_RRD_TCP | AGE_RRD_UDP)) &&
2399				    (status & AGE_RRD_TCP_UDPCSUM_NOK) == 0) {
2400					m->m_pkthdr.csum_flags |=
2401					    CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
2402					m->m_pkthdr.csum_data = 0xffff;
2403				}
2404				/*
2405				 * Don't mark bad checksum for TCP/UDP frames
2406				 * as fragmented frames may always have set
2407				 * bad checksummed bit of descriptor status.
2408				 */
2409			}
2410
2411			/* Check for VLAN tagged frames. */
2412			if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0 &&
2413			    (status & AGE_RRD_VLAN) != 0) {
2414				vtag = AGE_RX_VLAN(le32toh(rxrd->vtags));
2415				m->m_pkthdr.ether_vtag = AGE_RX_VLAN_TAG(vtag);
2416				m->m_flags |= M_VLANTAG;
2417			}
2418
2419			/* Pass it on. */
2420			AGE_UNLOCK(sc);
2421			(*ifp->if_input)(ifp, m);
2422			AGE_LOCK(sc);
2423
2424			/* Reset mbuf chains. */
2425			AGE_RXCHAIN_RESET(sc);
2426		}
2427	}
2428
2429	if (count != nsegs) {
2430		sc->age_cdata.age_rx_cons += nsegs;
2431		sc->age_cdata.age_rx_cons %= AGE_RX_RING_CNT;
2432	} else
2433		sc->age_cdata.age_rx_cons = rx_cons;
2434}
2435
2436static int
2437age_rxintr(struct age_softc *sc, int rr_prod, int count)
2438{
2439	struct rx_rdesc *rxrd;
2440	int rr_cons, nsegs, pktlen, prog;
2441
2442	AGE_LOCK_ASSERT(sc);
2443
2444	rr_cons = sc->age_cdata.age_rr_cons;
2445	if (rr_cons == rr_prod)
2446		return (0);
2447
2448	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2449	    sc->age_cdata.age_rr_ring_map,
2450	    BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
2451
2452	for (prog = 0; rr_cons != rr_prod; prog++) {
2453		if (count <= 0)
2454			break;
2455		rxrd = &sc->age_rdata.age_rr_ring[rr_cons];
2456		nsegs = AGE_RX_NSEGS(le32toh(rxrd->index));
2457		if (nsegs == 0)
2458			break;
2459		/*
2460		 * Check number of segments against received bytes.
2461		 * Non-matching value would indicate that hardware
2462		 * is still trying to update Rx return descriptors.
2463		 * I'm not sure whether this check is really needed.
2464		 */
2465		pktlen = AGE_RX_BYTES(le32toh(rxrd->len));
2466		if (nsegs != ((pktlen + (MCLBYTES - ETHER_ALIGN - 1)) /
2467		    (MCLBYTES - ETHER_ALIGN)))
2468			break;
2469
2470		prog++;
2471		/* Received a frame. */
2472		age_rxeof(sc, rxrd);
2473		/* Clear return ring. */
2474		rxrd->index = 0;
2475		AGE_DESC_INC(rr_cons, AGE_RR_RING_CNT);
2476	}
2477
2478	if (prog > 0) {
2479		/* Update the consumer index. */
2480		sc->age_cdata.age_rr_cons = rr_cons;
2481
2482		/* Sync descriptors. */
2483		bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
2484		    sc->age_cdata.age_rr_ring_map,
2485		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2486
2487		/* Notify hardware availability of new Rx buffers. */
2488		AGE_COMMIT_MBOX(sc);
2489	}
2490
2491	return (count > 0 ? 0 : EAGAIN);
2492}
2493
2494static void
2495age_tick(void *arg)
2496{
2497	struct age_softc *sc;
2498	struct mii_data *mii;
2499
2500	sc = (struct age_softc *)arg;
2501
2502	AGE_LOCK_ASSERT(sc);
2503
2504	mii = device_get_softc(sc->age_miibus);
2505	mii_tick(mii);
2506	age_watchdog(sc);
2507	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2508}
2509
2510static void
2511age_reset(struct age_softc *sc)
2512{
2513	uint32_t reg;
2514	int i;
2515
2516	CSR_WRITE_4(sc, AGE_MASTER_CFG, MASTER_RESET);
2517	CSR_READ_4(sc, AGE_MASTER_CFG);
2518	DELAY(1000);
2519	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2520		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2521			break;
2522		DELAY(10);
2523	}
2524
2525	if (i == 0)
2526		device_printf(sc->age_dev, "reset timeout(0x%08x)!\n", reg);
2527	/* Initialize PCIe module. From Linux. */
2528	CSR_WRITE_4(sc, 0x12FC, 0x6500);
2529	CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2530}
2531
2532static void
2533age_init(void *xsc)
2534{
2535	struct age_softc *sc;
2536
2537	sc = (struct age_softc *)xsc;
2538	AGE_LOCK(sc);
2539	age_init_locked(sc);
2540	AGE_UNLOCK(sc);
2541}
2542
2543static void
2544age_init_locked(struct age_softc *sc)
2545{
2546	struct ifnet *ifp;
2547	struct mii_data *mii;
2548	uint8_t eaddr[ETHER_ADDR_LEN];
2549	bus_addr_t paddr;
2550	uint32_t reg, fsize;
2551	uint32_t rxf_hi, rxf_lo, rrd_hi, rrd_lo;
2552	int error;
2553
2554	AGE_LOCK_ASSERT(sc);
2555
2556	ifp = sc->age_ifp;
2557	mii = device_get_softc(sc->age_miibus);
2558
2559	/*
2560	 * Cancel any pending I/O.
2561	 */
2562	age_stop(sc);
2563
2564	/*
2565	 * Reset the chip to a known state.
2566	 */
2567	age_reset(sc);
2568
2569	/* Initialize descriptors. */
2570	error = age_init_rx_ring(sc);
2571        if (error != 0) {
2572                device_printf(sc->age_dev, "no memory for Rx buffers.\n");
2573                age_stop(sc);
2574		return;
2575        }
2576	age_init_rr_ring(sc);
2577	age_init_tx_ring(sc);
2578	age_init_cmb_block(sc);
2579	age_init_smb_block(sc);
2580
2581	/* Reprogram the station address. */
2582	bcopy(IF_LLADDR(ifp), eaddr, ETHER_ADDR_LEN);
2583	CSR_WRITE_4(sc, AGE_PAR0,
2584	    eaddr[2] << 24 | eaddr[3] << 16 | eaddr[4] << 8 | eaddr[5]);
2585	CSR_WRITE_4(sc, AGE_PAR1, eaddr[0] << 8 | eaddr[1]);
2586
2587	/* Set descriptor base addresses. */
2588	paddr = sc->age_rdata.age_tx_ring_paddr;
2589	CSR_WRITE_4(sc, AGE_DESC_ADDR_HI, AGE_ADDR_HI(paddr));
2590	paddr = sc->age_rdata.age_rx_ring_paddr;
2591	CSR_WRITE_4(sc, AGE_DESC_RD_ADDR_LO, AGE_ADDR_LO(paddr));
2592	paddr = sc->age_rdata.age_rr_ring_paddr;
2593	CSR_WRITE_4(sc, AGE_DESC_RRD_ADDR_LO, AGE_ADDR_LO(paddr));
2594	paddr = sc->age_rdata.age_tx_ring_paddr;
2595	CSR_WRITE_4(sc, AGE_DESC_TPD_ADDR_LO, AGE_ADDR_LO(paddr));
2596	paddr = sc->age_rdata.age_cmb_block_paddr;
2597	CSR_WRITE_4(sc, AGE_DESC_CMB_ADDR_LO, AGE_ADDR_LO(paddr));
2598	paddr = sc->age_rdata.age_smb_block_paddr;
2599	CSR_WRITE_4(sc, AGE_DESC_SMB_ADDR_LO, AGE_ADDR_LO(paddr));
2600	/* Set Rx/Rx return descriptor counter. */
2601	CSR_WRITE_4(sc, AGE_DESC_RRD_RD_CNT,
2602	    ((AGE_RR_RING_CNT << DESC_RRD_CNT_SHIFT) &
2603	    DESC_RRD_CNT_MASK) |
2604	    ((AGE_RX_RING_CNT << DESC_RD_CNT_SHIFT) & DESC_RD_CNT_MASK));
2605	/* Set Tx descriptor counter. */
2606	CSR_WRITE_4(sc, AGE_DESC_TPD_CNT,
2607	    (AGE_TX_RING_CNT << DESC_TPD_CNT_SHIFT) & DESC_TPD_CNT_MASK);
2608
2609	/* Tell hardware that we're ready to load descriptors. */
2610	CSR_WRITE_4(sc, AGE_DMA_BLOCK, DMA_BLOCK_LOAD);
2611
2612	/*
2613	 * Initialize mailbox register.
2614	 * Updated producer/consumer index information is exchanged
2615	 * through this mailbox register. However Tx producer and
2616	 * Rx return consumer/Rx producer are all shared such that
2617	 * it's hard to separate code path between Tx and Rx without
2618	 * locking. If L1 hardware have a separate mail box register
2619	 * for Tx and Rx consumer/producer management we could have
2620	 * indepent Tx/Rx handler which in turn Rx handler could have
2621	 * been run without any locking.
2622	 */
2623	AGE_COMMIT_MBOX(sc);
2624
2625	/* Configure IPG/IFG parameters. */
2626	CSR_WRITE_4(sc, AGE_IPG_IFG_CFG,
2627	    ((IPG_IFG_IPG2_DEFAULT << IPG_IFG_IPG2_SHIFT) & IPG_IFG_IPG2_MASK) |
2628	    ((IPG_IFG_IPG1_DEFAULT << IPG_IFG_IPG1_SHIFT) & IPG_IFG_IPG1_MASK) |
2629	    ((IPG_IFG_MIFG_DEFAULT << IPG_IFG_MIFG_SHIFT) & IPG_IFG_MIFG_MASK) |
2630	    ((IPG_IFG_IPGT_DEFAULT << IPG_IFG_IPGT_SHIFT) & IPG_IFG_IPGT_MASK));
2631
2632	/* Set parameters for half-duplex media. */
2633	CSR_WRITE_4(sc, AGE_HDPX_CFG,
2634	    ((HDPX_CFG_LCOL_DEFAULT << HDPX_CFG_LCOL_SHIFT) &
2635	    HDPX_CFG_LCOL_MASK) |
2636	    ((HDPX_CFG_RETRY_DEFAULT << HDPX_CFG_RETRY_SHIFT) &
2637	    HDPX_CFG_RETRY_MASK) | HDPX_CFG_EXC_DEF_EN |
2638	    ((HDPX_CFG_ABEBT_DEFAULT << HDPX_CFG_ABEBT_SHIFT) &
2639	    HDPX_CFG_ABEBT_MASK) |
2640	    ((HDPX_CFG_JAMIPG_DEFAULT << HDPX_CFG_JAMIPG_SHIFT) &
2641	    HDPX_CFG_JAMIPG_MASK));
2642
2643	/* Configure interrupt moderation timer. */
2644	CSR_WRITE_2(sc, AGE_IM_TIMER, AGE_USECS(sc->age_int_mod));
2645	reg = CSR_READ_4(sc, AGE_MASTER_CFG);
2646	reg &= ~MASTER_MTIMER_ENB;
2647	if (AGE_USECS(sc->age_int_mod) == 0)
2648		reg &= ~MASTER_ITIMER_ENB;
2649	else
2650		reg |= MASTER_ITIMER_ENB;
2651	CSR_WRITE_4(sc, AGE_MASTER_CFG, reg);
2652	if (bootverbose)
2653		device_printf(sc->age_dev, "interrupt moderation is %d us.\n",
2654		    sc->age_int_mod);
2655	CSR_WRITE_2(sc, AGE_INTR_CLR_TIMER, AGE_USECS(1000));
2656
2657	/* Set Maximum frame size but don't let MTU be lass than ETHER_MTU. */
2658	if (ifp->if_mtu < ETHERMTU)
2659		sc->age_max_frame_size = ETHERMTU;
2660	else
2661		sc->age_max_frame_size = ifp->if_mtu;
2662	sc->age_max_frame_size += ETHER_HDR_LEN +
2663	    sizeof(struct ether_vlan_header) + ETHER_CRC_LEN;
2664	CSR_WRITE_4(sc, AGE_FRAME_SIZE, sc->age_max_frame_size);
2665	/* Configure jumbo frame. */
2666	fsize = roundup(sc->age_max_frame_size, sizeof(uint64_t));
2667	CSR_WRITE_4(sc, AGE_RXQ_JUMBO_CFG,
2668	    (((fsize / sizeof(uint64_t)) <<
2669	    RXQ_JUMBO_CFG_SZ_THRESH_SHIFT) & RXQ_JUMBO_CFG_SZ_THRESH_MASK) |
2670	    ((RXQ_JUMBO_CFG_LKAH_DEFAULT <<
2671	    RXQ_JUMBO_CFG_LKAH_SHIFT) & RXQ_JUMBO_CFG_LKAH_MASK) |
2672	    ((AGE_USECS(8) << RXQ_JUMBO_CFG_RRD_TIMER_SHIFT) &
2673	    RXQ_JUMBO_CFG_RRD_TIMER_MASK));
2674
2675	/* Configure flow-control parameters. From Linux. */
2676	if ((sc->age_flags & AGE_FLAG_PCIE) != 0) {
2677		/*
2678		 * Magic workaround for old-L1.
2679		 * Don't know which hw revision requires this magic.
2680		 */
2681		CSR_WRITE_4(sc, 0x12FC, 0x6500);
2682		/*
2683		 * Another magic workaround for flow-control mode
2684		 * change. From Linux.
2685		 */
2686		CSR_WRITE_4(sc, 0x1008, CSR_READ_4(sc, 0x1008) | 0x8000);
2687	}
2688	/*
2689	 * TODO
2690	 *  Should understand pause parameter relationships between FIFO
2691	 *  size and number of Rx descriptors and Rx return descriptors.
2692	 *
2693	 *  Magic parameters came from Linux.
2694	 */
2695	switch (sc->age_chip_rev) {
2696	case 0x8001:
2697	case 0x9001:
2698	case 0x9002:
2699	case 0x9003:
2700		rxf_hi = AGE_RX_RING_CNT / 16;
2701		rxf_lo = (AGE_RX_RING_CNT * 7) / 8;
2702		rrd_hi = (AGE_RR_RING_CNT * 7) / 8;
2703		rrd_lo = AGE_RR_RING_CNT / 16;
2704		break;
2705	default:
2706		reg = CSR_READ_4(sc, AGE_SRAM_RX_FIFO_LEN);
2707		rxf_lo = reg / 16;
2708		if (rxf_lo < 192)
2709			rxf_lo = 192;
2710		rxf_hi = (reg * 7) / 8;
2711		if (rxf_hi < rxf_lo)
2712			rxf_hi = rxf_lo + 16;
2713		reg = CSR_READ_4(sc, AGE_SRAM_RRD_LEN);
2714		rrd_lo = reg / 8;
2715		rrd_hi = (reg * 7) / 8;
2716		if (rrd_lo < 2)
2717			rrd_lo = 2;
2718		if (rrd_hi < rrd_lo)
2719			rrd_hi = rrd_lo + 3;
2720		break;
2721	}
2722	CSR_WRITE_4(sc, AGE_RXQ_FIFO_PAUSE_THRESH,
2723	    ((rxf_lo << RXQ_FIFO_PAUSE_THRESH_LO_SHIFT) &
2724	    RXQ_FIFO_PAUSE_THRESH_LO_MASK) |
2725	    ((rxf_hi << RXQ_FIFO_PAUSE_THRESH_HI_SHIFT) &
2726	    RXQ_FIFO_PAUSE_THRESH_HI_MASK));
2727	CSR_WRITE_4(sc, AGE_RXQ_RRD_PAUSE_THRESH,
2728	    ((rrd_lo << RXQ_RRD_PAUSE_THRESH_LO_SHIFT) &
2729	    RXQ_RRD_PAUSE_THRESH_LO_MASK) |
2730	    ((rrd_hi << RXQ_RRD_PAUSE_THRESH_HI_SHIFT) &
2731	    RXQ_RRD_PAUSE_THRESH_HI_MASK));
2732
2733	/* Configure RxQ. */
2734	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2735	    ((RXQ_CFG_RD_BURST_DEFAULT << RXQ_CFG_RD_BURST_SHIFT) &
2736	    RXQ_CFG_RD_BURST_MASK) |
2737	    ((RXQ_CFG_RRD_BURST_THRESH_DEFAULT <<
2738	    RXQ_CFG_RRD_BURST_THRESH_SHIFT) & RXQ_CFG_RRD_BURST_THRESH_MASK) |
2739	    ((RXQ_CFG_RD_PREF_MIN_IPG_DEFAULT <<
2740	    RXQ_CFG_RD_PREF_MIN_IPG_SHIFT) & RXQ_CFG_RD_PREF_MIN_IPG_MASK) |
2741	    RXQ_CFG_CUT_THROUGH_ENB | RXQ_CFG_ENB);
2742
2743	/* Configure TxQ. */
2744	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2745	    ((TXQ_CFG_TPD_BURST_DEFAULT << TXQ_CFG_TPD_BURST_SHIFT) &
2746	    TXQ_CFG_TPD_BURST_MASK) |
2747	    ((TXQ_CFG_TX_FIFO_BURST_DEFAULT << TXQ_CFG_TX_FIFO_BURST_SHIFT) &
2748	    TXQ_CFG_TX_FIFO_BURST_MASK) |
2749	    ((TXQ_CFG_TPD_FETCH_DEFAULT <<
2750	    TXQ_CFG_TPD_FETCH_THRESH_SHIFT) & TXQ_CFG_TPD_FETCH_THRESH_MASK) |
2751	    TXQ_CFG_ENB);
2752
2753	CSR_WRITE_4(sc, AGE_TX_JUMBO_TPD_TH_IPG,
2754	    (((fsize / sizeof(uint64_t) << TX_JUMBO_TPD_TH_SHIFT)) &
2755	    TX_JUMBO_TPD_TH_MASK) |
2756	    ((TX_JUMBO_TPD_IPG_DEFAULT << TX_JUMBO_TPD_IPG_SHIFT) &
2757	    TX_JUMBO_TPD_IPG_MASK));
2758	/* Configure DMA parameters. */
2759	CSR_WRITE_4(sc, AGE_DMA_CFG,
2760	    DMA_CFG_ENH_ORDER | DMA_CFG_RCB_64 |
2761	    sc->age_dma_rd_burst | DMA_CFG_RD_ENB |
2762	    sc->age_dma_wr_burst | DMA_CFG_WR_ENB);
2763
2764	/* Configure CMB DMA write threshold. */
2765	CSR_WRITE_4(sc, AGE_CMB_WR_THRESH,
2766	    ((CMB_WR_THRESH_RRD_DEFAULT << CMB_WR_THRESH_RRD_SHIFT) &
2767	    CMB_WR_THRESH_RRD_MASK) |
2768	    ((CMB_WR_THRESH_TPD_DEFAULT << CMB_WR_THRESH_TPD_SHIFT) &
2769	    CMB_WR_THRESH_TPD_MASK));
2770
2771	/* Set CMB/SMB timer and enable them. */
2772	CSR_WRITE_4(sc, AGE_CMB_WR_TIMER,
2773	    ((AGE_USECS(2) << CMB_WR_TIMER_TX_SHIFT) & CMB_WR_TIMER_TX_MASK) |
2774	    ((AGE_USECS(2) << CMB_WR_TIMER_RX_SHIFT) & CMB_WR_TIMER_RX_MASK));
2775	/* Request SMB updates for every seconds. */
2776	CSR_WRITE_4(sc, AGE_SMB_TIMER, AGE_USECS(1000 * 1000));
2777	CSR_WRITE_4(sc, AGE_CSMB_CTRL, CSMB_CTRL_SMB_ENB | CSMB_CTRL_CMB_ENB);
2778
2779	/*
2780	 * Disable all WOL bits as WOL can interfere normal Rx
2781	 * operation.
2782	 */
2783	CSR_WRITE_4(sc, AGE_WOL_CFG, 0);
2784
2785	/*
2786	 * Configure Tx/Rx MACs.
2787	 *  - Auto-padding for short frames.
2788	 *  - Enable CRC generation.
2789	 *  Start with full-duplex/1000Mbps media. Actual reconfiguration
2790	 *  of MAC is followed after link establishment.
2791	 */
2792	CSR_WRITE_4(sc, AGE_MAC_CFG,
2793	    MAC_CFG_TX_CRC_ENB | MAC_CFG_TX_AUTO_PAD |
2794	    MAC_CFG_FULL_DUPLEX | MAC_CFG_SPEED_1000 |
2795	    ((MAC_CFG_PREAMBLE_DEFAULT << MAC_CFG_PREAMBLE_SHIFT) &
2796	    MAC_CFG_PREAMBLE_MASK));
2797	/* Set up the receive filter. */
2798	age_rxfilter(sc);
2799	age_rxvlan(sc);
2800
2801	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2802	if ((ifp->if_capenable & IFCAP_RXCSUM) != 0)
2803		reg |= MAC_CFG_RXCSUM_ENB;
2804
2805	/* Ack all pending interrupts and clear it. */
2806	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0);
2807	CSR_WRITE_4(sc, AGE_INTR_MASK, AGE_INTRS);
2808
2809	/* Finally enable Tx/Rx MAC. */
2810	CSR_WRITE_4(sc, AGE_MAC_CFG, reg | MAC_CFG_TX_ENB | MAC_CFG_RX_ENB);
2811
2812	sc->age_flags &= ~AGE_FLAG_LINK;
2813	/* Switch to the current media. */
2814	mii_mediachg(mii);
2815
2816	callout_reset(&sc->age_tick_ch, hz, age_tick, sc);
2817
2818	ifp->if_drv_flags |= IFF_DRV_RUNNING;
2819	ifp->if_drv_flags &= ~IFF_DRV_OACTIVE;
2820}
2821
2822static void
2823age_stop(struct age_softc *sc)
2824{
2825	struct ifnet *ifp;
2826	struct age_txdesc *txd;
2827	struct age_rxdesc *rxd;
2828	uint32_t reg;
2829	int i;
2830
2831	AGE_LOCK_ASSERT(sc);
2832	/*
2833	 * Mark the interface down and cancel the watchdog timer.
2834	 */
2835	ifp = sc->age_ifp;
2836	ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE);
2837	sc->age_flags &= ~AGE_FLAG_LINK;
2838	callout_stop(&sc->age_tick_ch);
2839	sc->age_watchdog_timer = 0;
2840
2841	/*
2842	 * Disable interrupts.
2843	 */
2844	CSR_WRITE_4(sc, AGE_INTR_MASK, 0);
2845	CSR_WRITE_4(sc, AGE_INTR_STATUS, 0xFFFFFFFF);
2846	/* Stop CMB/SMB updates. */
2847	CSR_WRITE_4(sc, AGE_CSMB_CTRL, 0);
2848	/* Stop Rx/Tx MAC. */
2849	age_stop_rxmac(sc);
2850	age_stop_txmac(sc);
2851	/* Stop DMA. */
2852	CSR_WRITE_4(sc, AGE_DMA_CFG,
2853	    CSR_READ_4(sc, AGE_DMA_CFG) & ~(DMA_CFG_RD_ENB | DMA_CFG_WR_ENB));
2854	/* Stop TxQ/RxQ. */
2855	CSR_WRITE_4(sc, AGE_TXQ_CFG,
2856	    CSR_READ_4(sc, AGE_TXQ_CFG) & ~TXQ_CFG_ENB);
2857	CSR_WRITE_4(sc, AGE_RXQ_CFG,
2858	    CSR_READ_4(sc, AGE_RXQ_CFG) & ~RXQ_CFG_ENB);
2859	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2860		if ((reg = CSR_READ_4(sc, AGE_IDLE_STATUS)) == 0)
2861			break;
2862		DELAY(10);
2863	}
2864	if (i == 0)
2865		device_printf(sc->age_dev,
2866		    "stopping Rx/Tx MACs timed out(0x%08x)!\n", reg);
2867
2868	 /* Reclaim Rx buffers that have been processed. */
2869	if (sc->age_cdata.age_rxhead != NULL)
2870		m_freem(sc->age_cdata.age_rxhead);
2871	AGE_RXCHAIN_RESET(sc);
2872	/*
2873	 * Free RX and TX mbufs still in the queues.
2874	 */
2875	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2876		rxd = &sc->age_cdata.age_rxdesc[i];
2877		if (rxd->rx_m != NULL) {
2878			bus_dmamap_sync(sc->age_cdata.age_rx_tag,
2879			    rxd->rx_dmamap, BUS_DMASYNC_POSTREAD);
2880			bus_dmamap_unload(sc->age_cdata.age_rx_tag,
2881			    rxd->rx_dmamap);
2882			m_freem(rxd->rx_m);
2883			rxd->rx_m = NULL;
2884		}
2885        }
2886	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2887		txd = &sc->age_cdata.age_txdesc[i];
2888		if (txd->tx_m != NULL) {
2889			bus_dmamap_sync(sc->age_cdata.age_tx_tag,
2890			    txd->tx_dmamap, BUS_DMASYNC_POSTWRITE);
2891			bus_dmamap_unload(sc->age_cdata.age_tx_tag,
2892			    txd->tx_dmamap);
2893			m_freem(txd->tx_m);
2894			txd->tx_m = NULL;
2895		}
2896        }
2897}
2898
2899static void
2900age_stop_txmac(struct age_softc *sc)
2901{
2902	uint32_t reg;
2903	int i;
2904
2905	AGE_LOCK_ASSERT(sc);
2906
2907	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2908	if ((reg & MAC_CFG_TX_ENB) != 0) {
2909		reg &= ~MAC_CFG_TX_ENB;
2910		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2911	}
2912	/* Stop Tx DMA engine. */
2913	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2914	if ((reg & DMA_CFG_RD_ENB) != 0) {
2915		reg &= ~DMA_CFG_RD_ENB;
2916		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2917	}
2918	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2919		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2920		    (IDLE_STATUS_TXMAC | IDLE_STATUS_DMARD)) == 0)
2921			break;
2922		DELAY(10);
2923	}
2924	if (i == 0)
2925		device_printf(sc->age_dev, "stopping TxMAC timeout!\n");
2926}
2927
2928static void
2929age_stop_rxmac(struct age_softc *sc)
2930{
2931	uint32_t reg;
2932	int i;
2933
2934	AGE_LOCK_ASSERT(sc);
2935
2936	reg = CSR_READ_4(sc, AGE_MAC_CFG);
2937	if ((reg & MAC_CFG_RX_ENB) != 0) {
2938		reg &= ~MAC_CFG_RX_ENB;
2939		CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
2940	}
2941	/* Stop Rx DMA engine. */
2942	reg = CSR_READ_4(sc, AGE_DMA_CFG);
2943	if ((reg & DMA_CFG_WR_ENB) != 0) {
2944		reg &= ~DMA_CFG_WR_ENB;
2945		CSR_WRITE_4(sc, AGE_DMA_CFG, reg);
2946	}
2947	for (i = AGE_RESET_TIMEOUT; i > 0; i--) {
2948		if ((CSR_READ_4(sc, AGE_IDLE_STATUS) &
2949		    (IDLE_STATUS_RXMAC | IDLE_STATUS_DMAWR)) == 0)
2950			break;
2951		DELAY(10);
2952	}
2953	if (i == 0)
2954		device_printf(sc->age_dev, "stopping RxMAC timeout!\n");
2955}
2956
2957static void
2958age_init_tx_ring(struct age_softc *sc)
2959{
2960	struct age_ring_data *rd;
2961	struct age_txdesc *txd;
2962	int i;
2963
2964	AGE_LOCK_ASSERT(sc);
2965
2966	sc->age_cdata.age_tx_prod = 0;
2967	sc->age_cdata.age_tx_cons = 0;
2968	sc->age_cdata.age_tx_cnt = 0;
2969
2970	rd = &sc->age_rdata;
2971	bzero(rd->age_tx_ring, AGE_TX_RING_SZ);
2972	for (i = 0; i < AGE_TX_RING_CNT; i++) {
2973		txd = &sc->age_cdata.age_txdesc[i];
2974		txd->tx_desc = &rd->age_tx_ring[i];
2975		txd->tx_m = NULL;
2976	}
2977
2978	bus_dmamap_sync(sc->age_cdata.age_tx_ring_tag,
2979	    sc->age_cdata.age_tx_ring_map,
2980	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2981}
2982
2983static int
2984age_init_rx_ring(struct age_softc *sc)
2985{
2986	struct age_ring_data *rd;
2987	struct age_rxdesc *rxd;
2988	int i;
2989
2990	AGE_LOCK_ASSERT(sc);
2991
2992	sc->age_cdata.age_rx_cons = AGE_RX_RING_CNT - 1;
2993	sc->age_morework = 0;
2994	rd = &sc->age_rdata;
2995	bzero(rd->age_rx_ring, AGE_RX_RING_SZ);
2996	for (i = 0; i < AGE_RX_RING_CNT; i++) {
2997		rxd = &sc->age_cdata.age_rxdesc[i];
2998		rxd->rx_m = NULL;
2999		rxd->rx_desc = &rd->age_rx_ring[i];
3000		if (age_newbuf(sc, rxd) != 0)
3001			return (ENOBUFS);
3002	}
3003
3004	bus_dmamap_sync(sc->age_cdata.age_rx_ring_tag,
3005	    sc->age_cdata.age_rx_ring_map,
3006	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3007
3008	return (0);
3009}
3010
3011static void
3012age_init_rr_ring(struct age_softc *sc)
3013{
3014	struct age_ring_data *rd;
3015
3016	AGE_LOCK_ASSERT(sc);
3017
3018	sc->age_cdata.age_rr_cons = 0;
3019	AGE_RXCHAIN_RESET(sc);
3020
3021	rd = &sc->age_rdata;
3022	bzero(rd->age_rr_ring, AGE_RR_RING_SZ);
3023	bus_dmamap_sync(sc->age_cdata.age_rr_ring_tag,
3024	    sc->age_cdata.age_rr_ring_map,
3025	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3026}
3027
3028static void
3029age_init_cmb_block(struct age_softc *sc)
3030{
3031	struct age_ring_data *rd;
3032
3033	AGE_LOCK_ASSERT(sc);
3034
3035	rd = &sc->age_rdata;
3036	bzero(rd->age_cmb_block, AGE_CMB_BLOCK_SZ);
3037	bus_dmamap_sync(sc->age_cdata.age_cmb_block_tag,
3038	    sc->age_cdata.age_cmb_block_map,
3039	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3040}
3041
3042static void
3043age_init_smb_block(struct age_softc *sc)
3044{
3045	struct age_ring_data *rd;
3046
3047	AGE_LOCK_ASSERT(sc);
3048
3049	rd = &sc->age_rdata;
3050	bzero(rd->age_smb_block, AGE_SMB_BLOCK_SZ);
3051	bus_dmamap_sync(sc->age_cdata.age_smb_block_tag,
3052	    sc->age_cdata.age_smb_block_map,
3053	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3054}
3055
3056static int
3057age_newbuf(struct age_softc *sc, struct age_rxdesc *rxd)
3058{
3059	struct rx_desc *desc;
3060	struct mbuf *m;
3061	bus_dma_segment_t segs[1];
3062	bus_dmamap_t map;
3063	int nsegs;
3064
3065	AGE_LOCK_ASSERT(sc);
3066
3067	m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR);
3068	if (m == NULL)
3069		return (ENOBUFS);
3070	m->m_len = m->m_pkthdr.len = MCLBYTES;
3071	m_adj(m, ETHER_ALIGN);
3072
3073	if (bus_dmamap_load_mbuf_sg(sc->age_cdata.age_rx_tag,
3074	    sc->age_cdata.age_rx_sparemap, m, segs, &nsegs, 0) != 0) {
3075		m_freem(m);
3076		return (ENOBUFS);
3077	}
3078	KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs));
3079
3080	if (rxd->rx_m != NULL) {
3081		bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3082		    BUS_DMASYNC_POSTREAD);
3083		bus_dmamap_unload(sc->age_cdata.age_rx_tag, rxd->rx_dmamap);
3084	}
3085	map = rxd->rx_dmamap;
3086	rxd->rx_dmamap = sc->age_cdata.age_rx_sparemap;
3087	sc->age_cdata.age_rx_sparemap = map;
3088	bus_dmamap_sync(sc->age_cdata.age_rx_tag, rxd->rx_dmamap,
3089	    BUS_DMASYNC_PREREAD);
3090	rxd->rx_m = m;
3091
3092	desc = rxd->rx_desc;
3093	desc->addr = htole64(segs[0].ds_addr);
3094	desc->len = htole32((segs[0].ds_len & AGE_RD_LEN_MASK) <<
3095	    AGE_RD_LEN_SHIFT);
3096	return (0);
3097}
3098
3099static void
3100age_rxvlan(struct age_softc *sc)
3101{
3102	struct ifnet *ifp;
3103	uint32_t reg;
3104
3105	AGE_LOCK_ASSERT(sc);
3106
3107	ifp = sc->age_ifp;
3108	reg = CSR_READ_4(sc, AGE_MAC_CFG);
3109	reg &= ~MAC_CFG_VLAN_TAG_STRIP;
3110	if ((ifp->if_capenable & IFCAP_VLAN_HWTAGGING) != 0)
3111		reg |= MAC_CFG_VLAN_TAG_STRIP;
3112	CSR_WRITE_4(sc, AGE_MAC_CFG, reg);
3113}
3114
3115static void
3116age_rxfilter(struct age_softc *sc)
3117{
3118	struct ifnet *ifp;
3119	struct ifmultiaddr *ifma;
3120	uint32_t crc;
3121	uint32_t mchash[2];
3122	uint32_t rxcfg;
3123
3124	AGE_LOCK_ASSERT(sc);
3125
3126	ifp = sc->age_ifp;
3127
3128	rxcfg = CSR_READ_4(sc, AGE_MAC_CFG);
3129	rxcfg &= ~(MAC_CFG_ALLMULTI | MAC_CFG_BCAST | MAC_CFG_PROMISC);
3130	if ((ifp->if_flags & IFF_BROADCAST) != 0)
3131		rxcfg |= MAC_CFG_BCAST;
3132	if ((ifp->if_flags & (IFF_PROMISC | IFF_ALLMULTI)) != 0) {
3133		if ((ifp->if_flags & IFF_PROMISC) != 0)
3134			rxcfg |= MAC_CFG_PROMISC;
3135		if ((ifp->if_flags & IFF_ALLMULTI) != 0)
3136			rxcfg |= MAC_CFG_ALLMULTI;
3137		CSR_WRITE_4(sc, AGE_MAR0, 0xFFFFFFFF);
3138		CSR_WRITE_4(sc, AGE_MAR1, 0xFFFFFFFF);
3139		CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3140		return;
3141	}
3142
3143	/* Program new filter. */
3144	bzero(mchash, sizeof(mchash));
3145
3146	IF_ADDR_LOCK(ifp);
3147	TAILQ_FOREACH(ifma, &sc->age_ifp->if_multiaddrs, ifma_link) {
3148		if (ifma->ifma_addr->sa_family != AF_LINK)
3149			continue;
3150		crc = ether_crc32_le(LLADDR((struct sockaddr_dl *)
3151		    ifma->ifma_addr), ETHER_ADDR_LEN);
3152		mchash[crc >> 31] |= 1 << ((crc >> 26) & 0x1f);
3153	}
3154	IF_ADDR_UNLOCK(ifp);
3155
3156	CSR_WRITE_4(sc, AGE_MAR0, mchash[0]);
3157	CSR_WRITE_4(sc, AGE_MAR1, mchash[1]);
3158	CSR_WRITE_4(sc, AGE_MAC_CFG, rxcfg);
3159}
3160
3161static int
3162sysctl_age_stats(SYSCTL_HANDLER_ARGS)
3163{
3164	struct age_softc *sc;
3165	struct age_stats *stats;
3166	int error, result;
3167
3168	result = -1;
3169	error = sysctl_handle_int(oidp, &result, 0, req);
3170
3171	if (error != 0 || req->newptr == NULL)
3172		return (error);
3173
3174	if (result != 1)
3175		return (error);
3176
3177	sc = (struct age_softc *)arg1;
3178	stats = &sc->age_stat;
3179	printf("%s statistics:\n", device_get_nameunit(sc->age_dev));
3180	printf("Transmit good frames : %ju\n",
3181	    (uintmax_t)stats->tx_frames);
3182	printf("Transmit good broadcast frames : %ju\n",
3183	    (uintmax_t)stats->tx_bcast_frames);
3184	printf("Transmit good multicast frames : %ju\n",
3185	    (uintmax_t)stats->tx_mcast_frames);
3186	printf("Transmit pause control frames : %u\n",
3187	    stats->tx_pause_frames);
3188	printf("Transmit control frames : %u\n",
3189	    stats->tx_control_frames);
3190	printf("Transmit frames with excessive deferrals : %u\n",
3191	    stats->tx_excess_defer);
3192	printf("Transmit deferrals : %u\n",
3193	    stats->tx_deferred);
3194	printf("Transmit good octets : %ju\n",
3195	    (uintmax_t)stats->tx_bytes);
3196	printf("Transmit good broadcast octets : %ju\n",
3197	    (uintmax_t)stats->tx_bcast_bytes);
3198	printf("Transmit good multicast octets : %ju\n",
3199	    (uintmax_t)stats->tx_mcast_bytes);
3200	printf("Transmit frames 64 bytes : %ju\n",
3201	    (uintmax_t)stats->tx_pkts_64);
3202	printf("Transmit frames 65 to 127 bytes : %ju\n",
3203	    (uintmax_t)stats->tx_pkts_65_127);
3204	printf("Transmit frames 128 to 255 bytes : %ju\n",
3205	    (uintmax_t)stats->tx_pkts_128_255);
3206	printf("Transmit frames 256 to 511 bytes : %ju\n",
3207	    (uintmax_t)stats->tx_pkts_256_511);
3208	printf("Transmit frames 512 to 1024 bytes : %ju\n",
3209	    (uintmax_t)stats->tx_pkts_512_1023);
3210	printf("Transmit frames 1024 to 1518 bytes : %ju\n",
3211	    (uintmax_t)stats->tx_pkts_1024_1518);
3212	printf("Transmit frames 1519 to MTU bytes : %ju\n",
3213	    (uintmax_t)stats->tx_pkts_1519_max);
3214	printf("Transmit single collisions : %u\n",
3215	    stats->tx_single_colls);
3216	printf("Transmit multiple collisions : %u\n",
3217	    stats->tx_multi_colls);
3218	printf("Transmit late collisions : %u\n",
3219	    stats->tx_late_colls);
3220	printf("Transmit abort due to excessive collisions : %u\n",
3221	    stats->tx_excess_colls);
3222	printf("Transmit underruns due to FIFO underruns : %u\n",
3223	    stats->tx_underrun);
3224	printf("Transmit descriptor write-back errors : %u\n",
3225	    stats->tx_desc_underrun);
3226	printf("Transmit frames with length mismatched frame size : %u\n",
3227	    stats->tx_lenerrs);
3228	printf("Transmit frames with truncated due to MTU size : %u\n",
3229	    stats->tx_lenerrs);
3230
3231	printf("Receive good frames : %ju\n",
3232	    (uintmax_t)stats->rx_frames);
3233	printf("Receive good broadcast frames : %ju\n",
3234	    (uintmax_t)stats->rx_bcast_frames);
3235	printf("Receive good multicast frames : %ju\n",
3236	    (uintmax_t)stats->rx_mcast_frames);
3237	printf("Receive pause control frames : %u\n",
3238	    stats->rx_pause_frames);
3239	printf("Receive control frames : %u\n",
3240	    stats->rx_control_frames);
3241	printf("Receive CRC errors : %u\n",
3242	    stats->rx_crcerrs);
3243	printf("Receive frames with length errors : %u\n",
3244	    stats->rx_lenerrs);
3245	printf("Receive good octets : %ju\n",
3246	    (uintmax_t)stats->rx_bytes);
3247	printf("Receive good broadcast octets : %ju\n",
3248	    (uintmax_t)stats->rx_bcast_bytes);
3249	printf("Receive good multicast octets : %ju\n",
3250	    (uintmax_t)stats->rx_mcast_bytes);
3251	printf("Receive frames too short : %u\n",
3252	    stats->rx_runts);
3253	printf("Receive fragmented frames : %ju\n",
3254	    (uintmax_t)stats->rx_fragments);
3255	printf("Receive frames 64 bytes : %ju\n",
3256	    (uintmax_t)stats->rx_pkts_64);
3257	printf("Receive frames 65 to 127 bytes : %ju\n",
3258	    (uintmax_t)stats->rx_pkts_65_127);
3259	printf("Receive frames 128 to 255 bytes : %ju\n",
3260	    (uintmax_t)stats->rx_pkts_128_255);
3261	printf("Receive frames 256 to 511 bytes : %ju\n",
3262	    (uintmax_t)stats->rx_pkts_256_511);
3263	printf("Receive frames 512 to 1024 bytes : %ju\n",
3264	    (uintmax_t)stats->rx_pkts_512_1023);
3265	printf("Receive frames 1024 to 1518 bytes : %ju\n",
3266	    (uintmax_t)stats->rx_pkts_1024_1518);
3267	printf("Receive frames 1519 to MTU bytes : %ju\n",
3268	    (uintmax_t)stats->rx_pkts_1519_max);
3269	printf("Receive frames too long : %ju\n",
3270	    (uint64_t)stats->rx_pkts_truncated);
3271	printf("Receive frames with FIFO overflow : %u\n",
3272	    stats->rx_fifo_oflows);
3273	printf("Receive frames with return descriptor overflow : %u\n",
3274	    stats->rx_desc_oflows);
3275	printf("Receive frames with alignment errors : %u\n",
3276	    stats->rx_alignerrs);
3277	printf("Receive frames dropped due to address filtering : %ju\n",
3278	    (uint64_t)stats->rx_pkts_filtered);
3279
3280	return (error);
3281}
3282
3283static int
3284sysctl_int_range(SYSCTL_HANDLER_ARGS, int low, int high)
3285{
3286	int error, value;
3287
3288	if (arg1 == NULL)
3289		return (EINVAL);
3290	value = *(int *)arg1;
3291	error = sysctl_handle_int(oidp, &value, 0, req);
3292	if (error || req->newptr == NULL)
3293		return (error);
3294	if (value < low || value > high)
3295		return (EINVAL);
3296        *(int *)arg1 = value;
3297
3298        return (0);
3299}
3300
3301static int
3302sysctl_hw_age_proc_limit(SYSCTL_HANDLER_ARGS)
3303{
3304	return (sysctl_int_range(oidp, arg1, arg2, req,
3305	    AGE_PROC_MIN, AGE_PROC_MAX));
3306}
3307
3308static int
3309sysctl_hw_age_int_mod(SYSCTL_HANDLER_ARGS)
3310{
3311
3312	return (sysctl_int_range(oidp, arg1, arg2, req, AGE_IM_TIMER_MIN,
3313	    AGE_IM_TIMER_MAX));
3314}
3315