1/*-
2 * Copyright (c) 2003-2005 Nate Lawson (SDG)
3 * Copyright (c) 2001 Michael Smith
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 *    notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 *    notice, this list of conditions and the following disclaimer in the
13 *    documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28#include <sys/cdefs.h>
29__FBSDID("$FreeBSD: stable/11/sys/dev/acpica/acpi_cpu.c 357656 2020-02-07 15:27:57Z mav $");
30
31#include "opt_acpi.h"
32#include <sys/param.h>
33#include <sys/bus.h>
34#include <sys/cpu.h>
35#include <sys/kernel.h>
36#include <sys/malloc.h>
37#include <sys/module.h>
38#include <sys/pcpu.h>
39#include <sys/power.h>
40#include <sys/proc.h>
41#include <sys/sched.h>
42#include <sys/sbuf.h>
43#include <sys/smp.h>
44
45#include <dev/pci/pcivar.h>
46#include <machine/atomic.h>
47#include <machine/bus.h>
48#if defined(__amd64__) || defined(__i386__)
49#include <machine/clock.h>
50#include <machine/specialreg.h>
51#include <machine/md_var.h>
52#endif
53#include <sys/rman.h>
54
55#include <contrib/dev/acpica/include/acpi.h>
56#include <contrib/dev/acpica/include/accommon.h>
57
58#include <dev/acpica/acpivar.h>
59
60/*
61 * Support for ACPI Processor devices, including C[1-3] sleep states.
62 */
63
64/* Hooks for the ACPI CA debugging infrastructure */
65#define _COMPONENT	ACPI_PROCESSOR
66ACPI_MODULE_NAME("PROCESSOR")
67
68struct acpi_cx {
69    struct resource	*p_lvlx;	/* Register to read to enter state. */
70    uint32_t		 type;		/* C1-3 (C4 and up treated as C3). */
71    uint32_t		 trans_lat;	/* Transition latency (usec). */
72    uint32_t		 power;		/* Power consumed (mW). */
73    int			 res_type;	/* Resource type for p_lvlx. */
74    int			 res_rid;	/* Resource ID for p_lvlx. */
75    bool		 do_mwait;
76    uint32_t		 mwait_hint;
77    bool		 mwait_hw_coord;
78    bool		 mwait_bm_avoidance;
79};
80#define MAX_CX_STATES	 8
81
82struct acpi_cpu_softc {
83    device_t		 cpu_dev;
84    ACPI_HANDLE		 cpu_handle;
85    struct pcpu		*cpu_pcpu;
86    uint32_t		 cpu_acpi_id;	/* ACPI processor id */
87    uint32_t		 cpu_p_blk;	/* ACPI P_BLK location */
88    uint32_t		 cpu_p_blk_len;	/* P_BLK length (must be 6). */
89    struct acpi_cx	 cpu_cx_states[MAX_CX_STATES];
90    int			 cpu_cx_count;	/* Number of valid Cx states. */
91    int			 cpu_prev_sleep;/* Last idle sleep duration. */
92    int			 cpu_features;	/* Child driver supported features. */
93    /* Runtime state. */
94    int			 cpu_non_c2;	/* Index of lowest non-C2 state. */
95    int			 cpu_non_c3;	/* Index of lowest non-C3 state. */
96    u_int		 cpu_cx_stats[MAX_CX_STATES];/* Cx usage history. */
97    /* Values for sysctl. */
98    struct sysctl_ctx_list cpu_sysctl_ctx;
99    struct sysctl_oid	*cpu_sysctl_tree;
100    int			 cpu_cx_lowest;
101    int			 cpu_cx_lowest_lim;
102    int			 cpu_disable_idle; /* Disable entry to idle function */
103    char 		 cpu_cx_supported[64];
104};
105
106struct acpi_cpu_device {
107    struct resource_list	ad_rl;
108};
109
110#define CPU_GET_REG(reg, width) 					\
111    (bus_space_read_ ## width(rman_get_bustag((reg)), 			\
112		      rman_get_bushandle((reg)), 0))
113#define CPU_SET_REG(reg, width, val)					\
114    (bus_space_write_ ## width(rman_get_bustag((reg)), 			\
115		       rman_get_bushandle((reg)), 0, (val)))
116
117#define PM_USEC(x)	 ((x) >> 2)	/* ~4 clocks per usec (3.57955 Mhz) */
118
119#define ACPI_NOTIFY_CX_STATES	0x81	/* _CST changed. */
120
121#define CPU_QUIRK_NO_C3		(1<<0)	/* C3-type states are not usable. */
122#define CPU_QUIRK_NO_BM_CTRL	(1<<2)	/* No bus mastering control. */
123
124#define PCI_VENDOR_INTEL	0x8086
125#define PCI_DEVICE_82371AB_3	0x7113	/* PIIX4 chipset for quirks. */
126#define PCI_REVISION_A_STEP	0
127#define PCI_REVISION_B_STEP	1
128#define PCI_REVISION_4E		2
129#define PCI_REVISION_4M		3
130#define PIIX4_DEVACTB_REG	0x58
131#define PIIX4_BRLD_EN_IRQ0	(1<<0)
132#define PIIX4_BRLD_EN_IRQ	(1<<1)
133#define PIIX4_BRLD_EN_IRQ8	(1<<5)
134#define PIIX4_STOP_BREAK_MASK	(PIIX4_BRLD_EN_IRQ0 | PIIX4_BRLD_EN_IRQ | PIIX4_BRLD_EN_IRQ8)
135#define PIIX4_PCNTRL_BST_EN	(1<<10)
136
137#define	CST_FFH_VENDOR_INTEL	1
138#define	CST_FFH_INTEL_CL_C1IO	1
139#define	CST_FFH_INTEL_CL_MWAIT	2
140#define	CST_FFH_MWAIT_HW_COORD	0x0001
141#define	CST_FFH_MWAIT_BM_AVOID	0x0002
142
143#define	CPUDEV_DEVICE_ID	"ACPI0007"
144
145/* Allow users to ignore processor orders in MADT. */
146static int cpu_unordered;
147SYSCTL_INT(_debug_acpi, OID_AUTO, cpu_unordered, CTLFLAG_RDTUN,
148    &cpu_unordered, 0,
149    "Do not use the MADT to match ACPI Processor objects to CPUs.");
150
151/* Knob to disable acpi_cpu devices */
152bool acpi_cpu_disabled = false;
153
154/* Platform hardware resource information. */
155static uint32_t		 cpu_smi_cmd;	/* Value to write to SMI_CMD. */
156static uint8_t		 cpu_cst_cnt;	/* Indicate we are _CST aware. */
157static int		 cpu_quirks;	/* Indicate any hardware bugs. */
158
159/* Values for sysctl. */
160static struct sysctl_ctx_list cpu_sysctl_ctx;
161static struct sysctl_oid *cpu_sysctl_tree;
162static int		 cpu_cx_generic;
163static int		 cpu_cx_lowest_lim;
164
165static device_t		*cpu_devices;
166static int		 cpu_ndevices;
167static struct acpi_cpu_softc **cpu_softc;
168ACPI_SERIAL_DECL(cpu, "ACPI CPU");
169
170static int	acpi_cpu_probe(device_t dev);
171static int	acpi_cpu_attach(device_t dev);
172static int	acpi_cpu_suspend(device_t dev);
173static int	acpi_cpu_resume(device_t dev);
174static int	acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id,
175		    uint32_t *cpu_id);
176static struct resource_list *acpi_cpu_get_rlist(device_t dev, device_t child);
177static device_t	acpi_cpu_add_child(device_t dev, u_int order, const char *name,
178		    int unit);
179static int	acpi_cpu_read_ivar(device_t dev, device_t child, int index,
180		    uintptr_t *result);
181static int	acpi_cpu_shutdown(device_t dev);
182static void	acpi_cpu_cx_probe(struct acpi_cpu_softc *sc);
183static void	acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc);
184static int	acpi_cpu_cx_cst(struct acpi_cpu_softc *sc);
185static void	acpi_cpu_startup(void *arg);
186static void	acpi_cpu_startup_cx(struct acpi_cpu_softc *sc);
187static void	acpi_cpu_cx_list(struct acpi_cpu_softc *sc);
188#if defined(__i386__) || defined(__amd64__)
189static void	acpi_cpu_idle(sbintime_t sbt);
190#endif
191static void	acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context);
192static void	acpi_cpu_quirks(void);
193static void	acpi_cpu_quirks_piix4(void);
194static int	acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS);
195static int	acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS);
196static int	acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc);
197static int	acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
198static int	acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS);
199#if defined(__i386__) || defined(__amd64__)
200static int	acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS);
201#endif
202
203static device_method_t acpi_cpu_methods[] = {
204    /* Device interface */
205    DEVMETHOD(device_probe,	acpi_cpu_probe),
206    DEVMETHOD(device_attach,	acpi_cpu_attach),
207    DEVMETHOD(device_detach,	bus_generic_detach),
208    DEVMETHOD(device_shutdown,	acpi_cpu_shutdown),
209    DEVMETHOD(device_suspend,	acpi_cpu_suspend),
210    DEVMETHOD(device_resume,	acpi_cpu_resume),
211
212    /* Bus interface */
213    DEVMETHOD(bus_add_child,	acpi_cpu_add_child),
214    DEVMETHOD(bus_read_ivar,	acpi_cpu_read_ivar),
215    DEVMETHOD(bus_get_resource_list, acpi_cpu_get_rlist),
216    DEVMETHOD(bus_get_resource,	bus_generic_rl_get_resource),
217    DEVMETHOD(bus_set_resource,	bus_generic_rl_set_resource),
218    DEVMETHOD(bus_alloc_resource, bus_generic_rl_alloc_resource),
219    DEVMETHOD(bus_release_resource, bus_generic_rl_release_resource),
220    DEVMETHOD(bus_activate_resource, bus_generic_activate_resource),
221    DEVMETHOD(bus_deactivate_resource, bus_generic_deactivate_resource),
222    DEVMETHOD(bus_setup_intr,	bus_generic_setup_intr),
223    DEVMETHOD(bus_teardown_intr, bus_generic_teardown_intr),
224
225    DEVMETHOD_END
226};
227
228static driver_t acpi_cpu_driver = {
229    "cpu",
230    acpi_cpu_methods,
231    sizeof(struct acpi_cpu_softc),
232};
233
234static devclass_t acpi_cpu_devclass;
235DRIVER_MODULE(cpu, acpi, acpi_cpu_driver, acpi_cpu_devclass, 0, 0);
236MODULE_DEPEND(cpu, acpi, 1, 1, 1);
237
238static int
239acpi_cpu_probe(device_t dev)
240{
241    static char		   *cpudev_ids[] = { CPUDEV_DEVICE_ID, NULL };
242    int			   acpi_id, cpu_id;
243    ACPI_BUFFER		   buf;
244    ACPI_HANDLE		   handle;
245    ACPI_OBJECT		   *obj;
246    ACPI_STATUS		   status;
247    ACPI_OBJECT_TYPE	   type;
248
249    if (acpi_disabled("cpu") || acpi_cpu_disabled)
250	return (ENXIO);
251    type = acpi_get_type(dev);
252    if (type != ACPI_TYPE_PROCESSOR && type != ACPI_TYPE_DEVICE)
253	return (ENXIO);
254    if (type == ACPI_TYPE_DEVICE &&
255	ACPI_ID_PROBE(device_get_parent(dev), dev, cpudev_ids) == NULL)
256	return (ENXIO);
257
258    handle = acpi_get_handle(dev);
259    if (cpu_softc == NULL)
260	cpu_softc = malloc(sizeof(struct acpi_cpu_softc *) *
261	    (mp_maxid + 1), M_TEMP /* XXX */, M_WAITOK | M_ZERO);
262
263    if (type == ACPI_TYPE_PROCESSOR) {
264	/* Get our Processor object. */
265	buf.Pointer = NULL;
266	buf.Length = ACPI_ALLOCATE_BUFFER;
267	status = AcpiEvaluateObject(handle, NULL, NULL, &buf);
268	if (ACPI_FAILURE(status)) {
269	    device_printf(dev, "probe failed to get Processor obj - %s\n",
270		AcpiFormatException(status));
271	    return (ENXIO);
272	}
273	obj = (ACPI_OBJECT *)buf.Pointer;
274	if (obj->Type != ACPI_TYPE_PROCESSOR) {
275	    device_printf(dev, "Processor object has bad type %d\n",
276		obj->Type);
277	    AcpiOsFree(obj);
278	    return (ENXIO);
279	}
280
281	/*
282	 * Find the processor associated with our unit.  We could use the
283	 * ProcId as a key, however, some boxes do not have the same values
284	 * in their Processor object as the ProcId values in the MADT.
285	 */
286	acpi_id = obj->Processor.ProcId;
287	AcpiOsFree(obj);
288    } else {
289	status = acpi_GetInteger(handle, "_UID", &acpi_id);
290	if (ACPI_FAILURE(status)) {
291	    device_printf(dev, "Device object has bad value - %s\n",
292		AcpiFormatException(status));
293	    return (ENXIO);
294	}
295    }
296    if (acpi_pcpu_get_id(dev, &acpi_id, &cpu_id) != 0)
297	return (ENXIO);
298
299    /*
300     * Check if we already probed this processor.  We scan the bus twice
301     * so it's possible we've already seen this one.
302     */
303    if (cpu_softc[cpu_id] != NULL)
304	return (ENXIO);
305
306    /* Mark this processor as in-use and save our derived id for attach. */
307    cpu_softc[cpu_id] = (void *)1;
308    acpi_set_private(dev, (void*)(intptr_t)cpu_id);
309    device_set_desc(dev, "ACPI CPU");
310
311    return (0);
312}
313
314static int
315acpi_cpu_attach(device_t dev)
316{
317    ACPI_BUFFER		   buf;
318    ACPI_OBJECT		   arg, *obj;
319    ACPI_OBJECT_LIST	   arglist;
320    struct pcpu		   *pcpu_data;
321    struct acpi_cpu_softc *sc;
322    struct acpi_softc	  *acpi_sc;
323    ACPI_STATUS		   status;
324    u_int		   features;
325    int			   cpu_id, drv_count, i;
326    driver_t 		  **drivers;
327    uint32_t		   cap_set[3];
328
329    /* UUID needed by _OSC evaluation */
330    static uint8_t cpu_oscuuid[16] = { 0x16, 0xA6, 0x77, 0x40, 0x0C, 0x29,
331				       0xBE, 0x47, 0x9E, 0xBD, 0xD8, 0x70,
332				       0x58, 0x71, 0x39, 0x53 };
333
334    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
335
336    sc = device_get_softc(dev);
337    sc->cpu_dev = dev;
338    sc->cpu_handle = acpi_get_handle(dev);
339    cpu_id = (int)(intptr_t)acpi_get_private(dev);
340    cpu_softc[cpu_id] = sc;
341    pcpu_data = pcpu_find(cpu_id);
342    pcpu_data->pc_device = dev;
343    sc->cpu_pcpu = pcpu_data;
344    cpu_smi_cmd = AcpiGbl_FADT.SmiCommand;
345    cpu_cst_cnt = AcpiGbl_FADT.CstControl;
346
347    if (acpi_get_type(dev) == ACPI_TYPE_PROCESSOR) {
348	buf.Pointer = NULL;
349	buf.Length = ACPI_ALLOCATE_BUFFER;
350	status = AcpiEvaluateObject(sc->cpu_handle, NULL, NULL, &buf);
351	if (ACPI_FAILURE(status)) {
352	    device_printf(dev, "attach failed to get Processor obj - %s\n",
353		AcpiFormatException(status));
354	    return (ENXIO);
355	}
356	obj = (ACPI_OBJECT *)buf.Pointer;
357	sc->cpu_p_blk = obj->Processor.PblkAddress;
358	sc->cpu_p_blk_len = obj->Processor.PblkLength;
359	sc->cpu_acpi_id = obj->Processor.ProcId;
360	AcpiOsFree(obj);
361    } else {
362	KASSERT(acpi_get_type(dev) == ACPI_TYPE_DEVICE,
363	    ("Unexpected ACPI object"));
364	status = acpi_GetInteger(sc->cpu_handle, "_UID", &sc->cpu_acpi_id);
365	if (ACPI_FAILURE(status)) {
366	    device_printf(dev, "Device object has bad value - %s\n",
367		AcpiFormatException(status));
368	    return (ENXIO);
369	}
370	sc->cpu_p_blk = 0;
371	sc->cpu_p_blk_len = 0;
372    }
373    ACPI_DEBUG_PRINT((ACPI_DB_INFO, "acpi_cpu%d: P_BLK at %#x/%d\n",
374		     device_get_unit(dev), sc->cpu_p_blk, sc->cpu_p_blk_len));
375
376    /*
377     * If this is the first cpu we attach, create and initialize the generic
378     * resources that will be used by all acpi cpu devices.
379     */
380    if (device_get_unit(dev) == 0) {
381	/* Assume we won't be using generic Cx mode by default */
382	cpu_cx_generic = FALSE;
383
384	/* Install hw.acpi.cpu sysctl tree */
385	acpi_sc = acpi_device_get_parent_softc(dev);
386	sysctl_ctx_init(&cpu_sysctl_ctx);
387	cpu_sysctl_tree = SYSCTL_ADD_NODE(&cpu_sysctl_ctx,
388	    SYSCTL_CHILDREN(acpi_sc->acpi_sysctl_tree), OID_AUTO, "cpu",
389	    CTLFLAG_RD, 0, "node for CPU children");
390    }
391
392    /*
393     * Before calling any CPU methods, collect child driver feature hints
394     * and notify ACPI of them.  We support unified SMP power control
395     * so advertise this ourselves.  Note this is not the same as independent
396     * SMP control where each CPU can have different settings.
397     */
398    sc->cpu_features = ACPI_CAP_SMP_SAME | ACPI_CAP_SMP_SAME_C3 |
399      ACPI_CAP_C1_IO_HALT;
400
401#if defined(__i386__) || defined(__amd64__)
402    /*
403     * Ask for MWAIT modes if not disabled and interrupts work
404     * reasonable with MWAIT.
405     */
406    if (!acpi_disabled("mwait") && cpu_mwait_usable())
407	sc->cpu_features |= ACPI_CAP_SMP_C1_NATIVE | ACPI_CAP_SMP_C3_NATIVE;
408#endif
409
410    if (devclass_get_drivers(acpi_cpu_devclass, &drivers, &drv_count) == 0) {
411	for (i = 0; i < drv_count; i++) {
412	    if (ACPI_GET_FEATURES(drivers[i], &features) == 0)
413		sc->cpu_features |= features;
414	}
415	free(drivers, M_TEMP);
416    }
417
418    /*
419     * CPU capabilities are specified in
420     * Intel Processor Vendor-Specific ACPI Interface Specification.
421     */
422    if (sc->cpu_features) {
423	cap_set[1] = sc->cpu_features;
424	status = acpi_EvaluateOSC(sc->cpu_handle, cpu_oscuuid, 1, 2, cap_set,
425	    cap_set, false);
426	if (ACPI_SUCCESS(status)) {
427	    if (cap_set[0] != 0)
428		device_printf(dev, "_OSC returned status %#x\n", cap_set[0]);
429	}
430	else {
431	    arglist.Pointer = &arg;
432	    arglist.Count = 1;
433	    arg.Type = ACPI_TYPE_BUFFER;
434	    arg.Buffer.Length = sizeof(cap_set);
435	    arg.Buffer.Pointer = (uint8_t *)cap_set;
436	    cap_set[0] = 1; /* revision */
437	    cap_set[1] = 1; /* number of capabilities integers */
438	    cap_set[2] = sc->cpu_features;
439	    AcpiEvaluateObject(sc->cpu_handle, "_PDC", &arglist, NULL);
440	}
441    }
442
443    /* Probe for Cx state support. */
444    acpi_cpu_cx_probe(sc);
445
446    return (0);
447}
448
449static void
450acpi_cpu_postattach(void *unused __unused)
451{
452    device_t *devices;
453    int err;
454    int i, n;
455    int attached;
456
457    err = devclass_get_devices(acpi_cpu_devclass, &devices, &n);
458    if (err != 0) {
459	printf("devclass_get_devices(acpi_cpu_devclass) failed\n");
460	return;
461    }
462    attached = 0;
463    for (i = 0; i < n; i++)
464	if (device_is_attached(devices[i]) &&
465	    device_get_driver(devices[i]) == &acpi_cpu_driver)
466	    attached = 1;
467    for (i = 0; i < n; i++)
468	bus_generic_probe(devices[i]);
469    for (i = 0; i < n; i++)
470	bus_generic_attach(devices[i]);
471    free(devices, M_TEMP);
472
473    if (attached) {
474#ifdef EARLY_AP_STARTUP
475	acpi_cpu_startup(NULL);
476#else
477	/* Queue post cpu-probing task handler */
478	AcpiOsExecute(OSL_NOTIFY_HANDLER, acpi_cpu_startup, NULL);
479#endif
480    }
481}
482
483SYSINIT(acpi_cpu, SI_SUB_CONFIGURE, SI_ORDER_MIDDLE,
484    acpi_cpu_postattach, NULL);
485
486static void
487disable_idle(struct acpi_cpu_softc *sc)
488{
489    cpuset_t cpuset;
490
491    CPU_SETOF(sc->cpu_pcpu->pc_cpuid, &cpuset);
492    sc->cpu_disable_idle = TRUE;
493
494    /*
495     * Ensure that the CPU is not in idle state or in acpi_cpu_idle().
496     * Note that this code depends on the fact that the rendezvous IPI
497     * can not penetrate context where interrupts are disabled and acpi_cpu_idle
498     * is called and executed in such a context with interrupts being re-enabled
499     * right before return.
500     */
501    smp_rendezvous_cpus(cpuset, smp_no_rendezvous_barrier, NULL,
502	smp_no_rendezvous_barrier, NULL);
503}
504
505static void
506enable_idle(struct acpi_cpu_softc *sc)
507{
508
509    sc->cpu_disable_idle = FALSE;
510}
511
512#if defined(__i386__) || defined(__amd64__)
513static int
514is_idle_disabled(struct acpi_cpu_softc *sc)
515{
516
517    return (sc->cpu_disable_idle);
518}
519#endif
520
521/*
522 * Disable any entry to the idle function during suspend and re-enable it
523 * during resume.
524 */
525static int
526acpi_cpu_suspend(device_t dev)
527{
528    int error;
529
530    error = bus_generic_suspend(dev);
531    if (error)
532	return (error);
533    disable_idle(device_get_softc(dev));
534    return (0);
535}
536
537static int
538acpi_cpu_resume(device_t dev)
539{
540
541    enable_idle(device_get_softc(dev));
542    return (bus_generic_resume(dev));
543}
544
545/*
546 * Find the processor associated with a given ACPI ID.  By default,
547 * use the MADT to map ACPI IDs to APIC IDs and use that to locate a
548 * processor.  Some systems have inconsistent ASL and MADT however.
549 * For these systems the cpu_unordered tunable can be set in which
550 * case we assume that Processor objects are listed in the same order
551 * in both the MADT and ASL.
552 */
553static int
554acpi_pcpu_get_id(device_t dev, uint32_t *acpi_id, uint32_t *cpu_id)
555{
556    struct pcpu	*pc;
557    uint32_t	 i, idx;
558
559    KASSERT(acpi_id != NULL, ("Null acpi_id"));
560    KASSERT(cpu_id != NULL, ("Null cpu_id"));
561    idx = device_get_unit(dev);
562
563    /*
564     * If pc_acpi_id for CPU 0 is not initialized (e.g. a non-APIC
565     * UP box) use the ACPI ID from the first processor we find.
566     */
567    if (idx == 0 && mp_ncpus == 1) {
568	pc = pcpu_find(0);
569	if (pc->pc_acpi_id == 0xffffffff)
570	    pc->pc_acpi_id = *acpi_id;
571	*cpu_id = 0;
572	return (0);
573    }
574
575    CPU_FOREACH(i) {
576	pc = pcpu_find(i);
577	KASSERT(pc != NULL, ("no pcpu data for %d", i));
578	if (cpu_unordered) {
579	    if (idx-- == 0) {
580		/*
581		 * If pc_acpi_id doesn't match the ACPI ID from the
582		 * ASL, prefer the MADT-derived value.
583		 */
584		if (pc->pc_acpi_id != *acpi_id)
585		    *acpi_id = pc->pc_acpi_id;
586		*cpu_id = pc->pc_cpuid;
587		return (0);
588	    }
589	} else {
590	    if (pc->pc_acpi_id == *acpi_id) {
591		if (bootverbose)
592		    device_printf(dev,
593			"Processor %s (ACPI ID %u) -> APIC ID %d\n",
594			acpi_name(acpi_get_handle(dev)), *acpi_id,
595			pc->pc_cpuid);
596		*cpu_id = pc->pc_cpuid;
597		return (0);
598	    }
599	}
600    }
601
602    if (bootverbose)
603	printf("ACPI: Processor %s (ACPI ID %u) ignored\n",
604	    acpi_name(acpi_get_handle(dev)), *acpi_id);
605
606    return (ESRCH);
607}
608
609static struct resource_list *
610acpi_cpu_get_rlist(device_t dev, device_t child)
611{
612    struct acpi_cpu_device *ad;
613
614    ad = device_get_ivars(child);
615    if (ad == NULL)
616	return (NULL);
617    return (&ad->ad_rl);
618}
619
620static device_t
621acpi_cpu_add_child(device_t dev, u_int order, const char *name, int unit)
622{
623    struct acpi_cpu_device *ad;
624    device_t child;
625
626    if ((ad = malloc(sizeof(*ad), M_TEMP, M_NOWAIT | M_ZERO)) == NULL)
627	return (NULL);
628
629    resource_list_init(&ad->ad_rl);
630
631    child = device_add_child_ordered(dev, order, name, unit);
632    if (child != NULL)
633	device_set_ivars(child, ad);
634    else
635	free(ad, M_TEMP);
636    return (child);
637}
638
639static int
640acpi_cpu_read_ivar(device_t dev, device_t child, int index, uintptr_t *result)
641{
642    struct acpi_cpu_softc *sc;
643
644    sc = device_get_softc(dev);
645    switch (index) {
646    case ACPI_IVAR_HANDLE:
647	*result = (uintptr_t)sc->cpu_handle;
648	break;
649    case CPU_IVAR_PCPU:
650	*result = (uintptr_t)sc->cpu_pcpu;
651	break;
652#if defined(__amd64__) || defined(__i386__)
653    case CPU_IVAR_NOMINAL_MHZ:
654	if (tsc_is_invariant) {
655	    *result = (uintptr_t)(atomic_load_acq_64(&tsc_freq) / 1000000);
656	    break;
657	}
658	/* FALLTHROUGH */
659#endif
660    default:
661	return (ENOENT);
662    }
663    return (0);
664}
665
666static int
667acpi_cpu_shutdown(device_t dev)
668{
669    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
670
671    /* Allow children to shutdown first. */
672    bus_generic_shutdown(dev);
673
674    /*
675     * Disable any entry to the idle function.
676     */
677    disable_idle(device_get_softc(dev));
678
679    /*
680     * CPU devices are not truly detached and remain referenced,
681     * so their resources are not freed.
682     */
683
684    return_VALUE (0);
685}
686
687static void
688acpi_cpu_cx_probe(struct acpi_cpu_softc *sc)
689{
690    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
691
692    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
693    sc->cpu_prev_sleep = 1000000;
694    sc->cpu_cx_lowest = 0;
695    sc->cpu_cx_lowest_lim = 0;
696
697    /*
698     * Check for the ACPI 2.0 _CST sleep states object. If we can't find
699     * any, we'll revert to generic FADT/P_BLK Cx control method which will
700     * be handled by acpi_cpu_startup. We need to defer to after having
701     * probed all the cpus in the system before probing for generic Cx
702     * states as we may already have found cpus with valid _CST packages
703     */
704    if (!cpu_cx_generic && acpi_cpu_cx_cst(sc) != 0) {
705	/*
706	 * We were unable to find a _CST package for this cpu or there
707	 * was an error parsing it. Switch back to generic mode.
708	 */
709	cpu_cx_generic = TRUE;
710	if (bootverbose)
711	    device_printf(sc->cpu_dev, "switching to generic Cx mode\n");
712    }
713
714    /*
715     * TODO: _CSD Package should be checked here.
716     */
717}
718
719static void
720acpi_cpu_generic_cx_probe(struct acpi_cpu_softc *sc)
721{
722    ACPI_GENERIC_ADDRESS	 gas;
723    struct acpi_cx		*cx_ptr;
724
725    sc->cpu_cx_count = 0;
726    cx_ptr = sc->cpu_cx_states;
727
728    /* Use initial sleep value of 1 sec. to start with lowest idle state. */
729    sc->cpu_prev_sleep = 1000000;
730
731    /* C1 has been required since just after ACPI 1.0 */
732    cx_ptr->type = ACPI_STATE_C1;
733    cx_ptr->trans_lat = 0;
734    cx_ptr++;
735    sc->cpu_non_c2 = sc->cpu_cx_count;
736    sc->cpu_non_c3 = sc->cpu_cx_count;
737    sc->cpu_cx_count++;
738
739    /*
740     * The spec says P_BLK must be 6 bytes long.  However, some systems
741     * use it to indicate a fractional set of features present so we
742     * take 5 as C2.  Some may also have a value of 7 to indicate
743     * another C3 but most use _CST for this (as required) and having
744     * "only" C1-C3 is not a hardship.
745     */
746    if (sc->cpu_p_blk_len < 5)
747	return;
748
749    /* Validate and allocate resources for C2 (P_LVL2). */
750    gas.SpaceId = ACPI_ADR_SPACE_SYSTEM_IO;
751    gas.BitWidth = 8;
752    if (AcpiGbl_FADT.C2Latency <= 100) {
753	gas.Address = sc->cpu_p_blk + 4;
754	cx_ptr->res_rid = 0;
755	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
756	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
757	if (cx_ptr->p_lvlx != NULL) {
758	    cx_ptr->type = ACPI_STATE_C2;
759	    cx_ptr->trans_lat = AcpiGbl_FADT.C2Latency;
760	    cx_ptr++;
761	    sc->cpu_non_c3 = sc->cpu_cx_count;
762	    sc->cpu_cx_count++;
763	}
764    }
765    if (sc->cpu_p_blk_len < 6)
766	return;
767
768    /* Validate and allocate resources for C3 (P_LVL3). */
769    if (AcpiGbl_FADT.C3Latency <= 1000 && !(cpu_quirks & CPU_QUIRK_NO_C3)) {
770	gas.Address = sc->cpu_p_blk + 5;
771	cx_ptr->res_rid = 1;
772	acpi_bus_alloc_gas(sc->cpu_dev, &cx_ptr->res_type, &cx_ptr->res_rid,
773	    &gas, &cx_ptr->p_lvlx, RF_SHAREABLE);
774	if (cx_ptr->p_lvlx != NULL) {
775	    cx_ptr->type = ACPI_STATE_C3;
776	    cx_ptr->trans_lat = AcpiGbl_FADT.C3Latency;
777	    cx_ptr++;
778	    sc->cpu_cx_count++;
779	}
780    }
781}
782
783#if defined(__i386__) || defined(__amd64__)
784static void
785acpi_cpu_cx_cst_mwait(struct acpi_cx *cx_ptr, uint64_t address, int accsize)
786{
787
788	cx_ptr->do_mwait = true;
789	cx_ptr->mwait_hint = address & 0xffffffff;
790	cx_ptr->mwait_hw_coord = (accsize & CST_FFH_MWAIT_HW_COORD) != 0;
791	cx_ptr->mwait_bm_avoidance = (accsize & CST_FFH_MWAIT_BM_AVOID) != 0;
792}
793#endif
794
795static void
796acpi_cpu_cx_cst_free_plvlx(device_t cpu_dev, struct acpi_cx *cx_ptr)
797{
798
799	if (cx_ptr->p_lvlx == NULL)
800		return;
801	bus_release_resource(cpu_dev, cx_ptr->res_type, cx_ptr->res_rid,
802	    cx_ptr->p_lvlx);
803	cx_ptr->p_lvlx = NULL;
804}
805
806/*
807 * Parse a _CST package and set up its Cx states.  Since the _CST object
808 * can change dynamically, our notify handler may call this function
809 * to clean up and probe the new _CST package.
810 */
811static int
812acpi_cpu_cx_cst(struct acpi_cpu_softc *sc)
813{
814    struct	 acpi_cx *cx_ptr;
815    ACPI_STATUS	 status;
816    ACPI_BUFFER	 buf;
817    ACPI_OBJECT	*top;
818    ACPI_OBJECT	*pkg;
819    uint32_t	 count;
820    int		 i;
821#if defined(__i386__) || defined(__amd64__)
822    uint64_t	 address;
823    int		 vendor, class, accsize;
824#endif
825
826    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
827
828    buf.Pointer = NULL;
829    buf.Length = ACPI_ALLOCATE_BUFFER;
830    status = AcpiEvaluateObject(sc->cpu_handle, "_CST", NULL, &buf);
831    if (ACPI_FAILURE(status))
832	return (ENXIO);
833
834    /* _CST is a package with a count and at least one Cx package. */
835    top = (ACPI_OBJECT *)buf.Pointer;
836    if (!ACPI_PKG_VALID(top, 2) || acpi_PkgInt32(top, 0, &count) != 0) {
837	device_printf(sc->cpu_dev, "invalid _CST package\n");
838	AcpiOsFree(buf.Pointer);
839	return (ENXIO);
840    }
841    if (count != top->Package.Count - 1) {
842	device_printf(sc->cpu_dev, "invalid _CST state count (%d != %d)\n",
843	       count, top->Package.Count - 1);
844	count = top->Package.Count - 1;
845    }
846    if (count > MAX_CX_STATES) {
847	device_printf(sc->cpu_dev, "_CST has too many states (%d)\n", count);
848	count = MAX_CX_STATES;
849    }
850
851    sc->cpu_non_c2 = 0;
852    sc->cpu_non_c3 = 0;
853    sc->cpu_cx_count = 0;
854    cx_ptr = sc->cpu_cx_states;
855
856    /*
857     * C1 has been required since just after ACPI 1.0.
858     * Reserve the first slot for it.
859     */
860    cx_ptr->type = ACPI_STATE_C0;
861    cx_ptr++;
862    sc->cpu_cx_count++;
863
864    /* Set up all valid states. */
865    for (i = 0; i < count; i++) {
866	pkg = &top->Package.Elements[i + 1];
867	if (!ACPI_PKG_VALID(pkg, 4) ||
868	    acpi_PkgInt32(pkg, 1, &cx_ptr->type) != 0 ||
869	    acpi_PkgInt32(pkg, 2, &cx_ptr->trans_lat) != 0 ||
870	    acpi_PkgInt32(pkg, 3, &cx_ptr->power) != 0) {
871
872	    device_printf(sc->cpu_dev, "skipping invalid Cx state package\n");
873	    continue;
874	}
875
876	/* Validate the state to see if we should use it. */
877	switch (cx_ptr->type) {
878	case ACPI_STATE_C1:
879	    acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
880#if defined(__i386__) || defined(__amd64__)
881	    if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
882	      &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL) {
883		if (class == CST_FFH_INTEL_CL_C1IO) {
884		    /* C1 I/O then Halt */
885		    cx_ptr->res_rid = sc->cpu_cx_count;
886		    bus_set_resource(sc->cpu_dev, SYS_RES_IOPORT,
887		      cx_ptr->res_rid, address, 1);
888		    cx_ptr->p_lvlx = bus_alloc_resource_any(sc->cpu_dev,
889		      SYS_RES_IOPORT, &cx_ptr->res_rid, RF_ACTIVE |
890		      RF_SHAREABLE);
891		    if (cx_ptr->p_lvlx == NULL) {
892			bus_delete_resource(sc->cpu_dev, SYS_RES_IOPORT,
893			  cx_ptr->res_rid);
894			device_printf(sc->cpu_dev,
895			  "C1 I/O failed to allocate port %d, "
896			  "degrading to C1 Halt", (int)address);
897		    }
898		} else if (class == CST_FFH_INTEL_CL_MWAIT) {
899		    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
900		}
901	    }
902#endif
903	    if (sc->cpu_cx_states[0].type == ACPI_STATE_C0) {
904		/* This is the first C1 state.  Use the reserved slot. */
905		sc->cpu_cx_states[0] = *cx_ptr;
906	    } else {
907		sc->cpu_non_c2 = sc->cpu_cx_count;
908		sc->cpu_non_c3 = sc->cpu_cx_count;
909		cx_ptr++;
910		sc->cpu_cx_count++;
911	    }
912	    continue;
913	case ACPI_STATE_C2:
914	    sc->cpu_non_c3 = sc->cpu_cx_count;
915	    break;
916	case ACPI_STATE_C3:
917	default:
918	    if ((cpu_quirks & CPU_QUIRK_NO_C3) != 0) {
919		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
920				 "acpi_cpu%d: C3[%d] not available.\n",
921				 device_get_unit(sc->cpu_dev), i));
922		continue;
923	    }
924	    break;
925	}
926
927	/* Free up any previous register. */
928	acpi_cpu_cx_cst_free_plvlx(sc->cpu_dev, cx_ptr);
929
930	/* Allocate the control register for C2 or C3. */
931#if defined(__i386__) || defined(__amd64__)
932	if (acpi_PkgFFH_IntelCpu(pkg, 0, &vendor, &class, &address,
933	  &accsize) == 0 && vendor == CST_FFH_VENDOR_INTEL &&
934	  class == CST_FFH_INTEL_CL_MWAIT) {
935	    /* Native C State Instruction use (mwait) */
936	    acpi_cpu_cx_cst_mwait(cx_ptr, address, accsize);
937	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
938	      "acpi_cpu%d: Got C%d/mwait - %d latency\n",
939	      device_get_unit(sc->cpu_dev), cx_ptr->type, cx_ptr->trans_lat));
940	    cx_ptr++;
941	    sc->cpu_cx_count++;
942	} else
943#endif
944	{
945	    cx_ptr->res_rid = sc->cpu_cx_count;
946	    acpi_PkgGas(sc->cpu_dev, pkg, 0, &cx_ptr->res_type,
947		&cx_ptr->res_rid, &cx_ptr->p_lvlx, RF_SHAREABLE);
948	    if (cx_ptr->p_lvlx) {
949		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
950		     "acpi_cpu%d: Got C%d - %d latency\n",
951		     device_get_unit(sc->cpu_dev), cx_ptr->type,
952		     cx_ptr->trans_lat));
953		cx_ptr++;
954		sc->cpu_cx_count++;
955	    }
956	}
957    }
958    AcpiOsFree(buf.Pointer);
959
960    /* If C1 state was not found, we need one now. */
961    cx_ptr = sc->cpu_cx_states;
962    if (cx_ptr->type == ACPI_STATE_C0) {
963	cx_ptr->type = ACPI_STATE_C1;
964	cx_ptr->trans_lat = 0;
965    }
966
967    return (0);
968}
969
970/*
971 * Call this *after* all CPUs have been attached.
972 */
973static void
974acpi_cpu_startup(void *arg)
975{
976    struct acpi_cpu_softc *sc;
977    int i;
978
979    /* Get set of CPU devices */
980    devclass_get_devices(acpi_cpu_devclass, &cpu_devices, &cpu_ndevices);
981
982    /*
983     * Setup any quirks that might necessary now that we have probed
984     * all the CPUs
985     */
986    acpi_cpu_quirks();
987
988    if (cpu_cx_generic) {
989	/*
990	 * We are using generic Cx mode, probe for available Cx states
991	 * for all processors.
992	 */
993	for (i = 0; i < cpu_ndevices; i++) {
994	    sc = device_get_softc(cpu_devices[i]);
995	    acpi_cpu_generic_cx_probe(sc);
996	}
997    } else {
998	/*
999	 * We are using _CST mode, remove C3 state if necessary.
1000	 * As we now know for sure that we will be using _CST mode
1001	 * install our notify handler.
1002	 */
1003	for (i = 0; i < cpu_ndevices; i++) {
1004	    sc = device_get_softc(cpu_devices[i]);
1005	    if (cpu_quirks & CPU_QUIRK_NO_C3) {
1006		sc->cpu_cx_count = min(sc->cpu_cx_count, sc->cpu_non_c3 + 1);
1007	    }
1008	    AcpiInstallNotifyHandler(sc->cpu_handle, ACPI_DEVICE_NOTIFY,
1009		acpi_cpu_notify, sc);
1010	}
1011    }
1012
1013    /* Perform Cx final initialization. */
1014    for (i = 0; i < cpu_ndevices; i++) {
1015	sc = device_get_softc(cpu_devices[i]);
1016	acpi_cpu_startup_cx(sc);
1017    }
1018
1019    /* Add a sysctl handler to handle global Cx lowest setting */
1020    SYSCTL_ADD_PROC(&cpu_sysctl_ctx, SYSCTL_CHILDREN(cpu_sysctl_tree),
1021	OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
1022	NULL, 0, acpi_cpu_global_cx_lowest_sysctl, "A",
1023	"Global lowest Cx sleep state to use");
1024
1025    /* Take over idling from cpu_idle_default(). */
1026    cpu_cx_lowest_lim = 0;
1027    for (i = 0; i < cpu_ndevices; i++) {
1028	sc = device_get_softc(cpu_devices[i]);
1029	enable_idle(sc);
1030    }
1031#if defined(__i386__) || defined(__amd64__)
1032    cpu_idle_hook = acpi_cpu_idle;
1033#endif
1034}
1035
1036static void
1037acpi_cpu_cx_list(struct acpi_cpu_softc *sc)
1038{
1039    struct sbuf sb;
1040    int i;
1041
1042    /*
1043     * Set up the list of Cx states
1044     */
1045    sbuf_new(&sb, sc->cpu_cx_supported, sizeof(sc->cpu_cx_supported),
1046	SBUF_FIXEDLEN);
1047    for (i = 0; i < sc->cpu_cx_count; i++)
1048	sbuf_printf(&sb, "C%d/%d/%d ", i + 1, sc->cpu_cx_states[i].type,
1049	    sc->cpu_cx_states[i].trans_lat);
1050    sbuf_trim(&sb);
1051    sbuf_finish(&sb);
1052}
1053
1054static void
1055acpi_cpu_startup_cx(struct acpi_cpu_softc *sc)
1056{
1057    acpi_cpu_cx_list(sc);
1058
1059    SYSCTL_ADD_STRING(&sc->cpu_sysctl_ctx,
1060		      SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1061		      OID_AUTO, "cx_supported", CTLFLAG_RD,
1062		      sc->cpu_cx_supported, 0,
1063		      "Cx/microsecond values for supported Cx states");
1064    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1065		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1066		    OID_AUTO, "cx_lowest", CTLTYPE_STRING | CTLFLAG_RW,
1067		    (void *)sc, 0, acpi_cpu_cx_lowest_sysctl, "A",
1068		    "lowest Cx sleep state to use");
1069    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1070		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1071		    OID_AUTO, "cx_usage", CTLTYPE_STRING | CTLFLAG_RD,
1072		    (void *)sc, 0, acpi_cpu_usage_sysctl, "A",
1073		    "percent usage for each Cx state");
1074    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1075		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1076		    OID_AUTO, "cx_usage_counters", CTLTYPE_STRING | CTLFLAG_RD,
1077		    (void *)sc, 0, acpi_cpu_usage_counters_sysctl, "A",
1078		    "Cx sleep state counters");
1079#if defined(__i386__) || defined(__amd64__)
1080    SYSCTL_ADD_PROC(&sc->cpu_sysctl_ctx,
1081		    SYSCTL_CHILDREN(device_get_sysctl_tree(sc->cpu_dev)),
1082		    OID_AUTO, "cx_method", CTLTYPE_STRING | CTLFLAG_RD,
1083		    (void *)sc, 0, acpi_cpu_method_sysctl, "A",
1084		    "Cx entrance methods");
1085#endif
1086
1087    /* Signal platform that we can handle _CST notification. */
1088    if (!cpu_cx_generic && cpu_cst_cnt != 0) {
1089	ACPI_LOCK(acpi);
1090	AcpiOsWritePort(cpu_smi_cmd, cpu_cst_cnt, 8);
1091	ACPI_UNLOCK(acpi);
1092    }
1093}
1094
1095#if defined(__i386__) || defined(__amd64__)
1096/*
1097 * Idle the CPU in the lowest state possible.  This function is called with
1098 * interrupts disabled.  Note that once it re-enables interrupts, a task
1099 * switch can occur so do not access shared data (i.e. the softc) after
1100 * interrupts are re-enabled.
1101 */
1102static void
1103acpi_cpu_idle(sbintime_t sbt)
1104{
1105    struct	acpi_cpu_softc *sc;
1106    struct	acpi_cx *cx_next;
1107    uint64_t	cputicks;
1108    uint32_t	start_time, end_time;
1109    ACPI_STATUS	status;
1110    int		bm_active, cx_next_idx, i, us;
1111
1112    /*
1113     * Look up our CPU id to get our softc.  If it's NULL, we'll use C1
1114     * since there is no ACPI processor object for this CPU.  This occurs
1115     * for logical CPUs in the HTT case.
1116     */
1117    sc = cpu_softc[PCPU_GET(cpuid)];
1118    if (sc == NULL) {
1119	acpi_cpu_c1();
1120	return;
1121    }
1122
1123    /* If disabled, take the safe path. */
1124    if (is_idle_disabled(sc)) {
1125	acpi_cpu_c1();
1126	return;
1127    }
1128
1129    /* Find the lowest state that has small enough latency. */
1130    us = sc->cpu_prev_sleep;
1131    if (sbt >= 0 && us > (sbt >> 12))
1132	us = (sbt >> 12);
1133    cx_next_idx = 0;
1134    if (cpu_disable_c2_sleep)
1135	i = min(sc->cpu_cx_lowest, sc->cpu_non_c2);
1136    else if (cpu_disable_c3_sleep)
1137	i = min(sc->cpu_cx_lowest, sc->cpu_non_c3);
1138    else
1139	i = sc->cpu_cx_lowest;
1140    for (; i >= 0; i--) {
1141	if (sc->cpu_cx_states[i].trans_lat * 3 <= us) {
1142	    cx_next_idx = i;
1143	    break;
1144	}
1145    }
1146
1147    /*
1148     * Check for bus master activity.  If there was activity, clear
1149     * the bit and use the lowest non-C3 state.  Note that the USB
1150     * driver polling for new devices keeps this bit set all the
1151     * time if USB is loaded.
1152     */
1153    if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0 &&
1154	cx_next_idx > sc->cpu_non_c3) {
1155	status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, &bm_active);
1156	if (ACPI_SUCCESS(status) && bm_active != 0) {
1157	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_STATUS, 1);
1158	    cx_next_idx = sc->cpu_non_c3;
1159	}
1160    }
1161
1162    /* Select the next state and update statistics. */
1163    cx_next = &sc->cpu_cx_states[cx_next_idx];
1164    sc->cpu_cx_stats[cx_next_idx]++;
1165    KASSERT(cx_next->type != ACPI_STATE_C0, ("acpi_cpu_idle: C0 sleep"));
1166
1167    /*
1168     * Execute HLT (or equivalent) and wait for an interrupt.  We can't
1169     * precisely calculate the time spent in C1 since the place we wake up
1170     * is an ISR.  Assume we slept no more then half of quantum, unless
1171     * we are called inside critical section, delaying context switch.
1172     */
1173    if (cx_next->type == ACPI_STATE_C1) {
1174	cputicks = cpu_ticks();
1175	if (cx_next->p_lvlx != NULL) {
1176	    /* C1 I/O then Halt */
1177	    CPU_GET_REG(cx_next->p_lvlx, 1);
1178	}
1179	if (cx_next->do_mwait)
1180	    acpi_cpu_idle_mwait(cx_next->mwait_hint);
1181	else
1182	    acpi_cpu_c1();
1183	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1184	if (curthread->td_critnest == 0)
1185		end_time = min(end_time, 500000 / hz);
1186	/* acpi_cpu_c1() returns with interrupts enabled. */
1187	if (cx_next->do_mwait)
1188	    ACPI_ENABLE_IRQS();
1189	sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + end_time) / 4;
1190	return;
1191    }
1192
1193    /*
1194     * For C3, disable bus master arbitration and enable bus master wake
1195     * if BM control is available, otherwise flush the CPU cache.
1196     */
1197    if (cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) {
1198	if ((cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1199	    AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 1);
1200	    AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 1);
1201	} else
1202	    ACPI_FLUSH_CPU_CACHE();
1203    }
1204
1205    /*
1206     * Read from P_LVLx to enter C2(+), checking time spent asleep.
1207     * Use the ACPI timer for measuring sleep time.  Since we need to
1208     * get the time very close to the CPU start/stop clock logic, this
1209     * is the only reliable time source.
1210     */
1211    if (cx_next->type == ACPI_STATE_C3) {
1212	AcpiGetTimer(&start_time);
1213	cputicks = 0;
1214    } else {
1215	start_time = 0;
1216	cputicks = cpu_ticks();
1217    }
1218    if (cx_next->do_mwait)
1219	acpi_cpu_idle_mwait(cx_next->mwait_hint);
1220    else
1221	CPU_GET_REG(cx_next->p_lvlx, 1);
1222
1223    /*
1224     * Read the end time twice.  Since it may take an arbitrary time
1225     * to enter the idle state, the first read may be executed before
1226     * the processor has stopped.  Doing it again provides enough
1227     * margin that we are certain to have a correct value.
1228     */
1229    AcpiGetTimer(&end_time);
1230    if (cx_next->type == ACPI_STATE_C3) {
1231	AcpiGetTimer(&end_time);
1232	AcpiGetTimerDuration(start_time, end_time, &end_time);
1233    } else
1234	end_time = ((cpu_ticks() - cputicks) << 20) / cpu_tickrate();
1235
1236    /* Enable bus master arbitration and disable bus master wakeup. */
1237    if ((cx_next->type == ACPI_STATE_C3 || cx_next->mwait_bm_avoidance) &&
1238      (cpu_quirks & CPU_QUIRK_NO_BM_CTRL) == 0) {
1239	AcpiWriteBitRegister(ACPI_BITREG_ARB_DISABLE, 0);
1240	AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1241    }
1242    ACPI_ENABLE_IRQS();
1243
1244    sc->cpu_prev_sleep = (sc->cpu_prev_sleep * 3 + PM_USEC(end_time)) / 4;
1245}
1246#endif
1247
1248/*
1249 * Re-evaluate the _CST object when we are notified that it changed.
1250 */
1251static void
1252acpi_cpu_notify(ACPI_HANDLE h, UINT32 notify, void *context)
1253{
1254    struct acpi_cpu_softc *sc = (struct acpi_cpu_softc *)context;
1255
1256    if (notify != ACPI_NOTIFY_CX_STATES)
1257	return;
1258
1259    /*
1260     * C-state data for target CPU is going to be in flux while we execute
1261     * acpi_cpu_cx_cst, so disable entering acpi_cpu_idle.
1262     * Also, it may happen that multiple ACPI taskqueues may concurrently
1263     * execute notifications for the same CPU.  ACPI_SERIAL is used to
1264     * protect against that.
1265     */
1266    ACPI_SERIAL_BEGIN(cpu);
1267    disable_idle(sc);
1268
1269    /* Update the list of Cx states. */
1270    acpi_cpu_cx_cst(sc);
1271    acpi_cpu_cx_list(sc);
1272    acpi_cpu_set_cx_lowest(sc);
1273
1274    enable_idle(sc);
1275    ACPI_SERIAL_END(cpu);
1276
1277    acpi_UserNotify("PROCESSOR", sc->cpu_handle, notify);
1278}
1279
1280static void
1281acpi_cpu_quirks(void)
1282{
1283    ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
1284
1285    /*
1286     * Bus mastering arbitration control is needed to keep caches coherent
1287     * while sleeping in C3.  If it's not present but a working flush cache
1288     * instruction is present, flush the caches before entering C3 instead.
1289     * Otherwise, just disable C3 completely.
1290     */
1291    if (AcpiGbl_FADT.Pm2ControlBlock == 0 ||
1292	AcpiGbl_FADT.Pm2ControlLength == 0) {
1293	if ((AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD) &&
1294	    (AcpiGbl_FADT.Flags & ACPI_FADT_WBINVD_FLUSH) == 0) {
1295	    cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1296	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1297		"acpi_cpu: no BM control, using flush cache method\n"));
1298	} else {
1299	    cpu_quirks |= CPU_QUIRK_NO_C3;
1300	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1301		"acpi_cpu: no BM control, C3 not available\n"));
1302	}
1303    }
1304
1305    /*
1306     * If we are using generic Cx mode, C3 on multiple CPUs requires using
1307     * the expensive flush cache instruction.
1308     */
1309    if (cpu_cx_generic && mp_ncpus > 1) {
1310	cpu_quirks |= CPU_QUIRK_NO_BM_CTRL;
1311	ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1312	    "acpi_cpu: SMP, using flush cache mode for C3\n"));
1313    }
1314
1315    /* Look for various quirks of the PIIX4 part. */
1316    acpi_cpu_quirks_piix4();
1317}
1318
1319static void
1320acpi_cpu_quirks_piix4(void)
1321{
1322#ifdef __i386__
1323    device_t acpi_dev;
1324    uint32_t val;
1325    ACPI_STATUS status;
1326
1327    acpi_dev = pci_find_device(PCI_VENDOR_INTEL, PCI_DEVICE_82371AB_3);
1328    if (acpi_dev != NULL) {
1329	switch (pci_get_revid(acpi_dev)) {
1330	/*
1331	 * Disable C3 support for all PIIX4 chipsets.  Some of these parts
1332	 * do not report the BMIDE status to the BM status register and
1333	 * others have a livelock bug if Type-F DMA is enabled.  Linux
1334	 * works around the BMIDE bug by reading the BM status directly
1335	 * but we take the simpler approach of disabling C3 for these
1336	 * parts.
1337	 *
1338	 * See erratum #18 ("C3 Power State/BMIDE and Type-F DMA
1339	 * Livelock") from the January 2002 PIIX4 specification update.
1340	 * Applies to all PIIX4 models.
1341	 *
1342	 * Also, make sure that all interrupts cause a "Stop Break"
1343	 * event to exit from C2 state.
1344	 * Also, BRLD_EN_BM (ACPI_BITREG_BUS_MASTER_RLD in ACPI-speak)
1345	 * should be set to zero, otherwise it causes C2 to short-sleep.
1346	 * PIIX4 doesn't properly support C3 and bus master activity
1347	 * need not break out of C2.
1348	 */
1349	case PCI_REVISION_A_STEP:
1350	case PCI_REVISION_B_STEP:
1351	case PCI_REVISION_4E:
1352	case PCI_REVISION_4M:
1353	    cpu_quirks |= CPU_QUIRK_NO_C3;
1354	    ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1355		"acpi_cpu: working around PIIX4 bug, disabling C3\n"));
1356
1357	    val = pci_read_config(acpi_dev, PIIX4_DEVACTB_REG, 4);
1358	    if ((val & PIIX4_STOP_BREAK_MASK) != PIIX4_STOP_BREAK_MASK) {
1359		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1360		    "acpi_cpu: PIIX4: enabling IRQs to generate Stop Break\n"));
1361	    	val |= PIIX4_STOP_BREAK_MASK;
1362		pci_write_config(acpi_dev, PIIX4_DEVACTB_REG, val, 4);
1363	    }
1364	    status = AcpiReadBitRegister(ACPI_BITREG_BUS_MASTER_RLD, &val);
1365	    if (ACPI_SUCCESS(status) && val != 0) {
1366		ACPI_DEBUG_PRINT((ACPI_DB_INFO,
1367		    "acpi_cpu: PIIX4: reset BRLD_EN_BM\n"));
1368		AcpiWriteBitRegister(ACPI_BITREG_BUS_MASTER_RLD, 0);
1369	    }
1370	    break;
1371	default:
1372	    break;
1373	}
1374    }
1375#endif
1376}
1377
1378static int
1379acpi_cpu_usage_sysctl(SYSCTL_HANDLER_ARGS)
1380{
1381    struct acpi_cpu_softc *sc;
1382    struct sbuf	 sb;
1383    char	 buf[128];
1384    int		 i;
1385    uintmax_t	 fract, sum, whole;
1386
1387    sc = (struct acpi_cpu_softc *) arg1;
1388    sum = 0;
1389    for (i = 0; i < sc->cpu_cx_count; i++)
1390	sum += sc->cpu_cx_stats[i];
1391    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1392    for (i = 0; i < sc->cpu_cx_count; i++) {
1393	if (sum > 0) {
1394	    whole = (uintmax_t)sc->cpu_cx_stats[i] * 100;
1395	    fract = (whole % sum) * 100;
1396	    sbuf_printf(&sb, "%u.%02u%% ", (u_int)(whole / sum),
1397		(u_int)(fract / sum));
1398	} else
1399	    sbuf_printf(&sb, "0.00%% ");
1400    }
1401    sbuf_printf(&sb, "last %dus", sc->cpu_prev_sleep);
1402    sbuf_trim(&sb);
1403    sbuf_finish(&sb);
1404    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1405    sbuf_delete(&sb);
1406
1407    return (0);
1408}
1409
1410/*
1411 * XXX TODO: actually add support to count each entry/exit
1412 * from the Cx states.
1413 */
1414static int
1415acpi_cpu_usage_counters_sysctl(SYSCTL_HANDLER_ARGS)
1416{
1417    struct acpi_cpu_softc *sc;
1418    struct sbuf	 sb;
1419    char	 buf[128];
1420    int		 i;
1421
1422    sc = (struct acpi_cpu_softc *) arg1;
1423
1424    /* Print out the raw counters */
1425    sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1426
1427    for (i = 0; i < sc->cpu_cx_count; i++) {
1428        sbuf_printf(&sb, "%u ", sc->cpu_cx_stats[i]);
1429    }
1430
1431    sbuf_trim(&sb);
1432    sbuf_finish(&sb);
1433    sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1434    sbuf_delete(&sb);
1435
1436    return (0);
1437}
1438
1439#if defined(__i386__) || defined(__amd64__)
1440static int
1441acpi_cpu_method_sysctl(SYSCTL_HANDLER_ARGS)
1442{
1443	struct acpi_cpu_softc *sc;
1444	struct acpi_cx *cx;
1445	struct sbuf sb;
1446	char buf[128];
1447	int i;
1448
1449	sc = (struct acpi_cpu_softc *)arg1;
1450	sbuf_new(&sb, buf, sizeof(buf), SBUF_FIXEDLEN);
1451	for (i = 0; i < sc->cpu_cx_count; i++) {
1452		cx = &sc->cpu_cx_states[i];
1453		sbuf_printf(&sb, "C%d/", i + 1);
1454		if (cx->do_mwait) {
1455			sbuf_cat(&sb, "mwait");
1456			if (cx->mwait_hw_coord)
1457				sbuf_cat(&sb, "/hwc");
1458			if (cx->mwait_bm_avoidance)
1459				sbuf_cat(&sb, "/bma");
1460		} else if (cx->type == ACPI_STATE_C1) {
1461			sbuf_cat(&sb, "hlt");
1462		} else {
1463			sbuf_cat(&sb, "io");
1464		}
1465		if (cx->type == ACPI_STATE_C1 && cx->p_lvlx != NULL)
1466			sbuf_cat(&sb, "/iohlt");
1467		sbuf_putc(&sb, ' ');
1468	}
1469	sbuf_trim(&sb);
1470	sbuf_finish(&sb);
1471	sysctl_handle_string(oidp, sbuf_data(&sb), sbuf_len(&sb), req);
1472	sbuf_delete(&sb);
1473	return (0);
1474}
1475#endif
1476
1477static int
1478acpi_cpu_set_cx_lowest(struct acpi_cpu_softc *sc)
1479{
1480    int i;
1481
1482    ACPI_SERIAL_ASSERT(cpu);
1483    sc->cpu_cx_lowest = min(sc->cpu_cx_lowest_lim, sc->cpu_cx_count - 1);
1484
1485    /* If not disabling, cache the new lowest non-C3 state. */
1486    sc->cpu_non_c3 = 0;
1487    for (i = sc->cpu_cx_lowest; i >= 0; i--) {
1488	if (sc->cpu_cx_states[i].type < ACPI_STATE_C3) {
1489	    sc->cpu_non_c3 = i;
1490	    break;
1491	}
1492    }
1493
1494    /* Reset the statistics counters. */
1495    bzero(sc->cpu_cx_stats, sizeof(sc->cpu_cx_stats));
1496    return (0);
1497}
1498
1499static int
1500acpi_cpu_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1501{
1502    struct	 acpi_cpu_softc *sc;
1503    char	 state[8];
1504    int		 val, error;
1505
1506    sc = (struct acpi_cpu_softc *) arg1;
1507    snprintf(state, sizeof(state), "C%d", sc->cpu_cx_lowest_lim + 1);
1508    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1509    if (error != 0 || req->newptr == NULL)
1510	return (error);
1511    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1512	return (EINVAL);
1513    if (strcasecmp(state, "Cmax") == 0)
1514	val = MAX_CX_STATES;
1515    else {
1516	val = (int) strtol(state + 1, NULL, 10);
1517	if (val < 1 || val > MAX_CX_STATES)
1518	    return (EINVAL);
1519    }
1520
1521    ACPI_SERIAL_BEGIN(cpu);
1522    sc->cpu_cx_lowest_lim = val - 1;
1523    acpi_cpu_set_cx_lowest(sc);
1524    ACPI_SERIAL_END(cpu);
1525
1526    return (0);
1527}
1528
1529static int
1530acpi_cpu_global_cx_lowest_sysctl(SYSCTL_HANDLER_ARGS)
1531{
1532    struct	acpi_cpu_softc *sc;
1533    char	state[8];
1534    int		val, error, i;
1535
1536    snprintf(state, sizeof(state), "C%d", cpu_cx_lowest_lim + 1);
1537    error = sysctl_handle_string(oidp, state, sizeof(state), req);
1538    if (error != 0 || req->newptr == NULL)
1539	return (error);
1540    if (strlen(state) < 2 || toupper(state[0]) != 'C')
1541	return (EINVAL);
1542    if (strcasecmp(state, "Cmax") == 0)
1543	val = MAX_CX_STATES;
1544    else {
1545	val = (int) strtol(state + 1, NULL, 10);
1546	if (val < 1 || val > MAX_CX_STATES)
1547	    return (EINVAL);
1548    }
1549
1550    /* Update the new lowest useable Cx state for all CPUs. */
1551    ACPI_SERIAL_BEGIN(cpu);
1552    cpu_cx_lowest_lim = val - 1;
1553    for (i = 0; i < cpu_ndevices; i++) {
1554	sc = device_get_softc(cpu_devices[i]);
1555	sc->cpu_cx_lowest_lim = cpu_cx_lowest_lim;
1556	acpi_cpu_set_cx_lowest(sc);
1557    }
1558    ACPI_SERIAL_END(cpu);
1559
1560    return (0);
1561}
1562