1/***********************license start***************
2 * Copyright (c) 2003-2012  Cavium Inc. (support@cavium.com). All rights
3 * reserved.
4 *
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions are
8 * met:
9 *
10 *   * Redistributions of source code must retain the above copyright
11 *     notice, this list of conditions and the following disclaimer.
12 *
13 *   * Redistributions in binary form must reproduce the above
14 *     copyright notice, this list of conditions and the following
15 *     disclaimer in the documentation and/or other materials provided
16 *     with the distribution.
17
18 *   * Neither the name of Cavium Inc. nor the names of
19 *     its contributors may be used to endorse or promote products
20 *     derived from this software without specific prior written
21 *     permission.
22
23 * This Software, including technical data, may be subject to U.S. export  control
24 * laws, including the U.S. Export Administration Act and its  associated
25 * regulations, and may be subject to export or import  regulations in other
26 * countries.
27
28 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
29 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
30 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
31 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
32 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
33 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
34 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
35 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
36 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
37 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
38 ***********************license end**************************************/
39
40
41/**
42 * cvmx-ndf-defs.h
43 *
44 * Configuration and status register (CSR) type definitions for
45 * Octeon ndf.
46 *
47 * This file is auto generated. Do not edit.
48 *
49 * <hr>$Revision$<hr>
50 *
51 */
52#ifndef __CVMX_NDF_DEFS_H__
53#define __CVMX_NDF_DEFS_H__
54
55#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
56#define CVMX_NDF_BT_PG_INFO CVMX_NDF_BT_PG_INFO_FUNC()
57static inline uint64_t CVMX_NDF_BT_PG_INFO_FUNC(void)
58{
59	if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)))
60		cvmx_warn("CVMX_NDF_BT_PG_INFO not supported on this chip\n");
61	return CVMX_ADD_IO_SEG(0x0001070001000018ull);
62}
63#else
64#define CVMX_NDF_BT_PG_INFO (CVMX_ADD_IO_SEG(0x0001070001000018ull))
65#endif
66#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
67#define CVMX_NDF_CMD CVMX_NDF_CMD_FUNC()
68static inline uint64_t CVMX_NDF_CMD_FUNC(void)
69{
70	if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)))
71		cvmx_warn("CVMX_NDF_CMD not supported on this chip\n");
72	return CVMX_ADD_IO_SEG(0x0001070001000000ull);
73}
74#else
75#define CVMX_NDF_CMD (CVMX_ADD_IO_SEG(0x0001070001000000ull))
76#endif
77#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
78#define CVMX_NDF_DRBELL CVMX_NDF_DRBELL_FUNC()
79static inline uint64_t CVMX_NDF_DRBELL_FUNC(void)
80{
81	if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)))
82		cvmx_warn("CVMX_NDF_DRBELL not supported on this chip\n");
83	return CVMX_ADD_IO_SEG(0x0001070001000030ull);
84}
85#else
86#define CVMX_NDF_DRBELL (CVMX_ADD_IO_SEG(0x0001070001000030ull))
87#endif
88#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
89#define CVMX_NDF_ECC_CNT CVMX_NDF_ECC_CNT_FUNC()
90static inline uint64_t CVMX_NDF_ECC_CNT_FUNC(void)
91{
92	if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)))
93		cvmx_warn("CVMX_NDF_ECC_CNT not supported on this chip\n");
94	return CVMX_ADD_IO_SEG(0x0001070001000010ull);
95}
96#else
97#define CVMX_NDF_ECC_CNT (CVMX_ADD_IO_SEG(0x0001070001000010ull))
98#endif
99#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
100#define CVMX_NDF_INT CVMX_NDF_INT_FUNC()
101static inline uint64_t CVMX_NDF_INT_FUNC(void)
102{
103	if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)))
104		cvmx_warn("CVMX_NDF_INT not supported on this chip\n");
105	return CVMX_ADD_IO_SEG(0x0001070001000020ull);
106}
107#else
108#define CVMX_NDF_INT (CVMX_ADD_IO_SEG(0x0001070001000020ull))
109#endif
110#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
111#define CVMX_NDF_INT_EN CVMX_NDF_INT_EN_FUNC()
112static inline uint64_t CVMX_NDF_INT_EN_FUNC(void)
113{
114	if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)))
115		cvmx_warn("CVMX_NDF_INT_EN not supported on this chip\n");
116	return CVMX_ADD_IO_SEG(0x0001070001000028ull);
117}
118#else
119#define CVMX_NDF_INT_EN (CVMX_ADD_IO_SEG(0x0001070001000028ull))
120#endif
121#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
122#define CVMX_NDF_MISC CVMX_NDF_MISC_FUNC()
123static inline uint64_t CVMX_NDF_MISC_FUNC(void)
124{
125	if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)))
126		cvmx_warn("CVMX_NDF_MISC not supported on this chip\n");
127	return CVMX_ADD_IO_SEG(0x0001070001000008ull);
128}
129#else
130#define CVMX_NDF_MISC (CVMX_ADD_IO_SEG(0x0001070001000008ull))
131#endif
132#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
133#define CVMX_NDF_ST_REG CVMX_NDF_ST_REG_FUNC()
134static inline uint64_t CVMX_NDF_ST_REG_FUNC(void)
135{
136	if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX)))
137		cvmx_warn("CVMX_NDF_ST_REG not supported on this chip\n");
138	return CVMX_ADD_IO_SEG(0x0001070001000038ull);
139}
140#else
141#define CVMX_NDF_ST_REG (CVMX_ADD_IO_SEG(0x0001070001000038ull))
142#endif
143
144/**
145 * cvmx_ndf_bt_pg_info
146 *
147 * Notes:
148 * NDF_BT_PG_INFO provides page size and number of column plus row address cycles information. SW writes to this CSR
149 * during boot from Nand Flash. Additionally SW also writes the multiplier value for timing parameters. This value is
150 * used during boot, in the SET_TM_PARAM command. This information is used only by the boot load state machine and is
151 * otherwise a don't care, once boot is disabled. Also, boot dma's do not use this value.
152 *
153 * Bytes per Nand Flash page = 2 ** (SIZE + 1) times 256 bytes.
154 * 512, 1k, 2k, 4k, 8k, 16k, 32k and 64k are legal bytes per page values
155 *
156 * Legal values for ADR_CYC field are 3 through 8. SW CSR writes with a value less than 3 will write a 3 to this
157 * field, and a SW CSR write with a value greater than 8, will write an 8 to this field.
158 *
159 * Like all NDF_... registers, 64-bit operations must be used to access this register
160 */
161union cvmx_ndf_bt_pg_info {
162	uint64_t u64;
163	struct cvmx_ndf_bt_pg_info_s {
164#ifdef __BIG_ENDIAN_BITFIELD
165	uint64_t reserved_11_63               : 53;
166	uint64_t t_mult                       : 4;  /**< Boot time TIM_MULT[3:0] field of SET__TM_PAR[63:0]
167                                                         command */
168	uint64_t adr_cyc                      : 4;  /**< # of column address cycles */
169	uint64_t size                         : 3;  /**< bytes per page in the nand device */
170#else
171	uint64_t size                         : 3;
172	uint64_t adr_cyc                      : 4;
173	uint64_t t_mult                       : 4;
174	uint64_t reserved_11_63               : 53;
175#endif
176	} s;
177	struct cvmx_ndf_bt_pg_info_s          cn52xx;
178	struct cvmx_ndf_bt_pg_info_s          cn63xx;
179	struct cvmx_ndf_bt_pg_info_s          cn63xxp1;
180	struct cvmx_ndf_bt_pg_info_s          cn66xx;
181	struct cvmx_ndf_bt_pg_info_s          cn68xx;
182	struct cvmx_ndf_bt_pg_info_s          cn68xxp1;
183};
184typedef union cvmx_ndf_bt_pg_info cvmx_ndf_bt_pg_info_t;
185
186/**
187 * cvmx_ndf_cmd
188 *
189 * Notes:
190 * When SW reads this csr, RD_VAL bit in NDF_MISC csr is cleared to 0. SW must always write all 8 bytes whenever it writes
191 * this csr. If there are fewer than 8 bytes left in the command sequence that SW wants the NAND flash controller to execute, it
192 * must insert Idle (WAIT) commands to make up 8 bytes. SW also must ensure there is enough vacancy in the command fifo to accept these
193 * 8 bytes, by first reading the FR_BYT field in the NDF_MISC csr.
194 *
195 * Like all NDF_... registers, 64-bit operations must be used to access this register
196 */
197union cvmx_ndf_cmd {
198	uint64_t u64;
199	struct cvmx_ndf_cmd_s {
200#ifdef __BIG_ENDIAN_BITFIELD
201	uint64_t nf_cmd                       : 64; /**< 8 Command Bytes */
202#else
203	uint64_t nf_cmd                       : 64;
204#endif
205	} s;
206	struct cvmx_ndf_cmd_s                 cn52xx;
207	struct cvmx_ndf_cmd_s                 cn63xx;
208	struct cvmx_ndf_cmd_s                 cn63xxp1;
209	struct cvmx_ndf_cmd_s                 cn66xx;
210	struct cvmx_ndf_cmd_s                 cn68xx;
211	struct cvmx_ndf_cmd_s                 cn68xxp1;
212};
213typedef union cvmx_ndf_cmd cvmx_ndf_cmd_t;
214
215/**
216 * cvmx_ndf_drbell
217 *
218 * Notes:
219 * SW csr writes will increment CNT by the signed 8 bit value being written. SW csr reads return the current CNT value.
220 * HW will also modify the value of the CNT field. Everytime HW executes a BUS_ACQ[15:0] command, to arbitrate and win the
221 * flash bus, it decrements the CNT field by 1. If the CNT field is already 0 or negative, HW command execution unit will
222 * stall when it fetches the new BUS_ACQ[15:0] command, from the command fifo. Only when the SW writes to this CSR with a
223 * non-zero data value, can the execution unit come out of the stalled condition, and resume execution.
224 *
225 * The intended use of this doorbell CSR is to control execution of the Nand Flash commands. The NDF execution unit
226 * has to arbitrate for the flash bus, before it can enable a Nand Flash device connected to the Octeon chip, by
227 * asserting the device's chip enable. Therefore SW should first load the command fifo, with a full sequence of
228 * commands to perform a Nand Flash device task. This command sequence will start with a bus acquire command and
229 * the last command in the sequence will be a bus release command. The execution unit will start execution of
230 * the sequence only if the [CNT] field is non-zero when it fetches the bus acquire command, which is the first
231 * command in this sequence. SW can also, load multiple such sequences, each starting with a chip enable command
232 * and ending with a chip disable command, and then write a non-zero data value to this csr to increment the
233 * CNT field by the number of the command sequences, loaded to the command fifo.
234 *
235 * Like all NDF_... registers, 64-bit operations must be used to access this register
236 */
237union cvmx_ndf_drbell {
238	uint64_t u64;
239	struct cvmx_ndf_drbell_s {
240#ifdef __BIG_ENDIAN_BITFIELD
241	uint64_t reserved_8_63                : 56;
242	uint64_t cnt                          : 8;  /**< Doorbell count register, 2's complement 8 bit value */
243#else
244	uint64_t cnt                          : 8;
245	uint64_t reserved_8_63                : 56;
246#endif
247	} s;
248	struct cvmx_ndf_drbell_s              cn52xx;
249	struct cvmx_ndf_drbell_s              cn63xx;
250	struct cvmx_ndf_drbell_s              cn63xxp1;
251	struct cvmx_ndf_drbell_s              cn66xx;
252	struct cvmx_ndf_drbell_s              cn68xx;
253	struct cvmx_ndf_drbell_s              cn68xxp1;
254};
255typedef union cvmx_ndf_drbell cvmx_ndf_drbell_t;
256
257/**
258 * cvmx_ndf_ecc_cnt
259 *
260 * Notes:
261 * XOR_ECC[31:8] = [ecc_gen_byt258, ecc_gen_byt257, ecc_gen_byt256] xor [ecc_258, ecc_257, ecc_256]
262 *         ecc_258, ecc_257 and ecc_256 are bytes stored in Nand Flash and read out during boot
263 *         ecc_gen_byt258, ecc_gen_byt257, ecc_gen_byt256 are generated from data read out from Nand Flash
264 *
265 * Like all NDF_... registers, 64-bit operations must be used to access this register
266 */
267union cvmx_ndf_ecc_cnt {
268	uint64_t u64;
269	struct cvmx_ndf_ecc_cnt_s {
270#ifdef __BIG_ENDIAN_BITFIELD
271	uint64_t reserved_32_63               : 32;
272	uint64_t xor_ecc                      : 24; /**< result of XOR of ecc read bytes and ecc genarated
273                                                         bytes. The value pertains to the last 1 bit ecc err */
274	uint64_t ecc_err                      : 8;  /**< Count = \# of 1 bit errors fixed during boot
275                                                         This count saturates instead of wrapping around. */
276#else
277	uint64_t ecc_err                      : 8;
278	uint64_t xor_ecc                      : 24;
279	uint64_t reserved_32_63               : 32;
280#endif
281	} s;
282	struct cvmx_ndf_ecc_cnt_s             cn52xx;
283	struct cvmx_ndf_ecc_cnt_s             cn63xx;
284	struct cvmx_ndf_ecc_cnt_s             cn63xxp1;
285	struct cvmx_ndf_ecc_cnt_s             cn66xx;
286	struct cvmx_ndf_ecc_cnt_s             cn68xx;
287	struct cvmx_ndf_ecc_cnt_s             cn68xxp1;
288};
289typedef union cvmx_ndf_ecc_cnt cvmx_ndf_ecc_cnt_t;
290
291/**
292 * cvmx_ndf_int
293 *
294 * Notes:
295 * FULL status is updated when the command fifo becomes full as a result of SW writing a new command to it.
296 *
297 * EMPTY status is updated when the command fifo becomes empty as a result of command execution unit fetching the
298 * last instruction out of the command fifo.
299 *
300 * Like all NDF_... registers, 64-bit operations must be used to access this register
301 */
302union cvmx_ndf_int {
303	uint64_t u64;
304	struct cvmx_ndf_int_s {
305#ifdef __BIG_ENDIAN_BITFIELD
306	uint64_t reserved_7_63                : 57;
307	uint64_t ovrf                         : 1;  /**< NDF_CMD write when fifo is full. Generally a
308                                                         fatal error. */
309	uint64_t ecc_mult                     : 1;  /**< Multi bit ECC error detected during boot */
310	uint64_t ecc_1bit                     : 1;  /**< Single bit ECC error detected and fixed during boot */
311	uint64_t sm_bad                       : 1;  /**< One of the state machines in a bad state */
312	uint64_t wdog                         : 1;  /**< Watch Dog timer expired during command execution */
313	uint64_t full                         : 1;  /**< Command fifo is full */
314	uint64_t empty                        : 1;  /**< Command fifo is empty */
315#else
316	uint64_t empty                        : 1;
317	uint64_t full                         : 1;
318	uint64_t wdog                         : 1;
319	uint64_t sm_bad                       : 1;
320	uint64_t ecc_1bit                     : 1;
321	uint64_t ecc_mult                     : 1;
322	uint64_t ovrf                         : 1;
323	uint64_t reserved_7_63                : 57;
324#endif
325	} s;
326	struct cvmx_ndf_int_s                 cn52xx;
327	struct cvmx_ndf_int_s                 cn63xx;
328	struct cvmx_ndf_int_s                 cn63xxp1;
329	struct cvmx_ndf_int_s                 cn66xx;
330	struct cvmx_ndf_int_s                 cn68xx;
331	struct cvmx_ndf_int_s                 cn68xxp1;
332};
333typedef union cvmx_ndf_int cvmx_ndf_int_t;
334
335/**
336 * cvmx_ndf_int_en
337 *
338 * Notes:
339 * Like all NDF_... registers, 64-bit operations must be used to access this register
340 *
341 */
342union cvmx_ndf_int_en {
343	uint64_t u64;
344	struct cvmx_ndf_int_en_s {
345#ifdef __BIG_ENDIAN_BITFIELD
346	uint64_t reserved_7_63                : 57;
347	uint64_t ovrf                         : 1;  /**< Wrote to a full command fifo */
348	uint64_t ecc_mult                     : 1;  /**< Multi bit ECC error detected during boot */
349	uint64_t ecc_1bit                     : 1;  /**< Single bit ECC error detected and fixed during boot */
350	uint64_t sm_bad                       : 1;  /**< One of the state machines in a bad state */
351	uint64_t wdog                         : 1;  /**< Watch Dog timer expired during command execution */
352	uint64_t full                         : 1;  /**< Command fifo is full */
353	uint64_t empty                        : 1;  /**< Command fifo is empty */
354#else
355	uint64_t empty                        : 1;
356	uint64_t full                         : 1;
357	uint64_t wdog                         : 1;
358	uint64_t sm_bad                       : 1;
359	uint64_t ecc_1bit                     : 1;
360	uint64_t ecc_mult                     : 1;
361	uint64_t ovrf                         : 1;
362	uint64_t reserved_7_63                : 57;
363#endif
364	} s;
365	struct cvmx_ndf_int_en_s              cn52xx;
366	struct cvmx_ndf_int_en_s              cn63xx;
367	struct cvmx_ndf_int_en_s              cn63xxp1;
368	struct cvmx_ndf_int_en_s              cn66xx;
369	struct cvmx_ndf_int_en_s              cn68xx;
370	struct cvmx_ndf_int_en_s              cn68xxp1;
371};
372typedef union cvmx_ndf_int_en cvmx_ndf_int_en_t;
373
374/**
375 * cvmx_ndf_misc
376 *
377 * Notes:
378 * NBR_HWM this field specifies the high water mark for the NCB outbound load/store commands receive fifo.
379 *   the fifo size is 16 entries.
380 *
381 * WAIT_CNT this field allows glitch filtering of the WAIT_n input to octeon, from Flash Memory. The count
382 *   represents number of eclk cycles.
383 *
384 * FR_BYT  this field specifies \# of unfilled bytes in the command fifo. Bytes become unfilled as commands
385 *   complete execution and exit. (fifo is 256 bytes when BT_DIS=0,  and 1536 bytes when BT_DIS=1)
386 *
387 * RD_DONE this W1C bit is set to 1 by HW when it reads the last 8 bytes out of the command fifo,
388 *   in response to RD_CMD bit being set to 1 by SW.
389 *
390 * RD_VAL  this read only bit is set to 1 by HW when it reads next 8 bytes from command fifo in response
391 *   to RD_CMD bit being set to 1. A SW read of NDF_CMD csr clears this bit to 0.
392 *
393 * RD_CMD  this R/W bit starts read out from the command fifo, 8 bytes at a time. SW should first read the
394 *   RD_VAL bit in  this csr to see if next 8 bytes from the command fifo are available in the
395 *   NDF_CMD csr. All command fifo reads start and end on an 8 byte boundary. A RD_CMD in the
396 *   middle of command execution will cause the execution to freeze until RD_DONE is set to 1. RD_CMD
397 *   bit will be cleared on any NDF_CMD csr write by SW.
398 *
399 * BT_DMA  this indicates to the NAND flash boot control state machine that boot dma read can begin.
400 *   SW should set this bit to 1 after SW has loaded the command fifo. HW sets the bit to 0
401 *   when boot dma command execution is complete. If chip enable 0 is not nand flash, this bit is
402 *   permanently 1'b0 with SW writes ignored. Whenever BT_DIS=1, this bit will be 0.
403 *
404 * BT_DIS  this R/W bit indicates to NAND flash boot control state machine that boot operation has ended.
405 *   whenever this bit changes from 0 to a 1, the command fifo is emptied as a side effect. This bit must
406 *   never be set when booting from nand flash and region zero is enabled.
407 *
408 * EX_DIS  When 1, command execution stops after completing execution of all commands currently in the command
409 *   fifo. Once command execution has stopped, and then new commands are loaded into the command fifo, execution
410 *   will not resume as long as this bit is 1. When this bit is 0, command execution will resume if command fifo
411 *   is not empty. EX_DIS should be set to 1, during boot i.e. when BT_DIS = 0.
412 *
413 * RST_FF  reset command fifo to make it empty, any command inflight is not aborted before reseting
414 *   the fifo. The fifo comes up empty at the end of power on reset.
415 *
416 * Like all NDF_... registers, 64-bit operations must be used to access this register
417 */
418union cvmx_ndf_misc {
419	uint64_t u64;
420	struct cvmx_ndf_misc_s {
421#ifdef __BIG_ENDIAN_BITFIELD
422	uint64_t reserved_28_63               : 36;
423	uint64_t mb_dis                       : 1;  /**< Disable multibit error hangs and allow boot loads
424                                                         or boot dma's proceed as if no multi bit errors
425                                                         occured. HW will fix single bit errors as usual */
426	uint64_t nbr_hwm                      : 3;  /**< Hi Water mark for NBR fifo or load/stores */
427	uint64_t wait_cnt                     : 6;  /**< WAIT input filter count */
428	uint64_t fr_byt                       : 11; /**< Number of unfilled Command fifo bytes */
429	uint64_t rd_done                      : 1;  /**< This W1C bit is set to 1 by HW when it completes
430                                                         command fifo read out, in response to RD_CMD */
431	uint64_t rd_val                       : 1;  /**< This RO bit is set to 1 by HW when it reads next 8
432                                                         bytes from Command fifo into the NDF_CMD csr
433                                                         SW reads NDF_CMD csr, HW clears this bit to 0 */
434	uint64_t rd_cmd                       : 1;  /**< When 1, HW reads out contents of the Command fifo 8
435                                                         bytes at a time into the NDF_CMD csr */
436	uint64_t bt_dma                       : 1;  /**< When set to 1, boot time dma is enabled */
437	uint64_t bt_dis                       : 1;  /**< When boot operation is over SW must set to 1
438                                                         causes boot state mchines to sleep */
439	uint64_t ex_dis                       : 1;  /**< When set to 1, suspends execution of commands at
440                                                         next command in the fifo. */
441	uint64_t rst_ff                       : 1;  /**< 1=reset command fifo to make it empty,
442                                                         0=normal operation */
443#else
444	uint64_t rst_ff                       : 1;
445	uint64_t ex_dis                       : 1;
446	uint64_t bt_dis                       : 1;
447	uint64_t bt_dma                       : 1;
448	uint64_t rd_cmd                       : 1;
449	uint64_t rd_val                       : 1;
450	uint64_t rd_done                      : 1;
451	uint64_t fr_byt                       : 11;
452	uint64_t wait_cnt                     : 6;
453	uint64_t nbr_hwm                      : 3;
454	uint64_t mb_dis                       : 1;
455	uint64_t reserved_28_63               : 36;
456#endif
457	} s;
458	struct cvmx_ndf_misc_cn52xx {
459#ifdef __BIG_ENDIAN_BITFIELD
460	uint64_t reserved_27_63               : 37;
461	uint64_t nbr_hwm                      : 3;  /**< Hi Water mark for NBR fifo or load/stores */
462	uint64_t wait_cnt                     : 6;  /**< WAIT input filter count */
463	uint64_t fr_byt                       : 11; /**< Number of unfilled Command fifo bytes */
464	uint64_t rd_done                      : 1;  /**< This W1C bit is set to 1 by HW when it completes
465                                                         command fifo read out, in response to RD_CMD */
466	uint64_t rd_val                       : 1;  /**< This RO bit is set to 1 by HW when it reads next 8
467                                                         bytes from Command fifo into the NDF_CMD csr
468                                                         SW reads NDF_CMD csr, HW clears this bit to 0 */
469	uint64_t rd_cmd                       : 1;  /**< When 1, HW reads out contents of the Command fifo 8
470                                                         bytes at a time into the NDF_CMD csr */
471	uint64_t bt_dma                       : 1;  /**< When set to 1, boot time dma is enabled */
472	uint64_t bt_dis                       : 1;  /**< When boot operation is over SW must set to 1
473                                                         causes boot state mchines to sleep */
474	uint64_t ex_dis                       : 1;  /**< When set to 1, suspends execution of commands at
475                                                         next command in the fifo. */
476	uint64_t rst_ff                       : 1;  /**< 1=reset command fifo to make it empty,
477                                                         0=normal operation */
478#else
479	uint64_t rst_ff                       : 1;
480	uint64_t ex_dis                       : 1;
481	uint64_t bt_dis                       : 1;
482	uint64_t bt_dma                       : 1;
483	uint64_t rd_cmd                       : 1;
484	uint64_t rd_val                       : 1;
485	uint64_t rd_done                      : 1;
486	uint64_t fr_byt                       : 11;
487	uint64_t wait_cnt                     : 6;
488	uint64_t nbr_hwm                      : 3;
489	uint64_t reserved_27_63               : 37;
490#endif
491	} cn52xx;
492	struct cvmx_ndf_misc_s                cn63xx;
493	struct cvmx_ndf_misc_s                cn63xxp1;
494	struct cvmx_ndf_misc_s                cn66xx;
495	struct cvmx_ndf_misc_s                cn68xx;
496	struct cvmx_ndf_misc_s                cn68xxp1;
497};
498typedef union cvmx_ndf_misc cvmx_ndf_misc_t;
499
500/**
501 * cvmx_ndf_st_reg
502 *
503 * Notes:
504 * This CSR aggregates all state machines used in nand flash controller for debug.
505 * Like all NDF_... registers, 64-bit operations must be used to access this register
506 */
507union cvmx_ndf_st_reg {
508	uint64_t u64;
509	struct cvmx_ndf_st_reg_s {
510#ifdef __BIG_ENDIAN_BITFIELD
511	uint64_t reserved_16_63               : 48;
512	uint64_t exe_idle                     : 1;  /**< Command Execution status 1=IDLE, 0=Busy
513                                                         1 means execution of command sequence is complete
514                                                         and command fifo is empty */
515	uint64_t exe_sm                       : 4;  /**< Command Execution State machine states */
516	uint64_t bt_sm                        : 4;  /**< Boot load and Boot dma State machine states */
517	uint64_t rd_ff_bad                    : 1;  /**< CMD fifo read back State machine in bad state */
518	uint64_t rd_ff                        : 2;  /**< CMD fifo read back State machine states */
519	uint64_t main_bad                     : 1;  /**< Main State machine in bad state */
520	uint64_t main_sm                      : 3;  /**< Main State machine states */
521#else
522	uint64_t main_sm                      : 3;
523	uint64_t main_bad                     : 1;
524	uint64_t rd_ff                        : 2;
525	uint64_t rd_ff_bad                    : 1;
526	uint64_t bt_sm                        : 4;
527	uint64_t exe_sm                       : 4;
528	uint64_t exe_idle                     : 1;
529	uint64_t reserved_16_63               : 48;
530#endif
531	} s;
532	struct cvmx_ndf_st_reg_s              cn52xx;
533	struct cvmx_ndf_st_reg_s              cn63xx;
534	struct cvmx_ndf_st_reg_s              cn63xxp1;
535	struct cvmx_ndf_st_reg_s              cn66xx;
536	struct cvmx_ndf_st_reg_s              cn68xx;
537	struct cvmx_ndf_st_reg_s              cn68xxp1;
538};
539typedef union cvmx_ndf_st_reg cvmx_ndf_st_reg_t;
540
541#endif
542