ar9300_eeprom.c revision 250008
1/*
2 * Copyright (c) 2013 Qualcomm Atheros, Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
9 * REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
10 * AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
11 * INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
12 * LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
13 * OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
14 * PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include "opt_ah.h"
18
19#include "ah.h"
20#include "ah_internal.h"
21#include "ah_devid.h"
22#ifdef AH_DEBUG
23#include "ah_desc.h"                    /* NB: for HAL_PHYERR* */
24#endif
25#include "ar9300/ar9300.h"
26#include "ar9300/ar9300eep.h"
27#include "ar9300/ar9300template_generic.h"
28#include "ar9300/ar9300template_xb112.h"
29#include "ar9300/ar9300template_hb116.h"
30#include "ar9300/ar9300template_xb113.h"
31#include "ar9300/ar9300template_hb112.h"
32#include "ar9300/ar9300template_ap121.h"
33#include "ar9300/ar9300template_osprey_k31.h"
34#include "ar9300/ar9300template_wasp_2.h"
35#include "ar9300/ar9300template_wasp_k31.h"
36#include "ar9300/ar9300template_aphrodite.h"
37#include "ar9300/ar9300reg.h"
38#include "ar9300/ar9300phy.h"
39
40
41
42#if AH_BYTE_ORDER == AH_BIG_ENDIAN
43void ar9300_swap_eeprom(ar9300_eeprom_t *eep);
44void ar9300_eeprom_template_swap(void);
45#endif
46
47static u_int16_t ar9300_eeprom_get_spur_chan(struct ath_hal *ah,
48    int spur_chan, HAL_BOOL is_2ghz);
49#ifdef UNUSED
50static inline HAL_BOOL ar9300_fill_eeprom(struct ath_hal *ah);
51static inline HAL_STATUS ar9300_check_eeprom(struct ath_hal *ah);
52#endif
53
54static ar9300_eeprom_t *default9300[] =
55{
56    &ar9300_template_generic,
57    &ar9300_template_xb112,
58    &ar9300_template_hb116,
59    &ar9300_template_hb112,
60    &ar9300_template_xb113,
61    &ar9300_template_ap121,
62    &ar9300_template_wasp_2,
63    &ar9300_template_wasp_k31,
64    &ar9300_template_osprey_k31,
65    &ar9300_template_aphrodite,
66};
67
68/*
69 * Different types of memory where the calibration data might be stored.
70 * All types are searched in ar9300_eeprom_restore()
71 * in the order flash, eeprom, otp.
72 * To disable searching a type, set its parameter to 0.
73 */
74
75/*
76 * This is where we look for the calibration data.
77 * must be set before ath_attach() is called
78 */
79static int calibration_data_try = calibration_data_none;
80static int calibration_data_try_address = 0;
81
82/*
83 * Set the type of memory used to store calibration data.
84 * Used by nart to force reading/writing of a specific type.
85 * The driver can normally allow autodetection
86 * by setting source to calibration_data_none=0.
87 */
88void ar9300_calibration_data_set(struct ath_hal *ah, int32_t source)
89{
90    if (ah != 0) {
91        AH9300(ah)->calibration_data_source = source;
92    } else {
93        calibration_data_try = source;
94    }
95}
96
97int32_t ar9300_calibration_data_get(struct ath_hal *ah)
98{
99    if (ah != 0) {
100        return AH9300(ah)->calibration_data_source;
101    } else {
102        return calibration_data_try;
103    }
104}
105
106/*
107 * Set the address of first byte used to store calibration data.
108 * Used by nart to force reading/writing at a specific address.
109 * The driver can normally allow autodetection by setting size=0.
110 */
111void ar9300_calibration_data_address_set(struct ath_hal *ah, int32_t size)
112{
113    if (ah != 0) {
114        AH9300(ah)->calibration_data_source_address = size;
115    } else {
116        calibration_data_try_address = size;
117    }
118}
119
120int32_t ar9300_calibration_data_address_get(struct ath_hal *ah)
121{
122    if (ah != 0) {
123        return AH9300(ah)->calibration_data_source_address;
124    } else {
125        return calibration_data_try_address;
126    }
127}
128
129/*
130 * This is the template that is loaded if ar9300_eeprom_restore()
131 * can't find valid data in the memory.
132 */
133static int Ar9300_eeprom_template_preference = ar9300_eeprom_template_generic;
134
135void ar9300_eeprom_template_preference(int32_t value)
136{
137    Ar9300_eeprom_template_preference = value;
138}
139
140/*
141 * Install the specified default template.
142 * Overwrites any existing calibration and configuration information in memory.
143 */
144int32_t ar9300_eeprom_template_install(struct ath_hal *ah, int32_t value)
145{
146    struct ath_hal_9300 *ahp = AH9300(ah);
147    ar9300_eeprom_t *mptr, *dptr;
148    int mdata_size;
149
150    mptr = &ahp->ah_eeprom;
151    mdata_size = ar9300_eeprom_struct_size();
152    if (mptr != 0) {
153#if 0
154        calibration_data_source = calibration_data_none;
155        calibration_data_source_address = 0;
156#endif
157        dptr = ar9300_eeprom_struct_default_find_by_id(value);
158        if (dptr != 0) {
159            OS_MEMCPY(mptr, dptr, mdata_size);
160            return 0;
161        }
162    }
163    return -1;
164}
165
166static int
167ar9300_eeprom_restore_something(struct ath_hal *ah, ar9300_eeprom_t *mptr,
168    int mdata_size)
169{
170    int it;
171    ar9300_eeprom_t *dptr;
172    int nptr;
173
174    nptr = -1;
175    /*
176     * if we didn't find any blocks in the memory,
177     * put the prefered template in place
178     */
179    if (nptr < 0) {
180        AH9300(ah)->calibration_data_source = calibration_data_none;
181        AH9300(ah)->calibration_data_source_address = 0;
182        dptr = ar9300_eeprom_struct_default_find_by_id(
183            Ar9300_eeprom_template_preference);
184        if (dptr != 0) {
185            OS_MEMCPY(mptr, dptr, mdata_size);
186            nptr = 0;
187        }
188    }
189    /*
190     * if we didn't find the prefered one,
191     * put the normal default template in place
192     */
193    if (nptr < 0) {
194        AH9300(ah)->calibration_data_source = calibration_data_none;
195        AH9300(ah)->calibration_data_source_address = 0;
196        dptr = ar9300_eeprom_struct_default_find_by_id(
197            ar9300_eeprom_template_default);
198        if (dptr != 0) {
199            OS_MEMCPY(mptr, dptr, mdata_size);
200            nptr = 0;
201        }
202    }
203    /*
204     * if we can't find the best template, put any old template in place
205     * presume that newer ones are better, so search backwards
206     */
207    if (nptr < 0) {
208        AH9300(ah)->calibration_data_source = calibration_data_none;
209        AH9300(ah)->calibration_data_source_address = 0;
210        for (it = ar9300_eeprom_struct_default_many() - 1; it >= 0; it--) {
211            dptr = ar9300_eeprom_struct_default(it);
212            if (dptr != 0) {
213                OS_MEMCPY(mptr, dptr, mdata_size);
214                nptr = 0;
215                break;
216            }
217        }
218    }
219    return nptr;
220}
221
222/*
223 * Read 16 bits of data from offset into *data
224 */
225HAL_BOOL
226ar9300_eeprom_read_word(struct ath_hal *ah, u_int off, u_int16_t *data)
227{
228    if (AR_SREV_OSPREY(ah) || AR_SREV_POSEIDON(ah))
229    {
230        (void) OS_REG_READ(ah, AR9300_EEPROM_OFFSET + (off << AR9300_EEPROM_S));
231        if (!ath_hal_wait(ah,
232			  AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA),
233			  AR_EEPROM_STATUS_DATA_BUSY | AR_EEPROM_STATUS_DATA_PROT_ACCESS,
234			  0))
235	{
236            return AH_FALSE;
237	}
238        *data = MS(OS_REG_READ(ah,
239			       AR_HOSTIF_REG(ah, AR_EEPROM_STATUS_DATA)), AR_EEPROM_STATUS_DATA_VAL);
240       return AH_TRUE;
241    }
242    else
243    {
244        *data = 0;
245        return AH_FALSE;
246    }
247}
248
249
250HAL_BOOL
251ar9300_otp_read(struct ath_hal *ah, u_int off, u_int32_t *data, HAL_BOOL is_wifi)
252{
253    int time_out = 1000;
254    int status = 0;
255    u_int32_t addr;
256
257    addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah))?
258        OTP_MEM_START_ADDRESS_WASP : OTP_MEM_START_ADDRESS;
259	if (!is_wifi) {
260        addr = BTOTP_MEM_START_ADDRESS;
261    }
262    addr += off * 4; /* OTP is 32 bit addressable */
263    (void) OS_REG_READ(ah, addr);
264
265    addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
266        OTP_STATUS0_OTP_SM_BUSY_WASP : OTP_STATUS0_OTP_SM_BUSY;
267	if (!is_wifi) {
268        addr = BTOTP_STATUS0_OTP_SM_BUSY;
269    }
270    while ((time_out > 0) && (!status)) { /* wait for access complete */
271        /* Read data valid, access not busy, sm not busy */
272        status = ((OS_REG_READ(ah, addr) & 0x7) == 0x4) ? 1 : 0;
273        time_out--;
274    }
275    if (time_out == 0) {
276        HALDEBUG(ah, HAL_DEBUG_EEPROM,
277            "%s: Timed out during OTP Status0 validation\n", __func__);
278        return AH_FALSE;
279    }
280
281    addr = (AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) ?
282        OTP_STATUS1_EFUSE_READ_DATA_WASP : OTP_STATUS1_EFUSE_READ_DATA;
283	if (!is_wifi) {
284        addr = BTOTP_STATUS1_EFUSE_READ_DATA;
285    }
286    *data = OS_REG_READ(ah, addr);
287    return AH_TRUE;
288}
289
290
291
292
293static HAL_STATUS
294ar9300_flash_map(struct ath_hal *ah)
295{
296    /* XXX disable flash remapping for now (ie, SoC support) */
297    ath_hal_printf(ah, "%s: unimplemented for now\n", __func__);
298#if 0
299    struct ath_hal_9300 *ahp = AH9300(ah);
300#if defined(AR9100) || defined(__NetBSD__)
301    ahp->ah_cal_mem = OS_REMAP(ah, AR9300_EEPROM_START_ADDR, AR9300_EEPROM_MAX);
302#else
303    ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
304        (AR9300_EEPROM_MAX + AR9300_FLASH_CAL_START_OFFSET));
305#endif
306    if (!ahp->ah_cal_mem) {
307        HALDEBUG(ah, HAL_DEBUG_EEPROM,
308            "%s: cannot remap eeprom region \n", __func__);
309        return HAL_EIO;
310    }
311#endif
312    return HAL_OK;
313}
314
315HAL_BOOL
316ar9300_flash_read(struct ath_hal *ah, u_int off, u_int16_t *data)
317{
318    struct ath_hal_9300 *ahp = AH9300(ah);
319
320    *data = ((u_int16_t *)ahp->ah_cal_mem)[off];
321    return AH_TRUE;
322}
323
324HAL_BOOL
325ar9300_flash_write(struct ath_hal *ah, u_int off, u_int16_t data)
326{
327    struct ath_hal_9300 *ahp = AH9300(ah);
328
329    ((u_int16_t *)ahp->ah_cal_mem)[off] = data;
330    return AH_TRUE;
331}
332
333HAL_STATUS
334ar9300_eeprom_attach(struct ath_hal *ah)
335{
336    struct ath_hal_9300 *ahp = AH9300(ah);
337    ahp->try_dram = 1;
338    ahp->try_eeprom = 1;
339    ahp->try_otp = 1;
340#ifdef ATH_CAL_NAND_FLASH
341    ahp->try_nand = 1;
342#else
343    ahp->try_flash = 1;
344#endif
345    ahp->calibration_data_source = calibration_data_none;
346    ahp->calibration_data_source_address = 0;
347    ahp->calibration_data_try = calibration_data_try;
348    ahp->calibration_data_try_address = 0;
349
350    /*
351     * In case flash will be used for EEPROM. Otherwise ahp->ah_cal_mem
352     * must be set to NULL or the real EEPROM address.
353     */
354    ar9300_flash_map(ah);
355    /*
356     * ###### This function always return NO SPUR.
357     * This is not AH_TRUE for many board designs.
358     * Does anyone use this?
359     */
360    AH_PRIVATE(ah)->ah_getSpurChan = ar9300_eeprom_get_spur_chan;
361
362#ifdef OLDCODE
363    /* XXX Needs to be moved for dynamic selection */
364    ahp->ah_eeprom = *(default9300[ar9300_eeprom_template_default]);
365
366
367    if (AR_SREV_HORNET(ah)) {
368        /* Set default values for Hornet. */
369        ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
370            AR9300_OPFLAGS_11G;
371        ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
372    } else if (AR_SREV_POSEIDON(ah)) {
373        /* Set default values for Poseidon. */
374        ahp->ah_eeprom.base_eep_header.op_cap_flags.op_flags =
375            AR9300_OPFLAGS_11G;
376        ahp->ah_eeprom.base_eep_header.txrx_mask = 0x11;
377    }
378
379    if (AH_PRIVATE(ah)->ah_config.ath_hal_skip_eeprom_read) {
380        ahp->ah_emu_eeprom = 1;
381        return HAL_OK;
382    }
383
384    ahp->ah_emu_eeprom = 1;
385
386#ifdef UNUSED
387#endif
388
389    if (!ar9300_fill_eeprom(ah)) {
390        return HAL_EIO;
391    }
392
393    return HAL_OK;
394    /* return ar9300_check_eeprom(ah); */
395#else
396    ahp->ah_emu_eeprom = 1;
397
398#if 0
399/*#ifdef MDK_AP*/ /* MDK_AP is defined only in NART AP build */
400    u_int8_t buffer[10];
401    int caldata_check = 0;
402
403    ar9300_calibration_data_read_flash(
404        ah, FLASH_BASE_CALDATA_OFFSET, buffer, 4);
405    printf("flash caldata:: %x\n", buffer[0]);
406    if (buffer[0] != 0xff) {
407        caldata_check = 1;
408    }
409    if (!caldata_check) {
410        ar9300_eeprom_t *mptr;
411        int mdata_size;
412        if (AR_SREV_HORNET(ah)) {
413            /* XXX: For initial testing */
414            mptr = &ahp->ah_eeprom;
415            mdata_size = ar9300_eeprom_struct_size();
416            ahp->ah_eeprom = ar9300_template_ap121;
417            ahp->ah_emu_eeprom = 1;
418            /* need it to let art save in to flash ????? */
419            calibration_data_source = calibration_data_flash;
420        } else if (AR_SREV_WASP(ah)) {
421            /* XXX: For initial testing */
422            ath_hal_printf(ah, " wasp eep attach\n");
423            mptr = &ahp->ah_eeprom;
424            mdata_size = ar9300_eeprom_struct_size();
425            ahp->ah_eeprom = ar9300_template_generic;
426            ahp->ah_eeprom.mac_addr[0] = 0x00;
427            ahp->ah_eeprom.mac_addr[1] = 0x03;
428            ahp->ah_eeprom.mac_addr[2] = 0x7F;
429            ahp->ah_eeprom.mac_addr[3] = 0xBA;
430            ahp->ah_eeprom.mac_addr[4] = 0xD0;
431            ahp->ah_eeprom.mac_addr[5] = 0x00;
432            ahp->ah_emu_eeprom = 1;
433            ahp->ah_eeprom.base_eep_header.txrx_mask = 0x33;
434            ahp->ah_eeprom.base_eep_header.txrxgain = 0x10;
435            /* need it to let art save in to flash ????? */
436            calibration_data_source = calibration_data_flash;
437        }
438        return HAL_OK;
439    }
440#endif
441    if (AR_SREV_HORNET(ah) || AR_SREV_WASP(ah) || AR_SREV_SCORPION(ah)) {
442        ahp->try_eeprom = 0;
443    }
444
445    if (!ar9300_eeprom_restore(ah)) {
446        return HAL_EIO;
447    }
448    return HAL_OK;
449#endif
450}
451
452u_int32_t
453ar9300_eeprom_get(struct ath_hal_9300 *ahp, EEPROM_PARAM param)
454{
455    ar9300_eeprom_t *eep = &ahp->ah_eeprom;
456    OSPREY_BASE_EEP_HEADER *p_base = &eep->base_eep_header;
457    OSPREY_BASE_EXTENSION_1 *base_ext1 = &eep->base_ext1;
458
459    switch (param) {
460#ifdef NOTYET
461    case EEP_NFTHRESH_5:
462        return p_modal[0].noise_floor_thresh_ch[0];
463    case EEP_NFTHRESH_2:
464        return p_modal[1].noise_floor_thresh_ch[0];
465#endif
466    case EEP_MAC_LSW:
467        return eep->mac_addr[0] << 8 | eep->mac_addr[1];
468    case EEP_MAC_MID:
469        return eep->mac_addr[2] << 8 | eep->mac_addr[3];
470    case EEP_MAC_MSW:
471        return eep->mac_addr[4] << 8 | eep->mac_addr[5];
472    case EEP_REG_0:
473        return p_base->reg_dmn[0];
474    case EEP_REG_1:
475        return p_base->reg_dmn[1];
476    case EEP_OP_CAP:
477        return p_base->device_cap;
478    case EEP_OP_MODE:
479        return p_base->op_cap_flags.op_flags;
480    case EEP_RF_SILENT:
481        return p_base->rf_silent;
482#ifdef NOTYET
483    case EEP_OB_5:
484        return p_modal[0].ob;
485    case EEP_DB_5:
486        return p_modal[0].db;
487    case EEP_OB_2:
488        return p_modal[1].ob;
489    case EEP_DB_2:
490        return p_modal[1].db;
491    case EEP_MINOR_REV:
492        return p_base->eeprom_version & AR9300_EEP_VER_MINOR_MASK;
493#endif
494    case EEP_TX_MASK:
495        return (p_base->txrx_mask >> 4) & 0xf;
496    case EEP_RX_MASK:
497        return p_base->txrx_mask & 0xf;
498#ifdef NOTYET
499    case EEP_FSTCLK_5G:
500        return p_base->fast_clk5g;
501    case EEP_RXGAIN_TYPE:
502        return p_base->rx_gain_type;
503#endif
504    case EEP_DRIVE_STRENGTH:
505#define AR9300_EEP_BASE_DRIVE_STRENGTH    0x1
506        return p_base->misc_configuration & AR9300_EEP_BASE_DRIVE_STRENGTH;
507    case EEP_INTERNAL_REGULATOR:
508        /* Bit 4 is internal regulator flag */
509        return ((p_base->feature_enable & 0x10) >> 4);
510    case EEP_SWREG:
511        return (p_base->swreg);
512    case EEP_PAPRD_ENABLED:
513        /* Bit 5 is paprd flag */
514        return ((p_base->feature_enable & 0x20) >> 5);
515    case EEP_ANTDIV_control:
516        return (u_int32_t)(base_ext1->ant_div_control);
517    case EEP_CHAIN_MASK_REDUCE:
518        return ((p_base->misc_configuration >> 3) & 0x1);
519    case EEP_OL_PWRCTRL:
520        return 0;
521     case EEP_DEV_TYPE:
522        return p_base->device_type;
523    default:
524        HALASSERT(0);
525        return 0;
526    }
527}
528
529
530
531/******************************************************************************/
532/*!
533**  \brief EEPROM fixup code for INI values
534**
535** This routine provides a place to insert "fixup" code for specific devices
536** that need to modify INI values based on EEPROM values, BEFORE the INI values
537** are written.
538** Certain registers in the INI file can only be written once without
539** undesired side effects, and this provides a place for EEPROM overrides
540** in these cases.
541**
542** This is called at attach time once.  It should not affect run time
543** performance at all
544**
545**  \param ah       Pointer to HAL object (this)
546**  \param p_eep_data Pointer to (filled in) eeprom data structure
547**  \param reg      register being inspected on this call
548**  \param value    value in INI file
549**
550**  \return Updated value for INI file.
551*/
552u_int32_t
553ar9300_ini_fixup(struct ath_hal *ah, ar9300_eeprom_t *p_eep_data,
554    u_int32_t reg, u_int32_t value)
555{
556    HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
557        "ar9300_eeprom_def_ini_fixup: FIXME\n");
558#if 0
559    BASE_EEPDEF_HEADER  *p_base  = &(p_eep_data->base_eep_header);
560
561    switch (AH_PRIVATE(ah)->ah_devid)
562    {
563    case AR9300_DEVID_AR9300_PCI:
564        /*
565        ** Need to set the external/internal regulator bit to the proper value.
566        ** Can only write this ONCE.
567        */
568
569        if ( reg == 0x7894 )
570        {
571            /*
572            ** Check for an EEPROM data structure of "0x0b" or better
573            */
574
575            HALDEBUG(ah, HAL_DEBUG_EEPROM, "ini VAL: %x  EEPROM: %x\n",
576                     value, (p_base->version & 0xff));
577
578            if ( (p_base->version & 0xff) > 0x0a) {
579                HALDEBUG(ah, HAL_DEBUG_EEPROM,
580                    "PWDCLKIND: %d\n", p_base->pwdclkind);
581                value &= ~AR_AN_TOP2_PWDCLKIND;
582                value |=
583                    AR_AN_TOP2_PWDCLKIND &
584                    (p_base->pwdclkind <<  AR_AN_TOP2_PWDCLKIND_S);
585            } else {
586                HALDEBUG(ah, HAL_DEBUG_EEPROM, "PWDCLKIND Earlier Rev\n");
587            }
588
589            HALDEBUG(ah, HAL_DEBUG_EEPROM, "final ini VAL: %x\n", value);
590        }
591        break;
592
593    }
594
595    return (value);
596#else
597    return 0;
598#endif
599}
600
601/*
602 * Returns the interpolated y value corresponding to the specified x value
603 * from the np ordered pairs of data (px,py).
604 * The pairs do not have to be in any order.
605 * If the specified x value is less than any of the px,
606 * the returned y value is equal to the py for the lowest px.
607 * If the specified x value is greater than any of the px,
608 * the returned y value is equal to the py for the highest px.
609 */
610static int
611interpolate(int32_t x, int32_t *px, int32_t *py, u_int16_t np)
612{
613    int ip = 0;
614    int lx = 0, ly = 0, lhave = 0;
615    int hx = 0, hy = 0, hhave = 0;
616    int dx = 0;
617    int y = 0;
618    int bf, factor, plus;
619
620    lhave = 0;
621    hhave = 0;
622    /*
623     * identify best lower and higher x calibration measurement
624     */
625    for (ip = 0; ip < np; ip++) {
626        dx = x - px[ip];
627        /* this measurement is higher than our desired x */
628        if (dx <= 0) {
629            if (!hhave || dx > (x - hx)) {
630                /* new best higher x measurement */
631                hx = px[ip];
632                hy = py[ip];
633                hhave = 1;
634            }
635        }
636        /* this measurement is lower than our desired x */
637        if (dx >= 0) {
638            if (!lhave || dx < (x - lx)) {
639                /* new best lower x measurement */
640                lx = px[ip];
641                ly = py[ip];
642                lhave = 1;
643            }
644        }
645    }
646    /* the low x is good */
647    if (lhave) {
648        /* so is the high x */
649        if (hhave) {
650            /* they're the same, so just pick one */
651            if (hx == lx) {
652                y = ly;
653            } else {
654                /* interpolate with round off */
655                bf = (2 * (hy - ly) * (x - lx)) / (hx - lx);
656                plus = (bf % 2);
657                factor = bf / 2;
658                y = ly + factor + plus;
659            }
660        } else {
661            /* only low is good, use it */
662            y = ly;
663        }
664    } else if (hhave) {
665        /* only high is good, use it */
666        y = hy;
667    } else {
668        /* nothing is good,this should never happen unless np=0, ????  */
669        y = -(1 << 30);
670    }
671
672    return y;
673}
674
675u_int8_t
676ar9300_eeprom_get_legacy_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
677    u_int16_t freq, HAL_BOOL is_2ghz)
678{
679    u_int16_t            num_piers, i;
680    int32_t              target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
681    int32_t              freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
682    u_int8_t             *p_freq_bin;
683    ar9300_eeprom_t      *eep = &AH9300(ah)->ah_eeprom;
684    CAL_TARGET_POWER_LEG *p_eeprom_target_pwr;
685
686    if (is_2ghz) {
687        num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
688        p_eeprom_target_pwr = eep->cal_target_power_2g;
689        p_freq_bin = eep->cal_target_freqbin_2g;
690    } else {
691        num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
692        p_eeprom_target_pwr = eep->cal_target_power_5g;
693        p_freq_bin = eep->cal_target_freqbin_5g;
694   }
695
696    /*
697     * create array of channels and targetpower from
698     * targetpower piers stored on eeprom
699     */
700    for (i = 0; i < num_piers; i++) {
701        freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
702        target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
703    }
704
705    /* interpolate to get target power for given frequency */
706    return
707        ((u_int8_t)interpolate(
708            (int32_t)freq, freq_array, target_power_array, num_piers));
709}
710
711u_int8_t
712ar9300_eeprom_get_ht20_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
713    u_int16_t freq, HAL_BOOL is_2ghz)
714{
715    u_int16_t               num_piers, i;
716    int32_t                 target_power_array[OSPREY_NUM_5G_20_TARGET_POWERS];
717    int32_t                 freq_array[OSPREY_NUM_5G_20_TARGET_POWERS];
718    u_int8_t                *p_freq_bin;
719    ar9300_eeprom_t         *eep = &AH9300(ah)->ah_eeprom;
720    OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
721
722    if (is_2ghz) {
723        num_piers = OSPREY_NUM_2G_20_TARGET_POWERS;
724        p_eeprom_target_pwr = eep->cal_target_power_2g_ht20;
725        p_freq_bin = eep->cal_target_freqbin_2g_ht20;
726    } else {
727        num_piers = OSPREY_NUM_5G_20_TARGET_POWERS;
728        p_eeprom_target_pwr = eep->cal_target_power_5g_ht20;
729        p_freq_bin = eep->cal_target_freqbin_5g_ht20;
730    }
731
732    /*
733     * create array of channels and targetpower from
734     * targetpower piers stored on eeprom
735     */
736    for (i = 0; i < num_piers; i++) {
737        freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
738        target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
739    }
740
741    /* interpolate to get target power for given frequency */
742    return
743        ((u_int8_t)interpolate(
744            (int32_t)freq, freq_array, target_power_array, num_piers));
745}
746
747u_int8_t
748ar9300_eeprom_get_ht40_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
749    u_int16_t freq, HAL_BOOL is_2ghz)
750{
751    u_int16_t               num_piers, i;
752    int32_t                 target_power_array[OSPREY_NUM_5G_40_TARGET_POWERS];
753    int32_t                 freq_array[OSPREY_NUM_5G_40_TARGET_POWERS];
754    u_int8_t                *p_freq_bin;
755    ar9300_eeprom_t         *eep = &AH9300(ah)->ah_eeprom;
756    OSP_CAL_TARGET_POWER_HT *p_eeprom_target_pwr;
757
758    if (is_2ghz) {
759        num_piers = OSPREY_NUM_2G_40_TARGET_POWERS;
760        p_eeprom_target_pwr = eep->cal_target_power_2g_ht40;
761        p_freq_bin = eep->cal_target_freqbin_2g_ht40;
762    } else {
763        num_piers = OSPREY_NUM_5G_40_TARGET_POWERS;
764        p_eeprom_target_pwr = eep->cal_target_power_5g_ht40;
765        p_freq_bin = eep->cal_target_freqbin_5g_ht40;
766    }
767
768    /*
769     * create array of channels and targetpower from
770     * targetpower piers stored on eeprom
771     */
772    for (i = 0; i < num_piers; i++) {
773        freq_array[i] = FBIN2FREQ(p_freq_bin[i], is_2ghz);
774        target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
775    }
776
777    /* interpolate to get target power for given frequency */
778    return
779        ((u_int8_t)interpolate(
780            (int32_t)freq, freq_array, target_power_array, num_piers));
781}
782
783u_int8_t
784ar9300_eeprom_get_cck_trgt_pwr(struct ath_hal *ah, u_int16_t rate_index,
785    u_int16_t freq)
786{
787    u_int16_t            num_piers = OSPREY_NUM_2G_CCK_TARGET_POWERS, i;
788    int32_t              target_power_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
789    int32_t              freq_array[OSPREY_NUM_2G_CCK_TARGET_POWERS];
790    ar9300_eeprom_t      *eep = &AH9300(ah)->ah_eeprom;
791    u_int8_t             *p_freq_bin = eep->cal_target_freqbin_cck;
792    CAL_TARGET_POWER_LEG *p_eeprom_target_pwr = eep->cal_target_power_cck;
793
794    /*
795     * create array of channels and targetpower from
796     * targetpower piers stored on eeprom
797     */
798    for (i = 0; i < num_piers; i++) {
799        freq_array[i] = FBIN2FREQ(p_freq_bin[i], 1);
800        target_power_array[i] = p_eeprom_target_pwr[i].t_pow2x[rate_index];
801    }
802
803    /* interpolate to get target power for given frequency */
804    return
805        ((u_int8_t)interpolate(
806            (int32_t)freq, freq_array, target_power_array, num_piers));
807}
808
809/*
810 * Set tx power registers to array of values passed in
811 */
812int
813ar9300_transmit_power_reg_write(struct ath_hal *ah, u_int8_t *p_pwr_array)
814{
815#define POW_SM(_r, _s)     (((_r) & 0x3f) << (_s))
816    /* make sure forced gain is not set */
817#if 0
818    field_write("force_dac_gain", 0);
819    OS_REG_WRITE(ah, 0xa3f8, 0);
820    field_write("force_tx_gain", 0);
821#endif
822
823    OS_REG_WRITE(ah, 0xa458, 0);
824
825    /* Write the OFDM power per rate set */
826    /* 6 (LSB), 9, 12, 18 (MSB) */
827    OS_REG_WRITE(ah, 0xa3c0,
828        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
829          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 16)
830          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
831          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
832    );
833    /* 24 (LSB), 36, 48, 54 (MSB) */
834    OS_REG_WRITE(ah, 0xa3c4,
835        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_54], 24)
836          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_48], 16)
837          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_36],  8)
838          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  0)
839    );
840
841    /* Write the CCK power per rate set */
842    /* 1L (LSB), reserved, 2L, 2S (MSB) */
843    OS_REG_WRITE(ah, 0xa3c8,
844        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 24)
845          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  16)
846/*          | POW_SM(tx_power_times2,  8)*/ /* this is reserved for Osprey */
847          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],   0)
848    );
849    /* 5.5L (LSB), 5.5S, 11L, 11S (MSB) */
850    OS_REG_WRITE(ah, 0xa3cc,
851        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11S], 24)
852          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_11L], 16)
853          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_5S],  8)
854          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
855    );
856
857	/* write the power for duplicated frames - HT40 */
858	/* dup40_cck (LSB), dup40_ofdm, ext20_cck, ext20_ofdm  (MSB) */
859    OS_REG_WRITE(ah, 0xa3e0,
860        POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], 24)
861          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], 16)
862          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_6_24],  8)
863          | POW_SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L],  0)
864    );
865
866    /* Write the HT20 power per rate set */
867    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
868    OS_REG_WRITE(ah, 0xa3d0,
869        POW_SM(p_pwr_array[ALL_TARGET_HT20_5], 24)
870          | POW_SM(p_pwr_array[ALL_TARGET_HT20_4],  16)
871          | POW_SM(p_pwr_array[ALL_TARGET_HT20_1_3_9_11_17_19],  8)
872          | POW_SM(p_pwr_array[ALL_TARGET_HT20_0_8_16],   0)
873    );
874
875    /* 6 (LSB), 7, 12, 13 (MSB) */
876    OS_REG_WRITE(ah, 0xa3d4,
877        POW_SM(p_pwr_array[ALL_TARGET_HT20_13], 24)
878          | POW_SM(p_pwr_array[ALL_TARGET_HT20_12],  16)
879          | POW_SM(p_pwr_array[ALL_TARGET_HT20_7],  8)
880          | POW_SM(p_pwr_array[ALL_TARGET_HT20_6],   0)
881    );
882
883    /* 14 (LSB), 15, 20, 21 */
884    OS_REG_WRITE(ah, 0xa3e4,
885        POW_SM(p_pwr_array[ALL_TARGET_HT20_21], 24)
886          | POW_SM(p_pwr_array[ALL_TARGET_HT20_20],  16)
887          | POW_SM(p_pwr_array[ALL_TARGET_HT20_15],  8)
888          | POW_SM(p_pwr_array[ALL_TARGET_HT20_14],   0)
889    );
890
891    /* Mixed HT20 and HT40 rates */
892    /* HT20 22 (LSB), HT20 23, HT40 22, HT40 23 (MSB) */
893    OS_REG_WRITE(ah, 0xa3e8,
894        POW_SM(p_pwr_array[ALL_TARGET_HT40_23], 24)
895          | POW_SM(p_pwr_array[ALL_TARGET_HT40_22],  16)
896          | POW_SM(p_pwr_array[ALL_TARGET_HT20_23],  8)
897          | POW_SM(p_pwr_array[ALL_TARGET_HT20_22],   0)
898    );
899
900    /* Write the HT40 power per rate set */
901    /* correct PAR difference between HT40 and HT20/LEGACY */
902    /* 0/8/16 (LSB), 1-3/9-11/17-19, 4, 5 (MSB) */
903    OS_REG_WRITE(ah, 0xa3d8,
904        POW_SM(p_pwr_array[ALL_TARGET_HT40_5], 24)
905          | POW_SM(p_pwr_array[ALL_TARGET_HT40_4],  16)
906          | POW_SM(p_pwr_array[ALL_TARGET_HT40_1_3_9_11_17_19],  8)
907          | POW_SM(p_pwr_array[ALL_TARGET_HT40_0_8_16],   0)
908    );
909
910    /* 6 (LSB), 7, 12, 13 (MSB) */
911    OS_REG_WRITE(ah, 0xa3dc,
912        POW_SM(p_pwr_array[ALL_TARGET_HT40_13], 24)
913          | POW_SM(p_pwr_array[ALL_TARGET_HT40_12],  16)
914          | POW_SM(p_pwr_array[ALL_TARGET_HT40_7], 8)
915          | POW_SM(p_pwr_array[ALL_TARGET_HT40_6], 0)
916    );
917
918    /* 14 (LSB), 15, 20, 21 */
919    OS_REG_WRITE(ah, 0xa3ec,
920        POW_SM(p_pwr_array[ALL_TARGET_HT40_21], 24)
921          | POW_SM(p_pwr_array[ALL_TARGET_HT40_20],  16)
922          | POW_SM(p_pwr_array[ALL_TARGET_HT40_15],  8)
923          | POW_SM(p_pwr_array[ALL_TARGET_HT40_14],   0)
924    );
925
926    return 0;
927#undef POW_SM
928}
929
930static void
931ar9300_selfgen_tpc_reg_write(struct ath_hal *ah, const struct ieee80211_channel *chan,
932                             u_int8_t *p_pwr_array)
933{
934    u_int32_t tpc_reg_val;
935
936    /* Set the target power values for self generated frames (ACK,RTS/CTS) to
937     * be within limits. This is just a safety measure.With per packet TPC mode
938     * enabled the target power value used with self generated frames will be
939     * MIN( TPC reg, BB_powertx_rate register)
940     */
941
942    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
943        tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_ACK) |
944                       SM(p_pwr_array[ALL_TARGET_LEGACY_1L_5L], AR_TPC_CTS) |
945                       SM(0x3f, AR_TPC_CHIRP) |
946                       SM(0x3f, AR_TPC_RPT));
947    } else {
948        tpc_reg_val = (SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_ACK) |
949                       SM(p_pwr_array[ALL_TARGET_LEGACY_6_24], AR_TPC_CTS) |
950                       SM(0x3f, AR_TPC_CHIRP) |
951                       SM(0x3f, AR_TPC_RPT));
952    }
953    OS_REG_WRITE(ah, AR_TPC, tpc_reg_val);
954}
955
956void
957ar9300_set_target_power_from_eeprom(struct ath_hal *ah, u_int16_t freq,
958    u_int8_t *target_power_val_t2)
959{
960    /* hard code for now, need to get from eeprom struct */
961    u_int8_t ht40_power_inc_for_pdadc = 0;
962    HAL_BOOL  is_2ghz = 0;
963
964    if (freq < 4000) {
965        is_2ghz = 1;
966    }
967
968    target_power_val_t2[ALL_TARGET_LEGACY_6_24] =
969        ar9300_eeprom_get_legacy_trgt_pwr(
970            ah, LEGACY_TARGET_RATE_6_24, freq, is_2ghz);
971    target_power_val_t2[ALL_TARGET_LEGACY_36] =
972        ar9300_eeprom_get_legacy_trgt_pwr(
973            ah, LEGACY_TARGET_RATE_36, freq, is_2ghz);
974    target_power_val_t2[ALL_TARGET_LEGACY_48] =
975        ar9300_eeprom_get_legacy_trgt_pwr(
976            ah, LEGACY_TARGET_RATE_48, freq, is_2ghz);
977    target_power_val_t2[ALL_TARGET_LEGACY_54] =
978        ar9300_eeprom_get_legacy_trgt_pwr(
979            ah, LEGACY_TARGET_RATE_54, freq, is_2ghz);
980    target_power_val_t2[ALL_TARGET_LEGACY_1L_5L] =
981        ar9300_eeprom_get_cck_trgt_pwr(
982            ah, LEGACY_TARGET_RATE_1L_5L, freq);
983    target_power_val_t2[ALL_TARGET_LEGACY_5S] =
984        ar9300_eeprom_get_cck_trgt_pwr(
985            ah, LEGACY_TARGET_RATE_5S, freq);
986    target_power_val_t2[ALL_TARGET_LEGACY_11L] =
987        ar9300_eeprom_get_cck_trgt_pwr(
988            ah, LEGACY_TARGET_RATE_11L, freq);
989    target_power_val_t2[ALL_TARGET_LEGACY_11S] =
990        ar9300_eeprom_get_cck_trgt_pwr(
991            ah, LEGACY_TARGET_RATE_11S, freq);
992    target_power_val_t2[ALL_TARGET_HT20_0_8_16] =
993        ar9300_eeprom_get_ht20_trgt_pwr(
994            ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz);
995    target_power_val_t2[ALL_TARGET_HT20_1_3_9_11_17_19] =
996        ar9300_eeprom_get_ht20_trgt_pwr(
997            ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz);
998    target_power_val_t2[ALL_TARGET_HT20_4] =
999        ar9300_eeprom_get_ht20_trgt_pwr(
1000            ah, HT_TARGET_RATE_4, freq, is_2ghz);
1001    target_power_val_t2[ALL_TARGET_HT20_5] =
1002        ar9300_eeprom_get_ht20_trgt_pwr(
1003            ah, HT_TARGET_RATE_5, freq, is_2ghz);
1004    target_power_val_t2[ALL_TARGET_HT20_6] =
1005        ar9300_eeprom_get_ht20_trgt_pwr(
1006            ah, HT_TARGET_RATE_6, freq, is_2ghz);
1007    target_power_val_t2[ALL_TARGET_HT20_7] =
1008        ar9300_eeprom_get_ht20_trgt_pwr(
1009            ah, HT_TARGET_RATE_7, freq, is_2ghz);
1010    target_power_val_t2[ALL_TARGET_HT20_12] =
1011        ar9300_eeprom_get_ht20_trgt_pwr(
1012            ah, HT_TARGET_RATE_12, freq, is_2ghz);
1013    target_power_val_t2[ALL_TARGET_HT20_13] =
1014        ar9300_eeprom_get_ht20_trgt_pwr(
1015            ah, HT_TARGET_RATE_13, freq, is_2ghz);
1016    target_power_val_t2[ALL_TARGET_HT20_14] =
1017        ar9300_eeprom_get_ht20_trgt_pwr(
1018            ah, HT_TARGET_RATE_14, freq, is_2ghz);
1019    target_power_val_t2[ALL_TARGET_HT20_15] =
1020        ar9300_eeprom_get_ht20_trgt_pwr(
1021            ah, HT_TARGET_RATE_15, freq, is_2ghz);
1022    target_power_val_t2[ALL_TARGET_HT20_20] =
1023        ar9300_eeprom_get_ht20_trgt_pwr(
1024            ah, HT_TARGET_RATE_20, freq, is_2ghz);
1025    target_power_val_t2[ALL_TARGET_HT20_21] =
1026        ar9300_eeprom_get_ht20_trgt_pwr(
1027            ah, HT_TARGET_RATE_21, freq, is_2ghz);
1028    target_power_val_t2[ALL_TARGET_HT20_22] =
1029        ar9300_eeprom_get_ht20_trgt_pwr(
1030            ah, HT_TARGET_RATE_22, freq, is_2ghz);
1031    target_power_val_t2[ALL_TARGET_HT20_23] =
1032        ar9300_eeprom_get_ht20_trgt_pwr(
1033            ah, HT_TARGET_RATE_23, freq, is_2ghz);
1034    target_power_val_t2[ALL_TARGET_HT40_0_8_16] =
1035        ar9300_eeprom_get_ht40_trgt_pwr(
1036            ah, HT_TARGET_RATE_0_8_16, freq, is_2ghz) +
1037        ht40_power_inc_for_pdadc;
1038    target_power_val_t2[ALL_TARGET_HT40_1_3_9_11_17_19] =
1039        ar9300_eeprom_get_ht40_trgt_pwr(
1040            ah, HT_TARGET_RATE_1_3_9_11_17_19, freq, is_2ghz) +
1041        ht40_power_inc_for_pdadc;
1042    target_power_val_t2[ALL_TARGET_HT40_4] =
1043        ar9300_eeprom_get_ht40_trgt_pwr(
1044            ah, HT_TARGET_RATE_4, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1045    target_power_val_t2[ALL_TARGET_HT40_5] =
1046        ar9300_eeprom_get_ht40_trgt_pwr(
1047            ah, HT_TARGET_RATE_5, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1048    target_power_val_t2[ALL_TARGET_HT40_6] =
1049        ar9300_eeprom_get_ht40_trgt_pwr(
1050            ah, HT_TARGET_RATE_6, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1051    target_power_val_t2[ALL_TARGET_HT40_7] =
1052        ar9300_eeprom_get_ht40_trgt_pwr(
1053            ah, HT_TARGET_RATE_7, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1054    target_power_val_t2[ALL_TARGET_HT40_12] =
1055        ar9300_eeprom_get_ht40_trgt_pwr(
1056            ah, HT_TARGET_RATE_12, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1057    target_power_val_t2[ALL_TARGET_HT40_13] =
1058        ar9300_eeprom_get_ht40_trgt_pwr(
1059            ah, HT_TARGET_RATE_13, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1060    target_power_val_t2[ALL_TARGET_HT40_14] =
1061        ar9300_eeprom_get_ht40_trgt_pwr(
1062            ah, HT_TARGET_RATE_14, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1063    target_power_val_t2[ALL_TARGET_HT40_15] =
1064        ar9300_eeprom_get_ht40_trgt_pwr(
1065            ah, HT_TARGET_RATE_15, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1066    target_power_val_t2[ALL_TARGET_HT40_20] =
1067        ar9300_eeprom_get_ht40_trgt_pwr(
1068            ah, HT_TARGET_RATE_20, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1069    target_power_val_t2[ALL_TARGET_HT40_21] =
1070        ar9300_eeprom_get_ht40_trgt_pwr(
1071            ah, HT_TARGET_RATE_21, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1072    target_power_val_t2[ALL_TARGET_HT40_22] =
1073        ar9300_eeprom_get_ht40_trgt_pwr(
1074            ah, HT_TARGET_RATE_22, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1075    target_power_val_t2[ALL_TARGET_HT40_23] =
1076        ar9300_eeprom_get_ht40_trgt_pwr(
1077            ah, HT_TARGET_RATE_23, freq, is_2ghz) + ht40_power_inc_for_pdadc;
1078
1079#ifdef AH_DEBUG
1080    {
1081        int  i = 0;
1082
1083        HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: APPLYING TARGET POWERS\n", __func__);
1084        while (i < ar9300_rate_size) {
1085            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
1086                     __func__, i, target_power_val_t2[i]);
1087            i++;
1088			if (i == ar9300_rate_size) {
1089                break;
1090			}
1091            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
1092                     __func__, i, target_power_val_t2[i]);
1093            i++;
1094			if (i == ar9300_rate_size) {
1095                break;
1096			}
1097            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x ",
1098                     __func__, i, target_power_val_t2[i]);
1099            i++;
1100			if (i == ar9300_rate_size) {
1101                break;
1102			}
1103            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: TPC[%02d] 0x%08x \n",
1104                     __func__, i, target_power_val_t2[i]);
1105            i++;
1106        }
1107    }
1108#endif
1109}
1110
1111u_int16_t *ar9300_regulatory_domain_get(struct ath_hal *ah)
1112{
1113    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1114    return eep->base_eep_header.reg_dmn;
1115}
1116
1117
1118int32_t
1119ar9300_eeprom_write_enable_gpio_get(struct ath_hal *ah)
1120{
1121    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1122    return eep->base_eep_header.eeprom_write_enable_gpio;
1123}
1124
1125int32_t
1126ar9300_wlan_disable_gpio_get(struct ath_hal *ah)
1127{
1128    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1129    return eep->base_eep_header.wlan_disable_gpio;
1130}
1131
1132int32_t
1133ar9300_wlan_led_gpio_get(struct ath_hal *ah)
1134{
1135    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1136    return eep->base_eep_header.wlan_led_gpio;
1137}
1138
1139int32_t
1140ar9300_rx_band_select_gpio_get(struct ath_hal *ah)
1141{
1142    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1143    return eep->base_eep_header.rx_band_select_gpio;
1144}
1145
1146/*
1147 * since valid noise floor values are negative, returns 1 on error
1148 */
1149int32_t
1150ar9300_noise_floor_cal_or_power_get(struct ath_hal *ah, int32_t frequency,
1151    int32_t ichain, HAL_BOOL use_cal)
1152{
1153    int     nf_use = 1; /* start with an error return value */
1154    int32_t fx[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
1155    int32_t nf[OSPREY_NUM_5G_CAL_PIERS + OSPREY_NUM_2G_CAL_PIERS];
1156    int     nnf;
1157    int     is_2ghz;
1158    int     ipier, npier;
1159    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1160    u_int8_t        *p_cal_pier;
1161    OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
1162
1163    /*
1164     * check chain value
1165     */
1166    if (ichain < 0 || ichain >= OSPREY_MAX_CHAINS) {
1167        return 1;
1168    }
1169
1170    /* figure out which band we're using */
1171    is_2ghz = (frequency < 4000);
1172    if (is_2ghz) {
1173        npier = OSPREY_NUM_2G_CAL_PIERS;
1174        p_cal_pier = eep->cal_freq_pier_2g;
1175        p_cal_pier_struct = eep->cal_pier_data_2g[ichain];
1176    } else {
1177        npier = OSPREY_NUM_5G_CAL_PIERS;
1178        p_cal_pier = eep->cal_freq_pier_5g;
1179        p_cal_pier_struct = eep->cal_pier_data_5g[ichain];
1180    }
1181    /* look for valid noise floor values */
1182    nnf = 0;
1183    for (ipier = 0; ipier < npier; ipier++) {
1184        fx[nnf] = FBIN2FREQ(p_cal_pier[ipier], is_2ghz);
1185        nf[nnf] = use_cal ?
1186            p_cal_pier_struct[ipier].rx_noisefloor_cal :
1187            p_cal_pier_struct[ipier].rx_noisefloor_power;
1188        if (nf[nnf] < 0) {
1189            nnf++;
1190        }
1191    }
1192    /*
1193     * If we have some valid values, interpolate to find the value
1194     * at the desired frequency.
1195     */
1196    if (nnf > 0) {
1197        nf_use = interpolate(frequency, fx, nf, nnf);
1198    }
1199
1200    return nf_use;
1201}
1202
1203int32_t ar9300_rx_gain_index_get(struct ath_hal *ah)
1204{
1205    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1206
1207    return (eep->base_eep_header.txrxgain) & 0xf;        /* bits 3:0 */
1208}
1209
1210
1211int32_t ar9300_tx_gain_index_get(struct ath_hal *ah)
1212{
1213    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1214
1215    return (eep->base_eep_header.txrxgain >> 4) & 0xf;    /* bits 7:4 */
1216}
1217
1218HAL_BOOL ar9300_internal_regulator_apply(struct ath_hal *ah)
1219{
1220    struct ath_hal_9300 *ahp = AH9300(ah);
1221    int internal_regulator = ar9300_eeprom_get(ahp, EEP_INTERNAL_REGULATOR);
1222    int reg_pmu1, reg_pmu2, reg_pmu1_set, reg_pmu2_set;
1223    u_int32_t reg_PMU1, reg_PMU2;
1224    unsigned long eep_addr;
1225    u_int32_t reg_val, reg_usb = 0, reg_pmu = 0;
1226    int usb_valid = 0, pmu_valid = 0;
1227    unsigned char pmu_refv;
1228
1229    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1230        reg_PMU1 = AR_PHY_PMU1_JUPITER;
1231        reg_PMU2 = AR_PHY_PMU2_JUPITER;
1232    }
1233    else {
1234        reg_PMU1 = AR_PHY_PMU1;
1235        reg_PMU2 = AR_PHY_PMU2;
1236    }
1237
1238    if (internal_regulator) {
1239        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
1240            if (AR_SREV_HORNET(ah)) {
1241                /* Read OTP first */
1242                for (eep_addr = 0x14; ; eep_addr -= 0x10) {
1243
1244                    ar9300_otp_read(ah, eep_addr / 4, &reg_val, 1);
1245
1246                    if ((reg_val & 0x80) == 0x80){
1247                        usb_valid = 1;
1248                        reg_usb = reg_val & 0x000000ff;
1249                    }
1250
1251                    if ((reg_val & 0x80000000) == 0x80000000){
1252                        pmu_valid = 1;
1253                        reg_pmu = (reg_val & 0xff000000) >> 24;
1254                    }
1255
1256                    if (eep_addr == 0x4) {
1257                        break;
1258                    }
1259                }
1260
1261                if (pmu_valid) {
1262                    pmu_refv = reg_pmu & 0xf;
1263                } else {
1264                    pmu_refv = 0x8;
1265                }
1266
1267                /*
1268                 * If (valid) {
1269                 *   Usb_phy_ctrl2_tx_cal_en -> 0
1270                 *   Usb_phy_ctrl2_tx_cal_sel -> 0
1271                 *   Usb_phy_ctrl2_tx_man_cal -> 0, 1, 3, 7 or 15 from OTP
1272                 * }
1273                 */
1274                if (usb_valid) {
1275                    OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_EN, 0x0);
1276                    OS_REG_RMW_FIELD(ah, 0x16c88, AR_PHY_CTRL2_TX_CAL_SEL, 0x0);
1277                    OS_REG_RMW_FIELD(ah, 0x16c88,
1278                        AR_PHY_CTRL2_TX_MAN_CAL, (reg_usb & 0xf));
1279                }
1280
1281            } else {
1282                pmu_refv = 0x8;
1283            }
1284            /*#ifndef USE_HIF*/
1285            /* Follow the MDK settings for Hornet PMU.
1286             * my $pwd               = 0x0;
1287             * my $Nfdiv             = 0x3;  # xtal_freq = 25MHz
1288             * my $Nfdiv             = 0x4;  # xtal_freq = 40MHz
1289             * my $Refv              = 0x7;  # 0x5:1.22V; 0x8:1.29V
1290             * my $Gm1               = 0x3;  #Poseidon $Gm1=1
1291             * my $classb            = 0x0;
1292             * my $Cc                = 0x1;  #Poseidon $Cc=7
1293             * my $Rc                = 0x6;
1294             * my $ramp_slope        = 0x1;
1295             * my $Segm              = 0x3;
1296             * my $use_local_osc     = 0x0;
1297             * my $force_xosc_stable = 0x0;
1298             * my $Selfb             = 0x0;  #Poseidon $Selfb=1
1299             * my $Filterfb          = 0x3;  #Poseidon $Filterfb=0
1300             * my $Filtervc          = 0x0;
1301             * my $disc              = 0x0;
1302             * my $discdel           = 0x4;
1303             * my $spare             = 0x0;
1304             * $reg_PMU1 =
1305             *     $pwd | ($Nfdiv<<1) | ($Refv<<4) | ($Gm1<<8) |
1306             *     ($classb<<11) | ($Cc<<14) | ($Rc<<17) | ($ramp_slope<<20) |
1307             *     ($Segm<<24) | ($use_local_osc<<26) |
1308             *     ($force_xosc_stable<<27) | ($Selfb<<28) | ($Filterfb<<29);
1309             * $reg_PMU2 = $handle->reg_rd("ch0_PMU2");
1310             * $reg_PMU2 = ($reg_PMU2 & 0xfe3fffff) | ($Filtervc<<22);
1311             * $reg_PMU2 = ($reg_PMU2 & 0xe3ffffff) | ($discdel<<26);
1312             * $reg_PMU2 = ($reg_PMU2 & 0x1fffffff) | ($spare<<29);
1313             */
1314            if (ahp->clk_25mhz) {
1315                reg_pmu1_set = 0 |
1316                    (3 <<  1) | (pmu_refv << 4) | (3 <<  8) | (0 << 11) |
1317                    (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
1318                    (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29);
1319            } else {
1320                if (AR_SREV_POSEIDON(ah)) {
1321                    reg_pmu1_set = 0 |
1322                        (5 <<  1) | (7 <<  4) | (2 <<  8) | (0 << 11) |
1323                        (2 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
1324                        (0 << 26) | (0 << 27) | (1 << 28) | (0 << 29) ;
1325                } else {
1326                    reg_pmu1_set = 0 |
1327                        (4 <<  1) | (7 <<  4) | (3 <<  8) | (0 << 11) |
1328                        (1 << 14) | (6 << 17) | (1 << 20) | (3 << 24) |
1329                        (0 << 26) | (0 << 27) | (0 << 28) | (0 << 29) ;
1330                }
1331            }
1332            OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
1333
1334            OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set);   /* 0x638c8376 */
1335            reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
1336            while (reg_pmu1 != reg_pmu1_set) {
1337                OS_REG_WRITE(ah, reg_PMU1, reg_pmu1_set);  /* 0x638c8376 */
1338                OS_DELAY(10);
1339                reg_pmu1 = OS_REG_READ(ah, reg_PMU1);
1340            }
1341
1342            reg_pmu2_set =
1343                 (OS_REG_READ(ah, reg_PMU2) & (~0xFFC00000)) | (4 << 26);
1344            OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1345            reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1346            while (reg_pmu2 != reg_pmu2_set) {
1347                OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1348                OS_DELAY(10);
1349                reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1350            }
1351            reg_pmu2_set =
1352                 (OS_REG_READ(ah, reg_PMU2) & (~0x00200000)) | (1 << 21);
1353            OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1354            reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1355            while (reg_pmu2 != reg_pmu2_set) {
1356                OS_REG_WRITE(ah, reg_PMU2, reg_pmu2_set);
1357                OS_DELAY(10);
1358                reg_pmu2 = OS_REG_READ(ah, reg_PMU2);
1359            }
1360            /*#endif*/
1361        } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1362            /* Internal regulator is ON. Write swreg register. */
1363            int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
1364            OS_REG_WRITE(ah, reg_PMU1, swreg);
1365        } else {
1366            /* Internal regulator is ON. Write swreg register. */
1367            int swreg = ar9300_eeprom_get(ahp, EEP_SWREG);
1368            OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
1369                         OS_REG_READ(ah, AR_RTC_REG_CONTROL1) &
1370                         (~AR_RTC_REG_CONTROL1_SWREG_PROGRAM));
1371            OS_REG_WRITE(ah, AR_RTC_REG_CONTROL0, swreg);
1372            /* Set REG_CONTROL1.SWREG_PROGRAM */
1373            OS_REG_WRITE(ah, AR_RTC_REG_CONTROL1,
1374                OS_REG_READ(ah, AR_RTC_REG_CONTROL1) |
1375                AR_RTC_REG_CONTROL1_SWREG_PROGRAM);
1376        }
1377    } else {
1378        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
1379            OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x0);
1380            reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1381            while (reg_pmu2) {
1382                OS_DELAY(10);
1383                reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1384            }
1385            OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
1386            reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
1387            while (!reg_pmu1) {
1388                OS_DELAY(10);
1389                reg_pmu1 = OS_REG_READ_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD);
1390            }
1391            OS_REG_RMW_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM, 0x1);
1392            reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1393            while (!reg_pmu2) {
1394                OS_DELAY(10);
1395                reg_pmu2 = OS_REG_READ_FIELD(ah, reg_PMU2, AR_PHY_PMU2_PGM);
1396            }
1397        } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1398            OS_REG_RMW_FIELD(ah, reg_PMU1, AR_PHY_PMU1_PWD, 0x1);
1399        } else {
1400            OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK,
1401                (OS_REG_READ(ah, AR_RTC_SLEEP_CLK) |
1402                AR_RTC_FORCE_SWREG_PRD | AR_RTC_PCIE_RST_PWDN_EN));
1403        }
1404    }
1405
1406    return 0;
1407}
1408
1409HAL_BOOL ar9300_drive_strength_apply(struct ath_hal *ah)
1410{
1411    struct ath_hal_9300 *ahp = AH9300(ah);
1412    int drive_strength;
1413    unsigned long reg;
1414
1415    drive_strength = ar9300_eeprom_get(ahp, EEP_DRIVE_STRENGTH);
1416    if (drive_strength) {
1417        reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS1);
1418        reg &= ~0x00ffffc0;
1419        reg |= 0x5 << 21;
1420        reg |= 0x5 << 18;
1421        reg |= 0x5 << 15;
1422        reg |= 0x5 << 12;
1423        reg |= 0x5 << 9;
1424        reg |= 0x5 << 6;
1425        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS1, reg);
1426
1427        reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS2);
1428        reg &= ~0xffffffe0;
1429        reg |= 0x5 << 29;
1430        reg |= 0x5 << 26;
1431        reg |= 0x5 << 23;
1432        reg |= 0x5 << 20;
1433        reg |= 0x5 << 17;
1434        reg |= 0x5 << 14;
1435        reg |= 0x5 << 11;
1436        reg |= 0x5 << 8;
1437        reg |= 0x5 << 5;
1438        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS2, reg);
1439
1440        reg = OS_REG_READ(ah, AR_PHY_65NM_CH0_BIAS4);
1441        reg &= ~0xff800000;
1442        reg |= 0x5 << 29;
1443        reg |= 0x5 << 26;
1444        reg |= 0x5 << 23;
1445        OS_REG_WRITE(ah, AR_PHY_65NM_CH0_BIAS4, reg);
1446    }
1447    return 0;
1448}
1449
1450int32_t ar9300_xpa_bias_level_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1451{
1452    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1453    if (is_2ghz) {
1454        return eep->modal_header_2g.xpa_bias_lvl;
1455    } else {
1456        return eep->modal_header_5g.xpa_bias_lvl;
1457    }
1458}
1459
1460HAL_BOOL ar9300_xpa_bias_level_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
1461{
1462    /*
1463     * In ar9330 emu, we can't access radio registers,
1464     * merlin is used for radio part.
1465     */
1466    int bias;
1467    bias = ar9300_xpa_bias_level_get(ah, is_2ghz);
1468
1469    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah)) {
1470        OS_REG_RMW_FIELD(ah,
1471            AR_HORNET_CH0_TOP2, AR_HORNET_CH0_TOP2_XPABIASLVL, bias);
1472    } else if (AR_SREV_SCORPION(ah)) {
1473        OS_REG_RMW_FIELD(ah,
1474            AR_SCORPION_CH0_TOP, AR_SCORPION_CH0_TOP_XPABIASLVL, bias);
1475    } else if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1476        OS_REG_RMW_FIELD(ah,
1477            AR_PHY_65NM_CH0_TOP_JUPITER, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
1478    } else {
1479        OS_REG_RMW_FIELD(ah,
1480            AR_PHY_65NM_CH0_TOP, AR_PHY_65NM_CH0_TOP_XPABIASLVL, bias);
1481        OS_REG_RMW_FIELD(ah,
1482            AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPABIASLVL_MSB,
1483            bias >> 2);
1484        OS_REG_RMW_FIELD(ah,
1485            AR_PHY_65NM_CH0_THERM, AR_PHY_65NM_CH0_THERM_XPASHORT2GND, 1);
1486    }
1487    return 0;
1488}
1489
1490u_int32_t ar9300_ant_ctrl_common_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1491{
1492    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1493    if (is_2ghz) {
1494        return eep->modal_header_2g.ant_ctrl_common;
1495    } else {
1496        return eep->modal_header_5g.ant_ctrl_common;
1497    }
1498}
1499static u_int16_t
1500ar9300_switch_com_spdt_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1501{
1502    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1503    if (is_2ghz) {
1504        return eep->modal_header_2g.switchcomspdt;
1505    } else {
1506        return eep->modal_header_5g.switchcomspdt;
1507    }
1508}
1509u_int32_t ar9300_ant_ctrl_common2_get(struct ath_hal *ah, HAL_BOOL is_2ghz)
1510{
1511    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1512    if (is_2ghz) {
1513        return eep->modal_header_2g.ant_ctrl_common2;
1514    } else {
1515        return eep->modal_header_5g.ant_ctrl_common2;
1516    }
1517}
1518
1519u_int16_t ar9300_ant_ctrl_chain_get(struct ath_hal *ah, int chain,
1520    HAL_BOOL is_2ghz)
1521{
1522    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1523    if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
1524        if (is_2ghz) {
1525            return eep->modal_header_2g.ant_ctrl_chain[chain];
1526        } else {
1527            return eep->modal_header_5g.ant_ctrl_chain[chain];
1528        }
1529    }
1530    return 0;
1531}
1532
1533HAL_BOOL ar9300_ant_ctrl_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
1534{
1535    u_int32_t value;
1536    struct ath_hal_9300 *ahp = AH9300(ah);
1537    u_int32_t regval;
1538    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
1539#if ATH_ANT_DIV_COMB
1540    HAL_CAPABILITIES *pcap = &ahpriv->ah_caps;
1541#endif  /* ATH_ANT_DIV_COMB */
1542    u_int32_t xlan_gpio_cfg;
1543    u_int8_t  i;
1544
1545    if (AR_SREV_POSEIDON(ah)) {
1546        xlan_gpio_cfg = ah->ah_config.ath_hal_ext_lna_ctl_gpio;
1547        if (xlan_gpio_cfg) {
1548            for (i = 0; i < 32; i++) {
1549                if (xlan_gpio_cfg & (1 << i)) {
1550                    ath_hal_gpioCfgOutput(ah, i,
1551                        HAL_GPIO_OUTPUT_MUX_PCIE_ATTENTION_LED);
1552                }
1553            }
1554        }
1555    }
1556#define AR_SWITCH_TABLE_COM_ALL (0xffff)
1557#define AR_SWITCH_TABLE_COM_ALL_S (0)
1558#define AR_SWITCH_TABLE_COM_JUPITER_ALL (0xffffff)
1559#define AR_SWITCH_TABLE_COM_JUPITER_ALL_S (0)
1560#define AR_SWITCH_TABLE_COM_SCORPION_ALL (0xffffff)
1561#define AR_SWITCH_TABLE_COM_SCORPION_ALL_S (0)
1562#define AR_SWITCH_TABLE_COM_SPDT (0x00f00000)
1563    value = ar9300_ant_ctrl_common_get(ah, is_2ghz);
1564    if (AR_SREV_JUPITER(ah) || AR_SREV_APHRODITE(ah)) {
1565        if (AR_SREV_JUPITER_10(ah)) {
1566            /* Force SPDT setting for Jupiter 1.0 chips. */
1567            value &= ~AR_SWITCH_TABLE_COM_SPDT;
1568            value |= 0x00100000;
1569        }
1570        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1571            AR_SWITCH_TABLE_COM_JUPITER_ALL, value);
1572    }
1573    else if (AR_SREV_SCORPION(ah)) {
1574        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1575            AR_SWITCH_TABLE_COM_SCORPION_ALL, value);
1576    }
1577    else {
1578        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM,
1579            AR_SWITCH_TABLE_COM_ALL, value);
1580    }
1581/*
1582*   Jupiter2.0 defines new switch table for BT/WLAN,
1583*	here's new field name in WB222.ref for both 2G and 5G.
1584*   Register: [GLB_CONTROL] GLB_CONTROL (@0x20044)
1585*   15:12	R/W	SWITCH_TABLE_COM_SPDT_WLAN_RX	SWITCH_TABLE_COM_SPDT_WLAN_RX
1586*   11:8	R/W	SWITCH_TABLE_COM_SPDT_WLAN_TX	SWITCH_TABLE_COM_SPDT_WLAN_TX
1587*   7:4	R/W	SWITCH_TABLE_COM_SPDT_WLAN_IDLE	SWITCH_TABLE_COM_SPDT_WLAN_IDLE
1588*/
1589#define AR_SWITCH_TABLE_COM_SPDT_ALL (0x0000fff0)
1590#define AR_SWITCH_TABLE_COM_SPDT_ALL_S (4)
1591    if (AR_SREV_JUPITER_20_OR_LATER(ah) || AR_SREV_APHRODITE(ah)) {
1592        value = ar9300_switch_com_spdt_get(ah, is_2ghz);
1593        OS_REG_RMW_FIELD(ah, AR_GLB_CONTROL,
1594            AR_SWITCH_TABLE_COM_SPDT_ALL, value);
1595
1596        OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
1597            AR_BTCOEX_CTRL_SPDT_ENABLE);
1598        //OS_REG_SET_BIT(ah, AR_GLB_CONTROL,
1599        //    AR_BTCOEX_CTRL_BT_OWN_SPDT_CTRL);
1600    }
1601
1602#define AR_SWITCH_TABLE_COM2_ALL (0xffffff)
1603#define AR_SWITCH_TABLE_COM2_ALL_S (0)
1604    value = ar9300_ant_ctrl_common2_get(ah, is_2ghz);
1605#if ATH_ANT_DIV_COMB
1606    if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
1607        value &= ~AR_SWITCH_TABLE_COM2_ALL;
1608        value |= ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable;
1609    }
1610#endif  /* ATH_ANT_DIV_COMB */
1611    OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL, value);
1612
1613#define AR_SWITCH_TABLE_ALL (0xfff)
1614#define AR_SWITCH_TABLE_ALL_S (0)
1615    value = ar9300_ant_ctrl_chain_get(ah, 0, is_2ghz);
1616    OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_0, AR_SWITCH_TABLE_ALL, value);
1617
1618    if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah) && !AR_SREV_APHRODITE(ah)) {
1619        value = ar9300_ant_ctrl_chain_get(ah, 1, is_2ghz);
1620        OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_CHAIN_1, AR_SWITCH_TABLE_ALL, value);
1621
1622        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
1623            value = ar9300_ant_ctrl_chain_get(ah, 2, is_2ghz);
1624            OS_REG_RMW_FIELD(ah,
1625                AR_PHY_SWITCH_CHAIN_2, AR_SWITCH_TABLE_ALL, value);
1626        }
1627    }
1628    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah)) {
1629        value = ar9300_eeprom_get(ahp, EEP_ANTDIV_control);
1630        /* main_lnaconf, alt_lnaconf, main_tb, alt_tb */
1631        regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1632        regval &= (~ANT_DIV_CONTROL_ALL); /* clear bit 25~30 */
1633        regval |= (value & 0x3f) << ANT_DIV_CONTROL_ALL_S;
1634        /* enable_lnadiv */
1635        regval &= (~MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__MASK);
1636        regval |= ((value >> 6) & 0x1) <<
1637                  MULTICHAIN_GAIN_CTRL__ENABLE_ANT_DIV_LNADIV__SHIFT;
1638#if ATH_ANT_DIV_COMB
1639        if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
1640            regval |= ANT_DIV_ENABLE;
1641        }
1642#endif  /* ATH_ANT_DIV_COMB */
1643        OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
1644
1645        /* enable fast_div */
1646        regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
1647        regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
1648        regval |= ((value >> 7) & 0x1) <<
1649                  BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__SHIFT;
1650#if ATH_ANT_DIV_COMB
1651        if ( AR_SREV_POSEIDON(ah) && (ahp->ah_lna_div_use_bt_ant_enable == TRUE) ) {
1652            regval |= FAST_DIV_ENABLE;
1653        }
1654#endif  /* ATH_ANT_DIV_COMB */
1655        OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
1656    }
1657
1658#if ATH_ANT_DIV_COMB
1659    if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON_11_OR_LATER(ah)) {
1660        if (pcap->halAntDivCombSupport) {
1661            /* If support DivComb, set MAIN to LNA1, ALT to LNA2 at beginning */
1662            regval = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1663            /* clear bit 25~30 main_lnaconf, alt_lnaconf, main_tb, alt_tb */
1664            regval &= (~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
1665                         MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
1666                         MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK |
1667                         MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK));
1668            regval |= (HAL_ANT_DIV_COMB_LNA1 <<
1669                       MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
1670            regval |= (HAL_ANT_DIV_COMB_LNA2 <<
1671                       MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
1672            OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, regval);
1673        }
1674
1675    }
1676#endif /* ATH_ANT_DIV_COMB */
1677    if (AR_SREV_POSEIDON(ah) && ( ahp->ah_diversity_control == HAL_ANT_FIXED_A
1678	     || ahp->ah_diversity_control == HAL_ANT_FIXED_B))
1679    {
1680        u_int32_t reg_val = OS_REG_READ(ah, AR_PHY_MC_GAIN_CTRL);
1681        reg_val &=  ~(MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__MASK |
1682                    MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__MASK |
1683                    MULTICHAIN_GAIN_CTRL__ANT_FAST_DIV_BIAS__MASK |
1684    		        MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_GAINTB__MASK |
1685    		        MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_GAINTB__MASK );
1686
1687        switch (ahp->ah_diversity_control) {
1688        case HAL_ANT_FIXED_A:
1689            /* Enable first antenna only */
1690            reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
1691                       MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
1692            reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
1693                       MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
1694            /* main/alt gain table and Fast Div Bias all set to 0 */
1695            OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
1696            regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
1697            regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
1698            OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
1699            break;
1700        case HAL_ANT_FIXED_B:
1701            /* Enable second antenna only, after checking capability */
1702            reg_val |= (HAL_ANT_DIV_COMB_LNA2 <<
1703                       MULTICHAIN_GAIN_CTRL__ANT_DIV_MAIN_LNACONF__SHIFT);
1704            reg_val |= (HAL_ANT_DIV_COMB_LNA1 <<
1705                       MULTICHAIN_GAIN_CTRL__ANT_DIV_ALT_LNACONF__SHIFT);
1706            /* main/alt gain table and Fast Div all set to 0 */
1707            OS_REG_WRITE(ah, AR_PHY_MC_GAIN_CTRL, reg_val);
1708            regval = OS_REG_READ(ah, AR_PHY_CCK_DETECT);
1709            regval &= (~BBB_SIG_DETECT__ENABLE_ANT_FAST_DIV__MASK);
1710            OS_REG_WRITE(ah, AR_PHY_CCK_DETECT, regval);
1711            /* For WB225, need to swith ANT2 from BT to Wifi
1712             * This will not affect HB125 LNA diversity feature.
1713             */
1714            OS_REG_RMW_FIELD(ah, AR_PHY_SWITCH_COM_2, AR_SWITCH_TABLE_COM2_ALL,
1715                ah->ah_config.ath_hal_ant_ctrl_comm2g_switch_enable);
1716            break;
1717        default:
1718            break;
1719        }
1720    }
1721    return 0;
1722}
1723
1724static u_int16_t
1725ar9300_attenuation_chain_get(struct ath_hal *ah, int chain, u_int16_t channel)
1726{
1727    int32_t f[3], t[3];
1728    u_int16_t value;
1729    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1730    if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
1731        if (channel < 4000) {
1732            return eep->modal_header_2g.xatten1_db[chain];
1733        } else {
1734            if (eep->base_ext2.xatten1_db_low[chain] != 0) {
1735                t[0] = eep->base_ext2.xatten1_db_low[chain];
1736                f[0] = 5180;
1737                t[1] = eep->modal_header_5g.xatten1_db[chain];
1738                f[1] = 5500;
1739                t[2] = eep->base_ext2.xatten1_db_high[chain];
1740                f[2] = 5785;
1741                value = interpolate(channel, f, t, 3);
1742                return value;
1743            } else {
1744                return eep->modal_header_5g.xatten1_db[chain];
1745            }
1746        }
1747    }
1748    return 0;
1749}
1750
1751static u_int16_t
1752ar9300_attenuation_margin_chain_get(struct ath_hal *ah, int chain,
1753    u_int16_t channel)
1754{
1755    int32_t f[3], t[3];
1756    u_int16_t value;
1757    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1758    if (chain >= 0 && chain < OSPREY_MAX_CHAINS) {
1759        if (channel < 4000) {
1760            return eep->modal_header_2g.xatten1_margin[chain];
1761        } else {
1762            if (eep->base_ext2.xatten1_margin_low[chain] != 0) {
1763                t[0] = eep->base_ext2.xatten1_margin_low[chain];
1764                f[0] = 5180;
1765                t[1] = eep->modal_header_5g.xatten1_margin[chain];
1766                f[1] = 5500;
1767                t[2] = eep->base_ext2.xatten1_margin_high[chain];
1768                f[2] = 5785;
1769                value = interpolate(channel, f, t, 3);
1770                return value;
1771            } else {
1772                return eep->modal_header_5g.xatten1_margin[chain];
1773            }
1774        }
1775    }
1776    return 0;
1777}
1778
1779HAL_BOOL ar9300_attenuation_apply(struct ath_hal *ah, u_int16_t channel)
1780{
1781    u_int32_t value;
1782//    struct ath_hal_private *ahpriv = AH_PRIVATE(ah);
1783
1784    /* Test value. if 0 then attenuation is unused. Don't load anything. */
1785    value = ar9300_attenuation_chain_get(ah, 0, channel);
1786    OS_REG_RMW_FIELD(ah,
1787        AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1788    value = ar9300_attenuation_margin_chain_get(ah, 0, channel);
1789    if (ar9300_rx_gain_index_get(ah) == 0
1790        && ah->ah_config.ath_hal_ext_atten_margin_cfg)
1791    {
1792        value = 5;
1793    }
1794    OS_REG_RMW_FIELD(ah,
1795        AR_PHY_EXT_ATTEN_CTL_0, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN, value);
1796
1797    if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
1798        value = ar9300_attenuation_chain_get(ah, 1, channel);
1799        OS_REG_RMW_FIELD(ah,
1800            AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1801        value = ar9300_attenuation_margin_chain_get(ah, 1, channel);
1802        OS_REG_RMW_FIELD(ah,
1803            AR_PHY_EXT_ATTEN_CTL_1, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
1804            value);
1805        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
1806            value = ar9300_attenuation_chain_get(ah, 2, channel);
1807            OS_REG_RMW_FIELD(ah,
1808                AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_DB, value);
1809            value = ar9300_attenuation_margin_chain_get(ah, 2, channel);
1810            OS_REG_RMW_FIELD(ah,
1811                AR_PHY_EXT_ATTEN_CTL_2, AR_PHY_EXT_ATTEN_CTL_XATTEN1_MARGIN,
1812                value);
1813        }
1814    }
1815    return 0;
1816}
1817
1818static u_int16_t ar9300_quick_drop_get(struct ath_hal *ah,
1819								int chain, u_int16_t channel)
1820{
1821    int32_t f[3], t[3];
1822    u_int16_t value;
1823    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1824
1825    if (channel < 4000) {
1826        return eep->modal_header_2g.quick_drop;
1827    } else {
1828        t[0] = eep->base_ext1.quick_drop_low;
1829        f[0] = 5180;
1830        t[1] = eep->modal_header_5g.quick_drop;
1831        f[1] = 5500;
1832        t[2] = eep->base_ext1.quick_drop_high;
1833        f[2] = 5785;
1834        value = interpolate(channel, f, t, 3);
1835        return value;
1836    }
1837}
1838
1839
1840static HAL_BOOL ar9300_quick_drop_apply(struct ath_hal *ah, u_int16_t channel)
1841{
1842    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1843    u_int32_t value;
1844    //
1845    // Test value. if 0 then quickDrop is unused. Don't load anything.
1846    //
1847    if (eep->base_eep_header.misc_configuration & 0x10)
1848	{
1849        if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
1850        {
1851            value = ar9300_quick_drop_get(ah, 0, channel);
1852            OS_REG_RMW_FIELD(ah, AR_PHY_AGC, AR_PHY_AGC_QUICK_DROP, value);
1853        }
1854    }
1855    return 0;
1856}
1857
1858static u_int16_t ar9300_tx_end_to_xpa_off_get(struct ath_hal *ah, u_int16_t channel)
1859{
1860    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1861
1862    if (channel < 4000) {
1863        return eep->modal_header_2g.tx_end_to_xpa_off;
1864    } else {
1865        return eep->modal_header_5g.tx_end_to_xpa_off;
1866    }
1867}
1868
1869static HAL_BOOL ar9300_tx_end_to_xpab_off_apply(struct ath_hal *ah, u_int16_t channel)
1870{
1871    u_int32_t value;
1872
1873    value = ar9300_tx_end_to_xpa_off_get(ah, channel);
1874    /* Apply to both xpaa and xpab */
1875    if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah))
1876    {
1877        OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
1878            AR_PHY_XPA_TIMING_CTL_TX_END_XPAB_OFF, value);
1879        OS_REG_RMW_FIELD(ah, AR_PHY_XPA_TIMING_CTL,
1880            AR_PHY_XPA_TIMING_CTL_TX_END_XPAA_OFF, value);
1881    }
1882    return 0;
1883}
1884
1885static int
1886ar9300_eeprom_cal_pier_get(struct ath_hal *ah, int mode, int ipier, int ichain,
1887    int *pfrequency, int *pcorrection, int *ptemperature, int *pvoltage)
1888{
1889    u_int8_t *p_cal_pier;
1890    OSP_CAL_DATA_PER_FREQ_OP_LOOP *p_cal_pier_struct;
1891    int is_2ghz;
1892    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
1893
1894    if (ichain >= OSPREY_MAX_CHAINS) {
1895        HALDEBUG(ah, HAL_DEBUG_EEPROM,
1896            "%s: Invalid chain index, must be less than %d\n",
1897            __func__, OSPREY_MAX_CHAINS);
1898        return -1;
1899    }
1900
1901    if (mode) {/* 5GHz */
1902        if (ipier >= OSPREY_NUM_5G_CAL_PIERS){
1903            HALDEBUG(ah, HAL_DEBUG_EEPROM,
1904                "%s: Invalid 5GHz cal pier index, must be less than %d\n",
1905                __func__, OSPREY_NUM_5G_CAL_PIERS);
1906            return -1;
1907        }
1908        p_cal_pier = &(eep->cal_freq_pier_5g[ipier]);
1909        p_cal_pier_struct = &(eep->cal_pier_data_5g[ichain][ipier]);
1910        is_2ghz = 0;
1911    } else {
1912        if (ipier >= OSPREY_NUM_2G_CAL_PIERS){
1913            HALDEBUG(ah, HAL_DEBUG_EEPROM,
1914                "%s: Invalid 2GHz cal pier index, must be less than %d\n",
1915                __func__, OSPREY_NUM_2G_CAL_PIERS);
1916            return -1;
1917        }
1918
1919        p_cal_pier = &(eep->cal_freq_pier_2g[ipier]);
1920        p_cal_pier_struct = &(eep->cal_pier_data_2g[ichain][ipier]);
1921        is_2ghz = 1;
1922    }
1923    *pfrequency = FBIN2FREQ(*p_cal_pier, is_2ghz);
1924    *pcorrection = p_cal_pier_struct->ref_power;
1925    *ptemperature = p_cal_pier_struct->temp_meas;
1926    *pvoltage = p_cal_pier_struct->volt_meas;
1927    return 0;
1928}
1929
1930/*
1931 * Apply the recorded correction values.
1932 */
1933static int
1934ar9300_calibration_apply(struct ath_hal *ah, int frequency)
1935{
1936    struct ath_hal_9300 *ahp = AH9300(ah);
1937
1938    int ichain, ipier, npier;
1939    int mode;
1940    int fdiff;
1941    int pfrequency, pcorrection, ptemperature, pvoltage;
1942    int bf, factor, plus;
1943
1944    int lfrequency[AR9300_MAX_CHAINS];
1945    int hfrequency[AR9300_MAX_CHAINS];
1946
1947    int lcorrection[AR9300_MAX_CHAINS];
1948    int hcorrection[AR9300_MAX_CHAINS];
1949    int correction[AR9300_MAX_CHAINS];
1950
1951    int ltemperature[AR9300_MAX_CHAINS];
1952    int htemperature[AR9300_MAX_CHAINS];
1953    int temperature[AR9300_MAX_CHAINS];
1954
1955    int lvoltage[AR9300_MAX_CHAINS];
1956    int hvoltage[AR9300_MAX_CHAINS];
1957    int voltage[AR9300_MAX_CHAINS];
1958
1959    mode = (frequency >= 4000);
1960    npier = (mode) ?  OSPREY_NUM_5G_CAL_PIERS : OSPREY_NUM_2G_CAL_PIERS;
1961
1962    for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
1963        lfrequency[ichain] = 0;
1964        hfrequency[ichain] = 100000;
1965    }
1966    /*
1967     * identify best lower and higher frequency calibration measurement
1968     */
1969    for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
1970        for (ipier = 0; ipier < npier; ipier++) {
1971            if (ar9300_eeprom_cal_pier_get(
1972                    ah, mode, ipier, ichain,
1973                    &pfrequency, &pcorrection, &ptemperature, &pvoltage) == 0)
1974            {
1975                fdiff = frequency - pfrequency;
1976                /*
1977                 * this measurement is higher than our desired frequency
1978                 */
1979                if (fdiff <= 0) {
1980                    if (hfrequency[ichain] <= 0 ||
1981                        hfrequency[ichain] >= 100000 ||
1982                        fdiff > (frequency - hfrequency[ichain]))
1983                    {
1984                        /*
1985                         * new best higher frequency measurement
1986                         */
1987                        hfrequency[ichain] = pfrequency;
1988                        hcorrection[ichain] = pcorrection;
1989                        htemperature[ichain] = ptemperature;
1990                        hvoltage[ichain] = pvoltage;
1991                    }
1992                }
1993                if (fdiff >= 0) {
1994                    if (lfrequency[ichain] <= 0 ||
1995                        fdiff < (frequency - lfrequency[ichain]))
1996                    {
1997                        /*
1998                         * new best lower frequency measurement
1999                         */
2000                        lfrequency[ichain] = pfrequency;
2001                        lcorrection[ichain] = pcorrection;
2002                        ltemperature[ichain] = ptemperature;
2003                        lvoltage[ichain] = pvoltage;
2004                    }
2005                }
2006            }
2007        }
2008    }
2009    /* interpolate */
2010    for (ichain = 0; ichain < AR9300_MAX_CHAINS; ichain++) {
2011        HALDEBUG(ah, HAL_DEBUG_EEPROM,
2012            "%s: ch=%d f=%d low=%d %d h=%d %d\n",
2013            __func__, ichain, frequency,
2014            lfrequency[ichain], lcorrection[ichain],
2015            hfrequency[ichain], hcorrection[ichain]);
2016        /*
2017         * they're the same, so just pick one
2018         */
2019        if (hfrequency[ichain] == lfrequency[ichain]) {
2020            correction[ichain] = lcorrection[ichain];
2021            voltage[ichain] = lvoltage[ichain];
2022            temperature[ichain] = ltemperature[ichain];
2023        } else if (frequency - lfrequency[ichain] < 1000) {
2024            /* the low frequency is good */
2025            if (hfrequency[ichain] - frequency < 1000) {
2026                /*
2027                 * The high frequency is good too -
2028                 * interpolate with round off.
2029                 */
2030                int mult, div, diff;
2031                mult = frequency - lfrequency[ichain];
2032                div = hfrequency[ichain] - lfrequency[ichain];
2033
2034                diff = hcorrection[ichain] - lcorrection[ichain];
2035                bf = 2 * diff * mult / div;
2036                plus = (bf % 2);
2037                factor = bf / 2;
2038                correction[ichain] = lcorrection[ichain] + factor + plus;
2039
2040                diff = htemperature[ichain] - ltemperature[ichain];
2041                bf = 2 * diff * mult / div;
2042                plus = (bf % 2);
2043                factor = bf / 2;
2044                temperature[ichain] = ltemperature[ichain] + factor + plus;
2045
2046                diff = hvoltage[ichain] - lvoltage[ichain];
2047                bf = 2 * diff * mult / div;
2048                plus = (bf % 2);
2049                factor = bf / 2;
2050                voltage[ichain] = lvoltage[ichain] + factor + plus;
2051            } else {
2052                /* only low is good, use it */
2053                correction[ichain] = lcorrection[ichain];
2054                temperature[ichain] = ltemperature[ichain];
2055                voltage[ichain] = lvoltage[ichain];
2056            }
2057        } else if (hfrequency[ichain] - frequency < 1000) {
2058            /* only high is good, use it */
2059            correction[ichain] = hcorrection[ichain];
2060            temperature[ichain] = htemperature[ichain];
2061            voltage[ichain] = hvoltage[ichain];
2062        } else {
2063            /* nothing is good, presume 0???? */
2064            correction[ichain] = 0;
2065            temperature[ichain] = 0;
2066            voltage[ichain] = 0;
2067        }
2068    }
2069
2070    /* GreenTx isn't currently supported */
2071    /* GreenTx */
2072    if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable) {
2073        if (AR_SREV_POSEIDON(ah)) {
2074            /* Get calibrated OLPC gain delta value for GreenTx */
2075            ahp->ah_db2[POSEIDON_STORED_REG_G2_OLPC_OFFSET] =
2076                (u_int32_t) correction[0];
2077        }
2078    }
2079
2080    ar9300_power_control_override(
2081        ah, frequency, correction, voltage, temperature);
2082    HALDEBUG(ah, HAL_DEBUG_EEPROM,
2083        "%s: for frequency=%d, calibration correction = %d %d %d\n",
2084         __func__, frequency, correction[0], correction[1], correction[2]);
2085
2086    return 0;
2087}
2088
2089int
2090ar9300_power_control_override(struct ath_hal *ah, int frequency,
2091    int *correction, int *voltage, int *temperature)
2092{
2093    int temp_slope = 0;
2094    int temp_slope_1 = 0;
2095    int temp_slope_2 = 0;
2096    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
2097    int32_t f[8], t[8],t1[3], t2[3];
2098	int i;
2099
2100    OS_REG_RMW(ah, AR_PHY_TPC_11_B0,
2101        (correction[0] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2102        AR_PHY_TPC_OLPC_GAIN_DELTA);
2103    if (!AR_SREV_POSEIDON(ah)) {
2104        OS_REG_RMW(ah, AR_PHY_TPC_11_B1,
2105            (correction[1] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2106            AR_PHY_TPC_OLPC_GAIN_DELTA);
2107        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
2108            OS_REG_RMW(ah, AR_PHY_TPC_11_B2,
2109                (correction[2] << AR_PHY_TPC_OLPC_GAIN_DELTA_S),
2110                AR_PHY_TPC_OLPC_GAIN_DELTA);
2111        }
2112    }
2113    /*
2114     * enable open loop power control on chip
2115     */
2116    OS_REG_RMW(ah, AR_PHY_TPC_6_B0,
2117        (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
2118    if (!AR_SREV_POSEIDON(ah)) {
2119        OS_REG_RMW(ah, AR_PHY_TPC_6_B1,
2120            (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S), AR_PHY_TPC_6_ERROR_EST_MODE);
2121        if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
2122            OS_REG_RMW(ah, AR_PHY_TPC_6_B2,
2123                (3 << AR_PHY_TPC_6_ERROR_EST_MODE_S),
2124                AR_PHY_TPC_6_ERROR_EST_MODE);
2125        }
2126    }
2127
2128    /*
2129     * Enable temperature compensation
2130     * Need to use register names
2131     */
2132    if (frequency < 4000) {
2133        temp_slope = eep->modal_header_2g.temp_slope;
2134    } else {
2135		if ((eep->base_eep_header.misc_configuration & 0x20) != 0)
2136		{
2137				for(i=0;i<8;i++)
2138				{
2139					t[i]=eep->base_ext1.tempslopextension[i];
2140					f[i]=FBIN2FREQ(eep->cal_freq_pier_5g[i], 0);
2141				}
2142				temp_slope=interpolate(frequency,f,t,8);
2143		}
2144		else
2145		{
2146        if(!AR_SREV_SCORPION(ah)) {
2147          if (eep->base_ext2.temp_slope_low != 0) {
2148             t[0] = eep->base_ext2.temp_slope_low;
2149             f[0] = 5180;
2150             t[1] = eep->modal_header_5g.temp_slope;
2151             f[1] = 5500;
2152             t[2] = eep->base_ext2.temp_slope_high;
2153             f[2] = 5785;
2154             temp_slope = interpolate(frequency, f, t, 3);
2155           } else {
2156             temp_slope = eep->modal_header_5g.temp_slope;
2157           }
2158         } else {
2159            /*
2160             * Scorpion has individual chain tempslope values
2161             */
2162             t[0] = eep->base_ext1.tempslopextension[2];
2163             t1[0]= eep->base_ext1.tempslopextension[3];
2164             t2[0]= eep->base_ext1.tempslopextension[4];
2165             f[0] = 5180;
2166             t[1] = eep->modal_header_5g.temp_slope;
2167             t1[1]= eep->base_ext1.tempslopextension[0];
2168             t2[1]= eep->base_ext1.tempslopextension[1];
2169             f[1] = 5500;
2170             t[2] = eep->base_ext1.tempslopextension[5];
2171             t1[2]= eep->base_ext1.tempslopextension[6];
2172             t2[2]= eep->base_ext1.tempslopextension[7];
2173             f[2] = 5785;
2174             temp_slope = interpolate(frequency, f, t, 3);
2175             temp_slope_1=interpolate(frequency, f, t1,3);
2176             temp_slope_2=interpolate(frequency, f, t2,3);
2177       }
2178	 }
2179  }
2180
2181    if (!AR_SREV_SCORPION(ah)) {
2182        OS_REG_RMW_FIELD(ah,
2183            AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, temp_slope);
2184    } else {
2185        /*Scorpion has tempSlope register for each chain*/
2186        /*Check whether temp_compensation feature is enabled or not*/
2187        if (eep->base_eep_header.feature_enable & 0x1){
2188	    if(frequency < 4000) {
2189		    OS_REG_RMW_FIELD(ah,
2190				    AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
2191				    eep->base_ext2.temp_slope_low);
2192		    OS_REG_RMW_FIELD(ah,
2193				    AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
2194				    temp_slope);
2195		    OS_REG_RMW_FIELD(ah,
2196				    AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
2197				    eep->base_ext2.temp_slope_high);
2198	    } else {
2199		    OS_REG_RMW_FIELD(ah,
2200				    AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM,
2201				    temp_slope);
2202		    OS_REG_RMW_FIELD(ah,
2203				    AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM,
2204				    temp_slope_1);
2205		    OS_REG_RMW_FIELD(ah,
2206				    AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM,
2207				    temp_slope_2);
2208	    }
2209        }else {
2210        	/* If temp compensation is not enabled, set all registers to 0*/
2211            OS_REG_RMW_FIELD(ah,
2212                AR_PHY_TPC_19, AR_PHY_TPC_19_ALPHA_THERM, 0);
2213            OS_REG_RMW_FIELD(ah,
2214                AR_SCORPION_PHY_TPC_19_B1, AR_PHY_TPC_19_ALPHA_THERM, 0);
2215            OS_REG_RMW_FIELD(ah,
2216                AR_SCORPION_PHY_TPC_19_B2, AR_PHY_TPC_19_ALPHA_THERM, 0);
2217        }
2218    }
2219    OS_REG_RMW_FIELD(ah,
2220        AR_PHY_TPC_18, AR_PHY_TPC_18_THERM_CAL_VALUE, temperature[0]);
2221
2222    return 0;
2223}
2224
2225/**************************************************************
2226 * ar9300_eep_def_get_max_edge_power
2227 *
2228 * Find the maximum conformance test limit for the given channel and CTL info
2229 */
2230static inline u_int16_t
2231ar9300_eep_def_get_max_edge_power(ar9300_eeprom_t *p_eep_data, u_int16_t freq,
2232    int idx, HAL_BOOL is_2ghz)
2233{
2234    u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
2235    u_int8_t *ctl_freqbin = is_2ghz ?
2236        &p_eep_data->ctl_freqbin_2G[idx][0] :
2237        &p_eep_data->ctl_freqbin_5G[idx][0];
2238    u_int16_t num_edges = is_2ghz ?
2239        OSPREY_NUM_BAND_EDGES_2G : OSPREY_NUM_BAND_EDGES_5G;
2240    int i;
2241
2242    /* Get the edge power */
2243    for (i = 0; (i < num_edges) && (ctl_freqbin[i] != AR9300_BCHAN_UNUSED); i++)
2244    {
2245        /*
2246         * If there's an exact channel match or an inband flag set
2247         * on the lower channel use the given rd_edge_power
2248         */
2249        if (freq == fbin2freq(ctl_freqbin[i], is_2ghz)) {
2250            if (is_2ghz) {
2251                twice_max_edge_power =
2252                    p_eep_data->ctl_power_data_2g[idx].ctl_edges[i].t_power;
2253            } else {
2254                twice_max_edge_power =
2255                    p_eep_data->ctl_power_data_5g[idx].ctl_edges[i].t_power;
2256            }
2257            break;
2258        } else if ((i > 0) && (freq < fbin2freq(ctl_freqbin[i], is_2ghz))) {
2259            if (is_2ghz) {
2260                if (fbin2freq(ctl_freqbin[i - 1], 1) < freq &&
2261                    p_eep_data->ctl_power_data_2g[idx].ctl_edges[i - 1].flag)
2262                {
2263                    twice_max_edge_power =
2264                        p_eep_data->ctl_power_data_2g[idx].
2265                            ctl_edges[i - 1].t_power;
2266                }
2267            } else {
2268                if (fbin2freq(ctl_freqbin[i - 1], 0) < freq &&
2269                    p_eep_data->ctl_power_data_5g[idx].ctl_edges[i - 1].flag)
2270                {
2271                    twice_max_edge_power =
2272                        p_eep_data->ctl_power_data_5g[idx].
2273                            ctl_edges[i - 1].t_power;
2274                }
2275            }
2276            /*
2277             * Leave loop - no more affecting edges possible
2278             * in this monotonic increasing list
2279             */
2280            break;
2281        }
2282    }
2283    /*
2284     * EV89475: EEPROM might contain 0 txpower in CTL table for certain
2285     * 2.4GHz channels. We workaround it by overwriting 60 (30 dBm) here.
2286     */
2287    if (is_2ghz && (twice_max_edge_power == 0)) {
2288        twice_max_edge_power = 60;
2289    }
2290
2291    HALASSERT(twice_max_edge_power > 0);
2292    return twice_max_edge_power;
2293}
2294
2295HAL_BOOL
2296ar9300_eeprom_set_power_per_rate_table(
2297    struct ath_hal *ah,
2298    ar9300_eeprom_t *p_eep_data,
2299    const struct ieee80211_channel *chan,
2300    u_int8_t *p_pwr_array,
2301    u_int16_t cfg_ctl,
2302    u_int16_t antenna_reduction,
2303    u_int16_t twice_max_regulatory_power,
2304    u_int16_t power_limit,
2305    u_int8_t chainmask)
2306{
2307    /* Local defines to distinguish between extension and control CTL's */
2308#define EXT_ADDITIVE (0x8000)
2309#define CTL_11A_EXT (CTL_11A | EXT_ADDITIVE)
2310#define CTL_11G_EXT (CTL_11G | EXT_ADDITIVE)
2311#define CTL_11B_EXT (CTL_11B | EXT_ADDITIVE)
2312#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
2313#define REDUCE_SCALED_POWER_BY_THREE_CHAIN  10  /* 10*log10(3)*2 */
2314#define PWRINCR_3_TO_1_CHAIN      9             /* 10*log(3)*2 */
2315#define PWRINCR_3_TO_2_CHAIN      3             /* floor(10*log(3/2)*2) */
2316#define PWRINCR_2_TO_1_CHAIN      6             /* 10*log(2)*2 */
2317
2318    static const u_int16_t tp_scale_reduction_table[5] =
2319        { 0, 3, 6, 9, AR9300_MAX_RATE_POWER };
2320    int i;
2321    int16_t twice_largest_antenna;
2322    u_int16_t twice_antenna_reduction = 2*antenna_reduction ;
2323    int16_t scaled_power = 0, min_ctl_power, max_reg_allowed_power;
2324#define SUB_NUM_CTL_MODES_AT_5G_40 2    /* excluding HT40, EXT-OFDM */
2325#define SUB_NUM_CTL_MODES_AT_2G_40 3    /* excluding HT40, EXT-OFDM, EXT-CCK */
2326    u_int16_t ctl_modes_for11a[] =
2327        {CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40};
2328    u_int16_t ctl_modes_for11g[] =
2329        {CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40};
2330    u_int16_t num_ctl_modes, *p_ctl_mode, ctl_mode, freq;
2331    CHAN_CENTERS centers;
2332    int tx_chainmask;
2333    struct ath_hal_9300 *ahp = AH9300(ah);
2334    u_int8_t *ctl_index;
2335    u_int8_t ctl_num;
2336    u_int16_t twice_min_edge_power;
2337    u_int16_t twice_max_edge_power = AR9300_MAX_RATE_POWER;
2338#ifdef	AH_DEBUG
2339    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
2340#endif
2341
2342    tx_chainmask = chainmask ? chainmask : ahp->ah_tx_chainmask;
2343
2344    ar9300_get_channel_centers(ah, chan, &centers);
2345
2346    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2347        ahp->twice_antenna_gain = p_eep_data->modal_header_2g.antenna_gain;
2348    } else {
2349        ahp->twice_antenna_gain = p_eep_data->modal_header_5g.antenna_gain;
2350    }
2351
2352    /* Save max allowed antenna gain to ease future lookups */
2353    ahp->twice_antenna_reduction = twice_antenna_reduction;
2354
2355    /*  Deduct antenna gain from  EIRP to get the upper limit */
2356    twice_largest_antenna = (int16_t)AH_MIN((twice_antenna_reduction -
2357                                       ahp->twice_antenna_gain), 0);
2358    max_reg_allowed_power = twice_max_regulatory_power + twice_largest_antenna;
2359
2360    /* Use ah_tp_scale - see bug 30070. */
2361    if (AH_PRIVATE(ah)->ah_tpScale != HAL_TP_SCALE_MAX) {
2362        max_reg_allowed_power -=
2363            (tp_scale_reduction_table[(AH_PRIVATE(ah)->ah_tpScale)] * 2);
2364    }
2365
2366    scaled_power = AH_MIN(power_limit, max_reg_allowed_power);
2367
2368    /*
2369     * Reduce scaled Power by number of chains active to get to
2370     * per chain tx power level
2371     */
2372    /* TODO: better value than these? */
2373    switch (ar9300_get_ntxchains(tx_chainmask)) {
2374    case 1:
2375        ahp->upper_limit[0] = AH_MAX(0, scaled_power);
2376        break;
2377    case 2:
2378        scaled_power -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
2379        ahp->upper_limit[1] = AH_MAX(0, scaled_power);
2380        break;
2381    case 3:
2382        scaled_power -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
2383        ahp->upper_limit[2] = AH_MAX(0, scaled_power);
2384        break;
2385    default:
2386        HALASSERT(0); /* Unsupported number of chains */
2387    }
2388
2389    scaled_power = AH_MAX(0, scaled_power);
2390
2391    /* Get target powers from EEPROM - our baseline for TX Power */
2392    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2393        /* Setup for CTL modes */
2394        /* CTL_11B, CTL_11G, CTL_2GHT20 */
2395        num_ctl_modes =
2396            ARRAY_LENGTH(ctl_modes_for11g) - SUB_NUM_CTL_MODES_AT_2G_40;
2397        p_ctl_mode = ctl_modes_for11g;
2398
2399        if (IEEE80211_IS_CHAN_HT40(chan)) {
2400            num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11g); /* All 2G CTL's */
2401        }
2402    } else {
2403        /* Setup for CTL modes */
2404        /* CTL_11A, CTL_5GHT20 */
2405        num_ctl_modes =
2406            ARRAY_LENGTH(ctl_modes_for11a) - SUB_NUM_CTL_MODES_AT_5G_40;
2407        p_ctl_mode = ctl_modes_for11a;
2408
2409        if (IEEE80211_IS_CHAN_HT40(chan)) {
2410            num_ctl_modes = ARRAY_LENGTH(ctl_modes_for11a); /* All 5G CTL's */
2411        }
2412    }
2413
2414    /*
2415     * For MIMO, need to apply regulatory caps individually across dynamically
2416     * running modes: CCK, OFDM, HT20, HT40
2417     *
2418     * The outer loop walks through each possible applicable runtime mode.
2419     * The inner loop walks through each ctl_index entry in EEPROM.
2420     * The ctl value is encoded as [7:4] == test group, [3:0] == test mode.
2421     *
2422     */
2423    for (ctl_mode = 0; ctl_mode < num_ctl_modes; ctl_mode++) {
2424        HAL_BOOL is_ht40_ctl_mode =
2425            (p_ctl_mode[ctl_mode] == CTL_5GHT40) ||
2426            (p_ctl_mode[ctl_mode] == CTL_2GHT40);
2427        if (is_ht40_ctl_mode) {
2428            freq = centers.synth_center;
2429        } else if (p_ctl_mode[ctl_mode] & EXT_ADDITIVE) {
2430            freq = centers.ext_center;
2431        } else {
2432            freq = centers.ctl_center;
2433        }
2434
2435        HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2436            "LOOP-Mode ctl_mode %d < %d, "
2437            "is_ht40_ctl_mode %d, EXT_ADDITIVE %d\n",
2438            ctl_mode, num_ctl_modes, is_ht40_ctl_mode,
2439            (p_ctl_mode[ctl_mode] & EXT_ADDITIVE));
2440        /* walk through each CTL index stored in EEPROM */
2441        if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2442            ctl_index = p_eep_data->ctl_index_2g;
2443            ctl_num = OSPREY_NUM_CTLS_2G;
2444        } else {
2445            ctl_index = p_eep_data->ctl_index_5g;
2446            ctl_num = OSPREY_NUM_CTLS_5G;
2447        }
2448
2449        for (i = 0; (i < ctl_num) && ctl_index[i]; i++) {
2450            HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2451                "  LOOP-Ctlidx %d: cfg_ctl 0x%2.2x p_ctl_mode 0x%2.2x "
2452                "ctl_index 0x%2.2x chan %d chanctl 0x%x\n",
2453                i, cfg_ctl, p_ctl_mode[ctl_mode], ctl_index[i],
2454                ichan->channel, ath_hal_getctl(ah, chan));
2455
2456
2457            /*
2458             * compare test group from regulatory channel list
2459             * with test mode from p_ctl_mode list
2460             */
2461            if ((((cfg_ctl & ~CTL_MODE_M) |
2462                  (p_ctl_mode[ctl_mode] & CTL_MODE_M)) == ctl_index[i]) ||
2463                (((cfg_ctl & ~CTL_MODE_M) |
2464                  (p_ctl_mode[ctl_mode] & CTL_MODE_M)) ==
2465                 ((ctl_index[i] & CTL_MODE_M) | SD_NO_CTL)))
2466            {
2467                twice_min_edge_power =
2468                    ar9300_eep_def_get_max_edge_power(
2469                        p_eep_data, freq, i, IEEE80211_IS_CHAN_2GHZ(chan));
2470
2471                HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2472                    "    MATCH-EE_IDX %d: ch %d is2 %d "
2473                    "2xMinEdge %d chainmask %d chains %d\n",
2474                    i, freq, IEEE80211_IS_CHAN_2GHZ(chan),
2475                    twice_min_edge_power, tx_chainmask,
2476                    ar9300_get_ntxchains(tx_chainmask));
2477
2478                if ((cfg_ctl & ~CTL_MODE_M) == SD_NO_CTL) {
2479                    /*
2480                     * Find the minimum of all CTL edge powers
2481                     * that apply to this channel
2482                     */
2483                    twice_max_edge_power =
2484                        AH_MIN(twice_max_edge_power, twice_min_edge_power);
2485                } else {
2486                    /* specific */
2487                    twice_max_edge_power = twice_min_edge_power;
2488                    break;
2489                }
2490            }
2491        }
2492
2493        min_ctl_power = (u_int8_t)AH_MIN(twice_max_edge_power, scaled_power);
2494
2495        HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2496            "    SEL-Min ctl_mode %d p_ctl_mode %d "
2497            "2xMaxEdge %d sP %d min_ctl_pwr %d\n",
2498            ctl_mode, p_ctl_mode[ctl_mode],
2499            twice_max_edge_power, scaled_power, min_ctl_power);
2500
2501        /* Apply ctl mode to correct target power set */
2502        switch (p_ctl_mode[ctl_mode]) {
2503        case CTL_11B:
2504            for (i = ALL_TARGET_LEGACY_1L_5L; i <= ALL_TARGET_LEGACY_11S; i++) {
2505                p_pwr_array[i] =
2506                    (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
2507            }
2508            break;
2509        case CTL_11A:
2510        case CTL_11G:
2511            for (i = ALL_TARGET_LEGACY_6_24; i <= ALL_TARGET_LEGACY_54; i++) {
2512                p_pwr_array[i] =
2513                    (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
2514#ifdef ATH_BT_COEX
2515                if ((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
2516                    (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
2517                {
2518                    if ((ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR)
2519                        && (ahp->ah_bt_wlan_isolation
2520                         < HAL_BT_COEX_ISOLATION_FOR_NO_COEX))
2521                    {
2522
2523                        u_int8_t reduce_pow;
2524
2525                        reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
2526                                     - ahp->ah_bt_wlan_isolation) << 1;
2527
2528                        if (reduce_pow <= p_pwr_array[i]) {
2529                            p_pwr_array[i] -= reduce_pow;
2530                        }
2531                    }
2532                    if ((ahp->ah_bt_coex_flag &
2533                          HAL_BT_COEX_FLAG_LOW_ACK_PWR) &&
2534                          (i != ALL_TARGET_LEGACY_36) &&
2535                          (i != ALL_TARGET_LEGACY_48) &&
2536                          (i != ALL_TARGET_LEGACY_54) &&
2537                          (p_ctl_mode[ctl_mode] == CTL_11G))
2538                    {
2539                        p_pwr_array[i] = 0;
2540                    }
2541                }
2542#endif
2543            }
2544            break;
2545        case CTL_5GHT20:
2546        case CTL_2GHT20:
2547            for (i = ALL_TARGET_HT20_0_8_16; i <= ALL_TARGET_HT20_23; i++) {
2548                p_pwr_array[i] =
2549                    (u_int8_t)AH_MIN(p_pwr_array[i], min_ctl_power);
2550#ifdef ATH_BT_COEX
2551                if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
2552                     (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
2553                    (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
2554                    (ahp->ah_bt_wlan_isolation
2555                        < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
2556
2557                    u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
2558                                           - ahp->ah_bt_wlan_isolation) << 1;
2559
2560                    if (reduce_pow <= p_pwr_array[i]) {
2561                        p_pwr_array[i] -= reduce_pow;
2562                    }
2563                }
2564#if ATH_SUPPORT_MCI
2565                else if ((ahp->ah_bt_coex_flag &
2566                          HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
2567                         (p_ctl_mode[ctl_mode] == CTL_2GHT20) &&
2568                         (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
2569                {
2570                    u_int8_t max_pwr;
2571
2572                    max_pwr = MS(mci_concur_tx_max_pwr[2][1],
2573                                 ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
2574                    if (p_pwr_array[i] > max_pwr) {
2575                        p_pwr_array[i] = max_pwr;
2576                    }
2577                }
2578#endif
2579#endif
2580            }
2581            break;
2582        case CTL_11B_EXT:
2583#ifdef NOT_YET
2584            target_power_cck_ext.t_pow2x[0] = (u_int8_t)
2585                AH_MIN(target_power_cck_ext.t_pow2x[0], min_ctl_power);
2586#endif /* NOT_YET */
2587            break;
2588        case CTL_11A_EXT:
2589        case CTL_11G_EXT:
2590#ifdef NOT_YET
2591            target_power_ofdm_ext.t_pow2x[0] = (u_int8_t)
2592                AH_MIN(target_power_ofdm_ext.t_pow2x[0], min_ctl_power);
2593#endif /* NOT_YET */
2594            break;
2595        case CTL_5GHT40:
2596        case CTL_2GHT40:
2597            for (i = ALL_TARGET_HT40_0_8_16; i <= ALL_TARGET_HT40_23; i++) {
2598                p_pwr_array[i] = (u_int8_t)
2599                    AH_MIN(p_pwr_array[i], min_ctl_power);
2600#ifdef ATH_BT_COEX
2601                if (((ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_3WIRE) ||
2602                     (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI)) &&
2603                    (ahp->ah_bt_coex_flag & HAL_BT_COEX_FLAG_LOWER_TX_PWR) &&
2604                    (ahp->ah_bt_wlan_isolation
2605                        < HAL_BT_COEX_ISOLATION_FOR_NO_COEX)) {
2606
2607                    u_int8_t reduce_pow = (HAL_BT_COEX_ISOLATION_FOR_NO_COEX
2608                                              - ahp->ah_bt_wlan_isolation) << 1;
2609
2610                    if (reduce_pow <= p_pwr_array[i]) {
2611                        p_pwr_array[i] -= reduce_pow;
2612                    }
2613                }
2614#if ATH_SUPPORT_MCI
2615                else if ((ahp->ah_bt_coex_flag &
2616                          HAL_BT_COEX_FLAG_MCI_MAX_TX_PWR) &&
2617                         (p_ctl_mode[ctl_mode] == CTL_2GHT40) &&
2618                         (ahp->ah_bt_coex_config_type == HAL_BT_COEX_CFG_MCI))
2619                {
2620                    u_int8_t max_pwr;
2621
2622                    max_pwr = MS(mci_concur_tx_max_pwr[3][1],
2623                                 ATH_MCI_CONCUR_TX_LOWEST_PWR_MASK);
2624                    if (p_pwr_array[i] > max_pwr) {
2625                        p_pwr_array[i] = max_pwr;
2626                    }
2627                }
2628#endif
2629#endif
2630            }
2631            break;
2632        default:
2633            HALASSERT(0);
2634            break;
2635        }
2636    } /* end ctl mode checking */
2637
2638    return AH_TRUE;
2639#undef EXT_ADDITIVE
2640#undef CTL_11A_EXT
2641#undef CTL_11G_EXT
2642#undef CTL_11B_EXT
2643#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
2644#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
2645}
2646
2647/**************************************************************
2648 * ar9300_eeprom_set_transmit_power
2649 *
2650 * Set the transmit power in the baseband for the given
2651 * operating channel and mode.
2652 */
2653HAL_STATUS
2654ar9300_eeprom_set_transmit_power(struct ath_hal *ah,
2655    ar9300_eeprom_t *p_eep_data, const struct ieee80211_channel *chan, u_int16_t cfg_ctl,
2656    u_int16_t antenna_reduction, u_int16_t twice_max_regulatory_power,
2657    u_int16_t power_limit)
2658{
2659#define ABS(_x, _y) ((int)_x > (int)_y ? (int)_x - (int)_y : (int)_y - (int)_x)
2660#define INCREASE_MAXPOW_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
2661#define INCREASE_MAXPOW_BY_THREE_CHAIN   10 /* 10*log10(3)*2 */
2662    u_int8_t target_power_val_t2[ar9300_rate_size];
2663    u_int8_t target_power_val_t2_eep[ar9300_rate_size];
2664    int16_t twice_array_gain = 0, max_power_level = 0;
2665    struct ath_hal_9300 *ahp = AH9300(ah);
2666    int  i = 0;
2667    u_int32_t tmp_paprd_rate_mask = 0, *tmp_ptr = NULL;
2668    int      paprd_scale_factor = 5;
2669    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
2670
2671    u_int8_t *ptr_mcs_rate2power_table_index;
2672    u_int8_t mcs_rate2power_table_index_ht20[24] =
2673    {
2674        ALL_TARGET_HT20_0_8_16,
2675        ALL_TARGET_HT20_1_3_9_11_17_19,
2676        ALL_TARGET_HT20_1_3_9_11_17_19,
2677        ALL_TARGET_HT20_1_3_9_11_17_19,
2678        ALL_TARGET_HT20_4,
2679        ALL_TARGET_HT20_5,
2680        ALL_TARGET_HT20_6,
2681        ALL_TARGET_HT20_7,
2682        ALL_TARGET_HT20_0_8_16,
2683        ALL_TARGET_HT20_1_3_9_11_17_19,
2684        ALL_TARGET_HT20_1_3_9_11_17_19,
2685        ALL_TARGET_HT20_1_3_9_11_17_19,
2686        ALL_TARGET_HT20_12,
2687        ALL_TARGET_HT20_13,
2688        ALL_TARGET_HT20_14,
2689        ALL_TARGET_HT20_15,
2690        ALL_TARGET_HT20_0_8_16,
2691        ALL_TARGET_HT20_1_3_9_11_17_19,
2692        ALL_TARGET_HT20_1_3_9_11_17_19,
2693        ALL_TARGET_HT20_1_3_9_11_17_19,
2694        ALL_TARGET_HT20_20,
2695        ALL_TARGET_HT20_21,
2696        ALL_TARGET_HT20_22,
2697        ALL_TARGET_HT20_23
2698    };
2699
2700    u_int8_t mcs_rate2power_table_index_ht40[24] =
2701    {
2702        ALL_TARGET_HT40_0_8_16,
2703        ALL_TARGET_HT40_1_3_9_11_17_19,
2704        ALL_TARGET_HT40_1_3_9_11_17_19,
2705        ALL_TARGET_HT40_1_3_9_11_17_19,
2706        ALL_TARGET_HT40_4,
2707        ALL_TARGET_HT40_5,
2708        ALL_TARGET_HT40_6,
2709        ALL_TARGET_HT40_7,
2710        ALL_TARGET_HT40_0_8_16,
2711        ALL_TARGET_HT40_1_3_9_11_17_19,
2712        ALL_TARGET_HT40_1_3_9_11_17_19,
2713        ALL_TARGET_HT40_1_3_9_11_17_19,
2714        ALL_TARGET_HT40_12,
2715        ALL_TARGET_HT40_13,
2716        ALL_TARGET_HT40_14,
2717        ALL_TARGET_HT40_15,
2718        ALL_TARGET_HT40_0_8_16,
2719        ALL_TARGET_HT40_1_3_9_11_17_19,
2720        ALL_TARGET_HT40_1_3_9_11_17_19,
2721        ALL_TARGET_HT40_1_3_9_11_17_19,
2722        ALL_TARGET_HT40_20,
2723        ALL_TARGET_HT40_21,
2724        ALL_TARGET_HT40_22,
2725        ALL_TARGET_HT40_23,
2726    };
2727
2728    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2729        "%s[%d] +++chan %d,cfgctl 0x%04x  "
2730        "antenna_reduction 0x%04x, twice_max_regulatory_power 0x%04x "
2731        "power_limit 0x%04x\n",
2732        __func__, __LINE__, ichan->channel, cfg_ctl,
2733        antenna_reduction, twice_max_regulatory_power, power_limit);
2734    ar9300_set_target_power_from_eeprom(ah, ichan->channel, target_power_val_t2);
2735
2736    if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
2737        if (IEEE80211_IS_CHAN_2GHZ(chan)) {
2738            if (IEEE80211_IS_CHAN_HT40(chan)) {
2739                tmp_paprd_rate_mask =
2740                    p_eep_data->modal_header_2g.paprd_rate_mask_ht40;
2741                tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht40;
2742            } else {
2743                tmp_paprd_rate_mask =
2744                    p_eep_data->modal_header_2g.paprd_rate_mask_ht20;
2745                tmp_ptr = &AH9300(ah)->ah_2g_paprd_rate_mask_ht20;
2746            }
2747        } else {
2748            if (IEEE80211_IS_CHAN_HT40(chan)) {
2749                tmp_paprd_rate_mask =
2750                    p_eep_data->modal_header_5g.paprd_rate_mask_ht40;
2751                tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht40;
2752            } else {
2753                tmp_paprd_rate_mask =
2754                    p_eep_data->modal_header_5g.paprd_rate_mask_ht20;
2755                tmp_ptr = &AH9300(ah)->ah_5g_paprd_rate_mask_ht20;
2756            }
2757        }
2758        AH_PAPRD_GET_SCALE_FACTOR(
2759            paprd_scale_factor, p_eep_data, IEEE80211_IS_CHAN_2GHZ(chan), ichan->channel);
2760        HALDEBUG(ah, HAL_DEBUG_CALIBRATE, "%s[%d] paprd_scale_factor %d\n",
2761            __func__, __LINE__, paprd_scale_factor);
2762        /* PAPRD is not done yet, Scale down the EEP power */
2763        if (IEEE80211_IS_CHAN_HT40(chan)) {
2764            ptr_mcs_rate2power_table_index =
2765                &mcs_rate2power_table_index_ht40[0];
2766        } else {
2767            ptr_mcs_rate2power_table_index =
2768                &mcs_rate2power_table_index_ht20[0];
2769        }
2770        if (! ichan->paprd_table_write_done) {
2771            for (i = 0;  i < 24; i++) {
2772                /* PAPRD is done yet, so Scale down Power for PAPRD Rates*/
2773                if (tmp_paprd_rate_mask & (1 << i)) {
2774                    target_power_val_t2[ptr_mcs_rate2power_table_index[i]] -=
2775                        paprd_scale_factor;
2776                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2777                        "%s[%d]: Chan %d "
2778                        "Scale down target_power_val_t2[%d] = 0x%04x\n",
2779                        __func__, __LINE__,
2780                        ichan->channel, i, target_power_val_t2[i]);
2781                }
2782            }
2783        } else {
2784            HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2785                "%s[%d]: PAPRD Done No TGT PWR Scaling\n", __func__, __LINE__);
2786        }
2787    }
2788
2789    /* Save the Target power for future use */
2790    OS_MEMCPY(target_power_val_t2_eep, target_power_val_t2,
2791                                   sizeof(target_power_val_t2));
2792    ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
2793                                     target_power_val_t2, cfg_ctl,
2794                                     antenna_reduction,
2795                                     twice_max_regulatory_power,
2796                                     power_limit, 0);
2797
2798    /* Save this for quick lookup */
2799    ahp->reg_dmn = ath_hal_getctl(ah, chan);
2800
2801    /*
2802     * Always use CDD/direct per rate power table for register based approach.
2803     * For FCC, CDD calculations should factor in the array gain, hence
2804     * this adjust call. ETSI and MKK does not have this requirement.
2805     */
2806    if (is_reg_dmn_fcc(ahp->reg_dmn)) {
2807        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2808            "%s: FCC regdomain, calling reg_txpower_cdd\n",
2809            __func__);
2810        ar9300_adjust_reg_txpower_cdd(ah, target_power_val_t2);
2811    }
2812
2813    if (ar9300_eeprom_get(ahp, EEP_PAPRD_ENABLED)) {
2814        for (i = 0;  i < ar9300_rate_size; i++) {
2815            /*
2816             * EEPROM TGT PWR is not same as current TGT PWR,
2817             * so Disable PAPRD for this rate.
2818             * Some of APs might ask to reduce Target Power,
2819             * if target power drops significantly,
2820             * disable PAPRD for that rate.
2821             */
2822            if (tmp_paprd_rate_mask & (1 << i)) {
2823                if (ABS(target_power_val_t2_eep[i], target_power_val_t2[i]) >
2824                    paprd_scale_factor)
2825                {
2826                    tmp_paprd_rate_mask &= ~(1 << i);
2827                    HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2828                        "%s: EEP TPC[%02d] 0x%08x "
2829                        "Curr TPC[%02d] 0x%08x mask = 0x%08x\n",
2830                        __func__, i, target_power_val_t2_eep[i], i,
2831                        target_power_val_t2[i], tmp_paprd_rate_mask);
2832                }
2833            }
2834
2835        }
2836        HALDEBUG(ah, HAL_DEBUG_CALIBRATE,
2837            "%s: Chan %d After tmp_paprd_rate_mask = 0x%08x\n",
2838            __func__, ichan->channel, tmp_paprd_rate_mask);
2839        if (tmp_ptr) {
2840            *tmp_ptr = tmp_paprd_rate_mask;
2841        }
2842    }
2843
2844    /* Write target power array to registers */
2845    ar9300_transmit_power_reg_write(ah, target_power_val_t2);
2846
2847    /* Write target power for self generated frames to the TPC register */
2848    ar9300_selfgen_tpc_reg_write(ah, chan, target_power_val_t2);
2849
2850    /* GreenTx or Paprd */
2851    if (ah->ah_config.ath_hal_sta_update_tx_pwr_enable ||
2852        AH_PRIVATE(ah)->ah_caps.halPaprdEnabled)
2853    {
2854        if (AR_SREV_POSEIDON(ah)) {
2855            /*For HAL_RSSI_TX_POWER_NONE array*/
2856            OS_MEMCPY(ahp->ah_default_tx_power,
2857                target_power_val_t2,
2858                sizeof(target_power_val_t2));
2859            /* Get defautl tx related register setting for GreenTx */
2860            /* Record OB/DB */
2861            ahp->ah_ob_db1[POSEIDON_STORED_REG_OBDB] =
2862                OS_REG_READ(ah, AR_PHY_65NM_CH0_TXRF2);
2863            /* Record TPC settting */
2864            ahp->ah_ob_db1[POSEIDON_STORED_REG_TPC] =
2865                OS_REG_READ(ah, AR_TPC);
2866            /* Record BB_powertx_rate9 setting */
2867            ahp->ah_ob_db1[POSEIDON_STORED_REG_BB_PWRTX_RATE9] =
2868                OS_REG_READ(ah, AR_PHY_BB_POWERTX_RATE9);
2869        }
2870    }
2871
2872    /*
2873     * Return tx power used to iwconfig.
2874     * Since power is rate dependent, use one of the indices from the
2875     * AR9300_Rates enum to select an entry from target_power_val_t2[]
2876     * to report.
2877     * Currently returns the power for HT40 MCS 0, HT20 MCS 0, or OFDM 6 Mbps
2878     * as CCK power is less interesting (?).
2879     */
2880    i = ALL_TARGET_LEGACY_6_24;         /* legacy */
2881    if (IEEE80211_IS_CHAN_HT40(chan)) {
2882        i = ALL_TARGET_HT40_0_8_16;     /* ht40 */
2883    } else if (IEEE80211_IS_CHAN_HT20(chan)) {
2884        i = ALL_TARGET_HT20_0_8_16;     /* ht20 */
2885    }
2886    max_power_level = target_power_val_t2[i];
2887    /* Adjusting the ah_max_power_level based on chains and antennaGain*/
2888    switch (ar9300_get_ntxchains(ahp->ah_tx_chainmask))
2889    {
2890        case 1:
2891            break;
2892        case 2:
2893            twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
2894                               ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
2895                                   (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_TWO_CHAIN)), 0));
2896            /* Adjusting maxpower with antennaGain */
2897            max_power_level -= twice_array_gain;
2898            /* Adjusting maxpower based on chain */
2899            max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
2900            break;
2901        case 3:
2902            twice_array_gain = (ahp->twice_antenna_gain >= ahp->twice_antenna_reduction)? 0:
2903                               ((int16_t)AH_MIN((ahp->twice_antenna_reduction -
2904                                   (ahp->twice_antenna_gain + INCREASE_MAXPOW_BY_THREE_CHAIN)), 0));
2905
2906            /* Adjusting maxpower with antennaGain */
2907            max_power_level -= twice_array_gain;
2908            /* Adjusting maxpower based on chain */
2909            max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
2910            break;
2911        default:
2912            HALASSERT(0); /* Unsupported number of chains */
2913    }
2914    AH_PRIVATE(ah)->ah_maxPowerLevel = (int8_t)max_power_level;
2915
2916    ar9300_calibration_apply(ah, ichan->channel);
2917#undef ABS
2918
2919    /* Handle per packet TPC initializations */
2920    if (ah->ah_config.ath_hal_desc_tpc) {
2921        /* Transmit Power per-rate per-chain  are  computed here. A separate
2922         * power table is maintained for different MIMO modes (i.e. TXBF ON,
2923         * STBC) to enable easy lookup during packet transmit.
2924         * The reason for maintaing each of these tables per chain is that
2925         * the transmit power used for different number of chains is different
2926         * depending on whether the power has been limited by the target power,
2927         * the regulatory domain  or the CTL limits.
2928         */
2929        u_int mode = ath_hal_get_curmode(ah, chan);
2930        u_int32_t val = 0;
2931        u_int8_t chainmasks[AR9300_MAX_CHAINS] =
2932            {OSPREY_1_CHAINMASK, OSPREY_2LOHI_CHAINMASK, OSPREY_3_CHAINMASK};
2933        for (i = 0; i < AR9300_MAX_CHAINS; i++) {
2934            OS_MEMCPY(target_power_val_t2, target_power_val_t2_eep,
2935                                   sizeof(target_power_val_t2_eep));
2936            ar9300_eeprom_set_power_per_rate_table(ah, p_eep_data, chan,
2937                                     target_power_val_t2, cfg_ctl,
2938                                     antenna_reduction,
2939                                     twice_max_regulatory_power,
2940                                     power_limit, chainmasks[i]);
2941            HALDEBUG(ah, HAL_DEBUG_POWER_MGMT,
2942                 " Channel = %d Chainmask = %d, Upper Limit = [%2d.%1d dBm]\n",
2943                                       ichan->channel, i, ahp->upper_limit[i]/2,
2944                                       ahp->upper_limit[i]%2 * 5);
2945            ar9300_init_rate_txpower(ah, mode, chan, target_power_val_t2,
2946                                                           chainmasks[i]);
2947
2948        }
2949
2950        /* Enable TPC */
2951        OS_REG_WRITE(ah, AR_PHY_PWRTX_MAX, AR_PHY_PWRTX_MAX_TPC_ENABLE);
2952        /*
2953         * Disable per chain power reduction since we are already
2954         * accounting for this in our calculations
2955         */
2956        val = OS_REG_READ(ah, AR_PHY_POWER_TX_SUB);
2957        if (AR_SREV_WASP(ah)) {
2958            OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2959                       val & AR_PHY_POWER_TX_SUB_2_DISABLE);
2960        } else {
2961            OS_REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
2962                       val & AR_PHY_POWER_TX_SUB_3_DISABLE);
2963        }
2964    }
2965
2966    return HAL_OK;
2967}
2968
2969/**************************************************************
2970 * ar9300_eeprom_set_addac
2971 *
2972 * Set the ADDAC from eeprom.
2973 */
2974void
2975ar9300_eeprom_set_addac(struct ath_hal *ah, struct ieee80211_channel *chan)
2976{
2977
2978    HALDEBUG(AH_NULL, HAL_DEBUG_UNMASKABLE,
2979                 "FIXME: ar9300_eeprom_def_set_addac called\n");
2980#if 0
2981    MODAL_EEPDEF_HEADER *p_modal;
2982    struct ath_hal_9300 *ahp = AH9300(ah);
2983    ar9300_eeprom_t *eep = &ahp->ah_eeprom.def;
2984    u_int8_t biaslevel;
2985
2986    if (AH_PRIVATE(ah)->ah_macVersion != AR_SREV_VERSION_SOWL) {
2987        return;
2988    }
2989
2990    HALASSERT(owl_get_eepdef_ver(ahp) == AR9300_EEP_VER);
2991
2992    /* Xpa bias levels in eeprom are valid from rev 14.7 */
2993    if (owl_get_eepdef_rev(ahp) < AR9300_EEP_MINOR_VER_7) {
2994        return;
2995    }
2996
2997    if (ahp->ah_emu_eeprom) {
2998        return;
2999    }
3000
3001    p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
3002
3003    if (p_modal->xpa_bias_lvl != 0xff) {
3004        biaslevel = p_modal->xpa_bias_lvl;
3005    } else {
3006        /* Use freqeuncy specific xpa bias level */
3007        u_int16_t reset_freq_bin, freq_bin, freq_count = 0;
3008        CHAN_CENTERS centers;
3009
3010        ar9300_get_channel_centers(ah, chan, &centers);
3011
3012        reset_freq_bin = FREQ2FBIN(centers.synth_center, IEEE80211_IS_CHAN_2GHZ(chan));
3013        freq_bin = p_modal->xpa_bias_lvl_freq[0] & 0xff;
3014        biaslevel = (u_int8_t)(p_modal->xpa_bias_lvl_freq[0] >> 14);
3015
3016        freq_count++;
3017
3018        while (freq_count < 3) {
3019            if (p_modal->xpa_bias_lvl_freq[freq_count] == 0x0) {
3020                break;
3021            }
3022
3023            freq_bin = p_modal->xpa_bias_lvl_freq[freq_count] & 0xff;
3024            if (reset_freq_bin >= freq_bin) {
3025                biaslevel =
3026                    (u_int8_t)(p_modal->xpa_bias_lvl_freq[freq_count] >> 14);
3027            } else {
3028                break;
3029            }
3030            freq_count++;
3031        }
3032    }
3033
3034    /* Apply bias level to the ADDAC values in the INI array */
3035    if (IEEE80211_IS_CHAN_2GHZ(chan)) {
3036        INI_RA(&ahp->ah_ini_addac, 7, 1) =
3037            (INI_RA(&ahp->ah_ini_addac, 7, 1) & (~0x18)) | biaslevel << 3;
3038    } else {
3039        INI_RA(&ahp->ah_ini_addac, 6, 1) =
3040            (INI_RA(&ahp->ah_ini_addac, 6, 1) & (~0xc0)) | biaslevel << 6;
3041    }
3042#endif
3043}
3044
3045u_int
3046ar9300_eeprom_dump_support(struct ath_hal *ah, void **pp_e)
3047{
3048    *pp_e = &(AH9300(ah)->ah_eeprom);
3049    return sizeof(ar9300_eeprom_t);
3050}
3051
3052u_int8_t
3053ar9300_eeprom_get_num_ant_config(struct ath_hal_9300 *ahp,
3054    HAL_FREQ_BAND freq_band)
3055{
3056#if 0
3057    ar9300_eeprom_t  *eep = &ahp->ah_eeprom.def;
3058    MODAL_EEPDEF_HEADER *p_modal =
3059        &(eep->modal_header[HAL_FREQ_BAND_2GHZ == freq_band]);
3060    BASE_EEPDEF_HEADER  *p_base  = &eep->base_eep_header;
3061    u_int8_t         num_ant_config;
3062
3063    num_ant_config = 1; /* default antenna configuration */
3064
3065    if (p_base->version >= 0x0E0D) {
3066        if (p_modal->use_ant1) {
3067            num_ant_config += 1;
3068        }
3069    }
3070
3071    return num_ant_config;
3072#else
3073    return 1;
3074#endif
3075}
3076
3077HAL_STATUS
3078ar9300_eeprom_get_ant_cfg(struct ath_hal_9300 *ahp,
3079  const struct ieee80211_channel *chan,
3080  u_int8_t index, u_int16_t *config)
3081{
3082#if 0
3083    ar9300_eeprom_t  *eep = &ahp->ah_eeprom.def;
3084    MODAL_EEPDEF_HEADER *p_modal = &(eep->modal_header[IEEE80211_IS_CHAN_2GHZ(chan)]);
3085    BASE_EEPDEF_HEADER  *p_base  = &eep->base_eep_header;
3086
3087    switch (index) {
3088    case 0:
3089        *config = p_modal->ant_ctrl_common & 0xFFFF;
3090        return HAL_OK;
3091    case 1:
3092        if (p_base->version >= 0x0E0D) {
3093            if (p_modal->use_ant1) {
3094                *config = ((p_modal->ant_ctrl_common & 0xFFFF0000) >> 16);
3095                return HAL_OK;
3096            }
3097        }
3098        break;
3099    default:
3100        break;
3101    }
3102#endif
3103    return HAL_EINVAL;
3104}
3105
3106u_int8_t*
3107ar9300_eeprom_get_cust_data(struct ath_hal_9300 *ahp)
3108{
3109    return (u_int8_t *)ahp;
3110}
3111
3112#ifdef UNUSED
3113static inline HAL_STATUS
3114ar9300_check_eeprom(struct ath_hal *ah)
3115{
3116#if 0
3117    u_int32_t sum = 0, el;
3118    u_int16_t *eepdata;
3119    int i;
3120    struct ath_hal_9300 *ahp = AH9300(ah);
3121    HAL_BOOL need_swap = AH_FALSE;
3122    ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom.def;
3123    u_int16_t magic, magic2;
3124    int addr;
3125    u_int16_t temp;
3126
3127    /*
3128    ** We need to check the EEPROM data regardless of if it's in flash or
3129    ** in EEPROM.
3130    */
3131
3132    if (!ahp->ah_priv.priv.ah_eeprom_read(
3133            ah, AR9300_EEPROM_MAGIC_OFFSET, &magic))
3134    {
3135        HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Reading Magic # failed\n", __func__);
3136        return AH_FALSE;
3137    }
3138
3139    HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Read Magic = 0x%04X\n", __func__, magic);
3140
3141    if (!ar9300_eep_data_in_flash(ah)) {
3142
3143        if (magic != AR9300_EEPROM_MAGIC) {
3144            magic2 = SWAP16(magic);
3145
3146            if (magic2 == AR9300_EEPROM_MAGIC) {
3147                need_swap = AH_TRUE;
3148                eepdata = (u_int16_t *)(&ahp->ah_eeprom);
3149
3150                for (addr = 0;
3151                     addr < sizeof(ar9300_eeprom_t) / sizeof(u_int16_t);
3152                     addr++)
3153                {
3154                    temp = SWAP16(*eepdata);
3155                    *eepdata = temp;
3156                    eepdata++;
3157
3158                    HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "0x%04X  ", *eepdata);
3159                    if (((addr + 1) % 6) == 0) {
3160                        HALDEBUG(ah, HAL_DEBUG_EEPROM_DUMP, "\n");
3161                    }
3162                }
3163            } else {
3164                HALDEBUG(ah, HAL_DEBUG_EEPROM,
3165                    "Invalid EEPROM Magic. endianness missmatch.\n");
3166                return HAL_EEBADSUM;
3167            }
3168        }
3169    } else {
3170        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3171                 "EEPROM being read from flash @0x%p\n", AH_PRIVATE(ah)->ah_st);
3172    }
3173
3174    HALDEBUG(ah, HAL_DEBUG_EEPROM, "need_swap = %s.\n", need_swap?"True":"False");
3175
3176    if (need_swap) {
3177        el = SWAP16(ahp->ah_eeprom.def.base_eep_header.length);
3178    } else {
3179        el = ahp->ah_eeprom.def.base_eep_header.length;
3180    }
3181
3182    eepdata = (u_int16_t *)(&ahp->ah_eeprom.def);
3183    for (i = 0;
3184         i < AH_MIN(el, sizeof(ar9300_eeprom_t)) / sizeof(u_int16_t);
3185         i++) {
3186        sum ^= *eepdata++;
3187    }
3188
3189    if (need_swap) {
3190        /*
3191        *  preddy: EEPROM endianness does not match. So change it
3192        *  8bit values in eeprom data structure does not need to be swapped
3193        *  Only >8bits (16 & 32) values need to be swapped
3194        *  If a new 16 or 32 bit field is added to the EEPROM contents,
3195        *  please make sure to swap the field here
3196        */
3197        u_int32_t integer, j;
3198        u_int16_t word;
3199
3200        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3201            "EEPROM Endianness is not native.. Changing \n");
3202
3203        /* convert Base Eep header */
3204        word = SWAP16(eep->base_eep_header.length);
3205        eep->base_eep_header.length = word;
3206
3207        word = SWAP16(eep->base_eep_header.checksum);
3208        eep->base_eep_header.checksum = word;
3209
3210        word = SWAP16(eep->base_eep_header.version);
3211        eep->base_eep_header.version = word;
3212
3213        word = SWAP16(eep->base_eep_header.reg_dmn[0]);
3214        eep->base_eep_header.reg_dmn[0] = word;
3215
3216        word = SWAP16(eep->base_eep_header.reg_dmn[1]);
3217        eep->base_eep_header.reg_dmn[1] = word;
3218
3219        word = SWAP16(eep->base_eep_header.rf_silent);
3220        eep->base_eep_header.rf_silent = word;
3221
3222        word = SWAP16(eep->base_eep_header.blue_tooth_options);
3223        eep->base_eep_header.blue_tooth_options = word;
3224
3225        word = SWAP16(eep->base_eep_header.device_cap);
3226        eep->base_eep_header.device_cap = word;
3227
3228        /* convert Modal Eep header */
3229        for (j = 0; j < ARRAY_LENGTH(eep->modal_header); j++) {
3230            MODAL_EEPDEF_HEADER *p_modal = &eep->modal_header[j];
3231            integer = SWAP32(p_modal->ant_ctrl_common);
3232            p_modal->ant_ctrl_common = integer;
3233
3234            for (i = 0; i < AR9300_MAX_CHAINS; i++) {
3235                integer = SWAP32(p_modal->ant_ctrl_chain[i]);
3236                p_modal->ant_ctrl_chain[i] = integer;
3237            }
3238
3239            for (i = 0; i < AR9300_EEPROM_MODAL_SPURS; i++) {
3240                word = SWAP16(p_modal->spur_chans[i].spur_chan);
3241                p_modal->spur_chans[i].spur_chan = word;
3242            }
3243        }
3244    }
3245
3246    /* Check CRC - Attach should fail on a bad checksum */
3247    if (sum != 0xffff || owl_get_eepdef_ver(ahp) != AR9300_EEP_VER ||
3248        owl_get_eepdef_rev(ahp) < AR9300_EEP_NO_BACK_VER) {
3249        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3250            "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
3251            sum, owl_get_eepdef_ver(ahp));
3252        return HAL_EEBADSUM;
3253    }
3254#ifdef EEPROM_DUMP
3255    ar9300_eeprom_def_dump(ah, eep);
3256#endif
3257
3258#if 0
3259#ifdef AH_AR9300_OVRD_TGT_PWR
3260
3261    /*
3262     * 14.4 EEPROM contains low target powers.
3263     * Hardcode until EEPROM > 14.4
3264     */
3265    if (owl_get_eepdef_ver(ahp) == 14 && owl_get_eepdef_rev(ahp) <= 4) {
3266        MODAL_EEPDEF_HEADER *p_modal;
3267
3268#ifdef EEPROM_DUMP
3269        HALDEBUG(ah,  HAL_DEBUG_POWER_OVERRIDE, "Original Target Powers\n");
3270        ar9300_eep_def_dump_tgt_power(ah, eep);
3271#endif
3272        HALDEBUG(ah,  HAL_DEBUG_POWER_OVERRIDE,
3273                "Override Target Powers. EEPROM Version is %d.%d, "
3274                "Device Type %d\n",
3275                owl_get_eepdef_ver(ahp),
3276                owl_get_eepdef_rev(ahp),
3277                eep->base_eep_header.device_type);
3278
3279
3280        ar9300_eep_def_override_tgt_power(ah, eep);
3281
3282        if (eep->base_eep_header.device_type == 5) {
3283            /* for xb72 only: improve transmit EVM for interop */
3284            p_modal = &eep->modal_header[1];
3285            p_modal->tx_frame_to_data_start = 0x23;
3286            p_modal->tx_frame_to_xpa_on = 0x23;
3287            p_modal->tx_frame_to_pa_on = 0x23;
3288    }
3289
3290#ifdef EEPROM_DUMP
3291        HALDEBUG(ah, HAL_DEBUG_POWER_OVERRIDE, "Modified Target Powers\n");
3292        ar9300_eep_def_dump_tgt_power(ah, eep);
3293#endif
3294        }
3295#endif /* AH_AR9300_OVRD_TGT_PWR */
3296#endif
3297#endif
3298    return HAL_OK;
3299}
3300#endif
3301
3302static u_int16_t
3303ar9300_eeprom_get_spur_chan(struct ath_hal *ah, int i, HAL_BOOL is_2ghz)
3304{
3305    u_int16_t   spur_val = AR_NO_SPUR;
3306#if 0
3307    struct ath_hal_9300 *ahp = AH9300(ah);
3308    ar9300_eeprom_t *eep = (ar9300_eeprom_t *)&ahp->ah_eeprom;
3309
3310    HALASSERT(i <  AR_EEPROM_MODAL_SPURS );
3311
3312    HALDEBUG(ah, HAL_DEBUG_ANI,
3313             "Getting spur idx %d is2Ghz. %d val %x\n",
3314             i, is_2ghz,
3315             AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz]);
3316
3317    switch (AH_PRIVATE(ah)->ah_config.ath_hal_spur_mode) {
3318    case SPUR_DISABLE:
3319        /* returns AR_NO_SPUR */
3320        break;
3321    case SPUR_ENABLE_IOCTL:
3322        spur_val = AH_PRIVATE(ah)->ah_config.ath_hal_spur_chans[i][is_2ghz];
3323        HALDEBUG(ah, HAL_DEBUG_ANI,
3324            "Getting spur val from new loc. %d\n", spur_val);
3325        break;
3326    case SPUR_ENABLE_EEPROM:
3327        spur_val = eep->modal_header[is_2ghz].spur_chans[i].spur_chan;
3328        break;
3329
3330    }
3331#endif
3332    return spur_val;
3333}
3334
3335#ifdef UNUSED
3336static inline HAL_BOOL
3337ar9300_fill_eeprom(struct ath_hal *ah)
3338{
3339    return ar9300_eeprom_restore(ah);
3340}
3341#endif
3342
3343u_int16_t
3344ar9300_eeprom_struct_size(void)
3345{
3346    return sizeof(ar9300_eeprom_t);
3347}
3348
3349int ar9300_eeprom_struct_default_many(void)
3350{
3351    return ARRAY_LENGTH(default9300);
3352}
3353
3354
3355ar9300_eeprom_t *
3356ar9300_eeprom_struct_default(int default_index)
3357{
3358    if (default_index >= 0 &&
3359        default_index < ARRAY_LENGTH(default9300))
3360    {
3361        return default9300[default_index];
3362    } else {
3363        return 0;
3364    }
3365}
3366
3367ar9300_eeprom_t *
3368ar9300_eeprom_struct_default_find_by_id(int id)
3369{
3370    int it;
3371
3372    for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
3373        if (default9300[it] != 0 && default9300[it]->template_version == id) {
3374            return default9300[it];
3375        }
3376    }
3377    return 0;
3378}
3379
3380
3381HAL_BOOL
3382ar9300_calibration_data_read_flash(struct ath_hal *ah, long address,
3383    u_int8_t *buffer, int many)
3384{
3385
3386    if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE - 1)) {
3387        return AH_FALSE;
3388    }
3389    return AH_FALSE;
3390}
3391
3392HAL_BOOL
3393ar9300_calibration_data_read_eeprom(struct ath_hal *ah, long address,
3394    u_int8_t *buffer, int many)
3395{
3396    int i;
3397    u_int8_t value[2];
3398    unsigned long eep_addr;
3399    unsigned long byte_addr;
3400    u_int16_t *svalue;
3401
3402    if (((address) < 0) || ((address + many) > AR9300_EEPROM_SIZE)) {
3403        return AH_FALSE;
3404    }
3405
3406    for (i = 0; i < many; i++) {
3407        eep_addr = (u_int16_t) (address + i) / 2;
3408        byte_addr = (u_int16_t) (address + i) % 2;
3409        svalue = (u_int16_t *) value;
3410        if (! ath_hal_eepromRead(ah, eep_addr, svalue)) {
3411            HALDEBUG(ah, HAL_DEBUG_EEPROM,
3412                "%s: Unable to read eeprom region \n", __func__);
3413            return AH_FALSE;
3414        }
3415        buffer[i] = (*svalue >> (8 * byte_addr)) & 0xff;
3416    }
3417    return AH_TRUE;
3418}
3419
3420HAL_BOOL
3421ar9300_calibration_data_read_otp(struct ath_hal *ah, long address,
3422    u_int8_t *buffer, int many, HAL_BOOL is_wifi)
3423{
3424    int i;
3425    unsigned long eep_addr;
3426    unsigned long byte_addr;
3427    u_int32_t svalue;
3428
3429    if (((address) < 0) || ((address + many) > 0x400)) {
3430        return AH_FALSE;
3431    }
3432
3433    for (i = 0; i < many; i++) {
3434        eep_addr = (u_int16_t) (address + i) / 4; /* otp is 4 bytes long???? */
3435        byte_addr = (u_int16_t) (address + i) % 4;
3436        if (!ar9300_otp_read(ah, eep_addr, &svalue, is_wifi)) {
3437            HALDEBUG(ah, HAL_DEBUG_EEPROM,
3438                "%s: Unable to read otp region \n", __func__);
3439            return AH_FALSE;
3440        }
3441        buffer[i] = (svalue >> (8 * byte_addr)) & 0xff;
3442    }
3443    return AH_TRUE;
3444}
3445
3446#ifdef ATH_CAL_NAND_FLASH
3447HAL_BOOL
3448ar9300_calibration_data_read_nand(struct ath_hal *ah, long address,
3449    u_int8_t *buffer, int many)
3450{
3451    int ret_len;
3452    int ret_val = 1;
3453
3454      /* Calling OS based API to read NAND */
3455    ret_val = OS_NAND_FLASH_READ(ATH_CAL_NAND_PARTITION, address, many, &ret_len, buffer);
3456
3457    return (ret_val ? AH_FALSE: AH_TRUE);
3458}
3459#endif
3460
3461HAL_BOOL
3462ar9300_calibration_data_read(struct ath_hal *ah, long address,
3463    u_int8_t *buffer, int many)
3464{
3465    switch (AH9300(ah)->calibration_data_source) {
3466    case calibration_data_flash:
3467        return ar9300_calibration_data_read_flash(ah, address, buffer, many);
3468    case calibration_data_eeprom:
3469        return ar9300_calibration_data_read_eeprom(ah, address, buffer, many);
3470    case calibration_data_otp:
3471        return ar9300_calibration_data_read_otp(ah, address, buffer, many, 1);
3472#ifdef ATH_CAL_NAND_FLASH
3473    case calibration_data_nand:
3474        return ar9300_calibration_data_read_nand(ah,address,buffer,many);
3475#endif
3476
3477    }
3478    return AH_FALSE;
3479}
3480
3481
3482HAL_BOOL
3483ar9300_calibration_data_read_array(struct ath_hal *ah, int address,
3484    u_int8_t *buffer, int many)
3485{
3486    int it;
3487
3488    for (it = 0; it < many; it++) {
3489        (void)ar9300_calibration_data_read(ah, address - it, buffer + it, 1);
3490    }
3491    return AH_TRUE;
3492}
3493
3494
3495/*
3496 * the address where the first configuration block is written
3497 */
3498static const int base_address = 0x3ff;                /* 1KB */
3499static const int base_address_512 = 0x1ff;            /* 512Bytes */
3500
3501/*
3502 * the address where the NAND first configuration block is written
3503 */
3504#ifdef ATH_CAL_NAND_FLASH
3505static const int base_address_nand = AR9300_FLASH_CAL_START_OFFSET;
3506#endif
3507
3508
3509/*
3510 * the lower limit on configuration data
3511 */
3512static const int low_limit = 0x040;
3513
3514/*
3515 * returns size of the physical eeprom in bytes.
3516 * 1024 and 2048 are normal sizes.
3517 * 0 means there is no eeprom.
3518 */
3519int32_t
3520ar9300_eeprom_size(struct ath_hal *ah)
3521{
3522    u_int16_t data;
3523    /*
3524     * first we'll try for 4096 bytes eeprom
3525     */
3526    if (ar9300_eeprom_read_word(ah, 2047, &data)) {
3527        if (data != 0) {
3528            return 4096;
3529        }
3530    }
3531    /*
3532     * then we'll try for 2048 bytes eeprom
3533     */
3534    if (ar9300_eeprom_read_word(ah, 1023, &data)) {
3535        if (data != 0) {
3536            return 2048;
3537        }
3538    }
3539    /*
3540     * then we'll try for 1024 bytes eeprom
3541     */
3542    if (ar9300_eeprom_read_word(ah, 511, &data)) {
3543        if (data != 0) {
3544            return 1024;
3545        }
3546    }
3547    return 0;
3548}
3549
3550/*
3551 * returns size of the physical otp in bytes.
3552 * 1024 and 2048 are normal sizes.
3553 * 0 means there is no eeprom.
3554 */
3555int32_t
3556ar9300_otp_size(struct ath_hal *ah)
3557{
3558    if (AR_SREV_POSEIDON(ah) || AR_SREV_HORNET(ah)) {
3559        return base_address_512+1;
3560    } else {
3561        return base_address+1;
3562    }
3563}
3564
3565
3566/*
3567 * find top of memory
3568 */
3569int
3570ar9300_eeprom_base_address(struct ath_hal *ah)
3571{
3572    int size;
3573
3574    if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
3575		return ar9300_otp_size(ah)-1;
3576	}
3577	else
3578	{
3579		size = ar9300_eeprom_size(ah);
3580		if (size > 0) {
3581			return size - 1;
3582		} else {
3583			return ar9300_otp_size(ah)-1;
3584		}
3585	}
3586}
3587
3588int
3589ar9300_eeprom_volatile(struct ath_hal *ah)
3590{
3591    if (AH9300(ah)->calibration_data_source == calibration_data_otp) {
3592        return 0;        /* no eeprom, use otp */
3593    } else {
3594        return 1;        /* board has eeprom or flash */
3595    }
3596}
3597
3598/*
3599 * need to change this to look for the pcie data in the low parts of memory
3600 * cal data needs to stop a few locations above
3601 */
3602int
3603ar9300_eeprom_low_limit(struct ath_hal *ah)
3604{
3605    return low_limit;
3606}
3607
3608u_int16_t
3609ar9300_compression_checksum(u_int8_t *data, int dsize)
3610{
3611    int it;
3612    int checksum = 0;
3613
3614    for (it = 0; it < dsize; it++) {
3615        checksum += data[it];
3616        checksum &= 0xffff;
3617    }
3618
3619    return checksum;
3620}
3621
3622int
3623ar9300_compression_header_unpack(u_int8_t *best, int *code, int *reference,
3624    int *length, int *major, int *minor)
3625{
3626    unsigned long value[4];
3627
3628    value[0] = best[0];
3629    value[1] = best[1];
3630    value[2] = best[2];
3631    value[3] = best[3];
3632    *code = ((value[0] >> 5) & 0x0007);
3633    *reference = (value[0] & 0x001f) | ((value[1] >> 2) & 0x0020);
3634    *length = ((value[1] << 4) & 0x07f0) | ((value[2] >> 4) & 0x000f);
3635    *major = (value[2] & 0x000f);
3636    *minor = (value[3] & 0x00ff);
3637
3638    return 4;
3639}
3640
3641
3642static HAL_BOOL
3643ar9300_uncompress_block(struct ath_hal *ah, u_int8_t *mptr, int mdata_size,
3644    u_int8_t *block, int size)
3645{
3646    int it;
3647    int spot;
3648    int offset;
3649    int length;
3650
3651    spot = 0;
3652    for (it = 0; it < size; it += (length + 2)) {
3653        offset = block[it];
3654        offset &= 0xff;
3655        spot += offset;
3656        length = block[it + 1];
3657        length &= 0xff;
3658        if (length > 0 && spot >= 0 && spot + length <= mdata_size) {
3659            HALDEBUG(ah, HAL_DEBUG_EEPROM,
3660                "%s: Restore at %d: spot=%d offset=%d length=%d\n",
3661                __func__, it, spot, offset, length);
3662            OS_MEMCPY(&mptr[spot], &block[it + 2], length);
3663            spot += length;
3664        } else if (length > 0) {
3665            HALDEBUG(ah, HAL_DEBUG_EEPROM,
3666                "%s: Bad restore at %d: spot=%d offset=%d length=%d\n",
3667                __func__, it, spot, offset, length);
3668            return AH_FALSE;
3669        }
3670    }
3671    return AH_TRUE;
3672}
3673
3674static int
3675ar9300_eeprom_restore_internal_address(struct ath_hal *ah,
3676    ar9300_eeprom_t *mptr, int mdata_size, int cptr, u_int8_t blank)
3677{
3678    u_int8_t word[MOUTPUT];
3679    ar9300_eeprom_t *dptr; /* was uint8 */
3680    int code;
3681    int reference, length, major, minor;
3682    int osize;
3683    int it;
3684    int restored;
3685    u_int16_t checksum, mchecksum;
3686
3687    restored = 0;
3688    for (it = 0; it < MSTATE; it++) {
3689        (void) ar9300_calibration_data_read_array(
3690            ah, cptr, word, compression_header_length);
3691        if (word[0] == blank && word[1] == blank && word[2] == blank && word[3] == blank)
3692        {
3693            break;
3694        }
3695        ar9300_compression_header_unpack(
3696            word, &code, &reference, &length, &major, &minor);
3697        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3698            "%s: Found block at %x: "
3699            "code=%d ref=%d length=%d major=%d minor=%d\n",
3700            __func__, cptr, code, reference, length, major, minor);
3701#ifdef DONTUSE
3702        if (length >= 1024) {
3703            HALDEBUG(ah, HAL_DEBUG_EEPROM, "%s: Skipping bad header\n", __func__);
3704            cptr -= compression_header_length;
3705            continue;
3706        }
3707#endif
3708        osize = length;
3709        (void) ar9300_calibration_data_read_array(
3710            ah, cptr, word,
3711            compression_header_length + osize + compression_checksum_length);
3712        checksum = ar9300_compression_checksum(
3713            &word[compression_header_length], length);
3714        mchecksum =
3715            word[compression_header_length + osize] |
3716            (word[compression_header_length + osize + 1] << 8);
3717        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3718            "%s: checksum %x %x\n", __func__, checksum, mchecksum);
3719        if (checksum == mchecksum) {
3720            switch (code) {
3721            case _compress_none:
3722                if (length != mdata_size) {
3723                    HALDEBUG(ah, HAL_DEBUG_EEPROM,
3724                        "%s: EEPROM structure size mismatch "
3725                        "memory=%d eeprom=%d\n", __func__, mdata_size, length);
3726                    return -1;
3727                }
3728                OS_MEMCPY((u_int8_t *)mptr,
3729                    (u_int8_t *)(word + compression_header_length), length);
3730                HALDEBUG(ah, HAL_DEBUG_EEPROM,
3731                    "%s: restored eeprom %d: uncompressed, length %d\n",
3732                    __func__, it, length);
3733                restored = 1;
3734                break;
3735#ifdef UNUSED
3736            case _compress_lzma:
3737                if (reference == reference_current) {
3738                    dptr = mptr;
3739                } else {
3740                    dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
3741                        reference);
3742                    if (dptr == 0) {
3743                        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3744                            "%s: Can't find reference eeprom struct %d\n",
3745                            __func__, reference);
3746                        goto done;
3747                    }
3748                }
3749                usize = -1;
3750                if (usize != mdata_size) {
3751                    HALDEBUG(ah, HAL_DEBUG_EEPROM,
3752                        "%s: uncompressed data is wrong size %d %d\n",
3753                        __func__, usize, mdata_size);
3754                    goto done;
3755                }
3756
3757                for (ib = 0; ib < mdata_size; ib++) {
3758                    mptr[ib] = dptr[ib] ^ word[ib + overhead];
3759                }
3760                HALDEBUG(ah, HAL_DEBUG_EEPROM,
3761                    "%s: restored eeprom %d: compressed, "
3762                    "reference %d, length %d\n",
3763                    __func__, it, reference, length);
3764                break;
3765            case _compress_pairs:
3766                if (reference == reference_current) {
3767                    dptr = mptr;
3768                } else {
3769                    dptr = (u_int8_t *)ar9300_eeprom_struct_default_find_by_id(
3770                        reference);
3771                    if (dptr == 0) {
3772                        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3773                            "%s: Can't find the reference "
3774                            "eeprom structure %d\n",
3775                            __func__, reference);
3776                        goto done;
3777                    }
3778                }
3779                HALDEBUG(ah, HAL_DEBUG_EEPROM,
3780                    "%s: restored eeprom %d: "
3781                    "pairs, reference %d, length %d,\n",
3782                    __func__, it, reference, length);
3783                break;
3784#endif
3785            case _compress_block:
3786                if (reference == reference_current) {
3787                    dptr = mptr;
3788                } else {
3789                    dptr = ar9300_eeprom_struct_default_find_by_id(reference);
3790                    if (dptr == 0) {
3791                        HALDEBUG(ah, HAL_DEBUG_EEPROM,
3792                            "%s: cant find reference eeprom struct %d\n",
3793                            __func__, reference);
3794                        break;
3795                    }
3796                    OS_MEMCPY(mptr, dptr, mdata_size);
3797                }
3798
3799                HALDEBUG(ah, HAL_DEBUG_EEPROM,
3800                    "%s: restore eeprom %d: block, reference %d, length %d\n",
3801                    __func__, it, reference, length);
3802                (void) ar9300_uncompress_block(ah,
3803                    (u_int8_t *) mptr, mdata_size,
3804                    (u_int8_t *) (word + compression_header_length), length);
3805                restored = 1;
3806                break;
3807            default:
3808                HALDEBUG(ah, HAL_DEBUG_EEPROM,
3809                    "%s: unknown compression code %d\n", __func__, code);
3810                break;
3811            }
3812        } else {
3813            HALDEBUG(ah, HAL_DEBUG_EEPROM,
3814                "%s: skipping block with bad checksum\n", __func__);
3815        }
3816        cptr -= compression_header_length + osize + compression_checksum_length;
3817    }
3818
3819    if (!restored) {
3820        cptr = -1;
3821    }
3822    return cptr;
3823}
3824
3825static int
3826ar9300_eeprom_restore_from_dram(struct ath_hal *ah, ar9300_eeprom_t *mptr,
3827    int mdata_size)
3828{
3829    struct ath_hal_9300 *ahp = AH9300(ah);
3830#if !defined(USE_PLATFORM_FRAMEWORK)
3831    char *cal_ptr;
3832#endif
3833
3834    HALASSERT(mdata_size > 0);
3835
3836    /* if cal_in_flash is AH_TRUE, the address sent by LMAC to HAL
3837       (i.e. ah->ah_st) is corresponding to Flash. so return from
3838       here if ar9300_eep_data_in_flash(ah) returns AH_TRUE */
3839    if(ar9300_eep_data_in_flash(ah))
3840        return -1;
3841
3842#if 0
3843    /* check if LMAC sent DRAM address is valid */
3844    if (!(uintptr_t)(AH_PRIVATE(ah)->ah_st)) {
3845        return -1;
3846    }
3847#endif
3848
3849    /* When calibration data is from host, Host will copy the
3850       compressed data to the predefined DRAM location saved at ah->ah_st */
3851#if 0
3852    ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
3853    ahp->ah_cal_mem = OS_REMAP((uintptr_t)(AH_PRIVATE(ah)->ah_st),
3854							HOST_CALDATA_SIZE);
3855#endif
3856    if (!ahp->ah_cal_mem)
3857    {
3858       HALDEBUG(ah, HAL_DEBUG_EEPROM,"%s: can't remap dram region\n", __func__);
3859       return -1;
3860    }
3861#if !defined(USE_PLATFORM_FRAMEWORK)
3862    cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
3863    OS_MEMCPY(mptr, cal_ptr, mdata_size);
3864#else
3865    OS_MEMCPY(mptr, ahp->ah_cal_mem, mdata_size);
3866#endif
3867
3868    if (mptr->eeprom_version   == 0xff ||
3869        mptr->template_version == 0xff ||
3870        mptr->eeprom_version   == 0    ||
3871        mptr->template_version == 0)
3872    {
3873        /* The board is uncalibrated */
3874        return -1;
3875    }
3876    if (mptr->eeprom_version != 0x2)
3877    {
3878        return -1;
3879    }
3880
3881    return mdata_size;
3882
3883}
3884
3885static int
3886ar9300_eeprom_restore_from_flash(struct ath_hal *ah, ar9300_eeprom_t *mptr,
3887    int mdata_size)
3888{
3889    struct ath_hal_9300 *ahp = AH9300(ah);
3890    char *cal_ptr;
3891
3892    HALASSERT(mdata_size > 0);
3893
3894    if (!ahp->ah_cal_mem) {
3895        return -1;
3896    }
3897
3898    ath_hal_printf(ah, "Restoring Cal data from Flash\n");
3899    /*
3900     * When calibration data is saved in flash, read
3901     * uncompressed eeprom structure from flash and return
3902     */
3903    cal_ptr = &((char *)(ahp->ah_cal_mem))[AR9300_FLASH_CAL_START_OFFSET];
3904    OS_MEMCPY(mptr, cal_ptr, mdata_size);
3905#if 0
3906    ar9300_swap_eeprom((ar9300_eeprom_t *)mptr); DONE IN ar9300_restore()
3907#endif
3908    if (mptr->eeprom_version   == 0xff ||
3909        mptr->template_version == 0xff ||
3910        mptr->eeprom_version   == 0    ||
3911        mptr->template_version == 0)
3912    {
3913        /* The board is uncalibrated */
3914        return -1;
3915    }
3916    if (mptr->eeprom_version != 0x2)
3917    {
3918        return -1;
3919    }
3920    return mdata_size;
3921}
3922
3923/*
3924 * Read the configuration data from the storage. We try the order with:
3925 * EEPROM, Flash, OTP. If all of above failed, use the default template.
3926 * The data can be put in any specified memory buffer.
3927 *
3928 * Returns -1 on error.
3929 * Returns address of next memory location on success.
3930 */
3931int
3932ar9300_eeprom_restore_internal(struct ath_hal *ah, ar9300_eeprom_t *mptr,
3933    int mdata_size)
3934{
3935    int nptr;
3936
3937    nptr = -1;
3938
3939    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
3940         AH9300(ah)->calibration_data_try == calibration_data_dram) &&
3941         AH9300(ah)->try_dram && nptr < 0)
3942    {
3943        ath_hal_printf(ah, "Restoring Cal data from DRAM\n");
3944        AH9300(ah)->calibration_data_source = calibration_data_dram;
3945        AH9300(ah)->calibration_data_source_address = 0;
3946        nptr = ar9300_eeprom_restore_from_dram(ah, mptr, mdata_size);
3947        if (nptr < 0) {
3948            AH9300(ah)->calibration_data_source = calibration_data_none;
3949            AH9300(ah)->calibration_data_source_address = 0;
3950        }
3951    }
3952
3953    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
3954         AH9300(ah)->calibration_data_try == calibration_data_eeprom) &&
3955        AH9300(ah)->try_eeprom && nptr < 0)
3956    {
3957        /*
3958         * need to look at highest eeprom address as well as at
3959         * base_address=0x3ff where we used to write the data
3960         */
3961        ath_hal_printf(ah, "Restoring Cal data from EEPROM\n");
3962        AH9300(ah)->calibration_data_source = calibration_data_eeprom;
3963        if (AH9300(ah)->calibration_data_try_address != 0) {
3964            AH9300(ah)->calibration_data_source_address =
3965                AH9300(ah)->calibration_data_try_address;
3966            nptr = ar9300_eeprom_restore_internal_address(
3967                ah, mptr, mdata_size,
3968                AH9300(ah)->calibration_data_source_address, 0xff);
3969        } else {
3970            AH9300(ah)->calibration_data_source_address =
3971                ar9300_eeprom_base_address(ah);
3972            nptr = ar9300_eeprom_restore_internal_address(
3973                ah, mptr, mdata_size,
3974                AH9300(ah)->calibration_data_source_address, 0xff);
3975            if (nptr < 0 &&
3976                AH9300(ah)->calibration_data_source_address != base_address)
3977            {
3978                AH9300(ah)->calibration_data_source_address = base_address;
3979                nptr = ar9300_eeprom_restore_internal_address(
3980                    ah, mptr, mdata_size,
3981                    AH9300(ah)->calibration_data_source_address, 0xff);
3982            }
3983        }
3984        if (nptr < 0) {
3985            AH9300(ah)->calibration_data_source = calibration_data_none;
3986            AH9300(ah)->calibration_data_source_address = 0;
3987        }
3988    }
3989
3990    /*
3991     * ##### should be an ifdef test for any AP usage,
3992     * either in driver or in nart
3993     */
3994    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
3995         AH9300(ah)->calibration_data_try == calibration_data_flash) &&
3996        AH9300(ah)->try_flash && nptr < 0)
3997    {
3998        ath_hal_printf(ah, "Restoring Cal data from Flash\n");
3999        AH9300(ah)->calibration_data_source = calibration_data_flash;
4000        /* how are we supposed to set this for flash? */
4001        AH9300(ah)->calibration_data_source_address = 0;
4002        nptr = ar9300_eeprom_restore_from_flash(ah, mptr, mdata_size);
4003        if (nptr < 0) {
4004            AH9300(ah)->calibration_data_source = calibration_data_none;
4005            AH9300(ah)->calibration_data_source_address = 0;
4006        }
4007    }
4008
4009    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4010         AH9300(ah)->calibration_data_try == calibration_data_otp) &&
4011        AH9300(ah)->try_otp && nptr < 0)
4012    {
4013        ath_hal_printf(ah, "Restoring Cal data from OTP\n");
4014        AH9300(ah)->calibration_data_source = calibration_data_otp;
4015        if (AH9300(ah)->calibration_data_try_address != 0) {
4016            AH9300(ah)->calibration_data_source_address =
4017                AH9300(ah)->calibration_data_try_address;
4018		} else {
4019            AH9300(ah)->calibration_data_source_address =
4020                ar9300_eeprom_base_address(ah);
4021		}
4022        nptr = ar9300_eeprom_restore_internal_address(
4023            ah, mptr, mdata_size, AH9300(ah)->calibration_data_source_address, 0);
4024        if (nptr < 0) {
4025            AH9300(ah)->calibration_data_source = calibration_data_none;
4026            AH9300(ah)->calibration_data_source_address = 0;
4027        }
4028    }
4029
4030#ifdef ATH_CAL_NAND_FLASH
4031    if ((AH9300(ah)->calibration_data_try == calibration_data_none ||
4032         AH9300(ah)->calibration_data_try == calibration_data_nand) &&
4033        AH9300(ah)->try_nand && nptr < 0)
4034    {
4035        AH9300(ah)->calibration_data_source = calibration_data_nand;
4036        AH9300(ah)->calibration_data_source_address = ((unsigned int)(AH_PRIVATE(ah)->ah_st)) + base_address_nand;
4037        if(ar9300_calibration_data_read(
4038            ah, AH9300(ah)->calibration_data_source_address,
4039            (u_int8_t *)mptr, mdata_size) == AH_TRUE)
4040        {
4041            nptr = mdata_size;
4042        }
4043        /*nptr=ar9300EepromRestoreInternalAddress(ah, mptr, mdataSize, CalibrationDataSourceAddress);*/
4044        if(nptr < 0)
4045        {
4046            AH9300(ah)->calibration_data_source = calibration_data_none;
4047            AH9300(ah)->calibration_data_source_address = 0;
4048        }
4049    }
4050#endif
4051    if (nptr < 0) {
4052        ath_hal_printf(ah, "%s[%d] No vaid CAL, calling default template\n",
4053            __func__, __LINE__);
4054        nptr = ar9300_eeprom_restore_something(ah, mptr, mdata_size);
4055    }
4056
4057    return nptr;
4058}
4059
4060/******************************************************************************/
4061/*!
4062**  \brief Eeprom Swapping Function
4063**
4064**  This function will swap the contents of the "longer" EEPROM data items
4065**  to ensure they are consistent with the endian requirements for the platform
4066**  they are being compiled for
4067**
4068**  \param eh    Pointer to the EEPROM data structure
4069**  \return N/A
4070*/
4071#if AH_BYTE_ORDER == AH_BIG_ENDIAN
4072void
4073ar9300_swap_eeprom(ar9300_eeprom_t *eep)
4074{
4075    u_int32_t dword;
4076    u_int16_t word;
4077    int          i;
4078
4079    word = __bswap16(eep->base_eep_header.reg_dmn[0]);
4080    eep->base_eep_header.reg_dmn[0] = word;
4081
4082    word = __bswap16(eep->base_eep_header.reg_dmn[1]);
4083    eep->base_eep_header.reg_dmn[1] = word;
4084
4085    dword = __bswap32(eep->base_eep_header.swreg);
4086    eep->base_eep_header.swreg = dword;
4087
4088    dword = __bswap32(eep->modal_header_2g.ant_ctrl_common);
4089    eep->modal_header_2g.ant_ctrl_common = dword;
4090
4091    dword = __bswap32(eep->modal_header_2g.ant_ctrl_common2);
4092    eep->modal_header_2g.ant_ctrl_common2 = dword;
4093
4094    dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht20);
4095    eep->modal_header_2g.paprd_rate_mask_ht20 = dword;
4096
4097    dword = __bswap32(eep->modal_header_2g.paprd_rate_mask_ht40);
4098    eep->modal_header_2g.paprd_rate_mask_ht40 = dword;
4099
4100    dword = __bswap32(eep->modal_header_5g.ant_ctrl_common);
4101    eep->modal_header_5g.ant_ctrl_common = dword;
4102
4103    dword = __bswap32(eep->modal_header_5g.ant_ctrl_common2);
4104    eep->modal_header_5g.ant_ctrl_common2 = dword;
4105
4106    dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht20);
4107    eep->modal_header_5g.paprd_rate_mask_ht20 = dword;
4108
4109    dword = __bswap32(eep->modal_header_5g.paprd_rate_mask_ht40);
4110    eep->modal_header_5g.paprd_rate_mask_ht40 = dword;
4111
4112    for (i = 0; i < OSPREY_MAX_CHAINS; i++) {
4113        word = __bswap16(eep->modal_header_2g.ant_ctrl_chain[i]);
4114        eep->modal_header_2g.ant_ctrl_chain[i] = word;
4115
4116        word = __bswap16(eep->modal_header_5g.ant_ctrl_chain[i]);
4117        eep->modal_header_5g.ant_ctrl_chain[i] = word;
4118    }
4119}
4120
4121void ar9300_eeprom_template_swap(void)
4122{
4123    int it;
4124    ar9300_eeprom_t *dptr;
4125
4126    for (it = 0; it < ARRAY_LENGTH(default9300); it++) {
4127        dptr = ar9300_eeprom_struct_default(it);
4128        if (dptr != 0) {
4129            ar9300_swap_eeprom(dptr);
4130        }
4131    }
4132}
4133#endif
4134
4135
4136/*
4137 * Restore the configuration structure by reading the eeprom.
4138 * This function destroys any existing in-memory structure content.
4139 */
4140HAL_BOOL
4141ar9300_eeprom_restore(struct ath_hal *ah)
4142{
4143    struct ath_hal_9300 *ahp = AH9300(ah);
4144    ar9300_eeprom_t *mptr;
4145    int mdata_size;
4146    HAL_BOOL status = AH_FALSE;
4147
4148    mptr = &ahp->ah_eeprom;
4149    mdata_size = ar9300_eeprom_struct_size();
4150
4151    if (mptr != 0 && mdata_size > 0) {
4152#if AH_BYTE_ORDER == AH_BIG_ENDIAN
4153        ar9300_eeprom_template_swap();
4154        ar9300_swap_eeprom(mptr);
4155#endif
4156        /*
4157         * At this point, mptr points to the eeprom data structure
4158         * in it's "default" state.  If this is big endian, swap the
4159         * data structures back to "little endian" form.
4160         */
4161        if (ar9300_eeprom_restore_internal(ah, mptr, mdata_size) >= 0) {
4162            status = AH_TRUE;
4163        }
4164
4165#if AH_BYTE_ORDER == AH_BIG_ENDIAN
4166        /* Second Swap, back to Big Endian */
4167        ar9300_eeprom_template_swap();
4168        ar9300_swap_eeprom(mptr);
4169#endif
4170
4171    }
4172    ahp->ah_2g_paprd_rate_mask_ht40 =
4173        mptr->modal_header_2g.paprd_rate_mask_ht40;
4174    ahp->ah_2g_paprd_rate_mask_ht20 =
4175        mptr->modal_header_2g.paprd_rate_mask_ht20;
4176    ahp->ah_5g_paprd_rate_mask_ht40 =
4177        mptr->modal_header_5g.paprd_rate_mask_ht40;
4178    ahp->ah_5g_paprd_rate_mask_ht20 =
4179        mptr->modal_header_5g.paprd_rate_mask_ht20;
4180    return status;
4181}
4182
4183int32_t ar9300_thermometer_get(struct ath_hal *ah)
4184{
4185    struct ath_hal_9300 *ahp = AH9300(ah);
4186    int thermometer;
4187    thermometer =
4188        (ahp->ah_eeprom.base_eep_header.misc_configuration >> 1) & 0x3;
4189    thermometer--;
4190    return thermometer;
4191}
4192
4193HAL_BOOL ar9300_thermometer_apply(struct ath_hal *ah)
4194{
4195    int thermometer = ar9300_thermometer_get(ah);
4196
4197/* ch0_RXTX4 */
4198/*#define AR_PHY_65NM_CH0_RXTX4       AR_PHY_65NM(ch0_RXTX4)*/
4199#define AR_PHY_65NM_CH1_RXTX4       AR_PHY_65NM(ch1_RXTX4)
4200#define AR_PHY_65NM_CH2_RXTX4       AR_PHY_65NM(ch2_RXTX4)
4201/*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON          0x10000000*/
4202/*#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_S        28*/
4203#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S      29
4204#define AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR        \
4205    (0x1<<AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR_S)
4206
4207    if (thermometer < 0) {
4208        OS_REG_RMW_FIELD(ah,
4209            AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
4210        if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4211            OS_REG_RMW_FIELD(ah,
4212                AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
4213            if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
4214                OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4215                    AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 0);
4216            }
4217        }
4218        OS_REG_RMW_FIELD(ah,
4219            AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4220        if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4221            OS_REG_RMW_FIELD(ah,
4222                AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4223            if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
4224                OS_REG_RMW_FIELD(ah,
4225                    AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4226            }
4227        }
4228    } else {
4229        OS_REG_RMW_FIELD(ah,
4230            AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
4231        if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4232            OS_REG_RMW_FIELD(ah,
4233                AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
4234            if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
4235                OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4236                    AR_PHY_65NM_CH0_RXTX4_THERM_ON_OVR, 1);
4237            }
4238        }
4239        if (thermometer == 0) {
4240            OS_REG_RMW_FIELD(ah,
4241                AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
4242            if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4243                OS_REG_RMW_FIELD(ah,
4244                    AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4245                if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
4246                    OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4247                        AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4248                }
4249            }
4250        } else if (thermometer == 1) {
4251            OS_REG_RMW_FIELD(ah,
4252                AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4253            if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4254                OS_REG_RMW_FIELD(ah,
4255                    AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
4256                if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
4257                    OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4258                        AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4259                }
4260            }
4261        } else if (thermometer == 2) {
4262            OS_REG_RMW_FIELD(ah,
4263                AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4264            if (!AR_SREV_HORNET(ah) && !AR_SREV_POSEIDON(ah)) {
4265                OS_REG_RMW_FIELD(ah,
4266                    AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_CH0_RXTX4_THERM_ON, 0);
4267                if (!AR_SREV_WASP(ah) && !AR_SREV_JUPITER(ah)) {
4268                    OS_REG_RMW_FIELD(ah, AR_PHY_65NM_CH2_RXTX4,
4269                        AR_PHY_65NM_CH0_RXTX4_THERM_ON, 1);
4270                }
4271            }
4272        }
4273    }
4274    return AH_TRUE;
4275}
4276
4277static int32_t ar9300_tuning_caps_params_get(struct ath_hal *ah)
4278{
4279    int tuning_caps_params;
4280    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4281    tuning_caps_params = eep->base_eep_header.params_for_tuning_caps[0];
4282    return tuning_caps_params;
4283}
4284
4285/*
4286 * Read the tuning caps params from eeprom and set to correct register.
4287 * To regulation the frequency accuracy.
4288 */
4289HAL_BOOL ar9300_tuning_caps_apply(struct ath_hal *ah)
4290{
4291    int tuning_caps_params;
4292    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4293    tuning_caps_params = ar9300_tuning_caps_params_get(ah);
4294    if ((eep->base_eep_header.feature_enable & 0x40) >> 6) {
4295        tuning_caps_params &= 0x7f;
4296
4297        if (AR_SREV_HORNET(ah) || AR_SREV_POSEIDON(ah) || AR_SREV_WASP(ah)) {
4298            return AH_TRUE;
4299        } else if (AR_SREV_SCORPION(ah)) {
4300            OS_REG_RMW_FIELD(ah,
4301                AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
4302                tuning_caps_params);
4303            OS_REG_RMW_FIELD(ah,
4304                AR_SCORPION_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
4305                tuning_caps_params);
4306        } else {
4307            OS_REG_RMW_FIELD(ah,
4308                AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPINDAC,
4309                tuning_caps_params);
4310            OS_REG_RMW_FIELD(ah,
4311                AR_OSPREY_CH0_XTAL, AR_OSPREY_CHO_XTAL_CAPOUTDAC,
4312                tuning_caps_params);
4313        }
4314
4315    }
4316    return AH_TRUE;
4317}
4318
4319/*
4320 * Read the tx_frame_to_xpa_on param from eeprom and apply the value to
4321 * correct register.
4322 */
4323HAL_BOOL ar9300_xpa_timing_control_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
4324{
4325    u_int8_t xpa_timing_control;
4326    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4327    if ((eep->base_eep_header.feature_enable & 0x80) >> 7) {
4328		if (AR_SREV_OSPREY(ah) || AR_SREV_AR9580(ah) || AR_SREV_WASP(ah)) {
4329			if (is_2ghz) {
4330                xpa_timing_control = eep->modal_header_2g.tx_frame_to_xpa_on;
4331                OS_REG_RMW_FIELD(ah,
4332						AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAB_ON,
4333						xpa_timing_control);
4334			} else {
4335                xpa_timing_control = eep->modal_header_5g.tx_frame_to_xpa_on;
4336                OS_REG_RMW_FIELD(ah,
4337						AR_PHY_XPA_TIMING_CTL, AR_PHY_XPA_TIMING_CTL_FRAME_XPAA_ON,
4338						xpa_timing_control);
4339			}
4340		}
4341	}
4342    return AH_TRUE;
4343}
4344
4345
4346/*
4347 * Read the xLNA_bias_strength param from eeprom and apply the value to
4348 * correct register.
4349 */
4350HAL_BOOL ar9300_x_lNA_bias_strength_apply(struct ath_hal *ah, HAL_BOOL is_2ghz)
4351{
4352    u_int8_t x_lNABias;
4353    u_int32_t value = 0;
4354    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4355
4356    if ((eep->base_eep_header.misc_configuration & 0x40) >> 6) {
4357        if (AR_SREV_OSPREY(ah)) {
4358            if (is_2ghz) {
4359                x_lNABias = eep->modal_header_2g.xLNA_bias_strength;
4360            } else {
4361                x_lNABias = eep->modal_header_5g.xLNA_bias_strength;
4362            }
4363            value = x_lNABias & ( 0x03 );	// bit0,1 for chain0
4364            OS_REG_RMW_FIELD(ah,
4365					AR_PHY_65NM_CH0_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
4366            value = (x_lNABias >> 2) & ( 0x03 );	// bit2,3 for chain1
4367            OS_REG_RMW_FIELD(ah,
4368					AR_PHY_65NM_CH1_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
4369            value = (x_lNABias >> 4) & ( 0x03 );	// bit4,5 for chain2
4370            OS_REG_RMW_FIELD(ah,
4371					AR_PHY_65NM_CH2_RXTX4, AR_PHY_65NM_RXTX4_XLNA_BIAS, value);
4372        }
4373    }
4374    return AH_TRUE;
4375}
4376
4377
4378/*
4379 * Read EEPROM header info and program the device for correct operation
4380 * given the channel value.
4381 */
4382HAL_BOOL
4383ar9300_eeprom_set_board_values(struct ath_hal *ah, const struct ieee80211_channel *chan)
4384{
4385    HAL_CHANNEL_INTERNAL *ichan = ath_hal_checkchannel(ah, chan);
4386
4387    ar9300_xpa_bias_level_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4388
4389    ar9300_xpa_timing_control_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4390
4391    ar9300_ant_ctrl_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4392    ar9300_drive_strength_apply(ah);
4393
4394    ar9300_x_lNA_bias_strength_apply(ah, IEEE80211_IS_CHAN_2GHZ(chan));
4395
4396	/* wait for Poseidon internal regular turnning */
4397    /* for Hornet we move it before initPLL to avoid an access issue */
4398    /* Function not used when EMULATION. */
4399    if (!AR_SREV_HORNET(ah) && !AR_SREV_WASP(ah)) {
4400        ar9300_internal_regulator_apply(ah);
4401    }
4402
4403    ar9300_attenuation_apply(ah, ichan->channel);
4404    ar9300_quick_drop_apply(ah, ichan->channel);
4405    ar9300_thermometer_apply(ah);
4406    if(!AR_SREV_WASP(ah))
4407    {
4408        ar9300_tuning_caps_apply(ah);
4409    }
4410
4411    ar9300_tx_end_to_xpab_off_apply(ah, ichan->channel);
4412
4413    return AH_TRUE;
4414}
4415
4416u_int8_t *
4417ar9300_eeprom_get_spur_chans_ptr(struct ath_hal *ah, HAL_BOOL is_2ghz)
4418{
4419    ar9300_eeprom_t *eep = &AH9300(ah)->ah_eeprom;
4420
4421    if (is_2ghz) {
4422        return &(eep->modal_header_2g.spur_chans[0]);
4423    } else {
4424        return &(eep->modal_header_5g.spur_chans[0]);
4425    }
4426}
4427
4428static u_int8_t ar9300_eeprom_get_tx_gain_table_number_max(struct ath_hal *ah)
4429{
4430    unsigned long tx_gain_table_max;
4431    tx_gain_table_max = OS_REG_READ_FIELD(ah,
4432        AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX);
4433    return tx_gain_table_max;
4434}
4435
4436u_int8_t ar9300_eeprom_tx_gain_table_index_max_apply(struct ath_hal *ah, u_int16_t channel)
4437{
4438    unsigned int index;
4439    ar9300_eeprom_t *ahp_Eeprom;
4440    struct ath_hal_9300 *ahp = AH9300(ah);
4441
4442    ahp_Eeprom = &ahp->ah_eeprom;
4443
4444    if (ahp_Eeprom->base_ext1.misc_enable == 0)
4445        return AH_FALSE;
4446
4447    if (channel < 4000)
4448    {
4449        index = ahp_Eeprom->modal_header_2g.tx_gain_cap;
4450    }
4451    else
4452    {
4453        index = ahp_Eeprom->modal_header_5g.tx_gain_cap;
4454    }
4455
4456    OS_REG_RMW_FIELD(ah,
4457        AR_PHY_TPC_7, AR_PHY_TPC_7_TX_GAIN_TABLE_MAX, index);
4458    return AH_TRUE;
4459}
4460
4461static u_int8_t ar9300_eeprom_get_pcdac_tx_gain_table_i(struct ath_hal *ah,
4462                                               int i, u_int8_t *pcdac)
4463{
4464    unsigned long tx_gain;
4465    u_int8_t tx_gain_table_max;
4466    tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
4467    if (i <= 0 || i > tx_gain_table_max) {
4468        *pcdac = 0;
4469        return AH_FALSE;
4470    }
4471
4472    tx_gain = OS_REG_READ(ah, AR_PHY_TXGAIN_TAB(1) + i * 4);
4473    *pcdac = ((tx_gain >> 24) & 0xff);
4474    return AH_TRUE;
4475}
4476
4477u_int8_t ar9300_eeprom_set_tx_gain_cap(struct ath_hal *ah,
4478                                               int *tx_gain_max)
4479// pcdac read back from reg, read back value depends on reset 2GHz/5GHz ini
4480// tx_gain_table, this function will be called twice after each
4481// band's calibration.
4482// after 2GHz cal, tx_gain_max[0] has 2GHz, calibration max txgain,
4483// tx_gain_max[1]=-100
4484// after 5GHz cal, tx_gain_max[0],tx_gain_max[1] have calibration
4485// value for both band
4486// reset is on 5GHz, reg reading from tx_gain_table is for 5GHz,
4487// so program can't recalculate 2g.tx_gain_cap at this point.
4488{
4489    int i = 0, ig, im = 0;
4490    u_int8_t pcdac = 0;
4491    u_int8_t tx_gain_table_max;
4492    ar9300_eeprom_t *ahp_Eeprom;
4493    struct ath_hal_9300 *ahp = AH9300(ah);
4494
4495    ahp_Eeprom = &ahp->ah_eeprom;
4496
4497    if (ahp_Eeprom->base_ext1.misc_enable == 0)
4498        return AH_FALSE;
4499
4500    tx_gain_table_max = ar9300_eeprom_get_tx_gain_table_number_max(ah);
4501
4502    for (i = 0; i < 2; i++) {
4503        if (tx_gain_max[i]>-100) {	// -100 didn't cal that band.
4504            if ( i== 0) {
4505                if (tx_gain_max[1]>-100) {
4506                    continue;
4507                    // both band are calibrated, skip 2GHz 2g.tx_gain_cap reset
4508                }
4509            }
4510            for (ig = 1; ig <= tx_gain_table_max; ig++) {
4511                if (ah != 0 && ah->ah_reset != 0)
4512                {
4513                    ar9300_eeprom_get_pcdac_tx_gain_table_i(ah, ig, &pcdac);
4514                    if (pcdac >= tx_gain_max[i])
4515                        break;
4516                }
4517            }
4518            if (ig+1 <= tx_gain_table_max) {
4519                if (pcdac == tx_gain_max[i])
4520                    im = ig;
4521                else
4522                    im = ig + 1;
4523                if (i == 0) {
4524                    ahp_Eeprom->modal_header_2g.tx_gain_cap = im;
4525                } else {
4526                    ahp_Eeprom->modal_header_5g.tx_gain_cap = im;
4527                }
4528            } else {
4529                if (i == 0) {
4530                    ahp_Eeprom->modal_header_2g.tx_gain_cap = ig;
4531                } else {
4532                    ahp_Eeprom->modal_header_5g.tx_gain_cap = ig;
4533                }
4534            }
4535        }
4536    }
4537    return AH_TRUE;
4538}
4539