sysmacros.h revision 185029
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22/*	  All Rights Reserved  	*/
23
24
25/*
26 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29
30#ifndef _SYS_SYSMACROS_H
31#define	_SYS_SYSMACROS_H
32
33#include <sys/param.h>
34
35#ifdef	__cplusplus
36extern "C" {
37#endif
38
39/*
40 * Some macros for units conversion
41 */
42/*
43 * Disk blocks (sectors) and bytes.
44 */
45#define	dtob(DD)	((DD) << DEV_BSHIFT)
46#define	btod(BB)	(((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
47#define	btodt(BB)	((BB) >> DEV_BSHIFT)
48#define	lbtod(BB)	(((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
49
50/* common macros */
51#ifndef MIN
52#define	MIN(a, b)	((a) < (b) ? (a) : (b))
53#endif
54#ifndef MAX
55#define	MAX(a, b)	((a) < (b) ? (b) : (a))
56#endif
57#ifndef ABS
58#define	ABS(a)		((a) < 0 ? -(a) : (a))
59#endif
60
61#ifdef _KERNEL
62
63/*
64 * Convert a single byte to/from binary-coded decimal (BCD).
65 */
66extern unsigned char byte_to_bcd[256];
67extern unsigned char bcd_to_byte[256];
68
69#define	BYTE_TO_BCD(x)	byte_to_bcd[(x) & 0xff]
70#define	BCD_TO_BYTE(x)	bcd_to_byte[(x) & 0xff]
71
72#endif	/* _KERNEL */
73
74/*
75 * WARNING: The device number macros defined here should not be used by device
76 * drivers or user software. Device drivers should use the device functions
77 * defined in the DDI/DKI interface (see also ddi.h). Application software
78 * should make use of the library routines available in makedev(3). A set of
79 * new device macros are provided to operate on the expanded device number
80 * format supported in SVR4. Macro versions of the DDI device functions are
81 * provided for use by kernel proper routines only. Macro routines bmajor(),
82 * major(), minor(), emajor(), eminor(), and makedev() will be removed or
83 * their definitions changed at the next major release following SVR4.
84 */
85
86#define	O_BITSMAJOR	7	/* # of SVR3 major device bits */
87#define	O_BITSMINOR	8	/* # of SVR3 minor device bits */
88#define	O_MAXMAJ	0x7f	/* SVR3 max major value */
89#define	O_MAXMIN	0xff	/* SVR3 max minor value */
90
91
92#define	L_BITSMAJOR32	14	/* # of SVR4 major device bits */
93#define	L_BITSMINOR32	18	/* # of SVR4 minor device bits */
94#define	L_MAXMAJ32	0x3fff	/* SVR4 max major value */
95#define	L_MAXMIN32	0x3ffff	/* MAX minor for 3b2 software drivers. */
96				/* For 3b2 hardware devices the minor is */
97				/* restricted to 256 (0-255) */
98
99#ifdef _LP64
100#define	L_BITSMAJOR	32	/* # of major device bits in 64-bit Solaris */
101#define	L_BITSMINOR	32	/* # of minor device bits in 64-bit Solaris */
102#define	L_MAXMAJ	0xfffffffful	/* max major value */
103#define	L_MAXMIN	0xfffffffful	/* max minor value */
104#else
105#define	L_BITSMAJOR	L_BITSMAJOR32
106#define	L_BITSMINOR	L_BITSMINOR32
107#define	L_MAXMAJ	L_MAXMAJ32
108#define	L_MAXMIN	L_MAXMIN32
109#endif
110
111#if defined(sun)
112#ifdef _KERNEL
113
114/* major part of a device internal to the kernel */
115
116#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
117#define	bmajor(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
118
119/* get internal major part of expanded device number */
120
121#define	getmajor(x)	(major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
122
123/* minor part of a device internal to the kernel */
124
125#define	minor(x)	(minor_t)((x) & O_MAXMIN)
126
127/* get internal minor part of expanded device number */
128
129#define	getminor(x)	(minor_t)((x) & L_MAXMIN)
130
131#else
132
133/* major part of a device external from the kernel (same as emajor below) */
134
135#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
136
137/* minor part of a device external from the kernel  (same as eminor below) */
138
139#define	minor(x)	(minor_t)((x) & O_MAXMIN)
140
141#endif	/* _KERNEL */
142
143/* create old device number */
144
145#define	makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
146
147/* make an new device number */
148
149#define	makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
150
151
152/*
153 * emajor() allows kernel/driver code to print external major numbers
154 * eminor() allows kernel/driver code to print external minor numbers
155 */
156
157#define	emajor(x) \
158	(major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
159	    NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
160
161#define	eminor(x) \
162	(minor_t)((x) & O_MAXMIN)
163
164/*
165 * get external major and minor device
166 * components from expanded device number
167 */
168#define	getemajor(x)	(major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
169			    NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
170#define	geteminor(x)	(minor_t)((x) & L_MAXMIN)
171
172#endif /* sun */
173
174/*
175 * These are versions of the kernel routines for compressing and
176 * expanding long device numbers that don't return errors.
177 */
178#if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
179
180#define	DEVCMPL(x)	(x)
181#define	DEVEXPL(x)	(x)
182
183#else
184
185#define	DEVCMPL(x)	\
186	(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
187	    ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
188	    ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
189
190#define	DEVEXPL(x)	\
191	(((x) == NODEV32) ? NODEV : \
192	makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
193
194#endif /* L_BITSMAJOR32 ... */
195
196/* convert to old (SVR3.2) dev format */
197
198#define	cmpdev(x) \
199	(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
200	    ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
201	    ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
202
203/* convert to new (SVR4) dev format */
204
205#define	expdev(x) \
206	(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
207	    ((x) & O_MAXMIN))
208
209/*
210 * Macro for checking power of 2 address alignment.
211 */
212#define	IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
213
214/*
215 * Macros for counting and rounding.
216 */
217#define	howmany(x, y)	(((x)+((y)-1))/(y))
218#define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
219
220/*
221 * Macro to determine if value is a power of 2
222 */
223#define	ISP2(x)		(((x) & ((x) - 1)) == 0)
224
225/*
226 * Macros for various sorts of alignment and rounding.  The "align" must
227 * be a power of 2.  Often times it is a block, sector, or page.
228 */
229
230/*
231 * return x rounded down to an align boundary
232 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
233 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
234 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
235 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
236 */
237#define	P2ALIGN(x, align)		((x) & -(align))
238
239/*
240 * return x % (mod) align
241 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
242 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
243 */
244#define	P2PHASE(x, align)		((x) & ((align) - 1))
245
246/*
247 * return how much space is left in this block (but if it's perfectly
248 * aligned, return 0).
249 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
250 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
251 */
252#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
253
254/*
255 * return x rounded up to an align boundary
256 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
257 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
258 */
259#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
260
261/*
262 * return the ending address of the block that x is in
263 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
264 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
265 */
266#define	P2END(x, align)			(-(~(x) & -(align)))
267
268/*
269 * return x rounded up to the next phase (offset) within align.
270 * phase should be < align.
271 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
272 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
273 */
274#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
275
276/*
277 * return TRUE if adding len to off would cause it to cross an align
278 * boundary.
279 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
280 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
281 */
282#define	P2BOUNDARY(off, len, align) \
283	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
284
285/*
286 * Return TRUE if they have the same highest bit set.
287 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
288 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
289 */
290#define	P2SAMEHIGHBIT(x, y)		(((x) ^ (y)) < ((x) & (y)))
291
292/*
293 * Typed version of the P2* macros.  These macros should be used to ensure
294 * that the result is correctly calculated based on the data type of (x),
295 * which is passed in as the last argument, regardless of the data
296 * type of the alignment.  For example, if (x) is of type uint64_t,
297 * and we want to round it up to a page boundary using "PAGESIZE" as
298 * the alignment, we can do either
299 *	P2ROUNDUP(x, (uint64_t)PAGESIZE)
300 * or
301 *	P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
302 */
303#define	P2ALIGN_TYPED(x, align, type)	\
304	((type)(x) & -(type)(align))
305#define	P2PHASE_TYPED(x, align, type)	\
306	((type)(x) & ((type)(align) - 1))
307#define	P2NPHASE_TYPED(x, align, type)	\
308	(-(type)(x) & ((type)(align) - 1))
309#define	P2ROUNDUP_TYPED(x, align, type)	\
310	(-(-(type)(x) & -(type)(align)))
311#define	P2END_TYPED(x, align, type)	\
312	(-(~(type)(x) & -(type)(align)))
313#define	P2PHASEUP_TYPED(x, align, phase, type)	\
314	((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
315#define	P2CROSS_TYPED(x, y, align, type)	\
316	(((type)(x) ^ (type)(y)) > (type)(align) - 1)
317#define	P2SAMEHIGHBIT_TYPED(x, y, type) \
318	(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
319
320/*
321 * Macros to atomically increment/decrement a variable.  mutex and var
322 * must be pointers.
323 */
324#define	INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
325#define	DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
326
327/*
328 * Macros to declare bitfields - the order in the parameter list is
329 * Low to High - that is, declare bit 0 first.  We only support 8-bit bitfields
330 * because if a field crosses a byte boundary it's not likely to be meaningful
331 * without reassembly in its nonnative endianness.
332 */
333#if defined(_BIT_FIELDS_LTOH)
334#define	DECL_BITFIELD2(_a, _b)				\
335	uint8_t _a, _b
336#define	DECL_BITFIELD3(_a, _b, _c)			\
337	uint8_t _a, _b, _c
338#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
339	uint8_t _a, _b, _c, _d
340#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
341	uint8_t _a, _b, _c, _d, _e
342#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
343	uint8_t _a, _b, _c, _d, _e, _f
344#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
345	uint8_t _a, _b, _c, _d, _e, _f, _g
346#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
347	uint8_t _a, _b, _c, _d, _e, _f, _g, _h
348#elif defined(_BIT_FIELDS_HTOL)
349#define	DECL_BITFIELD2(_a, _b)				\
350	uint8_t _b, _a
351#define	DECL_BITFIELD3(_a, _b, _c)			\
352	uint8_t _c, _b, _a
353#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
354	uint8_t _d, _c, _b, _a
355#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
356	uint8_t _e, _d, _c, _b, _a
357#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
358	uint8_t _f, _e, _d, _c, _b, _a
359#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
360	uint8_t _g, _f, _e, _d, _c, _b, _a
361#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
362	uint8_t _h, _g, _f, _e, _d, _c, _b, _a
363#else
364#error	One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
365#endif  /* _BIT_FIELDS_LTOH */
366
367#if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)
368
369/* avoid any possibility of clashing with <stddef.h> version */
370
371#define	offsetof(s, m)	((size_t)(&(((s *)0)->m)))
372#endif
373
374#ifdef	__cplusplus
375}
376#endif
377
378#endif	/* _SYS_SYSMACROS_H */
379