1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*	Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T	*/
22/*	  All Rights Reserved  	*/
23
24
25/*
26 * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
27 * Use is subject to license terms.
28 */
29
30#ifndef _SYS_SYSMACROS_H
31#define	_SYS_SYSMACROS_H
32
33#include <sys/param.h>
34#include <sys/isa_defs.h>
35#if defined(__FreeBSD__) && defined(_KERNEL)
36#include <sys/libkern.h>
37#endif
38
39#ifdef	__cplusplus
40extern "C" {
41#endif
42
43/*
44 * Some macros for units conversion
45 */
46/*
47 * Disk blocks (sectors) and bytes.
48 */
49#define	dtob(DD)	((DD) << DEV_BSHIFT)
50#define	btod(BB)	(((BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
51#define	btodt(BB)	((BB) >> DEV_BSHIFT)
52#define	lbtod(BB)	(((offset_t)(BB) + DEV_BSIZE - 1) >> DEV_BSHIFT)
53
54/* common macros */
55#ifndef MIN
56#define	MIN(a, b)	((a) < (b) ? (a) : (b))
57#endif
58#ifndef MAX
59#define	MAX(a, b)	((a) < (b) ? (b) : (a))
60#endif
61#ifndef ABS
62#define	ABS(a)		((a) < 0 ? -(a) : (a))
63#endif
64#ifndef	SIGNOF
65#define	SIGNOF(a)	((a) < 0 ? -1 : (a) > 0)
66#endif
67
68#ifdef _KERNEL
69
70/*
71 * Convert a single byte to/from binary-coded decimal (BCD).
72 */
73extern unsigned char byte_to_bcd[256];
74extern unsigned char bcd_to_byte[256];
75
76#define	BYTE_TO_BCD(x)	byte_to_bcd[(x) & 0xff]
77#define	BCD_TO_BYTE(x)	bcd_to_byte[(x) & 0xff]
78
79#endif	/* _KERNEL */
80
81/*
82 * WARNING: The device number macros defined here should not be used by device
83 * drivers or user software. Device drivers should use the device functions
84 * defined in the DDI/DKI interface (see also ddi.h). Application software
85 * should make use of the library routines available in makedev(3). A set of
86 * new device macros are provided to operate on the expanded device number
87 * format supported in SVR4. Macro versions of the DDI device functions are
88 * provided for use by kernel proper routines only. Macro routines bmajor(),
89 * major(), minor(), emajor(), eminor(), and makedev() will be removed or
90 * their definitions changed at the next major release following SVR4.
91 */
92
93#define	O_BITSMAJOR	7	/* # of SVR3 major device bits */
94#define	O_BITSMINOR	8	/* # of SVR3 minor device bits */
95#define	O_MAXMAJ	0x7f	/* SVR3 max major value */
96#define	O_MAXMIN	0xff	/* SVR3 max minor value */
97
98
99#define	L_BITSMAJOR32	14	/* # of SVR4 major device bits */
100#define	L_BITSMINOR32	18	/* # of SVR4 minor device bits */
101#define	L_MAXMAJ32	0x3fff	/* SVR4 max major value */
102#define	L_MAXMIN32	0x3ffff	/* MAX minor for 3b2 software drivers. */
103				/* For 3b2 hardware devices the minor is */
104				/* restricted to 256 (0-255) */
105
106#ifdef _LP64
107#define	L_BITSMAJOR	32	/* # of major device bits in 64-bit Solaris */
108#define	L_BITSMINOR	32	/* # of minor device bits in 64-bit Solaris */
109#define	L_MAXMAJ	0xfffffffful	/* max major value */
110#define	L_MAXMIN	0xfffffffful	/* max minor value */
111#else
112#define	L_BITSMAJOR	L_BITSMAJOR32
113#define	L_BITSMINOR	L_BITSMINOR32
114#define	L_MAXMAJ	L_MAXMAJ32
115#define	L_MAXMIN	L_MAXMIN32
116#endif
117
118#ifdef illumos
119#ifdef _KERNEL
120
121/* major part of a device internal to the kernel */
122
123#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
124#define	bmajor(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
125
126/* get internal major part of expanded device number */
127
128#define	getmajor(x)	(major_t)((((dev_t)(x)) >> L_BITSMINOR) & L_MAXMAJ)
129
130/* minor part of a device internal to the kernel */
131
132#define	minor(x)	(minor_t)((x) & O_MAXMIN)
133
134/* get internal minor part of expanded device number */
135
136#define	getminor(x)	(minor_t)((x) & L_MAXMIN)
137
138#else
139
140/* major part of a device external from the kernel (same as emajor below) */
141
142#define	major(x)	(major_t)((((unsigned)(x)) >> O_BITSMINOR) & O_MAXMAJ)
143
144/* minor part of a device external from the kernel  (same as eminor below) */
145
146#define	minor(x)	(minor_t)((x) & O_MAXMIN)
147
148#endif	/* _KERNEL */
149
150/* create old device number */
151
152#define	makedev(x, y) (unsigned short)(((x) << O_BITSMINOR) | ((y) & O_MAXMIN))
153
154/* make an new device number */
155
156#define	makedevice(x, y) (dev_t)(((dev_t)(x) << L_BITSMINOR) | ((y) & L_MAXMIN))
157
158
159/*
160 * emajor() allows kernel/driver code to print external major numbers
161 * eminor() allows kernel/driver code to print external minor numbers
162 */
163
164#define	emajor(x) \
165	(major_t)(((unsigned int)(x) >> O_BITSMINOR) > O_MAXMAJ) ? \
166	    NODEV : (((unsigned int)(x) >> O_BITSMINOR) & O_MAXMAJ)
167
168#define	eminor(x) \
169	(minor_t)((x) & O_MAXMIN)
170
171/*
172 * get external major and minor device
173 * components from expanded device number
174 */
175#define	getemajor(x)	(major_t)((((dev_t)(x) >> L_BITSMINOR) > L_MAXMAJ) ? \
176			    NODEV : (((dev_t)(x) >> L_BITSMINOR) & L_MAXMAJ))
177#define	geteminor(x)	(minor_t)((x) & L_MAXMIN)
178#endif /* illumos */
179
180/*
181 * These are versions of the kernel routines for compressing and
182 * expanding long device numbers that don't return errors.
183 */
184#if (L_BITSMAJOR32 == L_BITSMAJOR) && (L_BITSMINOR32 == L_BITSMINOR)
185
186#define	DEVCMPL(x)	(x)
187#define	DEVEXPL(x)	(x)
188
189#else
190
191#define	DEVCMPL(x)	\
192	(dev32_t)((((x) >> L_BITSMINOR) > L_MAXMAJ32 || \
193	    ((x) & L_MAXMIN) > L_MAXMIN32) ? NODEV32 : \
194	    ((((x) >> L_BITSMINOR) << L_BITSMINOR32) | ((x) & L_MAXMIN32)))
195
196#define	DEVEXPL(x)	\
197	(((x) == NODEV32) ? NODEV : \
198	makedevice(((x) >> L_BITSMINOR32) & L_MAXMAJ32, (x) & L_MAXMIN32))
199
200#endif /* L_BITSMAJOR32 ... */
201
202/* convert to old (SVR3.2) dev format */
203
204#define	cmpdev(x) \
205	(o_dev_t)((((x) >> L_BITSMINOR) > O_MAXMAJ || \
206	    ((x) & L_MAXMIN) > O_MAXMIN) ? NODEV : \
207	    ((((x) >> L_BITSMINOR) << O_BITSMINOR) | ((x) & O_MAXMIN)))
208
209/* convert to new (SVR4) dev format */
210
211#define	expdev(x) \
212	(dev_t)(((dev_t)(((x) >> O_BITSMINOR) & O_MAXMAJ) << L_BITSMINOR) | \
213	    ((x) & O_MAXMIN))
214
215/*
216 * Macro for checking power of 2 address alignment.
217 */
218#define	IS_P2ALIGNED(v, a) ((((uintptr_t)(v)) & ((uintptr_t)(a) - 1)) == 0)
219
220/*
221 * Macros for counting and rounding.
222 */
223#define	howmany(x, y)	(((x)+((y)-1))/(y))
224#define	roundup(x, y)	((((x)+((y)-1))/(y))*(y))
225
226/*
227 * Macro to determine if value is a power of 2
228 */
229#define	ISP2(x)		(((x) & ((x) - 1)) == 0)
230
231/*
232 * Macros for various sorts of alignment and rounding.  The "align" must
233 * be a power of 2.  Often times it is a block, sector, or page.
234 */
235
236/*
237 * return x rounded down to an align boundary
238 * eg, P2ALIGN(1200, 1024) == 1024 (1*align)
239 * eg, P2ALIGN(1024, 1024) == 1024 (1*align)
240 * eg, P2ALIGN(0x1234, 0x100) == 0x1200 (0x12*align)
241 * eg, P2ALIGN(0x5600, 0x100) == 0x5600 (0x56*align)
242 */
243#define	P2ALIGN(x, align)		((x) & -(align))
244
245/*
246 * return x % (mod) align
247 * eg, P2PHASE(0x1234, 0x100) == 0x34 (x-0x12*align)
248 * eg, P2PHASE(0x5600, 0x100) == 0x00 (x-0x56*align)
249 */
250#define	P2PHASE(x, align)		((x) & ((align) - 1))
251
252/*
253 * return how much space is left in this block (but if it's perfectly
254 * aligned, return 0).
255 * eg, P2NPHASE(0x1234, 0x100) == 0xcc (0x13*align-x)
256 * eg, P2NPHASE(0x5600, 0x100) == 0x00 (0x56*align-x)
257 */
258#define	P2NPHASE(x, align)		(-(x) & ((align) - 1))
259
260/*
261 * return x rounded up to an align boundary
262 * eg, P2ROUNDUP(0x1234, 0x100) == 0x1300 (0x13*align)
263 * eg, P2ROUNDUP(0x5600, 0x100) == 0x5600 (0x56*align)
264 */
265#define	P2ROUNDUP(x, align)		(-(-(x) & -(align)))
266
267/*
268 * return the ending address of the block that x is in
269 * eg, P2END(0x1234, 0x100) == 0x12ff (0x13*align - 1)
270 * eg, P2END(0x5600, 0x100) == 0x56ff (0x57*align - 1)
271 */
272#define	P2END(x, align)			(-(~(x) & -(align)))
273
274/*
275 * return x rounded up to the next phase (offset) within align.
276 * phase should be < align.
277 * eg, P2PHASEUP(0x1234, 0x100, 0x10) == 0x1310 (0x13*align + phase)
278 * eg, P2PHASEUP(0x5600, 0x100, 0x10) == 0x5610 (0x56*align + phase)
279 */
280#define	P2PHASEUP(x, align, phase)	((phase) - (((phase) - (x)) & -(align)))
281
282/*
283 * return TRUE if adding len to off would cause it to cross an align
284 * boundary.
285 * eg, P2BOUNDARY(0x1234, 0xe0, 0x100) == TRUE (0x1234 + 0xe0 == 0x1314)
286 * eg, P2BOUNDARY(0x1234, 0x50, 0x100) == FALSE (0x1234 + 0x50 == 0x1284)
287 */
288#define	P2BOUNDARY(off, len, align) \
289	(((off) ^ ((off) + (len) - 1)) > (align) - 1)
290
291/*
292 * Return TRUE if they have the same highest bit set.
293 * eg, P2SAMEHIGHBIT(0x1234, 0x1001) == TRUE (the high bit is 0x1000)
294 * eg, P2SAMEHIGHBIT(0x1234, 0x3010) == FALSE (high bit of 0x3010 is 0x2000)
295 */
296#define	P2SAMEHIGHBIT(x, y)		(((x) ^ (y)) < ((x) & (y)))
297
298/*
299 * Typed version of the P2* macros.  These macros should be used to ensure
300 * that the result is correctly calculated based on the data type of (x),
301 * which is passed in as the last argument, regardless of the data
302 * type of the alignment.  For example, if (x) is of type uint64_t,
303 * and we want to round it up to a page boundary using "PAGESIZE" as
304 * the alignment, we can do either
305 *	P2ROUNDUP(x, (uint64_t)PAGESIZE)
306 * or
307 *	P2ROUNDUP_TYPED(x, PAGESIZE, uint64_t)
308 */
309#define	P2ALIGN_TYPED(x, align, type)	\
310	((type)(x) & -(type)(align))
311#define	P2PHASE_TYPED(x, align, type)	\
312	((type)(x) & ((type)(align) - 1))
313#define	P2NPHASE_TYPED(x, align, type)	\
314	(-(type)(x) & ((type)(align) - 1))
315#define	P2ROUNDUP_TYPED(x, align, type)	\
316	(-(-(type)(x) & -(type)(align)))
317#define	P2END_TYPED(x, align, type)	\
318	(-(~(type)(x) & -(type)(align)))
319#define	P2PHASEUP_TYPED(x, align, phase, type)	\
320	((type)(phase) - (((type)(phase) - (type)(x)) & -(type)(align)))
321#define	P2CROSS_TYPED(x, y, align, type)	\
322	(((type)(x) ^ (type)(y)) > (type)(align) - 1)
323#define	P2SAMEHIGHBIT_TYPED(x, y, type) \
324	(((type)(x) ^ (type)(y)) < ((type)(x) & (type)(y)))
325
326/*
327 * Macros to atomically increment/decrement a variable.  mutex and var
328 * must be pointers.
329 */
330#define	INCR_COUNT(var, mutex) mutex_enter(mutex), (*(var))++, mutex_exit(mutex)
331#define	DECR_COUNT(var, mutex) mutex_enter(mutex), (*(var))--, mutex_exit(mutex)
332
333/*
334 * Macros to declare bitfields - the order in the parameter list is
335 * Low to High - that is, declare bit 0 first.  We only support 8-bit bitfields
336 * because if a field crosses a byte boundary it's not likely to be meaningful
337 * without reassembly in its nonnative endianness.
338 */
339#if defined(_BIT_FIELDS_LTOH)
340#define	DECL_BITFIELD2(_a, _b)				\
341	uint8_t _a, _b
342#define	DECL_BITFIELD3(_a, _b, _c)			\
343	uint8_t _a, _b, _c
344#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
345	uint8_t _a, _b, _c, _d
346#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
347	uint8_t _a, _b, _c, _d, _e
348#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
349	uint8_t _a, _b, _c, _d, _e, _f
350#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
351	uint8_t _a, _b, _c, _d, _e, _f, _g
352#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
353	uint8_t _a, _b, _c, _d, _e, _f, _g, _h
354#elif defined(_BIT_FIELDS_HTOL)
355#define	DECL_BITFIELD2(_a, _b)				\
356	uint8_t _b, _a
357#define	DECL_BITFIELD3(_a, _b, _c)			\
358	uint8_t _c, _b, _a
359#define	DECL_BITFIELD4(_a, _b, _c, _d)			\
360	uint8_t _d, _c, _b, _a
361#define	DECL_BITFIELD5(_a, _b, _c, _d, _e)		\
362	uint8_t _e, _d, _c, _b, _a
363#define	DECL_BITFIELD6(_a, _b, _c, _d, _e, _f)		\
364	uint8_t _f, _e, _d, _c, _b, _a
365#define	DECL_BITFIELD7(_a, _b, _c, _d, _e, _f, _g)	\
366	uint8_t _g, _f, _e, _d, _c, _b, _a
367#define	DECL_BITFIELD8(_a, _b, _c, _d, _e, _f, _g, _h)	\
368	uint8_t _h, _g, _f, _e, _d, _c, _b, _a
369#else
370#error	One of _BIT_FIELDS_LTOH or _BIT_FIELDS_HTOL must be defined
371#endif  /* _BIT_FIELDS_LTOH */
372
373#if defined(_KERNEL) && !defined(_KMEMUSER) && !defined(offsetof)
374
375/* avoid any possibility of clashing with <stddef.h> version */
376
377#define	offsetof(s, m)	((size_t)(&(((s *)0)->m)))
378#endif
379
380/*
381 * Find highest one bit set.
382 *      Returns bit number + 1 of highest bit that is set, otherwise returns 0.
383 * High order bit is 31 (or 63 in _LP64 kernel).
384 */
385static __inline int
386highbit(ulong_t i)
387{
388#if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSL)
389	return (flsl(i));
390#else
391	int h = 1;
392
393	if (i == 0)
394		return (0);
395#ifdef _LP64
396	if (i & 0xffffffff00000000ul) {
397		h += 32; i >>= 32;
398	}
399#endif
400	if (i & 0xffff0000) {
401		h += 16; i >>= 16;
402	}
403	if (i & 0xff00) {
404		h += 8; i >>= 8;
405	}
406	if (i & 0xf0) {
407		h += 4; i >>= 4;
408	}
409	if (i & 0xc) {
410		h += 2; i >>= 2;
411	}
412	if (i & 0x2) {
413		h += 1;
414	}
415	return (h);
416#endif
417}
418
419/*
420 * Find highest one bit set.
421 *	Returns bit number + 1 of highest bit that is set, otherwise returns 0.
422 */
423static __inline int
424highbit64(uint64_t i)
425{
426#if defined(__FreeBSD__) && defined(_KERNEL) && defined(HAVE_INLINE_FLSLL)
427	return (flsll(i));
428#else
429	int h = 1;
430
431	if (i == 0)
432		return (0);
433	if (i & 0xffffffff00000000ULL) {
434		h += 32; i >>= 32;
435	}
436	if (i & 0xffff0000) {
437		h += 16; i >>= 16;
438	}
439	if (i & 0xff00) {
440		h += 8; i >>= 8;
441	}
442	if (i & 0xf0) {
443		h += 4; i >>= 4;
444	}
445	if (i & 0xc) {
446		h += 2; i >>= 2;
447	}
448	if (i & 0x2) {
449		h += 1;
450	}
451	return (h);
452#endif
453}
454
455#ifdef	__cplusplus
456}
457#endif
458
459#endif	/* _SYS_SYSMACROS_H */
460