dtrace.h revision 267937
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2012 by Delphix. All rights reserved.
30 */
31
32#ifndef _SYS_DTRACE_H
33#define	_SYS_DTRACE_H
34
35#pragma ident	"%Z%%M%	%I%	%E% SMI"
36
37#ifdef	__cplusplus
38extern "C" {
39#endif
40
41/*
42 * DTrace Dynamic Tracing Software: Kernel Interfaces
43 *
44 * Note: The contents of this file are private to the implementation of the
45 * Solaris system and DTrace subsystem and are subject to change at any time
46 * without notice.  Applications and drivers using these interfaces will fail
47 * to run on future releases.  These interfaces should not be used for any
48 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
49 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
50 */
51
52#ifndef _ASM
53
54#include <sys/types.h>
55#include <sys/modctl.h>
56#include <sys/processor.h>
57#if defined(sun)
58#include <sys/systm.h>
59#else
60#include <sys/param.h>
61#include <sys/linker.h>
62#include <sys/ioccom.h>
63#include <sys/ucred.h>
64typedef int model_t;
65#endif
66#include <sys/ctf_api.h>
67#include <sys/cyclic.h>
68#if defined(sun)
69#include <sys/int_limits.h>
70#else
71#include <sys/stdint.h>
72#endif
73
74/*
75 * DTrace Universal Constants and Typedefs
76 */
77#define	DTRACE_CPUALL		-1	/* all CPUs */
78#define	DTRACE_IDNONE		0	/* invalid probe identifier */
79#define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
80#define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
81#define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
82#define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
83#define	DTRACE_PROVNONE		0	/* invalid provider identifier */
84#define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
85#define	DTRACE_ARGNONE		-1	/* invalid argument index */
86
87#define	DTRACE_PROVNAMELEN	64
88#define	DTRACE_MODNAMELEN	64
89#define	DTRACE_FUNCNAMELEN	128
90#define	DTRACE_NAMELEN		64
91#define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
92				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
93#define	DTRACE_ARGTYPELEN	128
94
95typedef uint32_t dtrace_id_t;		/* probe identifier */
96typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
97typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
98typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
99typedef uint16_t dtrace_actkind_t;	/* action kind */
100typedef int64_t dtrace_optval_t;	/* option value */
101typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
102
103typedef enum dtrace_probespec {
104	DTRACE_PROBESPEC_NONE = -1,
105	DTRACE_PROBESPEC_PROVIDER = 0,
106	DTRACE_PROBESPEC_MOD,
107	DTRACE_PROBESPEC_FUNC,
108	DTRACE_PROBESPEC_NAME
109} dtrace_probespec_t;
110
111/*
112 * DTrace Intermediate Format (DIF)
113 *
114 * The following definitions describe the DTrace Intermediate Format (DIF), a
115 * a RISC-like instruction set and program encoding used to represent
116 * predicates and actions that can be bound to DTrace probes.  The constants
117 * below defining the number of available registers are suggested minimums; the
118 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
119 * registers provided by the current DTrace implementation.
120 */
121#define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
122#define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
123#define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
124#define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
125#define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
126
127#define	DIF_OP_OR	1		/* or	r1, r2, rd */
128#define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
129#define	DIF_OP_AND	3		/* and	r1, r2, rd */
130#define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
131#define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
132#define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
133#define	DIF_OP_ADD	7		/* add	r1, r2, rd */
134#define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
135#define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
136#define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
137#define	DIF_OP_SREM	11		/* srem r1, r2, rd */
138#define	DIF_OP_UREM	12		/* urem r1, r2, rd */
139#define	DIF_OP_NOT	13		/* not	r1, rd */
140#define	DIF_OP_MOV	14		/* mov	r1, rd */
141#define	DIF_OP_CMP	15		/* cmp	r1, r2 */
142#define	DIF_OP_TST	16		/* tst  r1 */
143#define	DIF_OP_BA	17		/* ba	label */
144#define	DIF_OP_BE	18		/* be	label */
145#define	DIF_OP_BNE	19		/* bne	label */
146#define	DIF_OP_BG	20		/* bg	label */
147#define	DIF_OP_BGU	21		/* bgu	label */
148#define	DIF_OP_BGE	22		/* bge	label */
149#define	DIF_OP_BGEU	23		/* bgeu	label */
150#define	DIF_OP_BL	24		/* bl	label */
151#define	DIF_OP_BLU	25		/* blu	label */
152#define	DIF_OP_BLE	26		/* ble	label */
153#define	DIF_OP_BLEU	27		/* bleu	label */
154#define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
155#define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
156#define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
157#define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
158#define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
159#define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
160#define	DIF_OP_LDX	34		/* ldx	[r1], rd */
161#define	DIF_OP_RET	35		/* ret	rd */
162#define	DIF_OP_NOP	36		/* nop */
163#define	DIF_OP_SETX	37		/* setx	intindex, rd */
164#define	DIF_OP_SETS	38		/* sets strindex, rd */
165#define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
166#define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
167#define	DIF_OP_LDGS	41		/* ldgs var, rd */
168#define	DIF_OP_STGS	42		/* stgs var, rs */
169#define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
170#define	DIF_OP_LDTS	44		/* ldts var, rd */
171#define	DIF_OP_STTS	45		/* stts var, rs */
172#define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
173#define	DIF_OP_CALL	47		/* call	subr, rd */
174#define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
175#define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
176#define	DIF_OP_POPTS	50		/* popts */
177#define	DIF_OP_FLUSHTS	51		/* flushts */
178#define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
179#define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
180#define	DIF_OP_STGAA	54		/* stgaa var, rs */
181#define	DIF_OP_STTAA	55		/* sttaa var, rs */
182#define	DIF_OP_LDLS	56		/* ldls	var, rd */
183#define	DIF_OP_STLS	57		/* stls	var, rs */
184#define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
185#define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
186#define	DIF_OP_STB	60		/* stb	r1, [rd] */
187#define	DIF_OP_STH	61		/* sth	r1, [rd] */
188#define	DIF_OP_STW	62		/* stw	r1, [rd] */
189#define	DIF_OP_STX	63		/* stx	r1, [rd] */
190#define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
191#define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
192#define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
193#define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
194#define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
195#define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
196#define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
197#define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
198#define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
199#define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
200#define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
201#define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
202#define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
203#define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
204#define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
205#define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
206
207#define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
208#define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
209#define	DIF_REGISTER_MAX	0xff	/* highest register number */
210#define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
211#define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
212
213#define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
214#define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
215#define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
216
217#define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
218#define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
219#define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
220
221#define	DIF_VAR_ARGS		0x0000	/* arguments array */
222#define	DIF_VAR_REGS		0x0001	/* registers array */
223#define	DIF_VAR_UREGS		0x0002	/* user registers array */
224#define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
225#define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
226#define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
227#define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
228#define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
229#define	DIF_VAR_ID		0x0105	/* probe ID */
230#define	DIF_VAR_ARG0		0x0106	/* first argument */
231#define	DIF_VAR_ARG1		0x0107	/* second argument */
232#define	DIF_VAR_ARG2		0x0108	/* third argument */
233#define	DIF_VAR_ARG3		0x0109	/* fourth argument */
234#define	DIF_VAR_ARG4		0x010a	/* fifth argument */
235#define	DIF_VAR_ARG5		0x010b	/* sixth argument */
236#define	DIF_VAR_ARG6		0x010c	/* seventh argument */
237#define	DIF_VAR_ARG7		0x010d	/* eighth argument */
238#define	DIF_VAR_ARG8		0x010e	/* ninth argument */
239#define	DIF_VAR_ARG9		0x010f	/* tenth argument */
240#define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
241#define	DIF_VAR_CALLER		0x0111	/* caller */
242#define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
243#define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
244#define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
245#define	DIF_VAR_PROBENAME	0x0115	/* probe name */
246#define	DIF_VAR_PID		0x0116	/* process ID */
247#define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
248#define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
249#define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
250#define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
251#define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
252#define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
253#define	DIF_VAR_PPID		0x011d	/* parent process ID */
254#define	DIF_VAR_UID		0x011e	/* process user ID */
255#define	DIF_VAR_GID		0x011f	/* process group ID */
256#define	DIF_VAR_ERRNO		0x0120	/* thread errno */
257#define	DIF_VAR_EXECARGS	0x0121	/* process arguments */
258
259#if !defined(sun)
260#define	DIF_VAR_CPU		0x0200
261#endif
262
263#define	DIF_SUBR_RAND			0
264#define	DIF_SUBR_MUTEX_OWNED		1
265#define	DIF_SUBR_MUTEX_OWNER		2
266#define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
267#define	DIF_SUBR_MUTEX_TYPE_SPIN	4
268#define	DIF_SUBR_RW_READ_HELD		5
269#define	DIF_SUBR_RW_WRITE_HELD		6
270#define	DIF_SUBR_RW_ISWRITER		7
271#define	DIF_SUBR_COPYIN			8
272#define	DIF_SUBR_COPYINSTR		9
273#define	DIF_SUBR_SPECULATION		10
274#define	DIF_SUBR_PROGENYOF		11
275#define	DIF_SUBR_STRLEN			12
276#define	DIF_SUBR_COPYOUT		13
277#define	DIF_SUBR_COPYOUTSTR		14
278#define	DIF_SUBR_ALLOCA			15
279#define	DIF_SUBR_BCOPY			16
280#define	DIF_SUBR_COPYINTO		17
281#define	DIF_SUBR_MSGDSIZE		18
282#define	DIF_SUBR_MSGSIZE		19
283#define	DIF_SUBR_GETMAJOR		20
284#define	DIF_SUBR_GETMINOR		21
285#define	DIF_SUBR_DDI_PATHNAME		22
286#define	DIF_SUBR_STRJOIN		23
287#define	DIF_SUBR_LLTOSTR		24
288#define	DIF_SUBR_BASENAME		25
289#define	DIF_SUBR_DIRNAME		26
290#define	DIF_SUBR_CLEANPATH		27
291#define	DIF_SUBR_STRCHR			28
292#define	DIF_SUBR_STRRCHR		29
293#define	DIF_SUBR_STRSTR			30
294#define	DIF_SUBR_STRTOK			31
295#define	DIF_SUBR_SUBSTR			32
296#define	DIF_SUBR_INDEX			33
297#define	DIF_SUBR_RINDEX			34
298#define	DIF_SUBR_HTONS			35
299#define	DIF_SUBR_HTONL			36
300#define	DIF_SUBR_HTONLL			37
301#define	DIF_SUBR_NTOHS			38
302#define	DIF_SUBR_NTOHL			39
303#define	DIF_SUBR_NTOHLL			40
304#define	DIF_SUBR_INET_NTOP		41
305#define	DIF_SUBR_INET_NTOA		42
306#define	DIF_SUBR_INET_NTOA6		43
307#define	DIF_SUBR_TOUPPER		44
308#define	DIF_SUBR_TOLOWER		45
309#define	DIF_SUBR_MEMREF			46
310#define	DIF_SUBR_TYPEREF		47
311#define	DIF_SUBR_SX_SHARED_HELD		48
312#define	DIF_SUBR_SX_EXCLUSIVE_HELD	49
313#define	DIF_SUBR_SX_ISEXCLUSIVE		50
314#define	DIF_SUBR_MEMSTR			51
315#define	DIF_SUBR_GETF			52
316#define	DIF_SUBR_JSON			53
317#define	DIF_SUBR_STRTOLL		54
318#define	DIF_SUBR_MAX			54	/* max subroutine value */
319
320typedef uint32_t dif_instr_t;
321
322#define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
323#define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
324#define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
325#define	DIF_INSTR_RD(i)			((i) & 0xff)
326#define	DIF_INSTR_RS(i)			((i) & 0xff)
327#define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
328#define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
329#define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
330#define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
331#define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
332#define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
333#define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
334
335#define	DIF_INSTR_FMT(op, r1, r2, d) \
336	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
337
338#define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
339#define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
340#define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
341#define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
342#define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
343#define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
344#define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
345#define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
346#define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
347#define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
348#define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
349#define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
350#define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
351#define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
352#define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
353#define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
354#define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
355#define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
356#define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
357#define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
358#define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
359
360#define	DIF_REG_R0	0		/* %r0 is always set to zero */
361
362/*
363 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
364 * of variables, function and associative array arguments, and the return type
365 * for each DIF object (shown below).  It contains a description of the type,
366 * its size in bytes, and a module identifier.
367 */
368typedef struct dtrace_diftype {
369	uint8_t dtdt_kind;		/* type kind (see below) */
370	uint8_t dtdt_ckind;		/* type kind in CTF */
371	uint8_t dtdt_flags;		/* type flags (see below) */
372	uint8_t dtdt_pad;		/* reserved for future use */
373	uint32_t dtdt_size;		/* type size in bytes (unless string) */
374} dtrace_diftype_t;
375
376#define	DIF_TYPE_CTF		0	/* type is a CTF type */
377#define	DIF_TYPE_STRING		1	/* type is a D string */
378
379#define	DIF_TF_BYREF		0x1	/* type is passed by reference */
380
381/*
382 * A DTrace Intermediate Format variable record is used to describe each of the
383 * variables referenced by a given DIF object.  It contains an integer variable
384 * identifier along with variable scope and properties, as shown below.  The
385 * size of this structure must be sizeof (int) aligned.
386 */
387typedef struct dtrace_difv {
388	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
389	uint32_t dtdv_id;		/* variable reference identifier */
390	uint8_t dtdv_kind;		/* variable kind (see below) */
391	uint8_t dtdv_scope;		/* variable scope (see below) */
392	uint16_t dtdv_flags;		/* variable flags (see below) */
393	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
394} dtrace_difv_t;
395
396#define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
397#define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
398
399#define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
400#define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
401#define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
402
403#define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
404#define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
405
406/*
407 * DTrace Actions
408 *
409 * The upper byte determines the class of the action; the low bytes determines
410 * the specific action within that class.  The classes of actions are as
411 * follows:
412 *
413 *   [ no class ]                  <= May record process- or kernel-related data
414 *   DTRACEACT_PROC                <= Only records process-related data
415 *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
416 *   DTRACEACT_KERNEL              <= Only records kernel-related data
417 *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
418 *   DTRACEACT_SPECULATIVE         <= Speculation-related action
419 *   DTRACEACT_AGGREGATION         <= Aggregating action
420 */
421#define	DTRACEACT_NONE			0	/* no action */
422#define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
423#define	DTRACEACT_EXIT			2	/* exit() action */
424#define	DTRACEACT_PRINTF		3	/* printf() action */
425#define	DTRACEACT_PRINTA		4	/* printa() action */
426#define	DTRACEACT_LIBACT		5	/* library-controlled action */
427#define	DTRACEACT_TRACEMEM		6	/* tracemem() action */
428#define	DTRACEACT_TRACEMEM_DYNSIZE	7	/* dynamic tracemem() size */
429#define	DTRACEACT_PRINTM		8	/* printm() action (BSD) */
430#define	DTRACEACT_PRINTT		9	/* printt() action (BSD) */
431
432#define	DTRACEACT_PROC			0x0100
433#define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
434#define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
435#define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
436#define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
437#define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
438
439#define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
440#define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
441#define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
442#define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
443#define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
444
445#define	DTRACEACT_PROC_CONTROL		0x0300
446
447#define	DTRACEACT_KERNEL		0x0400
448#define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
449#define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
450#define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
451
452#define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
453#define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
454#define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
455#define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
456
457#define	DTRACEACT_SPECULATIVE		0x0600
458#define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
459#define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
460#define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
461
462#define	DTRACEACT_CLASS(x)		((x) & 0xff00)
463
464#define	DTRACEACT_ISDESTRUCTIVE(x)	\
465	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
466	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
467
468#define	DTRACEACT_ISSPECULATIVE(x)	\
469	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
470
471#define	DTRACEACT_ISPRINTFLIKE(x)	\
472	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
473	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
474
475/*
476 * DTrace Aggregating Actions
477 *
478 * These are functions f(x) for which the following is true:
479 *
480 *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
481 *
482 * where x_n is a set of arbitrary data.  Aggregating actions are in their own
483 * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
484 * for easier processing of the aggregation argument and data payload for a few
485 * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
486 */
487#define	DTRACEACT_AGGREGATION		0x0700
488#define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
489#define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
490#define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
491#define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
492#define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
493#define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
494#define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
495#define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
496#define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
497
498#define	DTRACEACT_ISAGG(x)		\
499	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
500
501#define	DTRACE_QUANTIZE_NBUCKETS	\
502	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
503
504#define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
505
506#define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
507	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
508	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
509	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
510	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
511
512#define	DTRACE_LQUANTIZE_STEPSHIFT		48
513#define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
514#define	DTRACE_LQUANTIZE_LEVELSHIFT		32
515#define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
516#define	DTRACE_LQUANTIZE_BASESHIFT		0
517#define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
518
519#define	DTRACE_LQUANTIZE_STEP(x)		\
520	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
521	DTRACE_LQUANTIZE_STEPSHIFT)
522
523#define	DTRACE_LQUANTIZE_LEVELS(x)		\
524	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
525	DTRACE_LQUANTIZE_LEVELSHIFT)
526
527#define	DTRACE_LQUANTIZE_BASE(x)		\
528	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
529	DTRACE_LQUANTIZE_BASESHIFT)
530
531#define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
532#define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
533#define	DTRACE_LLQUANTIZE_LOWSHIFT		32
534#define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
535#define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
536#define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
537#define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
538#define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
539
540#define	DTRACE_LLQUANTIZE_FACTOR(x)		\
541	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
542	DTRACE_LLQUANTIZE_FACTORSHIFT)
543
544#define	DTRACE_LLQUANTIZE_LOW(x)		\
545	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
546	DTRACE_LLQUANTIZE_LOWSHIFT)
547
548#define	DTRACE_LLQUANTIZE_HIGH(x)		\
549	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
550	DTRACE_LLQUANTIZE_HIGHSHIFT)
551
552#define	DTRACE_LLQUANTIZE_NSTEP(x)		\
553	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
554	DTRACE_LLQUANTIZE_NSTEPSHIFT)
555
556#define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
557#define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
558#define	DTRACE_USTACK_ARG(x, y)		\
559	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
560
561#ifndef _LP64
562#if BYTE_ORDER == _BIG_ENDIAN
563#define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
564#else
565#define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
566#endif
567#else
568#define	DTRACE_PTR(type, name)	type *name
569#endif
570
571/*
572 * DTrace Object Format (DOF)
573 *
574 * DTrace programs can be persistently encoded in the DOF format so that they
575 * may be embedded in other programs (for example, in an ELF file) or in the
576 * dtrace driver configuration file for use in anonymous tracing.  The DOF
577 * format is versioned and extensible so that it can be revised and so that
578 * internal data structures can be modified or extended compatibly.  All DOF
579 * structures use fixed-size types, so the 32-bit and 64-bit representations
580 * are identical and consumers can use either data model transparently.
581 *
582 * The file layout is structured as follows:
583 *
584 * +---------------+-------------------+----- ... ----+---- ... ------+
585 * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
586 * | (file header) | (section headers) | section data | section data  |
587 * +---------------+-------------------+----- ... ----+---- ... ------+
588 * |<------------ dof_hdr.dofh_loadsz --------------->|               |
589 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
590 *
591 * The file header stores meta-data including a magic number, data model for
592 * the instrumentation, data encoding, and properties of the DIF code within.
593 * The header describes its own size and the size of the section headers.  By
594 * convention, an array of section headers follows the file header, and then
595 * the data for all loadable sections and unloadable sections.  This permits
596 * consumer code to easily download the headers and all loadable data into the
597 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
598 *
599 * The section headers describe the size, offset, alignment, and section type
600 * for each section.  Sections are described using a set of #defines that tell
601 * the consumer what kind of data is expected.  Sections can contain links to
602 * other sections by storing a dof_secidx_t, an index into the section header
603 * array, inside of the section data structures.  The section header includes
604 * an entry size so that sections with data arrays can grow their structures.
605 *
606 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
607 * are represented themselves as a collection of related DOF sections.  This
608 * permits us to change the set of sections associated with a DIFO over time,
609 * and also permits us to encode DIFOs that contain different sets of sections.
610 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
611 * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
612 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
613 *
614 * This loose coupling of the file structure (header and sections) to the
615 * structure of the DTrace program itself (ECB descriptions, action
616 * descriptions, and DIFOs) permits activities such as relocation processing
617 * to occur in a single pass without having to understand D program structure.
618 *
619 * Finally, strings are always stored in ELF-style string tables along with a
620 * string table section index and string table offset.  Therefore strings in
621 * DOF are always arbitrary-length and not bound to the current implementation.
622 */
623
624#define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
625
626typedef struct dof_hdr {
627	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
628	uint32_t dofh_flags;		/* file attribute flags (if any) */
629	uint32_t dofh_hdrsize;		/* size of file header in bytes */
630	uint32_t dofh_secsize;		/* size of section header in bytes */
631	uint32_t dofh_secnum;		/* number of section headers */
632	uint64_t dofh_secoff;		/* file offset of section headers */
633	uint64_t dofh_loadsz;		/* file size of loadable portion */
634	uint64_t dofh_filesz;		/* file size of entire DOF file */
635	uint64_t dofh_pad;		/* reserved for future use */
636} dof_hdr_t;
637
638#define	DOF_ID_MAG0	0	/* first byte of magic number */
639#define	DOF_ID_MAG1	1	/* second byte of magic number */
640#define	DOF_ID_MAG2	2	/* third byte of magic number */
641#define	DOF_ID_MAG3	3	/* fourth byte of magic number */
642#define	DOF_ID_MODEL	4	/* DOF data model (see below) */
643#define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
644#define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
645#define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
646#define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
647#define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
648#define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
649
650#define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
651#define	DOF_MAG_MAG1	'D'
652#define	DOF_MAG_MAG2	'O'
653#define	DOF_MAG_MAG3	'F'
654
655#define	DOF_MAG_STRING	"\177DOF"
656#define	DOF_MAG_STRLEN	4
657
658#define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
659#define	DOF_MODEL_ILP32	1
660#define	DOF_MODEL_LP64	2
661
662#ifdef _LP64
663#define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
664#else
665#define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
666#endif
667
668#define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
669#define	DOF_ENCODE_LSB	1
670#define	DOF_ENCODE_MSB	2
671
672#if BYTE_ORDER == _BIG_ENDIAN
673#define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
674#else
675#define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
676#endif
677
678#define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
679#define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
680#define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
681
682#define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
683
684typedef uint32_t dof_secidx_t;	/* section header table index type */
685typedef uint32_t dof_stridx_t;	/* string table index type */
686
687#define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
688#define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
689
690typedef struct dof_sec {
691	uint32_t dofs_type;	/* section type (see below) */
692	uint32_t dofs_align;	/* section data memory alignment */
693	uint32_t dofs_flags;	/* section flags (if any) */
694	uint32_t dofs_entsize;	/* size of section entry (if table) */
695	uint64_t dofs_offset;	/* offset of section data within file */
696	uint64_t dofs_size;	/* size of section data in bytes */
697} dof_sec_t;
698
699#define	DOF_SECT_NONE		0	/* null section */
700#define	DOF_SECT_COMMENTS	1	/* compiler comments */
701#define	DOF_SECT_SOURCE		2	/* D program source code */
702#define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
703#define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
704#define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
705#define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
706#define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
707#define	DOF_SECT_STRTAB		8	/* string table */
708#define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
709#define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
710#define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
711#define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
712#define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
713#define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
714#define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
715#define	DOF_SECT_PROBES		16	/* dof_probe_t array */
716#define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
717#define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
718#define	DOF_SECT_INTTAB		19	/* uint64_t array */
719#define	DOF_SECT_UTSNAME	20	/* struct utsname */
720#define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
721#define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
722#define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
723#define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
724#define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
725#define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
726
727#define	DOF_SECF_LOAD		1	/* section should be loaded */
728
729typedef struct dof_ecbdesc {
730	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
731	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
732	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
733	uint32_t dofe_pad;		/* reserved for future use */
734	uint64_t dofe_uarg;		/* user-supplied library argument */
735} dof_ecbdesc_t;
736
737typedef struct dof_probedesc {
738	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
739	dof_stridx_t dofp_provider;	/* provider string */
740	dof_stridx_t dofp_mod;		/* module string */
741	dof_stridx_t dofp_func;		/* function string */
742	dof_stridx_t dofp_name;		/* name string */
743	uint32_t dofp_id;		/* probe identifier (or zero) */
744} dof_probedesc_t;
745
746typedef struct dof_actdesc {
747	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
748	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
749	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
750	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
751	uint64_t dofa_arg;		/* kind-specific argument */
752	uint64_t dofa_uarg;		/* user-supplied argument */
753} dof_actdesc_t;
754
755typedef struct dof_difohdr {
756	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
757	dof_secidx_t dofd_links[1];	/* variable length array of indices */
758} dof_difohdr_t;
759
760typedef struct dof_relohdr {
761	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
762	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
763	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
764} dof_relohdr_t;
765
766typedef struct dof_relodesc {
767	dof_stridx_t dofr_name;		/* string name of relocation symbol */
768	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
769	uint64_t dofr_offset;		/* byte offset for relocation */
770	uint64_t dofr_data;		/* additional type-specific data */
771} dof_relodesc_t;
772
773#define	DOF_RELO_NONE	0		/* empty relocation entry */
774#define	DOF_RELO_SETX	1		/* relocate setx value */
775
776typedef struct dof_optdesc {
777	uint32_t dofo_option;		/* option identifier */
778	dof_secidx_t dofo_strtab;	/* string table, if string option */
779	uint64_t dofo_value;		/* option value or string index */
780} dof_optdesc_t;
781
782typedef uint32_t dof_attr_t;		/* encoded stability attributes */
783
784#define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
785#define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
786#define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
787#define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
788
789typedef struct dof_provider {
790	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
791	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
792	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
793	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
794	dof_stridx_t dofpv_name;	/* provider name string */
795	dof_attr_t dofpv_provattr;	/* provider attributes */
796	dof_attr_t dofpv_modattr;	/* module attributes */
797	dof_attr_t dofpv_funcattr;	/* function attributes */
798	dof_attr_t dofpv_nameattr;	/* name attributes */
799	dof_attr_t dofpv_argsattr;	/* args attributes */
800	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
801} dof_provider_t;
802
803typedef struct dof_probe {
804	uint64_t dofpr_addr;		/* probe base address or offset */
805	dof_stridx_t dofpr_func;	/* probe function string */
806	dof_stridx_t dofpr_name;	/* probe name string */
807	dof_stridx_t dofpr_nargv;	/* native argument type strings */
808	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
809	uint32_t dofpr_argidx;		/* index of first argument mapping */
810	uint32_t dofpr_offidx;		/* index of first offset entry */
811	uint8_t dofpr_nargc;		/* native argument count */
812	uint8_t dofpr_xargc;		/* translated argument count */
813	uint16_t dofpr_noffs;		/* number of offset entries for probe */
814	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
815	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
816	uint16_t dofpr_pad1;		/* reserved for future use */
817	uint32_t dofpr_pad2;		/* reserved for future use */
818} dof_probe_t;
819
820typedef struct dof_xlator {
821	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
822	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
823	dof_stridx_t dofxl_argv;	/* input parameter type strings */
824	uint32_t dofxl_argc;		/* input parameter list length */
825	dof_stridx_t dofxl_type;	/* output type string name */
826	dof_attr_t dofxl_attr;		/* output stability attributes */
827} dof_xlator_t;
828
829typedef struct dof_xlmember {
830	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
831	dof_stridx_t dofxm_name;	/* member name */
832	dtrace_diftype_t dofxm_type;	/* member type */
833} dof_xlmember_t;
834
835typedef struct dof_xlref {
836	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
837	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
838	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
839} dof_xlref_t;
840
841/*
842 * DTrace Intermediate Format Object (DIFO)
843 *
844 * A DIFO is used to store the compiled DIF for a D expression, its return
845 * type, and its string and variable tables.  The string table is a single
846 * buffer of character data into which sets instructions and variable
847 * references can reference strings using a byte offset.  The variable table
848 * is an array of dtrace_difv_t structures that describe the name and type of
849 * each variable and the id used in the DIF code.  This structure is described
850 * above in the DIF section of this header file.  The DIFO is used at both
851 * user-level (in the library) and in the kernel, but the structure is never
852 * passed between the two: the DOF structures form the only interface.  As a
853 * result, the definition can change depending on the presence of _KERNEL.
854 */
855typedef struct dtrace_difo {
856	dif_instr_t *dtdo_buf;		/* instruction buffer */
857	uint64_t *dtdo_inttab;		/* integer table (optional) */
858	char *dtdo_strtab;		/* string table (optional) */
859	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
860	uint_t dtdo_len;		/* length of instruction buffer */
861	uint_t dtdo_intlen;		/* length of integer table */
862	uint_t dtdo_strlen;		/* length of string table */
863	uint_t dtdo_varlen;		/* length of variable table */
864	dtrace_diftype_t dtdo_rtype;	/* return type */
865	uint_t dtdo_refcnt;		/* owner reference count */
866	uint_t dtdo_destructive;	/* invokes destructive subroutines */
867#ifndef _KERNEL
868	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
869	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
870	struct dt_node **dtdo_xlmtab;	/* translator references */
871	uint_t dtdo_krelen;		/* length of krelo table */
872	uint_t dtdo_urelen;		/* length of urelo table */
873	uint_t dtdo_xlmlen;		/* length of translator table */
874#endif
875} dtrace_difo_t;
876
877/*
878 * DTrace Enabling Description Structures
879 *
880 * When DTrace is tracking the description of a DTrace enabling entity (probe,
881 * predicate, action, ECB, record, etc.), it does so in a description
882 * structure.  These structures all end in "desc", and are used at both
883 * user-level and in the kernel -- but (with the exception of
884 * dtrace_probedesc_t) they are never passed between them.  Typically,
885 * user-level will use the description structures when assembling an enabling.
886 * It will then distill those description structures into a DOF object (see
887 * above), and send it into the kernel.  The kernel will again use the
888 * description structures to create a description of the enabling as it reads
889 * the DOF.  When the description is complete, the enabling will be actually
890 * created -- turning it into the structures that represent the enabling
891 * instead of merely describing it.  Not surprisingly, the description
892 * structures bear a strong resemblance to the DOF structures that act as their
893 * conduit.
894 */
895struct dtrace_predicate;
896
897typedef struct dtrace_probedesc {
898	dtrace_id_t dtpd_id;			/* probe identifier */
899	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
900	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
901	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
902	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
903} dtrace_probedesc_t;
904
905typedef struct dtrace_repldesc {
906	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
907	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
908} dtrace_repldesc_t;
909
910typedef struct dtrace_preddesc {
911	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
912	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
913} dtrace_preddesc_t;
914
915typedef struct dtrace_actdesc {
916	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
917	struct dtrace_actdesc *dtad_next;	/* next action */
918	dtrace_actkind_t dtad_kind;		/* kind of action */
919	uint32_t dtad_ntuple;			/* number in tuple */
920	uint64_t dtad_arg;			/* action argument */
921	uint64_t dtad_uarg;			/* user argument */
922	int dtad_refcnt;			/* reference count */
923} dtrace_actdesc_t;
924
925typedef struct dtrace_ecbdesc {
926	dtrace_actdesc_t *dted_action;		/* action description(s) */
927	dtrace_preddesc_t dted_pred;		/* predicate description */
928	dtrace_probedesc_t dted_probe;		/* probe description */
929	uint64_t dted_uarg;			/* library argument */
930	int dted_refcnt;			/* reference count */
931} dtrace_ecbdesc_t;
932
933/*
934 * DTrace Metadata Description Structures
935 *
936 * DTrace separates the trace data stream from the metadata stream.  The only
937 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
938 * timestamp) or (in the case of aggregations) aggregation identifiers.  To
939 * determine the structure of the data, DTrace consumers pass the token to the
940 * kernel, and receive in return a corresponding description of the enabled
941 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
942 * dtrace_aggdesc structure).  Both of these structures are expressed in terms
943 * of record descriptions (via the dtrace_recdesc structure) that describe the
944 * exact structure of the data.  Some record descriptions may also contain a
945 * format identifier; this additional bit of metadata can be retrieved from the
946 * kernel, for which a format description is returned via the dtrace_fmtdesc
947 * structure.  Note that all four of these structures must be bitness-neutral
948 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
949 */
950typedef struct dtrace_recdesc {
951	dtrace_actkind_t dtrd_action;		/* kind of action */
952	uint32_t dtrd_size;			/* size of record */
953	uint32_t dtrd_offset;			/* offset in ECB's data */
954	uint16_t dtrd_alignment;		/* required alignment */
955	uint16_t dtrd_format;			/* format, if any */
956	uint64_t dtrd_arg;			/* action argument */
957	uint64_t dtrd_uarg;			/* user argument */
958} dtrace_recdesc_t;
959
960typedef struct dtrace_eprobedesc {
961	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
962	dtrace_id_t dtepd_probeid;		/* probe ID */
963	uint64_t dtepd_uarg;			/* library argument */
964	uint32_t dtepd_size;			/* total size */
965	int dtepd_nrecs;			/* number of records */
966	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
967} dtrace_eprobedesc_t;
968
969typedef struct dtrace_aggdesc {
970	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
971	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
972	int dtagd_flags;			/* not filled in by kernel */
973	dtrace_aggid_t dtagd_id;		/* aggregation ID */
974	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
975	uint32_t dtagd_size;			/* size in bytes */
976	int dtagd_nrecs;			/* number of records */
977	uint32_t dtagd_pad;			/* explicit padding */
978	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
979} dtrace_aggdesc_t;
980
981typedef struct dtrace_fmtdesc {
982	DTRACE_PTR(char, dtfd_string);		/* format string */
983	int dtfd_length;			/* length of format string */
984	uint16_t dtfd_format;			/* format identifier */
985} dtrace_fmtdesc_t;
986
987#define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
988	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
989	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
990
991#define	DTRACE_SIZEOF_AGGDESC(desc)				\
992	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
993	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
994
995/*
996 * DTrace Option Interface
997 *
998 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
999 * in a DOF image.  The dof_optdesc structure contains an option identifier and
1000 * an option value.  The valid option identifiers are found below; the mapping
1001 * between option identifiers and option identifying strings is maintained at
1002 * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
1003 * following are potentially valid option values:  all positive integers, zero
1004 * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
1005 * predefined tokens as their values; these are defined with
1006 * DTRACEOPT_{option}_{token}.
1007 */
1008#define	DTRACEOPT_BUFSIZE	0	/* buffer size */
1009#define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
1010#define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
1011#define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
1012#define	DTRACEOPT_SPECSIZE	4	/* speculation size */
1013#define	DTRACEOPT_NSPEC		5	/* number of speculations */
1014#define	DTRACEOPT_STRSIZE	6	/* string size */
1015#define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
1016#define	DTRACEOPT_CPU		8	/* CPU to trace */
1017#define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
1018#define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
1019#define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1020#define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1021#define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1022#define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1023#define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1024#define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1025#define	DTRACEOPT_STATUSRATE	17	/* status rate */
1026#define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1027#define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1028#define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1029#define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1030#define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1031#define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1032#define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1033#define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1034#define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1035#define	DTRACEOPT_TEMPORAL	27	/* temporally ordered output */
1036#define	DTRACEOPT_MAX		28	/* number of options */
1037
1038#define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1039
1040#define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1041#define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1042#define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1043
1044#define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1045#define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1046
1047/*
1048 * DTrace Buffer Interface
1049 *
1050 * In order to get a snapshot of the principal or aggregation buffer,
1051 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1052 * structure.  This describes which CPU user-level is interested in, and
1053 * where user-level wishes the kernel to snapshot the buffer to (the
1054 * dtbd_data field).  The kernel uses the same structure to pass back some
1055 * information regarding the buffer:  the size of data actually copied out, the
1056 * number of drops, the number of errors, the offset of the oldest record,
1057 * and the time of the snapshot.
1058 *
1059 * If the buffer policy is a "switch" policy, taking a snapshot of the
1060 * principal buffer has the additional effect of switching the active and
1061 * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1062 * the additional effect of switching the active and inactive buffers.
1063 */
1064typedef struct dtrace_bufdesc {
1065	uint64_t dtbd_size;			/* size of buffer */
1066	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1067	uint32_t dtbd_errors;			/* number of errors */
1068	uint64_t dtbd_drops;			/* number of drops */
1069	DTRACE_PTR(char, dtbd_data);		/* data */
1070	uint64_t dtbd_oldest;			/* offset of oldest record */
1071	uint64_t dtbd_timestamp;		/* hrtime of snapshot */
1072} dtrace_bufdesc_t;
1073
1074/*
1075 * Each record in the buffer (dtbd_data) begins with a header that includes
1076 * the epid and a timestamp.  The timestamp is split into two 4-byte parts
1077 * so that we do not require 8-byte alignment.
1078 */
1079typedef struct dtrace_rechdr {
1080	dtrace_epid_t dtrh_epid;		/* enabled probe id */
1081	uint32_t dtrh_timestamp_hi;		/* high bits of hrtime_t */
1082	uint32_t dtrh_timestamp_lo;		/* low bits of hrtime_t */
1083} dtrace_rechdr_t;
1084
1085#define	DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)			\
1086	((dtrh)->dtrh_timestamp_lo +				\
1087	((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1088
1089#define	DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) {		\
1090	(dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime;		\
1091	(dtrh)->dtrh_timestamp_hi = hrtime >> 32;		\
1092}
1093
1094/*
1095 * DTrace Status
1096 *
1097 * The status of DTrace is relayed via the dtrace_status structure.  This
1098 * structure contains members to count drops other than the capacity drops
1099 * available via the buffer interface (see above).  This consists of dynamic
1100 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1101 * speculative drops (including capacity speculative drops, drops due to busy
1102 * speculative buffers and drops due to unavailable speculative buffers).
1103 * Additionally, the status structure contains a field to indicate the number
1104 * of "fill"-policy buffers have been filled and a boolean field to indicate
1105 * that exit() has been called.  If the dtst_exiting field is non-zero, no
1106 * further data will be generated until tracing is stopped (at which time any
1107 * enablings of the END action will be processed); if user-level sees that
1108 * this field is non-zero, tracing should be stopped as soon as possible.
1109 */
1110typedef struct dtrace_status {
1111	uint64_t dtst_dyndrops;			/* dynamic drops */
1112	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1113	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1114	uint64_t dtst_specdrops;		/* speculative drops */
1115	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1116	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1117	uint64_t dtst_errors;			/* total errors */
1118	uint64_t dtst_filled;			/* number of filled bufs */
1119	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1120	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1121	char dtst_killed;			/* non-zero if killed */
1122	char dtst_exiting;			/* non-zero if exit() called */
1123	char dtst_pad[6];			/* pad out to 64-bit align */
1124} dtrace_status_t;
1125
1126/*
1127 * DTrace Configuration
1128 *
1129 * User-level may need to understand some elements of the kernel DTrace
1130 * configuration in order to generate correct DIF.  This information is
1131 * conveyed via the dtrace_conf structure.
1132 */
1133typedef struct dtrace_conf {
1134	uint_t dtc_difversion;			/* supported DIF version */
1135	uint_t dtc_difintregs;			/* # of DIF integer registers */
1136	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1137	uint_t dtc_ctfmodel;			/* CTF data model */
1138	uint_t dtc_pad[8];			/* reserved for future use */
1139} dtrace_conf_t;
1140
1141/*
1142 * DTrace Faults
1143 *
1144 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1145 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1146 * postprocessing at user-level.  Probe processing faults induce an ERROR
1147 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1148 * the error condition using thse symbolic labels.
1149 */
1150#define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1151#define	DTRACEFLT_BADADDR		1	/* Bad address */
1152#define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1153#define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1154#define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1155#define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1156#define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1157#define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1158#define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1159#define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1160
1161#define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1162
1163/*
1164 * DTrace Argument Types
1165 *
1166 * Because it would waste both space and time, argument types do not reside
1167 * with the probe.  In order to determine argument types for args[X]
1168 * variables, the D compiler queries for argument types on a probe-by-probe
1169 * basis.  (This optimizes for the common case that arguments are either not
1170 * used or used in an untyped fashion.)  Typed arguments are specified with a
1171 * string of the type name in the dtragd_native member of the argument
1172 * description structure.  Typed arguments may be further translated to types
1173 * of greater stability; the provider indicates such a translated argument by
1174 * filling in the dtargd_xlate member with the string of the translated type.
1175 * Finally, the provider may indicate which argument value a given argument
1176 * maps to by setting the dtargd_mapping member -- allowing a single argument
1177 * to map to multiple args[X] variables.
1178 */
1179typedef struct dtrace_argdesc {
1180	dtrace_id_t dtargd_id;			/* probe identifier */
1181	int dtargd_ndx;				/* arg number (-1 iff none) */
1182	int dtargd_mapping;			/* value mapping */
1183	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1184	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1185} dtrace_argdesc_t;
1186
1187/*
1188 * DTrace Stability Attributes
1189 *
1190 * Each DTrace provider advertises the name and data stability of each of its
1191 * probe description components, as well as its architectural dependencies.
1192 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1193 * order to compute the properties of an input program and report them.
1194 */
1195typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1196typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1197
1198#define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1199#define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1200#define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1201#define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1202#define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1203#define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1204#define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1205#define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1206#define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1207
1208#define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1209#define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1210#define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1211#define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1212#define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1213#define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1214#define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1215
1216#define	DTRACE_PRIV_NONE	0x0000
1217#define	DTRACE_PRIV_KERNEL	0x0001
1218#define	DTRACE_PRIV_USER	0x0002
1219#define	DTRACE_PRIV_PROC	0x0004
1220#define	DTRACE_PRIV_OWNER	0x0008
1221#define	DTRACE_PRIV_ZONEOWNER	0x0010
1222
1223#define	DTRACE_PRIV_ALL	\
1224	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1225	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1226
1227typedef struct dtrace_ppriv {
1228	uint32_t dtpp_flags;			/* privilege flags */
1229	uid_t dtpp_uid;				/* user ID */
1230	zoneid_t dtpp_zoneid;			/* zone ID */
1231} dtrace_ppriv_t;
1232
1233typedef struct dtrace_attribute {
1234	dtrace_stability_t dtat_name;		/* entity name stability */
1235	dtrace_stability_t dtat_data;		/* entity data stability */
1236	dtrace_class_t dtat_class;		/* entity data dependency */
1237} dtrace_attribute_t;
1238
1239typedef struct dtrace_pattr {
1240	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1241	dtrace_attribute_t dtpa_mod;		/* module attributes */
1242	dtrace_attribute_t dtpa_func;		/* function attributes */
1243	dtrace_attribute_t dtpa_name;		/* name attributes */
1244	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1245} dtrace_pattr_t;
1246
1247typedef struct dtrace_providerdesc {
1248	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1249	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1250	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1251} dtrace_providerdesc_t;
1252
1253/*
1254 * DTrace Pseudodevice Interface
1255 *
1256 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1257 * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1258 * DTrace.
1259 */
1260#if defined(sun)
1261#define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1262#define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1263#define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1264#define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1265#define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1266#define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1267#define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1268#define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1269#define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1270#define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1271#define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1272#define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1273#define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1274#define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1275#define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1276#define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1277#define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1278#else
1279#define	DTRACEIOC_PROVIDER	_IOWR('x',1,dtrace_providerdesc_t)
1280							/* provider query */
1281#define	DTRACEIOC_PROBES	_IOWR('x',2,dtrace_probedesc_t)
1282							/* probe query */
1283#define	DTRACEIOC_BUFSNAP	_IOW('x',4,dtrace_bufdesc_t *)
1284							/* snapshot buffer */
1285#define	DTRACEIOC_PROBEMATCH	_IOWR('x',5,dtrace_probedesc_t)
1286							/* match probes */
1287typedef struct {
1288	void	*dof;		/* DOF userland address written to driver. */
1289	int	n_matched;	/* # matches returned by driver. */
1290} dtrace_enable_io_t;
1291#define	DTRACEIOC_ENABLE	_IOWR('x',6,dtrace_enable_io_t)
1292							/* enable probes */
1293#define	DTRACEIOC_AGGSNAP	_IOW('x',7,dtrace_bufdesc_t *)
1294							/* snapshot agg. */
1295#define	DTRACEIOC_EPROBE	_IOW('x',8,dtrace_eprobedesc_t)
1296							/* get eprobe desc. */
1297#define	DTRACEIOC_PROBEARG	_IOWR('x',9,dtrace_argdesc_t)
1298							/* get probe arg */
1299#define	DTRACEIOC_CONF		_IOR('x',10,dtrace_conf_t)
1300							/* get config. */
1301#define	DTRACEIOC_STATUS	_IOR('x',11,dtrace_status_t)
1302							/* get status */
1303#define	DTRACEIOC_GO		_IOR('x',12,processorid_t)
1304							/* start tracing */
1305#define	DTRACEIOC_STOP		_IOWR('x',13,processorid_t)
1306							/* stop tracing */
1307#define	DTRACEIOC_AGGDESC	_IOW('x',15,dtrace_aggdesc_t *)
1308							/* get agg. desc. */
1309#define	DTRACEIOC_FORMAT	_IOWR('x',16,dtrace_fmtdesc_t)
1310							/* get format str */
1311#define	DTRACEIOC_DOFGET	_IOW('x',17,dof_hdr_t *)
1312							/* get DOF */
1313#define	DTRACEIOC_REPLICATE	_IOW('x',18,dtrace_repldesc_t)
1314							/* replicate enab */
1315#endif
1316
1317/*
1318 * DTrace Helpers
1319 *
1320 * In general, DTrace establishes probes in processes and takes actions on
1321 * processes without knowing their specific user-level structures.  Instead of
1322 * existing in the framework, process-specific knowledge is contained by the
1323 * enabling D program -- which can apply process-specific knowledge by making
1324 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1325 * operate on user-level data.  However, there may exist some specific probes
1326 * of particular semantic relevance that the application developer may wish to
1327 * explicitly export.  For example, an application may wish to export a probe
1328 * at the point that it begins and ends certain well-defined transactions.  In
1329 * addition to providing probes, programs may wish to offer assistance for
1330 * certain actions.  For example, in highly dynamic environments (e.g., Java),
1331 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1332 * names (the translation from instruction addresses to corresponding symbol
1333 * names may only be possible in situ); these environments may wish to define
1334 * a series of actions to be applied in situ to obtain a meaningful stack
1335 * trace.
1336 *
1337 * These two mechanisms -- user-level statically defined tracing and assisting
1338 * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1339 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1340 * providers, probes and their arguments.  If a helper wishes to provide
1341 * action assistance, probe descriptions and corresponding DIF actions may be
1342 * specified in the helper DOF.  For such helper actions, however, the probe
1343 * description describes the specific helper:  all DTrace helpers have the
1344 * provider name "dtrace" and the module name "helper", and the name of the
1345 * helper is contained in the function name (for example, the ustack() helper
1346 * is named "ustack").  Any helper-specific name may be contained in the name
1347 * (for example, if a helper were to have a constructor, it might be named
1348 * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1349 * action that they are helping is taken.  Helper actions may only return DIF
1350 * expressions, and may only call the following subroutines:
1351 *
1352 *    alloca()      <= Allocates memory out of the consumer's scratch space
1353 *    bcopy()       <= Copies memory to scratch space
1354 *    copyin()      <= Copies memory from user-level into consumer's scratch
1355 *    copyinto()    <= Copies memory into a specific location in scratch
1356 *    copyinstr()   <= Copies a string into a specific location in scratch
1357 *
1358 * Helper actions may only access the following built-in variables:
1359 *
1360 *    curthread     <= Current kthread_t pointer
1361 *    tid           <= Current thread identifier
1362 *    pid           <= Current process identifier
1363 *    ppid          <= Parent process identifier
1364 *    uid           <= Current user ID
1365 *    gid           <= Current group ID
1366 *    execname      <= Current executable name
1367 *    zonename      <= Current zone name
1368 *
1369 * Helper actions may not manipulate or allocate dynamic variables, but they
1370 * may have clause-local and statically-allocated global variables.  The
1371 * helper action variable state is specific to the helper action -- variables
1372 * used by the helper action may not be accessed outside of the helper
1373 * action, and the helper action may not access variables that like outside
1374 * of it.  Helper actions may not load from kernel memory at-large; they are
1375 * restricting to loading current user state (via copyin() and variants) and
1376 * scratch space.  As with probe enablings, helper actions are executed in
1377 * program order.  The result of the helper action is the result of the last
1378 * executing helper expression.
1379 *
1380 * Helpers -- composed of either providers/probes or probes/actions (or both)
1381 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1382 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1383 * encapsulates the name and base address of the user-level library or
1384 * executable publishing the helpers and probes as well as the DOF that
1385 * contains the definitions of those helpers and probes.
1386 *
1387 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1388 * helpers and should no longer be used.  No other ioctls are valid on the
1389 * helper minor node.
1390 */
1391#if defined(sun)
1392#define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1393#define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1394#define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1395#define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1396#else
1397#define	DTRACEHIOC_ADD		_IOWR('z', 1, dof_hdr_t)/* add helper */
1398#define	DTRACEHIOC_REMOVE	_IOW('z', 2, int)	/* remove helper */
1399#define	DTRACEHIOC_ADDDOF	_IOWR('z', 3, dof_helper_t)/* add helper DOF */
1400#endif
1401
1402typedef struct dof_helper {
1403	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1404	uint64_t dofhp_addr;			/* base address of object */
1405	uint64_t dofhp_dof;			/* address of helper DOF */
1406#if !defined(sun)
1407	int gen;
1408#endif
1409} dof_helper_t;
1410
1411#define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1412#define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1413#define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1414#define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1415#define	DTRACEMNRN_CLONE	2		/* first clone minor */
1416
1417#ifdef _KERNEL
1418
1419/*
1420 * DTrace Provider API
1421 *
1422 * The following functions are implemented by the DTrace framework and are
1423 * used to implement separate in-kernel DTrace providers.  Common functions
1424 * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1425 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1426 *
1427 * The provider API has two halves:  the API that the providers consume from
1428 * DTrace, and the API that providers make available to DTrace.
1429 *
1430 * 1 Framework-to-Provider API
1431 *
1432 * 1.1  Overview
1433 *
1434 * The Framework-to-Provider API is represented by the dtrace_pops structure
1435 * that the provider passes to the framework when registering itself.  This
1436 * structure consists of the following members:
1437 *
1438 *   dtps_provide()          <-- Provide all probes, all modules
1439 *   dtps_provide_module()   <-- Provide all probes in specified module
1440 *   dtps_enable()           <-- Enable specified probe
1441 *   dtps_disable()          <-- Disable specified probe
1442 *   dtps_suspend()          <-- Suspend specified probe
1443 *   dtps_resume()           <-- Resume specified probe
1444 *   dtps_getargdesc()       <-- Get the argument description for args[X]
1445 *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1446 *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1447 *   dtps_destroy()          <-- Destroy all state associated with this probe
1448 *
1449 * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1450 *
1451 * 1.2.1  Overview
1452 *
1453 *   Called to indicate that the provider should provide all probes.  If the
1454 *   specified description is non-NULL, dtps_provide() is being called because
1455 *   no probe matched a specified probe -- if the provider has the ability to
1456 *   create custom probes, it may wish to create a probe that matches the
1457 *   specified description.
1458 *
1459 * 1.2.2  Arguments and notes
1460 *
1461 *   The first argument is the cookie as passed to dtrace_register().  The
1462 *   second argument is a pointer to a probe description that the provider may
1463 *   wish to consider when creating custom probes.  The provider is expected to
1464 *   call back into the DTrace framework via dtrace_probe_create() to create
1465 *   any necessary probes.  dtps_provide() may be called even if the provider
1466 *   has made available all probes; the provider should check the return value
1467 *   of dtrace_probe_create() to handle this case.  Note that the provider need
1468 *   not implement both dtps_provide() and dtps_provide_module(); see
1469 *   "Arguments and Notes" for dtrace_register(), below.
1470 *
1471 * 1.2.3  Return value
1472 *
1473 *   None.
1474 *
1475 * 1.2.4  Caller's context
1476 *
1477 *   dtps_provide() is typically called from open() or ioctl() context, but may
1478 *   be called from other contexts as well.  The DTrace framework is locked in
1479 *   such a way that providers may not register or unregister.  This means that
1480 *   the provider may not call any DTrace API that affects its registration with
1481 *   the framework, including dtrace_register(), dtrace_unregister(),
1482 *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1483 *   that the provider may (and indeed, is expected to) call probe-related
1484 *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1485 *   and dtrace_probe_arg().
1486 *
1487 * 1.3  void dtps_provide_module(void *arg, modctl_t *mp)
1488 *
1489 * 1.3.1  Overview
1490 *
1491 *   Called to indicate that the provider should provide all probes in the
1492 *   specified module.
1493 *
1494 * 1.3.2  Arguments and notes
1495 *
1496 *   The first argument is the cookie as passed to dtrace_register().  The
1497 *   second argument is a pointer to a modctl structure that indicates the
1498 *   module for which probes should be created.
1499 *
1500 * 1.3.3  Return value
1501 *
1502 *   None.
1503 *
1504 * 1.3.4  Caller's context
1505 *
1506 *   dtps_provide_module() may be called from open() or ioctl() context, but
1507 *   may also be called from a module loading context.  mod_lock is held, and
1508 *   the DTrace framework is locked in such a way that providers may not
1509 *   register or unregister.  This means that the provider may not call any
1510 *   DTrace API that affects its registration with the framework, including
1511 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1512 *   dtrace_condense().  However, the context is such that the provider may (and
1513 *   indeed, is expected to) call probe-related DTrace routines, including
1514 *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1515 *   that the provider need not implement both dtps_provide() and
1516 *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1517 *   below.
1518 *
1519 * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1520 *
1521 * 1.4.1  Overview
1522 *
1523 *   Called to enable the specified probe.
1524 *
1525 * 1.4.2  Arguments and notes
1526 *
1527 *   The first argument is the cookie as passed to dtrace_register().  The
1528 *   second argument is the identifier of the probe to be enabled.  The third
1529 *   argument is the probe argument as passed to dtrace_probe_create().
1530 *   dtps_enable() will be called when a probe transitions from not being
1531 *   enabled at all to having one or more ECB.  The number of ECBs associated
1532 *   with the probe may change without subsequent calls into the provider.
1533 *   When the number of ECBs drops to zero, the provider will be explicitly
1534 *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1535 *   be called for a probe identifier that hasn't been explicitly enabled via
1536 *   dtps_enable().
1537 *
1538 * 1.4.3  Return value
1539 *
1540 *   None.
1541 *
1542 * 1.4.4  Caller's context
1543 *
1544 *   The DTrace framework is locked in such a way that it may not be called
1545 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1546 *   be acquired.
1547 *
1548 * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1549 *
1550 * 1.5.1  Overview
1551 *
1552 *   Called to disable the specified probe.
1553 *
1554 * 1.5.2  Arguments and notes
1555 *
1556 *   The first argument is the cookie as passed to dtrace_register().  The
1557 *   second argument is the identifier of the probe to be disabled.  The third
1558 *   argument is the probe argument as passed to dtrace_probe_create().
1559 *   dtps_disable() will be called when a probe transitions from being enabled
1560 *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1561 *   identifier that has been explicitly enabled via dtps_disable().
1562 *
1563 * 1.5.3  Return value
1564 *
1565 *   None.
1566 *
1567 * 1.5.4  Caller's context
1568 *
1569 *   The DTrace framework is locked in such a way that it may not be called
1570 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1571 *   be acquired.
1572 *
1573 * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1574 *
1575 * 1.6.1  Overview
1576 *
1577 *   Called to suspend the specified enabled probe.  This entry point is for
1578 *   providers that may need to suspend some or all of their probes when CPUs
1579 *   are being powered on or when the boot monitor is being entered for a
1580 *   prolonged period of time.
1581 *
1582 * 1.6.2  Arguments and notes
1583 *
1584 *   The first argument is the cookie as passed to dtrace_register().  The
1585 *   second argument is the identifier of the probe to be suspended.  The
1586 *   third argument is the probe argument as passed to dtrace_probe_create().
1587 *   dtps_suspend will only be called on an enabled probe.  Providers that
1588 *   provide a dtps_suspend entry point will want to take roughly the action
1589 *   that it takes for dtps_disable.
1590 *
1591 * 1.6.3  Return value
1592 *
1593 *   None.
1594 *
1595 * 1.6.4  Caller's context
1596 *
1597 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1598 *   specified probe cannot be disabled or destroyed for the duration of
1599 *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1600 *   little latitude; the provider is expected to do no more than a store to
1601 *   memory.
1602 *
1603 * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1604 *
1605 * 1.7.1  Overview
1606 *
1607 *   Called to resume the specified enabled probe.  This entry point is for
1608 *   providers that may need to resume some or all of their probes after the
1609 *   completion of an event that induced a call to dtps_suspend().
1610 *
1611 * 1.7.2  Arguments and notes
1612 *
1613 *   The first argument is the cookie as passed to dtrace_register().  The
1614 *   second argument is the identifier of the probe to be resumed.  The
1615 *   third argument is the probe argument as passed to dtrace_probe_create().
1616 *   dtps_resume will only be called on an enabled probe.  Providers that
1617 *   provide a dtps_resume entry point will want to take roughly the action
1618 *   that it takes for dtps_enable.
1619 *
1620 * 1.7.3  Return value
1621 *
1622 *   None.
1623 *
1624 * 1.7.4  Caller's context
1625 *
1626 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1627 *   specified probe cannot be disabled or destroyed for the duration of
1628 *   dtps_resume().  As interrupts are disabled, the provider is afforded
1629 *   little latitude; the provider is expected to do no more than a store to
1630 *   memory.
1631 *
1632 * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1633 *           dtrace_argdesc_t *desc)
1634 *
1635 * 1.8.1  Overview
1636 *
1637 *   Called to retrieve the argument description for an args[X] variable.
1638 *
1639 * 1.8.2  Arguments and notes
1640 *
1641 *   The first argument is the cookie as passed to dtrace_register(). The
1642 *   second argument is the identifier of the current probe. The third
1643 *   argument is the probe argument as passed to dtrace_probe_create(). The
1644 *   fourth argument is a pointer to the argument description.  This
1645 *   description is both an input and output parameter:  it contains the
1646 *   index of the desired argument in the dtargd_ndx field, and expects
1647 *   the other fields to be filled in upon return.  If there is no argument
1648 *   corresponding to the specified index, the dtargd_ndx field should be set
1649 *   to DTRACE_ARGNONE.
1650 *
1651 * 1.8.3  Return value
1652 *
1653 *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1654 *   members of the dtrace_argdesc_t structure are all output values.
1655 *
1656 * 1.8.4  Caller's context
1657 *
1658 *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1659 *   the DTrace framework is locked in such a way that providers may not
1660 *   register or unregister.  This means that the provider may not call any
1661 *   DTrace API that affects its registration with the framework, including
1662 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1663 *   dtrace_condense().
1664 *
1665 * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1666 *               int argno, int aframes)
1667 *
1668 * 1.9.1  Overview
1669 *
1670 *   Called to retrieve a value for an argX or args[X] variable.
1671 *
1672 * 1.9.2  Arguments and notes
1673 *
1674 *   The first argument is the cookie as passed to dtrace_register(). The
1675 *   second argument is the identifier of the current probe. The third
1676 *   argument is the probe argument as passed to dtrace_probe_create(). The
1677 *   fourth argument is the number of the argument (the X in the example in
1678 *   1.9.1). The fifth argument is the number of stack frames that were used
1679 *   to get from the actual place in the code that fired the probe to
1680 *   dtrace_probe() itself, the so-called artificial frames. This argument may
1681 *   be used to descend an appropriate number of frames to find the correct
1682 *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1683 *   function is used.
1684 *
1685 * 1.9.3  Return value
1686 *
1687 *   The value of the argument.
1688 *
1689 * 1.9.4  Caller's context
1690 *
1691 *   This is called from within dtrace_probe() meaning that interrupts
1692 *   are disabled. No locks should be taken within this entry point.
1693 *
1694 * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1695 *
1696 * 1.10.1  Overview
1697 *
1698 *   Called to determine if the probe was fired in a user context.
1699 *
1700 * 1.10.2  Arguments and notes
1701 *
1702 *   The first argument is the cookie as passed to dtrace_register(). The
1703 *   second argument is the identifier of the current probe. The third
1704 *   argument is the probe argument as passed to dtrace_probe_create().  This
1705 *   entry point must not be left NULL for providers whose probes allow for
1706 *   mixed mode tracing, that is to say those probes that can fire during
1707 *   kernel- _or_ user-mode execution
1708 *
1709 * 1.10.3  Return value
1710 *
1711 *   A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1712 *   or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1713 *   is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1714 *   DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT).  If
1715 *   DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1716 *   in the probe firing being silently ignored for the enabling; if the
1717 *   DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1718 *   prevent probe processing for the enabling, but restrictions will be in
1719 *   place that induce a UPRIV fault upon attempt to examine probe arguments
1720 *   or current process state.  If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1721 *   is set, similar restrictions will be placed upon operation if the
1722 *   privilege is sufficient to process the enabling, but does not otherwise
1723 *   entitle the enabling to all zones.  The DTRACE_MODE_NOPRIV_DROP and
1724 *   DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1725 *   two policies must be specified), but either may be combined (or not)
1726 *   with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1727 *
1728 * 1.10.4  Caller's context
1729 *
1730 *   This is called from within dtrace_probe() meaning that interrupts
1731 *   are disabled. No locks should be taken within this entry point.
1732 *
1733 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1734 *
1735 * 1.11.1 Overview
1736 *
1737 *   Called to destroy the specified probe.
1738 *
1739 * 1.11.2 Arguments and notes
1740 *
1741 *   The first argument is the cookie as passed to dtrace_register().  The
1742 *   second argument is the identifier of the probe to be destroyed.  The third
1743 *   argument is the probe argument as passed to dtrace_probe_create().  The
1744 *   provider should free all state associated with the probe.  The framework
1745 *   guarantees that dtps_destroy() is only called for probes that have either
1746 *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1747 *   Once dtps_disable() has been called for a probe, no further call will be
1748 *   made specifying the probe.
1749 *
1750 * 1.11.3 Return value
1751 *
1752 *   None.
1753 *
1754 * 1.11.4 Caller's context
1755 *
1756 *   The DTrace framework is locked in such a way that it may not be called
1757 *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1758 *   acquired.
1759 *
1760 *
1761 * 2 Provider-to-Framework API
1762 *
1763 * 2.1  Overview
1764 *
1765 * The Provider-to-Framework API provides the mechanism for the provider to
1766 * register itself with the DTrace framework, to create probes, to lookup
1767 * probes and (most importantly) to fire probes.  The Provider-to-Framework
1768 * consists of:
1769 *
1770 *   dtrace_register()       <-- Register a provider with the DTrace framework
1771 *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1772 *   dtrace_invalidate()     <-- Invalidate the specified provider
1773 *   dtrace_condense()       <-- Remove a provider's unenabled probes
1774 *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1775 *   dtrace_probe_create()   <-- Create a DTrace probe
1776 *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1777 *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1778 *   dtrace_probe()          <-- Fire the specified probe
1779 *
1780 * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1781 *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1782 *          dtrace_provider_id_t *idp)
1783 *
1784 * 2.2.1  Overview
1785 *
1786 *   dtrace_register() registers the calling provider with the DTrace
1787 *   framework.  It should generally be called by DTrace providers in their
1788 *   attach(9E) entry point.
1789 *
1790 * 2.2.2  Arguments and Notes
1791 *
1792 *   The first argument is the name of the provider.  The second argument is a
1793 *   pointer to the stability attributes for the provider.  The third argument
1794 *   is the privilege flags for the provider, and must be some combination of:
1795 *
1796 *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1797 *
1798 *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1799 *                             enable probes from this provider
1800 *
1801 *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1802 *                             enable probes from this provider
1803 *
1804 *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1805 *                             may enable probes from this provider
1806 *
1807 *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1808 *                             the privilege requirements above. These probes
1809 *                             require either (a) a user ID matching the user
1810 *                             ID of the cred passed in the fourth argument
1811 *                             or (b) the PRIV_PROC_OWNER privilege.
1812 *
1813 *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1814 *                             the privilege requirements above. These probes
1815 *                             require either (a) a zone ID matching the zone
1816 *                             ID of the cred passed in the fourth argument
1817 *                             or (b) the PRIV_PROC_ZONE privilege.
1818 *
1819 *   Note that these flags designate the _visibility_ of the probes, not
1820 *   the conditions under which they may or may not fire.
1821 *
1822 *   The fourth argument is the credential that is associated with the
1823 *   provider.  This argument should be NULL if the privilege flags don't
1824 *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1825 *   framework stashes the uid and zoneid represented by this credential
1826 *   for use at probe-time, in implicit predicates.  These limit visibility
1827 *   of the probes to users and/or zones which have sufficient privilege to
1828 *   access them.
1829 *
1830 *   The fifth argument is a DTrace provider operations vector, which provides
1831 *   the implementation for the Framework-to-Provider API.  (See Section 1,
1832 *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1833 *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1834 *   members (if the provider so desires, _one_ of these members may be left
1835 *   NULL -- denoting that the provider only implements the other) and (2)
1836 *   the dtps_suspend() and dtps_resume() members, which must either both be
1837 *   NULL or both be non-NULL.
1838 *
1839 *   The sixth argument is a cookie to be specified as the first argument for
1840 *   each function in the Framework-to-Provider API.  This argument may have
1841 *   any value.
1842 *
1843 *   The final argument is a pointer to dtrace_provider_id_t.  If
1844 *   dtrace_register() successfully completes, the provider identifier will be
1845 *   stored in the memory pointed to be this argument.  This argument must be
1846 *   non-NULL.
1847 *
1848 * 2.2.3  Return value
1849 *
1850 *   On success, dtrace_register() returns 0 and stores the new provider's
1851 *   identifier into the memory pointed to by the idp argument.  On failure,
1852 *   dtrace_register() returns an errno:
1853 *
1854 *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1855 *              This may because a parameter that must be non-NULL was NULL,
1856 *              because the name was invalid (either empty or an illegal
1857 *              provider name) or because the attributes were invalid.
1858 *
1859 *   No other failure code is returned.
1860 *
1861 * 2.2.4  Caller's context
1862 *
1863 *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1864 *   hold no locks across dtrace_register() that may also be acquired by
1865 *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1866 *
1867 * 2.3  int dtrace_unregister(dtrace_provider_t id)
1868 *
1869 * 2.3.1  Overview
1870 *
1871 *   Unregisters the specified provider from the DTrace framework.  It should
1872 *   generally be called by DTrace providers in their detach(9E) entry point.
1873 *
1874 * 2.3.2  Arguments and Notes
1875 *
1876 *   The only argument is the provider identifier, as returned from a
1877 *   successful call to dtrace_register().  As a result of calling
1878 *   dtrace_unregister(), the DTrace framework will call back into the provider
1879 *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1880 *   completes, however, the DTrace framework will no longer make calls through
1881 *   the Framework-to-Provider API.
1882 *
1883 * 2.3.3  Return value
1884 *
1885 *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1886 *   returns an errno:
1887 *
1888 *     EBUSY    There are currently processes that have the DTrace pseudodevice
1889 *              open, or there exists an anonymous enabling that hasn't yet
1890 *              been claimed.
1891 *
1892 *   No other failure code is returned.
1893 *
1894 * 2.3.4  Caller's context
1895 *
1896 *   Because a call to dtrace_unregister() may induce calls through the
1897 *   Framework-to-Provider API, the caller may not hold any lock across
1898 *   dtrace_register() that is also acquired in any of the Framework-to-
1899 *   Provider API functions.  Additionally, mod_lock may not be held.
1900 *
1901 * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1902 *
1903 * 2.4.1  Overview
1904 *
1905 *   Invalidates the specified provider.  All subsequent probe lookups for the
1906 *   specified provider will fail, but its probes will not be removed.
1907 *
1908 * 2.4.2  Arguments and note
1909 *
1910 *   The only argument is the provider identifier, as returned from a
1911 *   successful call to dtrace_register().  In general, a provider's probes
1912 *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1913 *   an entire provider, regardless of whether or not probes are enabled or
1914 *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1915 *   probes from firing -- it will merely prevent any new enablings of the
1916 *   provider's probes.
1917 *
1918 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1919 *
1920 * 2.5.1  Overview
1921 *
1922 *   Removes all the unenabled probes for the given provider. This function is
1923 *   not unlike dtrace_unregister(), except that it doesn't remove the
1924 *   provider just as many of its associated probes as it can.
1925 *
1926 * 2.5.2  Arguments and Notes
1927 *
1928 *   As with dtrace_unregister(), the sole argument is the provider identifier
1929 *   as returned from a successful call to dtrace_register().  As a result of
1930 *   calling dtrace_condense(), the DTrace framework will call back into the
1931 *   given provider's dtps_destroy() entry point for each of the provider's
1932 *   unenabled probes.
1933 *
1934 * 2.5.3  Return value
1935 *
1936 *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1937 *   function should check the return value as appropriate; its behavior may
1938 *   change in the future.
1939 *
1940 * 2.5.4  Caller's context
1941 *
1942 *   As with dtrace_unregister(), the caller may not hold any lock across
1943 *   dtrace_condense() that is also acquired in the provider's entry points.
1944 *   Also, mod_lock may not be held.
1945 *
1946 * 2.6 int dtrace_attached()
1947 *
1948 * 2.6.1  Overview
1949 *
1950 *   Indicates whether or not DTrace has attached.
1951 *
1952 * 2.6.2  Arguments and Notes
1953 *
1954 *   For most providers, DTrace makes initial contact beyond registration.
1955 *   That is, once a provider has registered with DTrace, it waits to hear
1956 *   from DTrace to create probes.  However, some providers may wish to
1957 *   proactively create probes without first being told by DTrace to do so.
1958 *   If providers wish to do this, they must first call dtrace_attached() to
1959 *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1960 *   the provider must not make any other Provider-to-Framework API call.
1961 *
1962 * 2.6.3  Return value
1963 *
1964 *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1965 *
1966 * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1967 *	    const char *func, const char *name, int aframes, void *arg)
1968 *
1969 * 2.7.1  Overview
1970 *
1971 *   Creates a probe with specified module name, function name, and name.
1972 *
1973 * 2.7.2  Arguments and Notes
1974 *
1975 *   The first argument is the provider identifier, as returned from a
1976 *   successful call to dtrace_register().  The second, third, and fourth
1977 *   arguments are the module name, function name, and probe name,
1978 *   respectively.  Of these, module name and function name may both be NULL
1979 *   (in which case the probe is considered to be unanchored), or they may both
1980 *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1981 *   string.
1982 *
1983 *   The fifth argument is the number of artificial stack frames that will be
1984 *   found on the stack when dtrace_probe() is called for the new probe.  These
1985 *   artificial frames will be automatically be pruned should the stack() or
1986 *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1987 *   the parameter doesn't add an artificial frame, this parameter should be
1988 *   zero.
1989 *
1990 *   The final argument is a probe argument that will be passed back to the
1991 *   provider when a probe-specific operation is called.  (e.g., via
1992 *   dtps_enable(), dtps_disable(), etc.)
1993 *
1994 *   Note that it is up to the provider to be sure that the probe that it
1995 *   creates does not already exist -- if the provider is unsure of the probe's
1996 *   existence, it should assure its absence with dtrace_probe_lookup() before
1997 *   calling dtrace_probe_create().
1998 *
1999 * 2.7.3  Return value
2000 *
2001 *   dtrace_probe_create() always succeeds, and always returns the identifier
2002 *   of the newly-created probe.
2003 *
2004 * 2.7.4  Caller's context
2005 *
2006 *   While dtrace_probe_create() is generally expected to be called from
2007 *   dtps_provide() and/or dtps_provide_module(), it may be called from other
2008 *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2009 *
2010 * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2011 *	    const char *func, const char *name)
2012 *
2013 * 2.8.1  Overview
2014 *
2015 *   Looks up a probe based on provdider and one or more of module name,
2016 *   function name and probe name.
2017 *
2018 * 2.8.2  Arguments and Notes
2019 *
2020 *   The first argument is the provider identifier, as returned from a
2021 *   successful call to dtrace_register().  The second, third, and fourth
2022 *   arguments are the module name, function name, and probe name,
2023 *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
2024 *   the identifier of the first probe that is provided by the specified
2025 *   provider and matches all of the non-NULL matching criteria.
2026 *   dtrace_probe_lookup() is generally used by a provider to be check the
2027 *   existence of a probe before creating it with dtrace_probe_create().
2028 *
2029 * 2.8.3  Return value
2030 *
2031 *   If the probe exists, returns its identifier.  If the probe does not exist,
2032 *   return DTRACE_IDNONE.
2033 *
2034 * 2.8.4  Caller's context
2035 *
2036 *   While dtrace_probe_lookup() is generally expected to be called from
2037 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2038 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2039 *
2040 * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2041 *
2042 * 2.9.1  Overview
2043 *
2044 *   Returns the probe argument associated with the specified probe.
2045 *
2046 * 2.9.2  Arguments and Notes
2047 *
2048 *   The first argument is the provider identifier, as returned from a
2049 *   successful call to dtrace_register().  The second argument is a probe
2050 *   identifier, as returned from dtrace_probe_lookup() or
2051 *   dtrace_probe_create().  This is useful if a probe has multiple
2052 *   provider-specific components to it:  the provider can create the probe
2053 *   once with provider-specific state, and then add to the state by looking
2054 *   up the probe based on probe identifier.
2055 *
2056 * 2.9.3  Return value
2057 *
2058 *   Returns the argument associated with the specified probe.  If the
2059 *   specified probe does not exist, or if the specified probe is not provided
2060 *   by the specified provider, NULL is returned.
2061 *
2062 * 2.9.4  Caller's context
2063 *
2064 *   While dtrace_probe_arg() is generally expected to be called from
2065 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2066 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2067 *
2068 * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2069 *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2070 *
2071 * 2.10.1  Overview
2072 *
2073 *   The epicenter of DTrace:  fires the specified probes with the specified
2074 *   arguments.
2075 *
2076 * 2.10.2  Arguments and Notes
2077 *
2078 *   The first argument is a probe identifier as returned by
2079 *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
2080 *   arguments are the values to which the D variables "arg0" through "arg4"
2081 *   will be mapped.
2082 *
2083 *   dtrace_probe() should be called whenever the specified probe has fired --
2084 *   however the provider defines it.
2085 *
2086 * 2.10.3  Return value
2087 *
2088 *   None.
2089 *
2090 * 2.10.4  Caller's context
2091 *
2092 *   dtrace_probe() may be called in virtually any context:  kernel, user,
2093 *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2094 *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2095 *   that must be afforded to DTrace is the ability to make calls within
2096 *   itself (and to its in-kernel subroutines) and the ability to access
2097 *   arbitrary (but mapped) memory.  On some platforms, this constrains
2098 *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2099 *   from any context in which TL is greater than zero.  dtrace_probe() may
2100 *   also not be called from any routine which may be called by dtrace_probe()
2101 *   -- which includes functions in the DTrace framework and some in-kernel
2102 *   DTrace subroutines.  All such functions "dtrace_"; providers that
2103 *   instrument the kernel arbitrarily should be sure to not instrument these
2104 *   routines.
2105 */
2106typedef struct dtrace_pops {
2107	void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec);
2108	void (*dtps_provide_module)(void *arg, modctl_t *mp);
2109	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2110	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2111	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2112	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2113	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2114	    dtrace_argdesc_t *desc);
2115	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2116	    int argno, int aframes);
2117	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2118	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2119} dtrace_pops_t;
2120
2121#define	DTRACE_MODE_KERNEL			0x01
2122#define	DTRACE_MODE_USER			0x02
2123#define	DTRACE_MODE_NOPRIV_DROP			0x10
2124#define	DTRACE_MODE_NOPRIV_RESTRICT		0x20
2125#define	DTRACE_MODE_LIMITEDPRIV_RESTRICT	0x40
2126
2127typedef uintptr_t	dtrace_provider_id_t;
2128
2129extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2130    cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2131extern int dtrace_unregister(dtrace_provider_id_t);
2132extern int dtrace_condense(dtrace_provider_id_t);
2133extern void dtrace_invalidate(dtrace_provider_id_t);
2134extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *,
2135    char *, char *);
2136extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2137    const char *, const char *, int, void *);
2138extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2139extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2140    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2141
2142/*
2143 * DTrace Meta Provider API
2144 *
2145 * The following functions are implemented by the DTrace framework and are
2146 * used to implement meta providers. Meta providers plug into the DTrace
2147 * framework and are used to instantiate new providers on the fly. At
2148 * present, there is only one type of meta provider and only one meta
2149 * provider may be registered with the DTrace framework at a time. The
2150 * sole meta provider type provides user-land static tracing facilities
2151 * by taking meta probe descriptions and adding a corresponding provider
2152 * into the DTrace framework.
2153 *
2154 * 1 Framework-to-Provider
2155 *
2156 * 1.1 Overview
2157 *
2158 * The Framework-to-Provider API is represented by the dtrace_mops structure
2159 * that the meta provider passes to the framework when registering itself as
2160 * a meta provider. This structure consists of the following members:
2161 *
2162 *   dtms_create_probe()	<-- Add a new probe to a created provider
2163 *   dtms_provide_pid()		<-- Create a new provider for a given process
2164 *   dtms_remove_pid()		<-- Remove a previously created provider
2165 *
2166 * 1.2  void dtms_create_probe(void *arg, void *parg,
2167 *           dtrace_helper_probedesc_t *probedesc);
2168 *
2169 * 1.2.1  Overview
2170 *
2171 *   Called by the DTrace framework to create a new probe in a provider
2172 *   created by this meta provider.
2173 *
2174 * 1.2.2  Arguments and notes
2175 *
2176 *   The first argument is the cookie as passed to dtrace_meta_register().
2177 *   The second argument is the provider cookie for the associated provider;
2178 *   this is obtained from the return value of dtms_provide_pid(). The third
2179 *   argument is the helper probe description.
2180 *
2181 * 1.2.3  Return value
2182 *
2183 *   None
2184 *
2185 * 1.2.4  Caller's context
2186 *
2187 *   dtms_create_probe() is called from either ioctl() or module load context.
2188 *   The DTrace framework is locked in such a way that meta providers may not
2189 *   register or unregister. This means that the meta provider cannot call
2190 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2191 *   such that the provider may (and is expected to) call provider-related
2192 *   DTrace provider APIs including dtrace_probe_create().
2193 *
2194 * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2195 *	      pid_t pid)
2196 *
2197 * 1.3.1  Overview
2198 *
2199 *   Called by the DTrace framework to instantiate a new provider given the
2200 *   description of the provider and probes in the mprov argument. The
2201 *   meta provider should call dtrace_register() to insert the new provider
2202 *   into the DTrace framework.
2203 *
2204 * 1.3.2  Arguments and notes
2205 *
2206 *   The first argument is the cookie as passed to dtrace_meta_register().
2207 *   The second argument is a pointer to a structure describing the new
2208 *   helper provider. The third argument is the process identifier for
2209 *   process associated with this new provider. Note that the name of the
2210 *   provider as passed to dtrace_register() should be the contatenation of
2211 *   the dtmpb_provname member of the mprov argument and the processs
2212 *   identifier as a string.
2213 *
2214 * 1.3.3  Return value
2215 *
2216 *   The cookie for the provider that the meta provider creates. This is
2217 *   the same value that it passed to dtrace_register().
2218 *
2219 * 1.3.4  Caller's context
2220 *
2221 *   dtms_provide_pid() is called from either ioctl() or module load context.
2222 *   The DTrace framework is locked in such a way that meta providers may not
2223 *   register or unregister. This means that the meta provider cannot call
2224 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2225 *   is such that the provider may -- and is expected to --  call
2226 *   provider-related DTrace provider APIs including dtrace_register().
2227 *
2228 * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2229 *	     pid_t pid)
2230 *
2231 * 1.4.1  Overview
2232 *
2233 *   Called by the DTrace framework to remove a provider that had previously
2234 *   been instantiated via the dtms_provide_pid() entry point. The meta
2235 *   provider need not remove the provider immediately, but this entry
2236 *   point indicates that the provider should be removed as soon as possible
2237 *   using the dtrace_unregister() API.
2238 *
2239 * 1.4.2  Arguments and notes
2240 *
2241 *   The first argument is the cookie as passed to dtrace_meta_register().
2242 *   The second argument is a pointer to a structure describing the helper
2243 *   provider. The third argument is the process identifier for process
2244 *   associated with this new provider.
2245 *
2246 * 1.4.3  Return value
2247 *
2248 *   None
2249 *
2250 * 1.4.4  Caller's context
2251 *
2252 *   dtms_remove_pid() is called from either ioctl() or exit() context.
2253 *   The DTrace framework is locked in such a way that meta providers may not
2254 *   register or unregister. This means that the meta provider cannot call
2255 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2256 *   is such that the provider may -- and is expected to -- call
2257 *   provider-related DTrace provider APIs including dtrace_unregister().
2258 */
2259typedef struct dtrace_helper_probedesc {
2260	char *dthpb_mod;			/* probe module */
2261	char *dthpb_func; 			/* probe function */
2262	char *dthpb_name; 			/* probe name */
2263	uint64_t dthpb_base;			/* base address */
2264	uint32_t *dthpb_offs;			/* offsets array */
2265	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2266	uint32_t dthpb_noffs;			/* offsets count */
2267	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2268	uint8_t *dthpb_args;			/* argument mapping array */
2269	uint8_t dthpb_xargc;			/* translated argument count */
2270	uint8_t dthpb_nargc;			/* native argument count */
2271	char *dthpb_xtypes;			/* translated types strings */
2272	char *dthpb_ntypes;			/* native types strings */
2273} dtrace_helper_probedesc_t;
2274
2275typedef struct dtrace_helper_provdesc {
2276	char *dthpv_provname;			/* provider name */
2277	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2278} dtrace_helper_provdesc_t;
2279
2280typedef struct dtrace_mops {
2281	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2282	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2283	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2284} dtrace_mops_t;
2285
2286typedef uintptr_t	dtrace_meta_provider_id_t;
2287
2288extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2289    dtrace_meta_provider_id_t *);
2290extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2291
2292/*
2293 * DTrace Kernel Hooks
2294 *
2295 * The following functions are implemented by the base kernel and form a set of
2296 * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2297 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2298 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2299 */
2300
2301typedef enum dtrace_vtime_state {
2302	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2303	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2304	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2305	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2306} dtrace_vtime_state_t;
2307
2308#if defined(sun)
2309extern dtrace_vtime_state_t dtrace_vtime_active;
2310#endif
2311extern void dtrace_vtime_switch(kthread_t *next);
2312extern void dtrace_vtime_enable_tnf(void);
2313extern void dtrace_vtime_disable_tnf(void);
2314extern void dtrace_vtime_enable(void);
2315extern void dtrace_vtime_disable(void);
2316
2317struct regs;
2318struct reg;
2319
2320#if defined(sun)
2321extern int (*dtrace_pid_probe_ptr)(struct reg *);
2322extern int (*dtrace_return_probe_ptr)(struct reg *);
2323extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2324extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2325extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2326extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2327#endif
2328
2329typedef uintptr_t dtrace_icookie_t;
2330typedef void (*dtrace_xcall_t)(void *);
2331
2332extern dtrace_icookie_t dtrace_interrupt_disable(void);
2333extern void dtrace_interrupt_enable(dtrace_icookie_t);
2334
2335extern void dtrace_membar_producer(void);
2336extern void dtrace_membar_consumer(void);
2337
2338extern void (*dtrace_cpu_init)(processorid_t);
2339#if defined(sun)
2340extern void (*dtrace_modload)(modctl_t *);
2341extern void (*dtrace_modunload)(modctl_t *);
2342#endif
2343extern void (*dtrace_helpers_cleanup)(void);
2344extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2345extern void (*dtrace_cpustart_init)(void);
2346extern void (*dtrace_cpustart_fini)(void);
2347extern void (*dtrace_closef)(void);
2348
2349extern void (*dtrace_debugger_init)(void);
2350extern void (*dtrace_debugger_fini)(void);
2351extern dtrace_cacheid_t dtrace_predcache_id;
2352
2353#if defined(sun)
2354extern hrtime_t dtrace_gethrtime(void);
2355#else
2356void dtrace_debug_printf(const char *, ...) __printflike(1, 2);
2357#endif
2358extern void dtrace_sync(void);
2359extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2360extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2361extern void dtrace_vpanic(const char *, __va_list);
2362extern void dtrace_panic(const char *, ...);
2363
2364extern int dtrace_safe_defer_signal(void);
2365extern void dtrace_safe_synchronous_signal(void);
2366
2367extern int dtrace_mach_aframes(void);
2368
2369#if defined(__i386) || defined(__amd64)
2370extern int dtrace_instr_size(uchar_t *instr);
2371extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2372extern void dtrace_invop_callsite(void);
2373#endif
2374extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2375extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2376
2377#ifdef __sparc
2378extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2379extern void dtrace_getfsr(uint64_t *);
2380#endif
2381
2382#if !defined(sun)
2383extern void dtrace_helpers_duplicate(proc_t *, proc_t *);
2384extern void dtrace_helpers_destroy(proc_t *);
2385#endif
2386
2387#define	DTRACE_CPUFLAG_ISSET(flag) \
2388	(cpu_core[curcpu].cpuc_dtrace_flags & (flag))
2389
2390#define	DTRACE_CPUFLAG_SET(flag) \
2391	(cpu_core[curcpu].cpuc_dtrace_flags |= (flag))
2392
2393#define	DTRACE_CPUFLAG_CLEAR(flag) \
2394	(cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag))
2395
2396#endif /* _KERNEL */
2397
2398#endif	/* _ASM */
2399
2400#if defined(__i386) || defined(__amd64)
2401
2402#define	DTRACE_INVOP_PUSHL_EBP		1
2403#define	DTRACE_INVOP_POPL_EBP		2
2404#define	DTRACE_INVOP_LEAVE		3
2405#define	DTRACE_INVOP_NOP		4
2406#define	DTRACE_INVOP_RET		5
2407
2408#elif defined(__powerpc__)
2409
2410#define DTRACE_INVOP_RET	1
2411#define DTRACE_INVOP_BCTR	2
2412#define DTRACE_INVOP_BLR	3
2413#define DTRACE_INVOP_JUMP	4
2414#define DTRACE_INVOP_MFLR_R0	5
2415#define DTRACE_INVOP_NOP	6
2416
2417#endif
2418
2419#ifdef	__cplusplus
2420}
2421#endif
2422
2423#endif	/* _SYS_DTRACE_H */
2424