1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2013 by Delphix. All rights reserved.
30 */
31
32#ifndef _SYS_DTRACE_H
33#define	_SYS_DTRACE_H
34
35#ifdef	__cplusplus
36extern "C" {
37#endif
38
39/*
40 * DTrace Dynamic Tracing Software: Kernel Interfaces
41 *
42 * Note: The contents of this file are private to the implementation of the
43 * Solaris system and DTrace subsystem and are subject to change at any time
44 * without notice.  Applications and drivers using these interfaces will fail
45 * to run on future releases.  These interfaces should not be used for any
46 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
47 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
48 */
49
50#ifndef _ASM
51
52#include <sys/types.h>
53#include <sys/modctl.h>
54#include <sys/processor.h>
55#ifdef illumos
56#include <sys/systm.h>
57#else
58#include <sys/cpuvar.h>
59#include <sys/param.h>
60#include <sys/linker.h>
61#include <sys/ioccom.h>
62#include <sys/ucred.h>
63typedef int model_t;
64#endif
65#include <sys/ctf_api.h>
66#ifdef illumos
67#include <sys/cyclic.h>
68#include <sys/int_limits.h>
69#else
70#include <sys/stdint.h>
71#endif
72
73/*
74 * DTrace Universal Constants and Typedefs
75 */
76#define	DTRACE_CPUALL		-1	/* all CPUs */
77#define	DTRACE_IDNONE		0	/* invalid probe identifier */
78#define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
79#define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
80#define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
81#define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
82#define	DTRACE_PROVNONE		0	/* invalid provider identifier */
83#define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
84#define	DTRACE_ARGNONE		-1	/* invalid argument index */
85
86#define	DTRACE_PROVNAMELEN	64
87#define	DTRACE_MODNAMELEN	64
88#define	DTRACE_FUNCNAMELEN	192
89#define	DTRACE_NAMELEN		64
90#define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
91				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
92#define	DTRACE_ARGTYPELEN	128
93
94typedef uint32_t dtrace_id_t;		/* probe identifier */
95typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
96typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
97typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
98typedef uint16_t dtrace_actkind_t;	/* action kind */
99typedef int64_t dtrace_optval_t;	/* option value */
100typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
101
102typedef enum dtrace_probespec {
103	DTRACE_PROBESPEC_NONE = -1,
104	DTRACE_PROBESPEC_PROVIDER = 0,
105	DTRACE_PROBESPEC_MOD,
106	DTRACE_PROBESPEC_FUNC,
107	DTRACE_PROBESPEC_NAME
108} dtrace_probespec_t;
109
110/*
111 * DTrace Intermediate Format (DIF)
112 *
113 * The following definitions describe the DTrace Intermediate Format (DIF), a
114 * a RISC-like instruction set and program encoding used to represent
115 * predicates and actions that can be bound to DTrace probes.  The constants
116 * below defining the number of available registers are suggested minimums; the
117 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
118 * registers provided by the current DTrace implementation.
119 */
120#define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
121#define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
122#define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
123#define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
124#define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
125
126#define	DIF_OP_OR	1		/* or	r1, r2, rd */
127#define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
128#define	DIF_OP_AND	3		/* and	r1, r2, rd */
129#define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
130#define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
131#define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
132#define	DIF_OP_ADD	7		/* add	r1, r2, rd */
133#define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
134#define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
135#define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
136#define	DIF_OP_SREM	11		/* srem r1, r2, rd */
137#define	DIF_OP_UREM	12		/* urem r1, r2, rd */
138#define	DIF_OP_NOT	13		/* not	r1, rd */
139#define	DIF_OP_MOV	14		/* mov	r1, rd */
140#define	DIF_OP_CMP	15		/* cmp	r1, r2 */
141#define	DIF_OP_TST	16		/* tst  r1 */
142#define	DIF_OP_BA	17		/* ba	label */
143#define	DIF_OP_BE	18		/* be	label */
144#define	DIF_OP_BNE	19		/* bne	label */
145#define	DIF_OP_BG	20		/* bg	label */
146#define	DIF_OP_BGU	21		/* bgu	label */
147#define	DIF_OP_BGE	22		/* bge	label */
148#define	DIF_OP_BGEU	23		/* bgeu	label */
149#define	DIF_OP_BL	24		/* bl	label */
150#define	DIF_OP_BLU	25		/* blu	label */
151#define	DIF_OP_BLE	26		/* ble	label */
152#define	DIF_OP_BLEU	27		/* bleu	label */
153#define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
154#define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
155#define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
156#define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
157#define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
158#define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
159#define	DIF_OP_LDX	34		/* ldx	[r1], rd */
160#define	DIF_OP_RET	35		/* ret	rd */
161#define	DIF_OP_NOP	36		/* nop */
162#define	DIF_OP_SETX	37		/* setx	intindex, rd */
163#define	DIF_OP_SETS	38		/* sets strindex, rd */
164#define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
165#define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
166#define	DIF_OP_LDGS	41		/* ldgs var, rd */
167#define	DIF_OP_STGS	42		/* stgs var, rs */
168#define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
169#define	DIF_OP_LDTS	44		/* ldts var, rd */
170#define	DIF_OP_STTS	45		/* stts var, rs */
171#define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
172#define	DIF_OP_CALL	47		/* call	subr, rd */
173#define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
174#define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
175#define	DIF_OP_POPTS	50		/* popts */
176#define	DIF_OP_FLUSHTS	51		/* flushts */
177#define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
178#define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
179#define	DIF_OP_STGAA	54		/* stgaa var, rs */
180#define	DIF_OP_STTAA	55		/* sttaa var, rs */
181#define	DIF_OP_LDLS	56		/* ldls	var, rd */
182#define	DIF_OP_STLS	57		/* stls	var, rs */
183#define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
184#define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
185#define	DIF_OP_STB	60		/* stb	r1, [rd] */
186#define	DIF_OP_STH	61		/* sth	r1, [rd] */
187#define	DIF_OP_STW	62		/* stw	r1, [rd] */
188#define	DIF_OP_STX	63		/* stx	r1, [rd] */
189#define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
190#define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
191#define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
192#define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
193#define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
194#define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
195#define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
196#define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
197#define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
198#define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
199#define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
200#define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
201#define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
202#define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
203#define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
204#define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
205
206#define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
207#define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
208#define	DIF_REGISTER_MAX	0xff	/* highest register number */
209#define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
210#define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
211
212#define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
213#define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
214#define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
215
216#define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
217#define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
218#define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
219
220#define	DIF_VAR_ARGS		0x0000	/* arguments array */
221#define	DIF_VAR_REGS		0x0001	/* registers array */
222#define	DIF_VAR_UREGS		0x0002	/* user registers array */
223#define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
224#define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
225#define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
226#define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
227#define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
228#define	DIF_VAR_ID		0x0105	/* probe ID */
229#define	DIF_VAR_ARG0		0x0106	/* first argument */
230#define	DIF_VAR_ARG1		0x0107	/* second argument */
231#define	DIF_VAR_ARG2		0x0108	/* third argument */
232#define	DIF_VAR_ARG3		0x0109	/* fourth argument */
233#define	DIF_VAR_ARG4		0x010a	/* fifth argument */
234#define	DIF_VAR_ARG5		0x010b	/* sixth argument */
235#define	DIF_VAR_ARG6		0x010c	/* seventh argument */
236#define	DIF_VAR_ARG7		0x010d	/* eighth argument */
237#define	DIF_VAR_ARG8		0x010e	/* ninth argument */
238#define	DIF_VAR_ARG9		0x010f	/* tenth argument */
239#define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
240#define	DIF_VAR_CALLER		0x0111	/* caller */
241#define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
242#define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
243#define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
244#define	DIF_VAR_PROBENAME	0x0115	/* probe name */
245#define	DIF_VAR_PID		0x0116	/* process ID */
246#define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
247#define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
248#define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
249#define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
250#define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
251#define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
252#define	DIF_VAR_PPID		0x011d	/* parent process ID */
253#define	DIF_VAR_UID		0x011e	/* process user ID */
254#define	DIF_VAR_GID		0x011f	/* process group ID */
255#define	DIF_VAR_ERRNO		0x0120	/* thread errno */
256#define	DIF_VAR_EXECARGS	0x0121	/* process arguments */
257#define	DIF_VAR_JID		0x0122	/* process jail id */
258#define	DIF_VAR_JAILNAME	0x0123	/* process jail name */
259
260#ifndef illumos
261#define	DIF_VAR_CPU		0x0200
262#endif
263
264#define	DIF_SUBR_RAND			0
265#define	DIF_SUBR_MUTEX_OWNED		1
266#define	DIF_SUBR_MUTEX_OWNER		2
267#define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
268#define	DIF_SUBR_MUTEX_TYPE_SPIN	4
269#define	DIF_SUBR_RW_READ_HELD		5
270#define	DIF_SUBR_RW_WRITE_HELD		6
271#define	DIF_SUBR_RW_ISWRITER		7
272#define	DIF_SUBR_COPYIN			8
273#define	DIF_SUBR_COPYINSTR		9
274#define	DIF_SUBR_SPECULATION		10
275#define	DIF_SUBR_PROGENYOF		11
276#define	DIF_SUBR_STRLEN			12
277#define	DIF_SUBR_COPYOUT		13
278#define	DIF_SUBR_COPYOUTSTR		14
279#define	DIF_SUBR_ALLOCA			15
280#define	DIF_SUBR_BCOPY			16
281#define	DIF_SUBR_COPYINTO		17
282#define	DIF_SUBR_MSGDSIZE		18
283#define	DIF_SUBR_MSGSIZE		19
284#define	DIF_SUBR_GETMAJOR		20
285#define	DIF_SUBR_GETMINOR		21
286#define	DIF_SUBR_DDI_PATHNAME		22
287#define	DIF_SUBR_STRJOIN		23
288#define	DIF_SUBR_LLTOSTR		24
289#define	DIF_SUBR_BASENAME		25
290#define	DIF_SUBR_DIRNAME		26
291#define	DIF_SUBR_CLEANPATH		27
292#define	DIF_SUBR_STRCHR			28
293#define	DIF_SUBR_STRRCHR		29
294#define	DIF_SUBR_STRSTR			30
295#define	DIF_SUBR_STRTOK			31
296#define	DIF_SUBR_SUBSTR			32
297#define	DIF_SUBR_INDEX			33
298#define	DIF_SUBR_RINDEX			34
299#define	DIF_SUBR_HTONS			35
300#define	DIF_SUBR_HTONL			36
301#define	DIF_SUBR_HTONLL			37
302#define	DIF_SUBR_NTOHS			38
303#define	DIF_SUBR_NTOHL			39
304#define	DIF_SUBR_NTOHLL			40
305#define	DIF_SUBR_INET_NTOP		41
306#define	DIF_SUBR_INET_NTOA		42
307#define	DIF_SUBR_INET_NTOA6		43
308#define	DIF_SUBR_TOUPPER		44
309#define	DIF_SUBR_TOLOWER		45
310#define	DIF_SUBR_MEMREF			46
311#define	DIF_SUBR_TYPEREF		47
312#define	DIF_SUBR_SX_SHARED_HELD		48
313#define	DIF_SUBR_SX_EXCLUSIVE_HELD	49
314#define	DIF_SUBR_SX_ISEXCLUSIVE		50
315#define	DIF_SUBR_MEMSTR			51
316#define	DIF_SUBR_GETF			52
317#define	DIF_SUBR_JSON			53
318#define	DIF_SUBR_STRTOLL		54
319#define	DIF_SUBR_MAX			54	/* max subroutine value */
320
321typedef uint32_t dif_instr_t;
322
323#define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
324#define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
325#define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
326#define	DIF_INSTR_RD(i)			((i) & 0xff)
327#define	DIF_INSTR_RS(i)			((i) & 0xff)
328#define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
329#define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
330#define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
331#define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
332#define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
333#define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
334#define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
335
336#define	DIF_INSTR_FMT(op, r1, r2, d) \
337	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
338
339#define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
340#define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
341#define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
342#define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
343#define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
344#define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
345#define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
346#define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
347#define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
348#define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
349#define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
350#define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
351#define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
352#define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
353#define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
354#define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
355#define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
356#define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
357#define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
358#define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
359#define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
360
361#define	DIF_REG_R0	0		/* %r0 is always set to zero */
362
363/*
364 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
365 * of variables, function and associative array arguments, and the return type
366 * for each DIF object (shown below).  It contains a description of the type,
367 * its size in bytes, and a module identifier.
368 */
369typedef struct dtrace_diftype {
370	uint8_t dtdt_kind;		/* type kind (see below) */
371	uint8_t dtdt_ckind;		/* type kind in CTF */
372	uint8_t dtdt_flags;		/* type flags (see below) */
373	uint8_t dtdt_pad;		/* reserved for future use */
374	uint32_t dtdt_size;		/* type size in bytes (unless string) */
375} dtrace_diftype_t;
376
377#define	DIF_TYPE_CTF		0	/* type is a CTF type */
378#define	DIF_TYPE_STRING		1	/* type is a D string */
379
380#define	DIF_TF_BYREF		0x1	/* type is passed by reference */
381#define	DIF_TF_BYUREF		0x2	/* user type is passed by reference */
382
383/*
384 * A DTrace Intermediate Format variable record is used to describe each of the
385 * variables referenced by a given DIF object.  It contains an integer variable
386 * identifier along with variable scope and properties, as shown below.  The
387 * size of this structure must be sizeof (int) aligned.
388 */
389typedef struct dtrace_difv {
390	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
391	uint32_t dtdv_id;		/* variable reference identifier */
392	uint8_t dtdv_kind;		/* variable kind (see below) */
393	uint8_t dtdv_scope;		/* variable scope (see below) */
394	uint16_t dtdv_flags;		/* variable flags (see below) */
395	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
396} dtrace_difv_t;
397
398#define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
399#define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
400
401#define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
402#define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
403#define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
404
405#define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
406#define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
407
408/*
409 * DTrace Actions
410 *
411 * The upper byte determines the class of the action; the low bytes determines
412 * the specific action within that class.  The classes of actions are as
413 * follows:
414 *
415 *   [ no class ]                  <= May record process- or kernel-related data
416 *   DTRACEACT_PROC                <= Only records process-related data
417 *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
418 *   DTRACEACT_KERNEL              <= Only records kernel-related data
419 *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
420 *   DTRACEACT_SPECULATIVE         <= Speculation-related action
421 *   DTRACEACT_AGGREGATION         <= Aggregating action
422 */
423#define	DTRACEACT_NONE			0	/* no action */
424#define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
425#define	DTRACEACT_EXIT			2	/* exit() action */
426#define	DTRACEACT_PRINTF		3	/* printf() action */
427#define	DTRACEACT_PRINTA		4	/* printa() action */
428#define	DTRACEACT_LIBACT		5	/* library-controlled action */
429#define	DTRACEACT_TRACEMEM		6	/* tracemem() action */
430#define	DTRACEACT_TRACEMEM_DYNSIZE	7	/* dynamic tracemem() size */
431#define	DTRACEACT_PRINTM		8	/* printm() action (BSD) */
432#define	DTRACEACT_PRINTT		9	/* printt() action (BSD) */
433
434#define	DTRACEACT_PROC			0x0100
435#define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
436#define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
437#define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
438#define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
439#define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
440
441#define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
442#define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
443#define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
444#define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
445#define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
446
447#define	DTRACEACT_PROC_CONTROL		0x0300
448
449#define	DTRACEACT_KERNEL		0x0400
450#define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
451#define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
452#define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
453
454#define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
455#define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
456#define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
457#define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
458
459#define	DTRACEACT_SPECULATIVE		0x0600
460#define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
461#define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
462#define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
463
464#define	DTRACEACT_CLASS(x)		((x) & 0xff00)
465
466#define	DTRACEACT_ISDESTRUCTIVE(x)	\
467	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
468	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
469
470#define	DTRACEACT_ISSPECULATIVE(x)	\
471	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
472
473#define	DTRACEACT_ISPRINTFLIKE(x)	\
474	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
475	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
476
477/*
478 * DTrace Aggregating Actions
479 *
480 * These are functions f(x) for which the following is true:
481 *
482 *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
483 *
484 * where x_n is a set of arbitrary data.  Aggregating actions are in their own
485 * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
486 * for easier processing of the aggregation argument and data payload for a few
487 * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
488 */
489#define	DTRACEACT_AGGREGATION		0x0700
490#define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
491#define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
492#define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
493#define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
494#define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
495#define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
496#define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
497#define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
498#define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
499
500#define	DTRACEACT_ISAGG(x)		\
501	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
502
503#define	DTRACE_QUANTIZE_NBUCKETS	\
504	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
505
506#define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
507
508#define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
509	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
510	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
511	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
512	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
513
514#define	DTRACE_LQUANTIZE_STEPSHIFT		48
515#define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
516#define	DTRACE_LQUANTIZE_LEVELSHIFT		32
517#define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
518#define	DTRACE_LQUANTIZE_BASESHIFT		0
519#define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
520
521#define	DTRACE_LQUANTIZE_STEP(x)		\
522	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
523	DTRACE_LQUANTIZE_STEPSHIFT)
524
525#define	DTRACE_LQUANTIZE_LEVELS(x)		\
526	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
527	DTRACE_LQUANTIZE_LEVELSHIFT)
528
529#define	DTRACE_LQUANTIZE_BASE(x)		\
530	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
531	DTRACE_LQUANTIZE_BASESHIFT)
532
533#define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
534#define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
535#define	DTRACE_LLQUANTIZE_LOWSHIFT		32
536#define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
537#define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
538#define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
539#define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
540#define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
541
542#define	DTRACE_LLQUANTIZE_FACTOR(x)		\
543	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
544	DTRACE_LLQUANTIZE_FACTORSHIFT)
545
546#define	DTRACE_LLQUANTIZE_LOW(x)		\
547	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
548	DTRACE_LLQUANTIZE_LOWSHIFT)
549
550#define	DTRACE_LLQUANTIZE_HIGH(x)		\
551	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
552	DTRACE_LLQUANTIZE_HIGHSHIFT)
553
554#define	DTRACE_LLQUANTIZE_NSTEP(x)		\
555	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
556	DTRACE_LLQUANTIZE_NSTEPSHIFT)
557
558#define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
559#define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
560#define	DTRACE_USTACK_ARG(x, y)		\
561	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
562
563#ifndef _LP64
564#if BYTE_ORDER == _BIG_ENDIAN
565#define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
566#else
567#define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
568#endif
569#else
570#define	DTRACE_PTR(type, name)	type *name
571#endif
572
573/*
574 * DTrace Object Format (DOF)
575 *
576 * DTrace programs can be persistently encoded in the DOF format so that they
577 * may be embedded in other programs (for example, in an ELF file) or in the
578 * dtrace driver configuration file for use in anonymous tracing.  The DOF
579 * format is versioned and extensible so that it can be revised and so that
580 * internal data structures can be modified or extended compatibly.  All DOF
581 * structures use fixed-size types, so the 32-bit and 64-bit representations
582 * are identical and consumers can use either data model transparently.
583 *
584 * The file layout is structured as follows:
585 *
586 * +---------------+-------------------+----- ... ----+---- ... ------+
587 * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
588 * | (file header) | (section headers) | section data | section data  |
589 * +---------------+-------------------+----- ... ----+---- ... ------+
590 * |<------------ dof_hdr.dofh_loadsz --------------->|               |
591 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
592 *
593 * The file header stores meta-data including a magic number, data model for
594 * the instrumentation, data encoding, and properties of the DIF code within.
595 * The header describes its own size and the size of the section headers.  By
596 * convention, an array of section headers follows the file header, and then
597 * the data for all loadable sections and unloadable sections.  This permits
598 * consumer code to easily download the headers and all loadable data into the
599 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
600 *
601 * The section headers describe the size, offset, alignment, and section type
602 * for each section.  Sections are described using a set of #defines that tell
603 * the consumer what kind of data is expected.  Sections can contain links to
604 * other sections by storing a dof_secidx_t, an index into the section header
605 * array, inside of the section data structures.  The section header includes
606 * an entry size so that sections with data arrays can grow their structures.
607 *
608 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
609 * are represented themselves as a collection of related DOF sections.  This
610 * permits us to change the set of sections associated with a DIFO over time,
611 * and also permits us to encode DIFOs that contain different sets of sections.
612 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
613 * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
614 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
615 *
616 * This loose coupling of the file structure (header and sections) to the
617 * structure of the DTrace program itself (ECB descriptions, action
618 * descriptions, and DIFOs) permits activities such as relocation processing
619 * to occur in a single pass without having to understand D program structure.
620 *
621 * Finally, strings are always stored in ELF-style string tables along with a
622 * string table section index and string table offset.  Therefore strings in
623 * DOF are always arbitrary-length and not bound to the current implementation.
624 */
625
626#define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
627
628typedef struct dof_hdr {
629	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
630	uint32_t dofh_flags;		/* file attribute flags (if any) */
631	uint32_t dofh_hdrsize;		/* size of file header in bytes */
632	uint32_t dofh_secsize;		/* size of section header in bytes */
633	uint32_t dofh_secnum;		/* number of section headers */
634	uint64_t dofh_secoff;		/* file offset of section headers */
635	uint64_t dofh_loadsz;		/* file size of loadable portion */
636	uint64_t dofh_filesz;		/* file size of entire DOF file */
637	uint64_t dofh_pad;		/* reserved for future use */
638} dof_hdr_t;
639
640#define	DOF_ID_MAG0	0	/* first byte of magic number */
641#define	DOF_ID_MAG1	1	/* second byte of magic number */
642#define	DOF_ID_MAG2	2	/* third byte of magic number */
643#define	DOF_ID_MAG3	3	/* fourth byte of magic number */
644#define	DOF_ID_MODEL	4	/* DOF data model (see below) */
645#define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
646#define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
647#define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
648#define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
649#define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
650#define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
651
652#define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
653#define	DOF_MAG_MAG1	'D'
654#define	DOF_MAG_MAG2	'O'
655#define	DOF_MAG_MAG3	'F'
656
657#define	DOF_MAG_STRING	"\177DOF"
658#define	DOF_MAG_STRLEN	4
659
660#define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
661#define	DOF_MODEL_ILP32	1
662#define	DOF_MODEL_LP64	2
663
664#ifdef _LP64
665#define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
666#else
667#define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
668#endif
669
670#define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
671#define	DOF_ENCODE_LSB	1
672#define	DOF_ENCODE_MSB	2
673
674#if BYTE_ORDER == _BIG_ENDIAN
675#define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
676#else
677#define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
678#endif
679
680#define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
681#define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
682#define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
683
684#define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
685
686typedef uint32_t dof_secidx_t;	/* section header table index type */
687typedef uint32_t dof_stridx_t;	/* string table index type */
688
689#define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
690#define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
691
692typedef struct dof_sec {
693	uint32_t dofs_type;	/* section type (see below) */
694	uint32_t dofs_align;	/* section data memory alignment */
695	uint32_t dofs_flags;	/* section flags (if any) */
696	uint32_t dofs_entsize;	/* size of section entry (if table) */
697	uint64_t dofs_offset;	/* offset of section data within file */
698	uint64_t dofs_size;	/* size of section data in bytes */
699} dof_sec_t;
700
701#define	DOF_SECT_NONE		0	/* null section */
702#define	DOF_SECT_COMMENTS	1	/* compiler comments */
703#define	DOF_SECT_SOURCE		2	/* D program source code */
704#define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
705#define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
706#define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
707#define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
708#define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
709#define	DOF_SECT_STRTAB		8	/* string table */
710#define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
711#define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
712#define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
713#define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
714#define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
715#define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
716#define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
717#define	DOF_SECT_PROBES		16	/* dof_probe_t array */
718#define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
719#define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
720#define	DOF_SECT_INTTAB		19	/* uint64_t array */
721#define	DOF_SECT_UTSNAME	20	/* struct utsname */
722#define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
723#define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
724#define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
725#define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
726#define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
727#define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
728
729#define	DOF_SECF_LOAD		1	/* section should be loaded */
730
731#define	DOF_SEC_ISLOADABLE(x)						\
732	(((x) == DOF_SECT_ECBDESC) || ((x) == DOF_SECT_PROBEDESC) ||	\
733	((x) == DOF_SECT_ACTDESC) || ((x) == DOF_SECT_DIFOHDR) ||	\
734	((x) == DOF_SECT_DIF) || ((x) == DOF_SECT_STRTAB) ||		\
735	((x) == DOF_SECT_VARTAB) || ((x) == DOF_SECT_RELTAB) ||		\
736	((x) == DOF_SECT_TYPTAB) || ((x) == DOF_SECT_URELHDR) ||	\
737	((x) == DOF_SECT_KRELHDR) || ((x) == DOF_SECT_OPTDESC) ||	\
738	((x) == DOF_SECT_PROVIDER) || ((x) == DOF_SECT_PROBES) ||	\
739	((x) == DOF_SECT_PRARGS) || ((x) == DOF_SECT_PROFFS) ||		\
740	((x) == DOF_SECT_INTTAB) || ((x) == DOF_SECT_XLTAB) ||		\
741	((x) == DOF_SECT_XLMEMBERS) || ((x) == DOF_SECT_XLIMPORT) ||	\
742	((x) == DOF_SECT_XLEXPORT) ||  ((x) == DOF_SECT_PREXPORT) || 	\
743	((x) == DOF_SECT_PRENOFFS))
744
745typedef struct dof_ecbdesc {
746	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
747	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
748	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
749	uint32_t dofe_pad;		/* reserved for future use */
750	uint64_t dofe_uarg;		/* user-supplied library argument */
751} dof_ecbdesc_t;
752
753typedef struct dof_probedesc {
754	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
755	dof_stridx_t dofp_provider;	/* provider string */
756	dof_stridx_t dofp_mod;		/* module string */
757	dof_stridx_t dofp_func;		/* function string */
758	dof_stridx_t dofp_name;		/* name string */
759	uint32_t dofp_id;		/* probe identifier (or zero) */
760} dof_probedesc_t;
761
762typedef struct dof_actdesc {
763	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
764	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
765	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
766	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
767	uint64_t dofa_arg;		/* kind-specific argument */
768	uint64_t dofa_uarg;		/* user-supplied argument */
769} dof_actdesc_t;
770
771typedef struct dof_difohdr {
772	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
773	dof_secidx_t dofd_links[1];	/* variable length array of indices */
774} dof_difohdr_t;
775
776typedef struct dof_relohdr {
777	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
778	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
779	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
780} dof_relohdr_t;
781
782typedef struct dof_relodesc {
783	dof_stridx_t dofr_name;		/* string name of relocation symbol */
784	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
785	uint64_t dofr_offset;		/* byte offset for relocation */
786	uint64_t dofr_data;		/* additional type-specific data */
787} dof_relodesc_t;
788
789#define	DOF_RELO_NONE	0		/* empty relocation entry */
790#define	DOF_RELO_SETX	1		/* relocate setx value */
791#define	DOF_RELO_DOFREL	2		/* relocate DOF-relative value */
792
793typedef struct dof_optdesc {
794	uint32_t dofo_option;		/* option identifier */
795	dof_secidx_t dofo_strtab;	/* string table, if string option */
796	uint64_t dofo_value;		/* option value or string index */
797} dof_optdesc_t;
798
799typedef uint32_t dof_attr_t;		/* encoded stability attributes */
800
801#define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
802#define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
803#define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
804#define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
805
806typedef struct dof_provider {
807	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
808	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
809	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
810	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
811	dof_stridx_t dofpv_name;	/* provider name string */
812	dof_attr_t dofpv_provattr;	/* provider attributes */
813	dof_attr_t dofpv_modattr;	/* module attributes */
814	dof_attr_t dofpv_funcattr;	/* function attributes */
815	dof_attr_t dofpv_nameattr;	/* name attributes */
816	dof_attr_t dofpv_argsattr;	/* args attributes */
817	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
818} dof_provider_t;
819
820typedef struct dof_probe {
821	uint64_t dofpr_addr;		/* probe base address or offset */
822	dof_stridx_t dofpr_func;	/* probe function string */
823	dof_stridx_t dofpr_name;	/* probe name string */
824	dof_stridx_t dofpr_nargv;	/* native argument type strings */
825	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
826	uint32_t dofpr_argidx;		/* index of first argument mapping */
827	uint32_t dofpr_offidx;		/* index of first offset entry */
828	uint8_t dofpr_nargc;		/* native argument count */
829	uint8_t dofpr_xargc;		/* translated argument count */
830	uint16_t dofpr_noffs;		/* number of offset entries for probe */
831	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
832	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
833	uint16_t dofpr_pad1;		/* reserved for future use */
834	uint32_t dofpr_pad2;		/* reserved for future use */
835} dof_probe_t;
836
837typedef struct dof_xlator {
838	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
839	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
840	dof_stridx_t dofxl_argv;	/* input parameter type strings */
841	uint32_t dofxl_argc;		/* input parameter list length */
842	dof_stridx_t dofxl_type;	/* output type string name */
843	dof_attr_t dofxl_attr;		/* output stability attributes */
844} dof_xlator_t;
845
846typedef struct dof_xlmember {
847	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
848	dof_stridx_t dofxm_name;	/* member name */
849	dtrace_diftype_t dofxm_type;	/* member type */
850} dof_xlmember_t;
851
852typedef struct dof_xlref {
853	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
854	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
855	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
856} dof_xlref_t;
857
858/*
859 * DTrace Intermediate Format Object (DIFO)
860 *
861 * A DIFO is used to store the compiled DIF for a D expression, its return
862 * type, and its string and variable tables.  The string table is a single
863 * buffer of character data into which sets instructions and variable
864 * references can reference strings using a byte offset.  The variable table
865 * is an array of dtrace_difv_t structures that describe the name and type of
866 * each variable and the id used in the DIF code.  This structure is described
867 * above in the DIF section of this header file.  The DIFO is used at both
868 * user-level (in the library) and in the kernel, but the structure is never
869 * passed between the two: the DOF structures form the only interface.  As a
870 * result, the definition can change depending on the presence of _KERNEL.
871 */
872typedef struct dtrace_difo {
873	dif_instr_t *dtdo_buf;		/* instruction buffer */
874	uint64_t *dtdo_inttab;		/* integer table (optional) */
875	char *dtdo_strtab;		/* string table (optional) */
876	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
877	uint_t dtdo_len;		/* length of instruction buffer */
878	uint_t dtdo_intlen;		/* length of integer table */
879	uint_t dtdo_strlen;		/* length of string table */
880	uint_t dtdo_varlen;		/* length of variable table */
881	dtrace_diftype_t dtdo_rtype;	/* return type */
882	uint_t dtdo_refcnt;		/* owner reference count */
883	uint_t dtdo_destructive;	/* invokes destructive subroutines */
884#ifndef _KERNEL
885	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
886	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
887	struct dt_node **dtdo_xlmtab;	/* translator references */
888	uint_t dtdo_krelen;		/* length of krelo table */
889	uint_t dtdo_urelen;		/* length of urelo table */
890	uint_t dtdo_xlmlen;		/* length of translator table */
891#endif
892} dtrace_difo_t;
893
894/*
895 * DTrace Enabling Description Structures
896 *
897 * When DTrace is tracking the description of a DTrace enabling entity (probe,
898 * predicate, action, ECB, record, etc.), it does so in a description
899 * structure.  These structures all end in "desc", and are used at both
900 * user-level and in the kernel -- but (with the exception of
901 * dtrace_probedesc_t) they are never passed between them.  Typically,
902 * user-level will use the description structures when assembling an enabling.
903 * It will then distill those description structures into a DOF object (see
904 * above), and send it into the kernel.  The kernel will again use the
905 * description structures to create a description of the enabling as it reads
906 * the DOF.  When the description is complete, the enabling will be actually
907 * created -- turning it into the structures that represent the enabling
908 * instead of merely describing it.  Not surprisingly, the description
909 * structures bear a strong resemblance to the DOF structures that act as their
910 * conduit.
911 */
912struct dtrace_predicate;
913
914typedef struct dtrace_probedesc {
915	dtrace_id_t dtpd_id;			/* probe identifier */
916	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
917	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
918	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
919	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
920} dtrace_probedesc_t;
921
922typedef struct dtrace_repldesc {
923	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
924	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
925} dtrace_repldesc_t;
926
927typedef struct dtrace_preddesc {
928	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
929	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
930} dtrace_preddesc_t;
931
932typedef struct dtrace_actdesc {
933	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
934	struct dtrace_actdesc *dtad_next;	/* next action */
935	dtrace_actkind_t dtad_kind;		/* kind of action */
936	uint32_t dtad_ntuple;			/* number in tuple */
937	uint64_t dtad_arg;			/* action argument */
938	uint64_t dtad_uarg;			/* user argument */
939	int dtad_refcnt;			/* reference count */
940} dtrace_actdesc_t;
941
942typedef struct dtrace_ecbdesc {
943	dtrace_actdesc_t *dted_action;		/* action description(s) */
944	dtrace_preddesc_t dted_pred;		/* predicate description */
945	dtrace_probedesc_t dted_probe;		/* probe description */
946	uint64_t dted_uarg;			/* library argument */
947	int dted_refcnt;			/* reference count */
948} dtrace_ecbdesc_t;
949
950/*
951 * DTrace Metadata Description Structures
952 *
953 * DTrace separates the trace data stream from the metadata stream.  The only
954 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
955 * timestamp) or (in the case of aggregations) aggregation identifiers.  To
956 * determine the structure of the data, DTrace consumers pass the token to the
957 * kernel, and receive in return a corresponding description of the enabled
958 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
959 * dtrace_aggdesc structure).  Both of these structures are expressed in terms
960 * of record descriptions (via the dtrace_recdesc structure) that describe the
961 * exact structure of the data.  Some record descriptions may also contain a
962 * format identifier; this additional bit of metadata can be retrieved from the
963 * kernel, for which a format description is returned via the dtrace_fmtdesc
964 * structure.  Note that all four of these structures must be bitness-neutral
965 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
966 */
967typedef struct dtrace_recdesc {
968	dtrace_actkind_t dtrd_action;		/* kind of action */
969	uint32_t dtrd_size;			/* size of record */
970	uint32_t dtrd_offset;			/* offset in ECB's data */
971	uint16_t dtrd_alignment;		/* required alignment */
972	uint16_t dtrd_format;			/* format, if any */
973	uint64_t dtrd_arg;			/* action argument */
974	uint64_t dtrd_uarg;			/* user argument */
975} dtrace_recdesc_t;
976
977typedef struct dtrace_eprobedesc {
978	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
979	dtrace_id_t dtepd_probeid;		/* probe ID */
980	uint64_t dtepd_uarg;			/* library argument */
981	uint32_t dtepd_size;			/* total size */
982	int dtepd_nrecs;			/* number of records */
983	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
984} dtrace_eprobedesc_t;
985
986typedef struct dtrace_aggdesc {
987	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
988	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
989	int dtagd_flags;			/* not filled in by kernel */
990	dtrace_aggid_t dtagd_id;		/* aggregation ID */
991	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
992	uint32_t dtagd_size;			/* size in bytes */
993	int dtagd_nrecs;			/* number of records */
994	uint32_t dtagd_pad;			/* explicit padding */
995	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
996} dtrace_aggdesc_t;
997
998typedef struct dtrace_fmtdesc {
999	DTRACE_PTR(char, dtfd_string);		/* format string */
1000	int dtfd_length;			/* length of format string */
1001	uint16_t dtfd_format;			/* format identifier */
1002} dtrace_fmtdesc_t;
1003
1004#define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
1005	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
1006	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1007
1008#define	DTRACE_SIZEOF_AGGDESC(desc)				\
1009	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
1010	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
1011
1012/*
1013 * DTrace Option Interface
1014 *
1015 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
1016 * in a DOF image.  The dof_optdesc structure contains an option identifier and
1017 * an option value.  The valid option identifiers are found below; the mapping
1018 * between option identifiers and option identifying strings is maintained at
1019 * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
1020 * following are potentially valid option values:  all positive integers, zero
1021 * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
1022 * predefined tokens as their values; these are defined with
1023 * DTRACEOPT_{option}_{token}.
1024 */
1025#define	DTRACEOPT_BUFSIZE	0	/* buffer size */
1026#define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
1027#define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
1028#define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
1029#define	DTRACEOPT_SPECSIZE	4	/* speculation size */
1030#define	DTRACEOPT_NSPEC		5	/* number of speculations */
1031#define	DTRACEOPT_STRSIZE	6	/* string size */
1032#define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
1033#define	DTRACEOPT_CPU		8	/* CPU to trace */
1034#define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
1035#define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
1036#define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1037#define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1038#define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1039#define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1040#define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1041#define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1042#define	DTRACEOPT_STATUSRATE	17	/* status rate */
1043#define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1044#define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1045#define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1046#define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1047#define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1048#define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1049#define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1050#define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1051#define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1052#define	DTRACEOPT_TEMPORAL	27	/* temporally ordered output */
1053#define	DTRACEOPT_AGGHIST	28	/* histogram aggregation output */
1054#define	DTRACEOPT_AGGPACK	29	/* packed aggregation output */
1055#define	DTRACEOPT_AGGZOOM	30	/* zoomed aggregation scaling */
1056#define	DTRACEOPT_ZONE		31	/* zone in which to enable probes */
1057#define	DTRACEOPT_MAX		32	/* number of options */
1058
1059#define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1060
1061#define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1062#define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1063#define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1064
1065#define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1066#define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1067
1068/*
1069 * DTrace Buffer Interface
1070 *
1071 * In order to get a snapshot of the principal or aggregation buffer,
1072 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1073 * structure.  This describes which CPU user-level is interested in, and
1074 * where user-level wishes the kernel to snapshot the buffer to (the
1075 * dtbd_data field).  The kernel uses the same structure to pass back some
1076 * information regarding the buffer:  the size of data actually copied out, the
1077 * number of drops, the number of errors, the offset of the oldest record,
1078 * and the time of the snapshot.
1079 *
1080 * If the buffer policy is a "switch" policy, taking a snapshot of the
1081 * principal buffer has the additional effect of switching the active and
1082 * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1083 * the additional effect of switching the active and inactive buffers.
1084 */
1085typedef struct dtrace_bufdesc {
1086	uint64_t dtbd_size;			/* size of buffer */
1087	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1088	uint32_t dtbd_errors;			/* number of errors */
1089	uint64_t dtbd_drops;			/* number of drops */
1090	DTRACE_PTR(char, dtbd_data);		/* data */
1091	uint64_t dtbd_oldest;			/* offset of oldest record */
1092	uint64_t dtbd_timestamp;		/* hrtime of snapshot */
1093} dtrace_bufdesc_t;
1094
1095/*
1096 * Each record in the buffer (dtbd_data) begins with a header that includes
1097 * the epid and a timestamp.  The timestamp is split into two 4-byte parts
1098 * so that we do not require 8-byte alignment.
1099 */
1100typedef struct dtrace_rechdr {
1101	dtrace_epid_t dtrh_epid;		/* enabled probe id */
1102	uint32_t dtrh_timestamp_hi;		/* high bits of hrtime_t */
1103	uint32_t dtrh_timestamp_lo;		/* low bits of hrtime_t */
1104} dtrace_rechdr_t;
1105
1106#define	DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)			\
1107	((dtrh)->dtrh_timestamp_lo +				\
1108	((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1109
1110#define	DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) {		\
1111	(dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime;		\
1112	(dtrh)->dtrh_timestamp_hi = hrtime >> 32;		\
1113}
1114
1115/*
1116 * DTrace Status
1117 *
1118 * The status of DTrace is relayed via the dtrace_status structure.  This
1119 * structure contains members to count drops other than the capacity drops
1120 * available via the buffer interface (see above).  This consists of dynamic
1121 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1122 * speculative drops (including capacity speculative drops, drops due to busy
1123 * speculative buffers and drops due to unavailable speculative buffers).
1124 * Additionally, the status structure contains a field to indicate the number
1125 * of "fill"-policy buffers have been filled and a boolean field to indicate
1126 * that exit() has been called.  If the dtst_exiting field is non-zero, no
1127 * further data will be generated until tracing is stopped (at which time any
1128 * enablings of the END action will be processed); if user-level sees that
1129 * this field is non-zero, tracing should be stopped as soon as possible.
1130 */
1131typedef struct dtrace_status {
1132	uint64_t dtst_dyndrops;			/* dynamic drops */
1133	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1134	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1135	uint64_t dtst_specdrops;		/* speculative drops */
1136	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1137	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1138	uint64_t dtst_errors;			/* total errors */
1139	uint64_t dtst_filled;			/* number of filled bufs */
1140	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1141	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1142	char dtst_killed;			/* non-zero if killed */
1143	char dtst_exiting;			/* non-zero if exit() called */
1144	char dtst_pad[6];			/* pad out to 64-bit align */
1145} dtrace_status_t;
1146
1147/*
1148 * DTrace Configuration
1149 *
1150 * User-level may need to understand some elements of the kernel DTrace
1151 * configuration in order to generate correct DIF.  This information is
1152 * conveyed via the dtrace_conf structure.
1153 */
1154typedef struct dtrace_conf {
1155	uint_t dtc_difversion;			/* supported DIF version */
1156	uint_t dtc_difintregs;			/* # of DIF integer registers */
1157	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1158	uint_t dtc_ctfmodel;			/* CTF data model */
1159	uint_t dtc_pad[8];			/* reserved for future use */
1160} dtrace_conf_t;
1161
1162/*
1163 * DTrace Faults
1164 *
1165 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1166 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1167 * postprocessing at user-level.  Probe processing faults induce an ERROR
1168 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1169 * the error condition using thse symbolic labels.
1170 */
1171#define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1172#define	DTRACEFLT_BADADDR		1	/* Bad address */
1173#define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1174#define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1175#define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1176#define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1177#define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1178#define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1179#define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1180#define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1181
1182#define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1183
1184/*
1185 * DTrace Argument Types
1186 *
1187 * Because it would waste both space and time, argument types do not reside
1188 * with the probe.  In order to determine argument types for args[X]
1189 * variables, the D compiler queries for argument types on a probe-by-probe
1190 * basis.  (This optimizes for the common case that arguments are either not
1191 * used or used in an untyped fashion.)  Typed arguments are specified with a
1192 * string of the type name in the dtragd_native member of the argument
1193 * description structure.  Typed arguments may be further translated to types
1194 * of greater stability; the provider indicates such a translated argument by
1195 * filling in the dtargd_xlate member with the string of the translated type.
1196 * Finally, the provider may indicate which argument value a given argument
1197 * maps to by setting the dtargd_mapping member -- allowing a single argument
1198 * to map to multiple args[X] variables.
1199 */
1200typedef struct dtrace_argdesc {
1201	dtrace_id_t dtargd_id;			/* probe identifier */
1202	int dtargd_ndx;				/* arg number (-1 iff none) */
1203	int dtargd_mapping;			/* value mapping */
1204	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1205	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1206} dtrace_argdesc_t;
1207
1208/*
1209 * DTrace Stability Attributes
1210 *
1211 * Each DTrace provider advertises the name and data stability of each of its
1212 * probe description components, as well as its architectural dependencies.
1213 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1214 * order to compute the properties of an input program and report them.
1215 */
1216typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1217typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1218
1219#define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1220#define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1221#define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1222#define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1223#define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1224#define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1225#define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1226#define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1227#define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1228
1229#define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1230#define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1231#define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1232#define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1233#define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1234#define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1235#define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1236
1237#define	DTRACE_PRIV_NONE	0x0000
1238#define	DTRACE_PRIV_KERNEL	0x0001
1239#define	DTRACE_PRIV_USER	0x0002
1240#define	DTRACE_PRIV_PROC	0x0004
1241#define	DTRACE_PRIV_OWNER	0x0008
1242#define	DTRACE_PRIV_ZONEOWNER	0x0010
1243
1244#define	DTRACE_PRIV_ALL	\
1245	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1246	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1247
1248typedef struct dtrace_ppriv {
1249	uint32_t dtpp_flags;			/* privilege flags */
1250	uid_t dtpp_uid;				/* user ID */
1251	zoneid_t dtpp_zoneid;			/* zone ID */
1252} dtrace_ppriv_t;
1253
1254typedef struct dtrace_attribute {
1255	dtrace_stability_t dtat_name;		/* entity name stability */
1256	dtrace_stability_t dtat_data;		/* entity data stability */
1257	dtrace_class_t dtat_class;		/* entity data dependency */
1258} dtrace_attribute_t;
1259
1260typedef struct dtrace_pattr {
1261	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1262	dtrace_attribute_t dtpa_mod;		/* module attributes */
1263	dtrace_attribute_t dtpa_func;		/* function attributes */
1264	dtrace_attribute_t dtpa_name;		/* name attributes */
1265	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1266} dtrace_pattr_t;
1267
1268typedef struct dtrace_providerdesc {
1269	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1270	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1271	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1272} dtrace_providerdesc_t;
1273
1274/*
1275 * DTrace Pseudodevice Interface
1276 *
1277 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1278 * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1279 * DTrace.
1280 */
1281#ifdef illumos
1282#define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1283#define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1284#define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1285#define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1286#define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1287#define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1288#define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1289#define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1290#define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1291#define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1292#define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1293#define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1294#define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1295#define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1296#define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1297#define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1298#define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1299#else
1300#define	DTRACEIOC_PROVIDER	_IOWR('x',1,dtrace_providerdesc_t)
1301							/* provider query */
1302#define	DTRACEIOC_PROBES	_IOWR('x',2,dtrace_probedesc_t)
1303							/* probe query */
1304#define	DTRACEIOC_BUFSNAP	_IOW('x',4,dtrace_bufdesc_t *)
1305							/* snapshot buffer */
1306#define	DTRACEIOC_PROBEMATCH	_IOWR('x',5,dtrace_probedesc_t)
1307							/* match probes */
1308typedef struct {
1309	void	*dof;		/* DOF userland address written to driver. */
1310	int	n_matched;	/* # matches returned by driver. */
1311} dtrace_enable_io_t;
1312#define	DTRACEIOC_ENABLE	_IOWR('x',6,dtrace_enable_io_t)
1313							/* enable probes */
1314#define	DTRACEIOC_AGGSNAP	_IOW('x',7,dtrace_bufdesc_t *)
1315							/* snapshot agg. */
1316#define	DTRACEIOC_EPROBE	_IOW('x',8,dtrace_eprobedesc_t)
1317							/* get eprobe desc. */
1318#define	DTRACEIOC_PROBEARG	_IOWR('x',9,dtrace_argdesc_t)
1319							/* get probe arg */
1320#define	DTRACEIOC_CONF		_IOR('x',10,dtrace_conf_t)
1321							/* get config. */
1322#define	DTRACEIOC_STATUS	_IOR('x',11,dtrace_status_t)
1323							/* get status */
1324#define	DTRACEIOC_GO		_IOR('x',12,processorid_t)
1325							/* start tracing */
1326#define	DTRACEIOC_STOP		_IOWR('x',13,processorid_t)
1327							/* stop tracing */
1328#define	DTRACEIOC_AGGDESC	_IOW('x',15,dtrace_aggdesc_t *)
1329							/* get agg. desc. */
1330#define	DTRACEIOC_FORMAT	_IOWR('x',16,dtrace_fmtdesc_t)
1331							/* get format str */
1332#define	DTRACEIOC_DOFGET	_IOW('x',17,dof_hdr_t *)
1333							/* get DOF */
1334#define	DTRACEIOC_REPLICATE	_IOW('x',18,dtrace_repldesc_t)
1335							/* replicate enab */
1336#endif
1337
1338/*
1339 * DTrace Helpers
1340 *
1341 * In general, DTrace establishes probes in processes and takes actions on
1342 * processes without knowing their specific user-level structures.  Instead of
1343 * existing in the framework, process-specific knowledge is contained by the
1344 * enabling D program -- which can apply process-specific knowledge by making
1345 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1346 * operate on user-level data.  However, there may exist some specific probes
1347 * of particular semantic relevance that the application developer may wish to
1348 * explicitly export.  For example, an application may wish to export a probe
1349 * at the point that it begins and ends certain well-defined transactions.  In
1350 * addition to providing probes, programs may wish to offer assistance for
1351 * certain actions.  For example, in highly dynamic environments (e.g., Java),
1352 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1353 * names (the translation from instruction addresses to corresponding symbol
1354 * names may only be possible in situ); these environments may wish to define
1355 * a series of actions to be applied in situ to obtain a meaningful stack
1356 * trace.
1357 *
1358 * These two mechanisms -- user-level statically defined tracing and assisting
1359 * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1360 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1361 * providers, probes and their arguments.  If a helper wishes to provide
1362 * action assistance, probe descriptions and corresponding DIF actions may be
1363 * specified in the helper DOF.  For such helper actions, however, the probe
1364 * description describes the specific helper:  all DTrace helpers have the
1365 * provider name "dtrace" and the module name "helper", and the name of the
1366 * helper is contained in the function name (for example, the ustack() helper
1367 * is named "ustack").  Any helper-specific name may be contained in the name
1368 * (for example, if a helper were to have a constructor, it might be named
1369 * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1370 * action that they are helping is taken.  Helper actions may only return DIF
1371 * expressions, and may only call the following subroutines:
1372 *
1373 *    alloca()      <= Allocates memory out of the consumer's scratch space
1374 *    bcopy()       <= Copies memory to scratch space
1375 *    copyin()      <= Copies memory from user-level into consumer's scratch
1376 *    copyinto()    <= Copies memory into a specific location in scratch
1377 *    copyinstr()   <= Copies a string into a specific location in scratch
1378 *
1379 * Helper actions may only access the following built-in variables:
1380 *
1381 *    curthread     <= Current kthread_t pointer
1382 *    tid           <= Current thread identifier
1383 *    pid           <= Current process identifier
1384 *    ppid          <= Parent process identifier
1385 *    uid           <= Current user ID
1386 *    gid           <= Current group ID
1387 *    execname      <= Current executable name
1388 *    zonename      <= Current zone name
1389 *
1390 * Helper actions may not manipulate or allocate dynamic variables, but they
1391 * may have clause-local and statically-allocated global variables.  The
1392 * helper action variable state is specific to the helper action -- variables
1393 * used by the helper action may not be accessed outside of the helper
1394 * action, and the helper action may not access variables that like outside
1395 * of it.  Helper actions may not load from kernel memory at-large; they are
1396 * restricting to loading current user state (via copyin() and variants) and
1397 * scratch space.  As with probe enablings, helper actions are executed in
1398 * program order.  The result of the helper action is the result of the last
1399 * executing helper expression.
1400 *
1401 * Helpers -- composed of either providers/probes or probes/actions (or both)
1402 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1403 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1404 * encapsulates the name and base address of the user-level library or
1405 * executable publishing the helpers and probes as well as the DOF that
1406 * contains the definitions of those helpers and probes.
1407 *
1408 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1409 * helpers and should no longer be used.  No other ioctls are valid on the
1410 * helper minor node.
1411 */
1412#ifdef illumos
1413#define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1414#define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1415#define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1416#define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1417#else
1418#define	DTRACEHIOC_REMOVE	_IOW('z', 2, int)	/* remove helper */
1419#define	DTRACEHIOC_ADDDOF	_IOWR('z', 3, dof_helper_t)/* add helper DOF */
1420#endif
1421
1422typedef struct dof_helper {
1423	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1424	uint64_t dofhp_addr;			/* base address of object */
1425	uint64_t dofhp_dof;			/* address of helper DOF */
1426#ifdef __FreeBSD__
1427	pid_t dofhp_pid;			/* target process ID */
1428	int dofhp_gen;
1429#endif
1430} dof_helper_t;
1431
1432#define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1433#define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1434#define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1435#define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1436#define	DTRACEMNRN_CLONE	2		/* first clone minor */
1437
1438#ifdef _KERNEL
1439
1440/*
1441 * DTrace Provider API
1442 *
1443 * The following functions are implemented by the DTrace framework and are
1444 * used to implement separate in-kernel DTrace providers.  Common functions
1445 * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1446 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1447 *
1448 * The provider API has two halves:  the API that the providers consume from
1449 * DTrace, and the API that providers make available to DTrace.
1450 *
1451 * 1 Framework-to-Provider API
1452 *
1453 * 1.1  Overview
1454 *
1455 * The Framework-to-Provider API is represented by the dtrace_pops structure
1456 * that the provider passes to the framework when registering itself.  This
1457 * structure consists of the following members:
1458 *
1459 *   dtps_provide()          <-- Provide all probes, all modules
1460 *   dtps_provide_module()   <-- Provide all probes in specified module
1461 *   dtps_enable()           <-- Enable specified probe
1462 *   dtps_disable()          <-- Disable specified probe
1463 *   dtps_suspend()          <-- Suspend specified probe
1464 *   dtps_resume()           <-- Resume specified probe
1465 *   dtps_getargdesc()       <-- Get the argument description for args[X]
1466 *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1467 *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1468 *   dtps_destroy()          <-- Destroy all state associated with this probe
1469 *
1470 * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1471 *
1472 * 1.2.1  Overview
1473 *
1474 *   Called to indicate that the provider should provide all probes.  If the
1475 *   specified description is non-NULL, dtps_provide() is being called because
1476 *   no probe matched a specified probe -- if the provider has the ability to
1477 *   create custom probes, it may wish to create a probe that matches the
1478 *   specified description.
1479 *
1480 * 1.2.2  Arguments and notes
1481 *
1482 *   The first argument is the cookie as passed to dtrace_register().  The
1483 *   second argument is a pointer to a probe description that the provider may
1484 *   wish to consider when creating custom probes.  The provider is expected to
1485 *   call back into the DTrace framework via dtrace_probe_create() to create
1486 *   any necessary probes.  dtps_provide() may be called even if the provider
1487 *   has made available all probes; the provider should check the return value
1488 *   of dtrace_probe_create() to handle this case.  Note that the provider need
1489 *   not implement both dtps_provide() and dtps_provide_module(); see
1490 *   "Arguments and Notes" for dtrace_register(), below.
1491 *
1492 * 1.2.3  Return value
1493 *
1494 *   None.
1495 *
1496 * 1.2.4  Caller's context
1497 *
1498 *   dtps_provide() is typically called from open() or ioctl() context, but may
1499 *   be called from other contexts as well.  The DTrace framework is locked in
1500 *   such a way that providers may not register or unregister.  This means that
1501 *   the provider may not call any DTrace API that affects its registration with
1502 *   the framework, including dtrace_register(), dtrace_unregister(),
1503 *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1504 *   that the provider may (and indeed, is expected to) call probe-related
1505 *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1506 *   and dtrace_probe_arg().
1507 *
1508 * 1.3  void dtps_provide_module(void *arg, modctl_t *mp)
1509 *
1510 * 1.3.1  Overview
1511 *
1512 *   Called to indicate that the provider should provide all probes in the
1513 *   specified module.
1514 *
1515 * 1.3.2  Arguments and notes
1516 *
1517 *   The first argument is the cookie as passed to dtrace_register().  The
1518 *   second argument is a pointer to a modctl structure that indicates the
1519 *   module for which probes should be created.
1520 *
1521 * 1.3.3  Return value
1522 *
1523 *   None.
1524 *
1525 * 1.3.4  Caller's context
1526 *
1527 *   dtps_provide_module() may be called from open() or ioctl() context, but
1528 *   may also be called from a module loading context.  mod_lock is held, and
1529 *   the DTrace framework is locked in such a way that providers may not
1530 *   register or unregister.  This means that the provider may not call any
1531 *   DTrace API that affects its registration with the framework, including
1532 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1533 *   dtrace_condense().  However, the context is such that the provider may (and
1534 *   indeed, is expected to) call probe-related DTrace routines, including
1535 *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1536 *   that the provider need not implement both dtps_provide() and
1537 *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1538 *   below.
1539 *
1540 * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1541 *
1542 * 1.4.1  Overview
1543 *
1544 *   Called to enable the specified probe.
1545 *
1546 * 1.4.2  Arguments and notes
1547 *
1548 *   The first argument is the cookie as passed to dtrace_register().  The
1549 *   second argument is the identifier of the probe to be enabled.  The third
1550 *   argument is the probe argument as passed to dtrace_probe_create().
1551 *   dtps_enable() will be called when a probe transitions from not being
1552 *   enabled at all to having one or more ECB.  The number of ECBs associated
1553 *   with the probe may change without subsequent calls into the provider.
1554 *   When the number of ECBs drops to zero, the provider will be explicitly
1555 *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1556 *   be called for a probe identifier that hasn't been explicitly enabled via
1557 *   dtps_enable().
1558 *
1559 * 1.4.3  Return value
1560 *
1561 *   None.
1562 *
1563 * 1.4.4  Caller's context
1564 *
1565 *   The DTrace framework is locked in such a way that it may not be called
1566 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1567 *   be acquired.
1568 *
1569 * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1570 *
1571 * 1.5.1  Overview
1572 *
1573 *   Called to disable the specified probe.
1574 *
1575 * 1.5.2  Arguments and notes
1576 *
1577 *   The first argument is the cookie as passed to dtrace_register().  The
1578 *   second argument is the identifier of the probe to be disabled.  The third
1579 *   argument is the probe argument as passed to dtrace_probe_create().
1580 *   dtps_disable() will be called when a probe transitions from being enabled
1581 *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1582 *   identifier that has been explicitly enabled via dtps_disable().
1583 *
1584 * 1.5.3  Return value
1585 *
1586 *   None.
1587 *
1588 * 1.5.4  Caller's context
1589 *
1590 *   The DTrace framework is locked in such a way that it may not be called
1591 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1592 *   be acquired.
1593 *
1594 * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1595 *
1596 * 1.6.1  Overview
1597 *
1598 *   Called to suspend the specified enabled probe.  This entry point is for
1599 *   providers that may need to suspend some or all of their probes when CPUs
1600 *   are being powered on or when the boot monitor is being entered for a
1601 *   prolonged period of time.
1602 *
1603 * 1.6.2  Arguments and notes
1604 *
1605 *   The first argument is the cookie as passed to dtrace_register().  The
1606 *   second argument is the identifier of the probe to be suspended.  The
1607 *   third argument is the probe argument as passed to dtrace_probe_create().
1608 *   dtps_suspend will only be called on an enabled probe.  Providers that
1609 *   provide a dtps_suspend entry point will want to take roughly the action
1610 *   that it takes for dtps_disable.
1611 *
1612 * 1.6.3  Return value
1613 *
1614 *   None.
1615 *
1616 * 1.6.4  Caller's context
1617 *
1618 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1619 *   specified probe cannot be disabled or destroyed for the duration of
1620 *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1621 *   little latitude; the provider is expected to do no more than a store to
1622 *   memory.
1623 *
1624 * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1625 *
1626 * 1.7.1  Overview
1627 *
1628 *   Called to resume the specified enabled probe.  This entry point is for
1629 *   providers that may need to resume some or all of their probes after the
1630 *   completion of an event that induced a call to dtps_suspend().
1631 *
1632 * 1.7.2  Arguments and notes
1633 *
1634 *   The first argument is the cookie as passed to dtrace_register().  The
1635 *   second argument is the identifier of the probe to be resumed.  The
1636 *   third argument is the probe argument as passed to dtrace_probe_create().
1637 *   dtps_resume will only be called on an enabled probe.  Providers that
1638 *   provide a dtps_resume entry point will want to take roughly the action
1639 *   that it takes for dtps_enable.
1640 *
1641 * 1.7.3  Return value
1642 *
1643 *   None.
1644 *
1645 * 1.7.4  Caller's context
1646 *
1647 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1648 *   specified probe cannot be disabled or destroyed for the duration of
1649 *   dtps_resume().  As interrupts are disabled, the provider is afforded
1650 *   little latitude; the provider is expected to do no more than a store to
1651 *   memory.
1652 *
1653 * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1654 *           dtrace_argdesc_t *desc)
1655 *
1656 * 1.8.1  Overview
1657 *
1658 *   Called to retrieve the argument description for an args[X] variable.
1659 *
1660 * 1.8.2  Arguments and notes
1661 *
1662 *   The first argument is the cookie as passed to dtrace_register(). The
1663 *   second argument is the identifier of the current probe. The third
1664 *   argument is the probe argument as passed to dtrace_probe_create(). The
1665 *   fourth argument is a pointer to the argument description.  This
1666 *   description is both an input and output parameter:  it contains the
1667 *   index of the desired argument in the dtargd_ndx field, and expects
1668 *   the other fields to be filled in upon return.  If there is no argument
1669 *   corresponding to the specified index, the dtargd_ndx field should be set
1670 *   to DTRACE_ARGNONE.
1671 *
1672 * 1.8.3  Return value
1673 *
1674 *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1675 *   members of the dtrace_argdesc_t structure are all output values.
1676 *
1677 * 1.8.4  Caller's context
1678 *
1679 *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1680 *   the DTrace framework is locked in such a way that providers may not
1681 *   register or unregister.  This means that the provider may not call any
1682 *   DTrace API that affects its registration with the framework, including
1683 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1684 *   dtrace_condense().
1685 *
1686 * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1687 *               int argno, int aframes)
1688 *
1689 * 1.9.1  Overview
1690 *
1691 *   Called to retrieve a value for an argX or args[X] variable.
1692 *
1693 * 1.9.2  Arguments and notes
1694 *
1695 *   The first argument is the cookie as passed to dtrace_register(). The
1696 *   second argument is the identifier of the current probe. The third
1697 *   argument is the probe argument as passed to dtrace_probe_create(). The
1698 *   fourth argument is the number of the argument (the X in the example in
1699 *   1.9.1). The fifth argument is the number of stack frames that were used
1700 *   to get from the actual place in the code that fired the probe to
1701 *   dtrace_probe() itself, the so-called artificial frames. This argument may
1702 *   be used to descend an appropriate number of frames to find the correct
1703 *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1704 *   function is used.
1705 *
1706 * 1.9.3  Return value
1707 *
1708 *   The value of the argument.
1709 *
1710 * 1.9.4  Caller's context
1711 *
1712 *   This is called from within dtrace_probe() meaning that interrupts
1713 *   are disabled. No locks should be taken within this entry point.
1714 *
1715 * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1716 *
1717 * 1.10.1  Overview
1718 *
1719 *   Called to determine if the probe was fired in a user context.
1720 *
1721 * 1.10.2  Arguments and notes
1722 *
1723 *   The first argument is the cookie as passed to dtrace_register(). The
1724 *   second argument is the identifier of the current probe. The third
1725 *   argument is the probe argument as passed to dtrace_probe_create().  This
1726 *   entry point must not be left NULL for providers whose probes allow for
1727 *   mixed mode tracing, that is to say those probes that can fire during
1728 *   kernel- _or_ user-mode execution
1729 *
1730 * 1.10.3  Return value
1731 *
1732 *   A bitwise OR that encapsulates both the mode (either DTRACE_MODE_KERNEL
1733 *   or DTRACE_MODE_USER) and the policy when the privilege of the enabling
1734 *   is insufficient for that mode (a combination of DTRACE_MODE_NOPRIV_DROP,
1735 *   DTRACE_MODE_NOPRIV_RESTRICT, and DTRACE_MODE_LIMITEDPRIV_RESTRICT).  If
1736 *   DTRACE_MODE_NOPRIV_DROP bit is set, insufficient privilege will result
1737 *   in the probe firing being silently ignored for the enabling; if the
1738 *   DTRACE_NODE_NOPRIV_RESTRICT bit is set, insufficient privilege will not
1739 *   prevent probe processing for the enabling, but restrictions will be in
1740 *   place that induce a UPRIV fault upon attempt to examine probe arguments
1741 *   or current process state.  If the DTRACE_MODE_LIMITEDPRIV_RESTRICT bit
1742 *   is set, similar restrictions will be placed upon operation if the
1743 *   privilege is sufficient to process the enabling, but does not otherwise
1744 *   entitle the enabling to all zones.  The DTRACE_MODE_NOPRIV_DROP and
1745 *   DTRACE_MODE_NOPRIV_RESTRICT are mutually exclusive (and one of these
1746 *   two policies must be specified), but either may be combined (or not)
1747 *   with DTRACE_MODE_LIMITEDPRIV_RESTRICT.
1748 *
1749 * 1.10.4  Caller's context
1750 *
1751 *   This is called from within dtrace_probe() meaning that interrupts
1752 *   are disabled. No locks should be taken within this entry point.
1753 *
1754 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1755 *
1756 * 1.11.1 Overview
1757 *
1758 *   Called to destroy the specified probe.
1759 *
1760 * 1.11.2 Arguments and notes
1761 *
1762 *   The first argument is the cookie as passed to dtrace_register().  The
1763 *   second argument is the identifier of the probe to be destroyed.  The third
1764 *   argument is the probe argument as passed to dtrace_probe_create().  The
1765 *   provider should free all state associated with the probe.  The framework
1766 *   guarantees that dtps_destroy() is only called for probes that have either
1767 *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1768 *   Once dtps_disable() has been called for a probe, no further call will be
1769 *   made specifying the probe.
1770 *
1771 * 1.11.3 Return value
1772 *
1773 *   None.
1774 *
1775 * 1.11.4 Caller's context
1776 *
1777 *   The DTrace framework is locked in such a way that it may not be called
1778 *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1779 *   acquired.
1780 *
1781 *
1782 * 2 Provider-to-Framework API
1783 *
1784 * 2.1  Overview
1785 *
1786 * The Provider-to-Framework API provides the mechanism for the provider to
1787 * register itself with the DTrace framework, to create probes, to lookup
1788 * probes and (most importantly) to fire probes.  The Provider-to-Framework
1789 * consists of:
1790 *
1791 *   dtrace_register()       <-- Register a provider with the DTrace framework
1792 *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1793 *   dtrace_invalidate()     <-- Invalidate the specified provider
1794 *   dtrace_condense()       <-- Remove a provider's unenabled probes
1795 *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1796 *   dtrace_probe_create()   <-- Create a DTrace probe
1797 *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1798 *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1799 *   dtrace_probe()          <-- Fire the specified probe
1800 *
1801 * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1802 *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1803 *          dtrace_provider_id_t *idp)
1804 *
1805 * 2.2.1  Overview
1806 *
1807 *   dtrace_register() registers the calling provider with the DTrace
1808 *   framework.  It should generally be called by DTrace providers in their
1809 *   attach(9E) entry point.
1810 *
1811 * 2.2.2  Arguments and Notes
1812 *
1813 *   The first argument is the name of the provider.  The second argument is a
1814 *   pointer to the stability attributes for the provider.  The third argument
1815 *   is the privilege flags for the provider, and must be some combination of:
1816 *
1817 *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1818 *
1819 *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1820 *                             enable probes from this provider
1821 *
1822 *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1823 *                             enable probes from this provider
1824 *
1825 *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1826 *                             may enable probes from this provider
1827 *
1828 *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1829 *                             the privilege requirements above. These probes
1830 *                             require either (a) a user ID matching the user
1831 *                             ID of the cred passed in the fourth argument
1832 *                             or (b) the PRIV_PROC_OWNER privilege.
1833 *
1834 *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1835 *                             the privilege requirements above. These probes
1836 *                             require either (a) a zone ID matching the zone
1837 *                             ID of the cred passed in the fourth argument
1838 *                             or (b) the PRIV_PROC_ZONE privilege.
1839 *
1840 *   Note that these flags designate the _visibility_ of the probes, not
1841 *   the conditions under which they may or may not fire.
1842 *
1843 *   The fourth argument is the credential that is associated with the
1844 *   provider.  This argument should be NULL if the privilege flags don't
1845 *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1846 *   framework stashes the uid and zoneid represented by this credential
1847 *   for use at probe-time, in implicit predicates.  These limit visibility
1848 *   of the probes to users and/or zones which have sufficient privilege to
1849 *   access them.
1850 *
1851 *   The fifth argument is a DTrace provider operations vector, which provides
1852 *   the implementation for the Framework-to-Provider API.  (See Section 1,
1853 *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1854 *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1855 *   members (if the provider so desires, _one_ of these members may be left
1856 *   NULL -- denoting that the provider only implements the other) and (2)
1857 *   the dtps_suspend() and dtps_resume() members, which must either both be
1858 *   NULL or both be non-NULL.
1859 *
1860 *   The sixth argument is a cookie to be specified as the first argument for
1861 *   each function in the Framework-to-Provider API.  This argument may have
1862 *   any value.
1863 *
1864 *   The final argument is a pointer to dtrace_provider_id_t.  If
1865 *   dtrace_register() successfully completes, the provider identifier will be
1866 *   stored in the memory pointed to be this argument.  This argument must be
1867 *   non-NULL.
1868 *
1869 * 2.2.3  Return value
1870 *
1871 *   On success, dtrace_register() returns 0 and stores the new provider's
1872 *   identifier into the memory pointed to by the idp argument.  On failure,
1873 *   dtrace_register() returns an errno:
1874 *
1875 *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1876 *              This may because a parameter that must be non-NULL was NULL,
1877 *              because the name was invalid (either empty or an illegal
1878 *              provider name) or because the attributes were invalid.
1879 *
1880 *   No other failure code is returned.
1881 *
1882 * 2.2.4  Caller's context
1883 *
1884 *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1885 *   hold no locks across dtrace_register() that may also be acquired by
1886 *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1887 *
1888 * 2.3  int dtrace_unregister(dtrace_provider_t id)
1889 *
1890 * 2.3.1  Overview
1891 *
1892 *   Unregisters the specified provider from the DTrace framework.  It should
1893 *   generally be called by DTrace providers in their detach(9E) entry point.
1894 *
1895 * 2.3.2  Arguments and Notes
1896 *
1897 *   The only argument is the provider identifier, as returned from a
1898 *   successful call to dtrace_register().  As a result of calling
1899 *   dtrace_unregister(), the DTrace framework will call back into the provider
1900 *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1901 *   completes, however, the DTrace framework will no longer make calls through
1902 *   the Framework-to-Provider API.
1903 *
1904 * 2.3.3  Return value
1905 *
1906 *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1907 *   returns an errno:
1908 *
1909 *     EBUSY    There are currently processes that have the DTrace pseudodevice
1910 *              open, or there exists an anonymous enabling that hasn't yet
1911 *              been claimed.
1912 *
1913 *   No other failure code is returned.
1914 *
1915 * 2.3.4  Caller's context
1916 *
1917 *   Because a call to dtrace_unregister() may induce calls through the
1918 *   Framework-to-Provider API, the caller may not hold any lock across
1919 *   dtrace_register() that is also acquired in any of the Framework-to-
1920 *   Provider API functions.  Additionally, mod_lock may not be held.
1921 *
1922 * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1923 *
1924 * 2.4.1  Overview
1925 *
1926 *   Invalidates the specified provider.  All subsequent probe lookups for the
1927 *   specified provider will fail, but its probes will not be removed.
1928 *
1929 * 2.4.2  Arguments and note
1930 *
1931 *   The only argument is the provider identifier, as returned from a
1932 *   successful call to dtrace_register().  In general, a provider's probes
1933 *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1934 *   an entire provider, regardless of whether or not probes are enabled or
1935 *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1936 *   probes from firing -- it will merely prevent any new enablings of the
1937 *   provider's probes.
1938 *
1939 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1940 *
1941 * 2.5.1  Overview
1942 *
1943 *   Removes all the unenabled probes for the given provider. This function is
1944 *   not unlike dtrace_unregister(), except that it doesn't remove the
1945 *   provider just as many of its associated probes as it can.
1946 *
1947 * 2.5.2  Arguments and Notes
1948 *
1949 *   As with dtrace_unregister(), the sole argument is the provider identifier
1950 *   as returned from a successful call to dtrace_register().  As a result of
1951 *   calling dtrace_condense(), the DTrace framework will call back into the
1952 *   given provider's dtps_destroy() entry point for each of the provider's
1953 *   unenabled probes.
1954 *
1955 * 2.5.3  Return value
1956 *
1957 *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1958 *   function should check the return value as appropriate; its behavior may
1959 *   change in the future.
1960 *
1961 * 2.5.4  Caller's context
1962 *
1963 *   As with dtrace_unregister(), the caller may not hold any lock across
1964 *   dtrace_condense() that is also acquired in the provider's entry points.
1965 *   Also, mod_lock may not be held.
1966 *
1967 * 2.6 int dtrace_attached()
1968 *
1969 * 2.6.1  Overview
1970 *
1971 *   Indicates whether or not DTrace has attached.
1972 *
1973 * 2.6.2  Arguments and Notes
1974 *
1975 *   For most providers, DTrace makes initial contact beyond registration.
1976 *   That is, once a provider has registered with DTrace, it waits to hear
1977 *   from DTrace to create probes.  However, some providers may wish to
1978 *   proactively create probes without first being told by DTrace to do so.
1979 *   If providers wish to do this, they must first call dtrace_attached() to
1980 *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1981 *   the provider must not make any other Provider-to-Framework API call.
1982 *
1983 * 2.6.3  Return value
1984 *
1985 *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1986 *
1987 * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1988 *	    const char *func, const char *name, int aframes, void *arg)
1989 *
1990 * 2.7.1  Overview
1991 *
1992 *   Creates a probe with specified module name, function name, and name.
1993 *
1994 * 2.7.2  Arguments and Notes
1995 *
1996 *   The first argument is the provider identifier, as returned from a
1997 *   successful call to dtrace_register().  The second, third, and fourth
1998 *   arguments are the module name, function name, and probe name,
1999 *   respectively.  Of these, module name and function name may both be NULL
2000 *   (in which case the probe is considered to be unanchored), or they may both
2001 *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
2002 *   string.
2003 *
2004 *   The fifth argument is the number of artificial stack frames that will be
2005 *   found on the stack when dtrace_probe() is called for the new probe.  These
2006 *   artificial frames will be automatically be pruned should the stack() or
2007 *   stackdepth() functions be called as part of one of the probe's ECBs.  If
2008 *   the parameter doesn't add an artificial frame, this parameter should be
2009 *   zero.
2010 *
2011 *   The final argument is a probe argument that will be passed back to the
2012 *   provider when a probe-specific operation is called.  (e.g., via
2013 *   dtps_enable(), dtps_disable(), etc.)
2014 *
2015 *   Note that it is up to the provider to be sure that the probe that it
2016 *   creates does not already exist -- if the provider is unsure of the probe's
2017 *   existence, it should assure its absence with dtrace_probe_lookup() before
2018 *   calling dtrace_probe_create().
2019 *
2020 * 2.7.3  Return value
2021 *
2022 *   dtrace_probe_create() always succeeds, and always returns the identifier
2023 *   of the newly-created probe.
2024 *
2025 * 2.7.4  Caller's context
2026 *
2027 *   While dtrace_probe_create() is generally expected to be called from
2028 *   dtps_provide() and/or dtps_provide_module(), it may be called from other
2029 *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2030 *
2031 * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
2032 *	    const char *func, const char *name)
2033 *
2034 * 2.8.1  Overview
2035 *
2036 *   Looks up a probe based on provdider and one or more of module name,
2037 *   function name and probe name.
2038 *
2039 * 2.8.2  Arguments and Notes
2040 *
2041 *   The first argument is the provider identifier, as returned from a
2042 *   successful call to dtrace_register().  The second, third, and fourth
2043 *   arguments are the module name, function name, and probe name,
2044 *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
2045 *   the identifier of the first probe that is provided by the specified
2046 *   provider and matches all of the non-NULL matching criteria.
2047 *   dtrace_probe_lookup() is generally used by a provider to be check the
2048 *   existence of a probe before creating it with dtrace_probe_create().
2049 *
2050 * 2.8.3  Return value
2051 *
2052 *   If the probe exists, returns its identifier.  If the probe does not exist,
2053 *   return DTRACE_IDNONE.
2054 *
2055 * 2.8.4  Caller's context
2056 *
2057 *   While dtrace_probe_lookup() is generally expected to be called from
2058 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2059 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2060 *
2061 * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2062 *
2063 * 2.9.1  Overview
2064 *
2065 *   Returns the probe argument associated with the specified probe.
2066 *
2067 * 2.9.2  Arguments and Notes
2068 *
2069 *   The first argument is the provider identifier, as returned from a
2070 *   successful call to dtrace_register().  The second argument is a probe
2071 *   identifier, as returned from dtrace_probe_lookup() or
2072 *   dtrace_probe_create().  This is useful if a probe has multiple
2073 *   provider-specific components to it:  the provider can create the probe
2074 *   once with provider-specific state, and then add to the state by looking
2075 *   up the probe based on probe identifier.
2076 *
2077 * 2.9.3  Return value
2078 *
2079 *   Returns the argument associated with the specified probe.  If the
2080 *   specified probe does not exist, or if the specified probe is not provided
2081 *   by the specified provider, NULL is returned.
2082 *
2083 * 2.9.4  Caller's context
2084 *
2085 *   While dtrace_probe_arg() is generally expected to be called from
2086 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2087 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2088 *
2089 * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2090 *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2091 *
2092 * 2.10.1  Overview
2093 *
2094 *   The epicenter of DTrace:  fires the specified probes with the specified
2095 *   arguments.
2096 *
2097 * 2.10.2  Arguments and Notes
2098 *
2099 *   The first argument is a probe identifier as returned by
2100 *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
2101 *   arguments are the values to which the D variables "arg0" through "arg4"
2102 *   will be mapped.
2103 *
2104 *   dtrace_probe() should be called whenever the specified probe has fired --
2105 *   however the provider defines it.
2106 *
2107 * 2.10.3  Return value
2108 *
2109 *   None.
2110 *
2111 * 2.10.4  Caller's context
2112 *
2113 *   dtrace_probe() may be called in virtually any context:  kernel, user,
2114 *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2115 *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2116 *   that must be afforded to DTrace is the ability to make calls within
2117 *   itself (and to its in-kernel subroutines) and the ability to access
2118 *   arbitrary (but mapped) memory.  On some platforms, this constrains
2119 *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2120 *   from any context in which TL is greater than zero.  dtrace_probe() may
2121 *   also not be called from any routine which may be called by dtrace_probe()
2122 *   -- which includes functions in the DTrace framework and some in-kernel
2123 *   DTrace subroutines.  All such functions "dtrace_"; providers that
2124 *   instrument the kernel arbitrarily should be sure to not instrument these
2125 *   routines.
2126 */
2127typedef struct dtrace_pops {
2128	void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec);
2129	void (*dtps_provide_module)(void *arg, modctl_t *mp);
2130	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2131	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2132	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2133	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2134	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2135	    dtrace_argdesc_t *desc);
2136	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2137	    int argno, int aframes);
2138	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2139	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2140} dtrace_pops_t;
2141
2142#define	DTRACE_MODE_KERNEL			0x01
2143#define	DTRACE_MODE_USER			0x02
2144#define	DTRACE_MODE_NOPRIV_DROP			0x10
2145#define	DTRACE_MODE_NOPRIV_RESTRICT		0x20
2146#define	DTRACE_MODE_LIMITEDPRIV_RESTRICT	0x40
2147
2148typedef uintptr_t	dtrace_provider_id_t;
2149
2150extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2151    cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2152extern int dtrace_unregister(dtrace_provider_id_t);
2153extern int dtrace_condense(dtrace_provider_id_t);
2154extern void dtrace_invalidate(dtrace_provider_id_t);
2155extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *,
2156    char *, char *);
2157extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2158    const char *, const char *, int, void *);
2159extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2160extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2161    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2162
2163/*
2164 * DTrace Meta Provider API
2165 *
2166 * The following functions are implemented by the DTrace framework and are
2167 * used to implement meta providers. Meta providers plug into the DTrace
2168 * framework and are used to instantiate new providers on the fly. At
2169 * present, there is only one type of meta provider and only one meta
2170 * provider may be registered with the DTrace framework at a time. The
2171 * sole meta provider type provides user-land static tracing facilities
2172 * by taking meta probe descriptions and adding a corresponding provider
2173 * into the DTrace framework.
2174 *
2175 * 1 Framework-to-Provider
2176 *
2177 * 1.1 Overview
2178 *
2179 * The Framework-to-Provider API is represented by the dtrace_mops structure
2180 * that the meta provider passes to the framework when registering itself as
2181 * a meta provider. This structure consists of the following members:
2182 *
2183 *   dtms_create_probe()	<-- Add a new probe to a created provider
2184 *   dtms_provide_pid()		<-- Create a new provider for a given process
2185 *   dtms_remove_pid()		<-- Remove a previously created provider
2186 *
2187 * 1.2  void dtms_create_probe(void *arg, void *parg,
2188 *           dtrace_helper_probedesc_t *probedesc);
2189 *
2190 * 1.2.1  Overview
2191 *
2192 *   Called by the DTrace framework to create a new probe in a provider
2193 *   created by this meta provider.
2194 *
2195 * 1.2.2  Arguments and notes
2196 *
2197 *   The first argument is the cookie as passed to dtrace_meta_register().
2198 *   The second argument is the provider cookie for the associated provider;
2199 *   this is obtained from the return value of dtms_provide_pid(). The third
2200 *   argument is the helper probe description.
2201 *
2202 * 1.2.3  Return value
2203 *
2204 *   None
2205 *
2206 * 1.2.4  Caller's context
2207 *
2208 *   dtms_create_probe() is called from either ioctl() or module load context
2209 *   in the context of a newly-created provider (that is, a provider that
2210 *   is a result of a call to dtms_provide_pid()). The DTrace framework is
2211 *   locked in such a way that meta providers may not register or unregister,
2212 *   such that no other thread can call into a meta provider operation and that
2213 *   atomicity is assured with respect to meta provider operations across
2214 *   dtms_provide_pid() and subsequent calls to dtms_create_probe().
2215 *   The context is thus effectively single-threaded with respect to the meta
2216 *   provider, and that the meta provider cannot call dtrace_meta_register()
2217 *   or dtrace_meta_unregister(). However, the context is such that the
2218 *   provider may (and is expected to) call provider-related DTrace provider
2219 *   APIs including dtrace_probe_create().
2220 *
2221 * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2222 *	      pid_t pid)
2223 *
2224 * 1.3.1  Overview
2225 *
2226 *   Called by the DTrace framework to instantiate a new provider given the
2227 *   description of the provider and probes in the mprov argument. The
2228 *   meta provider should call dtrace_register() to insert the new provider
2229 *   into the DTrace framework.
2230 *
2231 * 1.3.2  Arguments and notes
2232 *
2233 *   The first argument is the cookie as passed to dtrace_meta_register().
2234 *   The second argument is a pointer to a structure describing the new
2235 *   helper provider. The third argument is the process identifier for
2236 *   process associated with this new provider. Note that the name of the
2237 *   provider as passed to dtrace_register() should be the contatenation of
2238 *   the dtmpb_provname member of the mprov argument and the processs
2239 *   identifier as a string.
2240 *
2241 * 1.3.3  Return value
2242 *
2243 *   The cookie for the provider that the meta provider creates. This is
2244 *   the same value that it passed to dtrace_register().
2245 *
2246 * 1.3.4  Caller's context
2247 *
2248 *   dtms_provide_pid() is called from either ioctl() or module load context.
2249 *   The DTrace framework is locked in such a way that meta providers may not
2250 *   register or unregister. This means that the meta provider cannot call
2251 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2252 *   is such that the provider may -- and is expected to --  call
2253 *   provider-related DTrace provider APIs including dtrace_register().
2254 *
2255 * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2256 *	     pid_t pid)
2257 *
2258 * 1.4.1  Overview
2259 *
2260 *   Called by the DTrace framework to remove a provider that had previously
2261 *   been instantiated via the dtms_provide_pid() entry point. The meta
2262 *   provider need not remove the provider immediately, but this entry
2263 *   point indicates that the provider should be removed as soon as possible
2264 *   using the dtrace_unregister() API.
2265 *
2266 * 1.4.2  Arguments and notes
2267 *
2268 *   The first argument is the cookie as passed to dtrace_meta_register().
2269 *   The second argument is a pointer to a structure describing the helper
2270 *   provider. The third argument is the process identifier for process
2271 *   associated with this new provider.
2272 *
2273 * 1.4.3  Return value
2274 *
2275 *   None
2276 *
2277 * 1.4.4  Caller's context
2278 *
2279 *   dtms_remove_pid() is called from either ioctl() or exit() context.
2280 *   The DTrace framework is locked in such a way that meta providers may not
2281 *   register or unregister. This means that the meta provider cannot call
2282 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2283 *   is such that the provider may -- and is expected to -- call
2284 *   provider-related DTrace provider APIs including dtrace_unregister().
2285 */
2286typedef struct dtrace_helper_probedesc {
2287	char *dthpb_mod;			/* probe module */
2288	char *dthpb_func; 			/* probe function */
2289	char *dthpb_name; 			/* probe name */
2290	uint64_t dthpb_base;			/* base address */
2291	uint32_t *dthpb_offs;			/* offsets array */
2292	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2293	uint32_t dthpb_noffs;			/* offsets count */
2294	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2295	uint8_t *dthpb_args;			/* argument mapping array */
2296	uint8_t dthpb_xargc;			/* translated argument count */
2297	uint8_t dthpb_nargc;			/* native argument count */
2298	char *dthpb_xtypes;			/* translated types strings */
2299	char *dthpb_ntypes;			/* native types strings */
2300} dtrace_helper_probedesc_t;
2301
2302typedef struct dtrace_helper_provdesc {
2303	char *dthpv_provname;			/* provider name */
2304	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2305} dtrace_helper_provdesc_t;
2306
2307typedef struct dtrace_mops {
2308	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2309	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2310	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2311} dtrace_mops_t;
2312
2313typedef uintptr_t	dtrace_meta_provider_id_t;
2314
2315extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2316    dtrace_meta_provider_id_t *);
2317extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2318
2319/*
2320 * DTrace Kernel Hooks
2321 *
2322 * The following functions are implemented by the base kernel and form a set of
2323 * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2324 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2325 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2326 */
2327
2328typedef enum dtrace_vtime_state {
2329	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2330	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2331	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2332	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2333} dtrace_vtime_state_t;
2334
2335#ifdef illumos
2336extern dtrace_vtime_state_t dtrace_vtime_active;
2337#endif
2338extern void dtrace_vtime_switch(kthread_t *next);
2339extern void dtrace_vtime_enable_tnf(void);
2340extern void dtrace_vtime_disable_tnf(void);
2341extern void dtrace_vtime_enable(void);
2342extern void dtrace_vtime_disable(void);
2343
2344struct regs;
2345struct reg;
2346
2347#ifdef illumos
2348extern int (*dtrace_pid_probe_ptr)(struct reg *);
2349extern int (*dtrace_return_probe_ptr)(struct reg *);
2350extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2351extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2352extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2353extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2354#endif
2355
2356typedef uintptr_t dtrace_icookie_t;
2357typedef void (*dtrace_xcall_t)(void *);
2358
2359extern dtrace_icookie_t dtrace_interrupt_disable(void);
2360extern void dtrace_interrupt_enable(dtrace_icookie_t);
2361
2362extern void dtrace_membar_producer(void);
2363extern void dtrace_membar_consumer(void);
2364
2365extern void (*dtrace_cpu_init)(processorid_t);
2366#ifdef illumos
2367extern void (*dtrace_modload)(modctl_t *);
2368extern void (*dtrace_modunload)(modctl_t *);
2369#endif
2370extern void (*dtrace_helpers_cleanup)(void);
2371extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2372extern void (*dtrace_cpustart_init)(void);
2373extern void (*dtrace_cpustart_fini)(void);
2374extern void (*dtrace_closef)(void);
2375
2376extern void (*dtrace_debugger_init)(void);
2377extern void (*dtrace_debugger_fini)(void);
2378extern dtrace_cacheid_t dtrace_predcache_id;
2379
2380#ifdef illumos
2381extern hrtime_t dtrace_gethrtime(void);
2382#else
2383void dtrace_debug_printf(const char *, ...) __printflike(1, 2);
2384#endif
2385extern void dtrace_sync(void);
2386extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2387extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2388extern void dtrace_vpanic(const char *, __va_list);
2389extern void dtrace_panic(const char *, ...);
2390
2391extern int dtrace_safe_defer_signal(void);
2392extern void dtrace_safe_synchronous_signal(void);
2393
2394extern int dtrace_mach_aframes(void);
2395
2396#if defined(__i386) || defined(__amd64)
2397extern int dtrace_instr_size(uchar_t *instr);
2398extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2399extern void dtrace_invop_callsite(void);
2400#endif
2401extern void dtrace_invop_add(int (*)(uintptr_t, struct trapframe *, uintptr_t));
2402extern void dtrace_invop_remove(int (*)(uintptr_t, struct trapframe *,
2403    uintptr_t));
2404
2405#ifdef __sparc
2406extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2407extern void dtrace_getfsr(uint64_t *);
2408#endif
2409
2410#ifndef illumos
2411extern void dtrace_helpers_duplicate(proc_t *, proc_t *);
2412extern void dtrace_helpers_destroy(proc_t *);
2413#endif
2414
2415#define	DTRACE_CPUFLAG_ISSET(flag) \
2416	(cpu_core[curcpu].cpuc_dtrace_flags & (flag))
2417
2418#define	DTRACE_CPUFLAG_SET(flag) \
2419	(cpu_core[curcpu].cpuc_dtrace_flags |= (flag))
2420
2421#define	DTRACE_CPUFLAG_CLEAR(flag) \
2422	(cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag))
2423
2424#endif /* _KERNEL */
2425
2426#endif	/* _ASM */
2427
2428#if defined(__i386) || defined(__amd64)
2429
2430#define	DTRACE_INVOP_PUSHL_EBP		1
2431#define	DTRACE_INVOP_PUSHQ_RBP		DTRACE_INVOP_PUSHL_EBP
2432#define	DTRACE_INVOP_POPL_EBP		2
2433#define	DTRACE_INVOP_POPQ_RBP		DTRACE_INVOP_POPL_EBP
2434#define	DTRACE_INVOP_LEAVE		3
2435#define	DTRACE_INVOP_NOP		4
2436#define	DTRACE_INVOP_RET		5
2437
2438#elif defined(__powerpc__)
2439
2440#define DTRACE_INVOP_RET	1
2441#define DTRACE_INVOP_BCTR	2
2442#define DTRACE_INVOP_BLR	3
2443#define DTRACE_INVOP_JUMP	4
2444#define DTRACE_INVOP_MFLR_R0	5
2445#define DTRACE_INVOP_NOP	6
2446
2447#elif defined(__arm__)
2448
2449#define	DTRACE_INVOP_SHIFT	4
2450#define	DTRACE_INVOP_MASK	((1 << DTRACE_INVOP_SHIFT) - 1)
2451#define	DTRACE_INVOP_DATA(x)	((x) >> DTRACE_INVOP_SHIFT)
2452
2453#define DTRACE_INVOP_PUSHM	1
2454#define DTRACE_INVOP_POPM	2
2455#define DTRACE_INVOP_B		3
2456
2457#elif defined(__aarch64__)
2458
2459#define	INSN_SIZE	4
2460
2461#define	B_MASK		0xff000000
2462#define	B_DATA_MASK	0x00ffffff
2463#define	B_INSTR		0x14000000
2464
2465#define	RET_INSTR	0xd65f03c0
2466
2467#define	LDP_STP_MASK	0xffc00000
2468#define	STP_32		0x29800000
2469#define	STP_64		0xa9800000
2470#define	LDP_32		0x28c00000
2471#define	LDP_64		0xa8c00000
2472#define	LDP_STP_PREIND	(1 << 24)
2473#define	LDP_STP_DIR	(1 << 22) /* Load instruction */
2474#define	ARG1_SHIFT	0
2475#define	ARG1_MASK	0x1f
2476#define	ARG2_SHIFT	10
2477#define	ARG2_MASK	0x1f
2478#define	OFFSET_SHIFT	15
2479#define	OFFSET_SIZE	7
2480#define	OFFSET_MASK	((1 << OFFSET_SIZE) - 1)
2481
2482#define	DTRACE_INVOP_PUSHM	1
2483#define	DTRACE_INVOP_RET	2
2484#define	DTRACE_INVOP_B		3
2485
2486#elif defined(__mips__)
2487
2488#define	INSN_SIZE		4
2489
2490/* Load/Store double RA to/from SP */
2491#define	LDSD_RA_SP_MASK		0xffff0000
2492#define	LDSD_DATA_MASK		0x0000ffff
2493#define	SD_RA_SP		0xffbf0000
2494#define	LD_RA_SP		0xdfbf0000
2495
2496#define	DTRACE_INVOP_SD		1
2497#define	DTRACE_INVOP_LD		2
2498
2499#elif defined(__riscv__)
2500
2501#define	SD_RA_SP_MASK		0x1fff07f
2502#define	SD_RA_SP		0x0113023
2503
2504#define	DTRACE_INVOP_SD		1
2505#define	DTRACE_INVOP_RET	2
2506#define	DTRACE_INVOP_NOP	3
2507
2508#endif
2509
2510#ifdef	__cplusplus
2511}
2512#endif
2513
2514#endif	/* _SYS_DTRACE_H */
2515