dtrace.h revision 256571
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
29 * Copyright (c) 2012 by Delphix. All rights reserved.
30 */
31
32#ifndef _SYS_DTRACE_H
33#define	_SYS_DTRACE_H
34
35#pragma ident	"%Z%%M%	%I%	%E% SMI"
36
37#ifdef	__cplusplus
38extern "C" {
39#endif
40
41/*
42 * DTrace Dynamic Tracing Software: Kernel Interfaces
43 *
44 * Note: The contents of this file are private to the implementation of the
45 * Solaris system and DTrace subsystem and are subject to change at any time
46 * without notice.  Applications and drivers using these interfaces will fail
47 * to run on future releases.  These interfaces should not be used for any
48 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
49 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
50 */
51
52#ifndef _ASM
53
54#include <sys/types.h>
55#include <sys/modctl.h>
56#include <sys/processor.h>
57#if defined(sun)
58#include <sys/systm.h>
59#else
60#include <sys/param.h>
61#include <sys/linker.h>
62#include <sys/ioccom.h>
63#include <sys/ucred.h>
64typedef int model_t;
65#endif
66#include <sys/ctf_api.h>
67#include <sys/cyclic.h>
68#if defined(sun)
69#include <sys/int_limits.h>
70#else
71#include <sys/stdint.h>
72#endif
73
74/*
75 * DTrace Universal Constants and Typedefs
76 */
77#define	DTRACE_CPUALL		-1	/* all CPUs */
78#define	DTRACE_IDNONE		0	/* invalid probe identifier */
79#define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
80#define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
81#define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
82#define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
83#define	DTRACE_PROVNONE		0	/* invalid provider identifier */
84#define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
85#define	DTRACE_ARGNONE		-1	/* invalid argument index */
86
87#define	DTRACE_PROVNAMELEN	64
88#define	DTRACE_MODNAMELEN	64
89#define	DTRACE_FUNCNAMELEN	128
90#define	DTRACE_NAMELEN		64
91#define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
92				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
93#define	DTRACE_ARGTYPELEN	128
94
95typedef uint32_t dtrace_id_t;		/* probe identifier */
96typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
97typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
98typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
99typedef uint16_t dtrace_actkind_t;	/* action kind */
100typedef int64_t dtrace_optval_t;	/* option value */
101typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
102
103typedef enum dtrace_probespec {
104	DTRACE_PROBESPEC_NONE = -1,
105	DTRACE_PROBESPEC_PROVIDER = 0,
106	DTRACE_PROBESPEC_MOD,
107	DTRACE_PROBESPEC_FUNC,
108	DTRACE_PROBESPEC_NAME
109} dtrace_probespec_t;
110
111/*
112 * DTrace Intermediate Format (DIF)
113 *
114 * The following definitions describe the DTrace Intermediate Format (DIF), a
115 * a RISC-like instruction set and program encoding used to represent
116 * predicates and actions that can be bound to DTrace probes.  The constants
117 * below defining the number of available registers are suggested minimums; the
118 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
119 * registers provided by the current DTrace implementation.
120 */
121#define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
122#define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
123#define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
124#define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
125#define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
126
127#define	DIF_OP_OR	1		/* or	r1, r2, rd */
128#define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
129#define	DIF_OP_AND	3		/* and	r1, r2, rd */
130#define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
131#define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
132#define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
133#define	DIF_OP_ADD	7		/* add	r1, r2, rd */
134#define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
135#define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
136#define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
137#define	DIF_OP_SREM	11		/* srem r1, r2, rd */
138#define	DIF_OP_UREM	12		/* urem r1, r2, rd */
139#define	DIF_OP_NOT	13		/* not	r1, rd */
140#define	DIF_OP_MOV	14		/* mov	r1, rd */
141#define	DIF_OP_CMP	15		/* cmp	r1, r2 */
142#define	DIF_OP_TST	16		/* tst  r1 */
143#define	DIF_OP_BA	17		/* ba	label */
144#define	DIF_OP_BE	18		/* be	label */
145#define	DIF_OP_BNE	19		/* bne	label */
146#define	DIF_OP_BG	20		/* bg	label */
147#define	DIF_OP_BGU	21		/* bgu	label */
148#define	DIF_OP_BGE	22		/* bge	label */
149#define	DIF_OP_BGEU	23		/* bgeu	label */
150#define	DIF_OP_BL	24		/* bl	label */
151#define	DIF_OP_BLU	25		/* blu	label */
152#define	DIF_OP_BLE	26		/* ble	label */
153#define	DIF_OP_BLEU	27		/* bleu	label */
154#define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
155#define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
156#define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
157#define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
158#define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
159#define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
160#define	DIF_OP_LDX	34		/* ldx	[r1], rd */
161#define	DIF_OP_RET	35		/* ret	rd */
162#define	DIF_OP_NOP	36		/* nop */
163#define	DIF_OP_SETX	37		/* setx	intindex, rd */
164#define	DIF_OP_SETS	38		/* sets strindex, rd */
165#define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
166#define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
167#define	DIF_OP_LDGS	41		/* ldgs var, rd */
168#define	DIF_OP_STGS	42		/* stgs var, rs */
169#define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
170#define	DIF_OP_LDTS	44		/* ldts var, rd */
171#define	DIF_OP_STTS	45		/* stts var, rs */
172#define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
173#define	DIF_OP_CALL	47		/* call	subr, rd */
174#define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
175#define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
176#define	DIF_OP_POPTS	50		/* popts */
177#define	DIF_OP_FLUSHTS	51		/* flushts */
178#define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
179#define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
180#define	DIF_OP_STGAA	54		/* stgaa var, rs */
181#define	DIF_OP_STTAA	55		/* sttaa var, rs */
182#define	DIF_OP_LDLS	56		/* ldls	var, rd */
183#define	DIF_OP_STLS	57		/* stls	var, rs */
184#define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
185#define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
186#define	DIF_OP_STB	60		/* stb	r1, [rd] */
187#define	DIF_OP_STH	61		/* sth	r1, [rd] */
188#define	DIF_OP_STW	62		/* stw	r1, [rd] */
189#define	DIF_OP_STX	63		/* stx	r1, [rd] */
190#define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
191#define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
192#define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
193#define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
194#define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
195#define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
196#define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
197#define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
198#define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
199#define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
200#define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
201#define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
202#define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
203#define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
204#define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
205#define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
206
207#define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
208#define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
209#define	DIF_REGISTER_MAX	0xff	/* highest register number */
210#define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
211#define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
212
213#define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
214#define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
215#define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
216
217#define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
218#define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
219#define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
220
221#define	DIF_VAR_ARGS		0x0000	/* arguments array */
222#define	DIF_VAR_REGS		0x0001	/* registers array */
223#define	DIF_VAR_UREGS		0x0002	/* user registers array */
224#define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
225#define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
226#define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
227#define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
228#define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
229#define	DIF_VAR_ID		0x0105	/* probe ID */
230#define	DIF_VAR_ARG0		0x0106	/* first argument */
231#define	DIF_VAR_ARG1		0x0107	/* second argument */
232#define	DIF_VAR_ARG2		0x0108	/* third argument */
233#define	DIF_VAR_ARG3		0x0109	/* fourth argument */
234#define	DIF_VAR_ARG4		0x010a	/* fifth argument */
235#define	DIF_VAR_ARG5		0x010b	/* sixth argument */
236#define	DIF_VAR_ARG6		0x010c	/* seventh argument */
237#define	DIF_VAR_ARG7		0x010d	/* eighth argument */
238#define	DIF_VAR_ARG8		0x010e	/* ninth argument */
239#define	DIF_VAR_ARG9		0x010f	/* tenth argument */
240#define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
241#define	DIF_VAR_CALLER		0x0111	/* caller */
242#define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
243#define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
244#define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
245#define	DIF_VAR_PROBENAME	0x0115	/* probe name */
246#define	DIF_VAR_PID		0x0116	/* process ID */
247#define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
248#define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
249#define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
250#define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
251#define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
252#define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
253#define	DIF_VAR_PPID		0x011d	/* parent process ID */
254#define	DIF_VAR_UID		0x011e	/* process user ID */
255#define	DIF_VAR_GID		0x011f	/* process group ID */
256#define	DIF_VAR_ERRNO		0x0120	/* thread errno */
257#define	DIF_VAR_EXECARGS	0x0121	/* process arguments */
258
259#if !defined(sun)
260#define	DIF_VAR_CPU		0x0200
261#endif
262
263#define	DIF_SUBR_RAND			0
264#define	DIF_SUBR_MUTEX_OWNED		1
265#define	DIF_SUBR_MUTEX_OWNER		2
266#define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
267#define	DIF_SUBR_MUTEX_TYPE_SPIN	4
268#define	DIF_SUBR_RW_READ_HELD		5
269#define	DIF_SUBR_RW_WRITE_HELD		6
270#define	DIF_SUBR_RW_ISWRITER		7
271#define	DIF_SUBR_COPYIN			8
272#define	DIF_SUBR_COPYINSTR		9
273#define	DIF_SUBR_SPECULATION		10
274#define	DIF_SUBR_PROGENYOF		11
275#define	DIF_SUBR_STRLEN			12
276#define	DIF_SUBR_COPYOUT		13
277#define	DIF_SUBR_COPYOUTSTR		14
278#define	DIF_SUBR_ALLOCA			15
279#define	DIF_SUBR_BCOPY			16
280#define	DIF_SUBR_COPYINTO		17
281#define	DIF_SUBR_MSGDSIZE		18
282#define	DIF_SUBR_MSGSIZE		19
283#define	DIF_SUBR_GETMAJOR		20
284#define	DIF_SUBR_GETMINOR		21
285#define	DIF_SUBR_DDI_PATHNAME		22
286#define	DIF_SUBR_STRJOIN		23
287#define	DIF_SUBR_LLTOSTR		24
288#define	DIF_SUBR_BASENAME		25
289#define	DIF_SUBR_DIRNAME		26
290#define	DIF_SUBR_CLEANPATH		27
291#define	DIF_SUBR_STRCHR			28
292#define	DIF_SUBR_STRRCHR		29
293#define	DIF_SUBR_STRSTR			30
294#define	DIF_SUBR_STRTOK			31
295#define	DIF_SUBR_SUBSTR			32
296#define	DIF_SUBR_INDEX			33
297#define	DIF_SUBR_RINDEX			34
298#define	DIF_SUBR_HTONS			35
299#define	DIF_SUBR_HTONL			36
300#define	DIF_SUBR_HTONLL			37
301#define	DIF_SUBR_NTOHS			38
302#define	DIF_SUBR_NTOHL			39
303#define	DIF_SUBR_NTOHLL			40
304#define	DIF_SUBR_INET_NTOP		41
305#define	DIF_SUBR_INET_NTOA		42
306#define	DIF_SUBR_INET_NTOA6		43
307#define	DIF_SUBR_TOUPPER		44
308#define	DIF_SUBR_TOLOWER		45
309#define	DIF_SUBR_MEMREF			46
310#define	DIF_SUBR_TYPEREF		47
311#define	DIF_SUBR_SX_SHARED_HELD		48
312#define	DIF_SUBR_SX_EXCLUSIVE_HELD	49
313#define	DIF_SUBR_SX_ISEXCLUSIVE		50
314#define	DIF_SUBR_MEMSTR			51
315
316#define	DIF_SUBR_MAX			51	/* max subroutine value */
317
318typedef uint32_t dif_instr_t;
319
320#define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
321#define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
322#define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
323#define	DIF_INSTR_RD(i)			((i) & 0xff)
324#define	DIF_INSTR_RS(i)			((i) & 0xff)
325#define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
326#define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
327#define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
328#define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
329#define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
330#define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
331#define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
332
333#define	DIF_INSTR_FMT(op, r1, r2, d) \
334	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
335
336#define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
337#define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
338#define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
339#define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
340#define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
341#define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
342#define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
343#define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
344#define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
345#define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
346#define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
347#define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
348#define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
349#define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
350#define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
351#define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
352#define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
353#define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
354#define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
355#define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
356#define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
357
358#define	DIF_REG_R0	0		/* %r0 is always set to zero */
359
360/*
361 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
362 * of variables, function and associative array arguments, and the return type
363 * for each DIF object (shown below).  It contains a description of the type,
364 * its size in bytes, and a module identifier.
365 */
366typedef struct dtrace_diftype {
367	uint8_t dtdt_kind;		/* type kind (see below) */
368	uint8_t dtdt_ckind;		/* type kind in CTF */
369	uint8_t dtdt_flags;		/* type flags (see below) */
370	uint8_t dtdt_pad;		/* reserved for future use */
371	uint32_t dtdt_size;		/* type size in bytes (unless string) */
372} dtrace_diftype_t;
373
374#define	DIF_TYPE_CTF		0	/* type is a CTF type */
375#define	DIF_TYPE_STRING		1	/* type is a D string */
376
377#define	DIF_TF_BYREF		0x1	/* type is passed by reference */
378
379/*
380 * A DTrace Intermediate Format variable record is used to describe each of the
381 * variables referenced by a given DIF object.  It contains an integer variable
382 * identifier along with variable scope and properties, as shown below.  The
383 * size of this structure must be sizeof (int) aligned.
384 */
385typedef struct dtrace_difv {
386	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
387	uint32_t dtdv_id;		/* variable reference identifier */
388	uint8_t dtdv_kind;		/* variable kind (see below) */
389	uint8_t dtdv_scope;		/* variable scope (see below) */
390	uint16_t dtdv_flags;		/* variable flags (see below) */
391	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
392} dtrace_difv_t;
393
394#define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
395#define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
396
397#define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
398#define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
399#define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
400
401#define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
402#define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
403
404/*
405 * DTrace Actions
406 *
407 * The upper byte determines the class of the action; the low bytes determines
408 * the specific action within that class.  The classes of actions are as
409 * follows:
410 *
411 *   [ no class ]                  <= May record process- or kernel-related data
412 *   DTRACEACT_PROC                <= Only records process-related data
413 *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
414 *   DTRACEACT_KERNEL              <= Only records kernel-related data
415 *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
416 *   DTRACEACT_SPECULATIVE         <= Speculation-related action
417 *   DTRACEACT_AGGREGATION         <= Aggregating action
418 */
419#define	DTRACEACT_NONE			0	/* no action */
420#define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
421#define	DTRACEACT_EXIT			2	/* exit() action */
422#define	DTRACEACT_PRINTF		3	/* printf() action */
423#define	DTRACEACT_PRINTA		4	/* printa() action */
424#define	DTRACEACT_LIBACT		5	/* library-controlled action */
425#define	DTRACEACT_TRACEMEM		6	/* tracemem() action */
426#define	DTRACEACT_TRACEMEM_DYNSIZE	7	/* dynamic tracemem() size */
427#define	DTRACEACT_PRINTM		8	/* printm() action (BSD) */
428#define	DTRACEACT_PRINTT		9	/* printt() action (BSD) */
429
430#define	DTRACEACT_PROC			0x0100
431#define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
432#define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
433#define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
434#define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
435#define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
436
437#define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
438#define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
439#define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
440#define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
441#define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
442
443#define	DTRACEACT_PROC_CONTROL		0x0300
444
445#define	DTRACEACT_KERNEL		0x0400
446#define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
447#define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
448#define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
449
450#define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
451#define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
452#define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
453#define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
454
455#define	DTRACEACT_SPECULATIVE		0x0600
456#define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
457#define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
458#define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
459
460#define	DTRACEACT_CLASS(x)		((x) & 0xff00)
461
462#define	DTRACEACT_ISDESTRUCTIVE(x)	\
463	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
464	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
465
466#define	DTRACEACT_ISSPECULATIVE(x)	\
467	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
468
469#define	DTRACEACT_ISPRINTFLIKE(x)	\
470	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
471	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
472
473/*
474 * DTrace Aggregating Actions
475 *
476 * These are functions f(x) for which the following is true:
477 *
478 *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
479 *
480 * where x_n is a set of arbitrary data.  Aggregating actions are in their own
481 * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
482 * for easier processing of the aggregation argument and data payload for a few
483 * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
484 */
485#define	DTRACEACT_AGGREGATION		0x0700
486#define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
487#define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
488#define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
489#define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
490#define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
491#define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
492#define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
493#define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
494#define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
495
496#define	DTRACEACT_ISAGG(x)		\
497	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
498
499#define	DTRACE_QUANTIZE_NBUCKETS	\
500	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
501
502#define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
503
504#define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
505	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
506	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
507	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
508	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
509
510#define	DTRACE_LQUANTIZE_STEPSHIFT		48
511#define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
512#define	DTRACE_LQUANTIZE_LEVELSHIFT		32
513#define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
514#define	DTRACE_LQUANTIZE_BASESHIFT		0
515#define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
516
517#define	DTRACE_LQUANTIZE_STEP(x)		\
518	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
519	DTRACE_LQUANTIZE_STEPSHIFT)
520
521#define	DTRACE_LQUANTIZE_LEVELS(x)		\
522	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
523	DTRACE_LQUANTIZE_LEVELSHIFT)
524
525#define	DTRACE_LQUANTIZE_BASE(x)		\
526	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
527	DTRACE_LQUANTIZE_BASESHIFT)
528
529#define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
530#define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
531#define	DTRACE_LLQUANTIZE_LOWSHIFT		32
532#define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
533#define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
534#define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
535#define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
536#define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
537
538#define	DTRACE_LLQUANTIZE_FACTOR(x)		\
539	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
540	DTRACE_LLQUANTIZE_FACTORSHIFT)
541
542#define	DTRACE_LLQUANTIZE_LOW(x)		\
543	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
544	DTRACE_LLQUANTIZE_LOWSHIFT)
545
546#define	DTRACE_LLQUANTIZE_HIGH(x)		\
547	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
548	DTRACE_LLQUANTIZE_HIGHSHIFT)
549
550#define	DTRACE_LLQUANTIZE_NSTEP(x)		\
551	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
552	DTRACE_LLQUANTIZE_NSTEPSHIFT)
553
554#define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
555#define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
556#define	DTRACE_USTACK_ARG(x, y)		\
557	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
558
559#ifndef _LP64
560#if BYTE_ORDER == _BIG_ENDIAN
561#define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
562#else
563#define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
564#endif
565#else
566#define	DTRACE_PTR(type, name)	type *name
567#endif
568
569/*
570 * DTrace Object Format (DOF)
571 *
572 * DTrace programs can be persistently encoded in the DOF format so that they
573 * may be embedded in other programs (for example, in an ELF file) or in the
574 * dtrace driver configuration file for use in anonymous tracing.  The DOF
575 * format is versioned and extensible so that it can be revised and so that
576 * internal data structures can be modified or extended compatibly.  All DOF
577 * structures use fixed-size types, so the 32-bit and 64-bit representations
578 * are identical and consumers can use either data model transparently.
579 *
580 * The file layout is structured as follows:
581 *
582 * +---------------+-------------------+----- ... ----+---- ... ------+
583 * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
584 * | (file header) | (section headers) | section data | section data  |
585 * +---------------+-------------------+----- ... ----+---- ... ------+
586 * |<------------ dof_hdr.dofh_loadsz --------------->|               |
587 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
588 *
589 * The file header stores meta-data including a magic number, data model for
590 * the instrumentation, data encoding, and properties of the DIF code within.
591 * The header describes its own size and the size of the section headers.  By
592 * convention, an array of section headers follows the file header, and then
593 * the data for all loadable sections and unloadable sections.  This permits
594 * consumer code to easily download the headers and all loadable data into the
595 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
596 *
597 * The section headers describe the size, offset, alignment, and section type
598 * for each section.  Sections are described using a set of #defines that tell
599 * the consumer what kind of data is expected.  Sections can contain links to
600 * other sections by storing a dof_secidx_t, an index into the section header
601 * array, inside of the section data structures.  The section header includes
602 * an entry size so that sections with data arrays can grow their structures.
603 *
604 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
605 * are represented themselves as a collection of related DOF sections.  This
606 * permits us to change the set of sections associated with a DIFO over time,
607 * and also permits us to encode DIFOs that contain different sets of sections.
608 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
609 * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
610 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
611 *
612 * This loose coupling of the file structure (header and sections) to the
613 * structure of the DTrace program itself (ECB descriptions, action
614 * descriptions, and DIFOs) permits activities such as relocation processing
615 * to occur in a single pass without having to understand D program structure.
616 *
617 * Finally, strings are always stored in ELF-style string tables along with a
618 * string table section index and string table offset.  Therefore strings in
619 * DOF are always arbitrary-length and not bound to the current implementation.
620 */
621
622#define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
623
624typedef struct dof_hdr {
625	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
626	uint32_t dofh_flags;		/* file attribute flags (if any) */
627	uint32_t dofh_hdrsize;		/* size of file header in bytes */
628	uint32_t dofh_secsize;		/* size of section header in bytes */
629	uint32_t dofh_secnum;		/* number of section headers */
630	uint64_t dofh_secoff;		/* file offset of section headers */
631	uint64_t dofh_loadsz;		/* file size of loadable portion */
632	uint64_t dofh_filesz;		/* file size of entire DOF file */
633	uint64_t dofh_pad;		/* reserved for future use */
634} dof_hdr_t;
635
636#define	DOF_ID_MAG0	0	/* first byte of magic number */
637#define	DOF_ID_MAG1	1	/* second byte of magic number */
638#define	DOF_ID_MAG2	2	/* third byte of magic number */
639#define	DOF_ID_MAG3	3	/* fourth byte of magic number */
640#define	DOF_ID_MODEL	4	/* DOF data model (see below) */
641#define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
642#define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
643#define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
644#define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
645#define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
646#define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
647
648#define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
649#define	DOF_MAG_MAG1	'D'
650#define	DOF_MAG_MAG2	'O'
651#define	DOF_MAG_MAG3	'F'
652
653#define	DOF_MAG_STRING	"\177DOF"
654#define	DOF_MAG_STRLEN	4
655
656#define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
657#define	DOF_MODEL_ILP32	1
658#define	DOF_MODEL_LP64	2
659
660#ifdef _LP64
661#define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
662#else
663#define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
664#endif
665
666#define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
667#define	DOF_ENCODE_LSB	1
668#define	DOF_ENCODE_MSB	2
669
670#if BYTE_ORDER == _BIG_ENDIAN
671#define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
672#else
673#define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
674#endif
675
676#define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
677#define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
678#define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
679
680#define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
681
682typedef uint32_t dof_secidx_t;	/* section header table index type */
683typedef uint32_t dof_stridx_t;	/* string table index type */
684
685#define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
686#define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
687
688typedef struct dof_sec {
689	uint32_t dofs_type;	/* section type (see below) */
690	uint32_t dofs_align;	/* section data memory alignment */
691	uint32_t dofs_flags;	/* section flags (if any) */
692	uint32_t dofs_entsize;	/* size of section entry (if table) */
693	uint64_t dofs_offset;	/* offset of section data within file */
694	uint64_t dofs_size;	/* size of section data in bytes */
695} dof_sec_t;
696
697#define	DOF_SECT_NONE		0	/* null section */
698#define	DOF_SECT_COMMENTS	1	/* compiler comments */
699#define	DOF_SECT_SOURCE		2	/* D program source code */
700#define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
701#define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
702#define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
703#define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
704#define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
705#define	DOF_SECT_STRTAB		8	/* string table */
706#define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
707#define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
708#define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
709#define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
710#define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
711#define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
712#define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
713#define	DOF_SECT_PROBES		16	/* dof_probe_t array */
714#define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
715#define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
716#define	DOF_SECT_INTTAB		19	/* uint64_t array */
717#define	DOF_SECT_UTSNAME	20	/* struct utsname */
718#define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
719#define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
720#define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
721#define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
722#define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
723#define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
724
725#define	DOF_SECF_LOAD		1	/* section should be loaded */
726
727typedef struct dof_ecbdesc {
728	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
729	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
730	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
731	uint32_t dofe_pad;		/* reserved for future use */
732	uint64_t dofe_uarg;		/* user-supplied library argument */
733} dof_ecbdesc_t;
734
735typedef struct dof_probedesc {
736	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
737	dof_stridx_t dofp_provider;	/* provider string */
738	dof_stridx_t dofp_mod;		/* module string */
739	dof_stridx_t dofp_func;		/* function string */
740	dof_stridx_t dofp_name;		/* name string */
741	uint32_t dofp_id;		/* probe identifier (or zero) */
742} dof_probedesc_t;
743
744typedef struct dof_actdesc {
745	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
746	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
747	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
748	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
749	uint64_t dofa_arg;		/* kind-specific argument */
750	uint64_t dofa_uarg;		/* user-supplied argument */
751} dof_actdesc_t;
752
753typedef struct dof_difohdr {
754	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
755	dof_secidx_t dofd_links[1];	/* variable length array of indices */
756} dof_difohdr_t;
757
758typedef struct dof_relohdr {
759	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
760	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
761	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
762} dof_relohdr_t;
763
764typedef struct dof_relodesc {
765	dof_stridx_t dofr_name;		/* string name of relocation symbol */
766	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
767	uint64_t dofr_offset;		/* byte offset for relocation */
768	uint64_t dofr_data;		/* additional type-specific data */
769} dof_relodesc_t;
770
771#define	DOF_RELO_NONE	0		/* empty relocation entry */
772#define	DOF_RELO_SETX	1		/* relocate setx value */
773
774typedef struct dof_optdesc {
775	uint32_t dofo_option;		/* option identifier */
776	dof_secidx_t dofo_strtab;	/* string table, if string option */
777	uint64_t dofo_value;		/* option value or string index */
778} dof_optdesc_t;
779
780typedef uint32_t dof_attr_t;		/* encoded stability attributes */
781
782#define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
783#define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
784#define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
785#define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
786
787typedef struct dof_provider {
788	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
789	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
790	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
791	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
792	dof_stridx_t dofpv_name;	/* provider name string */
793	dof_attr_t dofpv_provattr;	/* provider attributes */
794	dof_attr_t dofpv_modattr;	/* module attributes */
795	dof_attr_t dofpv_funcattr;	/* function attributes */
796	dof_attr_t dofpv_nameattr;	/* name attributes */
797	dof_attr_t dofpv_argsattr;	/* args attributes */
798	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
799} dof_provider_t;
800
801typedef struct dof_probe {
802	uint64_t dofpr_addr;		/* probe base address or offset */
803	dof_stridx_t dofpr_func;	/* probe function string */
804	dof_stridx_t dofpr_name;	/* probe name string */
805	dof_stridx_t dofpr_nargv;	/* native argument type strings */
806	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
807	uint32_t dofpr_argidx;		/* index of first argument mapping */
808	uint32_t dofpr_offidx;		/* index of first offset entry */
809	uint8_t dofpr_nargc;		/* native argument count */
810	uint8_t dofpr_xargc;		/* translated argument count */
811	uint16_t dofpr_noffs;		/* number of offset entries for probe */
812	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
813	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
814	uint16_t dofpr_pad1;		/* reserved for future use */
815	uint32_t dofpr_pad2;		/* reserved for future use */
816} dof_probe_t;
817
818typedef struct dof_xlator {
819	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
820	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
821	dof_stridx_t dofxl_argv;	/* input parameter type strings */
822	uint32_t dofxl_argc;		/* input parameter list length */
823	dof_stridx_t dofxl_type;	/* output type string name */
824	dof_attr_t dofxl_attr;		/* output stability attributes */
825} dof_xlator_t;
826
827typedef struct dof_xlmember {
828	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
829	dof_stridx_t dofxm_name;	/* member name */
830	dtrace_diftype_t dofxm_type;	/* member type */
831} dof_xlmember_t;
832
833typedef struct dof_xlref {
834	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
835	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
836	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
837} dof_xlref_t;
838
839/*
840 * DTrace Intermediate Format Object (DIFO)
841 *
842 * A DIFO is used to store the compiled DIF for a D expression, its return
843 * type, and its string and variable tables.  The string table is a single
844 * buffer of character data into which sets instructions and variable
845 * references can reference strings using a byte offset.  The variable table
846 * is an array of dtrace_difv_t structures that describe the name and type of
847 * each variable and the id used in the DIF code.  This structure is described
848 * above in the DIF section of this header file.  The DIFO is used at both
849 * user-level (in the library) and in the kernel, but the structure is never
850 * passed between the two: the DOF structures form the only interface.  As a
851 * result, the definition can change depending on the presence of _KERNEL.
852 */
853typedef struct dtrace_difo {
854	dif_instr_t *dtdo_buf;		/* instruction buffer */
855	uint64_t *dtdo_inttab;		/* integer table (optional) */
856	char *dtdo_strtab;		/* string table (optional) */
857	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
858	uint_t dtdo_len;		/* length of instruction buffer */
859	uint_t dtdo_intlen;		/* length of integer table */
860	uint_t dtdo_strlen;		/* length of string table */
861	uint_t dtdo_varlen;		/* length of variable table */
862	dtrace_diftype_t dtdo_rtype;	/* return type */
863	uint_t dtdo_refcnt;		/* owner reference count */
864	uint_t dtdo_destructive;	/* invokes destructive subroutines */
865#ifndef _KERNEL
866	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
867	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
868	struct dt_node **dtdo_xlmtab;	/* translator references */
869	uint_t dtdo_krelen;		/* length of krelo table */
870	uint_t dtdo_urelen;		/* length of urelo table */
871	uint_t dtdo_xlmlen;		/* length of translator table */
872#endif
873} dtrace_difo_t;
874
875/*
876 * DTrace Enabling Description Structures
877 *
878 * When DTrace is tracking the description of a DTrace enabling entity (probe,
879 * predicate, action, ECB, record, etc.), it does so in a description
880 * structure.  These structures all end in "desc", and are used at both
881 * user-level and in the kernel -- but (with the exception of
882 * dtrace_probedesc_t) they are never passed between them.  Typically,
883 * user-level will use the description structures when assembling an enabling.
884 * It will then distill those description structures into a DOF object (see
885 * above), and send it into the kernel.  The kernel will again use the
886 * description structures to create a description of the enabling as it reads
887 * the DOF.  When the description is complete, the enabling will be actually
888 * created -- turning it into the structures that represent the enabling
889 * instead of merely describing it.  Not surprisingly, the description
890 * structures bear a strong resemblance to the DOF structures that act as their
891 * conduit.
892 */
893struct dtrace_predicate;
894
895typedef struct dtrace_probedesc {
896	dtrace_id_t dtpd_id;			/* probe identifier */
897	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
898	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
899	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
900	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
901} dtrace_probedesc_t;
902
903typedef struct dtrace_repldesc {
904	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
905	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
906} dtrace_repldesc_t;
907
908typedef struct dtrace_preddesc {
909	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
910	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
911} dtrace_preddesc_t;
912
913typedef struct dtrace_actdesc {
914	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
915	struct dtrace_actdesc *dtad_next;	/* next action */
916	dtrace_actkind_t dtad_kind;		/* kind of action */
917	uint32_t dtad_ntuple;			/* number in tuple */
918	uint64_t dtad_arg;			/* action argument */
919	uint64_t dtad_uarg;			/* user argument */
920	int dtad_refcnt;			/* reference count */
921} dtrace_actdesc_t;
922
923typedef struct dtrace_ecbdesc {
924	dtrace_actdesc_t *dted_action;		/* action description(s) */
925	dtrace_preddesc_t dted_pred;		/* predicate description */
926	dtrace_probedesc_t dted_probe;		/* probe description */
927	uint64_t dted_uarg;			/* library argument */
928	int dted_refcnt;			/* reference count */
929} dtrace_ecbdesc_t;
930
931/*
932 * DTrace Metadata Description Structures
933 *
934 * DTrace separates the trace data stream from the metadata stream.  The only
935 * metadata tokens placed in the data stream are the dtrace_rechdr_t (EPID +
936 * timestamp) or (in the case of aggregations) aggregation identifiers.  To
937 * determine the structure of the data, DTrace consumers pass the token to the
938 * kernel, and receive in return a corresponding description of the enabled
939 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
940 * dtrace_aggdesc structure).  Both of these structures are expressed in terms
941 * of record descriptions (via the dtrace_recdesc structure) that describe the
942 * exact structure of the data.  Some record descriptions may also contain a
943 * format identifier; this additional bit of metadata can be retrieved from the
944 * kernel, for which a format description is returned via the dtrace_fmtdesc
945 * structure.  Note that all four of these structures must be bitness-neutral
946 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
947 */
948typedef struct dtrace_recdesc {
949	dtrace_actkind_t dtrd_action;		/* kind of action */
950	uint32_t dtrd_size;			/* size of record */
951	uint32_t dtrd_offset;			/* offset in ECB's data */
952	uint16_t dtrd_alignment;		/* required alignment */
953	uint16_t dtrd_format;			/* format, if any */
954	uint64_t dtrd_arg;			/* action argument */
955	uint64_t dtrd_uarg;			/* user argument */
956} dtrace_recdesc_t;
957
958typedef struct dtrace_eprobedesc {
959	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
960	dtrace_id_t dtepd_probeid;		/* probe ID */
961	uint64_t dtepd_uarg;			/* library argument */
962	uint32_t dtepd_size;			/* total size */
963	int dtepd_nrecs;			/* number of records */
964	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
965} dtrace_eprobedesc_t;
966
967typedef struct dtrace_aggdesc {
968	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
969	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
970	int dtagd_flags;			/* not filled in by kernel */
971	dtrace_aggid_t dtagd_id;		/* aggregation ID */
972	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
973	uint32_t dtagd_size;			/* size in bytes */
974	int dtagd_nrecs;			/* number of records */
975	uint32_t dtagd_pad;			/* explicit padding */
976	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
977} dtrace_aggdesc_t;
978
979typedef struct dtrace_fmtdesc {
980	DTRACE_PTR(char, dtfd_string);		/* format string */
981	int dtfd_length;			/* length of format string */
982	uint16_t dtfd_format;			/* format identifier */
983} dtrace_fmtdesc_t;
984
985#define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
986	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
987	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
988
989#define	DTRACE_SIZEOF_AGGDESC(desc)				\
990	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
991	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
992
993/*
994 * DTrace Option Interface
995 *
996 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
997 * in a DOF image.  The dof_optdesc structure contains an option identifier and
998 * an option value.  The valid option identifiers are found below; the mapping
999 * between option identifiers and option identifying strings is maintained at
1000 * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
1001 * following are potentially valid option values:  all positive integers, zero
1002 * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
1003 * predefined tokens as their values; these are defined with
1004 * DTRACEOPT_{option}_{token}.
1005 */
1006#define	DTRACEOPT_BUFSIZE	0	/* buffer size */
1007#define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
1008#define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
1009#define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
1010#define	DTRACEOPT_SPECSIZE	4	/* speculation size */
1011#define	DTRACEOPT_NSPEC		5	/* number of speculations */
1012#define	DTRACEOPT_STRSIZE	6	/* string size */
1013#define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
1014#define	DTRACEOPT_CPU		8	/* CPU to trace */
1015#define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
1016#define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
1017#define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1018#define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1019#define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1020#define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1021#define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1022#define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1023#define	DTRACEOPT_STATUSRATE	17	/* status rate */
1024#define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1025#define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1026#define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1027#define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1028#define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1029#define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1030#define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1031#define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1032#define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1033#define	DTRACEOPT_TEMPORAL	27	/* temporally ordered output */
1034#define	DTRACEOPT_MAX		28	/* number of options */
1035
1036#define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1037
1038#define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1039#define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1040#define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1041
1042#define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1043#define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1044
1045/*
1046 * DTrace Buffer Interface
1047 *
1048 * In order to get a snapshot of the principal or aggregation buffer,
1049 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1050 * structure.  This describes which CPU user-level is interested in, and
1051 * where user-level wishes the kernel to snapshot the buffer to (the
1052 * dtbd_data field).  The kernel uses the same structure to pass back some
1053 * information regarding the buffer:  the size of data actually copied out, the
1054 * number of drops, the number of errors, the offset of the oldest record,
1055 * and the time of the snapshot.
1056 *
1057 * If the buffer policy is a "switch" policy, taking a snapshot of the
1058 * principal buffer has the additional effect of switching the active and
1059 * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1060 * the additional effect of switching the active and inactive buffers.
1061 */
1062typedef struct dtrace_bufdesc {
1063	uint64_t dtbd_size;			/* size of buffer */
1064	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1065	uint32_t dtbd_errors;			/* number of errors */
1066	uint64_t dtbd_drops;			/* number of drops */
1067	DTRACE_PTR(char, dtbd_data);		/* data */
1068	uint64_t dtbd_oldest;			/* offset of oldest record */
1069	uint64_t dtbd_timestamp;		/* hrtime of snapshot */
1070} dtrace_bufdesc_t;
1071
1072/*
1073 * Each record in the buffer (dtbd_data) begins with a header that includes
1074 * the epid and a timestamp.  The timestamp is split into two 4-byte parts
1075 * so that we do not require 8-byte alignment.
1076 */
1077typedef struct dtrace_rechdr {
1078	dtrace_epid_t dtrh_epid;		/* enabled probe id */
1079	uint32_t dtrh_timestamp_hi;		/* high bits of hrtime_t */
1080	uint32_t dtrh_timestamp_lo;		/* low bits of hrtime_t */
1081} dtrace_rechdr_t;
1082
1083#define	DTRACE_RECORD_LOAD_TIMESTAMP(dtrh)			\
1084	((dtrh)->dtrh_timestamp_lo +				\
1085	((uint64_t)(dtrh)->dtrh_timestamp_hi << 32))
1086
1087#define	DTRACE_RECORD_STORE_TIMESTAMP(dtrh, hrtime) {		\
1088	(dtrh)->dtrh_timestamp_lo = (uint32_t)hrtime;		\
1089	(dtrh)->dtrh_timestamp_hi = hrtime >> 32;		\
1090}
1091
1092/*
1093 * DTrace Status
1094 *
1095 * The status of DTrace is relayed via the dtrace_status structure.  This
1096 * structure contains members to count drops other than the capacity drops
1097 * available via the buffer interface (see above).  This consists of dynamic
1098 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1099 * speculative drops (including capacity speculative drops, drops due to busy
1100 * speculative buffers and drops due to unavailable speculative buffers).
1101 * Additionally, the status structure contains a field to indicate the number
1102 * of "fill"-policy buffers have been filled and a boolean field to indicate
1103 * that exit() has been called.  If the dtst_exiting field is non-zero, no
1104 * further data will be generated until tracing is stopped (at which time any
1105 * enablings of the END action will be processed); if user-level sees that
1106 * this field is non-zero, tracing should be stopped as soon as possible.
1107 */
1108typedef struct dtrace_status {
1109	uint64_t dtst_dyndrops;			/* dynamic drops */
1110	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1111	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1112	uint64_t dtst_specdrops;		/* speculative drops */
1113	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1114	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1115	uint64_t dtst_errors;			/* total errors */
1116	uint64_t dtst_filled;			/* number of filled bufs */
1117	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1118	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1119	char dtst_killed;			/* non-zero if killed */
1120	char dtst_exiting;			/* non-zero if exit() called */
1121	char dtst_pad[6];			/* pad out to 64-bit align */
1122} dtrace_status_t;
1123
1124/*
1125 * DTrace Configuration
1126 *
1127 * User-level may need to understand some elements of the kernel DTrace
1128 * configuration in order to generate correct DIF.  This information is
1129 * conveyed via the dtrace_conf structure.
1130 */
1131typedef struct dtrace_conf {
1132	uint_t dtc_difversion;			/* supported DIF version */
1133	uint_t dtc_difintregs;			/* # of DIF integer registers */
1134	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1135	uint_t dtc_ctfmodel;			/* CTF data model */
1136	uint_t dtc_pad[8];			/* reserved for future use */
1137} dtrace_conf_t;
1138
1139/*
1140 * DTrace Faults
1141 *
1142 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1143 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1144 * postprocessing at user-level.  Probe processing faults induce an ERROR
1145 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1146 * the error condition using thse symbolic labels.
1147 */
1148#define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1149#define	DTRACEFLT_BADADDR		1	/* Bad address */
1150#define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1151#define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1152#define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1153#define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1154#define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1155#define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1156#define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1157#define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1158
1159#define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1160
1161/*
1162 * DTrace Argument Types
1163 *
1164 * Because it would waste both space and time, argument types do not reside
1165 * with the probe.  In order to determine argument types for args[X]
1166 * variables, the D compiler queries for argument types on a probe-by-probe
1167 * basis.  (This optimizes for the common case that arguments are either not
1168 * used or used in an untyped fashion.)  Typed arguments are specified with a
1169 * string of the type name in the dtragd_native member of the argument
1170 * description structure.  Typed arguments may be further translated to types
1171 * of greater stability; the provider indicates such a translated argument by
1172 * filling in the dtargd_xlate member with the string of the translated type.
1173 * Finally, the provider may indicate which argument value a given argument
1174 * maps to by setting the dtargd_mapping member -- allowing a single argument
1175 * to map to multiple args[X] variables.
1176 */
1177typedef struct dtrace_argdesc {
1178	dtrace_id_t dtargd_id;			/* probe identifier */
1179	int dtargd_ndx;				/* arg number (-1 iff none) */
1180	int dtargd_mapping;			/* value mapping */
1181	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1182	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1183} dtrace_argdesc_t;
1184
1185/*
1186 * DTrace Stability Attributes
1187 *
1188 * Each DTrace provider advertises the name and data stability of each of its
1189 * probe description components, as well as its architectural dependencies.
1190 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1191 * order to compute the properties of an input program and report them.
1192 */
1193typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1194typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1195
1196#define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1197#define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1198#define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1199#define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1200#define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1201#define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1202#define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1203#define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1204#define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1205
1206#define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1207#define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1208#define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1209#define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1210#define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1211#define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1212#define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1213
1214#define	DTRACE_PRIV_NONE	0x0000
1215#define	DTRACE_PRIV_KERNEL	0x0001
1216#define	DTRACE_PRIV_USER	0x0002
1217#define	DTRACE_PRIV_PROC	0x0004
1218#define	DTRACE_PRIV_OWNER	0x0008
1219#define	DTRACE_PRIV_ZONEOWNER	0x0010
1220
1221#define	DTRACE_PRIV_ALL	\
1222	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1223	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1224
1225typedef struct dtrace_ppriv {
1226	uint32_t dtpp_flags;			/* privilege flags */
1227	uid_t dtpp_uid;				/* user ID */
1228	zoneid_t dtpp_zoneid;			/* zone ID */
1229} dtrace_ppriv_t;
1230
1231typedef struct dtrace_attribute {
1232	dtrace_stability_t dtat_name;		/* entity name stability */
1233	dtrace_stability_t dtat_data;		/* entity data stability */
1234	dtrace_class_t dtat_class;		/* entity data dependency */
1235} dtrace_attribute_t;
1236
1237typedef struct dtrace_pattr {
1238	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1239	dtrace_attribute_t dtpa_mod;		/* module attributes */
1240	dtrace_attribute_t dtpa_func;		/* function attributes */
1241	dtrace_attribute_t dtpa_name;		/* name attributes */
1242	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1243} dtrace_pattr_t;
1244
1245typedef struct dtrace_providerdesc {
1246	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1247	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1248	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1249} dtrace_providerdesc_t;
1250
1251/*
1252 * DTrace Pseudodevice Interface
1253 *
1254 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1255 * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1256 * DTrace.
1257 */
1258#if defined(sun)
1259#define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1260#define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1261#define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1262#define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1263#define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1264#define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1265#define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1266#define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1267#define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1268#define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1269#define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1270#define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1271#define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1272#define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1273#define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1274#define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1275#define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1276#else
1277#define	DTRACEIOC_PROVIDER	_IOWR('x',1,dtrace_providerdesc_t)
1278							/* provider query */
1279#define	DTRACEIOC_PROBES	_IOWR('x',2,dtrace_probedesc_t)
1280							/* probe query */
1281#define	DTRACEIOC_BUFSNAP	_IOW('x',4,dtrace_bufdesc_t *)
1282							/* snapshot buffer */
1283#define	DTRACEIOC_PROBEMATCH	_IOWR('x',5,dtrace_probedesc_t)
1284							/* match probes */
1285typedef struct {
1286	void	*dof;		/* DOF userland address written to driver. */
1287	int	n_matched;	/* # matches returned by driver. */
1288} dtrace_enable_io_t;
1289#define	DTRACEIOC_ENABLE	_IOWR('x',6,dtrace_enable_io_t)
1290							/* enable probes */
1291#define	DTRACEIOC_AGGSNAP	_IOW('x',7,dtrace_bufdesc_t *)
1292							/* snapshot agg. */
1293#define	DTRACEIOC_EPROBE	_IOW('x',8,dtrace_eprobedesc_t)
1294							/* get eprobe desc. */
1295#define	DTRACEIOC_PROBEARG	_IOWR('x',9,dtrace_argdesc_t)
1296							/* get probe arg */
1297#define	DTRACEIOC_CONF		_IOR('x',10,dtrace_conf_t)
1298							/* get config. */
1299#define	DTRACEIOC_STATUS	_IOR('x',11,dtrace_status_t)
1300							/* get status */
1301#define	DTRACEIOC_GO		_IOR('x',12,processorid_t)
1302							/* start tracing */
1303#define	DTRACEIOC_STOP		_IOWR('x',13,processorid_t)
1304							/* stop tracing */
1305#define	DTRACEIOC_AGGDESC	_IOW('x',15,dtrace_aggdesc_t *)
1306							/* get agg. desc. */
1307#define	DTRACEIOC_FORMAT	_IOWR('x',16,dtrace_fmtdesc_t)
1308							/* get format str */
1309#define	DTRACEIOC_DOFGET	_IOW('x',17,dof_hdr_t *)
1310							/* get DOF */
1311#define	DTRACEIOC_REPLICATE	_IOW('x',18,dtrace_repldesc_t)
1312							/* replicate enab */
1313#endif
1314
1315/*
1316 * DTrace Helpers
1317 *
1318 * In general, DTrace establishes probes in processes and takes actions on
1319 * processes without knowing their specific user-level structures.  Instead of
1320 * existing in the framework, process-specific knowledge is contained by the
1321 * enabling D program -- which can apply process-specific knowledge by making
1322 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1323 * operate on user-level data.  However, there may exist some specific probes
1324 * of particular semantic relevance that the application developer may wish to
1325 * explicitly export.  For example, an application may wish to export a probe
1326 * at the point that it begins and ends certain well-defined transactions.  In
1327 * addition to providing probes, programs may wish to offer assistance for
1328 * certain actions.  For example, in highly dynamic environments (e.g., Java),
1329 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1330 * names (the translation from instruction addresses to corresponding symbol
1331 * names may only be possible in situ); these environments may wish to define
1332 * a series of actions to be applied in situ to obtain a meaningful stack
1333 * trace.
1334 *
1335 * These two mechanisms -- user-level statically defined tracing and assisting
1336 * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1337 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1338 * providers, probes and their arguments.  If a helper wishes to provide
1339 * action assistance, probe descriptions and corresponding DIF actions may be
1340 * specified in the helper DOF.  For such helper actions, however, the probe
1341 * description describes the specific helper:  all DTrace helpers have the
1342 * provider name "dtrace" and the module name "helper", and the name of the
1343 * helper is contained in the function name (for example, the ustack() helper
1344 * is named "ustack").  Any helper-specific name may be contained in the name
1345 * (for example, if a helper were to have a constructor, it might be named
1346 * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1347 * action that they are helping is taken.  Helper actions may only return DIF
1348 * expressions, and may only call the following subroutines:
1349 *
1350 *    alloca()      <= Allocates memory out of the consumer's scratch space
1351 *    bcopy()       <= Copies memory to scratch space
1352 *    copyin()      <= Copies memory from user-level into consumer's scratch
1353 *    copyinto()    <= Copies memory into a specific location in scratch
1354 *    copyinstr()   <= Copies a string into a specific location in scratch
1355 *
1356 * Helper actions may only access the following built-in variables:
1357 *
1358 *    curthread     <= Current kthread_t pointer
1359 *    tid           <= Current thread identifier
1360 *    pid           <= Current process identifier
1361 *    ppid          <= Parent process identifier
1362 *    uid           <= Current user ID
1363 *    gid           <= Current group ID
1364 *    execname      <= Current executable name
1365 *    zonename      <= Current zone name
1366 *
1367 * Helper actions may not manipulate or allocate dynamic variables, but they
1368 * may have clause-local and statically-allocated global variables.  The
1369 * helper action variable state is specific to the helper action -- variables
1370 * used by the helper action may not be accessed outside of the helper
1371 * action, and the helper action may not access variables that like outside
1372 * of it.  Helper actions may not load from kernel memory at-large; they are
1373 * restricting to loading current user state (via copyin() and variants) and
1374 * scratch space.  As with probe enablings, helper actions are executed in
1375 * program order.  The result of the helper action is the result of the last
1376 * executing helper expression.
1377 *
1378 * Helpers -- composed of either providers/probes or probes/actions (or both)
1379 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1380 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1381 * encapsulates the name and base address of the user-level library or
1382 * executable publishing the helpers and probes as well as the DOF that
1383 * contains the definitions of those helpers and probes.
1384 *
1385 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1386 * helpers and should no longer be used.  No other ioctls are valid on the
1387 * helper minor node.
1388 */
1389#if defined(sun)
1390#define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1391#define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1392#define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1393#define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1394#else
1395#define	DTRACEHIOC_ADD		_IOWR('z', 1, dof_hdr_t)/* add helper */
1396#define	DTRACEHIOC_REMOVE	_IOW('z', 2, int)	/* remove helper */
1397#define	DTRACEHIOC_ADDDOF	_IOWR('z', 3, dof_helper_t)/* add helper DOF */
1398#endif
1399
1400typedef struct dof_helper {
1401	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1402	uint64_t dofhp_addr;			/* base address of object */
1403	uint64_t dofhp_dof;			/* address of helper DOF */
1404#if !defined(sun)
1405	int gen;
1406#endif
1407} dof_helper_t;
1408
1409#define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1410#define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1411#define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1412#define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1413#define	DTRACEMNRN_CLONE	2		/* first clone minor */
1414
1415#ifdef _KERNEL
1416
1417/*
1418 * DTrace Provider API
1419 *
1420 * The following functions are implemented by the DTrace framework and are
1421 * used to implement separate in-kernel DTrace providers.  Common functions
1422 * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1423 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1424 *
1425 * The provider API has two halves:  the API that the providers consume from
1426 * DTrace, and the API that providers make available to DTrace.
1427 *
1428 * 1 Framework-to-Provider API
1429 *
1430 * 1.1  Overview
1431 *
1432 * The Framework-to-Provider API is represented by the dtrace_pops structure
1433 * that the provider passes to the framework when registering itself.  This
1434 * structure consists of the following members:
1435 *
1436 *   dtps_provide()          <-- Provide all probes, all modules
1437 *   dtps_provide_module()   <-- Provide all probes in specified module
1438 *   dtps_enable()           <-- Enable specified probe
1439 *   dtps_disable()          <-- Disable specified probe
1440 *   dtps_suspend()          <-- Suspend specified probe
1441 *   dtps_resume()           <-- Resume specified probe
1442 *   dtps_getargdesc()       <-- Get the argument description for args[X]
1443 *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1444 *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1445 *   dtps_destroy()          <-- Destroy all state associated with this probe
1446 *
1447 * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1448 *
1449 * 1.2.1  Overview
1450 *
1451 *   Called to indicate that the provider should provide all probes.  If the
1452 *   specified description is non-NULL, dtps_provide() is being called because
1453 *   no probe matched a specified probe -- if the provider has the ability to
1454 *   create custom probes, it may wish to create a probe that matches the
1455 *   specified description.
1456 *
1457 * 1.2.2  Arguments and notes
1458 *
1459 *   The first argument is the cookie as passed to dtrace_register().  The
1460 *   second argument is a pointer to a probe description that the provider may
1461 *   wish to consider when creating custom probes.  The provider is expected to
1462 *   call back into the DTrace framework via dtrace_probe_create() to create
1463 *   any necessary probes.  dtps_provide() may be called even if the provider
1464 *   has made available all probes; the provider should check the return value
1465 *   of dtrace_probe_create() to handle this case.  Note that the provider need
1466 *   not implement both dtps_provide() and dtps_provide_module(); see
1467 *   "Arguments and Notes" for dtrace_register(), below.
1468 *
1469 * 1.2.3  Return value
1470 *
1471 *   None.
1472 *
1473 * 1.2.4  Caller's context
1474 *
1475 *   dtps_provide() is typically called from open() or ioctl() context, but may
1476 *   be called from other contexts as well.  The DTrace framework is locked in
1477 *   such a way that providers may not register or unregister.  This means that
1478 *   the provider may not call any DTrace API that affects its registration with
1479 *   the framework, including dtrace_register(), dtrace_unregister(),
1480 *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1481 *   that the provider may (and indeed, is expected to) call probe-related
1482 *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1483 *   and dtrace_probe_arg().
1484 *
1485 * 1.3  void dtps_provide_module(void *arg, modctl_t *mp)
1486 *
1487 * 1.3.1  Overview
1488 *
1489 *   Called to indicate that the provider should provide all probes in the
1490 *   specified module.
1491 *
1492 * 1.3.2  Arguments and notes
1493 *
1494 *   The first argument is the cookie as passed to dtrace_register().  The
1495 *   second argument is a pointer to a modctl structure that indicates the
1496 *   module for which probes should be created.
1497 *
1498 * 1.3.3  Return value
1499 *
1500 *   None.
1501 *
1502 * 1.3.4  Caller's context
1503 *
1504 *   dtps_provide_module() may be called from open() or ioctl() context, but
1505 *   may also be called from a module loading context.  mod_lock is held, and
1506 *   the DTrace framework is locked in such a way that providers may not
1507 *   register or unregister.  This means that the provider may not call any
1508 *   DTrace API that affects its registration with the framework, including
1509 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1510 *   dtrace_condense().  However, the context is such that the provider may (and
1511 *   indeed, is expected to) call probe-related DTrace routines, including
1512 *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1513 *   that the provider need not implement both dtps_provide() and
1514 *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1515 *   below.
1516 *
1517 * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1518 *
1519 * 1.4.1  Overview
1520 *
1521 *   Called to enable the specified probe.
1522 *
1523 * 1.4.2  Arguments and notes
1524 *
1525 *   The first argument is the cookie as passed to dtrace_register().  The
1526 *   second argument is the identifier of the probe to be enabled.  The third
1527 *   argument is the probe argument as passed to dtrace_probe_create().
1528 *   dtps_enable() will be called when a probe transitions from not being
1529 *   enabled at all to having one or more ECB.  The number of ECBs associated
1530 *   with the probe may change without subsequent calls into the provider.
1531 *   When the number of ECBs drops to zero, the provider will be explicitly
1532 *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1533 *   be called for a probe identifier that hasn't been explicitly enabled via
1534 *   dtps_enable().
1535 *
1536 * 1.4.3  Return value
1537 *
1538 *   None.
1539 *
1540 * 1.4.4  Caller's context
1541 *
1542 *   The DTrace framework is locked in such a way that it may not be called
1543 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1544 *   be acquired.
1545 *
1546 * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1547 *
1548 * 1.5.1  Overview
1549 *
1550 *   Called to disable the specified probe.
1551 *
1552 * 1.5.2  Arguments and notes
1553 *
1554 *   The first argument is the cookie as passed to dtrace_register().  The
1555 *   second argument is the identifier of the probe to be disabled.  The third
1556 *   argument is the probe argument as passed to dtrace_probe_create().
1557 *   dtps_disable() will be called when a probe transitions from being enabled
1558 *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1559 *   identifier that has been explicitly enabled via dtps_disable().
1560 *
1561 * 1.5.3  Return value
1562 *
1563 *   None.
1564 *
1565 * 1.5.4  Caller's context
1566 *
1567 *   The DTrace framework is locked in such a way that it may not be called
1568 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1569 *   be acquired.
1570 *
1571 * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1572 *
1573 * 1.6.1  Overview
1574 *
1575 *   Called to suspend the specified enabled probe.  This entry point is for
1576 *   providers that may need to suspend some or all of their probes when CPUs
1577 *   are being powered on or when the boot monitor is being entered for a
1578 *   prolonged period of time.
1579 *
1580 * 1.6.2  Arguments and notes
1581 *
1582 *   The first argument is the cookie as passed to dtrace_register().  The
1583 *   second argument is the identifier of the probe to be suspended.  The
1584 *   third argument is the probe argument as passed to dtrace_probe_create().
1585 *   dtps_suspend will only be called on an enabled probe.  Providers that
1586 *   provide a dtps_suspend entry point will want to take roughly the action
1587 *   that it takes for dtps_disable.
1588 *
1589 * 1.6.3  Return value
1590 *
1591 *   None.
1592 *
1593 * 1.6.4  Caller's context
1594 *
1595 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1596 *   specified probe cannot be disabled or destroyed for the duration of
1597 *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1598 *   little latitude; the provider is expected to do no more than a store to
1599 *   memory.
1600 *
1601 * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1602 *
1603 * 1.7.1  Overview
1604 *
1605 *   Called to resume the specified enabled probe.  This entry point is for
1606 *   providers that may need to resume some or all of their probes after the
1607 *   completion of an event that induced a call to dtps_suspend().
1608 *
1609 * 1.7.2  Arguments and notes
1610 *
1611 *   The first argument is the cookie as passed to dtrace_register().  The
1612 *   second argument is the identifier of the probe to be resumed.  The
1613 *   third argument is the probe argument as passed to dtrace_probe_create().
1614 *   dtps_resume will only be called on an enabled probe.  Providers that
1615 *   provide a dtps_resume entry point will want to take roughly the action
1616 *   that it takes for dtps_enable.
1617 *
1618 * 1.7.3  Return value
1619 *
1620 *   None.
1621 *
1622 * 1.7.4  Caller's context
1623 *
1624 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1625 *   specified probe cannot be disabled or destroyed for the duration of
1626 *   dtps_resume().  As interrupts are disabled, the provider is afforded
1627 *   little latitude; the provider is expected to do no more than a store to
1628 *   memory.
1629 *
1630 * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1631 *           dtrace_argdesc_t *desc)
1632 *
1633 * 1.8.1  Overview
1634 *
1635 *   Called to retrieve the argument description for an args[X] variable.
1636 *
1637 * 1.8.2  Arguments and notes
1638 *
1639 *   The first argument is the cookie as passed to dtrace_register(). The
1640 *   second argument is the identifier of the current probe. The third
1641 *   argument is the probe argument as passed to dtrace_probe_create(). The
1642 *   fourth argument is a pointer to the argument description.  This
1643 *   description is both an input and output parameter:  it contains the
1644 *   index of the desired argument in the dtargd_ndx field, and expects
1645 *   the other fields to be filled in upon return.  If there is no argument
1646 *   corresponding to the specified index, the dtargd_ndx field should be set
1647 *   to DTRACE_ARGNONE.
1648 *
1649 * 1.8.3  Return value
1650 *
1651 *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1652 *   members of the dtrace_argdesc_t structure are all output values.
1653 *
1654 * 1.8.4  Caller's context
1655 *
1656 *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1657 *   the DTrace framework is locked in such a way that providers may not
1658 *   register or unregister.  This means that the provider may not call any
1659 *   DTrace API that affects its registration with the framework, including
1660 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1661 *   dtrace_condense().
1662 *
1663 * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1664 *               int argno, int aframes)
1665 *
1666 * 1.9.1  Overview
1667 *
1668 *   Called to retrieve a value for an argX or args[X] variable.
1669 *
1670 * 1.9.2  Arguments and notes
1671 *
1672 *   The first argument is the cookie as passed to dtrace_register(). The
1673 *   second argument is the identifier of the current probe. The third
1674 *   argument is the probe argument as passed to dtrace_probe_create(). The
1675 *   fourth argument is the number of the argument (the X in the example in
1676 *   1.9.1). The fifth argument is the number of stack frames that were used
1677 *   to get from the actual place in the code that fired the probe to
1678 *   dtrace_probe() itself, the so-called artificial frames. This argument may
1679 *   be used to descend an appropriate number of frames to find the correct
1680 *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1681 *   function is used.
1682 *
1683 * 1.9.3  Return value
1684 *
1685 *   The value of the argument.
1686 *
1687 * 1.9.4  Caller's context
1688 *
1689 *   This is called from within dtrace_probe() meaning that interrupts
1690 *   are disabled. No locks should be taken within this entry point.
1691 *
1692 * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1693 *
1694 * 1.10.1  Overview
1695 *
1696 *   Called to determine if the probe was fired in a user context.
1697 *
1698 * 1.10.2  Arguments and notes
1699 *
1700 *   The first argument is the cookie as passed to dtrace_register(). The
1701 *   second argument is the identifier of the current probe. The third
1702 *   argument is the probe argument as passed to dtrace_probe_create().  This
1703 *   entry point must not be left NULL for providers whose probes allow for
1704 *   mixed mode tracing, that is to say those probes that can fire during
1705 *   kernel- _or_ user-mode execution
1706 *
1707 * 1.10.3  Return value
1708 *
1709 *   A boolean value.
1710 *
1711 * 1.10.4  Caller's context
1712 *
1713 *   This is called from within dtrace_probe() meaning that interrupts
1714 *   are disabled. No locks should be taken within this entry point.
1715 *
1716 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1717 *
1718 * 1.11.1 Overview
1719 *
1720 *   Called to destroy the specified probe.
1721 *
1722 * 1.11.2 Arguments and notes
1723 *
1724 *   The first argument is the cookie as passed to dtrace_register().  The
1725 *   second argument is the identifier of the probe to be destroyed.  The third
1726 *   argument is the probe argument as passed to dtrace_probe_create().  The
1727 *   provider should free all state associated with the probe.  The framework
1728 *   guarantees that dtps_destroy() is only called for probes that have either
1729 *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1730 *   Once dtps_disable() has been called for a probe, no further call will be
1731 *   made specifying the probe.
1732 *
1733 * 1.11.3 Return value
1734 *
1735 *   None.
1736 *
1737 * 1.11.4 Caller's context
1738 *
1739 *   The DTrace framework is locked in such a way that it may not be called
1740 *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1741 *   acquired.
1742 *
1743 *
1744 * 2 Provider-to-Framework API
1745 *
1746 * 2.1  Overview
1747 *
1748 * The Provider-to-Framework API provides the mechanism for the provider to
1749 * register itself with the DTrace framework, to create probes, to lookup
1750 * probes and (most importantly) to fire probes.  The Provider-to-Framework
1751 * consists of:
1752 *
1753 *   dtrace_register()       <-- Register a provider with the DTrace framework
1754 *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1755 *   dtrace_invalidate()     <-- Invalidate the specified provider
1756 *   dtrace_condense()       <-- Remove a provider's unenabled probes
1757 *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1758 *   dtrace_probe_create()   <-- Create a DTrace probe
1759 *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1760 *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1761 *   dtrace_probe()          <-- Fire the specified probe
1762 *
1763 * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1764 *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1765 *          dtrace_provider_id_t *idp)
1766 *
1767 * 2.2.1  Overview
1768 *
1769 *   dtrace_register() registers the calling provider with the DTrace
1770 *   framework.  It should generally be called by DTrace providers in their
1771 *   attach(9E) entry point.
1772 *
1773 * 2.2.2  Arguments and Notes
1774 *
1775 *   The first argument is the name of the provider.  The second argument is a
1776 *   pointer to the stability attributes for the provider.  The third argument
1777 *   is the privilege flags for the provider, and must be some combination of:
1778 *
1779 *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1780 *
1781 *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1782 *                             enable probes from this provider
1783 *
1784 *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1785 *                             enable probes from this provider
1786 *
1787 *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1788 *                             may enable probes from this provider
1789 *
1790 *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1791 *                             the privilege requirements above. These probes
1792 *                             require either (a) a user ID matching the user
1793 *                             ID of the cred passed in the fourth argument
1794 *                             or (b) the PRIV_PROC_OWNER privilege.
1795 *
1796 *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1797 *                             the privilege requirements above. These probes
1798 *                             require either (a) a zone ID matching the zone
1799 *                             ID of the cred passed in the fourth argument
1800 *                             or (b) the PRIV_PROC_ZONE privilege.
1801 *
1802 *   Note that these flags designate the _visibility_ of the probes, not
1803 *   the conditions under which they may or may not fire.
1804 *
1805 *   The fourth argument is the credential that is associated with the
1806 *   provider.  This argument should be NULL if the privilege flags don't
1807 *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1808 *   framework stashes the uid and zoneid represented by this credential
1809 *   for use at probe-time, in implicit predicates.  These limit visibility
1810 *   of the probes to users and/or zones which have sufficient privilege to
1811 *   access them.
1812 *
1813 *   The fifth argument is a DTrace provider operations vector, which provides
1814 *   the implementation for the Framework-to-Provider API.  (See Section 1,
1815 *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1816 *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1817 *   members (if the provider so desires, _one_ of these members may be left
1818 *   NULL -- denoting that the provider only implements the other) and (2)
1819 *   the dtps_suspend() and dtps_resume() members, which must either both be
1820 *   NULL or both be non-NULL.
1821 *
1822 *   The sixth argument is a cookie to be specified as the first argument for
1823 *   each function in the Framework-to-Provider API.  This argument may have
1824 *   any value.
1825 *
1826 *   The final argument is a pointer to dtrace_provider_id_t.  If
1827 *   dtrace_register() successfully completes, the provider identifier will be
1828 *   stored in the memory pointed to be this argument.  This argument must be
1829 *   non-NULL.
1830 *
1831 * 2.2.3  Return value
1832 *
1833 *   On success, dtrace_register() returns 0 and stores the new provider's
1834 *   identifier into the memory pointed to by the idp argument.  On failure,
1835 *   dtrace_register() returns an errno:
1836 *
1837 *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1838 *              This may because a parameter that must be non-NULL was NULL,
1839 *              because the name was invalid (either empty or an illegal
1840 *              provider name) or because the attributes were invalid.
1841 *
1842 *   No other failure code is returned.
1843 *
1844 * 2.2.4  Caller's context
1845 *
1846 *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1847 *   hold no locks across dtrace_register() that may also be acquired by
1848 *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1849 *
1850 * 2.3  int dtrace_unregister(dtrace_provider_t id)
1851 *
1852 * 2.3.1  Overview
1853 *
1854 *   Unregisters the specified provider from the DTrace framework.  It should
1855 *   generally be called by DTrace providers in their detach(9E) entry point.
1856 *
1857 * 2.3.2  Arguments and Notes
1858 *
1859 *   The only argument is the provider identifier, as returned from a
1860 *   successful call to dtrace_register().  As a result of calling
1861 *   dtrace_unregister(), the DTrace framework will call back into the provider
1862 *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1863 *   completes, however, the DTrace framework will no longer make calls through
1864 *   the Framework-to-Provider API.
1865 *
1866 * 2.3.3  Return value
1867 *
1868 *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1869 *   returns an errno:
1870 *
1871 *     EBUSY    There are currently processes that have the DTrace pseudodevice
1872 *              open, or there exists an anonymous enabling that hasn't yet
1873 *              been claimed.
1874 *
1875 *   No other failure code is returned.
1876 *
1877 * 2.3.4  Caller's context
1878 *
1879 *   Because a call to dtrace_unregister() may induce calls through the
1880 *   Framework-to-Provider API, the caller may not hold any lock across
1881 *   dtrace_register() that is also acquired in any of the Framework-to-
1882 *   Provider API functions.  Additionally, mod_lock may not be held.
1883 *
1884 * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1885 *
1886 * 2.4.1  Overview
1887 *
1888 *   Invalidates the specified provider.  All subsequent probe lookups for the
1889 *   specified provider will fail, but its probes will not be removed.
1890 *
1891 * 2.4.2  Arguments and note
1892 *
1893 *   The only argument is the provider identifier, as returned from a
1894 *   successful call to dtrace_register().  In general, a provider's probes
1895 *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1896 *   an entire provider, regardless of whether or not probes are enabled or
1897 *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1898 *   probes from firing -- it will merely prevent any new enablings of the
1899 *   provider's probes.
1900 *
1901 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1902 *
1903 * 2.5.1  Overview
1904 *
1905 *   Removes all the unenabled probes for the given provider. This function is
1906 *   not unlike dtrace_unregister(), except that it doesn't remove the
1907 *   provider just as many of its associated probes as it can.
1908 *
1909 * 2.5.2  Arguments and Notes
1910 *
1911 *   As with dtrace_unregister(), the sole argument is the provider identifier
1912 *   as returned from a successful call to dtrace_register().  As a result of
1913 *   calling dtrace_condense(), the DTrace framework will call back into the
1914 *   given provider's dtps_destroy() entry point for each of the provider's
1915 *   unenabled probes.
1916 *
1917 * 2.5.3  Return value
1918 *
1919 *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1920 *   function should check the return value as appropriate; its behavior may
1921 *   change in the future.
1922 *
1923 * 2.5.4  Caller's context
1924 *
1925 *   As with dtrace_unregister(), the caller may not hold any lock across
1926 *   dtrace_condense() that is also acquired in the provider's entry points.
1927 *   Also, mod_lock may not be held.
1928 *
1929 * 2.6 int dtrace_attached()
1930 *
1931 * 2.6.1  Overview
1932 *
1933 *   Indicates whether or not DTrace has attached.
1934 *
1935 * 2.6.2  Arguments and Notes
1936 *
1937 *   For most providers, DTrace makes initial contact beyond registration.
1938 *   That is, once a provider has registered with DTrace, it waits to hear
1939 *   from DTrace to create probes.  However, some providers may wish to
1940 *   proactively create probes without first being told by DTrace to do so.
1941 *   If providers wish to do this, they must first call dtrace_attached() to
1942 *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1943 *   the provider must not make any other Provider-to-Framework API call.
1944 *
1945 * 2.6.3  Return value
1946 *
1947 *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1948 *
1949 * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1950 *	    const char *func, const char *name, int aframes, void *arg)
1951 *
1952 * 2.7.1  Overview
1953 *
1954 *   Creates a probe with specified module name, function name, and name.
1955 *
1956 * 2.7.2  Arguments and Notes
1957 *
1958 *   The first argument is the provider identifier, as returned from a
1959 *   successful call to dtrace_register().  The second, third, and fourth
1960 *   arguments are the module name, function name, and probe name,
1961 *   respectively.  Of these, module name and function name may both be NULL
1962 *   (in which case the probe is considered to be unanchored), or they may both
1963 *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1964 *   string.
1965 *
1966 *   The fifth argument is the number of artificial stack frames that will be
1967 *   found on the stack when dtrace_probe() is called for the new probe.  These
1968 *   artificial frames will be automatically be pruned should the stack() or
1969 *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1970 *   the parameter doesn't add an artificial frame, this parameter should be
1971 *   zero.
1972 *
1973 *   The final argument is a probe argument that will be passed back to the
1974 *   provider when a probe-specific operation is called.  (e.g., via
1975 *   dtps_enable(), dtps_disable(), etc.)
1976 *
1977 *   Note that it is up to the provider to be sure that the probe that it
1978 *   creates does not already exist -- if the provider is unsure of the probe's
1979 *   existence, it should assure its absence with dtrace_probe_lookup() before
1980 *   calling dtrace_probe_create().
1981 *
1982 * 2.7.3  Return value
1983 *
1984 *   dtrace_probe_create() always succeeds, and always returns the identifier
1985 *   of the newly-created probe.
1986 *
1987 * 2.7.4  Caller's context
1988 *
1989 *   While dtrace_probe_create() is generally expected to be called from
1990 *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1991 *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1992 *
1993 * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1994 *	    const char *func, const char *name)
1995 *
1996 * 2.8.1  Overview
1997 *
1998 *   Looks up a probe based on provdider and one or more of module name,
1999 *   function name and probe name.
2000 *
2001 * 2.8.2  Arguments and Notes
2002 *
2003 *   The first argument is the provider identifier, as returned from a
2004 *   successful call to dtrace_register().  The second, third, and fourth
2005 *   arguments are the module name, function name, and probe name,
2006 *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
2007 *   the identifier of the first probe that is provided by the specified
2008 *   provider and matches all of the non-NULL matching criteria.
2009 *   dtrace_probe_lookup() is generally used by a provider to be check the
2010 *   existence of a probe before creating it with dtrace_probe_create().
2011 *
2012 * 2.8.3  Return value
2013 *
2014 *   If the probe exists, returns its identifier.  If the probe does not exist,
2015 *   return DTRACE_IDNONE.
2016 *
2017 * 2.8.4  Caller's context
2018 *
2019 *   While dtrace_probe_lookup() is generally expected to be called from
2020 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2021 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2022 *
2023 * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
2024 *
2025 * 2.9.1  Overview
2026 *
2027 *   Returns the probe argument associated with the specified probe.
2028 *
2029 * 2.9.2  Arguments and Notes
2030 *
2031 *   The first argument is the provider identifier, as returned from a
2032 *   successful call to dtrace_register().  The second argument is a probe
2033 *   identifier, as returned from dtrace_probe_lookup() or
2034 *   dtrace_probe_create().  This is useful if a probe has multiple
2035 *   provider-specific components to it:  the provider can create the probe
2036 *   once with provider-specific state, and then add to the state by looking
2037 *   up the probe based on probe identifier.
2038 *
2039 * 2.9.3  Return value
2040 *
2041 *   Returns the argument associated with the specified probe.  If the
2042 *   specified probe does not exist, or if the specified probe is not provided
2043 *   by the specified provider, NULL is returned.
2044 *
2045 * 2.9.4  Caller's context
2046 *
2047 *   While dtrace_probe_arg() is generally expected to be called from
2048 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2049 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2050 *
2051 * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2052 *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2053 *
2054 * 2.10.1  Overview
2055 *
2056 *   The epicenter of DTrace:  fires the specified probes with the specified
2057 *   arguments.
2058 *
2059 * 2.10.2  Arguments and Notes
2060 *
2061 *   The first argument is a probe identifier as returned by
2062 *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
2063 *   arguments are the values to which the D variables "arg0" through "arg4"
2064 *   will be mapped.
2065 *
2066 *   dtrace_probe() should be called whenever the specified probe has fired --
2067 *   however the provider defines it.
2068 *
2069 * 2.10.3  Return value
2070 *
2071 *   None.
2072 *
2073 * 2.10.4  Caller's context
2074 *
2075 *   dtrace_probe() may be called in virtually any context:  kernel, user,
2076 *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2077 *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2078 *   that must be afforded to DTrace is the ability to make calls within
2079 *   itself (and to its in-kernel subroutines) and the ability to access
2080 *   arbitrary (but mapped) memory.  On some platforms, this constrains
2081 *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2082 *   from any context in which TL is greater than zero.  dtrace_probe() may
2083 *   also not be called from any routine which may be called by dtrace_probe()
2084 *   -- which includes functions in the DTrace framework and some in-kernel
2085 *   DTrace subroutines.  All such functions "dtrace_"; providers that
2086 *   instrument the kernel arbitrarily should be sure to not instrument these
2087 *   routines.
2088 */
2089typedef struct dtrace_pops {
2090	void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec);
2091	void (*dtps_provide_module)(void *arg, modctl_t *mp);
2092	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2093	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2094	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2095	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2096	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2097	    dtrace_argdesc_t *desc);
2098	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2099	    int argno, int aframes);
2100	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2101	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2102} dtrace_pops_t;
2103
2104typedef uintptr_t	dtrace_provider_id_t;
2105
2106extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2107    cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2108extern int dtrace_unregister(dtrace_provider_id_t);
2109extern int dtrace_condense(dtrace_provider_id_t);
2110extern void dtrace_invalidate(dtrace_provider_id_t);
2111extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *,
2112    char *, char *);
2113extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2114    const char *, const char *, int, void *);
2115extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2116extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2117    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2118
2119/*
2120 * DTrace Meta Provider API
2121 *
2122 * The following functions are implemented by the DTrace framework and are
2123 * used to implement meta providers. Meta providers plug into the DTrace
2124 * framework and are used to instantiate new providers on the fly. At
2125 * present, there is only one type of meta provider and only one meta
2126 * provider may be registered with the DTrace framework at a time. The
2127 * sole meta provider type provides user-land static tracing facilities
2128 * by taking meta probe descriptions and adding a corresponding provider
2129 * into the DTrace framework.
2130 *
2131 * 1 Framework-to-Provider
2132 *
2133 * 1.1 Overview
2134 *
2135 * The Framework-to-Provider API is represented by the dtrace_mops structure
2136 * that the meta provider passes to the framework when registering itself as
2137 * a meta provider. This structure consists of the following members:
2138 *
2139 *   dtms_create_probe()	<-- Add a new probe to a created provider
2140 *   dtms_provide_pid()		<-- Create a new provider for a given process
2141 *   dtms_remove_pid()		<-- Remove a previously created provider
2142 *
2143 * 1.2  void dtms_create_probe(void *arg, void *parg,
2144 *           dtrace_helper_probedesc_t *probedesc);
2145 *
2146 * 1.2.1  Overview
2147 *
2148 *   Called by the DTrace framework to create a new probe in a provider
2149 *   created by this meta provider.
2150 *
2151 * 1.2.2  Arguments and notes
2152 *
2153 *   The first argument is the cookie as passed to dtrace_meta_register().
2154 *   The second argument is the provider cookie for the associated provider;
2155 *   this is obtained from the return value of dtms_provide_pid(). The third
2156 *   argument is the helper probe description.
2157 *
2158 * 1.2.3  Return value
2159 *
2160 *   None
2161 *
2162 * 1.2.4  Caller's context
2163 *
2164 *   dtms_create_probe() is called from either ioctl() or module load context.
2165 *   The DTrace framework is locked in such a way that meta providers may not
2166 *   register or unregister. This means that the meta provider cannot call
2167 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2168 *   such that the provider may (and is expected to) call provider-related
2169 *   DTrace provider APIs including dtrace_probe_create().
2170 *
2171 * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2172 *	      pid_t pid)
2173 *
2174 * 1.3.1  Overview
2175 *
2176 *   Called by the DTrace framework to instantiate a new provider given the
2177 *   description of the provider and probes in the mprov argument. The
2178 *   meta provider should call dtrace_register() to insert the new provider
2179 *   into the DTrace framework.
2180 *
2181 * 1.3.2  Arguments and notes
2182 *
2183 *   The first argument is the cookie as passed to dtrace_meta_register().
2184 *   The second argument is a pointer to a structure describing the new
2185 *   helper provider. The third argument is the process identifier for
2186 *   process associated with this new provider. Note that the name of the
2187 *   provider as passed to dtrace_register() should be the contatenation of
2188 *   the dtmpb_provname member of the mprov argument and the processs
2189 *   identifier as a string.
2190 *
2191 * 1.3.3  Return value
2192 *
2193 *   The cookie for the provider that the meta provider creates. This is
2194 *   the same value that it passed to dtrace_register().
2195 *
2196 * 1.3.4  Caller's context
2197 *
2198 *   dtms_provide_pid() is called from either ioctl() or module load context.
2199 *   The DTrace framework is locked in such a way that meta providers may not
2200 *   register or unregister. This means that the meta provider cannot call
2201 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2202 *   is such that the provider may -- and is expected to --  call
2203 *   provider-related DTrace provider APIs including dtrace_register().
2204 *
2205 * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2206 *	     pid_t pid)
2207 *
2208 * 1.4.1  Overview
2209 *
2210 *   Called by the DTrace framework to remove a provider that had previously
2211 *   been instantiated via the dtms_provide_pid() entry point. The meta
2212 *   provider need not remove the provider immediately, but this entry
2213 *   point indicates that the provider should be removed as soon as possible
2214 *   using the dtrace_unregister() API.
2215 *
2216 * 1.4.2  Arguments and notes
2217 *
2218 *   The first argument is the cookie as passed to dtrace_meta_register().
2219 *   The second argument is a pointer to a structure describing the helper
2220 *   provider. The third argument is the process identifier for process
2221 *   associated with this new provider.
2222 *
2223 * 1.4.3  Return value
2224 *
2225 *   None
2226 *
2227 * 1.4.4  Caller's context
2228 *
2229 *   dtms_remove_pid() is called from either ioctl() or exit() context.
2230 *   The DTrace framework is locked in such a way that meta providers may not
2231 *   register or unregister. This means that the meta provider cannot call
2232 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2233 *   is such that the provider may -- and is expected to -- call
2234 *   provider-related DTrace provider APIs including dtrace_unregister().
2235 */
2236typedef struct dtrace_helper_probedesc {
2237	char *dthpb_mod;			/* probe module */
2238	char *dthpb_func; 			/* probe function */
2239	char *dthpb_name; 			/* probe name */
2240	uint64_t dthpb_base;			/* base address */
2241	uint32_t *dthpb_offs;			/* offsets array */
2242	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2243	uint32_t dthpb_noffs;			/* offsets count */
2244	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2245	uint8_t *dthpb_args;			/* argument mapping array */
2246	uint8_t dthpb_xargc;			/* translated argument count */
2247	uint8_t dthpb_nargc;			/* native argument count */
2248	char *dthpb_xtypes;			/* translated types strings */
2249	char *dthpb_ntypes;			/* native types strings */
2250} dtrace_helper_probedesc_t;
2251
2252typedef struct dtrace_helper_provdesc {
2253	char *dthpv_provname;			/* provider name */
2254	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2255} dtrace_helper_provdesc_t;
2256
2257typedef struct dtrace_mops {
2258	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2259	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2260	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2261} dtrace_mops_t;
2262
2263typedef uintptr_t	dtrace_meta_provider_id_t;
2264
2265extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2266    dtrace_meta_provider_id_t *);
2267extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2268
2269/*
2270 * DTrace Kernel Hooks
2271 *
2272 * The following functions are implemented by the base kernel and form a set of
2273 * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2274 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2275 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2276 */
2277
2278typedef enum dtrace_vtime_state {
2279	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2280	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2281	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2282	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2283} dtrace_vtime_state_t;
2284
2285#if defined(sun)
2286extern dtrace_vtime_state_t dtrace_vtime_active;
2287#endif
2288extern void dtrace_vtime_switch(kthread_t *next);
2289extern void dtrace_vtime_enable_tnf(void);
2290extern void dtrace_vtime_disable_tnf(void);
2291extern void dtrace_vtime_enable(void);
2292extern void dtrace_vtime_disable(void);
2293
2294struct regs;
2295struct reg;
2296
2297#if defined(sun)
2298extern int (*dtrace_pid_probe_ptr)(struct reg *);
2299extern int (*dtrace_return_probe_ptr)(struct reg *);
2300extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2301extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2302extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2303extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2304#endif
2305
2306typedef uintptr_t dtrace_icookie_t;
2307typedef void (*dtrace_xcall_t)(void *);
2308
2309extern dtrace_icookie_t dtrace_interrupt_disable(void);
2310extern void dtrace_interrupt_enable(dtrace_icookie_t);
2311
2312extern void dtrace_membar_producer(void);
2313extern void dtrace_membar_consumer(void);
2314
2315extern void (*dtrace_cpu_init)(processorid_t);
2316#if defined(sun)
2317extern void (*dtrace_modload)(modctl_t *);
2318extern void (*dtrace_modunload)(modctl_t *);
2319#endif
2320extern void (*dtrace_helpers_cleanup)(void);
2321extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2322extern void (*dtrace_cpustart_init)(void);
2323extern void (*dtrace_cpustart_fini)(void);
2324
2325extern void (*dtrace_debugger_init)(void);
2326extern void (*dtrace_debugger_fini)(void);
2327extern dtrace_cacheid_t dtrace_predcache_id;
2328
2329#if defined(sun)
2330extern hrtime_t dtrace_gethrtime(void);
2331#else
2332void dtrace_debug_printf(const char *, ...) __printflike(1, 2);
2333#endif
2334extern void dtrace_sync(void);
2335extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2336extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2337extern void dtrace_vpanic(const char *, __va_list);
2338extern void dtrace_panic(const char *, ...);
2339
2340extern int dtrace_safe_defer_signal(void);
2341extern void dtrace_safe_synchronous_signal(void);
2342
2343extern int dtrace_mach_aframes(void);
2344
2345#if defined(__i386) || defined(__amd64)
2346extern int dtrace_instr_size(uchar_t *instr);
2347extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2348extern void dtrace_invop_callsite(void);
2349#endif
2350extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2351extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2352
2353#ifdef __sparc
2354extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2355extern void dtrace_getfsr(uint64_t *);
2356#endif
2357
2358#if !defined(sun)
2359extern void dtrace_helpers_duplicate(proc_t *, proc_t *);
2360extern void dtrace_helpers_destroy(proc_t *);
2361#endif
2362
2363#define	DTRACE_CPUFLAG_ISSET(flag) \
2364	(cpu_core[curcpu].cpuc_dtrace_flags & (flag))
2365
2366#define	DTRACE_CPUFLAG_SET(flag) \
2367	(cpu_core[curcpu].cpuc_dtrace_flags |= (flag))
2368
2369#define	DTRACE_CPUFLAG_CLEAR(flag) \
2370	(cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag))
2371
2372#endif /* _KERNEL */
2373
2374#endif	/* _ASM */
2375
2376#if defined(__i386) || defined(__amd64)
2377
2378#define	DTRACE_INVOP_PUSHL_EBP		1
2379#define	DTRACE_INVOP_POPL_EBP		2
2380#define	DTRACE_INVOP_LEAVE		3
2381#define	DTRACE_INVOP_NOP		4
2382#define	DTRACE_INVOP_RET		5
2383
2384#elif defined(__powerpc__)
2385
2386#define DTRACE_INVOP_RET	1
2387#define DTRACE_INVOP_BCTR	2
2388#define DTRACE_INVOP_BLR	3
2389#define DTRACE_INVOP_JUMP	4
2390#define DTRACE_INVOP_MFLR_R0	5
2391#define DTRACE_INVOP_NOP	6
2392
2393#endif
2394
2395#ifdef	__cplusplus
2396}
2397#endif
2398
2399#endif	/* _SYS_DTRACE_H */
2400