dtrace.h revision 248690
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27/*
28 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
29 */
30
31#ifndef _SYS_DTRACE_H
32#define	_SYS_DTRACE_H
33
34#pragma ident	"%Z%%M%	%I%	%E% SMI"
35
36#ifdef	__cplusplus
37extern "C" {
38#endif
39
40/*
41 * DTrace Dynamic Tracing Software: Kernel Interfaces
42 *
43 * Note: The contents of this file are private to the implementation of the
44 * Solaris system and DTrace subsystem and are subject to change at any time
45 * without notice.  Applications and drivers using these interfaces will fail
46 * to run on future releases.  These interfaces should not be used for any
47 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
48 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
49 */
50
51#ifndef _ASM
52
53#include <sys/types.h>
54#include <sys/modctl.h>
55#include <sys/processor.h>
56#if defined(sun)
57#include <sys/systm.h>
58#else
59#include <sys/param.h>
60#include <sys/linker.h>
61#include <sys/ioccom.h>
62#include <sys/ucred.h>
63typedef int model_t;
64#endif
65#include <sys/ctf_api.h>
66#include <sys/cyclic.h>
67#if defined(sun)
68#include <sys/int_limits.h>
69#else
70#include <sys/stdint.h>
71#endif
72
73/*
74 * DTrace Universal Constants and Typedefs
75 */
76#define	DTRACE_CPUALL		-1	/* all CPUs */
77#define	DTRACE_IDNONE		0	/* invalid probe identifier */
78#define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
79#define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
80#define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
81#define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
82#define	DTRACE_PROVNONE		0	/* invalid provider identifier */
83#define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
84#define	DTRACE_ARGNONE		-1	/* invalid argument index */
85
86#define	DTRACE_PROVNAMELEN	64
87#define	DTRACE_MODNAMELEN	64
88#define	DTRACE_FUNCNAMELEN	128
89#define	DTRACE_NAMELEN		64
90#define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
91				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
92#define	DTRACE_ARGTYPELEN	128
93
94typedef uint32_t dtrace_id_t;		/* probe identifier */
95typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
96typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
97typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
98typedef uint16_t dtrace_actkind_t;	/* action kind */
99typedef int64_t dtrace_optval_t;	/* option value */
100typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
101
102typedef enum dtrace_probespec {
103	DTRACE_PROBESPEC_NONE = -1,
104	DTRACE_PROBESPEC_PROVIDER = 0,
105	DTRACE_PROBESPEC_MOD,
106	DTRACE_PROBESPEC_FUNC,
107	DTRACE_PROBESPEC_NAME
108} dtrace_probespec_t;
109
110/*
111 * DTrace Intermediate Format (DIF)
112 *
113 * The following definitions describe the DTrace Intermediate Format (DIF), a
114 * a RISC-like instruction set and program encoding used to represent
115 * predicates and actions that can be bound to DTrace probes.  The constants
116 * below defining the number of available registers are suggested minimums; the
117 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
118 * registers provided by the current DTrace implementation.
119 */
120#define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
121#define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
122#define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
123#define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
124#define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
125
126#define	DIF_OP_OR	1		/* or	r1, r2, rd */
127#define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
128#define	DIF_OP_AND	3		/* and	r1, r2, rd */
129#define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
130#define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
131#define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
132#define	DIF_OP_ADD	7		/* add	r1, r2, rd */
133#define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
134#define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
135#define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
136#define	DIF_OP_SREM	11		/* srem r1, r2, rd */
137#define	DIF_OP_UREM	12		/* urem r1, r2, rd */
138#define	DIF_OP_NOT	13		/* not	r1, rd */
139#define	DIF_OP_MOV	14		/* mov	r1, rd */
140#define	DIF_OP_CMP	15		/* cmp	r1, r2 */
141#define	DIF_OP_TST	16		/* tst  r1 */
142#define	DIF_OP_BA	17		/* ba	label */
143#define	DIF_OP_BE	18		/* be	label */
144#define	DIF_OP_BNE	19		/* bne	label */
145#define	DIF_OP_BG	20		/* bg	label */
146#define	DIF_OP_BGU	21		/* bgu	label */
147#define	DIF_OP_BGE	22		/* bge	label */
148#define	DIF_OP_BGEU	23		/* bgeu	label */
149#define	DIF_OP_BL	24		/* bl	label */
150#define	DIF_OP_BLU	25		/* blu	label */
151#define	DIF_OP_BLE	26		/* ble	label */
152#define	DIF_OP_BLEU	27		/* bleu	label */
153#define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
154#define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
155#define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
156#define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
157#define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
158#define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
159#define	DIF_OP_LDX	34		/* ldx	[r1], rd */
160#define	DIF_OP_RET	35		/* ret	rd */
161#define	DIF_OP_NOP	36		/* nop */
162#define	DIF_OP_SETX	37		/* setx	intindex, rd */
163#define	DIF_OP_SETS	38		/* sets strindex, rd */
164#define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
165#define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
166#define	DIF_OP_LDGS	41		/* ldgs var, rd */
167#define	DIF_OP_STGS	42		/* stgs var, rs */
168#define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
169#define	DIF_OP_LDTS	44		/* ldts var, rd */
170#define	DIF_OP_STTS	45		/* stts var, rs */
171#define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
172#define	DIF_OP_CALL	47		/* call	subr, rd */
173#define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
174#define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
175#define	DIF_OP_POPTS	50		/* popts */
176#define	DIF_OP_FLUSHTS	51		/* flushts */
177#define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
178#define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
179#define	DIF_OP_STGAA	54		/* stgaa var, rs */
180#define	DIF_OP_STTAA	55		/* sttaa var, rs */
181#define	DIF_OP_LDLS	56		/* ldls	var, rd */
182#define	DIF_OP_STLS	57		/* stls	var, rs */
183#define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
184#define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
185#define	DIF_OP_STB	60		/* stb	r1, [rd] */
186#define	DIF_OP_STH	61		/* sth	r1, [rd] */
187#define	DIF_OP_STW	62		/* stw	r1, [rd] */
188#define	DIF_OP_STX	63		/* stx	r1, [rd] */
189#define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
190#define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
191#define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
192#define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
193#define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
194#define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
195#define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
196#define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
197#define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
198#define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
199#define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
200#define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
201#define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
202#define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
203#define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
204#define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
205
206#define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
207#define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
208#define	DIF_REGISTER_MAX	0xff	/* highest register number */
209#define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
210#define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
211
212#define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
213#define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
214#define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
215
216#define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
217#define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
218#define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
219
220#define	DIF_VAR_ARGS		0x0000	/* arguments array */
221#define	DIF_VAR_REGS		0x0001	/* registers array */
222#define	DIF_VAR_UREGS		0x0002	/* user registers array */
223#define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
224#define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
225#define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
226#define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
227#define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
228#define	DIF_VAR_ID		0x0105	/* probe ID */
229#define	DIF_VAR_ARG0		0x0106	/* first argument */
230#define	DIF_VAR_ARG1		0x0107	/* second argument */
231#define	DIF_VAR_ARG2		0x0108	/* third argument */
232#define	DIF_VAR_ARG3		0x0109	/* fourth argument */
233#define	DIF_VAR_ARG4		0x010a	/* fifth argument */
234#define	DIF_VAR_ARG5		0x010b	/* sixth argument */
235#define	DIF_VAR_ARG6		0x010c	/* seventh argument */
236#define	DIF_VAR_ARG7		0x010d	/* eighth argument */
237#define	DIF_VAR_ARG8		0x010e	/* ninth argument */
238#define	DIF_VAR_ARG9		0x010f	/* tenth argument */
239#define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
240#define	DIF_VAR_CALLER		0x0111	/* caller */
241#define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
242#define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
243#define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
244#define	DIF_VAR_PROBENAME	0x0115	/* probe name */
245#define	DIF_VAR_PID		0x0116	/* process ID */
246#define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
247#define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
248#define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
249#define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
250#define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
251#define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
252#define	DIF_VAR_PPID		0x011d	/* parent process ID */
253#define	DIF_VAR_UID		0x011e	/* process user ID */
254#define	DIF_VAR_GID		0x011f	/* process group ID */
255#define	DIF_VAR_ERRNO		0x0120	/* thread errno */
256#define	DIF_VAR_EXECARGS	0x0121	/* process arguments */
257
258#if !defined(sun)
259#define	DIF_VAR_CPU		0x0200
260#endif
261
262#define	DIF_SUBR_RAND			0
263#define	DIF_SUBR_MUTEX_OWNED		1
264#define	DIF_SUBR_MUTEX_OWNER		2
265#define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
266#define	DIF_SUBR_MUTEX_TYPE_SPIN	4
267#define	DIF_SUBR_RW_READ_HELD		5
268#define	DIF_SUBR_RW_WRITE_HELD		6
269#define	DIF_SUBR_RW_ISWRITER		7
270#define	DIF_SUBR_COPYIN			8
271#define	DIF_SUBR_COPYINSTR		9
272#define	DIF_SUBR_SPECULATION		10
273#define	DIF_SUBR_PROGENYOF		11
274#define	DIF_SUBR_STRLEN			12
275#define	DIF_SUBR_COPYOUT		13
276#define	DIF_SUBR_COPYOUTSTR		14
277#define	DIF_SUBR_ALLOCA			15
278#define	DIF_SUBR_BCOPY			16
279#define	DIF_SUBR_COPYINTO		17
280#define	DIF_SUBR_MSGDSIZE		18
281#define	DIF_SUBR_MSGSIZE		19
282#define	DIF_SUBR_GETMAJOR		20
283#define	DIF_SUBR_GETMINOR		21
284#define	DIF_SUBR_DDI_PATHNAME		22
285#define	DIF_SUBR_STRJOIN		23
286#define	DIF_SUBR_LLTOSTR		24
287#define	DIF_SUBR_BASENAME		25
288#define	DIF_SUBR_DIRNAME		26
289#define	DIF_SUBR_CLEANPATH		27
290#define	DIF_SUBR_STRCHR			28
291#define	DIF_SUBR_STRRCHR		29
292#define	DIF_SUBR_STRSTR			30
293#define	DIF_SUBR_STRTOK			31
294#define	DIF_SUBR_SUBSTR			32
295#define	DIF_SUBR_INDEX			33
296#define	DIF_SUBR_RINDEX			34
297#define	DIF_SUBR_HTONS			35
298#define	DIF_SUBR_HTONL			36
299#define	DIF_SUBR_HTONLL			37
300#define	DIF_SUBR_NTOHS			38
301#define	DIF_SUBR_NTOHL			39
302#define	DIF_SUBR_NTOHLL			40
303#define	DIF_SUBR_INET_NTOP		41
304#define	DIF_SUBR_INET_NTOA		42
305#define	DIF_SUBR_INET_NTOA6		43
306#define	DIF_SUBR_MEMREF			44
307#define	DIF_SUBR_TYPEREF		45
308#define	DIF_SUBR_SX_SHARED_HELD		46
309#define	DIF_SUBR_SX_EXCLUSIVE_HELD	47
310#define	DIF_SUBR_SX_ISEXCLUSIVE		48
311
312#define	DIF_SUBR_MAX			48	/* max subroutine value */
313
314typedef uint32_t dif_instr_t;
315
316#define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
317#define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
318#define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
319#define	DIF_INSTR_RD(i)			((i) & 0xff)
320#define	DIF_INSTR_RS(i)			((i) & 0xff)
321#define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
322#define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
323#define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
324#define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
325#define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
326#define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
327#define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
328
329#define	DIF_INSTR_FMT(op, r1, r2, d) \
330	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
331
332#define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
333#define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
334#define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
335#define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
336#define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
337#define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
338#define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
339#define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
340#define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
341#define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
342#define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
343#define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
344#define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
345#define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
346#define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
347#define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
348#define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
349#define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
350#define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
351#define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
352#define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
353
354#define	DIF_REG_R0	0		/* %r0 is always set to zero */
355
356/*
357 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
358 * of variables, function and associative array arguments, and the return type
359 * for each DIF object (shown below).  It contains a description of the type,
360 * its size in bytes, and a module identifier.
361 */
362typedef struct dtrace_diftype {
363	uint8_t dtdt_kind;		/* type kind (see below) */
364	uint8_t dtdt_ckind;		/* type kind in CTF */
365	uint8_t dtdt_flags;		/* type flags (see below) */
366	uint8_t dtdt_pad;		/* reserved for future use */
367	uint32_t dtdt_size;		/* type size in bytes (unless string) */
368} dtrace_diftype_t;
369
370#define	DIF_TYPE_CTF		0	/* type is a CTF type */
371#define	DIF_TYPE_STRING		1	/* type is a D string */
372
373#define	DIF_TF_BYREF		0x1	/* type is passed by reference */
374
375/*
376 * A DTrace Intermediate Format variable record is used to describe each of the
377 * variables referenced by a given DIF object.  It contains an integer variable
378 * identifier along with variable scope and properties, as shown below.  The
379 * size of this structure must be sizeof (int) aligned.
380 */
381typedef struct dtrace_difv {
382	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
383	uint32_t dtdv_id;		/* variable reference identifier */
384	uint8_t dtdv_kind;		/* variable kind (see below) */
385	uint8_t dtdv_scope;		/* variable scope (see below) */
386	uint16_t dtdv_flags;		/* variable flags (see below) */
387	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
388} dtrace_difv_t;
389
390#define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
391#define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
392
393#define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
394#define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
395#define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
396
397#define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
398#define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
399
400/*
401 * DTrace Actions
402 *
403 * The upper byte determines the class of the action; the low bytes determines
404 * the specific action within that class.  The classes of actions are as
405 * follows:
406 *
407 *   [ no class ]                  <= May record process- or kernel-related data
408 *   DTRACEACT_PROC                <= Only records process-related data
409 *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
410 *   DTRACEACT_KERNEL              <= Only records kernel-related data
411 *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
412 *   DTRACEACT_SPECULATIVE         <= Speculation-related action
413 *   DTRACEACT_AGGREGATION         <= Aggregating action
414 */
415#define	DTRACEACT_NONE			0	/* no action */
416#define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
417#define	DTRACEACT_EXIT			2	/* exit() action */
418#define	DTRACEACT_PRINTF		3	/* printf() action */
419#define	DTRACEACT_PRINTA		4	/* printa() action */
420#define	DTRACEACT_LIBACT		5	/* library-controlled action */
421#define	DTRACEACT_TRACEMEM		6	/* tracemem() action */
422#define	DTRACEACT_TRACEMEM_DYNSIZE	7	/* dynamic tracemem() size */
423#define	DTRACEACT_PRINTM		8	/* printm() action (BSD) */
424#define	DTRACEACT_PRINTT		9	/* printt() action (BSD) */
425
426#define	DTRACEACT_PROC			0x0100
427#define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
428#define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
429#define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
430#define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
431#define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
432
433#define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
434#define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
435#define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
436#define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
437#define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
438
439#define	DTRACEACT_PROC_CONTROL		0x0300
440
441#define	DTRACEACT_KERNEL		0x0400
442#define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
443#define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
444#define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
445
446#define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
447#define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
448#define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
449#define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
450
451#define	DTRACEACT_SPECULATIVE		0x0600
452#define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
453#define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
454#define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
455
456#define	DTRACEACT_CLASS(x)		((x) & 0xff00)
457
458#define	DTRACEACT_ISDESTRUCTIVE(x)	\
459	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
460	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
461
462#define	DTRACEACT_ISSPECULATIVE(x)	\
463	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
464
465#define	DTRACEACT_ISPRINTFLIKE(x)	\
466	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
467	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
468
469/*
470 * DTrace Aggregating Actions
471 *
472 * These are functions f(x) for which the following is true:
473 *
474 *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
475 *
476 * where x_n is a set of arbitrary data.  Aggregating actions are in their own
477 * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
478 * for easier processing of the aggregation argument and data payload for a few
479 * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
480 */
481#define	DTRACEACT_AGGREGATION		0x0700
482#define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
483#define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
484#define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
485#define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
486#define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
487#define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
488#define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
489#define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
490#define	DTRACEAGG_LLQUANTIZE		(DTRACEACT_AGGREGATION + 9)
491
492#define	DTRACEACT_ISAGG(x)		\
493	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
494
495#define	DTRACE_QUANTIZE_NBUCKETS	\
496	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
497
498#define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
499
500#define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
501	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
502	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
503	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
504	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
505
506#define	DTRACE_LQUANTIZE_STEPSHIFT		48
507#define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
508#define	DTRACE_LQUANTIZE_LEVELSHIFT		32
509#define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
510#define	DTRACE_LQUANTIZE_BASESHIFT		0
511#define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
512
513#define	DTRACE_LQUANTIZE_STEP(x)		\
514	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
515	DTRACE_LQUANTIZE_STEPSHIFT)
516
517#define	DTRACE_LQUANTIZE_LEVELS(x)		\
518	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
519	DTRACE_LQUANTIZE_LEVELSHIFT)
520
521#define	DTRACE_LQUANTIZE_BASE(x)		\
522	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
523	DTRACE_LQUANTIZE_BASESHIFT)
524
525#define	DTRACE_LLQUANTIZE_FACTORSHIFT		48
526#define	DTRACE_LLQUANTIZE_FACTORMASK		((uint64_t)UINT16_MAX << 48)
527#define	DTRACE_LLQUANTIZE_LOWSHIFT		32
528#define	DTRACE_LLQUANTIZE_LOWMASK		((uint64_t)UINT16_MAX << 32)
529#define	DTRACE_LLQUANTIZE_HIGHSHIFT		16
530#define	DTRACE_LLQUANTIZE_HIGHMASK		((uint64_t)UINT16_MAX << 16)
531#define	DTRACE_LLQUANTIZE_NSTEPSHIFT		0
532#define	DTRACE_LLQUANTIZE_NSTEPMASK		UINT16_MAX
533
534#define	DTRACE_LLQUANTIZE_FACTOR(x)		\
535	(uint16_t)(((x) & DTRACE_LLQUANTIZE_FACTORMASK) >> \
536	DTRACE_LLQUANTIZE_FACTORSHIFT)
537
538#define	DTRACE_LLQUANTIZE_LOW(x)		\
539	(uint16_t)(((x) & DTRACE_LLQUANTIZE_LOWMASK) >> \
540	DTRACE_LLQUANTIZE_LOWSHIFT)
541
542#define	DTRACE_LLQUANTIZE_HIGH(x)		\
543	(uint16_t)(((x) & DTRACE_LLQUANTIZE_HIGHMASK) >> \
544	DTRACE_LLQUANTIZE_HIGHSHIFT)
545
546#define	DTRACE_LLQUANTIZE_NSTEP(x)		\
547	(uint16_t)(((x) & DTRACE_LLQUANTIZE_NSTEPMASK) >> \
548	DTRACE_LLQUANTIZE_NSTEPSHIFT)
549
550#define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
551#define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
552#define	DTRACE_USTACK_ARG(x, y)		\
553	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
554
555#ifndef _LP64
556#if BYTE_ORDER == _BIG_ENDIAN
557#define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
558#else
559#define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
560#endif
561#else
562#define	DTRACE_PTR(type, name)	type *name
563#endif
564
565/*
566 * DTrace Object Format (DOF)
567 *
568 * DTrace programs can be persistently encoded in the DOF format so that they
569 * may be embedded in other programs (for example, in an ELF file) or in the
570 * dtrace driver configuration file for use in anonymous tracing.  The DOF
571 * format is versioned and extensible so that it can be revised and so that
572 * internal data structures can be modified or extended compatibly.  All DOF
573 * structures use fixed-size types, so the 32-bit and 64-bit representations
574 * are identical and consumers can use either data model transparently.
575 *
576 * The file layout is structured as follows:
577 *
578 * +---------------+-------------------+----- ... ----+---- ... ------+
579 * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
580 * | (file header) | (section headers) | section data | section data  |
581 * +---------------+-------------------+----- ... ----+---- ... ------+
582 * |<------------ dof_hdr.dofh_loadsz --------------->|               |
583 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
584 *
585 * The file header stores meta-data including a magic number, data model for
586 * the instrumentation, data encoding, and properties of the DIF code within.
587 * The header describes its own size and the size of the section headers.  By
588 * convention, an array of section headers follows the file header, and then
589 * the data for all loadable sections and unloadable sections.  This permits
590 * consumer code to easily download the headers and all loadable data into the
591 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
592 *
593 * The section headers describe the size, offset, alignment, and section type
594 * for each section.  Sections are described using a set of #defines that tell
595 * the consumer what kind of data is expected.  Sections can contain links to
596 * other sections by storing a dof_secidx_t, an index into the section header
597 * array, inside of the section data structures.  The section header includes
598 * an entry size so that sections with data arrays can grow their structures.
599 *
600 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
601 * are represented themselves as a collection of related DOF sections.  This
602 * permits us to change the set of sections associated with a DIFO over time,
603 * and also permits us to encode DIFOs that contain different sets of sections.
604 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
605 * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
606 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
607 *
608 * This loose coupling of the file structure (header and sections) to the
609 * structure of the DTrace program itself (ECB descriptions, action
610 * descriptions, and DIFOs) permits activities such as relocation processing
611 * to occur in a single pass without having to understand D program structure.
612 *
613 * Finally, strings are always stored in ELF-style string tables along with a
614 * string table section index and string table offset.  Therefore strings in
615 * DOF are always arbitrary-length and not bound to the current implementation.
616 */
617
618#define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
619
620typedef struct dof_hdr {
621	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
622	uint32_t dofh_flags;		/* file attribute flags (if any) */
623	uint32_t dofh_hdrsize;		/* size of file header in bytes */
624	uint32_t dofh_secsize;		/* size of section header in bytes */
625	uint32_t dofh_secnum;		/* number of section headers */
626	uint64_t dofh_secoff;		/* file offset of section headers */
627	uint64_t dofh_loadsz;		/* file size of loadable portion */
628	uint64_t dofh_filesz;		/* file size of entire DOF file */
629	uint64_t dofh_pad;		/* reserved for future use */
630} dof_hdr_t;
631
632#define	DOF_ID_MAG0	0	/* first byte of magic number */
633#define	DOF_ID_MAG1	1	/* second byte of magic number */
634#define	DOF_ID_MAG2	2	/* third byte of magic number */
635#define	DOF_ID_MAG3	3	/* fourth byte of magic number */
636#define	DOF_ID_MODEL	4	/* DOF data model (see below) */
637#define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
638#define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
639#define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
640#define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
641#define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
642#define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
643
644#define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
645#define	DOF_MAG_MAG1	'D'
646#define	DOF_MAG_MAG2	'O'
647#define	DOF_MAG_MAG3	'F'
648
649#define	DOF_MAG_STRING	"\177DOF"
650#define	DOF_MAG_STRLEN	4
651
652#define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
653#define	DOF_MODEL_ILP32	1
654#define	DOF_MODEL_LP64	2
655
656#ifdef _LP64
657#define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
658#else
659#define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
660#endif
661
662#define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
663#define	DOF_ENCODE_LSB	1
664#define	DOF_ENCODE_MSB	2
665
666#if BYTE_ORDER == _BIG_ENDIAN
667#define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
668#else
669#define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
670#endif
671
672#define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
673#define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
674#define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
675
676#define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
677
678typedef uint32_t dof_secidx_t;	/* section header table index type */
679typedef uint32_t dof_stridx_t;	/* string table index type */
680
681#define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
682#define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
683
684typedef struct dof_sec {
685	uint32_t dofs_type;	/* section type (see below) */
686	uint32_t dofs_align;	/* section data memory alignment */
687	uint32_t dofs_flags;	/* section flags (if any) */
688	uint32_t dofs_entsize;	/* size of section entry (if table) */
689	uint64_t dofs_offset;	/* offset of section data within file */
690	uint64_t dofs_size;	/* size of section data in bytes */
691} dof_sec_t;
692
693#define	DOF_SECT_NONE		0	/* null section */
694#define	DOF_SECT_COMMENTS	1	/* compiler comments */
695#define	DOF_SECT_SOURCE		2	/* D program source code */
696#define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
697#define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
698#define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
699#define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
700#define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
701#define	DOF_SECT_STRTAB		8	/* string table */
702#define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
703#define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
704#define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
705#define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
706#define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
707#define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
708#define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
709#define	DOF_SECT_PROBES		16	/* dof_probe_t array */
710#define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
711#define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
712#define	DOF_SECT_INTTAB		19	/* uint64_t array */
713#define	DOF_SECT_UTSNAME	20	/* struct utsname */
714#define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
715#define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
716#define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
717#define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
718#define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
719#define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
720
721#define	DOF_SECF_LOAD		1	/* section should be loaded */
722
723typedef struct dof_ecbdesc {
724	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
725	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
726	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
727	uint32_t dofe_pad;		/* reserved for future use */
728	uint64_t dofe_uarg;		/* user-supplied library argument */
729} dof_ecbdesc_t;
730
731typedef struct dof_probedesc {
732	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
733	dof_stridx_t dofp_provider;	/* provider string */
734	dof_stridx_t dofp_mod;		/* module string */
735	dof_stridx_t dofp_func;		/* function string */
736	dof_stridx_t dofp_name;		/* name string */
737	uint32_t dofp_id;		/* probe identifier (or zero) */
738} dof_probedesc_t;
739
740typedef struct dof_actdesc {
741	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
742	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
743	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
744	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
745	uint64_t dofa_arg;		/* kind-specific argument */
746	uint64_t dofa_uarg;		/* user-supplied argument */
747} dof_actdesc_t;
748
749typedef struct dof_difohdr {
750	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
751	dof_secidx_t dofd_links[1];	/* variable length array of indices */
752} dof_difohdr_t;
753
754typedef struct dof_relohdr {
755	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
756	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
757	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
758} dof_relohdr_t;
759
760typedef struct dof_relodesc {
761	dof_stridx_t dofr_name;		/* string name of relocation symbol */
762	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
763	uint64_t dofr_offset;		/* byte offset for relocation */
764	uint64_t dofr_data;		/* additional type-specific data */
765} dof_relodesc_t;
766
767#define	DOF_RELO_NONE	0		/* empty relocation entry */
768#define	DOF_RELO_SETX	1		/* relocate setx value */
769
770typedef struct dof_optdesc {
771	uint32_t dofo_option;		/* option identifier */
772	dof_secidx_t dofo_strtab;	/* string table, if string option */
773	uint64_t dofo_value;		/* option value or string index */
774} dof_optdesc_t;
775
776typedef uint32_t dof_attr_t;		/* encoded stability attributes */
777
778#define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
779#define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
780#define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
781#define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
782
783typedef struct dof_provider {
784	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
785	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
786	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
787	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
788	dof_stridx_t dofpv_name;	/* provider name string */
789	dof_attr_t dofpv_provattr;	/* provider attributes */
790	dof_attr_t dofpv_modattr;	/* module attributes */
791	dof_attr_t dofpv_funcattr;	/* function attributes */
792	dof_attr_t dofpv_nameattr;	/* name attributes */
793	dof_attr_t dofpv_argsattr;	/* args attributes */
794	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
795} dof_provider_t;
796
797typedef struct dof_probe {
798	uint64_t dofpr_addr;		/* probe base address or offset */
799	dof_stridx_t dofpr_func;	/* probe function string */
800	dof_stridx_t dofpr_name;	/* probe name string */
801	dof_stridx_t dofpr_nargv;	/* native argument type strings */
802	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
803	uint32_t dofpr_argidx;		/* index of first argument mapping */
804	uint32_t dofpr_offidx;		/* index of first offset entry */
805	uint8_t dofpr_nargc;		/* native argument count */
806	uint8_t dofpr_xargc;		/* translated argument count */
807	uint16_t dofpr_noffs;		/* number of offset entries for probe */
808	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
809	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
810	uint16_t dofpr_pad1;		/* reserved for future use */
811	uint32_t dofpr_pad2;		/* reserved for future use */
812} dof_probe_t;
813
814typedef struct dof_xlator {
815	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
816	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
817	dof_stridx_t dofxl_argv;	/* input parameter type strings */
818	uint32_t dofxl_argc;		/* input parameter list length */
819	dof_stridx_t dofxl_type;	/* output type string name */
820	dof_attr_t dofxl_attr;		/* output stability attributes */
821} dof_xlator_t;
822
823typedef struct dof_xlmember {
824	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
825	dof_stridx_t dofxm_name;	/* member name */
826	dtrace_diftype_t dofxm_type;	/* member type */
827} dof_xlmember_t;
828
829typedef struct dof_xlref {
830	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
831	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
832	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
833} dof_xlref_t;
834
835/*
836 * DTrace Intermediate Format Object (DIFO)
837 *
838 * A DIFO is used to store the compiled DIF for a D expression, its return
839 * type, and its string and variable tables.  The string table is a single
840 * buffer of character data into which sets instructions and variable
841 * references can reference strings using a byte offset.  The variable table
842 * is an array of dtrace_difv_t structures that describe the name and type of
843 * each variable and the id used in the DIF code.  This structure is described
844 * above in the DIF section of this header file.  The DIFO is used at both
845 * user-level (in the library) and in the kernel, but the structure is never
846 * passed between the two: the DOF structures form the only interface.  As a
847 * result, the definition can change depending on the presence of _KERNEL.
848 */
849typedef struct dtrace_difo {
850	dif_instr_t *dtdo_buf;		/* instruction buffer */
851	uint64_t *dtdo_inttab;		/* integer table (optional) */
852	char *dtdo_strtab;		/* string table (optional) */
853	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
854	uint_t dtdo_len;		/* length of instruction buffer */
855	uint_t dtdo_intlen;		/* length of integer table */
856	uint_t dtdo_strlen;		/* length of string table */
857	uint_t dtdo_varlen;		/* length of variable table */
858	dtrace_diftype_t dtdo_rtype;	/* return type */
859	uint_t dtdo_refcnt;		/* owner reference count */
860	uint_t dtdo_destructive;	/* invokes destructive subroutines */
861#ifndef _KERNEL
862	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
863	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
864	struct dt_node **dtdo_xlmtab;	/* translator references */
865	uint_t dtdo_krelen;		/* length of krelo table */
866	uint_t dtdo_urelen;		/* length of urelo table */
867	uint_t dtdo_xlmlen;		/* length of translator table */
868#endif
869} dtrace_difo_t;
870
871/*
872 * DTrace Enabling Description Structures
873 *
874 * When DTrace is tracking the description of a DTrace enabling entity (probe,
875 * predicate, action, ECB, record, etc.), it does so in a description
876 * structure.  These structures all end in "desc", and are used at both
877 * user-level and in the kernel -- but (with the exception of
878 * dtrace_probedesc_t) they are never passed between them.  Typically,
879 * user-level will use the description structures when assembling an enabling.
880 * It will then distill those description structures into a DOF object (see
881 * above), and send it into the kernel.  The kernel will again use the
882 * description structures to create a description of the enabling as it reads
883 * the DOF.  When the description is complete, the enabling will be actually
884 * created -- turning it into the structures that represent the enabling
885 * instead of merely describing it.  Not surprisingly, the description
886 * structures bear a strong resemblance to the DOF structures that act as their
887 * conduit.
888 */
889struct dtrace_predicate;
890
891typedef struct dtrace_probedesc {
892	dtrace_id_t dtpd_id;			/* probe identifier */
893	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
894	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
895	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
896	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
897} dtrace_probedesc_t;
898
899typedef struct dtrace_repldesc {
900	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
901	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
902} dtrace_repldesc_t;
903
904typedef struct dtrace_preddesc {
905	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
906	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
907} dtrace_preddesc_t;
908
909typedef struct dtrace_actdesc {
910	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
911	struct dtrace_actdesc *dtad_next;	/* next action */
912	dtrace_actkind_t dtad_kind;		/* kind of action */
913	uint32_t dtad_ntuple;			/* number in tuple */
914	uint64_t dtad_arg;			/* action argument */
915	uint64_t dtad_uarg;			/* user argument */
916	int dtad_refcnt;			/* reference count */
917} dtrace_actdesc_t;
918
919typedef struct dtrace_ecbdesc {
920	dtrace_actdesc_t *dted_action;		/* action description(s) */
921	dtrace_preddesc_t dted_pred;		/* predicate description */
922	dtrace_probedesc_t dted_probe;		/* probe description */
923	uint64_t dted_uarg;			/* library argument */
924	int dted_refcnt;			/* reference count */
925} dtrace_ecbdesc_t;
926
927/*
928 * DTrace Metadata Description Structures
929 *
930 * DTrace separates the trace data stream from the metadata stream.  The only
931 * metadata tokens placed in the data stream are enabled probe identifiers
932 * (EPIDs) or (in the case of aggregations) aggregation identifiers.  In order
933 * to determine the structure of the data, DTrace consumers pass the token to
934 * the kernel, and receive in return a corresponding description of the enabled
935 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
936 * dtrace_aggdesc structure).  Both of these structures are expressed in terms
937 * of record descriptions (via the dtrace_recdesc structure) that describe the
938 * exact structure of the data.  Some record descriptions may also contain a
939 * format identifier; this additional bit of metadata can be retrieved from the
940 * kernel, for which a format description is returned via the dtrace_fmtdesc
941 * structure.  Note that all four of these structures must be bitness-neutral
942 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
943 */
944typedef struct dtrace_recdesc {
945	dtrace_actkind_t dtrd_action;		/* kind of action */
946	uint32_t dtrd_size;			/* size of record */
947	uint32_t dtrd_offset;			/* offset in ECB's data */
948	uint16_t dtrd_alignment;		/* required alignment */
949	uint16_t dtrd_format;			/* format, if any */
950	uint64_t dtrd_arg;			/* action argument */
951	uint64_t dtrd_uarg;			/* user argument */
952} dtrace_recdesc_t;
953
954typedef struct dtrace_eprobedesc {
955	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
956	dtrace_id_t dtepd_probeid;		/* probe ID */
957	uint64_t dtepd_uarg;			/* library argument */
958	uint32_t dtepd_size;			/* total size */
959	int dtepd_nrecs;			/* number of records */
960	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
961} dtrace_eprobedesc_t;
962
963typedef struct dtrace_aggdesc {
964	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
965	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
966	int dtagd_flags;			/* not filled in by kernel */
967	dtrace_aggid_t dtagd_id;		/* aggregation ID */
968	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
969	uint32_t dtagd_size;			/* size in bytes */
970	int dtagd_nrecs;			/* number of records */
971	uint32_t dtagd_pad;			/* explicit padding */
972	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
973} dtrace_aggdesc_t;
974
975typedef struct dtrace_fmtdesc {
976	DTRACE_PTR(char, dtfd_string);		/* format string */
977	int dtfd_length;			/* length of format string */
978	uint16_t dtfd_format;			/* format identifier */
979} dtrace_fmtdesc_t;
980
981#define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
982	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
983	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
984
985#define	DTRACE_SIZEOF_AGGDESC(desc)				\
986	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
987	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
988
989/*
990 * DTrace Option Interface
991 *
992 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
993 * in a DOF image.  The dof_optdesc structure contains an option identifier and
994 * an option value.  The valid option identifiers are found below; the mapping
995 * between option identifiers and option identifying strings is maintained at
996 * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
997 * following are potentially valid option values:  all positive integers, zero
998 * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
999 * predefined tokens as their values; these are defined with
1000 * DTRACEOPT_{option}_{token}.
1001 */
1002#define	DTRACEOPT_BUFSIZE	0	/* buffer size */
1003#define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
1004#define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
1005#define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
1006#define	DTRACEOPT_SPECSIZE	4	/* speculation size */
1007#define	DTRACEOPT_NSPEC		5	/* number of speculations */
1008#define	DTRACEOPT_STRSIZE	6	/* string size */
1009#define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
1010#define	DTRACEOPT_CPU		8	/* CPU to trace */
1011#define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
1012#define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
1013#define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
1014#define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
1015#define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
1016#define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
1017#define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
1018#define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
1019#define	DTRACEOPT_STATUSRATE	17	/* status rate */
1020#define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
1021#define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
1022#define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
1023#define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
1024#define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
1025#define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
1026#define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
1027#define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
1028#define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
1029#define	DTRACEOPT_MAX		27	/* number of options */
1030
1031#define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
1032
1033#define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
1034#define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
1035#define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
1036
1037#define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
1038#define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
1039
1040/*
1041 * DTrace Buffer Interface
1042 *
1043 * In order to get a snapshot of the principal or aggregation buffer,
1044 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
1045 * structure.  This describes which CPU user-level is interested in, and
1046 * where user-level wishes the kernel to snapshot the buffer to (the
1047 * dtbd_data field).  The kernel uses the same structure to pass back some
1048 * information regarding the buffer:  the size of data actually copied out, the
1049 * number of drops, the number of errors, and the offset of the oldest record.
1050 * If the buffer policy is a "switch" policy, taking a snapshot of the
1051 * principal buffer has the additional effect of switching the active and
1052 * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
1053 * the additional effect of switching the active and inactive buffers.
1054 */
1055typedef struct dtrace_bufdesc {
1056	uint64_t dtbd_size;			/* size of buffer */
1057	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1058	uint32_t dtbd_errors;			/* number of errors */
1059	uint64_t dtbd_drops;			/* number of drops */
1060	DTRACE_PTR(char, dtbd_data);		/* data */
1061	uint64_t dtbd_oldest;			/* offset of oldest record */
1062} dtrace_bufdesc_t;
1063
1064/*
1065 * DTrace Status
1066 *
1067 * The status of DTrace is relayed via the dtrace_status structure.  This
1068 * structure contains members to count drops other than the capacity drops
1069 * available via the buffer interface (see above).  This consists of dynamic
1070 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1071 * speculative drops (including capacity speculative drops, drops due to busy
1072 * speculative buffers and drops due to unavailable speculative buffers).
1073 * Additionally, the status structure contains a field to indicate the number
1074 * of "fill"-policy buffers have been filled and a boolean field to indicate
1075 * that exit() has been called.  If the dtst_exiting field is non-zero, no
1076 * further data will be generated until tracing is stopped (at which time any
1077 * enablings of the END action will be processed); if user-level sees that
1078 * this field is non-zero, tracing should be stopped as soon as possible.
1079 */
1080typedef struct dtrace_status {
1081	uint64_t dtst_dyndrops;			/* dynamic drops */
1082	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1083	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1084	uint64_t dtst_specdrops;		/* speculative drops */
1085	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1086	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1087	uint64_t dtst_errors;			/* total errors */
1088	uint64_t dtst_filled;			/* number of filled bufs */
1089	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1090	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1091	char dtst_killed;			/* non-zero if killed */
1092	char dtst_exiting;			/* non-zero if exit() called */
1093	char dtst_pad[6];			/* pad out to 64-bit align */
1094} dtrace_status_t;
1095
1096/*
1097 * DTrace Configuration
1098 *
1099 * User-level may need to understand some elements of the kernel DTrace
1100 * configuration in order to generate correct DIF.  This information is
1101 * conveyed via the dtrace_conf structure.
1102 */
1103typedef struct dtrace_conf {
1104	uint_t dtc_difversion;			/* supported DIF version */
1105	uint_t dtc_difintregs;			/* # of DIF integer registers */
1106	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1107	uint_t dtc_ctfmodel;			/* CTF data model */
1108	uint_t dtc_pad[8];			/* reserved for future use */
1109} dtrace_conf_t;
1110
1111/*
1112 * DTrace Faults
1113 *
1114 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1115 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1116 * postprocessing at user-level.  Probe processing faults induce an ERROR
1117 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1118 * the error condition using thse symbolic labels.
1119 */
1120#define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1121#define	DTRACEFLT_BADADDR		1	/* Bad address */
1122#define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1123#define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1124#define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1125#define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1126#define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1127#define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1128#define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1129#define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1130
1131#define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1132
1133/*
1134 * DTrace Argument Types
1135 *
1136 * Because it would waste both space and time, argument types do not reside
1137 * with the probe.  In order to determine argument types for args[X]
1138 * variables, the D compiler queries for argument types on a probe-by-probe
1139 * basis.  (This optimizes for the common case that arguments are either not
1140 * used or used in an untyped fashion.)  Typed arguments are specified with a
1141 * string of the type name in the dtragd_native member of the argument
1142 * description structure.  Typed arguments may be further translated to types
1143 * of greater stability; the provider indicates such a translated argument by
1144 * filling in the dtargd_xlate member with the string of the translated type.
1145 * Finally, the provider may indicate which argument value a given argument
1146 * maps to by setting the dtargd_mapping member -- allowing a single argument
1147 * to map to multiple args[X] variables.
1148 */
1149typedef struct dtrace_argdesc {
1150	dtrace_id_t dtargd_id;			/* probe identifier */
1151	int dtargd_ndx;				/* arg number (-1 iff none) */
1152	int dtargd_mapping;			/* value mapping */
1153	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1154	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1155} dtrace_argdesc_t;
1156
1157/*
1158 * DTrace Stability Attributes
1159 *
1160 * Each DTrace provider advertises the name and data stability of each of its
1161 * probe description components, as well as its architectural dependencies.
1162 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1163 * order to compute the properties of an input program and report them.
1164 */
1165typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1166typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1167
1168#define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1169#define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1170#define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1171#define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1172#define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1173#define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1174#define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1175#define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1176#define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1177
1178#define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1179#define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1180#define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1181#define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1182#define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1183#define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1184#define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1185
1186#define	DTRACE_PRIV_NONE	0x0000
1187#define	DTRACE_PRIV_KERNEL	0x0001
1188#define	DTRACE_PRIV_USER	0x0002
1189#define	DTRACE_PRIV_PROC	0x0004
1190#define	DTRACE_PRIV_OWNER	0x0008
1191#define	DTRACE_PRIV_ZONEOWNER	0x0010
1192
1193#define	DTRACE_PRIV_ALL	\
1194	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1195	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1196
1197typedef struct dtrace_ppriv {
1198	uint32_t dtpp_flags;			/* privilege flags */
1199	uid_t dtpp_uid;				/* user ID */
1200	zoneid_t dtpp_zoneid;			/* zone ID */
1201} dtrace_ppriv_t;
1202
1203typedef struct dtrace_attribute {
1204	dtrace_stability_t dtat_name;		/* entity name stability */
1205	dtrace_stability_t dtat_data;		/* entity data stability */
1206	dtrace_class_t dtat_class;		/* entity data dependency */
1207} dtrace_attribute_t;
1208
1209typedef struct dtrace_pattr {
1210	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1211	dtrace_attribute_t dtpa_mod;		/* module attributes */
1212	dtrace_attribute_t dtpa_func;		/* function attributes */
1213	dtrace_attribute_t dtpa_name;		/* name attributes */
1214	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1215} dtrace_pattr_t;
1216
1217typedef struct dtrace_providerdesc {
1218	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1219	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1220	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1221} dtrace_providerdesc_t;
1222
1223/*
1224 * DTrace Pseudodevice Interface
1225 *
1226 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1227 * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1228 * DTrace.
1229 */
1230#if defined(sun)
1231#define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1232#define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1233#define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1234#define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1235#define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1236#define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1237#define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1238#define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1239#define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1240#define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1241#define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1242#define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1243#define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1244#define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1245#define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1246#define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1247#define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1248#else
1249#define	DTRACEIOC_PROVIDER	_IOWR('x',1,dtrace_providerdesc_t)
1250							/* provider query */
1251#define	DTRACEIOC_PROBES	_IOWR('x',2,dtrace_probedesc_t)
1252							/* probe query */
1253#define	DTRACEIOC_BUFSNAP	_IOW('x',4,dtrace_bufdesc_t *)
1254							/* snapshot buffer */
1255#define	DTRACEIOC_PROBEMATCH	_IOWR('x',5,dtrace_probedesc_t)
1256							/* match probes */
1257typedef struct {
1258	void	*dof;		/* DOF userland address written to driver. */
1259	int	n_matched;	/* # matches returned by driver. */
1260} dtrace_enable_io_t;
1261#define	DTRACEIOC_ENABLE	_IOWR('x',6,dtrace_enable_io_t)
1262							/* enable probes */
1263#define	DTRACEIOC_AGGSNAP	_IOW('x',7,dtrace_bufdesc_t *)
1264							/* snapshot agg. */
1265#define	DTRACEIOC_EPROBE	_IOW('x',8,dtrace_eprobedesc_t)
1266							/* get eprobe desc. */
1267#define	DTRACEIOC_PROBEARG	_IOWR('x',9,dtrace_argdesc_t)
1268							/* get probe arg */
1269#define	DTRACEIOC_CONF		_IOR('x',10,dtrace_conf_t)
1270							/* get config. */
1271#define	DTRACEIOC_STATUS	_IOR('x',11,dtrace_status_t)
1272							/* get status */
1273#define	DTRACEIOC_GO		_IOR('x',12,processorid_t)
1274							/* start tracing */
1275#define	DTRACEIOC_STOP		_IOWR('x',13,processorid_t)
1276							/* stop tracing */
1277#define	DTRACEIOC_AGGDESC	_IOW('x',15,dtrace_aggdesc_t *)
1278							/* get agg. desc. */
1279#define	DTRACEIOC_FORMAT	_IOWR('x',16,dtrace_fmtdesc_t)
1280							/* get format str */
1281#define	DTRACEIOC_DOFGET	_IOW('x',17,dof_hdr_t *)
1282							/* get DOF */
1283#define	DTRACEIOC_REPLICATE	_IOW('x',18,dtrace_repldesc_t)
1284							/* replicate enab */
1285#endif
1286
1287/*
1288 * DTrace Helpers
1289 *
1290 * In general, DTrace establishes probes in processes and takes actions on
1291 * processes without knowing their specific user-level structures.  Instead of
1292 * existing in the framework, process-specific knowledge is contained by the
1293 * enabling D program -- which can apply process-specific knowledge by making
1294 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1295 * operate on user-level data.  However, there may exist some specific probes
1296 * of particular semantic relevance that the application developer may wish to
1297 * explicitly export.  For example, an application may wish to export a probe
1298 * at the point that it begins and ends certain well-defined transactions.  In
1299 * addition to providing probes, programs may wish to offer assistance for
1300 * certain actions.  For example, in highly dynamic environments (e.g., Java),
1301 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1302 * names (the translation from instruction addresses to corresponding symbol
1303 * names may only be possible in situ); these environments may wish to define
1304 * a series of actions to be applied in situ to obtain a meaningful stack
1305 * trace.
1306 *
1307 * These two mechanisms -- user-level statically defined tracing and assisting
1308 * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1309 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1310 * providers, probes and their arguments.  If a helper wishes to provide
1311 * action assistance, probe descriptions and corresponding DIF actions may be
1312 * specified in the helper DOF.  For such helper actions, however, the probe
1313 * description describes the specific helper:  all DTrace helpers have the
1314 * provider name "dtrace" and the module name "helper", and the name of the
1315 * helper is contained in the function name (for example, the ustack() helper
1316 * is named "ustack").  Any helper-specific name may be contained in the name
1317 * (for example, if a helper were to have a constructor, it might be named
1318 * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1319 * action that they are helping is taken.  Helper actions may only return DIF
1320 * expressions, and may only call the following subroutines:
1321 *
1322 *    alloca()      <= Allocates memory out of the consumer's scratch space
1323 *    bcopy()       <= Copies memory to scratch space
1324 *    copyin()      <= Copies memory from user-level into consumer's scratch
1325 *    copyinto()    <= Copies memory into a specific location in scratch
1326 *    copyinstr()   <= Copies a string into a specific location in scratch
1327 *
1328 * Helper actions may only access the following built-in variables:
1329 *
1330 *    curthread     <= Current kthread_t pointer
1331 *    tid           <= Current thread identifier
1332 *    pid           <= Current process identifier
1333 *    ppid          <= Parent process identifier
1334 *    uid           <= Current user ID
1335 *    gid           <= Current group ID
1336 *    execname      <= Current executable name
1337 *    zonename      <= Current zone name
1338 *
1339 * Helper actions may not manipulate or allocate dynamic variables, but they
1340 * may have clause-local and statically-allocated global variables.  The
1341 * helper action variable state is specific to the helper action -- variables
1342 * used by the helper action may not be accessed outside of the helper
1343 * action, and the helper action may not access variables that like outside
1344 * of it.  Helper actions may not load from kernel memory at-large; they are
1345 * restricting to loading current user state (via copyin() and variants) and
1346 * scratch space.  As with probe enablings, helper actions are executed in
1347 * program order.  The result of the helper action is the result of the last
1348 * executing helper expression.
1349 *
1350 * Helpers -- composed of either providers/probes or probes/actions (or both)
1351 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1352 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1353 * encapsulates the name and base address of the user-level library or
1354 * executable publishing the helpers and probes as well as the DOF that
1355 * contains the definitions of those helpers and probes.
1356 *
1357 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1358 * helpers and should no longer be used.  No other ioctls are valid on the
1359 * helper minor node.
1360 */
1361#if defined(sun)
1362#define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1363#define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1364#define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1365#define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1366#else
1367#define	DTRACEHIOC_ADD		_IOWR('z', 1, dof_hdr_t)/* add helper */
1368#define	DTRACEHIOC_REMOVE	_IOW('z', 2, int)	/* remove helper */
1369#define	DTRACEHIOC_ADDDOF	_IOWR('z', 3, dof_helper_t)/* add helper DOF */
1370#endif
1371
1372typedef struct dof_helper {
1373	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1374	uint64_t dofhp_addr;			/* base address of object */
1375	uint64_t dofhp_dof;			/* address of helper DOF */
1376#if !defined(sun)
1377	int gen;
1378#endif
1379} dof_helper_t;
1380
1381#define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1382#define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1383#define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1384#define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1385#define	DTRACEMNRN_CLONE	2		/* first clone minor */
1386
1387#ifdef _KERNEL
1388
1389/*
1390 * DTrace Provider API
1391 *
1392 * The following functions are implemented by the DTrace framework and are
1393 * used to implement separate in-kernel DTrace providers.  Common functions
1394 * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1395 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1396 *
1397 * The provider API has two halves:  the API that the providers consume from
1398 * DTrace, and the API that providers make available to DTrace.
1399 *
1400 * 1 Framework-to-Provider API
1401 *
1402 * 1.1  Overview
1403 *
1404 * The Framework-to-Provider API is represented by the dtrace_pops structure
1405 * that the provider passes to the framework when registering itself.  This
1406 * structure consists of the following members:
1407 *
1408 *   dtps_provide()          <-- Provide all probes, all modules
1409 *   dtps_provide_module()   <-- Provide all probes in specified module
1410 *   dtps_enable()           <-- Enable specified probe
1411 *   dtps_disable()          <-- Disable specified probe
1412 *   dtps_suspend()          <-- Suspend specified probe
1413 *   dtps_resume()           <-- Resume specified probe
1414 *   dtps_getargdesc()       <-- Get the argument description for args[X]
1415 *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1416 *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1417 *   dtps_destroy()          <-- Destroy all state associated with this probe
1418 *
1419 * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1420 *
1421 * 1.2.1  Overview
1422 *
1423 *   Called to indicate that the provider should provide all probes.  If the
1424 *   specified description is non-NULL, dtps_provide() is being called because
1425 *   no probe matched a specified probe -- if the provider has the ability to
1426 *   create custom probes, it may wish to create a probe that matches the
1427 *   specified description.
1428 *
1429 * 1.2.2  Arguments and notes
1430 *
1431 *   The first argument is the cookie as passed to dtrace_register().  The
1432 *   second argument is a pointer to a probe description that the provider may
1433 *   wish to consider when creating custom probes.  The provider is expected to
1434 *   call back into the DTrace framework via dtrace_probe_create() to create
1435 *   any necessary probes.  dtps_provide() may be called even if the provider
1436 *   has made available all probes; the provider should check the return value
1437 *   of dtrace_probe_create() to handle this case.  Note that the provider need
1438 *   not implement both dtps_provide() and dtps_provide_module(); see
1439 *   "Arguments and Notes" for dtrace_register(), below.
1440 *
1441 * 1.2.3  Return value
1442 *
1443 *   None.
1444 *
1445 * 1.2.4  Caller's context
1446 *
1447 *   dtps_provide() is typically called from open() or ioctl() context, but may
1448 *   be called from other contexts as well.  The DTrace framework is locked in
1449 *   such a way that providers may not register or unregister.  This means that
1450 *   the provider may not call any DTrace API that affects its registration with
1451 *   the framework, including dtrace_register(), dtrace_unregister(),
1452 *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1453 *   that the provider may (and indeed, is expected to) call probe-related
1454 *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1455 *   and dtrace_probe_arg().
1456 *
1457 * 1.3  void dtps_provide_module(void *arg, modctl_t *mp)
1458 *
1459 * 1.3.1  Overview
1460 *
1461 *   Called to indicate that the provider should provide all probes in the
1462 *   specified module.
1463 *
1464 * 1.3.2  Arguments and notes
1465 *
1466 *   The first argument is the cookie as passed to dtrace_register().  The
1467 *   second argument is a pointer to a modctl structure that indicates the
1468 *   module for which probes should be created.
1469 *
1470 * 1.3.3  Return value
1471 *
1472 *   None.
1473 *
1474 * 1.3.4  Caller's context
1475 *
1476 *   dtps_provide_module() may be called from open() or ioctl() context, but
1477 *   may also be called from a module loading context.  mod_lock is held, and
1478 *   the DTrace framework is locked in such a way that providers may not
1479 *   register or unregister.  This means that the provider may not call any
1480 *   DTrace API that affects its registration with the framework, including
1481 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1482 *   dtrace_condense().  However, the context is such that the provider may (and
1483 *   indeed, is expected to) call probe-related DTrace routines, including
1484 *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1485 *   that the provider need not implement both dtps_provide() and
1486 *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1487 *   below.
1488 *
1489 * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1490 *
1491 * 1.4.1  Overview
1492 *
1493 *   Called to enable the specified probe.
1494 *
1495 * 1.4.2  Arguments and notes
1496 *
1497 *   The first argument is the cookie as passed to dtrace_register().  The
1498 *   second argument is the identifier of the probe to be enabled.  The third
1499 *   argument is the probe argument as passed to dtrace_probe_create().
1500 *   dtps_enable() will be called when a probe transitions from not being
1501 *   enabled at all to having one or more ECB.  The number of ECBs associated
1502 *   with the probe may change without subsequent calls into the provider.
1503 *   When the number of ECBs drops to zero, the provider will be explicitly
1504 *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1505 *   be called for a probe identifier that hasn't been explicitly enabled via
1506 *   dtps_enable().
1507 *
1508 * 1.4.3  Return value
1509 *
1510 *   None.
1511 *
1512 * 1.4.4  Caller's context
1513 *
1514 *   The DTrace framework is locked in such a way that it may not be called
1515 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1516 *   be acquired.
1517 *
1518 * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1519 *
1520 * 1.5.1  Overview
1521 *
1522 *   Called to disable the specified probe.
1523 *
1524 * 1.5.2  Arguments and notes
1525 *
1526 *   The first argument is the cookie as passed to dtrace_register().  The
1527 *   second argument is the identifier of the probe to be disabled.  The third
1528 *   argument is the probe argument as passed to dtrace_probe_create().
1529 *   dtps_disable() will be called when a probe transitions from being enabled
1530 *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1531 *   identifier that has been explicitly enabled via dtps_disable().
1532 *
1533 * 1.5.3  Return value
1534 *
1535 *   None.
1536 *
1537 * 1.5.4  Caller's context
1538 *
1539 *   The DTrace framework is locked in such a way that it may not be called
1540 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1541 *   be acquired.
1542 *
1543 * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1544 *
1545 * 1.6.1  Overview
1546 *
1547 *   Called to suspend the specified enabled probe.  This entry point is for
1548 *   providers that may need to suspend some or all of their probes when CPUs
1549 *   are being powered on or when the boot monitor is being entered for a
1550 *   prolonged period of time.
1551 *
1552 * 1.6.2  Arguments and notes
1553 *
1554 *   The first argument is the cookie as passed to dtrace_register().  The
1555 *   second argument is the identifier of the probe to be suspended.  The
1556 *   third argument is the probe argument as passed to dtrace_probe_create().
1557 *   dtps_suspend will only be called on an enabled probe.  Providers that
1558 *   provide a dtps_suspend entry point will want to take roughly the action
1559 *   that it takes for dtps_disable.
1560 *
1561 * 1.6.3  Return value
1562 *
1563 *   None.
1564 *
1565 * 1.6.4  Caller's context
1566 *
1567 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1568 *   specified probe cannot be disabled or destroyed for the duration of
1569 *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1570 *   little latitude; the provider is expected to do no more than a store to
1571 *   memory.
1572 *
1573 * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1574 *
1575 * 1.7.1  Overview
1576 *
1577 *   Called to resume the specified enabled probe.  This entry point is for
1578 *   providers that may need to resume some or all of their probes after the
1579 *   completion of an event that induced a call to dtps_suspend().
1580 *
1581 * 1.7.2  Arguments and notes
1582 *
1583 *   The first argument is the cookie as passed to dtrace_register().  The
1584 *   second argument is the identifier of the probe to be resumed.  The
1585 *   third argument is the probe argument as passed to dtrace_probe_create().
1586 *   dtps_resume will only be called on an enabled probe.  Providers that
1587 *   provide a dtps_resume entry point will want to take roughly the action
1588 *   that it takes for dtps_enable.
1589 *
1590 * 1.7.3  Return value
1591 *
1592 *   None.
1593 *
1594 * 1.7.4  Caller's context
1595 *
1596 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1597 *   specified probe cannot be disabled or destroyed for the duration of
1598 *   dtps_resume().  As interrupts are disabled, the provider is afforded
1599 *   little latitude; the provider is expected to do no more than a store to
1600 *   memory.
1601 *
1602 * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1603 *           dtrace_argdesc_t *desc)
1604 *
1605 * 1.8.1  Overview
1606 *
1607 *   Called to retrieve the argument description for an args[X] variable.
1608 *
1609 * 1.8.2  Arguments and notes
1610 *
1611 *   The first argument is the cookie as passed to dtrace_register(). The
1612 *   second argument is the identifier of the current probe. The third
1613 *   argument is the probe argument as passed to dtrace_probe_create(). The
1614 *   fourth argument is a pointer to the argument description.  This
1615 *   description is both an input and output parameter:  it contains the
1616 *   index of the desired argument in the dtargd_ndx field, and expects
1617 *   the other fields to be filled in upon return.  If there is no argument
1618 *   corresponding to the specified index, the dtargd_ndx field should be set
1619 *   to DTRACE_ARGNONE.
1620 *
1621 * 1.8.3  Return value
1622 *
1623 *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1624 *   members of the dtrace_argdesc_t structure are all output values.
1625 *
1626 * 1.8.4  Caller's context
1627 *
1628 *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1629 *   the DTrace framework is locked in such a way that providers may not
1630 *   register or unregister.  This means that the provider may not call any
1631 *   DTrace API that affects its registration with the framework, including
1632 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1633 *   dtrace_condense().
1634 *
1635 * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1636 *               int argno, int aframes)
1637 *
1638 * 1.9.1  Overview
1639 *
1640 *   Called to retrieve a value for an argX or args[X] variable.
1641 *
1642 * 1.9.2  Arguments and notes
1643 *
1644 *   The first argument is the cookie as passed to dtrace_register(). The
1645 *   second argument is the identifier of the current probe. The third
1646 *   argument is the probe argument as passed to dtrace_probe_create(). The
1647 *   fourth argument is the number of the argument (the X in the example in
1648 *   1.9.1). The fifth argument is the number of stack frames that were used
1649 *   to get from the actual place in the code that fired the probe to
1650 *   dtrace_probe() itself, the so-called artificial frames. This argument may
1651 *   be used to descend an appropriate number of frames to find the correct
1652 *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1653 *   function is used.
1654 *
1655 * 1.9.3  Return value
1656 *
1657 *   The value of the argument.
1658 *
1659 * 1.9.4  Caller's context
1660 *
1661 *   This is called from within dtrace_probe() meaning that interrupts
1662 *   are disabled. No locks should be taken within this entry point.
1663 *
1664 * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1665 *
1666 * 1.10.1  Overview
1667 *
1668 *   Called to determine if the probe was fired in a user context.
1669 *
1670 * 1.10.2  Arguments and notes
1671 *
1672 *   The first argument is the cookie as passed to dtrace_register(). The
1673 *   second argument is the identifier of the current probe. The third
1674 *   argument is the probe argument as passed to dtrace_probe_create().  This
1675 *   entry point must not be left NULL for providers whose probes allow for
1676 *   mixed mode tracing, that is to say those probes that can fire during
1677 *   kernel- _or_ user-mode execution
1678 *
1679 * 1.10.3  Return value
1680 *
1681 *   A boolean value.
1682 *
1683 * 1.10.4  Caller's context
1684 *
1685 *   This is called from within dtrace_probe() meaning that interrupts
1686 *   are disabled. No locks should be taken within this entry point.
1687 *
1688 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1689 *
1690 * 1.11.1 Overview
1691 *
1692 *   Called to destroy the specified probe.
1693 *
1694 * 1.11.2 Arguments and notes
1695 *
1696 *   The first argument is the cookie as passed to dtrace_register().  The
1697 *   second argument is the identifier of the probe to be destroyed.  The third
1698 *   argument is the probe argument as passed to dtrace_probe_create().  The
1699 *   provider should free all state associated with the probe.  The framework
1700 *   guarantees that dtps_destroy() is only called for probes that have either
1701 *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1702 *   Once dtps_disable() has been called for a probe, no further call will be
1703 *   made specifying the probe.
1704 *
1705 * 1.11.3 Return value
1706 *
1707 *   None.
1708 *
1709 * 1.11.4 Caller's context
1710 *
1711 *   The DTrace framework is locked in such a way that it may not be called
1712 *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1713 *   acquired.
1714 *
1715 *
1716 * 2 Provider-to-Framework API
1717 *
1718 * 2.1  Overview
1719 *
1720 * The Provider-to-Framework API provides the mechanism for the provider to
1721 * register itself with the DTrace framework, to create probes, to lookup
1722 * probes and (most importantly) to fire probes.  The Provider-to-Framework
1723 * consists of:
1724 *
1725 *   dtrace_register()       <-- Register a provider with the DTrace framework
1726 *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1727 *   dtrace_invalidate()     <-- Invalidate the specified provider
1728 *   dtrace_condense()       <-- Remove a provider's unenabled probes
1729 *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1730 *   dtrace_probe_create()   <-- Create a DTrace probe
1731 *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1732 *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1733 *   dtrace_probe()          <-- Fire the specified probe
1734 *
1735 * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1736 *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1737 *          dtrace_provider_id_t *idp)
1738 *
1739 * 2.2.1  Overview
1740 *
1741 *   dtrace_register() registers the calling provider with the DTrace
1742 *   framework.  It should generally be called by DTrace providers in their
1743 *   attach(9E) entry point.
1744 *
1745 * 2.2.2  Arguments and Notes
1746 *
1747 *   The first argument is the name of the provider.  The second argument is a
1748 *   pointer to the stability attributes for the provider.  The third argument
1749 *   is the privilege flags for the provider, and must be some combination of:
1750 *
1751 *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1752 *
1753 *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1754 *                             enable probes from this provider
1755 *
1756 *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1757 *                             enable probes from this provider
1758 *
1759 *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1760 *                             may enable probes from this provider
1761 *
1762 *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1763 *                             the privilege requirements above. These probes
1764 *                             require either (a) a user ID matching the user
1765 *                             ID of the cred passed in the fourth argument
1766 *                             or (b) the PRIV_PROC_OWNER privilege.
1767 *
1768 *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1769 *                             the privilege requirements above. These probes
1770 *                             require either (a) a zone ID matching the zone
1771 *                             ID of the cred passed in the fourth argument
1772 *                             or (b) the PRIV_PROC_ZONE privilege.
1773 *
1774 *   Note that these flags designate the _visibility_ of the probes, not
1775 *   the conditions under which they may or may not fire.
1776 *
1777 *   The fourth argument is the credential that is associated with the
1778 *   provider.  This argument should be NULL if the privilege flags don't
1779 *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1780 *   framework stashes the uid and zoneid represented by this credential
1781 *   for use at probe-time, in implicit predicates.  These limit visibility
1782 *   of the probes to users and/or zones which have sufficient privilege to
1783 *   access them.
1784 *
1785 *   The fifth argument is a DTrace provider operations vector, which provides
1786 *   the implementation for the Framework-to-Provider API.  (See Section 1,
1787 *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1788 *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1789 *   members (if the provider so desires, _one_ of these members may be left
1790 *   NULL -- denoting that the provider only implements the other) and (2)
1791 *   the dtps_suspend() and dtps_resume() members, which must either both be
1792 *   NULL or both be non-NULL.
1793 *
1794 *   The sixth argument is a cookie to be specified as the first argument for
1795 *   each function in the Framework-to-Provider API.  This argument may have
1796 *   any value.
1797 *
1798 *   The final argument is a pointer to dtrace_provider_id_t.  If
1799 *   dtrace_register() successfully completes, the provider identifier will be
1800 *   stored in the memory pointed to be this argument.  This argument must be
1801 *   non-NULL.
1802 *
1803 * 2.2.3  Return value
1804 *
1805 *   On success, dtrace_register() returns 0 and stores the new provider's
1806 *   identifier into the memory pointed to by the idp argument.  On failure,
1807 *   dtrace_register() returns an errno:
1808 *
1809 *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1810 *              This may because a parameter that must be non-NULL was NULL,
1811 *              because the name was invalid (either empty or an illegal
1812 *              provider name) or because the attributes were invalid.
1813 *
1814 *   No other failure code is returned.
1815 *
1816 * 2.2.4  Caller's context
1817 *
1818 *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1819 *   hold no locks across dtrace_register() that may also be acquired by
1820 *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1821 *
1822 * 2.3  int dtrace_unregister(dtrace_provider_t id)
1823 *
1824 * 2.3.1  Overview
1825 *
1826 *   Unregisters the specified provider from the DTrace framework.  It should
1827 *   generally be called by DTrace providers in their detach(9E) entry point.
1828 *
1829 * 2.3.2  Arguments and Notes
1830 *
1831 *   The only argument is the provider identifier, as returned from a
1832 *   successful call to dtrace_register().  As a result of calling
1833 *   dtrace_unregister(), the DTrace framework will call back into the provider
1834 *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1835 *   completes, however, the DTrace framework will no longer make calls through
1836 *   the Framework-to-Provider API.
1837 *
1838 * 2.3.3  Return value
1839 *
1840 *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1841 *   returns an errno:
1842 *
1843 *     EBUSY    There are currently processes that have the DTrace pseudodevice
1844 *              open, or there exists an anonymous enabling that hasn't yet
1845 *              been claimed.
1846 *
1847 *   No other failure code is returned.
1848 *
1849 * 2.3.4  Caller's context
1850 *
1851 *   Because a call to dtrace_unregister() may induce calls through the
1852 *   Framework-to-Provider API, the caller may not hold any lock across
1853 *   dtrace_register() that is also acquired in any of the Framework-to-
1854 *   Provider API functions.  Additionally, mod_lock may not be held.
1855 *
1856 * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1857 *
1858 * 2.4.1  Overview
1859 *
1860 *   Invalidates the specified provider.  All subsequent probe lookups for the
1861 *   specified provider will fail, but its probes will not be removed.
1862 *
1863 * 2.4.2  Arguments and note
1864 *
1865 *   The only argument is the provider identifier, as returned from a
1866 *   successful call to dtrace_register().  In general, a provider's probes
1867 *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1868 *   an entire provider, regardless of whether or not probes are enabled or
1869 *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1870 *   probes from firing -- it will merely prevent any new enablings of the
1871 *   provider's probes.
1872 *
1873 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1874 *
1875 * 2.5.1  Overview
1876 *
1877 *   Removes all the unenabled probes for the given provider. This function is
1878 *   not unlike dtrace_unregister(), except that it doesn't remove the
1879 *   provider just as many of its associated probes as it can.
1880 *
1881 * 2.5.2  Arguments and Notes
1882 *
1883 *   As with dtrace_unregister(), the sole argument is the provider identifier
1884 *   as returned from a successful call to dtrace_register().  As a result of
1885 *   calling dtrace_condense(), the DTrace framework will call back into the
1886 *   given provider's dtps_destroy() entry point for each of the provider's
1887 *   unenabled probes.
1888 *
1889 * 2.5.3  Return value
1890 *
1891 *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1892 *   function should check the return value as appropriate; its behavior may
1893 *   change in the future.
1894 *
1895 * 2.5.4  Caller's context
1896 *
1897 *   As with dtrace_unregister(), the caller may not hold any lock across
1898 *   dtrace_condense() that is also acquired in the provider's entry points.
1899 *   Also, mod_lock may not be held.
1900 *
1901 * 2.6 int dtrace_attached()
1902 *
1903 * 2.6.1  Overview
1904 *
1905 *   Indicates whether or not DTrace has attached.
1906 *
1907 * 2.6.2  Arguments and Notes
1908 *
1909 *   For most providers, DTrace makes initial contact beyond registration.
1910 *   That is, once a provider has registered with DTrace, it waits to hear
1911 *   from DTrace to create probes.  However, some providers may wish to
1912 *   proactively create probes without first being told by DTrace to do so.
1913 *   If providers wish to do this, they must first call dtrace_attached() to
1914 *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1915 *   the provider must not make any other Provider-to-Framework API call.
1916 *
1917 * 2.6.3  Return value
1918 *
1919 *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1920 *
1921 * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1922 *	    const char *func, const char *name, int aframes, void *arg)
1923 *
1924 * 2.7.1  Overview
1925 *
1926 *   Creates a probe with specified module name, function name, and name.
1927 *
1928 * 2.7.2  Arguments and Notes
1929 *
1930 *   The first argument is the provider identifier, as returned from a
1931 *   successful call to dtrace_register().  The second, third, and fourth
1932 *   arguments are the module name, function name, and probe name,
1933 *   respectively.  Of these, module name and function name may both be NULL
1934 *   (in which case the probe is considered to be unanchored), or they may both
1935 *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1936 *   string.
1937 *
1938 *   The fifth argument is the number of artificial stack frames that will be
1939 *   found on the stack when dtrace_probe() is called for the new probe.  These
1940 *   artificial frames will be automatically be pruned should the stack() or
1941 *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1942 *   the parameter doesn't add an artificial frame, this parameter should be
1943 *   zero.
1944 *
1945 *   The final argument is a probe argument that will be passed back to the
1946 *   provider when a probe-specific operation is called.  (e.g., via
1947 *   dtps_enable(), dtps_disable(), etc.)
1948 *
1949 *   Note that it is up to the provider to be sure that the probe that it
1950 *   creates does not already exist -- if the provider is unsure of the probe's
1951 *   existence, it should assure its absence with dtrace_probe_lookup() before
1952 *   calling dtrace_probe_create().
1953 *
1954 * 2.7.3  Return value
1955 *
1956 *   dtrace_probe_create() always succeeds, and always returns the identifier
1957 *   of the newly-created probe.
1958 *
1959 * 2.7.4  Caller's context
1960 *
1961 *   While dtrace_probe_create() is generally expected to be called from
1962 *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1963 *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1964 *
1965 * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1966 *	    const char *func, const char *name)
1967 *
1968 * 2.8.1  Overview
1969 *
1970 *   Looks up a probe based on provdider and one or more of module name,
1971 *   function name and probe name.
1972 *
1973 * 2.8.2  Arguments and Notes
1974 *
1975 *   The first argument is the provider identifier, as returned from a
1976 *   successful call to dtrace_register().  The second, third, and fourth
1977 *   arguments are the module name, function name, and probe name,
1978 *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
1979 *   the identifier of the first probe that is provided by the specified
1980 *   provider and matches all of the non-NULL matching criteria.
1981 *   dtrace_probe_lookup() is generally used by a provider to be check the
1982 *   existence of a probe before creating it with dtrace_probe_create().
1983 *
1984 * 2.8.3  Return value
1985 *
1986 *   If the probe exists, returns its identifier.  If the probe does not exist,
1987 *   return DTRACE_IDNONE.
1988 *
1989 * 2.8.4  Caller's context
1990 *
1991 *   While dtrace_probe_lookup() is generally expected to be called from
1992 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1993 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1994 *
1995 * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1996 *
1997 * 2.9.1  Overview
1998 *
1999 *   Returns the probe argument associated with the specified probe.
2000 *
2001 * 2.9.2  Arguments and Notes
2002 *
2003 *   The first argument is the provider identifier, as returned from a
2004 *   successful call to dtrace_register().  The second argument is a probe
2005 *   identifier, as returned from dtrace_probe_lookup() or
2006 *   dtrace_probe_create().  This is useful if a probe has multiple
2007 *   provider-specific components to it:  the provider can create the probe
2008 *   once with provider-specific state, and then add to the state by looking
2009 *   up the probe based on probe identifier.
2010 *
2011 * 2.9.3  Return value
2012 *
2013 *   Returns the argument associated with the specified probe.  If the
2014 *   specified probe does not exist, or if the specified probe is not provided
2015 *   by the specified provider, NULL is returned.
2016 *
2017 * 2.9.4  Caller's context
2018 *
2019 *   While dtrace_probe_arg() is generally expected to be called from
2020 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
2021 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
2022 *
2023 * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
2024 *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
2025 *
2026 * 2.10.1  Overview
2027 *
2028 *   The epicenter of DTrace:  fires the specified probes with the specified
2029 *   arguments.
2030 *
2031 * 2.10.2  Arguments and Notes
2032 *
2033 *   The first argument is a probe identifier as returned by
2034 *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
2035 *   arguments are the values to which the D variables "arg0" through "arg4"
2036 *   will be mapped.
2037 *
2038 *   dtrace_probe() should be called whenever the specified probe has fired --
2039 *   however the provider defines it.
2040 *
2041 * 2.10.3  Return value
2042 *
2043 *   None.
2044 *
2045 * 2.10.4  Caller's context
2046 *
2047 *   dtrace_probe() may be called in virtually any context:  kernel, user,
2048 *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
2049 *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
2050 *   that must be afforded to DTrace is the ability to make calls within
2051 *   itself (and to its in-kernel subroutines) and the ability to access
2052 *   arbitrary (but mapped) memory.  On some platforms, this constrains
2053 *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
2054 *   from any context in which TL is greater than zero.  dtrace_probe() may
2055 *   also not be called from any routine which may be called by dtrace_probe()
2056 *   -- which includes functions in the DTrace framework and some in-kernel
2057 *   DTrace subroutines.  All such functions "dtrace_"; providers that
2058 *   instrument the kernel arbitrarily should be sure to not instrument these
2059 *   routines.
2060 */
2061typedef struct dtrace_pops {
2062	void (*dtps_provide)(void *arg, dtrace_probedesc_t *spec);
2063	void (*dtps_provide_module)(void *arg, modctl_t *mp);
2064	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
2065	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
2066	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
2067	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
2068	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
2069	    dtrace_argdesc_t *desc);
2070	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
2071	    int argno, int aframes);
2072	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
2073	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
2074} dtrace_pops_t;
2075
2076typedef uintptr_t	dtrace_provider_id_t;
2077
2078extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
2079    cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
2080extern int dtrace_unregister(dtrace_provider_id_t);
2081extern int dtrace_condense(dtrace_provider_id_t);
2082extern void dtrace_invalidate(dtrace_provider_id_t);
2083extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, char *,
2084    char *, char *);
2085extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
2086    const char *, const char *, int, void *);
2087extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
2088extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
2089    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
2090
2091/*
2092 * DTrace Meta Provider API
2093 *
2094 * The following functions are implemented by the DTrace framework and are
2095 * used to implement meta providers. Meta providers plug into the DTrace
2096 * framework and are used to instantiate new providers on the fly. At
2097 * present, there is only one type of meta provider and only one meta
2098 * provider may be registered with the DTrace framework at a time. The
2099 * sole meta provider type provides user-land static tracing facilities
2100 * by taking meta probe descriptions and adding a corresponding provider
2101 * into the DTrace framework.
2102 *
2103 * 1 Framework-to-Provider
2104 *
2105 * 1.1 Overview
2106 *
2107 * The Framework-to-Provider API is represented by the dtrace_mops structure
2108 * that the meta provider passes to the framework when registering itself as
2109 * a meta provider. This structure consists of the following members:
2110 *
2111 *   dtms_create_probe()	<-- Add a new probe to a created provider
2112 *   dtms_provide_pid()		<-- Create a new provider for a given process
2113 *   dtms_remove_pid()		<-- Remove a previously created provider
2114 *
2115 * 1.2  void dtms_create_probe(void *arg, void *parg,
2116 *           dtrace_helper_probedesc_t *probedesc);
2117 *
2118 * 1.2.1  Overview
2119 *
2120 *   Called by the DTrace framework to create a new probe in a provider
2121 *   created by this meta provider.
2122 *
2123 * 1.2.2  Arguments and notes
2124 *
2125 *   The first argument is the cookie as passed to dtrace_meta_register().
2126 *   The second argument is the provider cookie for the associated provider;
2127 *   this is obtained from the return value of dtms_provide_pid(). The third
2128 *   argument is the helper probe description.
2129 *
2130 * 1.2.3  Return value
2131 *
2132 *   None
2133 *
2134 * 1.2.4  Caller's context
2135 *
2136 *   dtms_create_probe() is called from either ioctl() or module load context.
2137 *   The DTrace framework is locked in such a way that meta providers may not
2138 *   register or unregister. This means that the meta provider cannot call
2139 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2140 *   such that the provider may (and is expected to) call provider-related
2141 *   DTrace provider APIs including dtrace_probe_create().
2142 *
2143 * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2144 *	      pid_t pid)
2145 *
2146 * 1.3.1  Overview
2147 *
2148 *   Called by the DTrace framework to instantiate a new provider given the
2149 *   description of the provider and probes in the mprov argument. The
2150 *   meta provider should call dtrace_register() to insert the new provider
2151 *   into the DTrace framework.
2152 *
2153 * 1.3.2  Arguments and notes
2154 *
2155 *   The first argument is the cookie as passed to dtrace_meta_register().
2156 *   The second argument is a pointer to a structure describing the new
2157 *   helper provider. The third argument is the process identifier for
2158 *   process associated with this new provider. Note that the name of the
2159 *   provider as passed to dtrace_register() should be the contatenation of
2160 *   the dtmpb_provname member of the mprov argument and the processs
2161 *   identifier as a string.
2162 *
2163 * 1.3.3  Return value
2164 *
2165 *   The cookie for the provider that the meta provider creates. This is
2166 *   the same value that it passed to dtrace_register().
2167 *
2168 * 1.3.4  Caller's context
2169 *
2170 *   dtms_provide_pid() is called from either ioctl() or module load context.
2171 *   The DTrace framework is locked in such a way that meta providers may not
2172 *   register or unregister. This means that the meta provider cannot call
2173 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2174 *   is such that the provider may -- and is expected to --  call
2175 *   provider-related DTrace provider APIs including dtrace_register().
2176 *
2177 * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2178 *	     pid_t pid)
2179 *
2180 * 1.4.1  Overview
2181 *
2182 *   Called by the DTrace framework to remove a provider that had previously
2183 *   been instantiated via the dtms_provide_pid() entry point. The meta
2184 *   provider need not remove the provider immediately, but this entry
2185 *   point indicates that the provider should be removed as soon as possible
2186 *   using the dtrace_unregister() API.
2187 *
2188 * 1.4.2  Arguments and notes
2189 *
2190 *   The first argument is the cookie as passed to dtrace_meta_register().
2191 *   The second argument is a pointer to a structure describing the helper
2192 *   provider. The third argument is the process identifier for process
2193 *   associated with this new provider.
2194 *
2195 * 1.4.3  Return value
2196 *
2197 *   None
2198 *
2199 * 1.4.4  Caller's context
2200 *
2201 *   dtms_remove_pid() is called from either ioctl() or exit() context.
2202 *   The DTrace framework is locked in such a way that meta providers may not
2203 *   register or unregister. This means that the meta provider cannot call
2204 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2205 *   is such that the provider may -- and is expected to -- call
2206 *   provider-related DTrace provider APIs including dtrace_unregister().
2207 */
2208typedef struct dtrace_helper_probedesc {
2209	char *dthpb_mod;			/* probe module */
2210	char *dthpb_func; 			/* probe function */
2211	char *dthpb_name; 			/* probe name */
2212	uint64_t dthpb_base;			/* base address */
2213	uint32_t *dthpb_offs;			/* offsets array */
2214	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2215	uint32_t dthpb_noffs;			/* offsets count */
2216	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2217	uint8_t *dthpb_args;			/* argument mapping array */
2218	uint8_t dthpb_xargc;			/* translated argument count */
2219	uint8_t dthpb_nargc;			/* native argument count */
2220	char *dthpb_xtypes;			/* translated types strings */
2221	char *dthpb_ntypes;			/* native types strings */
2222} dtrace_helper_probedesc_t;
2223
2224typedef struct dtrace_helper_provdesc {
2225	char *dthpv_provname;			/* provider name */
2226	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2227} dtrace_helper_provdesc_t;
2228
2229typedef struct dtrace_mops {
2230	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2231	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2232	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2233} dtrace_mops_t;
2234
2235typedef uintptr_t	dtrace_meta_provider_id_t;
2236
2237extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2238    dtrace_meta_provider_id_t *);
2239extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2240
2241/*
2242 * DTrace Kernel Hooks
2243 *
2244 * The following functions are implemented by the base kernel and form a set of
2245 * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2246 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2247 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2248 */
2249
2250typedef enum dtrace_vtime_state {
2251	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2252	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2253	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2254	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2255} dtrace_vtime_state_t;
2256
2257#if defined(sun)
2258extern dtrace_vtime_state_t dtrace_vtime_active;
2259#endif
2260extern void dtrace_vtime_switch(kthread_t *next);
2261extern void dtrace_vtime_enable_tnf(void);
2262extern void dtrace_vtime_disable_tnf(void);
2263extern void dtrace_vtime_enable(void);
2264extern void dtrace_vtime_disable(void);
2265
2266struct regs;
2267struct reg;
2268
2269#if defined(sun)
2270extern int (*dtrace_pid_probe_ptr)(struct reg *);
2271extern int (*dtrace_return_probe_ptr)(struct reg *);
2272extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2273extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2274extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2275extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2276#endif
2277
2278typedef uintptr_t dtrace_icookie_t;
2279typedef void (*dtrace_xcall_t)(void *);
2280
2281extern dtrace_icookie_t dtrace_interrupt_disable(void);
2282extern void dtrace_interrupt_enable(dtrace_icookie_t);
2283
2284extern void dtrace_membar_producer(void);
2285extern void dtrace_membar_consumer(void);
2286
2287extern void (*dtrace_cpu_init)(processorid_t);
2288extern void (*dtrace_modload)(modctl_t *);
2289extern void (*dtrace_modunload)(modctl_t *);
2290extern void (*dtrace_helpers_cleanup)(void);
2291extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2292extern void (*dtrace_cpustart_init)(void);
2293extern void (*dtrace_cpustart_fini)(void);
2294
2295extern void (*dtrace_debugger_init)(void);
2296extern void (*dtrace_debugger_fini)(void);
2297extern dtrace_cacheid_t dtrace_predcache_id;
2298
2299#if defined(sun)
2300extern hrtime_t dtrace_gethrtime(void);
2301#else
2302void dtrace_debug_printf(const char *, ...) __printflike(1, 2);
2303#endif
2304extern void dtrace_sync(void);
2305extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2306extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2307extern void dtrace_vpanic(const char *, __va_list);
2308extern void dtrace_panic(const char *, ...);
2309
2310extern int dtrace_safe_defer_signal(void);
2311extern void dtrace_safe_synchronous_signal(void);
2312
2313extern int dtrace_mach_aframes(void);
2314
2315#if defined(__i386) || defined(__amd64)
2316extern int dtrace_instr_size(uchar_t *instr);
2317extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2318extern void dtrace_invop_callsite(void);
2319#endif
2320extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2321extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2322
2323#ifdef __sparc
2324extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2325extern void dtrace_getfsr(uint64_t *);
2326#endif
2327
2328#if !defined(sun)
2329extern void dtrace_helpers_duplicate(proc_t *, proc_t *);
2330extern void dtrace_helpers_destroy(proc_t *);
2331#endif
2332
2333#define	DTRACE_CPUFLAG_ISSET(flag) \
2334	(cpu_core[curcpu].cpuc_dtrace_flags & (flag))
2335
2336#define	DTRACE_CPUFLAG_SET(flag) \
2337	(cpu_core[curcpu].cpuc_dtrace_flags |= (flag))
2338
2339#define	DTRACE_CPUFLAG_CLEAR(flag) \
2340	(cpu_core[curcpu].cpuc_dtrace_flags &= ~(flag))
2341
2342#endif /* _KERNEL */
2343
2344#endif	/* _ASM */
2345
2346#if defined(__i386) || defined(__amd64)
2347
2348#define	DTRACE_INVOP_PUSHL_EBP		1
2349#define	DTRACE_INVOP_POPL_EBP		2
2350#define	DTRACE_INVOP_LEAVE		3
2351#define	DTRACE_INVOP_NOP		4
2352#define	DTRACE_INVOP_RET		5
2353
2354#elif defined(__powerpc__)
2355
2356#define DTRACE_INVOP_RET	1
2357#define DTRACE_INVOP_BCTR	2
2358#define DTRACE_INVOP_BLR	3
2359#define DTRACE_INVOP_JUMP	4
2360#define DTRACE_INVOP_MFLR_R0	5
2361#define DTRACE_INVOP_NOP	6
2362
2363#endif
2364
2365#ifdef	__cplusplus
2366}
2367#endif
2368
2369#endif	/* _SYS_DTRACE_H */
2370