dtrace.h revision 179193
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24 * Use is subject to license terms.
25 */
26
27#ifndef _SYS_DTRACE_H
28#define	_SYS_DTRACE_H
29
30#pragma ident	"%Z%%M%	%I%	%E% SMI"
31
32#ifdef	__cplusplus
33extern "C" {
34#endif
35
36/*
37 * DTrace Dynamic Tracing Software: Kernel Interfaces
38 *
39 * Note: The contents of this file are private to the implementation of the
40 * Solaris system and DTrace subsystem and are subject to change at any time
41 * without notice.  Applications and drivers using these interfaces will fail
42 * to run on future releases.  These interfaces should not be used for any
43 * purpose except those expressly outlined in dtrace(7D) and libdtrace(3LIB).
44 * Please refer to the "Solaris Dynamic Tracing Guide" for more information.
45 */
46
47#ifndef _ASM
48
49#include <sys/types.h>
50#include <sys/modctl.h>
51#include <sys/processor.h>
52#include <sys/systm.h>
53#include <sys/ctf_api.h>
54#include <sys/cyclic.h>
55#include <sys/int_limits.h>
56
57/*
58 * DTrace Universal Constants and Typedefs
59 */
60#define	DTRACE_CPUALL		-1	/* all CPUs */
61#define	DTRACE_IDNONE		0	/* invalid probe identifier */
62#define	DTRACE_EPIDNONE		0	/* invalid enabled probe identifier */
63#define	DTRACE_AGGIDNONE	0	/* invalid aggregation identifier */
64#define	DTRACE_AGGVARIDNONE	0	/* invalid aggregation variable ID */
65#define	DTRACE_CACHEIDNONE	0	/* invalid predicate cache */
66#define	DTRACE_PROVNONE		0	/* invalid provider identifier */
67#define	DTRACE_METAPROVNONE	0	/* invalid meta-provider identifier */
68#define	DTRACE_ARGNONE		-1	/* invalid argument index */
69
70#define	DTRACE_PROVNAMELEN	64
71#define	DTRACE_MODNAMELEN	64
72#define	DTRACE_FUNCNAMELEN	128
73#define	DTRACE_NAMELEN		64
74#define	DTRACE_FULLNAMELEN	(DTRACE_PROVNAMELEN + DTRACE_MODNAMELEN + \
75				DTRACE_FUNCNAMELEN + DTRACE_NAMELEN + 4)
76#define	DTRACE_ARGTYPELEN	128
77
78typedef uint32_t dtrace_id_t;		/* probe identifier */
79typedef uint32_t dtrace_epid_t;		/* enabled probe identifier */
80typedef uint32_t dtrace_aggid_t;	/* aggregation identifier */
81typedef int64_t dtrace_aggvarid_t;	/* aggregation variable identifier */
82typedef uint16_t dtrace_actkind_t;	/* action kind */
83typedef int64_t dtrace_optval_t;	/* option value */
84typedef uint32_t dtrace_cacheid_t;	/* predicate cache identifier */
85
86typedef enum dtrace_probespec {
87	DTRACE_PROBESPEC_NONE = -1,
88	DTRACE_PROBESPEC_PROVIDER = 0,
89	DTRACE_PROBESPEC_MOD,
90	DTRACE_PROBESPEC_FUNC,
91	DTRACE_PROBESPEC_NAME
92} dtrace_probespec_t;
93
94/*
95 * DTrace Intermediate Format (DIF)
96 *
97 * The following definitions describe the DTrace Intermediate Format (DIF), a
98 * a RISC-like instruction set and program encoding used to represent
99 * predicates and actions that can be bound to DTrace probes.  The constants
100 * below defining the number of available registers are suggested minimums; the
101 * compiler should use DTRACEIOC_CONF to dynamically obtain the number of
102 * registers provided by the current DTrace implementation.
103 */
104#define	DIF_VERSION_1	1		/* DIF version 1: Solaris 10 Beta */
105#define	DIF_VERSION_2	2		/* DIF version 2: Solaris 10 FCS */
106#define	DIF_VERSION	DIF_VERSION_2	/* latest DIF instruction set version */
107#define	DIF_DIR_NREGS	8		/* number of DIF integer registers */
108#define	DIF_DTR_NREGS	8		/* number of DIF tuple registers */
109
110#define	DIF_OP_OR	1		/* or	r1, r2, rd */
111#define	DIF_OP_XOR	2		/* xor	r1, r2, rd */
112#define	DIF_OP_AND	3		/* and	r1, r2, rd */
113#define	DIF_OP_SLL	4		/* sll	r1, r2, rd */
114#define	DIF_OP_SRL	5		/* srl	r1, r2, rd */
115#define	DIF_OP_SUB	6		/* sub	r1, r2, rd */
116#define	DIF_OP_ADD	7		/* add	r1, r2, rd */
117#define	DIF_OP_MUL	8		/* mul	r1, r2, rd */
118#define	DIF_OP_SDIV	9		/* sdiv	r1, r2, rd */
119#define	DIF_OP_UDIV	10		/* udiv r1, r2, rd */
120#define	DIF_OP_SREM	11		/* srem r1, r2, rd */
121#define	DIF_OP_UREM	12		/* urem r1, r2, rd */
122#define	DIF_OP_NOT	13		/* not	r1, rd */
123#define	DIF_OP_MOV	14		/* mov	r1, rd */
124#define	DIF_OP_CMP	15		/* cmp	r1, r2 */
125#define	DIF_OP_TST	16		/* tst  r1 */
126#define	DIF_OP_BA	17		/* ba	label */
127#define	DIF_OP_BE	18		/* be	label */
128#define	DIF_OP_BNE	19		/* bne	label */
129#define	DIF_OP_BG	20		/* bg	label */
130#define	DIF_OP_BGU	21		/* bgu	label */
131#define	DIF_OP_BGE	22		/* bge	label */
132#define	DIF_OP_BGEU	23		/* bgeu	label */
133#define	DIF_OP_BL	24		/* bl	label */
134#define	DIF_OP_BLU	25		/* blu	label */
135#define	DIF_OP_BLE	26		/* ble	label */
136#define	DIF_OP_BLEU	27		/* bleu	label */
137#define	DIF_OP_LDSB	28		/* ldsb	[r1], rd */
138#define	DIF_OP_LDSH	29		/* ldsh	[r1], rd */
139#define	DIF_OP_LDSW	30		/* ldsw [r1], rd */
140#define	DIF_OP_LDUB	31		/* ldub	[r1], rd */
141#define	DIF_OP_LDUH	32		/* lduh	[r1], rd */
142#define	DIF_OP_LDUW	33		/* lduw	[r1], rd */
143#define	DIF_OP_LDX	34		/* ldx	[r1], rd */
144#define	DIF_OP_RET	35		/* ret	rd */
145#define	DIF_OP_NOP	36		/* nop */
146#define	DIF_OP_SETX	37		/* setx	intindex, rd */
147#define	DIF_OP_SETS	38		/* sets strindex, rd */
148#define	DIF_OP_SCMP	39		/* scmp	r1, r2 */
149#define	DIF_OP_LDGA	40		/* ldga	var, ri, rd */
150#define	DIF_OP_LDGS	41		/* ldgs var, rd */
151#define	DIF_OP_STGS	42		/* stgs var, rs */
152#define	DIF_OP_LDTA	43		/* ldta var, ri, rd */
153#define	DIF_OP_LDTS	44		/* ldts var, rd */
154#define	DIF_OP_STTS	45		/* stts var, rs */
155#define	DIF_OP_SRA	46		/* sra	r1, r2, rd */
156#define	DIF_OP_CALL	47		/* call	subr, rd */
157#define	DIF_OP_PUSHTR	48		/* pushtr type, rs, rr */
158#define	DIF_OP_PUSHTV	49		/* pushtv type, rs, rv */
159#define	DIF_OP_POPTS	50		/* popts */
160#define	DIF_OP_FLUSHTS	51		/* flushts */
161#define	DIF_OP_LDGAA	52		/* ldgaa var, rd */
162#define	DIF_OP_LDTAA	53		/* ldtaa var, rd */
163#define	DIF_OP_STGAA	54		/* stgaa var, rs */
164#define	DIF_OP_STTAA	55		/* sttaa var, rs */
165#define	DIF_OP_LDLS	56		/* ldls	var, rd */
166#define	DIF_OP_STLS	57		/* stls	var, rs */
167#define	DIF_OP_ALLOCS	58		/* allocs r1, rd */
168#define	DIF_OP_COPYS	59		/* copys  r1, r2, rd */
169#define	DIF_OP_STB	60		/* stb	r1, [rd] */
170#define	DIF_OP_STH	61		/* sth	r1, [rd] */
171#define	DIF_OP_STW	62		/* stw	r1, [rd] */
172#define	DIF_OP_STX	63		/* stx	r1, [rd] */
173#define	DIF_OP_ULDSB	64		/* uldsb [r1], rd */
174#define	DIF_OP_ULDSH	65		/* uldsh [r1], rd */
175#define	DIF_OP_ULDSW	66		/* uldsw [r1], rd */
176#define	DIF_OP_ULDUB	67		/* uldub [r1], rd */
177#define	DIF_OP_ULDUH	68		/* ulduh [r1], rd */
178#define	DIF_OP_ULDUW	69		/* ulduw [r1], rd */
179#define	DIF_OP_ULDX	70		/* uldx  [r1], rd */
180#define	DIF_OP_RLDSB	71		/* rldsb [r1], rd */
181#define	DIF_OP_RLDSH	72		/* rldsh [r1], rd */
182#define	DIF_OP_RLDSW	73		/* rldsw [r1], rd */
183#define	DIF_OP_RLDUB	74		/* rldub [r1], rd */
184#define	DIF_OP_RLDUH	75		/* rlduh [r1], rd */
185#define	DIF_OP_RLDUW	76		/* rlduw [r1], rd */
186#define	DIF_OP_RLDX	77		/* rldx  [r1], rd */
187#define	DIF_OP_XLATE	78		/* xlate xlrindex, rd */
188#define	DIF_OP_XLARG	79		/* xlarg xlrindex, rd */
189
190#define	DIF_INTOFF_MAX		0xffff	/* highest integer table offset */
191#define	DIF_STROFF_MAX		0xffff	/* highest string table offset */
192#define	DIF_REGISTER_MAX	0xff	/* highest register number */
193#define	DIF_VARIABLE_MAX	0xffff	/* highest variable identifier */
194#define	DIF_SUBROUTINE_MAX	0xffff	/* highest subroutine code */
195
196#define	DIF_VAR_ARRAY_MIN	0x0000	/* lowest numbered array variable */
197#define	DIF_VAR_ARRAY_UBASE	0x0080	/* lowest user-defined array */
198#define	DIF_VAR_ARRAY_MAX	0x00ff	/* highest numbered array variable */
199
200#define	DIF_VAR_OTHER_MIN	0x0100	/* lowest numbered scalar or assc */
201#define	DIF_VAR_OTHER_UBASE	0x0500	/* lowest user-defined scalar or assc */
202#define	DIF_VAR_OTHER_MAX	0xffff	/* highest numbered scalar or assc */
203
204#define	DIF_VAR_ARGS		0x0000	/* arguments array */
205#define	DIF_VAR_REGS		0x0001	/* registers array */
206#define	DIF_VAR_UREGS		0x0002	/* user registers array */
207#define	DIF_VAR_CURTHREAD	0x0100	/* thread pointer */
208#define	DIF_VAR_TIMESTAMP	0x0101	/* timestamp */
209#define	DIF_VAR_VTIMESTAMP	0x0102	/* virtual timestamp */
210#define	DIF_VAR_IPL		0x0103	/* interrupt priority level */
211#define	DIF_VAR_EPID		0x0104	/* enabled probe ID */
212#define	DIF_VAR_ID		0x0105	/* probe ID */
213#define	DIF_VAR_ARG0		0x0106	/* first argument */
214#define	DIF_VAR_ARG1		0x0107	/* second argument */
215#define	DIF_VAR_ARG2		0x0108	/* third argument */
216#define	DIF_VAR_ARG3		0x0109	/* fourth argument */
217#define	DIF_VAR_ARG4		0x010a	/* fifth argument */
218#define	DIF_VAR_ARG5		0x010b	/* sixth argument */
219#define	DIF_VAR_ARG6		0x010c	/* seventh argument */
220#define	DIF_VAR_ARG7		0x010d	/* eighth argument */
221#define	DIF_VAR_ARG8		0x010e	/* ninth argument */
222#define	DIF_VAR_ARG9		0x010f	/* tenth argument */
223#define	DIF_VAR_STACKDEPTH	0x0110	/* stack depth */
224#define	DIF_VAR_CALLER		0x0111	/* caller */
225#define	DIF_VAR_PROBEPROV	0x0112	/* probe provider */
226#define	DIF_VAR_PROBEMOD	0x0113	/* probe module */
227#define	DIF_VAR_PROBEFUNC	0x0114	/* probe function */
228#define	DIF_VAR_PROBENAME	0x0115	/* probe name */
229#define	DIF_VAR_PID		0x0116	/* process ID */
230#define	DIF_VAR_TID		0x0117	/* (per-process) thread ID */
231#define	DIF_VAR_EXECNAME	0x0118	/* name of executable */
232#define	DIF_VAR_ZONENAME	0x0119	/* zone name associated with process */
233#define	DIF_VAR_WALLTIMESTAMP	0x011a	/* wall-clock timestamp */
234#define	DIF_VAR_USTACKDEPTH	0x011b	/* user-land stack depth */
235#define	DIF_VAR_UCALLER		0x011c	/* user-level caller */
236#define	DIF_VAR_PPID		0x011d	/* parent process ID */
237#define	DIF_VAR_UID		0x011e	/* process user ID */
238#define	DIF_VAR_GID		0x011f	/* process group ID */
239#define	DIF_VAR_ERRNO		0x0120	/* thread errno */
240
241#define	DIF_SUBR_RAND			0
242#define	DIF_SUBR_MUTEX_OWNED		1
243#define	DIF_SUBR_MUTEX_OWNER		2
244#define	DIF_SUBR_MUTEX_TYPE_ADAPTIVE	3
245#define	DIF_SUBR_MUTEX_TYPE_SPIN	4
246#define	DIF_SUBR_RW_READ_HELD		5
247#define	DIF_SUBR_RW_WRITE_HELD		6
248#define	DIF_SUBR_RW_ISWRITER		7
249#define	DIF_SUBR_COPYIN			8
250#define	DIF_SUBR_COPYINSTR		9
251#define	DIF_SUBR_SPECULATION		10
252#define	DIF_SUBR_PROGENYOF		11
253#define	DIF_SUBR_STRLEN			12
254#define	DIF_SUBR_COPYOUT		13
255#define	DIF_SUBR_COPYOUTSTR		14
256#define	DIF_SUBR_ALLOCA			15
257#define	DIF_SUBR_BCOPY			16
258#define	DIF_SUBR_COPYINTO		17
259#define	DIF_SUBR_MSGDSIZE		18
260#define	DIF_SUBR_MSGSIZE		19
261#define	DIF_SUBR_GETMAJOR		20
262#define	DIF_SUBR_GETMINOR		21
263#define	DIF_SUBR_DDI_PATHNAME		22
264#define	DIF_SUBR_STRJOIN		23
265#define	DIF_SUBR_LLTOSTR		24
266#define	DIF_SUBR_BASENAME		25
267#define	DIF_SUBR_DIRNAME		26
268#define	DIF_SUBR_CLEANPATH		27
269#define	DIF_SUBR_STRCHR			28
270#define	DIF_SUBR_STRRCHR		29
271#define	DIF_SUBR_STRSTR			30
272#define	DIF_SUBR_STRTOK			31
273#define	DIF_SUBR_SUBSTR			32
274#define	DIF_SUBR_INDEX			33
275#define	DIF_SUBR_RINDEX			34
276#define	DIF_SUBR_HTONS			35
277#define	DIF_SUBR_HTONL			36
278#define	DIF_SUBR_HTONLL			37
279#define	DIF_SUBR_NTOHS			38
280#define	DIF_SUBR_NTOHL			39
281#define	DIF_SUBR_NTOHLL			40
282#define	DIF_SUBR_INET_NTOP		41
283#define	DIF_SUBR_INET_NTOA		42
284#define	DIF_SUBR_INET_NTOA6		43
285
286#define	DIF_SUBR_MAX			43	/* max subroutine value */
287
288typedef uint32_t dif_instr_t;
289
290#define	DIF_INSTR_OP(i)			(((i) >> 24) & 0xff)
291#define	DIF_INSTR_R1(i)			(((i) >> 16) & 0xff)
292#define	DIF_INSTR_R2(i)			(((i) >>  8) & 0xff)
293#define	DIF_INSTR_RD(i)			((i) & 0xff)
294#define	DIF_INSTR_RS(i)			((i) & 0xff)
295#define	DIF_INSTR_LABEL(i)		((i) & 0xffffff)
296#define	DIF_INSTR_VAR(i)		(((i) >>  8) & 0xffff)
297#define	DIF_INSTR_INTEGER(i)		(((i) >>  8) & 0xffff)
298#define	DIF_INSTR_STRING(i)		(((i) >>  8) & 0xffff)
299#define	DIF_INSTR_SUBR(i)		(((i) >>  8) & 0xffff)
300#define	DIF_INSTR_TYPE(i)		(((i) >> 16) & 0xff)
301#define	DIF_INSTR_XLREF(i)		(((i) >>  8) & 0xffff)
302
303#define	DIF_INSTR_FMT(op, r1, r2, d) \
304	(((op) << 24) | ((r1) << 16) | ((r2) << 8) | (d))
305
306#define	DIF_INSTR_NOT(r1, d)		(DIF_INSTR_FMT(DIF_OP_NOT, r1, 0, d))
307#define	DIF_INSTR_MOV(r1, d)		(DIF_INSTR_FMT(DIF_OP_MOV, r1, 0, d))
308#define	DIF_INSTR_CMP(op, r1, r2)	(DIF_INSTR_FMT(op, r1, r2, 0))
309#define	DIF_INSTR_TST(r1)		(DIF_INSTR_FMT(DIF_OP_TST, r1, 0, 0))
310#define	DIF_INSTR_BRANCH(op, label)	(((op) << 24) | (label))
311#define	DIF_INSTR_LOAD(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
312#define	DIF_INSTR_STORE(op, r1, d)	(DIF_INSTR_FMT(op, r1, 0, d))
313#define	DIF_INSTR_SETX(i, d)		((DIF_OP_SETX << 24) | ((i) << 8) | (d))
314#define	DIF_INSTR_SETS(s, d)		((DIF_OP_SETS << 24) | ((s) << 8) | (d))
315#define	DIF_INSTR_RET(d)		(DIF_INSTR_FMT(DIF_OP_RET, 0, 0, d))
316#define	DIF_INSTR_NOP			(DIF_OP_NOP << 24)
317#define	DIF_INSTR_LDA(op, v, r, d)	(DIF_INSTR_FMT(op, v, r, d))
318#define	DIF_INSTR_LDV(op, v, d)		(((op) << 24) | ((v) << 8) | (d))
319#define	DIF_INSTR_STV(op, v, rs)	(((op) << 24) | ((v) << 8) | (rs))
320#define	DIF_INSTR_CALL(s, d)		((DIF_OP_CALL << 24) | ((s) << 8) | (d))
321#define	DIF_INSTR_PUSHTS(op, t, r2, rs)	(DIF_INSTR_FMT(op, t, r2, rs))
322#define	DIF_INSTR_POPTS			(DIF_OP_POPTS << 24)
323#define	DIF_INSTR_FLUSHTS		(DIF_OP_FLUSHTS << 24)
324#define	DIF_INSTR_ALLOCS(r1, d)		(DIF_INSTR_FMT(DIF_OP_ALLOCS, r1, 0, d))
325#define	DIF_INSTR_COPYS(r1, r2, d)	(DIF_INSTR_FMT(DIF_OP_COPYS, r1, r2, d))
326#define	DIF_INSTR_XLATE(op, r, d)	(((op) << 24) | ((r) << 8) | (d))
327
328#define	DIF_REG_R0	0		/* %r0 is always set to zero */
329
330/*
331 * A DTrace Intermediate Format Type (DIF Type) is used to represent the types
332 * of variables, function and associative array arguments, and the return type
333 * for each DIF object (shown below).  It contains a description of the type,
334 * its size in bytes, and a module identifier.
335 */
336typedef struct dtrace_diftype {
337	uint8_t dtdt_kind;		/* type kind (see below) */
338	uint8_t dtdt_ckind;		/* type kind in CTF */
339	uint8_t dtdt_flags;		/* type flags (see below) */
340	uint8_t dtdt_pad;		/* reserved for future use */
341	uint32_t dtdt_size;		/* type size in bytes (unless string) */
342} dtrace_diftype_t;
343
344#define	DIF_TYPE_CTF		0	/* type is a CTF type */
345#define	DIF_TYPE_STRING		1	/* type is a D string */
346
347#define	DIF_TF_BYREF		0x1	/* type is passed by reference */
348
349/*
350 * A DTrace Intermediate Format variable record is used to describe each of the
351 * variables referenced by a given DIF object.  It contains an integer variable
352 * identifier along with variable scope and properties, as shown below.  The
353 * size of this structure must be sizeof (int) aligned.
354 */
355typedef struct dtrace_difv {
356	uint32_t dtdv_name;		/* variable name index in dtdo_strtab */
357	uint32_t dtdv_id;		/* variable reference identifier */
358	uint8_t dtdv_kind;		/* variable kind (see below) */
359	uint8_t dtdv_scope;		/* variable scope (see below) */
360	uint16_t dtdv_flags;		/* variable flags (see below) */
361	dtrace_diftype_t dtdv_type;	/* variable type (see above) */
362} dtrace_difv_t;
363
364#define	DIFV_KIND_ARRAY		0	/* variable is an array of quantities */
365#define	DIFV_KIND_SCALAR	1	/* variable is a scalar quantity */
366
367#define	DIFV_SCOPE_GLOBAL	0	/* variable has global scope */
368#define	DIFV_SCOPE_THREAD	1	/* variable has thread scope */
369#define	DIFV_SCOPE_LOCAL	2	/* variable has local scope */
370
371#define	DIFV_F_REF		0x1	/* variable is referenced by DIFO */
372#define	DIFV_F_MOD		0x2	/* variable is written by DIFO */
373
374/*
375 * DTrace Actions
376 *
377 * The upper byte determines the class of the action; the low bytes determines
378 * the specific action within that class.  The classes of actions are as
379 * follows:
380 *
381 *   [ no class ]                  <= May record process- or kernel-related data
382 *   DTRACEACT_PROC                <= Only records process-related data
383 *   DTRACEACT_PROC_DESTRUCTIVE    <= Potentially destructive to processes
384 *   DTRACEACT_KERNEL              <= Only records kernel-related data
385 *   DTRACEACT_KERNEL_DESTRUCTIVE  <= Potentially destructive to the kernel
386 *   DTRACEACT_SPECULATIVE         <= Speculation-related action
387 *   DTRACEACT_AGGREGATION         <= Aggregating action
388 */
389#define	DTRACEACT_NONE			0	/* no action */
390#define	DTRACEACT_DIFEXPR		1	/* action is DIF expression */
391#define	DTRACEACT_EXIT			2	/* exit() action */
392#define	DTRACEACT_PRINTF		3	/* printf() action */
393#define	DTRACEACT_PRINTA		4	/* printa() action */
394#define	DTRACEACT_LIBACT		5	/* library-controlled action */
395
396#define	DTRACEACT_PROC			0x0100
397#define	DTRACEACT_USTACK		(DTRACEACT_PROC + 1)
398#define	DTRACEACT_JSTACK		(DTRACEACT_PROC + 2)
399#define	DTRACEACT_USYM			(DTRACEACT_PROC + 3)
400#define	DTRACEACT_UMOD			(DTRACEACT_PROC + 4)
401#define	DTRACEACT_UADDR			(DTRACEACT_PROC + 5)
402
403#define	DTRACEACT_PROC_DESTRUCTIVE	0x0200
404#define	DTRACEACT_STOP			(DTRACEACT_PROC_DESTRUCTIVE + 1)
405#define	DTRACEACT_RAISE			(DTRACEACT_PROC_DESTRUCTIVE + 2)
406#define	DTRACEACT_SYSTEM		(DTRACEACT_PROC_DESTRUCTIVE + 3)
407#define	DTRACEACT_FREOPEN		(DTRACEACT_PROC_DESTRUCTIVE + 4)
408
409#define	DTRACEACT_PROC_CONTROL		0x0300
410
411#define	DTRACEACT_KERNEL		0x0400
412#define	DTRACEACT_STACK			(DTRACEACT_KERNEL + 1)
413#define	DTRACEACT_SYM			(DTRACEACT_KERNEL + 2)
414#define	DTRACEACT_MOD			(DTRACEACT_KERNEL + 3)
415
416#define	DTRACEACT_KERNEL_DESTRUCTIVE	0x0500
417#define	DTRACEACT_BREAKPOINT		(DTRACEACT_KERNEL_DESTRUCTIVE + 1)
418#define	DTRACEACT_PANIC			(DTRACEACT_KERNEL_DESTRUCTIVE + 2)
419#define	DTRACEACT_CHILL			(DTRACEACT_KERNEL_DESTRUCTIVE + 3)
420
421#define	DTRACEACT_SPECULATIVE		0x0600
422#define	DTRACEACT_SPECULATE		(DTRACEACT_SPECULATIVE + 1)
423#define	DTRACEACT_COMMIT		(DTRACEACT_SPECULATIVE + 2)
424#define	DTRACEACT_DISCARD		(DTRACEACT_SPECULATIVE + 3)
425
426#define	DTRACEACT_CLASS(x)		((x) & 0xff00)
427
428#define	DTRACEACT_ISDESTRUCTIVE(x)	\
429	(DTRACEACT_CLASS(x) == DTRACEACT_PROC_DESTRUCTIVE || \
430	DTRACEACT_CLASS(x) == DTRACEACT_KERNEL_DESTRUCTIVE)
431
432#define	DTRACEACT_ISSPECULATIVE(x)	\
433	(DTRACEACT_CLASS(x) == DTRACEACT_SPECULATIVE)
434
435#define	DTRACEACT_ISPRINTFLIKE(x)	\
436	((x) == DTRACEACT_PRINTF || (x) == DTRACEACT_PRINTA || \
437	(x) == DTRACEACT_SYSTEM || (x) == DTRACEACT_FREOPEN)
438
439/*
440 * DTrace Aggregating Actions
441 *
442 * These are functions f(x) for which the following is true:
443 *
444 *    f(f(x_0) U f(x_1) U ... U f(x_n)) = f(x_0 U x_1 U ... U x_n)
445 *
446 * where x_n is a set of arbitrary data.  Aggregating actions are in their own
447 * DTrace action class, DTTRACEACT_AGGREGATION.  The macros provided here allow
448 * for easier processing of the aggregation argument and data payload for a few
449 * aggregating actions (notably:  quantize(), lquantize(), and ustack()).
450 */
451#define	DTRACEACT_AGGREGATION		0x0700
452#define	DTRACEAGG_COUNT			(DTRACEACT_AGGREGATION + 1)
453#define	DTRACEAGG_MIN			(DTRACEACT_AGGREGATION + 2)
454#define	DTRACEAGG_MAX			(DTRACEACT_AGGREGATION + 3)
455#define	DTRACEAGG_AVG			(DTRACEACT_AGGREGATION + 4)
456#define	DTRACEAGG_SUM			(DTRACEACT_AGGREGATION + 5)
457#define	DTRACEAGG_STDDEV		(DTRACEACT_AGGREGATION + 6)
458#define	DTRACEAGG_QUANTIZE		(DTRACEACT_AGGREGATION + 7)
459#define	DTRACEAGG_LQUANTIZE		(DTRACEACT_AGGREGATION + 8)
460
461#define	DTRACEACT_ISAGG(x)		\
462	(DTRACEACT_CLASS(x) == DTRACEACT_AGGREGATION)
463
464#define	DTRACE_QUANTIZE_NBUCKETS	\
465	(((sizeof (uint64_t) * NBBY) - 1) * 2 + 1)
466
467#define	DTRACE_QUANTIZE_ZEROBUCKET	((sizeof (uint64_t) * NBBY) - 1)
468
469#define	DTRACE_QUANTIZE_BUCKETVAL(buck)					\
470	(int64_t)((buck) < DTRACE_QUANTIZE_ZEROBUCKET ?			\
471	-(1LL << (DTRACE_QUANTIZE_ZEROBUCKET - 1 - (buck))) :		\
472	(buck) == DTRACE_QUANTIZE_ZEROBUCKET ? 0 :			\
473	1LL << ((buck) - DTRACE_QUANTIZE_ZEROBUCKET - 1))
474
475#define	DTRACE_LQUANTIZE_STEPSHIFT		48
476#define	DTRACE_LQUANTIZE_STEPMASK		((uint64_t)UINT16_MAX << 48)
477#define	DTRACE_LQUANTIZE_LEVELSHIFT		32
478#define	DTRACE_LQUANTIZE_LEVELMASK		((uint64_t)UINT16_MAX << 32)
479#define	DTRACE_LQUANTIZE_BASESHIFT		0
480#define	DTRACE_LQUANTIZE_BASEMASK		UINT32_MAX
481
482#define	DTRACE_LQUANTIZE_STEP(x)		\
483	(uint16_t)(((x) & DTRACE_LQUANTIZE_STEPMASK) >> \
484	DTRACE_LQUANTIZE_STEPSHIFT)
485
486#define	DTRACE_LQUANTIZE_LEVELS(x)		\
487	(uint16_t)(((x) & DTRACE_LQUANTIZE_LEVELMASK) >> \
488	DTRACE_LQUANTIZE_LEVELSHIFT)
489
490#define	DTRACE_LQUANTIZE_BASE(x)		\
491	(int32_t)(((x) & DTRACE_LQUANTIZE_BASEMASK) >> \
492	DTRACE_LQUANTIZE_BASESHIFT)
493
494#define	DTRACE_USTACK_NFRAMES(x)	(uint32_t)((x) & UINT32_MAX)
495#define	DTRACE_USTACK_STRSIZE(x)	(uint32_t)((x) >> 32)
496#define	DTRACE_USTACK_ARG(x, y)		\
497	((((uint64_t)(y)) << 32) | ((x) & UINT32_MAX))
498
499#ifndef _LP64
500#ifndef _LITTLE_ENDIAN
501#define	DTRACE_PTR(type, name)	uint32_t name##pad; type *name
502#else
503#define	DTRACE_PTR(type, name)	type *name; uint32_t name##pad
504#endif
505#else
506#define	DTRACE_PTR(type, name)	type *name
507#endif
508
509/*
510 * DTrace Object Format (DOF)
511 *
512 * DTrace programs can be persistently encoded in the DOF format so that they
513 * may be embedded in other programs (for example, in an ELF file) or in the
514 * dtrace driver configuration file for use in anonymous tracing.  The DOF
515 * format is versioned and extensible so that it can be revised and so that
516 * internal data structures can be modified or extended compatibly.  All DOF
517 * structures use fixed-size types, so the 32-bit and 64-bit representations
518 * are identical and consumers can use either data model transparently.
519 *
520 * The file layout is structured as follows:
521 *
522 * +---------------+-------------------+----- ... ----+---- ... ------+
523 * |   dof_hdr_t   |  dof_sec_t[ ... ] |   loadable   | non-loadable  |
524 * | (file header) | (section headers) | section data | section data  |
525 * +---------------+-------------------+----- ... ----+---- ... ------+
526 * |<------------ dof_hdr.dofh_loadsz --------------->|               |
527 * |<------------ dof_hdr.dofh_filesz ------------------------------->|
528 *
529 * The file header stores meta-data including a magic number, data model for
530 * the instrumentation, data encoding, and properties of the DIF code within.
531 * The header describes its own size and the size of the section headers.  By
532 * convention, an array of section headers follows the file header, and then
533 * the data for all loadable sections and unloadable sections.  This permits
534 * consumer code to easily download the headers and all loadable data into the
535 * DTrace driver in one contiguous chunk, omitting other extraneous sections.
536 *
537 * The section headers describe the size, offset, alignment, and section type
538 * for each section.  Sections are described using a set of #defines that tell
539 * the consumer what kind of data is expected.  Sections can contain links to
540 * other sections by storing a dof_secidx_t, an index into the section header
541 * array, inside of the section data structures.  The section header includes
542 * an entry size so that sections with data arrays can grow their structures.
543 *
544 * The DOF data itself can contain many snippets of DIF (i.e. >1 DIFOs), which
545 * are represented themselves as a collection of related DOF sections.  This
546 * permits us to change the set of sections associated with a DIFO over time,
547 * and also permits us to encode DIFOs that contain different sets of sections.
548 * When a DOF section wants to refer to a DIFO, it stores the dof_secidx_t of a
549 * section of type DOF_SECT_DIFOHDR.  This section's data is then an array of
550 * dof_secidx_t's which in turn denote the sections associated with this DIFO.
551 *
552 * This loose coupling of the file structure (header and sections) to the
553 * structure of the DTrace program itself (ECB descriptions, action
554 * descriptions, and DIFOs) permits activities such as relocation processing
555 * to occur in a single pass without having to understand D program structure.
556 *
557 * Finally, strings are always stored in ELF-style string tables along with a
558 * string table section index and string table offset.  Therefore strings in
559 * DOF are always arbitrary-length and not bound to the current implementation.
560 */
561
562#define	DOF_ID_SIZE	16	/* total size of dofh_ident[] in bytes */
563
564typedef struct dof_hdr {
565	uint8_t dofh_ident[DOF_ID_SIZE]; /* identification bytes (see below) */
566	uint32_t dofh_flags;		/* file attribute flags (if any) */
567	uint32_t dofh_hdrsize;		/* size of file header in bytes */
568	uint32_t dofh_secsize;		/* size of section header in bytes */
569	uint32_t dofh_secnum;		/* number of section headers */
570	uint64_t dofh_secoff;		/* file offset of section headers */
571	uint64_t dofh_loadsz;		/* file size of loadable portion */
572	uint64_t dofh_filesz;		/* file size of entire DOF file */
573	uint64_t dofh_pad;		/* reserved for future use */
574} dof_hdr_t;
575
576#define	DOF_ID_MAG0	0	/* first byte of magic number */
577#define	DOF_ID_MAG1	1	/* second byte of magic number */
578#define	DOF_ID_MAG2	2	/* third byte of magic number */
579#define	DOF_ID_MAG3	3	/* fourth byte of magic number */
580#define	DOF_ID_MODEL	4	/* DOF data model (see below) */
581#define	DOF_ID_ENCODING	5	/* DOF data encoding (see below) */
582#define	DOF_ID_VERSION	6	/* DOF file format major version (see below) */
583#define	DOF_ID_DIFVERS	7	/* DIF instruction set version */
584#define	DOF_ID_DIFIREG	8	/* DIF integer registers used by compiler */
585#define	DOF_ID_DIFTREG	9	/* DIF tuple registers used by compiler */
586#define	DOF_ID_PAD	10	/* start of padding bytes (all zeroes) */
587
588#define	DOF_MAG_MAG0	0x7F	/* DOF_ID_MAG[0-3] */
589#define	DOF_MAG_MAG1	'D'
590#define	DOF_MAG_MAG2	'O'
591#define	DOF_MAG_MAG3	'F'
592
593#define	DOF_MAG_STRING	"\177DOF"
594#define	DOF_MAG_STRLEN	4
595
596#define	DOF_MODEL_NONE	0	/* DOF_ID_MODEL */
597#define	DOF_MODEL_ILP32	1
598#define	DOF_MODEL_LP64	2
599
600#ifdef _LP64
601#define	DOF_MODEL_NATIVE	DOF_MODEL_LP64
602#else
603#define	DOF_MODEL_NATIVE	DOF_MODEL_ILP32
604#endif
605
606#define	DOF_ENCODE_NONE	0	/* DOF_ID_ENCODING */
607#define	DOF_ENCODE_LSB	1
608#define	DOF_ENCODE_MSB	2
609
610#ifdef _BIG_ENDIAN
611#define	DOF_ENCODE_NATIVE	DOF_ENCODE_MSB
612#else
613#define	DOF_ENCODE_NATIVE	DOF_ENCODE_LSB
614#endif
615
616#define	DOF_VERSION_1	1	/* DOF version 1: Solaris 10 FCS */
617#define	DOF_VERSION_2	2	/* DOF version 2: Solaris Express 6/06 */
618#define	DOF_VERSION	DOF_VERSION_2	/* Latest DOF version */
619
620#define	DOF_FL_VALID	0	/* mask of all valid dofh_flags bits */
621
622typedef uint32_t dof_secidx_t;	/* section header table index type */
623typedef uint32_t dof_stridx_t;	/* string table index type */
624
625#define	DOF_SECIDX_NONE	(-1U)	/* null value for section indices */
626#define	DOF_STRIDX_NONE	(-1U)	/* null value for string indices */
627
628typedef struct dof_sec {
629	uint32_t dofs_type;	/* section type (see below) */
630	uint32_t dofs_align;	/* section data memory alignment */
631	uint32_t dofs_flags;	/* section flags (if any) */
632	uint32_t dofs_entsize;	/* size of section entry (if table) */
633	uint64_t dofs_offset;	/* offset of section data within file */
634	uint64_t dofs_size;	/* size of section data in bytes */
635} dof_sec_t;
636
637#define	DOF_SECT_NONE		0	/* null section */
638#define	DOF_SECT_COMMENTS	1	/* compiler comments */
639#define	DOF_SECT_SOURCE		2	/* D program source code */
640#define	DOF_SECT_ECBDESC	3	/* dof_ecbdesc_t */
641#define	DOF_SECT_PROBEDESC	4	/* dof_probedesc_t */
642#define	DOF_SECT_ACTDESC	5	/* dof_actdesc_t array */
643#define	DOF_SECT_DIFOHDR	6	/* dof_difohdr_t (variable length) */
644#define	DOF_SECT_DIF		7	/* uint32_t array of byte code */
645#define	DOF_SECT_STRTAB		8	/* string table */
646#define	DOF_SECT_VARTAB		9	/* dtrace_difv_t array */
647#define	DOF_SECT_RELTAB		10	/* dof_relodesc_t array */
648#define	DOF_SECT_TYPTAB		11	/* dtrace_diftype_t array */
649#define	DOF_SECT_URELHDR	12	/* dof_relohdr_t (user relocations) */
650#define	DOF_SECT_KRELHDR	13	/* dof_relohdr_t (kernel relocations) */
651#define	DOF_SECT_OPTDESC	14	/* dof_optdesc_t array */
652#define	DOF_SECT_PROVIDER	15	/* dof_provider_t */
653#define	DOF_SECT_PROBES		16	/* dof_probe_t array */
654#define	DOF_SECT_PRARGS		17	/* uint8_t array (probe arg mappings) */
655#define	DOF_SECT_PROFFS		18	/* uint32_t array (probe arg offsets) */
656#define	DOF_SECT_INTTAB		19	/* uint64_t array */
657#define	DOF_SECT_UTSNAME	20	/* struct utsname */
658#define	DOF_SECT_XLTAB		21	/* dof_xlref_t array */
659#define	DOF_SECT_XLMEMBERS	22	/* dof_xlmember_t array */
660#define	DOF_SECT_XLIMPORT	23	/* dof_xlator_t */
661#define	DOF_SECT_XLEXPORT	24	/* dof_xlator_t */
662#define	DOF_SECT_PREXPORT	25	/* dof_secidx_t array (exported objs) */
663#define	DOF_SECT_PRENOFFS	26	/* uint32_t array (enabled offsets) */
664
665#define	DOF_SECF_LOAD		1	/* section should be loaded */
666
667typedef struct dof_ecbdesc {
668	dof_secidx_t dofe_probes;	/* link to DOF_SECT_PROBEDESC */
669	dof_secidx_t dofe_pred;		/* link to DOF_SECT_DIFOHDR */
670	dof_secidx_t dofe_actions;	/* link to DOF_SECT_ACTDESC */
671	uint32_t dofe_pad;		/* reserved for future use */
672	uint64_t dofe_uarg;		/* user-supplied library argument */
673} dof_ecbdesc_t;
674
675typedef struct dof_probedesc {
676	dof_secidx_t dofp_strtab;	/* link to DOF_SECT_STRTAB section */
677	dof_stridx_t dofp_provider;	/* provider string */
678	dof_stridx_t dofp_mod;		/* module string */
679	dof_stridx_t dofp_func;		/* function string */
680	dof_stridx_t dofp_name;		/* name string */
681	uint32_t dofp_id;		/* probe identifier (or zero) */
682} dof_probedesc_t;
683
684typedef struct dof_actdesc {
685	dof_secidx_t dofa_difo;		/* link to DOF_SECT_DIFOHDR */
686	dof_secidx_t dofa_strtab;	/* link to DOF_SECT_STRTAB section */
687	uint32_t dofa_kind;		/* action kind (DTRACEACT_* constant) */
688	uint32_t dofa_ntuple;		/* number of subsequent tuple actions */
689	uint64_t dofa_arg;		/* kind-specific argument */
690	uint64_t dofa_uarg;		/* user-supplied argument */
691} dof_actdesc_t;
692
693typedef struct dof_difohdr {
694	dtrace_diftype_t dofd_rtype;	/* return type for this fragment */
695	dof_secidx_t dofd_links[1];	/* variable length array of indices */
696} dof_difohdr_t;
697
698typedef struct dof_relohdr {
699	dof_secidx_t dofr_strtab;	/* link to DOF_SECT_STRTAB for names */
700	dof_secidx_t dofr_relsec;	/* link to DOF_SECT_RELTAB for relos */
701	dof_secidx_t dofr_tgtsec;	/* link to section we are relocating */
702} dof_relohdr_t;
703
704typedef struct dof_relodesc {
705	dof_stridx_t dofr_name;		/* string name of relocation symbol */
706	uint32_t dofr_type;		/* relo type (DOF_RELO_* constant) */
707	uint64_t dofr_offset;		/* byte offset for relocation */
708	uint64_t dofr_data;		/* additional type-specific data */
709} dof_relodesc_t;
710
711#define	DOF_RELO_NONE	0		/* empty relocation entry */
712#define	DOF_RELO_SETX	1		/* relocate setx value */
713
714typedef struct dof_optdesc {
715	uint32_t dofo_option;		/* option identifier */
716	dof_secidx_t dofo_strtab;	/* string table, if string option */
717	uint64_t dofo_value;		/* option value or string index */
718} dof_optdesc_t;
719
720typedef uint32_t dof_attr_t;		/* encoded stability attributes */
721
722#define	DOF_ATTR(n, d, c)	(((n) << 24) | ((d) << 16) | ((c) << 8))
723#define	DOF_ATTR_NAME(a)	(((a) >> 24) & 0xff)
724#define	DOF_ATTR_DATA(a)	(((a) >> 16) & 0xff)
725#define	DOF_ATTR_CLASS(a)	(((a) >>  8) & 0xff)
726
727typedef struct dof_provider {
728	dof_secidx_t dofpv_strtab;	/* link to DOF_SECT_STRTAB section */
729	dof_secidx_t dofpv_probes;	/* link to DOF_SECT_PROBES section */
730	dof_secidx_t dofpv_prargs;	/* link to DOF_SECT_PRARGS section */
731	dof_secidx_t dofpv_proffs;	/* link to DOF_SECT_PROFFS section */
732	dof_stridx_t dofpv_name;	/* provider name string */
733	dof_attr_t dofpv_provattr;	/* provider attributes */
734	dof_attr_t dofpv_modattr;	/* module attributes */
735	dof_attr_t dofpv_funcattr;	/* function attributes */
736	dof_attr_t dofpv_nameattr;	/* name attributes */
737	dof_attr_t dofpv_argsattr;	/* args attributes */
738	dof_secidx_t dofpv_prenoffs;	/* link to DOF_SECT_PRENOFFS section */
739} dof_provider_t;
740
741typedef struct dof_probe {
742	uint64_t dofpr_addr;		/* probe base address or offset */
743	dof_stridx_t dofpr_func;	/* probe function string */
744	dof_stridx_t dofpr_name;	/* probe name string */
745	dof_stridx_t dofpr_nargv;	/* native argument type strings */
746	dof_stridx_t dofpr_xargv;	/* translated argument type strings */
747	uint32_t dofpr_argidx;		/* index of first argument mapping */
748	uint32_t dofpr_offidx;		/* index of first offset entry */
749	uint8_t dofpr_nargc;		/* native argument count */
750	uint8_t dofpr_xargc;		/* translated argument count */
751	uint16_t dofpr_noffs;		/* number of offset entries for probe */
752	uint32_t dofpr_enoffidx;	/* index of first is-enabled offset */
753	uint16_t dofpr_nenoffs;		/* number of is-enabled offsets */
754	uint16_t dofpr_pad1;		/* reserved for future use */
755	uint32_t dofpr_pad2;		/* reserved for future use */
756} dof_probe_t;
757
758typedef struct dof_xlator {
759	dof_secidx_t dofxl_members;	/* link to DOF_SECT_XLMEMBERS section */
760	dof_secidx_t dofxl_strtab;	/* link to DOF_SECT_STRTAB section */
761	dof_stridx_t dofxl_argv;	/* input parameter type strings */
762	uint32_t dofxl_argc;		/* input parameter list length */
763	dof_stridx_t dofxl_type;	/* output type string name */
764	dof_attr_t dofxl_attr;		/* output stability attributes */
765} dof_xlator_t;
766
767typedef struct dof_xlmember {
768	dof_secidx_t dofxm_difo;	/* member link to DOF_SECT_DIFOHDR */
769	dof_stridx_t dofxm_name;	/* member name */
770	dtrace_diftype_t dofxm_type;	/* member type */
771} dof_xlmember_t;
772
773typedef struct dof_xlref {
774	dof_secidx_t dofxr_xlator;	/* link to DOF_SECT_XLATORS section */
775	uint32_t dofxr_member;		/* index of referenced dof_xlmember */
776	uint32_t dofxr_argn;		/* index of argument for DIF_OP_XLARG */
777} dof_xlref_t;
778
779/*
780 * DTrace Intermediate Format Object (DIFO)
781 *
782 * A DIFO is used to store the compiled DIF for a D expression, its return
783 * type, and its string and variable tables.  The string table is a single
784 * buffer of character data into which sets instructions and variable
785 * references can reference strings using a byte offset.  The variable table
786 * is an array of dtrace_difv_t structures that describe the name and type of
787 * each variable and the id used in the DIF code.  This structure is described
788 * above in the DIF section of this header file.  The DIFO is used at both
789 * user-level (in the library) and in the kernel, but the structure is never
790 * passed between the two: the DOF structures form the only interface.  As a
791 * result, the definition can change depending on the presence of _KERNEL.
792 */
793typedef struct dtrace_difo {
794	dif_instr_t *dtdo_buf;		/* instruction buffer */
795	uint64_t *dtdo_inttab;		/* integer table (optional) */
796	char *dtdo_strtab;		/* string table (optional) */
797	dtrace_difv_t *dtdo_vartab;	/* variable table (optional) */
798	uint_t dtdo_len;		/* length of instruction buffer */
799	uint_t dtdo_intlen;		/* length of integer table */
800	uint_t dtdo_strlen;		/* length of string table */
801	uint_t dtdo_varlen;		/* length of variable table */
802	dtrace_diftype_t dtdo_rtype;	/* return type */
803	uint_t dtdo_refcnt;		/* owner reference count */
804	uint_t dtdo_destructive;	/* invokes destructive subroutines */
805#ifndef _KERNEL
806	dof_relodesc_t *dtdo_kreltab;	/* kernel relocations */
807	dof_relodesc_t *dtdo_ureltab;	/* user relocations */
808	struct dt_node **dtdo_xlmtab;	/* translator references */
809	uint_t dtdo_krelen;		/* length of krelo table */
810	uint_t dtdo_urelen;		/* length of urelo table */
811	uint_t dtdo_xlmlen;		/* length of translator table */
812#endif
813} dtrace_difo_t;
814
815/*
816 * DTrace Enabling Description Structures
817 *
818 * When DTrace is tracking the description of a DTrace enabling entity (probe,
819 * predicate, action, ECB, record, etc.), it does so in a description
820 * structure.  These structures all end in "desc", and are used at both
821 * user-level and in the kernel -- but (with the exception of
822 * dtrace_probedesc_t) they are never passed between them.  Typically,
823 * user-level will use the description structures when assembling an enabling.
824 * It will then distill those description structures into a DOF object (see
825 * above), and send it into the kernel.  The kernel will again use the
826 * description structures to create a description of the enabling as it reads
827 * the DOF.  When the description is complete, the enabling will be actually
828 * created -- turning it into the structures that represent the enabling
829 * instead of merely describing it.  Not surprisingly, the description
830 * structures bear a strong resemblance to the DOF structures that act as their
831 * conduit.
832 */
833struct dtrace_predicate;
834
835typedef struct dtrace_probedesc {
836	dtrace_id_t dtpd_id;			/* probe identifier */
837	char dtpd_provider[DTRACE_PROVNAMELEN]; /* probe provider name */
838	char dtpd_mod[DTRACE_MODNAMELEN];	/* probe module name */
839	char dtpd_func[DTRACE_FUNCNAMELEN];	/* probe function name */
840	char dtpd_name[DTRACE_NAMELEN];		/* probe name */
841} dtrace_probedesc_t;
842
843typedef struct dtrace_repldesc {
844	dtrace_probedesc_t dtrpd_match;		/* probe descr. to match */
845	dtrace_probedesc_t dtrpd_create;	/* probe descr. to create */
846} dtrace_repldesc_t;
847
848typedef struct dtrace_preddesc {
849	dtrace_difo_t *dtpdd_difo;		/* pointer to DIF object */
850	struct dtrace_predicate *dtpdd_predicate; /* pointer to predicate */
851} dtrace_preddesc_t;
852
853typedef struct dtrace_actdesc {
854	dtrace_difo_t *dtad_difo;		/* pointer to DIF object */
855	struct dtrace_actdesc *dtad_next;	/* next action */
856	dtrace_actkind_t dtad_kind;		/* kind of action */
857	uint32_t dtad_ntuple;			/* number in tuple */
858	uint64_t dtad_arg;			/* action argument */
859	uint64_t dtad_uarg;			/* user argument */
860	int dtad_refcnt;			/* reference count */
861} dtrace_actdesc_t;
862
863typedef struct dtrace_ecbdesc {
864	dtrace_actdesc_t *dted_action;		/* action description(s) */
865	dtrace_preddesc_t dted_pred;		/* predicate description */
866	dtrace_probedesc_t dted_probe;		/* probe description */
867	uint64_t dted_uarg;			/* library argument */
868	int dted_refcnt;			/* reference count */
869} dtrace_ecbdesc_t;
870
871/*
872 * DTrace Metadata Description Structures
873 *
874 * DTrace separates the trace data stream from the metadata stream.  The only
875 * metadata tokens placed in the data stream are enabled probe identifiers
876 * (EPIDs) or (in the case of aggregations) aggregation identifiers.  In order
877 * to determine the structure of the data, DTrace consumers pass the token to
878 * the kernel, and receive in return a corresponding description of the enabled
879 * probe (via the dtrace_eprobedesc structure) or the aggregation (via the
880 * dtrace_aggdesc structure).  Both of these structures are expressed in terms
881 * of record descriptions (via the dtrace_recdesc structure) that describe the
882 * exact structure of the data.  Some record descriptions may also contain a
883 * format identifier; this additional bit of metadata can be retrieved from the
884 * kernel, for which a format description is returned via the dtrace_fmtdesc
885 * structure.  Note that all four of these structures must be bitness-neutral
886 * to allow for a 32-bit DTrace consumer on a 64-bit kernel.
887 */
888typedef struct dtrace_recdesc {
889	dtrace_actkind_t dtrd_action;		/* kind of action */
890	uint32_t dtrd_size;			/* size of record */
891	uint32_t dtrd_offset;			/* offset in ECB's data */
892	uint16_t dtrd_alignment;		/* required alignment */
893	uint16_t dtrd_format;			/* format, if any */
894	uint64_t dtrd_arg;			/* action argument */
895	uint64_t dtrd_uarg;			/* user argument */
896} dtrace_recdesc_t;
897
898typedef struct dtrace_eprobedesc {
899	dtrace_epid_t dtepd_epid;		/* enabled probe ID */
900	dtrace_id_t dtepd_probeid;		/* probe ID */
901	uint64_t dtepd_uarg;			/* library argument */
902	uint32_t dtepd_size;			/* total size */
903	int dtepd_nrecs;			/* number of records */
904	dtrace_recdesc_t dtepd_rec[1];		/* records themselves */
905} dtrace_eprobedesc_t;
906
907typedef struct dtrace_aggdesc {
908	DTRACE_PTR(char, dtagd_name);		/* not filled in by kernel */
909	dtrace_aggvarid_t dtagd_varid;		/* not filled in by kernel */
910	int dtagd_flags;			/* not filled in by kernel */
911	dtrace_aggid_t dtagd_id;		/* aggregation ID */
912	dtrace_epid_t dtagd_epid;		/* enabled probe ID */
913	uint32_t dtagd_size;			/* size in bytes */
914	int dtagd_nrecs;			/* number of records */
915	uint32_t dtagd_pad;			/* explicit padding */
916	dtrace_recdesc_t dtagd_rec[1];		/* record descriptions */
917} dtrace_aggdesc_t;
918
919typedef struct dtrace_fmtdesc {
920	DTRACE_PTR(char, dtfd_string);		/* format string */
921	int dtfd_length;			/* length of format string */
922	uint16_t dtfd_format;			/* format identifier */
923} dtrace_fmtdesc_t;
924
925#define	DTRACE_SIZEOF_EPROBEDESC(desc)				\
926	(sizeof (dtrace_eprobedesc_t) + ((desc)->dtepd_nrecs ?	\
927	(((desc)->dtepd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
928
929#define	DTRACE_SIZEOF_AGGDESC(desc)				\
930	(sizeof (dtrace_aggdesc_t) + ((desc)->dtagd_nrecs ?	\
931	(((desc)->dtagd_nrecs - 1) * sizeof (dtrace_recdesc_t)) : 0))
932
933/*
934 * DTrace Option Interface
935 *
936 * Run-time DTrace options are set and retrieved via DOF_SECT_OPTDESC sections
937 * in a DOF image.  The dof_optdesc structure contains an option identifier and
938 * an option value.  The valid option identifiers are found below; the mapping
939 * between option identifiers and option identifying strings is maintained at
940 * user-level.  Note that the value of DTRACEOPT_UNSET is such that all of the
941 * following are potentially valid option values:  all positive integers, zero
942 * and negative one.  Some options (notably "bufpolicy" and "bufresize") take
943 * predefined tokens as their values; these are defined with
944 * DTRACEOPT_{option}_{token}.
945 */
946#define	DTRACEOPT_BUFSIZE	0	/* buffer size */
947#define	DTRACEOPT_BUFPOLICY	1	/* buffer policy */
948#define	DTRACEOPT_DYNVARSIZE	2	/* dynamic variable size */
949#define	DTRACEOPT_AGGSIZE	3	/* aggregation size */
950#define	DTRACEOPT_SPECSIZE	4	/* speculation size */
951#define	DTRACEOPT_NSPEC		5	/* number of speculations */
952#define	DTRACEOPT_STRSIZE	6	/* string size */
953#define	DTRACEOPT_CLEANRATE	7	/* dynvar cleaning rate */
954#define	DTRACEOPT_CPU		8	/* CPU to trace */
955#define	DTRACEOPT_BUFRESIZE	9	/* buffer resizing policy */
956#define	DTRACEOPT_GRABANON	10	/* grab anonymous state, if any */
957#define	DTRACEOPT_FLOWINDENT	11	/* indent function entry/return */
958#define	DTRACEOPT_QUIET		12	/* only output explicitly traced data */
959#define	DTRACEOPT_STACKFRAMES	13	/* number of stack frames */
960#define	DTRACEOPT_USTACKFRAMES	14	/* number of user stack frames */
961#define	DTRACEOPT_AGGRATE	15	/* aggregation snapshot rate */
962#define	DTRACEOPT_SWITCHRATE	16	/* buffer switching rate */
963#define	DTRACEOPT_STATUSRATE	17	/* status rate */
964#define	DTRACEOPT_DESTRUCTIVE	18	/* destructive actions allowed */
965#define	DTRACEOPT_STACKINDENT	19	/* output indent for stack traces */
966#define	DTRACEOPT_RAWBYTES	20	/* always print bytes in raw form */
967#define	DTRACEOPT_JSTACKFRAMES	21	/* number of jstack() frames */
968#define	DTRACEOPT_JSTACKSTRSIZE	22	/* size of jstack() string table */
969#define	DTRACEOPT_AGGSORTKEY	23	/* sort aggregations by key */
970#define	DTRACEOPT_AGGSORTREV	24	/* reverse-sort aggregations */
971#define	DTRACEOPT_AGGSORTPOS	25	/* agg. position to sort on */
972#define	DTRACEOPT_AGGSORTKEYPOS	26	/* agg. key position to sort on */
973#define	DTRACEOPT_MAX		27	/* number of options */
974
975#define	DTRACEOPT_UNSET		(dtrace_optval_t)-2	/* unset option */
976
977#define	DTRACEOPT_BUFPOLICY_RING	0	/* ring buffer */
978#define	DTRACEOPT_BUFPOLICY_FILL	1	/* fill buffer, then stop */
979#define	DTRACEOPT_BUFPOLICY_SWITCH	2	/* switch buffers */
980
981#define	DTRACEOPT_BUFRESIZE_AUTO	0	/* automatic resizing */
982#define	DTRACEOPT_BUFRESIZE_MANUAL	1	/* manual resizing */
983
984/*
985 * DTrace Buffer Interface
986 *
987 * In order to get a snapshot of the principal or aggregation buffer,
988 * user-level passes a buffer description to the kernel with the dtrace_bufdesc
989 * structure.  This describes which CPU user-level is interested in, and
990 * where user-level wishes the kernel to snapshot the buffer to (the
991 * dtbd_data field).  The kernel uses the same structure to pass back some
992 * information regarding the buffer:  the size of data actually copied out, the
993 * number of drops, the number of errors, and the offset of the oldest record.
994 * If the buffer policy is a "switch" policy, taking a snapshot of the
995 * principal buffer has the additional effect of switching the active and
996 * inactive buffers.  Taking a snapshot of the aggregation buffer _always_ has
997 * the additional effect of switching the active and inactive buffers.
998 */
999typedef struct dtrace_bufdesc {
1000	uint64_t dtbd_size;			/* size of buffer */
1001	uint32_t dtbd_cpu;			/* CPU or DTRACE_CPUALL */
1002	uint32_t dtbd_errors;			/* number of errors */
1003	uint64_t dtbd_drops;			/* number of drops */
1004	DTRACE_PTR(char, dtbd_data);		/* data */
1005	uint64_t dtbd_oldest;			/* offset of oldest record */
1006} dtrace_bufdesc_t;
1007
1008/*
1009 * DTrace Status
1010 *
1011 * The status of DTrace is relayed via the dtrace_status structure.  This
1012 * structure contains members to count drops other than the capacity drops
1013 * available via the buffer interface (see above).  This consists of dynamic
1014 * drops (including capacity dynamic drops, rinsing drops and dirty drops), and
1015 * speculative drops (including capacity speculative drops, drops due to busy
1016 * speculative buffers and drops due to unavailable speculative buffers).
1017 * Additionally, the status structure contains a field to indicate the number
1018 * of "fill"-policy buffers have been filled and a boolean field to indicate
1019 * that exit() has been called.  If the dtst_exiting field is non-zero, no
1020 * further data will be generated until tracing is stopped (at which time any
1021 * enablings of the END action will be processed); if user-level sees that
1022 * this field is non-zero, tracing should be stopped as soon as possible.
1023 */
1024typedef struct dtrace_status {
1025	uint64_t dtst_dyndrops;			/* dynamic drops */
1026	uint64_t dtst_dyndrops_rinsing;		/* dyn drops due to rinsing */
1027	uint64_t dtst_dyndrops_dirty;		/* dyn drops due to dirty */
1028	uint64_t dtst_specdrops;		/* speculative drops */
1029	uint64_t dtst_specdrops_busy;		/* spec drops due to busy */
1030	uint64_t dtst_specdrops_unavail;	/* spec drops due to unavail */
1031	uint64_t dtst_errors;			/* total errors */
1032	uint64_t dtst_filled;			/* number of filled bufs */
1033	uint64_t dtst_stkstroverflows;		/* stack string tab overflows */
1034	uint64_t dtst_dblerrors;		/* errors in ERROR probes */
1035	char dtst_killed;			/* non-zero if killed */
1036	char dtst_exiting;			/* non-zero if exit() called */
1037	char dtst_pad[6];			/* pad out to 64-bit align */
1038} dtrace_status_t;
1039
1040/*
1041 * DTrace Configuration
1042 *
1043 * User-level may need to understand some elements of the kernel DTrace
1044 * configuration in order to generate correct DIF.  This information is
1045 * conveyed via the dtrace_conf structure.
1046 */
1047typedef struct dtrace_conf {
1048	uint_t dtc_difversion;			/* supported DIF version */
1049	uint_t dtc_difintregs;			/* # of DIF integer registers */
1050	uint_t dtc_diftupregs;			/* # of DIF tuple registers */
1051	uint_t dtc_ctfmodel;			/* CTF data model */
1052	uint_t dtc_pad[8];			/* reserved for future use */
1053} dtrace_conf_t;
1054
1055/*
1056 * DTrace Faults
1057 *
1058 * The constants below DTRACEFLT_LIBRARY indicate probe processing faults;
1059 * constants at or above DTRACEFLT_LIBRARY indicate faults in probe
1060 * postprocessing at user-level.  Probe processing faults induce an ERROR
1061 * probe and are replicated in unistd.d to allow users' ERROR probes to decode
1062 * the error condition using thse symbolic labels.
1063 */
1064#define	DTRACEFLT_UNKNOWN		0	/* Unknown fault */
1065#define	DTRACEFLT_BADADDR		1	/* Bad address */
1066#define	DTRACEFLT_BADALIGN		2	/* Bad alignment */
1067#define	DTRACEFLT_ILLOP			3	/* Illegal operation */
1068#define	DTRACEFLT_DIVZERO		4	/* Divide-by-zero */
1069#define	DTRACEFLT_NOSCRATCH		5	/* Out of scratch space */
1070#define	DTRACEFLT_KPRIV			6	/* Illegal kernel access */
1071#define	DTRACEFLT_UPRIV			7	/* Illegal user access */
1072#define	DTRACEFLT_TUPOFLOW		8	/* Tuple stack overflow */
1073#define	DTRACEFLT_BADSTACK		9	/* Bad stack */
1074
1075#define	DTRACEFLT_LIBRARY		1000	/* Library-level fault */
1076
1077/*
1078 * DTrace Argument Types
1079 *
1080 * Because it would waste both space and time, argument types do not reside
1081 * with the probe.  In order to determine argument types for args[X]
1082 * variables, the D compiler queries for argument types on a probe-by-probe
1083 * basis.  (This optimizes for the common case that arguments are either not
1084 * used or used in an untyped fashion.)  Typed arguments are specified with a
1085 * string of the type name in the dtragd_native member of the argument
1086 * description structure.  Typed arguments may be further translated to types
1087 * of greater stability; the provider indicates such a translated argument by
1088 * filling in the dtargd_xlate member with the string of the translated type.
1089 * Finally, the provider may indicate which argument value a given argument
1090 * maps to by setting the dtargd_mapping member -- allowing a single argument
1091 * to map to multiple args[X] variables.
1092 */
1093typedef struct dtrace_argdesc {
1094	dtrace_id_t dtargd_id;			/* probe identifier */
1095	int dtargd_ndx;				/* arg number (-1 iff none) */
1096	int dtargd_mapping;			/* value mapping */
1097	char dtargd_native[DTRACE_ARGTYPELEN];	/* native type name */
1098	char dtargd_xlate[DTRACE_ARGTYPELEN];	/* translated type name */
1099} dtrace_argdesc_t;
1100
1101/*
1102 * DTrace Stability Attributes
1103 *
1104 * Each DTrace provider advertises the name and data stability of each of its
1105 * probe description components, as well as its architectural dependencies.
1106 * The D compiler can query the provider attributes (dtrace_pattr_t below) in
1107 * order to compute the properties of an input program and report them.
1108 */
1109typedef uint8_t dtrace_stability_t;	/* stability code (see attributes(5)) */
1110typedef uint8_t dtrace_class_t;		/* architectural dependency class */
1111
1112#define	DTRACE_STABILITY_INTERNAL	0	/* private to DTrace itself */
1113#define	DTRACE_STABILITY_PRIVATE	1	/* private to Sun (see docs) */
1114#define	DTRACE_STABILITY_OBSOLETE	2	/* scheduled for removal */
1115#define	DTRACE_STABILITY_EXTERNAL	3	/* not controlled by Sun */
1116#define	DTRACE_STABILITY_UNSTABLE	4	/* new or rapidly changing */
1117#define	DTRACE_STABILITY_EVOLVING	5	/* less rapidly changing */
1118#define	DTRACE_STABILITY_STABLE		6	/* mature interface from Sun */
1119#define	DTRACE_STABILITY_STANDARD	7	/* industry standard */
1120#define	DTRACE_STABILITY_MAX		7	/* maximum valid stability */
1121
1122#define	DTRACE_CLASS_UNKNOWN	0	/* unknown architectural dependency */
1123#define	DTRACE_CLASS_CPU	1	/* CPU-module-specific */
1124#define	DTRACE_CLASS_PLATFORM	2	/* platform-specific (uname -i) */
1125#define	DTRACE_CLASS_GROUP	3	/* hardware-group-specific (uname -m) */
1126#define	DTRACE_CLASS_ISA	4	/* ISA-specific (uname -p) */
1127#define	DTRACE_CLASS_COMMON	5	/* common to all systems */
1128#define	DTRACE_CLASS_MAX	5	/* maximum valid class */
1129
1130#define	DTRACE_PRIV_NONE	0x0000
1131#define	DTRACE_PRIV_KERNEL	0x0001
1132#define	DTRACE_PRIV_USER	0x0002
1133#define	DTRACE_PRIV_PROC	0x0004
1134#define	DTRACE_PRIV_OWNER	0x0008
1135#define	DTRACE_PRIV_ZONEOWNER	0x0010
1136
1137#define	DTRACE_PRIV_ALL	\
1138	(DTRACE_PRIV_KERNEL | DTRACE_PRIV_USER | \
1139	DTRACE_PRIV_PROC | DTRACE_PRIV_OWNER | DTRACE_PRIV_ZONEOWNER)
1140
1141typedef struct dtrace_ppriv {
1142	uint32_t dtpp_flags;			/* privilege flags */
1143	uid_t dtpp_uid;				/* user ID */
1144	zoneid_t dtpp_zoneid;			/* zone ID */
1145} dtrace_ppriv_t;
1146
1147typedef struct dtrace_attribute {
1148	dtrace_stability_t dtat_name;		/* entity name stability */
1149	dtrace_stability_t dtat_data;		/* entity data stability */
1150	dtrace_class_t dtat_class;		/* entity data dependency */
1151} dtrace_attribute_t;
1152
1153typedef struct dtrace_pattr {
1154	dtrace_attribute_t dtpa_provider;	/* provider attributes */
1155	dtrace_attribute_t dtpa_mod;		/* module attributes */
1156	dtrace_attribute_t dtpa_func;		/* function attributes */
1157	dtrace_attribute_t dtpa_name;		/* name attributes */
1158	dtrace_attribute_t dtpa_args;		/* args[] attributes */
1159} dtrace_pattr_t;
1160
1161typedef struct dtrace_providerdesc {
1162	char dtvd_name[DTRACE_PROVNAMELEN];	/* provider name */
1163	dtrace_pattr_t dtvd_attr;		/* stability attributes */
1164	dtrace_ppriv_t dtvd_priv;		/* privileges required */
1165} dtrace_providerdesc_t;
1166
1167/*
1168 * DTrace Pseudodevice Interface
1169 *
1170 * DTrace is controlled through ioctl(2)'s to the in-kernel dtrace:dtrace
1171 * pseudodevice driver.  These ioctls comprise the user-kernel interface to
1172 * DTrace.
1173 */
1174#define	DTRACEIOC		(('d' << 24) | ('t' << 16) | ('r' << 8))
1175#define	DTRACEIOC_PROVIDER	(DTRACEIOC | 1)		/* provider query */
1176#define	DTRACEIOC_PROBES	(DTRACEIOC | 2)		/* probe query */
1177#define	DTRACEIOC_BUFSNAP	(DTRACEIOC | 4)		/* snapshot buffer */
1178#define	DTRACEIOC_PROBEMATCH	(DTRACEIOC | 5)		/* match probes */
1179#define	DTRACEIOC_ENABLE	(DTRACEIOC | 6)		/* enable probes */
1180#define	DTRACEIOC_AGGSNAP	(DTRACEIOC | 7)		/* snapshot agg. */
1181#define	DTRACEIOC_EPROBE	(DTRACEIOC | 8)		/* get eprobe desc. */
1182#define	DTRACEIOC_PROBEARG	(DTRACEIOC | 9)		/* get probe arg */
1183#define	DTRACEIOC_CONF		(DTRACEIOC | 10)	/* get config. */
1184#define	DTRACEIOC_STATUS	(DTRACEIOC | 11)	/* get status */
1185#define	DTRACEIOC_GO		(DTRACEIOC | 12)	/* start tracing */
1186#define	DTRACEIOC_STOP		(DTRACEIOC | 13)	/* stop tracing */
1187#define	DTRACEIOC_AGGDESC	(DTRACEIOC | 15)	/* get agg. desc. */
1188#define	DTRACEIOC_FORMAT	(DTRACEIOC | 16)	/* get format str */
1189#define	DTRACEIOC_DOFGET	(DTRACEIOC | 17)	/* get DOF */
1190#define	DTRACEIOC_REPLICATE	(DTRACEIOC | 18)	/* replicate enab */
1191
1192/*
1193 * DTrace Helpers
1194 *
1195 * In general, DTrace establishes probes in processes and takes actions on
1196 * processes without knowing their specific user-level structures.  Instead of
1197 * existing in the framework, process-specific knowledge is contained by the
1198 * enabling D program -- which can apply process-specific knowledge by making
1199 * appropriate use of DTrace primitives like copyin() and copyinstr() to
1200 * operate on user-level data.  However, there may exist some specific probes
1201 * of particular semantic relevance that the application developer may wish to
1202 * explicitly export.  For example, an application may wish to export a probe
1203 * at the point that it begins and ends certain well-defined transactions.  In
1204 * addition to providing probes, programs may wish to offer assistance for
1205 * certain actions.  For example, in highly dynamic environments (e.g., Java),
1206 * it may be difficult to obtain a stack trace in terms of meaningful symbol
1207 * names (the translation from instruction addresses to corresponding symbol
1208 * names may only be possible in situ); these environments may wish to define
1209 * a series of actions to be applied in situ to obtain a meaningful stack
1210 * trace.
1211 *
1212 * These two mechanisms -- user-level statically defined tracing and assisting
1213 * DTrace actions -- are provided via DTrace _helpers_.  Helpers are specified
1214 * via DOF, but unlike enabling DOF, helper DOF may contain definitions of
1215 * providers, probes and their arguments.  If a helper wishes to provide
1216 * action assistance, probe descriptions and corresponding DIF actions may be
1217 * specified in the helper DOF.  For such helper actions, however, the probe
1218 * description describes the specific helper:  all DTrace helpers have the
1219 * provider name "dtrace" and the module name "helper", and the name of the
1220 * helper is contained in the function name (for example, the ustack() helper
1221 * is named "ustack").  Any helper-specific name may be contained in the name
1222 * (for example, if a helper were to have a constructor, it might be named
1223 * "dtrace:helper:<helper>:init").  Helper actions are only called when the
1224 * action that they are helping is taken.  Helper actions may only return DIF
1225 * expressions, and may only call the following subroutines:
1226 *
1227 *    alloca()      <= Allocates memory out of the consumer's scratch space
1228 *    bcopy()       <= Copies memory to scratch space
1229 *    copyin()      <= Copies memory from user-level into consumer's scratch
1230 *    copyinto()    <= Copies memory into a specific location in scratch
1231 *    copyinstr()   <= Copies a string into a specific location in scratch
1232 *
1233 * Helper actions may only access the following built-in variables:
1234 *
1235 *    curthread     <= Current kthread_t pointer
1236 *    tid           <= Current thread identifier
1237 *    pid           <= Current process identifier
1238 *    ppid          <= Parent process identifier
1239 *    uid           <= Current user ID
1240 *    gid           <= Current group ID
1241 *    execname      <= Current executable name
1242 *    zonename      <= Current zone name
1243 *
1244 * Helper actions may not manipulate or allocate dynamic variables, but they
1245 * may have clause-local and statically-allocated global variables.  The
1246 * helper action variable state is specific to the helper action -- variables
1247 * used by the helper action may not be accessed outside of the helper
1248 * action, and the helper action may not access variables that like outside
1249 * of it.  Helper actions may not load from kernel memory at-large; they are
1250 * restricting to loading current user state (via copyin() and variants) and
1251 * scratch space.  As with probe enablings, helper actions are executed in
1252 * program order.  The result of the helper action is the result of the last
1253 * executing helper expression.
1254 *
1255 * Helpers -- composed of either providers/probes or probes/actions (or both)
1256 * -- are added by opening the "helper" minor node, and issuing an ioctl(2)
1257 * (DTRACEHIOC_ADDDOF) that specifies the dof_helper_t structure. This
1258 * encapsulates the name and base address of the user-level library or
1259 * executable publishing the helpers and probes as well as the DOF that
1260 * contains the definitions of those helpers and probes.
1261 *
1262 * The DTRACEHIOC_ADD and DTRACEHIOC_REMOVE are left in place for legacy
1263 * helpers and should no longer be used.  No other ioctls are valid on the
1264 * helper minor node.
1265 */
1266#define	DTRACEHIOC		(('d' << 24) | ('t' << 16) | ('h' << 8))
1267#define	DTRACEHIOC_ADD		(DTRACEHIOC | 1)	/* add helper */
1268#define	DTRACEHIOC_REMOVE	(DTRACEHIOC | 2)	/* remove helper */
1269#define	DTRACEHIOC_ADDDOF	(DTRACEHIOC | 3)	/* add helper DOF */
1270
1271typedef struct dof_helper {
1272	char dofhp_mod[DTRACE_MODNAMELEN];	/* executable or library name */
1273	uint64_t dofhp_addr;			/* base address of object */
1274	uint64_t dofhp_dof;			/* address of helper DOF */
1275} dof_helper_t;
1276
1277#define	DTRACEMNR_DTRACE	"dtrace"	/* node for DTrace ops */
1278#define	DTRACEMNR_HELPER	"helper"	/* node for helpers */
1279#define	DTRACEMNRN_DTRACE	0		/* minor for DTrace ops */
1280#define	DTRACEMNRN_HELPER	1		/* minor for helpers */
1281#define	DTRACEMNRN_CLONE	2		/* first clone minor */
1282
1283#ifdef _KERNEL
1284
1285/*
1286 * DTrace Provider API
1287 *
1288 * The following functions are implemented by the DTrace framework and are
1289 * used to implement separate in-kernel DTrace providers.  Common functions
1290 * are provided in uts/common/os/dtrace.c.  ISA-dependent subroutines are
1291 * defined in uts/<isa>/dtrace/dtrace_asm.s or uts/<isa>/dtrace/dtrace_isa.c.
1292 *
1293 * The provider API has two halves:  the API that the providers consume from
1294 * DTrace, and the API that providers make available to DTrace.
1295 *
1296 * 1 Framework-to-Provider API
1297 *
1298 * 1.1  Overview
1299 *
1300 * The Framework-to-Provider API is represented by the dtrace_pops structure
1301 * that the provider passes to the framework when registering itself.  This
1302 * structure consists of the following members:
1303 *
1304 *   dtps_provide()          <-- Provide all probes, all modules
1305 *   dtps_provide_module()   <-- Provide all probes in specified module
1306 *   dtps_enable()           <-- Enable specified probe
1307 *   dtps_disable()          <-- Disable specified probe
1308 *   dtps_suspend()          <-- Suspend specified probe
1309 *   dtps_resume()           <-- Resume specified probe
1310 *   dtps_getargdesc()       <-- Get the argument description for args[X]
1311 *   dtps_getargval()        <-- Get the value for an argX or args[X] variable
1312 *   dtps_usermode()         <-- Find out if the probe was fired in user mode
1313 *   dtps_destroy()          <-- Destroy all state associated with this probe
1314 *
1315 * 1.2  void dtps_provide(void *arg, const dtrace_probedesc_t *spec)
1316 *
1317 * 1.2.1  Overview
1318 *
1319 *   Called to indicate that the provider should provide all probes.  If the
1320 *   specified description is non-NULL, dtps_provide() is being called because
1321 *   no probe matched a specified probe -- if the provider has the ability to
1322 *   create custom probes, it may wish to create a probe that matches the
1323 *   specified description.
1324 *
1325 * 1.2.2  Arguments and notes
1326 *
1327 *   The first argument is the cookie as passed to dtrace_register().  The
1328 *   second argument is a pointer to a probe description that the provider may
1329 *   wish to consider when creating custom probes.  The provider is expected to
1330 *   call back into the DTrace framework via dtrace_probe_create() to create
1331 *   any necessary probes.  dtps_provide() may be called even if the provider
1332 *   has made available all probes; the provider should check the return value
1333 *   of dtrace_probe_create() to handle this case.  Note that the provider need
1334 *   not implement both dtps_provide() and dtps_provide_module(); see
1335 *   "Arguments and Notes" for dtrace_register(), below.
1336 *
1337 * 1.2.3  Return value
1338 *
1339 *   None.
1340 *
1341 * 1.2.4  Caller's context
1342 *
1343 *   dtps_provide() is typically called from open() or ioctl() context, but may
1344 *   be called from other contexts as well.  The DTrace framework is locked in
1345 *   such a way that providers may not register or unregister.  This means that
1346 *   the provider may not call any DTrace API that affects its registration with
1347 *   the framework, including dtrace_register(), dtrace_unregister(),
1348 *   dtrace_invalidate(), and dtrace_condense().  However, the context is such
1349 *   that the provider may (and indeed, is expected to) call probe-related
1350 *   DTrace routines, including dtrace_probe_create(), dtrace_probe_lookup(),
1351 *   and dtrace_probe_arg().
1352 *
1353 * 1.3  void dtps_provide_module(void *arg, struct modctl *mp)
1354 *
1355 * 1.3.1  Overview
1356 *
1357 *   Called to indicate that the provider should provide all probes in the
1358 *   specified module.
1359 *
1360 * 1.3.2  Arguments and notes
1361 *
1362 *   The first argument is the cookie as passed to dtrace_register().  The
1363 *   second argument is a pointer to a modctl structure that indicates the
1364 *   module for which probes should be created.
1365 *
1366 * 1.3.3  Return value
1367 *
1368 *   None.
1369 *
1370 * 1.3.4  Caller's context
1371 *
1372 *   dtps_provide_module() may be called from open() or ioctl() context, but
1373 *   may also be called from a module loading context.  mod_lock is held, and
1374 *   the DTrace framework is locked in such a way that providers may not
1375 *   register or unregister.  This means that the provider may not call any
1376 *   DTrace API that affects its registration with the framework, including
1377 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1378 *   dtrace_condense().  However, the context is such that the provider may (and
1379 *   indeed, is expected to) call probe-related DTrace routines, including
1380 *   dtrace_probe_create(), dtrace_probe_lookup(), and dtrace_probe_arg().  Note
1381 *   that the provider need not implement both dtps_provide() and
1382 *   dtps_provide_module(); see "Arguments and Notes" for dtrace_register(),
1383 *   below.
1384 *
1385 * 1.4  void dtps_enable(void *arg, dtrace_id_t id, void *parg)
1386 *
1387 * 1.4.1  Overview
1388 *
1389 *   Called to enable the specified probe.
1390 *
1391 * 1.4.2  Arguments and notes
1392 *
1393 *   The first argument is the cookie as passed to dtrace_register().  The
1394 *   second argument is the identifier of the probe to be enabled.  The third
1395 *   argument is the probe argument as passed to dtrace_probe_create().
1396 *   dtps_enable() will be called when a probe transitions from not being
1397 *   enabled at all to having one or more ECB.  The number of ECBs associated
1398 *   with the probe may change without subsequent calls into the provider.
1399 *   When the number of ECBs drops to zero, the provider will be explicitly
1400 *   told to disable the probe via dtps_disable().  dtrace_probe() should never
1401 *   be called for a probe identifier that hasn't been explicitly enabled via
1402 *   dtps_enable().
1403 *
1404 * 1.4.3  Return value
1405 *
1406 *   None.
1407 *
1408 * 1.4.4  Caller's context
1409 *
1410 *   The DTrace framework is locked in such a way that it may not be called
1411 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1412 *   be acquired.
1413 *
1414 * 1.5  void dtps_disable(void *arg, dtrace_id_t id, void *parg)
1415 *
1416 * 1.5.1  Overview
1417 *
1418 *   Called to disable the specified probe.
1419 *
1420 * 1.5.2  Arguments and notes
1421 *
1422 *   The first argument is the cookie as passed to dtrace_register().  The
1423 *   second argument is the identifier of the probe to be disabled.  The third
1424 *   argument is the probe argument as passed to dtrace_probe_create().
1425 *   dtps_disable() will be called when a probe transitions from being enabled
1426 *   to having zero ECBs.  dtrace_probe() should never be called for a probe
1427 *   identifier that has been explicitly enabled via dtps_disable().
1428 *
1429 * 1.5.3  Return value
1430 *
1431 *   None.
1432 *
1433 * 1.5.4  Caller's context
1434 *
1435 *   The DTrace framework is locked in such a way that it may not be called
1436 *   back into at all.  cpu_lock is held.  mod_lock is not held and may not
1437 *   be acquired.
1438 *
1439 * 1.6  void dtps_suspend(void *arg, dtrace_id_t id, void *parg)
1440 *
1441 * 1.6.1  Overview
1442 *
1443 *   Called to suspend the specified enabled probe.  This entry point is for
1444 *   providers that may need to suspend some or all of their probes when CPUs
1445 *   are being powered on or when the boot monitor is being entered for a
1446 *   prolonged period of time.
1447 *
1448 * 1.6.2  Arguments and notes
1449 *
1450 *   The first argument is the cookie as passed to dtrace_register().  The
1451 *   second argument is the identifier of the probe to be suspended.  The
1452 *   third argument is the probe argument as passed to dtrace_probe_create().
1453 *   dtps_suspend will only be called on an enabled probe.  Providers that
1454 *   provide a dtps_suspend entry point will want to take roughly the action
1455 *   that it takes for dtps_disable.
1456 *
1457 * 1.6.3  Return value
1458 *
1459 *   None.
1460 *
1461 * 1.6.4  Caller's context
1462 *
1463 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1464 *   specified probe cannot be disabled or destroyed for the duration of
1465 *   dtps_suspend().  As interrupts are disabled, the provider is afforded
1466 *   little latitude; the provider is expected to do no more than a store to
1467 *   memory.
1468 *
1469 * 1.7  void dtps_resume(void *arg, dtrace_id_t id, void *parg)
1470 *
1471 * 1.7.1  Overview
1472 *
1473 *   Called to resume the specified enabled probe.  This entry point is for
1474 *   providers that may need to resume some or all of their probes after the
1475 *   completion of an event that induced a call to dtps_suspend().
1476 *
1477 * 1.7.2  Arguments and notes
1478 *
1479 *   The first argument is the cookie as passed to dtrace_register().  The
1480 *   second argument is the identifier of the probe to be resumed.  The
1481 *   third argument is the probe argument as passed to dtrace_probe_create().
1482 *   dtps_resume will only be called on an enabled probe.  Providers that
1483 *   provide a dtps_resume entry point will want to take roughly the action
1484 *   that it takes for dtps_enable.
1485 *
1486 * 1.7.3  Return value
1487 *
1488 *   None.
1489 *
1490 * 1.7.4  Caller's context
1491 *
1492 *   Interrupts are disabled.  The DTrace framework is in a state such that the
1493 *   specified probe cannot be disabled or destroyed for the duration of
1494 *   dtps_resume().  As interrupts are disabled, the provider is afforded
1495 *   little latitude; the provider is expected to do no more than a store to
1496 *   memory.
1497 *
1498 * 1.8  void dtps_getargdesc(void *arg, dtrace_id_t id, void *parg,
1499 *           dtrace_argdesc_t *desc)
1500 *
1501 * 1.8.1  Overview
1502 *
1503 *   Called to retrieve the argument description for an args[X] variable.
1504 *
1505 * 1.8.2  Arguments and notes
1506 *
1507 *   The first argument is the cookie as passed to dtrace_register(). The
1508 *   second argument is the identifier of the current probe. The third
1509 *   argument is the probe argument as passed to dtrace_probe_create(). The
1510 *   fourth argument is a pointer to the argument description.  This
1511 *   description is both an input and output parameter:  it contains the
1512 *   index of the desired argument in the dtargd_ndx field, and expects
1513 *   the other fields to be filled in upon return.  If there is no argument
1514 *   corresponding to the specified index, the dtargd_ndx field should be set
1515 *   to DTRACE_ARGNONE.
1516 *
1517 * 1.8.3  Return value
1518 *
1519 *   None.  The dtargd_ndx, dtargd_native, dtargd_xlate and dtargd_mapping
1520 *   members of the dtrace_argdesc_t structure are all output values.
1521 *
1522 * 1.8.4  Caller's context
1523 *
1524 *   dtps_getargdesc() is called from ioctl() context. mod_lock is held, and
1525 *   the DTrace framework is locked in such a way that providers may not
1526 *   register or unregister.  This means that the provider may not call any
1527 *   DTrace API that affects its registration with the framework, including
1528 *   dtrace_register(), dtrace_unregister(), dtrace_invalidate(), and
1529 *   dtrace_condense().
1530 *
1531 * 1.9  uint64_t dtps_getargval(void *arg, dtrace_id_t id, void *parg,
1532 *               int argno, int aframes)
1533 *
1534 * 1.9.1  Overview
1535 *
1536 *   Called to retrieve a value for an argX or args[X] variable.
1537 *
1538 * 1.9.2  Arguments and notes
1539 *
1540 *   The first argument is the cookie as passed to dtrace_register(). The
1541 *   second argument is the identifier of the current probe. The third
1542 *   argument is the probe argument as passed to dtrace_probe_create(). The
1543 *   fourth argument is the number of the argument (the X in the example in
1544 *   1.9.1). The fifth argument is the number of stack frames that were used
1545 *   to get from the actual place in the code that fired the probe to
1546 *   dtrace_probe() itself, the so-called artificial frames. This argument may
1547 *   be used to descend an appropriate number of frames to find the correct
1548 *   values. If this entry point is left NULL, the dtrace_getarg() built-in
1549 *   function is used.
1550 *
1551 * 1.9.3  Return value
1552 *
1553 *   The value of the argument.
1554 *
1555 * 1.9.4  Caller's context
1556 *
1557 *   This is called from within dtrace_probe() meaning that interrupts
1558 *   are disabled. No locks should be taken within this entry point.
1559 *
1560 * 1.10  int dtps_usermode(void *arg, dtrace_id_t id, void *parg)
1561 *
1562 * 1.10.1  Overview
1563 *
1564 *   Called to determine if the probe was fired in a user context.
1565 *
1566 * 1.10.2  Arguments and notes
1567 *
1568 *   The first argument is the cookie as passed to dtrace_register(). The
1569 *   second argument is the identifier of the current probe. The third
1570 *   argument is the probe argument as passed to dtrace_probe_create().  This
1571 *   entry point must not be left NULL for providers whose probes allow for
1572 *   mixed mode tracing, that is to say those probes that can fire during
1573 *   kernel- _or_ user-mode execution
1574 *
1575 * 1.10.3  Return value
1576 *
1577 *   A boolean value.
1578 *
1579 * 1.10.4  Caller's context
1580 *
1581 *   This is called from within dtrace_probe() meaning that interrupts
1582 *   are disabled. No locks should be taken within this entry point.
1583 *
1584 * 1.11 void dtps_destroy(void *arg, dtrace_id_t id, void *parg)
1585 *
1586 * 1.11.1 Overview
1587 *
1588 *   Called to destroy the specified probe.
1589 *
1590 * 1.11.2 Arguments and notes
1591 *
1592 *   The first argument is the cookie as passed to dtrace_register().  The
1593 *   second argument is the identifier of the probe to be destroyed.  The third
1594 *   argument is the probe argument as passed to dtrace_probe_create().  The
1595 *   provider should free all state associated with the probe.  The framework
1596 *   guarantees that dtps_destroy() is only called for probes that have either
1597 *   been disabled via dtps_disable() or were never enabled via dtps_enable().
1598 *   Once dtps_disable() has been called for a probe, no further call will be
1599 *   made specifying the probe.
1600 *
1601 * 1.11.3 Return value
1602 *
1603 *   None.
1604 *
1605 * 1.11.4 Caller's context
1606 *
1607 *   The DTrace framework is locked in such a way that it may not be called
1608 *   back into at all.  mod_lock is held.  cpu_lock is not held, and may not be
1609 *   acquired.
1610 *
1611 *
1612 * 2 Provider-to-Framework API
1613 *
1614 * 2.1  Overview
1615 *
1616 * The Provider-to-Framework API provides the mechanism for the provider to
1617 * register itself with the DTrace framework, to create probes, to lookup
1618 * probes and (most importantly) to fire probes.  The Provider-to-Framework
1619 * consists of:
1620 *
1621 *   dtrace_register()       <-- Register a provider with the DTrace framework
1622 *   dtrace_unregister()     <-- Remove a provider's DTrace registration
1623 *   dtrace_invalidate()     <-- Invalidate the specified provider
1624 *   dtrace_condense()       <-- Remove a provider's unenabled probes
1625 *   dtrace_attached()       <-- Indicates whether or not DTrace has attached
1626 *   dtrace_probe_create()   <-- Create a DTrace probe
1627 *   dtrace_probe_lookup()   <-- Lookup a DTrace probe based on its name
1628 *   dtrace_probe_arg()      <-- Return the probe argument for a specific probe
1629 *   dtrace_probe()          <-- Fire the specified probe
1630 *
1631 * 2.2  int dtrace_register(const char *name, const dtrace_pattr_t *pap,
1632 *          uint32_t priv, cred_t *cr, const dtrace_pops_t *pops, void *arg,
1633 *          dtrace_provider_id_t *idp)
1634 *
1635 * 2.2.1  Overview
1636 *
1637 *   dtrace_register() registers the calling provider with the DTrace
1638 *   framework.  It should generally be called by DTrace providers in their
1639 *   attach(9E) entry point.
1640 *
1641 * 2.2.2  Arguments and Notes
1642 *
1643 *   The first argument is the name of the provider.  The second argument is a
1644 *   pointer to the stability attributes for the provider.  The third argument
1645 *   is the privilege flags for the provider, and must be some combination of:
1646 *
1647 *     DTRACE_PRIV_NONE     <= All users may enable probes from this provider
1648 *
1649 *     DTRACE_PRIV_PROC     <= Any user with privilege of PRIV_DTRACE_PROC may
1650 *                             enable probes from this provider
1651 *
1652 *     DTRACE_PRIV_USER     <= Any user with privilege of PRIV_DTRACE_USER may
1653 *                             enable probes from this provider
1654 *
1655 *     DTRACE_PRIV_KERNEL   <= Any user with privilege of PRIV_DTRACE_KERNEL
1656 *                             may enable probes from this provider
1657 *
1658 *     DTRACE_PRIV_OWNER    <= This flag places an additional constraint on
1659 *                             the privilege requirements above. These probes
1660 *                             require either (a) a user ID matching the user
1661 *                             ID of the cred passed in the fourth argument
1662 *                             or (b) the PRIV_PROC_OWNER privilege.
1663 *
1664 *     DTRACE_PRIV_ZONEOWNER<= This flag places an additional constraint on
1665 *                             the privilege requirements above. These probes
1666 *                             require either (a) a zone ID matching the zone
1667 *                             ID of the cred passed in the fourth argument
1668 *                             or (b) the PRIV_PROC_ZONE privilege.
1669 *
1670 *   Note that these flags designate the _visibility_ of the probes, not
1671 *   the conditions under which they may or may not fire.
1672 *
1673 *   The fourth argument is the credential that is associated with the
1674 *   provider.  This argument should be NULL if the privilege flags don't
1675 *   include DTRACE_PRIV_OWNER or DTRACE_PRIV_ZONEOWNER.  If non-NULL, the
1676 *   framework stashes the uid and zoneid represented by this credential
1677 *   for use at probe-time, in implicit predicates.  These limit visibility
1678 *   of the probes to users and/or zones which have sufficient privilege to
1679 *   access them.
1680 *
1681 *   The fifth argument is a DTrace provider operations vector, which provides
1682 *   the implementation for the Framework-to-Provider API.  (See Section 1,
1683 *   above.)  This must be non-NULL, and each member must be non-NULL.  The
1684 *   exceptions to this are (1) the dtps_provide() and dtps_provide_module()
1685 *   members (if the provider so desires, _one_ of these members may be left
1686 *   NULL -- denoting that the provider only implements the other) and (2)
1687 *   the dtps_suspend() and dtps_resume() members, which must either both be
1688 *   NULL or both be non-NULL.
1689 *
1690 *   The sixth argument is a cookie to be specified as the first argument for
1691 *   each function in the Framework-to-Provider API.  This argument may have
1692 *   any value.
1693 *
1694 *   The final argument is a pointer to dtrace_provider_id_t.  If
1695 *   dtrace_register() successfully completes, the provider identifier will be
1696 *   stored in the memory pointed to be this argument.  This argument must be
1697 *   non-NULL.
1698 *
1699 * 2.2.3  Return value
1700 *
1701 *   On success, dtrace_register() returns 0 and stores the new provider's
1702 *   identifier into the memory pointed to by the idp argument.  On failure,
1703 *   dtrace_register() returns an errno:
1704 *
1705 *     EINVAL   The arguments passed to dtrace_register() were somehow invalid.
1706 *              This may because a parameter that must be non-NULL was NULL,
1707 *              because the name was invalid (either empty or an illegal
1708 *              provider name) or because the attributes were invalid.
1709 *
1710 *   No other failure code is returned.
1711 *
1712 * 2.2.4  Caller's context
1713 *
1714 *   dtrace_register() may induce calls to dtrace_provide(); the provider must
1715 *   hold no locks across dtrace_register() that may also be acquired by
1716 *   dtrace_provide().  cpu_lock and mod_lock must not be held.
1717 *
1718 * 2.3  int dtrace_unregister(dtrace_provider_t id)
1719 *
1720 * 2.3.1  Overview
1721 *
1722 *   Unregisters the specified provider from the DTrace framework.  It should
1723 *   generally be called by DTrace providers in their detach(9E) entry point.
1724 *
1725 * 2.3.2  Arguments and Notes
1726 *
1727 *   The only argument is the provider identifier, as returned from a
1728 *   successful call to dtrace_register().  As a result of calling
1729 *   dtrace_unregister(), the DTrace framework will call back into the provider
1730 *   via the dtps_destroy() entry point.  Once dtrace_unregister() successfully
1731 *   completes, however, the DTrace framework will no longer make calls through
1732 *   the Framework-to-Provider API.
1733 *
1734 * 2.3.3  Return value
1735 *
1736 *   On success, dtrace_unregister returns 0.  On failure, dtrace_unregister()
1737 *   returns an errno:
1738 *
1739 *     EBUSY    There are currently processes that have the DTrace pseudodevice
1740 *              open, or there exists an anonymous enabling that hasn't yet
1741 *              been claimed.
1742 *
1743 *   No other failure code is returned.
1744 *
1745 * 2.3.4  Caller's context
1746 *
1747 *   Because a call to dtrace_unregister() may induce calls through the
1748 *   Framework-to-Provider API, the caller may not hold any lock across
1749 *   dtrace_register() that is also acquired in any of the Framework-to-
1750 *   Provider API functions.  Additionally, mod_lock may not be held.
1751 *
1752 * 2.4  void dtrace_invalidate(dtrace_provider_id_t id)
1753 *
1754 * 2.4.1  Overview
1755 *
1756 *   Invalidates the specified provider.  All subsequent probe lookups for the
1757 *   specified provider will fail, but its probes will not be removed.
1758 *
1759 * 2.4.2  Arguments and note
1760 *
1761 *   The only argument is the provider identifier, as returned from a
1762 *   successful call to dtrace_register().  In general, a provider's probes
1763 *   always remain valid; dtrace_invalidate() is a mechanism for invalidating
1764 *   an entire provider, regardless of whether or not probes are enabled or
1765 *   not.  Note that dtrace_invalidate() will _not_ prevent already enabled
1766 *   probes from firing -- it will merely prevent any new enablings of the
1767 *   provider's probes.
1768 *
1769 * 2.5 int dtrace_condense(dtrace_provider_id_t id)
1770 *
1771 * 2.5.1  Overview
1772 *
1773 *   Removes all the unenabled probes for the given provider. This function is
1774 *   not unlike dtrace_unregister(), except that it doesn't remove the
1775 *   provider just as many of its associated probes as it can.
1776 *
1777 * 2.5.2  Arguments and Notes
1778 *
1779 *   As with dtrace_unregister(), the sole argument is the provider identifier
1780 *   as returned from a successful call to dtrace_register().  As a result of
1781 *   calling dtrace_condense(), the DTrace framework will call back into the
1782 *   given provider's dtps_destroy() entry point for each of the provider's
1783 *   unenabled probes.
1784 *
1785 * 2.5.3  Return value
1786 *
1787 *   Currently, dtrace_condense() always returns 0.  However, consumers of this
1788 *   function should check the return value as appropriate; its behavior may
1789 *   change in the future.
1790 *
1791 * 2.5.4  Caller's context
1792 *
1793 *   As with dtrace_unregister(), the caller may not hold any lock across
1794 *   dtrace_condense() that is also acquired in the provider's entry points.
1795 *   Also, mod_lock may not be held.
1796 *
1797 * 2.6 int dtrace_attached()
1798 *
1799 * 2.6.1  Overview
1800 *
1801 *   Indicates whether or not DTrace has attached.
1802 *
1803 * 2.6.2  Arguments and Notes
1804 *
1805 *   For most providers, DTrace makes initial contact beyond registration.
1806 *   That is, once a provider has registered with DTrace, it waits to hear
1807 *   from DTrace to create probes.  However, some providers may wish to
1808 *   proactively create probes without first being told by DTrace to do so.
1809 *   If providers wish to do this, they must first call dtrace_attached() to
1810 *   determine if DTrace itself has attached.  If dtrace_attached() returns 0,
1811 *   the provider must not make any other Provider-to-Framework API call.
1812 *
1813 * 2.6.3  Return value
1814 *
1815 *   dtrace_attached() returns 1 if DTrace has attached, 0 otherwise.
1816 *
1817 * 2.7  int dtrace_probe_create(dtrace_provider_t id, const char *mod,
1818 *	    const char *func, const char *name, int aframes, void *arg)
1819 *
1820 * 2.7.1  Overview
1821 *
1822 *   Creates a probe with specified module name, function name, and name.
1823 *
1824 * 2.7.2  Arguments and Notes
1825 *
1826 *   The first argument is the provider identifier, as returned from a
1827 *   successful call to dtrace_register().  The second, third, and fourth
1828 *   arguments are the module name, function name, and probe name,
1829 *   respectively.  Of these, module name and function name may both be NULL
1830 *   (in which case the probe is considered to be unanchored), or they may both
1831 *   be non-NULL.  The name must be non-NULL, and must point to a non-empty
1832 *   string.
1833 *
1834 *   The fifth argument is the number of artificial stack frames that will be
1835 *   found on the stack when dtrace_probe() is called for the new probe.  These
1836 *   artificial frames will be automatically be pruned should the stack() or
1837 *   stackdepth() functions be called as part of one of the probe's ECBs.  If
1838 *   the parameter doesn't add an artificial frame, this parameter should be
1839 *   zero.
1840 *
1841 *   The final argument is a probe argument that will be passed back to the
1842 *   provider when a probe-specific operation is called.  (e.g., via
1843 *   dtps_enable(), dtps_disable(), etc.)
1844 *
1845 *   Note that it is up to the provider to be sure that the probe that it
1846 *   creates does not already exist -- if the provider is unsure of the probe's
1847 *   existence, it should assure its absence with dtrace_probe_lookup() before
1848 *   calling dtrace_probe_create().
1849 *
1850 * 2.7.3  Return value
1851 *
1852 *   dtrace_probe_create() always succeeds, and always returns the identifier
1853 *   of the newly-created probe.
1854 *
1855 * 2.7.4  Caller's context
1856 *
1857 *   While dtrace_probe_create() is generally expected to be called from
1858 *   dtps_provide() and/or dtps_provide_module(), it may be called from other
1859 *   non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1860 *
1861 * 2.8  dtrace_id_t dtrace_probe_lookup(dtrace_provider_t id, const char *mod,
1862 *	    const char *func, const char *name)
1863 *
1864 * 2.8.1  Overview
1865 *
1866 *   Looks up a probe based on provdider and one or more of module name,
1867 *   function name and probe name.
1868 *
1869 * 2.8.2  Arguments and Notes
1870 *
1871 *   The first argument is the provider identifier, as returned from a
1872 *   successful call to dtrace_register().  The second, third, and fourth
1873 *   arguments are the module name, function name, and probe name,
1874 *   respectively.  Any of these may be NULL; dtrace_probe_lookup() will return
1875 *   the identifier of the first probe that is provided by the specified
1876 *   provider and matches all of the non-NULL matching criteria.
1877 *   dtrace_probe_lookup() is generally used by a provider to be check the
1878 *   existence of a probe before creating it with dtrace_probe_create().
1879 *
1880 * 2.8.3  Return value
1881 *
1882 *   If the probe exists, returns its identifier.  If the probe does not exist,
1883 *   return DTRACE_IDNONE.
1884 *
1885 * 2.8.4  Caller's context
1886 *
1887 *   While dtrace_probe_lookup() is generally expected to be called from
1888 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1889 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1890 *
1891 * 2.9  void *dtrace_probe_arg(dtrace_provider_t id, dtrace_id_t probe)
1892 *
1893 * 2.9.1  Overview
1894 *
1895 *   Returns the probe argument associated with the specified probe.
1896 *
1897 * 2.9.2  Arguments and Notes
1898 *
1899 *   The first argument is the provider identifier, as returned from a
1900 *   successful call to dtrace_register().  The second argument is a probe
1901 *   identifier, as returned from dtrace_probe_lookup() or
1902 *   dtrace_probe_create().  This is useful if a probe has multiple
1903 *   provider-specific components to it:  the provider can create the probe
1904 *   once with provider-specific state, and then add to the state by looking
1905 *   up the probe based on probe identifier.
1906 *
1907 * 2.9.3  Return value
1908 *
1909 *   Returns the argument associated with the specified probe.  If the
1910 *   specified probe does not exist, or if the specified probe is not provided
1911 *   by the specified provider, NULL is returned.
1912 *
1913 * 2.9.4  Caller's context
1914 *
1915 *   While dtrace_probe_arg() is generally expected to be called from
1916 *   dtps_provide() and/or dtps_provide_module(), it may also be called from
1917 *   other non-DTrace contexts.  Neither cpu_lock nor mod_lock may be held.
1918 *
1919 * 2.10  void dtrace_probe(dtrace_id_t probe, uintptr_t arg0, uintptr_t arg1,
1920 *		uintptr_t arg2, uintptr_t arg3, uintptr_t arg4)
1921 *
1922 * 2.10.1  Overview
1923 *
1924 *   The epicenter of DTrace:  fires the specified probes with the specified
1925 *   arguments.
1926 *
1927 * 2.10.2  Arguments and Notes
1928 *
1929 *   The first argument is a probe identifier as returned by
1930 *   dtrace_probe_create() or dtrace_probe_lookup().  The second through sixth
1931 *   arguments are the values to which the D variables "arg0" through "arg4"
1932 *   will be mapped.
1933 *
1934 *   dtrace_probe() should be called whenever the specified probe has fired --
1935 *   however the provider defines it.
1936 *
1937 * 2.10.3  Return value
1938 *
1939 *   None.
1940 *
1941 * 2.10.4  Caller's context
1942 *
1943 *   dtrace_probe() may be called in virtually any context:  kernel, user,
1944 *   interrupt, high-level interrupt, with arbitrary adaptive locks held, with
1945 *   dispatcher locks held, with interrupts disabled, etc.  The only latitude
1946 *   that must be afforded to DTrace is the ability to make calls within
1947 *   itself (and to its in-kernel subroutines) and the ability to access
1948 *   arbitrary (but mapped) memory.  On some platforms, this constrains
1949 *   context.  For example, on UltraSPARC, dtrace_probe() cannot be called
1950 *   from any context in which TL is greater than zero.  dtrace_probe() may
1951 *   also not be called from any routine which may be called by dtrace_probe()
1952 *   -- which includes functions in the DTrace framework and some in-kernel
1953 *   DTrace subroutines.  All such functions "dtrace_"; providers that
1954 *   instrument the kernel arbitrarily should be sure to not instrument these
1955 *   routines.
1956 */
1957typedef struct dtrace_pops {
1958	void (*dtps_provide)(void *arg, const dtrace_probedesc_t *spec);
1959	void (*dtps_provide_module)(void *arg, struct modctl *mp);
1960	void (*dtps_enable)(void *arg, dtrace_id_t id, void *parg);
1961	void (*dtps_disable)(void *arg, dtrace_id_t id, void *parg);
1962	void (*dtps_suspend)(void *arg, dtrace_id_t id, void *parg);
1963	void (*dtps_resume)(void *arg, dtrace_id_t id, void *parg);
1964	void (*dtps_getargdesc)(void *arg, dtrace_id_t id, void *parg,
1965	    dtrace_argdesc_t *desc);
1966	uint64_t (*dtps_getargval)(void *arg, dtrace_id_t id, void *parg,
1967	    int argno, int aframes);
1968	int (*dtps_usermode)(void *arg, dtrace_id_t id, void *parg);
1969	void (*dtps_destroy)(void *arg, dtrace_id_t id, void *parg);
1970} dtrace_pops_t;
1971
1972typedef uintptr_t	dtrace_provider_id_t;
1973
1974extern int dtrace_register(const char *, const dtrace_pattr_t *, uint32_t,
1975    cred_t *, const dtrace_pops_t *, void *, dtrace_provider_id_t *);
1976extern int dtrace_unregister(dtrace_provider_id_t);
1977extern int dtrace_condense(dtrace_provider_id_t);
1978extern void dtrace_invalidate(dtrace_provider_id_t);
1979extern dtrace_id_t dtrace_probe_lookup(dtrace_provider_id_t, const char *,
1980    const char *, const char *);
1981extern dtrace_id_t dtrace_probe_create(dtrace_provider_id_t, const char *,
1982    const char *, const char *, int, void *);
1983extern void *dtrace_probe_arg(dtrace_provider_id_t, dtrace_id_t);
1984extern void dtrace_probe(dtrace_id_t, uintptr_t arg0, uintptr_t arg1,
1985    uintptr_t arg2, uintptr_t arg3, uintptr_t arg4);
1986
1987/*
1988 * DTrace Meta Provider API
1989 *
1990 * The following functions are implemented by the DTrace framework and are
1991 * used to implement meta providers. Meta providers plug into the DTrace
1992 * framework and are used to instantiate new providers on the fly. At
1993 * present, there is only one type of meta provider and only one meta
1994 * provider may be registered with the DTrace framework at a time. The
1995 * sole meta provider type provides user-land static tracing facilities
1996 * by taking meta probe descriptions and adding a corresponding provider
1997 * into the DTrace framework.
1998 *
1999 * 1 Framework-to-Provider
2000 *
2001 * 1.1 Overview
2002 *
2003 * The Framework-to-Provider API is represented by the dtrace_mops structure
2004 * that the meta provider passes to the framework when registering itself as
2005 * a meta provider. This structure consists of the following members:
2006 *
2007 *   dtms_create_probe()	<-- Add a new probe to a created provider
2008 *   dtms_provide_pid()		<-- Create a new provider for a given process
2009 *   dtms_remove_pid()		<-- Remove a previously created provider
2010 *
2011 * 1.2  void dtms_create_probe(void *arg, void *parg,
2012 *           dtrace_helper_probedesc_t *probedesc);
2013 *
2014 * 1.2.1  Overview
2015 *
2016 *   Called by the DTrace framework to create a new probe in a provider
2017 *   created by this meta provider.
2018 *
2019 * 1.2.2  Arguments and notes
2020 *
2021 *   The first argument is the cookie as passed to dtrace_meta_register().
2022 *   The second argument is the provider cookie for the associated provider;
2023 *   this is obtained from the return value of dtms_provide_pid(). The third
2024 *   argument is the helper probe description.
2025 *
2026 * 1.2.3  Return value
2027 *
2028 *   None
2029 *
2030 * 1.2.4  Caller's context
2031 *
2032 *   dtms_create_probe() is called from either ioctl() or module load context.
2033 *   The DTrace framework is locked in such a way that meta providers may not
2034 *   register or unregister. This means that the meta provider cannot call
2035 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context is
2036 *   such that the provider may (and is expected to) call provider-related
2037 *   DTrace provider APIs including dtrace_probe_create().
2038 *
2039 * 1.3  void *dtms_provide_pid(void *arg, dtrace_meta_provider_t *mprov,
2040 *	      pid_t pid)
2041 *
2042 * 1.3.1  Overview
2043 *
2044 *   Called by the DTrace framework to instantiate a new provider given the
2045 *   description of the provider and probes in the mprov argument. The
2046 *   meta provider should call dtrace_register() to insert the new provider
2047 *   into the DTrace framework.
2048 *
2049 * 1.3.2  Arguments and notes
2050 *
2051 *   The first argument is the cookie as passed to dtrace_meta_register().
2052 *   The second argument is a pointer to a structure describing the new
2053 *   helper provider. The third argument is the process identifier for
2054 *   process associated with this new provider. Note that the name of the
2055 *   provider as passed to dtrace_register() should be the contatenation of
2056 *   the dtmpb_provname member of the mprov argument and the processs
2057 *   identifier as a string.
2058 *
2059 * 1.3.3  Return value
2060 *
2061 *   The cookie for the provider that the meta provider creates. This is
2062 *   the same value that it passed to dtrace_register().
2063 *
2064 * 1.3.4  Caller's context
2065 *
2066 *   dtms_provide_pid() is called from either ioctl() or module load context.
2067 *   The DTrace framework is locked in such a way that meta providers may not
2068 *   register or unregister. This means that the meta provider cannot call
2069 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2070 *   is such that the provider may -- and is expected to --  call
2071 *   provider-related DTrace provider APIs including dtrace_register().
2072 *
2073 * 1.4  void dtms_remove_pid(void *arg, dtrace_meta_provider_t *mprov,
2074 *	     pid_t pid)
2075 *
2076 * 1.4.1  Overview
2077 *
2078 *   Called by the DTrace framework to remove a provider that had previously
2079 *   been instantiated via the dtms_provide_pid() entry point. The meta
2080 *   provider need not remove the provider immediately, but this entry
2081 *   point indicates that the provider should be removed as soon as possible
2082 *   using the dtrace_unregister() API.
2083 *
2084 * 1.4.2  Arguments and notes
2085 *
2086 *   The first argument is the cookie as passed to dtrace_meta_register().
2087 *   The second argument is a pointer to a structure describing the helper
2088 *   provider. The third argument is the process identifier for process
2089 *   associated with this new provider.
2090 *
2091 * 1.4.3  Return value
2092 *
2093 *   None
2094 *
2095 * 1.4.4  Caller's context
2096 *
2097 *   dtms_remove_pid() is called from either ioctl() or exit() context.
2098 *   The DTrace framework is locked in such a way that meta providers may not
2099 *   register or unregister. This means that the meta provider cannot call
2100 *   dtrace_meta_register() or dtrace_meta_unregister(). However, the context
2101 *   is such that the provider may -- and is expected to -- call
2102 *   provider-related DTrace provider APIs including dtrace_unregister().
2103 */
2104typedef struct dtrace_helper_probedesc {
2105	char *dthpb_mod;			/* probe module */
2106	char *dthpb_func; 			/* probe function */
2107	char *dthpb_name; 			/* probe name */
2108	uint64_t dthpb_base;			/* base address */
2109	uint32_t *dthpb_offs;			/* offsets array */
2110	uint32_t *dthpb_enoffs;			/* is-enabled offsets array */
2111	uint32_t dthpb_noffs;			/* offsets count */
2112	uint32_t dthpb_nenoffs;			/* is-enabled offsets count */
2113	uint8_t *dthpb_args;			/* argument mapping array */
2114	uint8_t dthpb_xargc;			/* translated argument count */
2115	uint8_t dthpb_nargc;			/* native argument count */
2116	char *dthpb_xtypes;			/* translated types strings */
2117	char *dthpb_ntypes;			/* native types strings */
2118} dtrace_helper_probedesc_t;
2119
2120typedef struct dtrace_helper_provdesc {
2121	char *dthpv_provname;			/* provider name */
2122	dtrace_pattr_t dthpv_pattr;		/* stability attributes */
2123} dtrace_helper_provdesc_t;
2124
2125typedef struct dtrace_mops {
2126	void (*dtms_create_probe)(void *, void *, dtrace_helper_probedesc_t *);
2127	void *(*dtms_provide_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2128	void (*dtms_remove_pid)(void *, dtrace_helper_provdesc_t *, pid_t);
2129} dtrace_mops_t;
2130
2131typedef uintptr_t	dtrace_meta_provider_id_t;
2132
2133extern int dtrace_meta_register(const char *, const dtrace_mops_t *, void *,
2134    dtrace_meta_provider_id_t *);
2135extern int dtrace_meta_unregister(dtrace_meta_provider_id_t);
2136
2137/*
2138 * DTrace Kernel Hooks
2139 *
2140 * The following functions are implemented by the base kernel and form a set of
2141 * hooks used by the DTrace framework.  DTrace hooks are implemented in either
2142 * uts/common/os/dtrace_subr.c, an ISA-specific assembly file, or in a
2143 * uts/<platform>/os/dtrace_subr.c corresponding to each hardware platform.
2144 */
2145
2146typedef enum dtrace_vtime_state {
2147	DTRACE_VTIME_INACTIVE = 0,	/* No DTrace, no TNF */
2148	DTRACE_VTIME_ACTIVE,		/* DTrace virtual time, no TNF */
2149	DTRACE_VTIME_INACTIVE_TNF,	/* No DTrace, TNF active */
2150	DTRACE_VTIME_ACTIVE_TNF		/* DTrace virtual time _and_ TNF */
2151} dtrace_vtime_state_t;
2152
2153extern dtrace_vtime_state_t dtrace_vtime_active;
2154extern void dtrace_vtime_switch(kthread_t *next);
2155extern void dtrace_vtime_enable_tnf(void);
2156extern void dtrace_vtime_disable_tnf(void);
2157extern void dtrace_vtime_enable(void);
2158extern void dtrace_vtime_disable(void);
2159
2160struct regs;
2161
2162extern int (*dtrace_pid_probe_ptr)(struct regs *);
2163extern int (*dtrace_return_probe_ptr)(struct regs *);
2164extern void (*dtrace_fasttrap_fork_ptr)(proc_t *, proc_t *);
2165extern void (*dtrace_fasttrap_exec_ptr)(proc_t *);
2166extern void (*dtrace_fasttrap_exit_ptr)(proc_t *);
2167extern void dtrace_fasttrap_fork(proc_t *, proc_t *);
2168
2169typedef uintptr_t dtrace_icookie_t;
2170typedef void (*dtrace_xcall_t)(void *);
2171
2172extern dtrace_icookie_t dtrace_interrupt_disable(void);
2173extern void dtrace_interrupt_enable(dtrace_icookie_t);
2174
2175extern void dtrace_membar_producer(void);
2176extern void dtrace_membar_consumer(void);
2177
2178extern void (*dtrace_cpu_init)(processorid_t);
2179extern void (*dtrace_modload)(struct modctl *);
2180extern void (*dtrace_modunload)(struct modctl *);
2181extern void (*dtrace_helpers_cleanup)();
2182extern void (*dtrace_helpers_fork)(proc_t *parent, proc_t *child);
2183extern void (*dtrace_cpustart_init)();
2184extern void (*dtrace_cpustart_fini)();
2185
2186extern void (*dtrace_debugger_init)();
2187extern void (*dtrace_debugger_fini)();
2188extern dtrace_cacheid_t dtrace_predcache_id;
2189
2190extern hrtime_t dtrace_gethrtime(void);
2191extern void dtrace_sync(void);
2192extern void dtrace_toxic_ranges(void (*)(uintptr_t, uintptr_t));
2193extern void dtrace_xcall(processorid_t, dtrace_xcall_t, void *);
2194extern void dtrace_vpanic(const char *, __va_list);
2195extern void dtrace_panic(const char *, ...);
2196
2197extern int dtrace_safe_defer_signal(void);
2198extern void dtrace_safe_synchronous_signal(void);
2199
2200extern int dtrace_mach_aframes(void);
2201
2202#if defined(__i386) || defined(__amd64)
2203extern int dtrace_instr_size(uchar_t *instr);
2204extern int dtrace_instr_size_isa(uchar_t *, model_t, int *);
2205extern void dtrace_invop_add(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2206extern void dtrace_invop_remove(int (*)(uintptr_t, uintptr_t *, uintptr_t));
2207extern void dtrace_invop_callsite(void);
2208#endif
2209
2210#ifdef __sparc
2211extern int dtrace_blksuword32(uintptr_t, uint32_t *, int);
2212extern void dtrace_getfsr(uint64_t *);
2213#endif
2214
2215#define	DTRACE_CPUFLAG_ISSET(flag) \
2216	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags & (flag))
2217
2218#define	DTRACE_CPUFLAG_SET(flag) \
2219	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags |= (flag))
2220
2221#define	DTRACE_CPUFLAG_CLEAR(flag) \
2222	(cpu_core[CPU->cpu_id].cpuc_dtrace_flags &= ~(flag))
2223
2224#endif /* _KERNEL */
2225
2226#endif	/* _ASM */
2227
2228#if defined(__i386) || defined(__amd64)
2229
2230#define	DTRACE_INVOP_PUSHL_EBP		1
2231#define	DTRACE_INVOP_POPL_EBP		2
2232#define	DTRACE_INVOP_LEAVE		3
2233#define	DTRACE_INVOP_NOP		4
2234#define	DTRACE_INVOP_RET		5
2235
2236#endif
2237
2238#ifdef	__cplusplus
2239}
2240#endif
2241
2242#endif	/* _SYS_DTRACE_H */
2243