zil.c revision 328235
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42#include <sys/abd.h>
43
44/*
45 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
46 * calls that change the file system. Each itx has enough information to
47 * be able to replay them after a system crash, power loss, or
48 * equivalent failure mode. These are stored in memory until either:
49 *
50 *   1. they are committed to the pool by the DMU transaction group
51 *      (txg), at which point they can be discarded; or
52 *   2. they are committed to the on-disk ZIL for the dataset being
53 *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
54 *      requirement).
55 *
56 * In the event of a crash or power loss, the itxs contained by each
57 * dataset's on-disk ZIL will be replayed when that dataset is first
58 * instantianted (e.g. if the dataset is a normal fileystem, when it is
59 * first mounted).
60 *
61 * As hinted at above, there is one ZIL per dataset (both the in-memory
62 * representation, and the on-disk representation). The on-disk format
63 * consists of 3 parts:
64 *
65 * 	- a single, per-dataset, ZIL header; which points to a chain of
66 * 	- zero or more ZIL blocks; each of which contains
67 * 	- zero or more ZIL records
68 *
69 * A ZIL record holds the information necessary to replay a single
70 * system call transaction. A ZIL block can hold many ZIL records, and
71 * the blocks are chained together, similarly to a singly linked list.
72 *
73 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
74 * block in the chain, and the ZIL header points to the first block in
75 * the chain.
76 *
77 * Note, there is not a fixed place in the pool to hold these ZIL
78 * blocks; they are dynamically allocated and freed as needed from the
79 * blocks available on the pool, though they can be preferentially
80 * allocated from a dedicated "log" vdev.
81 */
82
83/*
84 * This controls the amount of time that a ZIL block (lwb) will remain
85 * "open" when it isn't "full", and it has a thread waiting for it to be
86 * committed to stable storage. Please refer to the zil_commit_waiter()
87 * function (and the comments within it) for more details.
88 */
89int zfs_commit_timeout_pct = 5;
90
91/*
92 * Disable intent logging replay.  This global ZIL switch affects all pools.
93 */
94int zil_replay_disable = 0;
95SYSCTL_DECL(_vfs_zfs);
96SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
97    &zil_replay_disable, 0, "Disable intent logging replay");
98
99/*
100 * Tunable parameter for debugging or performance analysis.  Setting
101 * zfs_nocacheflush will cause corruption on power loss if a volatile
102 * out-of-order write cache is enabled.
103 */
104boolean_t zfs_nocacheflush = B_FALSE;
105SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
106    &zfs_nocacheflush, 0, "Disable cache flush");
107boolean_t zfs_trim_enabled = B_TRUE;
108SYSCTL_DECL(_vfs_zfs_trim);
109SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
110    "Enable ZFS TRIM");
111
112/*
113 * Limit SLOG write size per commit executed with synchronous priority.
114 * Any writes above that will be executed with lower (asynchronous) priority
115 * to limit potential SLOG device abuse by single active ZIL writer.
116 */
117uint64_t zil_slog_bulk = 768 * 1024;
118SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
119    &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");
120
121static kmem_cache_t *zil_lwb_cache;
122static kmem_cache_t *zil_zcw_cache;
123
124#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
125    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
126
127static int
128zil_bp_compare(const void *x1, const void *x2)
129{
130	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
131	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
132
133	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
134		return (-1);
135	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
136		return (1);
137
138	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
139		return (-1);
140	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
141		return (1);
142
143	return (0);
144}
145
146static void
147zil_bp_tree_init(zilog_t *zilog)
148{
149	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
150	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
151}
152
153static void
154zil_bp_tree_fini(zilog_t *zilog)
155{
156	avl_tree_t *t = &zilog->zl_bp_tree;
157	zil_bp_node_t *zn;
158	void *cookie = NULL;
159
160	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
161		kmem_free(zn, sizeof (zil_bp_node_t));
162
163	avl_destroy(t);
164}
165
166int
167zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
168{
169	avl_tree_t *t = &zilog->zl_bp_tree;
170	const dva_t *dva;
171	zil_bp_node_t *zn;
172	avl_index_t where;
173
174	if (BP_IS_EMBEDDED(bp))
175		return (0);
176
177	dva = BP_IDENTITY(bp);
178
179	if (avl_find(t, dva, &where) != NULL)
180		return (SET_ERROR(EEXIST));
181
182	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
183	zn->zn_dva = *dva;
184	avl_insert(t, zn, where);
185
186	return (0);
187}
188
189static zil_header_t *
190zil_header_in_syncing_context(zilog_t *zilog)
191{
192	return ((zil_header_t *)zilog->zl_header);
193}
194
195static void
196zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
197{
198	zio_cksum_t *zc = &bp->blk_cksum;
199
200	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
201	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
202	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
203	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
204}
205
206/*
207 * Read a log block and make sure it's valid.
208 */
209static int
210zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
211    char **end)
212{
213	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
214	arc_flags_t aflags = ARC_FLAG_WAIT;
215	arc_buf_t *abuf = NULL;
216	zbookmark_phys_t zb;
217	int error;
218
219	if (zilog->zl_header->zh_claim_txg == 0)
220		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
221
222	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
223		zio_flags |= ZIO_FLAG_SPECULATIVE;
224
225	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
226	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
227
228	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
229	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
230
231	if (error == 0) {
232		zio_cksum_t cksum = bp->blk_cksum;
233
234		/*
235		 * Validate the checksummed log block.
236		 *
237		 * Sequence numbers should be... sequential.  The checksum
238		 * verifier for the next block should be bp's checksum plus 1.
239		 *
240		 * Also check the log chain linkage and size used.
241		 */
242		cksum.zc_word[ZIL_ZC_SEQ]++;
243
244		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
245			zil_chain_t *zilc = abuf->b_data;
246			char *lr = (char *)(zilc + 1);
247			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
248
249			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
250			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
251				error = SET_ERROR(ECKSUM);
252			} else {
253				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
254				bcopy(lr, dst, len);
255				*end = (char *)dst + len;
256				*nbp = zilc->zc_next_blk;
257			}
258		} else {
259			char *lr = abuf->b_data;
260			uint64_t size = BP_GET_LSIZE(bp);
261			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
262
263			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
264			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
265			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
266				error = SET_ERROR(ECKSUM);
267			} else {
268				ASSERT3U(zilc->zc_nused, <=,
269				    SPA_OLD_MAXBLOCKSIZE);
270				bcopy(lr, dst, zilc->zc_nused);
271				*end = (char *)dst + zilc->zc_nused;
272				*nbp = zilc->zc_next_blk;
273			}
274		}
275
276		arc_buf_destroy(abuf, &abuf);
277	}
278
279	return (error);
280}
281
282/*
283 * Read a TX_WRITE log data block.
284 */
285static int
286zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
287{
288	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
289	const blkptr_t *bp = &lr->lr_blkptr;
290	arc_flags_t aflags = ARC_FLAG_WAIT;
291	arc_buf_t *abuf = NULL;
292	zbookmark_phys_t zb;
293	int error;
294
295	if (BP_IS_HOLE(bp)) {
296		if (wbuf != NULL)
297			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
298		return (0);
299	}
300
301	if (zilog->zl_header->zh_claim_txg == 0)
302		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
303
304	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
305	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
306
307	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
308	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
309
310	if (error == 0) {
311		if (wbuf != NULL)
312			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
313		arc_buf_destroy(abuf, &abuf);
314	}
315
316	return (error);
317}
318
319/*
320 * Parse the intent log, and call parse_func for each valid record within.
321 */
322int
323zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
324    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
325{
326	const zil_header_t *zh = zilog->zl_header;
327	boolean_t claimed = !!zh->zh_claim_txg;
328	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
329	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
330	uint64_t max_blk_seq = 0;
331	uint64_t max_lr_seq = 0;
332	uint64_t blk_count = 0;
333	uint64_t lr_count = 0;
334	blkptr_t blk, next_blk;
335	char *lrbuf, *lrp;
336	int error = 0;
337
338	/*
339	 * Old logs didn't record the maximum zh_claim_lr_seq.
340	 */
341	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
342		claim_lr_seq = UINT64_MAX;
343
344	/*
345	 * Starting at the block pointed to by zh_log we read the log chain.
346	 * For each block in the chain we strongly check that block to
347	 * ensure its validity.  We stop when an invalid block is found.
348	 * For each block pointer in the chain we call parse_blk_func().
349	 * For each record in each valid block we call parse_lr_func().
350	 * If the log has been claimed, stop if we encounter a sequence
351	 * number greater than the highest claimed sequence number.
352	 */
353	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
354	zil_bp_tree_init(zilog);
355
356	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
357		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
358		int reclen;
359		char *end;
360
361		if (blk_seq > claim_blk_seq)
362			break;
363		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
364			break;
365		ASSERT3U(max_blk_seq, <, blk_seq);
366		max_blk_seq = blk_seq;
367		blk_count++;
368
369		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
370			break;
371
372		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
373		if (error != 0)
374			break;
375
376		for (lrp = lrbuf; lrp < end; lrp += reclen) {
377			lr_t *lr = (lr_t *)lrp;
378			reclen = lr->lrc_reclen;
379			ASSERT3U(reclen, >=, sizeof (lr_t));
380			if (lr->lrc_seq > claim_lr_seq)
381				goto done;
382			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
383				goto done;
384			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
385			max_lr_seq = lr->lrc_seq;
386			lr_count++;
387		}
388	}
389done:
390	zilog->zl_parse_error = error;
391	zilog->zl_parse_blk_seq = max_blk_seq;
392	zilog->zl_parse_lr_seq = max_lr_seq;
393	zilog->zl_parse_blk_count = blk_count;
394	zilog->zl_parse_lr_count = lr_count;
395
396	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
397	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
398
399	zil_bp_tree_fini(zilog);
400	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
401
402	return (error);
403}
404
405static int
406zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
407{
408	/*
409	 * Claim log block if not already committed and not already claimed.
410	 * If tx == NULL, just verify that the block is claimable.
411	 */
412	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
413	    zil_bp_tree_add(zilog, bp) != 0)
414		return (0);
415
416	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
417	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
418	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
419}
420
421static int
422zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
423{
424	lr_write_t *lr = (lr_write_t *)lrc;
425	int error;
426
427	if (lrc->lrc_txtype != TX_WRITE)
428		return (0);
429
430	/*
431	 * If the block is not readable, don't claim it.  This can happen
432	 * in normal operation when a log block is written to disk before
433	 * some of the dmu_sync() blocks it points to.  In this case, the
434	 * transaction cannot have been committed to anyone (we would have
435	 * waited for all writes to be stable first), so it is semantically
436	 * correct to declare this the end of the log.
437	 */
438	if (lr->lr_blkptr.blk_birth >= first_txg &&
439	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
440		return (error);
441	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
442}
443
444/* ARGSUSED */
445static int
446zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
447{
448	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
449
450	return (0);
451}
452
453static int
454zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
455{
456	lr_write_t *lr = (lr_write_t *)lrc;
457	blkptr_t *bp = &lr->lr_blkptr;
458
459	/*
460	 * If we previously claimed it, we need to free it.
461	 */
462	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
463	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
464	    !BP_IS_HOLE(bp))
465		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
466
467	return (0);
468}
469
470static int
471zil_lwb_vdev_compare(const void *x1, const void *x2)
472{
473	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
474	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
475
476	if (v1 < v2)
477		return (-1);
478	if (v1 > v2)
479		return (1);
480
481	return (0);
482}
483
484static lwb_t *
485zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
486{
487	lwb_t *lwb;
488
489	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
490	lwb->lwb_zilog = zilog;
491	lwb->lwb_blk = *bp;
492	lwb->lwb_slog = slog;
493	lwb->lwb_state = LWB_STATE_CLOSED;
494	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
495	lwb->lwb_max_txg = txg;
496	lwb->lwb_write_zio = NULL;
497	lwb->lwb_root_zio = NULL;
498	lwb->lwb_tx = NULL;
499	lwb->lwb_issued_timestamp = 0;
500	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
501		lwb->lwb_nused = sizeof (zil_chain_t);
502		lwb->lwb_sz = BP_GET_LSIZE(bp);
503	} else {
504		lwb->lwb_nused = 0;
505		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
506	}
507
508	mutex_enter(&zilog->zl_lock);
509	list_insert_tail(&zilog->zl_lwb_list, lwb);
510	mutex_exit(&zilog->zl_lock);
511
512	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
513	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
514	ASSERT(list_is_empty(&lwb->lwb_waiters));
515
516	return (lwb);
517}
518
519static void
520zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
521{
522	ASSERT(MUTEX_HELD(&zilog->zl_lock));
523	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
524	ASSERT(list_is_empty(&lwb->lwb_waiters));
525
526	if (lwb->lwb_state == LWB_STATE_OPENED) {
527		avl_tree_t *t = &lwb->lwb_vdev_tree;
528		void *cookie = NULL;
529		zil_vdev_node_t *zv;
530
531		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
532			kmem_free(zv, sizeof (*zv));
533
534		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
535		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
536
537		zio_cancel(lwb->lwb_root_zio);
538		zio_cancel(lwb->lwb_write_zio);
539
540		lwb->lwb_root_zio = NULL;
541		lwb->lwb_write_zio = NULL;
542	} else {
543		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
544	}
545
546	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
547	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
548	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
549
550	/*
551	 * Clear the zilog's field to indicate this lwb is no longer
552	 * valid, and prevent use-after-free errors.
553	 */
554	if (zilog->zl_last_lwb_opened == lwb)
555		zilog->zl_last_lwb_opened = NULL;
556
557	kmem_cache_free(zil_lwb_cache, lwb);
558}
559
560/*
561 * Called when we create in-memory log transactions so that we know
562 * to cleanup the itxs at the end of spa_sync().
563 */
564void
565zilog_dirty(zilog_t *zilog, uint64_t txg)
566{
567	dsl_pool_t *dp = zilog->zl_dmu_pool;
568	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
569
570	ASSERT(spa_writeable(zilog->zl_spa));
571
572	if (ds->ds_is_snapshot)
573		panic("dirtying snapshot!");
574
575	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
576		/* up the hold count until we can be written out */
577		dmu_buf_add_ref(ds->ds_dbuf, zilog);
578
579		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
580	}
581}
582
583/*
584 * Determine if the zil is dirty in the specified txg. Callers wanting to
585 * ensure that the dirty state does not change must hold the itxg_lock for
586 * the specified txg. Holding the lock will ensure that the zil cannot be
587 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
588 * state.
589 */
590boolean_t
591zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
592{
593	dsl_pool_t *dp = zilog->zl_dmu_pool;
594
595	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
596		return (B_TRUE);
597	return (B_FALSE);
598}
599
600/*
601 * Determine if the zil is dirty. The zil is considered dirty if it has
602 * any pending itx records that have not been cleaned by zil_clean().
603 */
604boolean_t
605zilog_is_dirty(zilog_t *zilog)
606{
607	dsl_pool_t *dp = zilog->zl_dmu_pool;
608
609	for (int t = 0; t < TXG_SIZE; t++) {
610		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
611			return (B_TRUE);
612	}
613	return (B_FALSE);
614}
615
616/*
617 * Create an on-disk intent log.
618 */
619static lwb_t *
620zil_create(zilog_t *zilog)
621{
622	const zil_header_t *zh = zilog->zl_header;
623	lwb_t *lwb = NULL;
624	uint64_t txg = 0;
625	dmu_tx_t *tx = NULL;
626	blkptr_t blk;
627	int error = 0;
628	boolean_t slog = FALSE;
629
630	/*
631	 * Wait for any previous destroy to complete.
632	 */
633	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
634
635	ASSERT(zh->zh_claim_txg == 0);
636	ASSERT(zh->zh_replay_seq == 0);
637
638	blk = zh->zh_log;
639
640	/*
641	 * Allocate an initial log block if:
642	 *    - there isn't one already
643	 *    - the existing block is the wrong endianess
644	 */
645	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
646		tx = dmu_tx_create(zilog->zl_os);
647		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
648		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
649		txg = dmu_tx_get_txg(tx);
650
651		if (!BP_IS_HOLE(&blk)) {
652			zio_free_zil(zilog->zl_spa, txg, &blk);
653			BP_ZERO(&blk);
654		}
655
656		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
657		    ZIL_MIN_BLKSZ, &slog);
658
659		if (error == 0)
660			zil_init_log_chain(zilog, &blk);
661	}
662
663	/*
664	 * Allocate a log write block (lwb) for the first log block.
665	 */
666	if (error == 0)
667		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
668
669	/*
670	 * If we just allocated the first log block, commit our transaction
671	 * and wait for zil_sync() to stuff the block poiner into zh_log.
672	 * (zh is part of the MOS, so we cannot modify it in open context.)
673	 */
674	if (tx != NULL) {
675		dmu_tx_commit(tx);
676		txg_wait_synced(zilog->zl_dmu_pool, txg);
677	}
678
679	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
680
681	return (lwb);
682}
683
684/*
685 * In one tx, free all log blocks and clear the log header. If keep_first
686 * is set, then we're replaying a log with no content. We want to keep the
687 * first block, however, so that the first synchronous transaction doesn't
688 * require a txg_wait_synced() in zil_create(). We don't need to
689 * txg_wait_synced() here either when keep_first is set, because both
690 * zil_create() and zil_destroy() will wait for any in-progress destroys
691 * to complete.
692 */
693void
694zil_destroy(zilog_t *zilog, boolean_t keep_first)
695{
696	const zil_header_t *zh = zilog->zl_header;
697	lwb_t *lwb;
698	dmu_tx_t *tx;
699	uint64_t txg;
700
701	/*
702	 * Wait for any previous destroy to complete.
703	 */
704	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
705
706	zilog->zl_old_header = *zh;		/* debugging aid */
707
708	if (BP_IS_HOLE(&zh->zh_log))
709		return;
710
711	tx = dmu_tx_create(zilog->zl_os);
712	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
713	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
714	txg = dmu_tx_get_txg(tx);
715
716	mutex_enter(&zilog->zl_lock);
717
718	ASSERT3U(zilog->zl_destroy_txg, <, txg);
719	zilog->zl_destroy_txg = txg;
720	zilog->zl_keep_first = keep_first;
721
722	if (!list_is_empty(&zilog->zl_lwb_list)) {
723		ASSERT(zh->zh_claim_txg == 0);
724		VERIFY(!keep_first);
725		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
726			list_remove(&zilog->zl_lwb_list, lwb);
727			if (lwb->lwb_buf != NULL)
728				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
729			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
730			zil_free_lwb(zilog, lwb);
731		}
732	} else if (!keep_first) {
733		zil_destroy_sync(zilog, tx);
734	}
735	mutex_exit(&zilog->zl_lock);
736
737	dmu_tx_commit(tx);
738}
739
740void
741zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
742{
743	ASSERT(list_is_empty(&zilog->zl_lwb_list));
744	(void) zil_parse(zilog, zil_free_log_block,
745	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
746}
747
748int
749zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
750{
751	dmu_tx_t *tx = txarg;
752	uint64_t first_txg = dmu_tx_get_txg(tx);
753	zilog_t *zilog;
754	zil_header_t *zh;
755	objset_t *os;
756	int error;
757
758	error = dmu_objset_own_obj(dp, ds->ds_object,
759	    DMU_OST_ANY, B_FALSE, FTAG, &os);
760	if (error != 0) {
761		/*
762		 * EBUSY indicates that the objset is inconsistent, in which
763		 * case it can not have a ZIL.
764		 */
765		if (error != EBUSY) {
766			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
767			    (unsigned long long)ds->ds_object, error);
768		}
769		return (0);
770	}
771
772	zilog = dmu_objset_zil(os);
773	zh = zil_header_in_syncing_context(zilog);
774
775	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
776		if (!BP_IS_HOLE(&zh->zh_log))
777			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
778		BP_ZERO(&zh->zh_log);
779		dsl_dataset_dirty(dmu_objset_ds(os), tx);
780		dmu_objset_disown(os, FTAG);
781		return (0);
782	}
783
784	/*
785	 * Claim all log blocks if we haven't already done so, and remember
786	 * the highest claimed sequence number.  This ensures that if we can
787	 * read only part of the log now (e.g. due to a missing device),
788	 * but we can read the entire log later, we will not try to replay
789	 * or destroy beyond the last block we successfully claimed.
790	 */
791	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
792	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
793		(void) zil_parse(zilog, zil_claim_log_block,
794		    zil_claim_log_record, tx, first_txg);
795		zh->zh_claim_txg = first_txg;
796		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
797		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
798		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
799			zh->zh_flags |= ZIL_REPLAY_NEEDED;
800		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
801		dsl_dataset_dirty(dmu_objset_ds(os), tx);
802	}
803
804	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
805	dmu_objset_disown(os, FTAG);
806	return (0);
807}
808
809/*
810 * Check the log by walking the log chain.
811 * Checksum errors are ok as they indicate the end of the chain.
812 * Any other error (no device or read failure) returns an error.
813 */
814/* ARGSUSED */
815int
816zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
817{
818	zilog_t *zilog;
819	objset_t *os;
820	blkptr_t *bp;
821	int error;
822
823	ASSERT(tx == NULL);
824
825	error = dmu_objset_from_ds(ds, &os);
826	if (error != 0) {
827		cmn_err(CE_WARN, "can't open objset %llu, error %d",
828		    (unsigned long long)ds->ds_object, error);
829		return (0);
830	}
831
832	zilog = dmu_objset_zil(os);
833	bp = (blkptr_t *)&zilog->zl_header->zh_log;
834
835	/*
836	 * Check the first block and determine if it's on a log device
837	 * which may have been removed or faulted prior to loading this
838	 * pool.  If so, there's no point in checking the rest of the log
839	 * as its content should have already been synced to the pool.
840	 */
841	if (!BP_IS_HOLE(bp)) {
842		vdev_t *vd;
843		boolean_t valid = B_TRUE;
844
845		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
846		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
847		if (vd->vdev_islog && vdev_is_dead(vd))
848			valid = vdev_log_state_valid(vd);
849		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
850
851		if (!valid)
852			return (0);
853	}
854
855	/*
856	 * Because tx == NULL, zil_claim_log_block() will not actually claim
857	 * any blocks, but just determine whether it is possible to do so.
858	 * In addition to checking the log chain, zil_claim_log_block()
859	 * will invoke zio_claim() with a done func of spa_claim_notify(),
860	 * which will update spa_max_claim_txg.  See spa_load() for details.
861	 */
862	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
863	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
864
865	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
866}
867
868/*
869 * When an itx is "skipped", this function is used to properly mark the
870 * waiter as "done, and signal any thread(s) waiting on it. An itx can
871 * be skipped (and not committed to an lwb) for a variety of reasons,
872 * one of them being that the itx was committed via spa_sync(), prior to
873 * it being committed to an lwb; this can happen if a thread calling
874 * zil_commit() is racing with spa_sync().
875 */
876static void
877zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
878{
879	mutex_enter(&zcw->zcw_lock);
880	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
881	zcw->zcw_done = B_TRUE;
882	cv_broadcast(&zcw->zcw_cv);
883	mutex_exit(&zcw->zcw_lock);
884}
885
886/*
887 * This function is used when the given waiter is to be linked into an
888 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
889 * At this point, the waiter will no longer be referenced by the itx,
890 * and instead, will be referenced by the lwb.
891 */
892static void
893zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
894{
895	mutex_enter(&zcw->zcw_lock);
896	ASSERT(!list_link_active(&zcw->zcw_node));
897	ASSERT3P(zcw->zcw_lwb, ==, NULL);
898	ASSERT3P(lwb, !=, NULL);
899	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
900	    lwb->lwb_state == LWB_STATE_ISSUED);
901
902	list_insert_tail(&lwb->lwb_waiters, zcw);
903	zcw->zcw_lwb = lwb;
904	mutex_exit(&zcw->zcw_lock);
905}
906
907/*
908 * This function is used when zio_alloc_zil() fails to allocate a ZIL
909 * block, and the given waiter must be linked to the "nolwb waiters"
910 * list inside of zil_process_commit_list().
911 */
912static void
913zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
914{
915	mutex_enter(&zcw->zcw_lock);
916	ASSERT(!list_link_active(&zcw->zcw_node));
917	ASSERT3P(zcw->zcw_lwb, ==, NULL);
918	list_insert_tail(nolwb, zcw);
919	mutex_exit(&zcw->zcw_lock);
920}
921
922void
923zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
924{
925	avl_tree_t *t = &lwb->lwb_vdev_tree;
926	avl_index_t where;
927	zil_vdev_node_t *zv, zvsearch;
928	int ndvas = BP_GET_NDVAS(bp);
929	int i;
930
931	if (zfs_nocacheflush)
932		return;
933
934	mutex_enter(&lwb->lwb_vdev_lock);
935	for (i = 0; i < ndvas; i++) {
936		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
937		if (avl_find(t, &zvsearch, &where) == NULL) {
938			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
939			zv->zv_vdev = zvsearch.zv_vdev;
940			avl_insert(t, zv, where);
941		}
942	}
943	mutex_exit(&lwb->lwb_vdev_lock);
944}
945
946void
947zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
948{
949	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
950}
951
952/*
953 * This function is a called after all VDEVs associated with a given lwb
954 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
955 * as the lwb write completes, if "zfs_nocacheflush" is set.
956 *
957 * The intention is for this function to be called as soon as the
958 * contents of an lwb are considered "stable" on disk, and will survive
959 * any sudden loss of power. At this point, any threads waiting for the
960 * lwb to reach this state are signalled, and the "waiter" structures
961 * are marked "done".
962 */
963static void
964zil_lwb_flush_vdevs_done(zio_t *zio)
965{
966	lwb_t *lwb = zio->io_private;
967	zilog_t *zilog = lwb->lwb_zilog;
968	dmu_tx_t *tx = lwb->lwb_tx;
969	zil_commit_waiter_t *zcw;
970
971	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
972
973	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
974
975	mutex_enter(&zilog->zl_lock);
976
977	/*
978	 * Ensure the lwb buffer pointer is cleared before releasing the
979	 * txg. If we have had an allocation failure and the txg is
980	 * waiting to sync then we want zil_sync() to remove the lwb so
981	 * that it's not picked up as the next new one in
982	 * zil_process_commit_list(). zil_sync() will only remove the
983	 * lwb if lwb_buf is null.
984	 */
985	lwb->lwb_buf = NULL;
986	lwb->lwb_tx = NULL;
987
988	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
989	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
990
991	lwb->lwb_root_zio = NULL;
992	lwb->lwb_state = LWB_STATE_DONE;
993
994	if (zilog->zl_last_lwb_opened == lwb) {
995		/*
996		 * Remember the highest committed log sequence number
997		 * for ztest. We only update this value when all the log
998		 * writes succeeded, because ztest wants to ASSERT that
999		 * it got the whole log chain.
1000		 */
1001		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1002	}
1003
1004	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1005		mutex_enter(&zcw->zcw_lock);
1006
1007		ASSERT(list_link_active(&zcw->zcw_node));
1008		list_remove(&lwb->lwb_waiters, zcw);
1009
1010		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1011		zcw->zcw_lwb = NULL;
1012
1013		zcw->zcw_zio_error = zio->io_error;
1014
1015		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1016		zcw->zcw_done = B_TRUE;
1017		cv_broadcast(&zcw->zcw_cv);
1018
1019		mutex_exit(&zcw->zcw_lock);
1020	}
1021
1022	mutex_exit(&zilog->zl_lock);
1023
1024	/*
1025	 * Now that we've written this log block, we have a stable pointer
1026	 * to the next block in the chain, so it's OK to let the txg in
1027	 * which we allocated the next block sync.
1028	 */
1029	dmu_tx_commit(tx);
1030}
1031
1032/*
1033 * This is called when an lwb write completes. This means, this specific
1034 * lwb was written to disk, and all dependent lwb have also been
1035 * written to disk.
1036 *
1037 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1038 * the VDEVs involved in writing out this specific lwb. The lwb will be
1039 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1040 * zio completion callback for the lwb's root zio.
1041 */
1042static void
1043zil_lwb_write_done(zio_t *zio)
1044{
1045	lwb_t *lwb = zio->io_private;
1046	spa_t *spa = zio->io_spa;
1047	zilog_t *zilog = lwb->lwb_zilog;
1048	avl_tree_t *t = &lwb->lwb_vdev_tree;
1049	void *cookie = NULL;
1050	zil_vdev_node_t *zv;
1051
1052	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1053
1054	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1055	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1056	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1057	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1058	ASSERT(!BP_IS_GANG(zio->io_bp));
1059	ASSERT(!BP_IS_HOLE(zio->io_bp));
1060	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1061
1062	abd_put(zio->io_abd);
1063
1064	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1065
1066	mutex_enter(&zilog->zl_lock);
1067	lwb->lwb_write_zio = NULL;
1068	mutex_exit(&zilog->zl_lock);
1069
1070	if (avl_numnodes(t) == 0)
1071		return;
1072
1073	/*
1074	 * If there was an IO error, we're not going to call zio_flush()
1075	 * on these vdevs, so we simply empty the tree and free the
1076	 * nodes. We avoid calling zio_flush() since there isn't any
1077	 * good reason for doing so, after the lwb block failed to be
1078	 * written out.
1079	 */
1080	if (zio->io_error != 0) {
1081		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1082			kmem_free(zv, sizeof (*zv));
1083		return;
1084	}
1085
1086	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1087		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1088		if (vd != NULL)
1089			zio_flush(lwb->lwb_root_zio, vd);
1090		kmem_free(zv, sizeof (*zv));
1091	}
1092}
1093
1094/*
1095 * This function's purpose is to "open" an lwb such that it is ready to
1096 * accept new itxs being committed to it. To do this, the lwb's zio
1097 * structures are created, and linked to the lwb. This function is
1098 * idempotent; if the passed in lwb has already been opened, this
1099 * function is essentially a no-op.
1100 */
1101static void
1102zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1103{
1104	zbookmark_phys_t zb;
1105	zio_priority_t prio;
1106
1107	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1108	ASSERT3P(lwb, !=, NULL);
1109	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1110	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1111
1112	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1113	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1114	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1115
1116	if (lwb->lwb_root_zio == NULL) {
1117		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1118		    BP_GET_LSIZE(&lwb->lwb_blk));
1119
1120		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1121			prio = ZIO_PRIORITY_SYNC_WRITE;
1122		else
1123			prio = ZIO_PRIORITY_ASYNC_WRITE;
1124
1125		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1126		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1127		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1128
1129		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1130		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1131		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1132		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1133		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1134
1135		lwb->lwb_state = LWB_STATE_OPENED;
1136
1137		mutex_enter(&zilog->zl_lock);
1138
1139		/*
1140		 * The zilog's "zl_last_lwb_opened" field is used to
1141		 * build the lwb/zio dependency chain, which is used to
1142		 * preserve the ordering of lwb completions that is
1143		 * required by the semantics of the ZIL. Each new lwb
1144		 * zio becomes a parent of the "previous" lwb zio, such
1145		 * that the new lwb's zio cannot complete until the
1146		 * "previous" lwb's zio completes.
1147		 *
1148		 * This is required by the semantics of zil_commit();
1149		 * the commit waiters attached to the lwbs will be woken
1150		 * in the lwb zio's completion callback, so this zio
1151		 * dependency graph ensures the waiters are woken in the
1152		 * correct order (the same order the lwbs were created).
1153		 */
1154		lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1155		if (last_lwb_opened != NULL &&
1156		    last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1157			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1158			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1159			ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1160			zio_add_child(lwb->lwb_root_zio,
1161			    last_lwb_opened->lwb_root_zio);
1162		}
1163		zilog->zl_last_lwb_opened = lwb;
1164
1165		mutex_exit(&zilog->zl_lock);
1166	}
1167
1168	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1169	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1170	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1171}
1172
1173/*
1174 * Define a limited set of intent log block sizes.
1175 *
1176 * These must be a multiple of 4KB. Note only the amount used (again
1177 * aligned to 4KB) actually gets written. However, we can't always just
1178 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1179 */
1180uint64_t zil_block_buckets[] = {
1181    4096,		/* non TX_WRITE */
1182    8192+4096,		/* data base */
1183    32*1024 + 4096, 	/* NFS writes */
1184    UINT64_MAX
1185};
1186
1187/*
1188 * Start a log block write and advance to the next log block.
1189 * Calls are serialized.
1190 */
1191static lwb_t *
1192zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1193{
1194	lwb_t *nlwb = NULL;
1195	zil_chain_t *zilc;
1196	spa_t *spa = zilog->zl_spa;
1197	blkptr_t *bp;
1198	dmu_tx_t *tx;
1199	uint64_t txg;
1200	uint64_t zil_blksz, wsz;
1201	int i, error;
1202	boolean_t slog;
1203
1204	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1205	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1206	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1207	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1208
1209	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1210		zilc = (zil_chain_t *)lwb->lwb_buf;
1211		bp = &zilc->zc_next_blk;
1212	} else {
1213		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1214		bp = &zilc->zc_next_blk;
1215	}
1216
1217	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1218
1219	/*
1220	 * Allocate the next block and save its address in this block
1221	 * before writing it in order to establish the log chain.
1222	 * Note that if the allocation of nlwb synced before we wrote
1223	 * the block that points at it (lwb), we'd leak it if we crashed.
1224	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1225	 * We dirty the dataset to ensure that zil_sync() will be called
1226	 * to clean up in the event of allocation failure or I/O failure.
1227	 */
1228
1229	tx = dmu_tx_create(zilog->zl_os);
1230
1231	/*
1232	 * Since we are not going to create any new dirty data and we can even
1233	 * help with clearing the existing dirty data, we should not be subject
1234	 * to the dirty data based delays.
1235	 * We (ab)use TXG_WAITED to bypass the delay mechanism.
1236	 * One side effect from using TXG_WAITED is that dmu_tx_assign() can
1237	 * fail if the pool is suspended.  Those are dramatic circumstances,
1238	 * so we return NULL to signal that the normal ZIL processing is not
1239	 * possible and txg_wait_synced() should be used to ensure that the data
1240	 * is on disk.
1241	 */
1242	error = dmu_tx_assign(tx, TXG_WAITED);
1243	if (error != 0) {
1244		ASSERT3S(error, ==, EIO);
1245		dmu_tx_abort(tx);
1246		return (NULL);
1247	}
1248	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1249	txg = dmu_tx_get_txg(tx);
1250
1251	lwb->lwb_tx = tx;
1252
1253	/*
1254	 * Log blocks are pre-allocated. Here we select the size of the next
1255	 * block, based on size used in the last block.
1256	 * - first find the smallest bucket that will fit the block from a
1257	 *   limited set of block sizes. This is because it's faster to write
1258	 *   blocks allocated from the same metaslab as they are adjacent or
1259	 *   close.
1260	 * - next find the maximum from the new suggested size and an array of
1261	 *   previous sizes. This lessens a picket fence effect of wrongly
1262	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1263	 *   requests.
1264	 *
1265	 * Note we only write what is used, but we can't just allocate
1266	 * the maximum block size because we can exhaust the available
1267	 * pool log space.
1268	 */
1269	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1270	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1271		continue;
1272	zil_blksz = zil_block_buckets[i];
1273	if (zil_blksz == UINT64_MAX)
1274		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1275	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1276	for (i = 0; i < ZIL_PREV_BLKS; i++)
1277		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1278	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1279
1280	BP_ZERO(bp);
1281
1282	/* pass the old blkptr in order to spread log blocks across devs */
1283	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1284	if (error == 0) {
1285		ASSERT3U(bp->blk_birth, ==, txg);
1286		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1287		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1288
1289		/*
1290		 * Allocate a new log write block (lwb).
1291		 */
1292		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1293	}
1294
1295	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1296		/* For Slim ZIL only write what is used. */
1297		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1298		ASSERT3U(wsz, <=, lwb->lwb_sz);
1299		zio_shrink(lwb->lwb_write_zio, wsz);
1300
1301	} else {
1302		wsz = lwb->lwb_sz;
1303	}
1304
1305	zilc->zc_pad = 0;
1306	zilc->zc_nused = lwb->lwb_nused;
1307	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1308
1309	/*
1310	 * clear unused data for security
1311	 */
1312	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1313
1314	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1315
1316	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1317	lwb->lwb_issued_timestamp = gethrtime();
1318	lwb->lwb_state = LWB_STATE_ISSUED;
1319
1320	zio_nowait(lwb->lwb_root_zio);
1321	zio_nowait(lwb->lwb_write_zio);
1322
1323	/*
1324	 * If there was an allocation failure then nlwb will be null which
1325	 * forces a txg_wait_synced().
1326	 */
1327	return (nlwb);
1328}
1329
1330static lwb_t *
1331zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1332{
1333	lr_t *lrcb, *lrc;
1334	lr_write_t *lrwb, *lrw;
1335	char *lr_buf;
1336	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1337
1338	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1339	ASSERT3P(lwb, !=, NULL);
1340	ASSERT3P(lwb->lwb_buf, !=, NULL);
1341
1342	zil_lwb_write_open(zilog, lwb);
1343
1344	lrc = &itx->itx_lr;
1345	lrw = (lr_write_t *)lrc;
1346
1347	/*
1348	 * A commit itx doesn't represent any on-disk state; instead
1349	 * it's simply used as a place holder on the commit list, and
1350	 * provides a mechanism for attaching a "commit waiter" onto the
1351	 * correct lwb (such that the waiter can be signalled upon
1352	 * completion of that lwb). Thus, we don't process this itx's
1353	 * log record if it's a commit itx (these itx's don't have log
1354	 * records), and instead link the itx's waiter onto the lwb's
1355	 * list of waiters.
1356	 *
1357	 * For more details, see the comment above zil_commit().
1358	 */
1359	if (lrc->lrc_txtype == TX_COMMIT) {
1360		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1361		itx->itx_private = NULL;
1362		return (lwb);
1363	}
1364
1365	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1366		dlen = P2ROUNDUP_TYPED(
1367		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1368	} else {
1369		dlen = 0;
1370	}
1371	reclen = lrc->lrc_reclen;
1372	zilog->zl_cur_used += (reclen + dlen);
1373	txg = lrc->lrc_txg;
1374
1375	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1376
1377cont:
1378	/*
1379	 * If this record won't fit in the current log block, start a new one.
1380	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1381	 */
1382	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1383	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1384	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1385	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1386		lwb = zil_lwb_write_issue(zilog, lwb);
1387		if (lwb == NULL)
1388			return (NULL);
1389		zil_lwb_write_open(zilog, lwb);
1390		ASSERT(LWB_EMPTY(lwb));
1391		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1392		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1393	}
1394
1395	dnow = MIN(dlen, lwb_sp - reclen);
1396	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1397	bcopy(lrc, lr_buf, reclen);
1398	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1399	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1400
1401	/*
1402	 * If it's a write, fetch the data or get its blkptr as appropriate.
1403	 */
1404	if (lrc->lrc_txtype == TX_WRITE) {
1405		if (txg > spa_freeze_txg(zilog->zl_spa))
1406			txg_wait_synced(zilog->zl_dmu_pool, txg);
1407		if (itx->itx_wr_state != WR_COPIED) {
1408			char *dbuf;
1409			int error;
1410
1411			if (itx->itx_wr_state == WR_NEED_COPY) {
1412				dbuf = lr_buf + reclen;
1413				lrcb->lrc_reclen += dnow;
1414				if (lrwb->lr_length > dnow)
1415					lrwb->lr_length = dnow;
1416				lrw->lr_offset += dnow;
1417				lrw->lr_length -= dnow;
1418			} else {
1419				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1420				dbuf = NULL;
1421			}
1422
1423			/*
1424			 * We pass in the "lwb_write_zio" rather than
1425			 * "lwb_root_zio" so that the "lwb_write_zio"
1426			 * becomes the parent of any zio's created by
1427			 * the "zl_get_data" callback. The vdevs are
1428			 * flushed after the "lwb_write_zio" completes,
1429			 * so we want to make sure that completion
1430			 * callback waits for these additional zio's,
1431			 * such that the vdevs used by those zio's will
1432			 * be included in the lwb's vdev tree, and those
1433			 * vdevs will be properly flushed. If we passed
1434			 * in "lwb_root_zio" here, then these additional
1435			 * vdevs may not be flushed; e.g. if these zio's
1436			 * completed after "lwb_write_zio" completed.
1437			 */
1438			error = zilog->zl_get_data(itx->itx_private,
1439			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1440
1441			if (error == EIO) {
1442				txg_wait_synced(zilog->zl_dmu_pool, txg);
1443				return (lwb);
1444			}
1445			if (error != 0) {
1446				ASSERT(error == ENOENT || error == EEXIST ||
1447				    error == EALREADY);
1448				return (lwb);
1449			}
1450		}
1451	}
1452
1453	/*
1454	 * We're actually making an entry, so update lrc_seq to be the
1455	 * log record sequence number.  Note that this is generally not
1456	 * equal to the itx sequence number because not all transactions
1457	 * are synchronous, and sometimes spa_sync() gets there first.
1458	 */
1459	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1460	lwb->lwb_nused += reclen + dnow;
1461
1462	zil_lwb_add_txg(lwb, txg);
1463
1464	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1465	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1466
1467	dlen -= dnow;
1468	if (dlen > 0) {
1469		zilog->zl_cur_used += reclen;
1470		goto cont;
1471	}
1472
1473	return (lwb);
1474}
1475
1476itx_t *
1477zil_itx_create(uint64_t txtype, size_t lrsize)
1478{
1479	itx_t *itx;
1480
1481	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1482
1483	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1484	itx->itx_lr.lrc_txtype = txtype;
1485	itx->itx_lr.lrc_reclen = lrsize;
1486	itx->itx_lr.lrc_seq = 0;	/* defensive */
1487	itx->itx_sync = B_TRUE;		/* default is synchronous */
1488
1489	return (itx);
1490}
1491
1492void
1493zil_itx_destroy(itx_t *itx)
1494{
1495	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1496}
1497
1498/*
1499 * Free up the sync and async itxs. The itxs_t has already been detached
1500 * so no locks are needed.
1501 */
1502static void
1503zil_itxg_clean(itxs_t *itxs)
1504{
1505	itx_t *itx;
1506	list_t *list;
1507	avl_tree_t *t;
1508	void *cookie;
1509	itx_async_node_t *ian;
1510
1511	list = &itxs->i_sync_list;
1512	while ((itx = list_head(list)) != NULL) {
1513		/*
1514		 * In the general case, commit itxs will not be found
1515		 * here, as they'll be committed to an lwb via
1516		 * zil_lwb_commit(), and free'd in that function. Having
1517		 * said that, it is still possible for commit itxs to be
1518		 * found here, due to the following race:
1519		 *
1520		 *	- a thread calls zil_commit() which assigns the
1521		 *	  commit itx to a per-txg i_sync_list
1522		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1523		 *	  while the waiter is still on the i_sync_list
1524		 *
1525		 * There's nothing to prevent syncing the txg while the
1526		 * waiter is on the i_sync_list. This normally doesn't
1527		 * happen because spa_sync() is slower than zil_commit(),
1528		 * but if zil_commit() calls txg_wait_synced() (e.g.
1529		 * because zil_create() or zil_commit_writer_stall() is
1530		 * called) we will hit this case.
1531		 */
1532		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1533			zil_commit_waiter_skip(itx->itx_private);
1534
1535		list_remove(list, itx);
1536		zil_itx_destroy(itx);
1537	}
1538
1539	cookie = NULL;
1540	t = &itxs->i_async_tree;
1541	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1542		list = &ian->ia_list;
1543		while ((itx = list_head(list)) != NULL) {
1544			list_remove(list, itx);
1545			/* commit itxs should never be on the async lists. */
1546			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1547			zil_itx_destroy(itx);
1548		}
1549		list_destroy(list);
1550		kmem_free(ian, sizeof (itx_async_node_t));
1551	}
1552	avl_destroy(t);
1553
1554	kmem_free(itxs, sizeof (itxs_t));
1555}
1556
1557static int
1558zil_aitx_compare(const void *x1, const void *x2)
1559{
1560	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1561	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1562
1563	if (o1 < o2)
1564		return (-1);
1565	if (o1 > o2)
1566		return (1);
1567
1568	return (0);
1569}
1570
1571/*
1572 * Remove all async itx with the given oid.
1573 */
1574static void
1575zil_remove_async(zilog_t *zilog, uint64_t oid)
1576{
1577	uint64_t otxg, txg;
1578	itx_async_node_t *ian;
1579	avl_tree_t *t;
1580	avl_index_t where;
1581	list_t clean_list;
1582	itx_t *itx;
1583
1584	ASSERT(oid != 0);
1585	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1586
1587	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1588		otxg = ZILTEST_TXG;
1589	else
1590		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1591
1592	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1593		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1594
1595		mutex_enter(&itxg->itxg_lock);
1596		if (itxg->itxg_txg != txg) {
1597			mutex_exit(&itxg->itxg_lock);
1598			continue;
1599		}
1600
1601		/*
1602		 * Locate the object node and append its list.
1603		 */
1604		t = &itxg->itxg_itxs->i_async_tree;
1605		ian = avl_find(t, &oid, &where);
1606		if (ian != NULL)
1607			list_move_tail(&clean_list, &ian->ia_list);
1608		mutex_exit(&itxg->itxg_lock);
1609	}
1610	while ((itx = list_head(&clean_list)) != NULL) {
1611		list_remove(&clean_list, itx);
1612		/* commit itxs should never be on the async lists. */
1613		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1614		zil_itx_destroy(itx);
1615	}
1616	list_destroy(&clean_list);
1617}
1618
1619void
1620zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1621{
1622	uint64_t txg;
1623	itxg_t *itxg;
1624	itxs_t *itxs, *clean = NULL;
1625
1626	/*
1627	 * Object ids can be re-instantiated in the next txg so
1628	 * remove any async transactions to avoid future leaks.
1629	 * This can happen if a fsync occurs on the re-instantiated
1630	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1631	 * the new file data and flushes a write record for the old object.
1632	 */
1633	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1634		zil_remove_async(zilog, itx->itx_oid);
1635
1636	/*
1637	 * Ensure the data of a renamed file is committed before the rename.
1638	 */
1639	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1640		zil_async_to_sync(zilog, itx->itx_oid);
1641
1642	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1643		txg = ZILTEST_TXG;
1644	else
1645		txg = dmu_tx_get_txg(tx);
1646
1647	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1648	mutex_enter(&itxg->itxg_lock);
1649	itxs = itxg->itxg_itxs;
1650	if (itxg->itxg_txg != txg) {
1651		if (itxs != NULL) {
1652			/*
1653			 * The zil_clean callback hasn't got around to cleaning
1654			 * this itxg. Save the itxs for release below.
1655			 * This should be rare.
1656			 */
1657			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1658			    "txg %llu", itxg->itxg_txg);
1659			clean = itxg->itxg_itxs;
1660		}
1661		itxg->itxg_txg = txg;
1662		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1663
1664		list_create(&itxs->i_sync_list, sizeof (itx_t),
1665		    offsetof(itx_t, itx_node));
1666		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1667		    sizeof (itx_async_node_t),
1668		    offsetof(itx_async_node_t, ia_node));
1669	}
1670	if (itx->itx_sync) {
1671		list_insert_tail(&itxs->i_sync_list, itx);
1672	} else {
1673		avl_tree_t *t = &itxs->i_async_tree;
1674		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1675		itx_async_node_t *ian;
1676		avl_index_t where;
1677
1678		ian = avl_find(t, &foid, &where);
1679		if (ian == NULL) {
1680			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1681			list_create(&ian->ia_list, sizeof (itx_t),
1682			    offsetof(itx_t, itx_node));
1683			ian->ia_foid = foid;
1684			avl_insert(t, ian, where);
1685		}
1686		list_insert_tail(&ian->ia_list, itx);
1687	}
1688
1689	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1690
1691	/*
1692	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1693	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1694	 * need to be careful to always dirty the ZIL using the "real"
1695	 * TXG (not itxg_txg) even when the SPA is frozen.
1696	 */
1697	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1698	mutex_exit(&itxg->itxg_lock);
1699
1700	/* Release the old itxs now we've dropped the lock */
1701	if (clean != NULL)
1702		zil_itxg_clean(clean);
1703}
1704
1705/*
1706 * If there are any in-memory intent log transactions which have now been
1707 * synced then start up a taskq to free them. We should only do this after we
1708 * have written out the uberblocks (i.e. txg has been comitted) so that
1709 * don't inadvertently clean out in-memory log records that would be required
1710 * by zil_commit().
1711 */
1712void
1713zil_clean(zilog_t *zilog, uint64_t synced_txg)
1714{
1715	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1716	itxs_t *clean_me;
1717
1718	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1719
1720	mutex_enter(&itxg->itxg_lock);
1721	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1722		mutex_exit(&itxg->itxg_lock);
1723		return;
1724	}
1725	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1726	ASSERT3U(itxg->itxg_txg, !=, 0);
1727	clean_me = itxg->itxg_itxs;
1728	itxg->itxg_itxs = NULL;
1729	itxg->itxg_txg = 0;
1730	mutex_exit(&itxg->itxg_lock);
1731	/*
1732	 * Preferably start a task queue to free up the old itxs but
1733	 * if taskq_dispatch can't allocate resources to do that then
1734	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1735	 * created a bad performance problem.
1736	 */
1737	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1738	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1739	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1740	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1741		zil_itxg_clean(clean_me);
1742}
1743
1744/*
1745 * This function will traverse the queue of itxs that need to be
1746 * committed, and move them onto the ZIL's zl_itx_commit_list.
1747 */
1748static void
1749zil_get_commit_list(zilog_t *zilog)
1750{
1751	uint64_t otxg, txg;
1752	list_t *commit_list = &zilog->zl_itx_commit_list;
1753
1754	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1755
1756	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1757		otxg = ZILTEST_TXG;
1758	else
1759		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1760
1761	/*
1762	 * This is inherently racy, since there is nothing to prevent
1763	 * the last synced txg from changing. That's okay since we'll
1764	 * only commit things in the future.
1765	 */
1766	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1767		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1768
1769		mutex_enter(&itxg->itxg_lock);
1770		if (itxg->itxg_txg != txg) {
1771			mutex_exit(&itxg->itxg_lock);
1772			continue;
1773		}
1774
1775		/*
1776		 * If we're adding itx records to the zl_itx_commit_list,
1777		 * then the zil better be dirty in this "txg". We can assert
1778		 * that here since we're holding the itxg_lock which will
1779		 * prevent spa_sync from cleaning it. Once we add the itxs
1780		 * to the zl_itx_commit_list we must commit it to disk even
1781		 * if it's unnecessary (i.e. the txg was synced).
1782		 */
1783		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1784		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1785		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1786
1787		mutex_exit(&itxg->itxg_lock);
1788	}
1789}
1790
1791/*
1792 * Move the async itxs for a specified object to commit into sync lists.
1793 */
1794void
1795zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1796{
1797	uint64_t otxg, txg;
1798	itx_async_node_t *ian;
1799	avl_tree_t *t;
1800	avl_index_t where;
1801
1802	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1803		otxg = ZILTEST_TXG;
1804	else
1805		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1806
1807	/*
1808	 * This is inherently racy, since there is nothing to prevent
1809	 * the last synced txg from changing.
1810	 */
1811	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1812		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1813
1814		mutex_enter(&itxg->itxg_lock);
1815		if (itxg->itxg_txg != txg) {
1816			mutex_exit(&itxg->itxg_lock);
1817			continue;
1818		}
1819
1820		/*
1821		 * If a foid is specified then find that node and append its
1822		 * list. Otherwise walk the tree appending all the lists
1823		 * to the sync list. We add to the end rather than the
1824		 * beginning to ensure the create has happened.
1825		 */
1826		t = &itxg->itxg_itxs->i_async_tree;
1827		if (foid != 0) {
1828			ian = avl_find(t, &foid, &where);
1829			if (ian != NULL) {
1830				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1831				    &ian->ia_list);
1832			}
1833		} else {
1834			void *cookie = NULL;
1835
1836			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1837				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1838				    &ian->ia_list);
1839				list_destroy(&ian->ia_list);
1840				kmem_free(ian, sizeof (itx_async_node_t));
1841			}
1842		}
1843		mutex_exit(&itxg->itxg_lock);
1844	}
1845}
1846
1847/*
1848 * This function will prune commit itxs that are at the head of the
1849 * commit list (it won't prune past the first non-commit itx), and
1850 * either: a) attach them to the last lwb that's still pending
1851 * completion, or b) skip them altogether.
1852 *
1853 * This is used as a performance optimization to prevent commit itxs
1854 * from generating new lwbs when it's unnecessary to do so.
1855 */
1856static void
1857zil_prune_commit_list(zilog_t *zilog)
1858{
1859	itx_t *itx;
1860
1861	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1862
1863	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1864		lr_t *lrc = &itx->itx_lr;
1865		if (lrc->lrc_txtype != TX_COMMIT)
1866			break;
1867
1868		mutex_enter(&zilog->zl_lock);
1869
1870		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1871		if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1872			/*
1873			 * All of the itxs this waiter was waiting on
1874			 * must have already completed (or there were
1875			 * never any itx's for it to wait on), so it's
1876			 * safe to skip this waiter and mark it done.
1877			 */
1878			zil_commit_waiter_skip(itx->itx_private);
1879		} else {
1880			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1881			itx->itx_private = NULL;
1882		}
1883
1884		mutex_exit(&zilog->zl_lock);
1885
1886		list_remove(&zilog->zl_itx_commit_list, itx);
1887		zil_itx_destroy(itx);
1888	}
1889
1890	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1891}
1892
1893static void
1894zil_commit_writer_stall(zilog_t *zilog)
1895{
1896	/*
1897	 * When zio_alloc_zil() fails to allocate the next lwb block on
1898	 * disk, we must call txg_wait_synced() to ensure all of the
1899	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1900	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1901	 * to zil_process_commit_list()) will have to call zil_create(),
1902	 * and start a new ZIL chain.
1903	 *
1904	 * Since zil_alloc_zil() failed, the lwb that was previously
1905	 * issued does not have a pointer to the "next" lwb on disk.
1906	 * Thus, if another ZIL writer thread was to allocate the "next"
1907	 * on-disk lwb, that block could be leaked in the event of a
1908	 * crash (because the previous lwb on-disk would not point to
1909	 * it).
1910	 *
1911	 * We must hold the zilog's zl_writer_lock while we do this, to
1912	 * ensure no new threads enter zil_process_commit_list() until
1913	 * all lwb's in the zl_lwb_list have been synced and freed
1914	 * (which is achieved via the txg_wait_synced() call).
1915	 */
1916	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1917	txg_wait_synced(zilog->zl_dmu_pool, 0);
1918	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1919}
1920
1921/*
1922 * This function will traverse the commit list, creating new lwbs as
1923 * needed, and committing the itxs from the commit list to these newly
1924 * created lwbs. Additionally, as a new lwb is created, the previous
1925 * lwb will be issued to the zio layer to be written to disk.
1926 */
1927static void
1928zil_process_commit_list(zilog_t *zilog)
1929{
1930	spa_t *spa = zilog->zl_spa;
1931	list_t nolwb_waiters;
1932	lwb_t *lwb;
1933	itx_t *itx;
1934
1935	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1936
1937	/*
1938	 * Return if there's nothing to commit before we dirty the fs by
1939	 * calling zil_create().
1940	 */
1941	if (list_head(&zilog->zl_itx_commit_list) == NULL)
1942		return;
1943
1944	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
1945	    offsetof(zil_commit_waiter_t, zcw_node));
1946
1947	lwb = list_tail(&zilog->zl_lwb_list);
1948	if (lwb == NULL) {
1949		lwb = zil_create(zilog);
1950	} else {
1951		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
1952		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
1953	}
1954
1955	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1956		lr_t *lrc = &itx->itx_lr;
1957		uint64_t txg = lrc->lrc_txg;
1958
1959		ASSERT3U(txg, !=, 0);
1960
1961		if (lrc->lrc_txtype == TX_COMMIT) {
1962			DTRACE_PROBE2(zil__process__commit__itx,
1963			    zilog_t *, zilog, itx_t *, itx);
1964		} else {
1965			DTRACE_PROBE2(zil__process__normal__itx,
1966			    zilog_t *, zilog, itx_t *, itx);
1967		}
1968
1969		/*
1970		 * This is inherently racy and may result in us writing
1971		 * out a log block for a txg that was just synced. This
1972		 * is ok since we'll end cleaning up that log block the
1973		 * next time we call zil_sync().
1974		 */
1975		boolean_t synced = txg <= spa_last_synced_txg(spa);
1976		boolean_t frozen = txg > spa_freeze_txg(spa);
1977
1978		if (!synced || frozen) {
1979			if (lwb != NULL) {
1980				lwb = zil_lwb_commit(zilog, itx, lwb);
1981			} else if (lrc->lrc_txtype == TX_COMMIT) {
1982				ASSERT3P(lwb, ==, NULL);
1983				zil_commit_waiter_link_nolwb(
1984				    itx->itx_private, &nolwb_waiters);
1985			}
1986		} else if (lrc->lrc_txtype == TX_COMMIT) {
1987			ASSERT3B(synced, ==, B_TRUE);
1988			ASSERT3B(frozen, ==, B_FALSE);
1989
1990			/*
1991			 * If this is a commit itx, then there will be a
1992			 * thread that is either: already waiting for
1993			 * it, or soon will be waiting.
1994			 *
1995			 * This itx has already been committed to disk
1996			 * via spa_sync() so we don't bother committing
1997			 * it to an lwb. As a result, we cannot use the
1998			 * lwb zio callback to signal the waiter and
1999			 * mark it as done, so we must do that here.
2000			 */
2001			zil_commit_waiter_skip(itx->itx_private);
2002		}
2003
2004		list_remove(&zilog->zl_itx_commit_list, itx);
2005		zil_itx_destroy(itx);
2006	}
2007
2008	if (lwb == NULL) {
2009		/*
2010		 * This indicates zio_alloc_zil() failed to allocate the
2011		 * "next" lwb on-disk. When this happens, we must stall
2012		 * the ZIL write pipeline; see the comment within
2013		 * zil_commit_writer_stall() for more details.
2014		 */
2015		zil_commit_writer_stall(zilog);
2016
2017		/*
2018		 * Additionally, we have to signal and mark the "nolwb"
2019		 * waiters as "done" here, since without an lwb, we
2020		 * can't do this via zil_lwb_flush_vdevs_done() like
2021		 * normal.
2022		 */
2023		zil_commit_waiter_t *zcw;
2024		while (zcw = list_head(&nolwb_waiters)) {
2025			zil_commit_waiter_skip(zcw);
2026			list_remove(&nolwb_waiters, zcw);
2027		}
2028	} else {
2029		ASSERT(list_is_empty(&nolwb_waiters));
2030		ASSERT3P(lwb, !=, NULL);
2031		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2032		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2033
2034		/*
2035		 * At this point, the ZIL block pointed at by the "lwb"
2036		 * variable is in one of the following states: "closed"
2037		 * or "open".
2038		 *
2039		 * If its "closed", then no itxs have been committed to
2040		 * it, so there's no point in issuing its zio (i.e.
2041		 * it's "empty").
2042		 *
2043		 * If its "open" state, then it contains one or more
2044		 * itxs that eventually need to be committed to stable
2045		 * storage. In this case we intentionally do not issue
2046		 * the lwb's zio to disk yet, and instead rely on one of
2047		 * the following two mechanisms for issuing the zio:
2048		 *
2049		 * 1. Ideally, there will be more ZIL activity occuring
2050		 * on the system, such that this function will be
2051		 * immediately called again (not necessarily by the same
2052		 * thread) and this lwb's zio will be issued via
2053		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2054		 * be "full" when it is issued to disk, and we'll make
2055		 * use of the lwb's size the best we can.
2056		 *
2057		 * 2. If there isn't sufficient ZIL activity occuring on
2058		 * the system, such that this lwb's zio isn't issued via
2059		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2060		 * lwb's zio. If this occurs, the lwb is not guaranteed
2061		 * to be "full" by the time its zio is issued, and means
2062		 * the size of the lwb was "too large" given the amount
2063		 * of ZIL activity occuring on the system at that time.
2064		 *
2065		 * We do this for a couple of reasons:
2066		 *
2067		 * 1. To try and reduce the number of IOPs needed to
2068		 * write the same number of itxs. If an lwb has space
2069		 * available in it's buffer for more itxs, and more itxs
2070		 * will be committed relatively soon (relative to the
2071		 * latency of performing a write), then it's beneficial
2072		 * to wait for these "next" itxs. This way, more itxs
2073		 * can be committed to stable storage with fewer writes.
2074		 *
2075		 * 2. To try and use the largest lwb block size that the
2076		 * incoming rate of itxs can support. Again, this is to
2077		 * try and pack as many itxs into as few lwbs as
2078		 * possible, without significantly impacting the latency
2079		 * of each individual itx.
2080		 */
2081	}
2082}
2083
2084/*
2085 * This function is responsible for ensuring the passed in commit waiter
2086 * (and associated commit itx) is committed to an lwb. If the waiter is
2087 * not already committed to an lwb, all itxs in the zilog's queue of
2088 * itxs will be processed. The assumption is the passed in waiter's
2089 * commit itx will found in the queue just like the other non-commit
2090 * itxs, such that when the entire queue is processed, the waiter will
2091 * have been commited to an lwb.
2092 *
2093 * The lwb associated with the passed in waiter is not guaranteed to
2094 * have been issued by the time this function completes. If the lwb is
2095 * not issued, we rely on future calls to zil_commit_writer() to issue
2096 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2097 */
2098static void
2099zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2100{
2101	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2102	ASSERT(spa_writeable(zilog->zl_spa));
2103	ASSERT0(zilog->zl_suspend);
2104
2105	mutex_enter(&zilog->zl_writer_lock);
2106
2107	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2108		/*
2109		 * It's possible that, while we were waiting to acquire
2110		 * the "zl_writer_lock", another thread committed this
2111		 * waiter to an lwb. If that occurs, we bail out early,
2112		 * without processing any of the zilog's queue of itxs.
2113		 *
2114		 * On certain workloads and system configurations, the
2115		 * "zl_writer_lock" can become highly contended. In an
2116		 * attempt to reduce this contention, we immediately drop
2117		 * the lock if the waiter has already been processed.
2118		 *
2119		 * We've measured this optimization to reduce CPU spent
2120		 * contending on this lock by up to 5%, using a system
2121		 * with 32 CPUs, low latency storage (~50 usec writes),
2122		 * and 1024 threads performing sync writes.
2123		 */
2124		goto out;
2125	}
2126
2127	zil_get_commit_list(zilog);
2128	zil_prune_commit_list(zilog);
2129	zil_process_commit_list(zilog);
2130
2131out:
2132	mutex_exit(&zilog->zl_writer_lock);
2133}
2134
2135static void
2136zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2137{
2138	ASSERT(!MUTEX_HELD(&zilog->zl_writer_lock));
2139	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2140	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2141
2142	lwb_t *lwb = zcw->zcw_lwb;
2143	ASSERT3P(lwb, !=, NULL);
2144	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2145
2146	/*
2147	 * If the lwb has already been issued by another thread, we can
2148	 * immediately return since there's no work to be done (the
2149	 * point of this function is to issue the lwb). Additionally, we
2150	 * do this prior to acquiring the zl_writer_lock, to avoid
2151	 * acquiring it when it's not necessary to do so.
2152	 */
2153	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2154	    lwb->lwb_state == LWB_STATE_DONE)
2155		return;
2156
2157	/*
2158	 * In order to call zil_lwb_write_issue() we must hold the
2159	 * zilog's "zl_writer_lock". We can't simply acquire that lock,
2160	 * since we're already holding the commit waiter's "zcw_lock",
2161	 * and those two locks are aquired in the opposite order
2162	 * elsewhere.
2163	 */
2164	mutex_exit(&zcw->zcw_lock);
2165	mutex_enter(&zilog->zl_writer_lock);
2166	mutex_enter(&zcw->zcw_lock);
2167
2168	/*
2169	 * Since we just dropped and re-acquired the commit waiter's
2170	 * lock, we have to re-check to see if the waiter was marked
2171	 * "done" during that process. If the waiter was marked "done",
2172	 * the "lwb" pointer is no longer valid (it can be free'd after
2173	 * the waiter is marked "done"), so without this check we could
2174	 * wind up with a use-after-free error below.
2175	 */
2176	if (zcw->zcw_done)
2177		goto out;
2178
2179	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2180
2181	/*
2182	 * We've already checked this above, but since we hadn't
2183	 * acquired the zilog's zl_writer_lock, we have to perform this
2184	 * check a second time while holding the lock. We can't call
2185	 * zil_lwb_write_issue() if the lwb had already been issued.
2186	 */
2187	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2188	    lwb->lwb_state == LWB_STATE_DONE)
2189		goto out;
2190
2191	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2192
2193	/*
2194	 * As described in the comments above zil_commit_waiter() and
2195	 * zil_process_commit_list(), we need to issue this lwb's zio
2196	 * since we've reached the commit waiter's timeout and it still
2197	 * hasn't been issued.
2198	 */
2199	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2200
2201	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2202
2203	/*
2204	 * Since the lwb's zio hadn't been issued by the time this thread
2205	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2206	 * to influence the zil block size selection algorithm.
2207	 *
2208	 * By having to issue the lwb's zio here, it means the size of the
2209	 * lwb was too large, given the incoming throughput of itxs.  By
2210	 * setting "zl_cur_used" to zero, we communicate this fact to the
2211	 * block size selection algorithm, so it can take this informaiton
2212	 * into account, and potentially select a smaller size for the
2213	 * next lwb block that is allocated.
2214	 */
2215	zilog->zl_cur_used = 0;
2216
2217	if (nlwb == NULL) {
2218		/*
2219		 * When zil_lwb_write_issue() returns NULL, this
2220		 * indicates zio_alloc_zil() failed to allocate the
2221		 * "next" lwb on-disk. When this occurs, the ZIL write
2222		 * pipeline must be stalled; see the comment within the
2223		 * zil_commit_writer_stall() function for more details.
2224		 *
2225		 * We must drop the commit waiter's lock prior to
2226		 * calling zil_commit_writer_stall() or else we can wind
2227		 * up with the following deadlock:
2228		 *
2229		 * - This thread is waiting for the txg to sync while
2230		 *   holding the waiter's lock; txg_wait_synced() is
2231		 *   used within txg_commit_writer_stall().
2232		 *
2233		 * - The txg can't sync because it is waiting for this
2234		 *   lwb's zio callback to call dmu_tx_commit().
2235		 *
2236		 * - The lwb's zio callback can't call dmu_tx_commit()
2237		 *   because it's blocked trying to acquire the waiter's
2238		 *   lock, which occurs prior to calling dmu_tx_commit()
2239		 */
2240		mutex_exit(&zcw->zcw_lock);
2241		zil_commit_writer_stall(zilog);
2242		mutex_enter(&zcw->zcw_lock);
2243	}
2244
2245out:
2246	mutex_exit(&zilog->zl_writer_lock);
2247	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2248}
2249
2250/*
2251 * This function is responsible for performing the following two tasks:
2252 *
2253 * 1. its primary responsibility is to block until the given "commit
2254 *    waiter" is considered "done".
2255 *
2256 * 2. its secondary responsibility is to issue the zio for the lwb that
2257 *    the given "commit waiter" is waiting on, if this function has
2258 *    waited "long enough" and the lwb is still in the "open" state.
2259 *
2260 * Given a sufficient amount of itxs being generated and written using
2261 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2262 * function. If this does not occur, this secondary responsibility will
2263 * ensure the lwb is issued even if there is not other synchronous
2264 * activity on the system.
2265 *
2266 * For more details, see zil_process_commit_list(); more specifically,
2267 * the comment at the bottom of that function.
2268 */
2269static void
2270zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2271{
2272	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2273	ASSERT(!MUTEX_HELD(&zilog->zl_writer_lock));
2274	ASSERT(spa_writeable(zilog->zl_spa));
2275	ASSERT0(zilog->zl_suspend);
2276
2277	mutex_enter(&zcw->zcw_lock);
2278
2279	/*
2280	 * The timeout is scaled based on the lwb latency to avoid
2281	 * significantly impacting the latency of each individual itx.
2282	 * For more details, see the comment at the bottom of the
2283	 * zil_process_commit_list() function.
2284	 */
2285	int pct = MAX(zfs_commit_timeout_pct, 1);
2286#if defined(illumos) || !defined(_KERNEL)
2287	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2288	hrtime_t wakeup = gethrtime() + sleep;
2289#else
2290	sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100);
2291	sbintime_t wakeup = getsbinuptime() + sleep;
2292#endif
2293	boolean_t timedout = B_FALSE;
2294
2295	while (!zcw->zcw_done) {
2296		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2297
2298		lwb_t *lwb = zcw->zcw_lwb;
2299
2300		/*
2301		 * Usually, the waiter will have a non-NULL lwb field here,
2302		 * but it's possible for it to be NULL as a result of
2303		 * zil_commit() racing with spa_sync().
2304		 *
2305		 * When zil_clean() is called, it's possible for the itxg
2306		 * list (which may be cleaned via a taskq) to contain
2307		 * commit itxs. When this occurs, the commit waiters linked
2308		 * off of these commit itxs will not be committed to an
2309		 * lwb.  Additionally, these commit waiters will not be
2310		 * marked done until zil_commit_waiter_skip() is called via
2311		 * zil_itxg_clean().
2312		 *
2313		 * Thus, it's possible for this commit waiter (i.e. the
2314		 * "zcw" variable) to be found in this "in between" state;
2315		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2316		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2317		 */
2318		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2319
2320		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2321			ASSERT3B(timedout, ==, B_FALSE);
2322
2323			/*
2324			 * If the lwb hasn't been issued yet, then we
2325			 * need to wait with a timeout, in case this
2326			 * function needs to issue the lwb after the
2327			 * timeout is reached; responsibility (2) from
2328			 * the comment above this function.
2329			 */
2330#if defined(illumos) || !defined(_KERNEL)
2331			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2332			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2333			    CALLOUT_FLAG_ABSOLUTE);
2334
2335			if (timeleft >= 0 || zcw->zcw_done)
2336				continue;
2337#else
2338			int wait_err = cv_timedwait_sbt(&zcw->zcw_cv,
2339			    &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE);
2340			if (wait_err != EWOULDBLOCK || zcw->zcw_done)
2341				continue;
2342#endif
2343
2344			timedout = B_TRUE;
2345			zil_commit_waiter_timeout(zilog, zcw);
2346
2347			if (!zcw->zcw_done) {
2348				/*
2349				 * If the commit waiter has already been
2350				 * marked "done", it's possible for the
2351				 * waiter's lwb structure to have already
2352				 * been freed.  Thus, we can only reliably
2353				 * make these assertions if the waiter
2354				 * isn't done.
2355				 */
2356				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2357				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2358			}
2359		} else {
2360			/*
2361			 * If the lwb isn't open, then it must have already
2362			 * been issued. In that case, there's no need to
2363			 * use a timeout when waiting for the lwb to
2364			 * complete.
2365			 *
2366			 * Additionally, if the lwb is NULL, the waiter
2367			 * will soon be signalled and marked done via
2368			 * zil_clean() and zil_itxg_clean(), so no timeout
2369			 * is required.
2370			 */
2371
2372			IMPLY(lwb != NULL,
2373			    lwb->lwb_state == LWB_STATE_ISSUED ||
2374			    lwb->lwb_state == LWB_STATE_DONE);
2375			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2376		}
2377	}
2378
2379	mutex_exit(&zcw->zcw_lock);
2380}
2381
2382static zil_commit_waiter_t *
2383zil_alloc_commit_waiter()
2384{
2385	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2386
2387	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2388	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2389	list_link_init(&zcw->zcw_node);
2390	zcw->zcw_lwb = NULL;
2391	zcw->zcw_done = B_FALSE;
2392	zcw->zcw_zio_error = 0;
2393
2394	return (zcw);
2395}
2396
2397static void
2398zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2399{
2400	ASSERT(!list_link_active(&zcw->zcw_node));
2401	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2402	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2403	mutex_destroy(&zcw->zcw_lock);
2404	cv_destroy(&zcw->zcw_cv);
2405	kmem_cache_free(zil_zcw_cache, zcw);
2406}
2407
2408/*
2409 * This function is used to create a TX_COMMIT itx and assign it. This
2410 * way, it will be linked into the ZIL's list of synchronous itxs, and
2411 * then later committed to an lwb (or skipped) when
2412 * zil_process_commit_list() is called.
2413 */
2414static void
2415zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2416{
2417	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2418	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2419
2420	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2421	itx->itx_sync = B_TRUE;
2422	itx->itx_private = zcw;
2423
2424	zil_itx_assign(zilog, itx, tx);
2425
2426	dmu_tx_commit(tx);
2427}
2428
2429/*
2430 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2431 *
2432 * When writing ZIL transactions to the on-disk representation of the
2433 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2434 * itxs can be committed to a single lwb. Once a lwb is written and
2435 * committed to stable storage (i.e. the lwb is written, and vdevs have
2436 * been flushed), each itx that was committed to that lwb is also
2437 * considered to be committed to stable storage.
2438 *
2439 * When an itx is committed to an lwb, the log record (lr_t) contained
2440 * by the itx is copied into the lwb's zio buffer, and once this buffer
2441 * is written to disk, it becomes an on-disk ZIL block.
2442 *
2443 * As itxs are generated, they're inserted into the ZIL's queue of
2444 * uncommitted itxs. The semantics of zil_commit() are such that it will
2445 * block until all itxs that were in the queue when it was called, are
2446 * committed to stable storage.
2447 *
2448 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2449 * itxs, for all objects in the dataset, will be committed to stable
2450 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2451 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2452 * that correspond to the foid passed in, will be committed to stable
2453 * storage prior to zil_commit() returning.
2454 *
2455 * Generally speaking, when zil_commit() is called, the consumer doesn't
2456 * actually care about _all_ of the uncommitted itxs. Instead, they're
2457 * simply trying to waiting for a specific itx to be committed to disk,
2458 * but the interface(s) for interacting with the ZIL don't allow such
2459 * fine-grained communication. A better interface would allow a consumer
2460 * to create and assign an itx, and then pass a reference to this itx to
2461 * zil_commit(); such that zil_commit() would return as soon as that
2462 * specific itx was committed to disk (instead of waiting for _all_
2463 * itxs to be committed).
2464 *
2465 * When a thread calls zil_commit() a special "commit itx" will be
2466 * generated, along with a corresponding "waiter" for this commit itx.
2467 * zil_commit() will wait on this waiter's CV, such that when the waiter
2468 * is marked done, and signalled, zil_commit() will return.
2469 *
2470 * This commit itx is inserted into the queue of uncommitted itxs. This
2471 * provides an easy mechanism for determining which itxs were in the
2472 * queue prior to zil_commit() having been called, and which itxs were
2473 * added after zil_commit() was called.
2474 *
2475 * The commit it is special; it doesn't have any on-disk representation.
2476 * When a commit itx is "committed" to an lwb, the waiter associated
2477 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2478 * completes, each waiter on the lwb's list is marked done and signalled
2479 * -- allowing the thread waiting on the waiter to return from zil_commit().
2480 *
2481 * It's important to point out a few critical factors that allow us
2482 * to make use of the commit itxs, commit waiters, per-lwb lists of
2483 * commit waiters, and zio completion callbacks like we're doing:
2484 *
2485 *   1. The list of waiters for each lwb is traversed, and each commit
2486 *      waiter is marked "done" and signalled, in the zio completion
2487 *      callback of the lwb's zio[*].
2488 *
2489 *      * Actually, the waiters are signalled in the zio completion
2490 *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2491 *        that are sent to the vdevs upon completion of the lwb zio.
2492 *
2493 *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2494 *      itxs, the order in which they are inserted is preserved[*]; as
2495 *      itxs are added to the queue, they are added to the tail of
2496 *      in-memory linked lists.
2497 *
2498 *      When committing the itxs to lwbs (to be written to disk), they
2499 *      are committed in the same order in which the itxs were added to
2500 *      the uncommitted queue's linked list(s); i.e. the linked list of
2501 *      itxs to commit is traversed from head to tail, and each itx is
2502 *      committed to an lwb in that order.
2503 *
2504 *      * To clarify:
2505 *
2506 *        - the order of "sync" itxs is preserved w.r.t. other
2507 *          "sync" itxs, regardless of the corresponding objects.
2508 *        - the order of "async" itxs is preserved w.r.t. other
2509 *          "async" itxs corresponding to the same object.
2510 *        - the order of "async" itxs is *not* preserved w.r.t. other
2511 *          "async" itxs corresponding to different objects.
2512 *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2513 *          versa) is *not* preserved, even for itxs that correspond
2514 *          to the same object.
2515 *
2516 *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2517 *      zil_get_commit_list(), and zil_process_commit_list().
2518 *
2519 *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2520 *      lwb cannot be considered committed to stable storage, until its
2521 *      "previous" lwb is also committed to stable storage. This fact,
2522 *      coupled with the fact described above, means that itxs are
2523 *      committed in (roughly) the order in which they were generated.
2524 *      This is essential because itxs are dependent on prior itxs.
2525 *      Thus, we *must not* deem an itx as being committed to stable
2526 *      storage, until *all* prior itxs have also been committed to
2527 *      stable storage.
2528 *
2529 *      To enforce this ordering of lwb zio's, while still leveraging as
2530 *      much of the underlying storage performance as possible, we rely
2531 *      on two fundamental concepts:
2532 *
2533 *          1. The creation and issuance of lwb zio's is protected by
2534 *             the zilog's "zl_writer_lock", which ensures only a single
2535 *             thread is creating and/or issuing lwb's at a time
2536 *          2. The "previous" lwb is a child of the "current" lwb
2537 *             (leveraging the zio parent-child depenency graph)
2538 *
2539 *      By relying on this parent-child zio relationship, we can have
2540 *      many lwb zio's concurrently issued to the underlying storage,
2541 *      but the order in which they complete will be the same order in
2542 *      which they were created.
2543 */
2544void
2545zil_commit(zilog_t *zilog, uint64_t foid)
2546{
2547	/*
2548	 * We should never attempt to call zil_commit on a snapshot for
2549	 * a couple of reasons:
2550	 *
2551	 * 1. A snapshot may never be modified, thus it cannot have any
2552	 *    in-flight itxs that would have modified the dataset.
2553	 *
2554	 * 2. By design, when zil_commit() is called, a commit itx will
2555	 *    be assigned to this zilog; as a result, the zilog will be
2556	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2557	 *    checks in the code that enforce this invariant, and will
2558	 *    cause a panic if it's not upheld.
2559	 */
2560	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2561
2562	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2563		return;
2564
2565	if (!spa_writeable(zilog->zl_spa)) {
2566		/*
2567		 * If the SPA is not writable, there should never be any
2568		 * pending itxs waiting to be committed to disk. If that
2569		 * weren't true, we'd skip writing those itxs out, and
2570		 * would break the sematics of zil_commit(); thus, we're
2571		 * verifying that truth before we return to the caller.
2572		 */
2573		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2574		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2575		for (int i = 0; i < TXG_SIZE; i++)
2576			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2577		return;
2578	}
2579
2580	/*
2581	 * If the ZIL is suspended, we don't want to dirty it by calling
2582	 * zil_commit_itx_assign() below, nor can we write out
2583	 * lwbs like would be done in zil_commit_write(). Thus, we
2584	 * simply rely on txg_wait_synced() to maintain the necessary
2585	 * semantics, and avoid calling those functions altogether.
2586	 */
2587	if (zilog->zl_suspend > 0) {
2588		txg_wait_synced(zilog->zl_dmu_pool, 0);
2589		return;
2590	}
2591
2592	/*
2593	 * Move the "async" itxs for the specified foid to the "sync"
2594	 * queues, such that they will be later committed (or skipped)
2595	 * to an lwb when zil_process_commit_list() is called.
2596	 *
2597	 * Since these "async" itxs must be committed prior to this
2598	 * call to zil_commit returning, we must perform this operation
2599	 * before we call zil_commit_itx_assign().
2600	 */
2601	zil_async_to_sync(zilog, foid);
2602
2603	/*
2604	 * We allocate a new "waiter" structure which will initially be
2605	 * linked to the commit itx using the itx's "itx_private" field.
2606	 * Since the commit itx doesn't represent any on-disk state,
2607	 * when it's committed to an lwb, rather than copying the its
2608	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2609	 * added to the lwb's list of waiters. Then, when the lwb is
2610	 * committed to stable storage, each waiter in the lwb's list of
2611	 * waiters will be marked "done", and signalled.
2612	 *
2613	 * We must create the waiter and assign the commit itx prior to
2614	 * calling zil_commit_writer(), or else our specific commit itx
2615	 * is not guaranteed to be committed to an lwb prior to calling
2616	 * zil_commit_waiter().
2617	 */
2618	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2619	zil_commit_itx_assign(zilog, zcw);
2620
2621	zil_commit_writer(zilog, zcw);
2622	zil_commit_waiter(zilog, zcw);
2623
2624	if (zcw->zcw_zio_error != 0) {
2625		/*
2626		 * If there was an error writing out the ZIL blocks that
2627		 * this thread is waiting on, then we fallback to
2628		 * relying on spa_sync() to write out the data this
2629		 * thread is waiting on. Obviously this has performance
2630		 * implications, but the expectation is for this to be
2631		 * an exceptional case, and shouldn't occur often.
2632		 */
2633		DTRACE_PROBE2(zil__commit__io__error,
2634		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2635		txg_wait_synced(zilog->zl_dmu_pool, 0);
2636	}
2637
2638	zil_free_commit_waiter(zcw);
2639}
2640
2641/*
2642 * Called in syncing context to free committed log blocks and update log header.
2643 */
2644void
2645zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2646{
2647	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2648	uint64_t txg = dmu_tx_get_txg(tx);
2649	spa_t *spa = zilog->zl_spa;
2650	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2651	lwb_t *lwb;
2652
2653	/*
2654	 * We don't zero out zl_destroy_txg, so make sure we don't try
2655	 * to destroy it twice.
2656	 */
2657	if (spa_sync_pass(spa) != 1)
2658		return;
2659
2660	mutex_enter(&zilog->zl_lock);
2661
2662	ASSERT(zilog->zl_stop_sync == 0);
2663
2664	if (*replayed_seq != 0) {
2665		ASSERT(zh->zh_replay_seq < *replayed_seq);
2666		zh->zh_replay_seq = *replayed_seq;
2667		*replayed_seq = 0;
2668	}
2669
2670	if (zilog->zl_destroy_txg == txg) {
2671		blkptr_t blk = zh->zh_log;
2672
2673		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2674
2675		bzero(zh, sizeof (zil_header_t));
2676		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2677
2678		if (zilog->zl_keep_first) {
2679			/*
2680			 * If this block was part of log chain that couldn't
2681			 * be claimed because a device was missing during
2682			 * zil_claim(), but that device later returns,
2683			 * then this block could erroneously appear valid.
2684			 * To guard against this, assign a new GUID to the new
2685			 * log chain so it doesn't matter what blk points to.
2686			 */
2687			zil_init_log_chain(zilog, &blk);
2688			zh->zh_log = blk;
2689		}
2690	}
2691
2692	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2693		zh->zh_log = lwb->lwb_blk;
2694		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2695			break;
2696		list_remove(&zilog->zl_lwb_list, lwb);
2697		zio_free(spa, txg, &lwb->lwb_blk);
2698		zil_free_lwb(zilog, lwb);
2699
2700		/*
2701		 * If we don't have anything left in the lwb list then
2702		 * we've had an allocation failure and we need to zero
2703		 * out the zil_header blkptr so that we don't end
2704		 * up freeing the same block twice.
2705		 */
2706		if (list_head(&zilog->zl_lwb_list) == NULL)
2707			BP_ZERO(&zh->zh_log);
2708	}
2709	mutex_exit(&zilog->zl_lock);
2710}
2711
2712/* ARGSUSED */
2713static int
2714zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2715{
2716	lwb_t *lwb = vbuf;
2717	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2718	    offsetof(zil_commit_waiter_t, zcw_node));
2719	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2720	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2721	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2722	return (0);
2723}
2724
2725/* ARGSUSED */
2726static void
2727zil_lwb_dest(void *vbuf, void *unused)
2728{
2729	lwb_t *lwb = vbuf;
2730	mutex_destroy(&lwb->lwb_vdev_lock);
2731	avl_destroy(&lwb->lwb_vdev_tree);
2732	list_destroy(&lwb->lwb_waiters);
2733}
2734
2735void
2736zil_init(void)
2737{
2738	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2739	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2740
2741	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2742	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2743}
2744
2745void
2746zil_fini(void)
2747{
2748	kmem_cache_destroy(zil_zcw_cache);
2749	kmem_cache_destroy(zil_lwb_cache);
2750}
2751
2752void
2753zil_set_sync(zilog_t *zilog, uint64_t sync)
2754{
2755	zilog->zl_sync = sync;
2756}
2757
2758void
2759zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2760{
2761	zilog->zl_logbias = logbias;
2762}
2763
2764zilog_t *
2765zil_alloc(objset_t *os, zil_header_t *zh_phys)
2766{
2767	zilog_t *zilog;
2768
2769	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2770
2771	zilog->zl_header = zh_phys;
2772	zilog->zl_os = os;
2773	zilog->zl_spa = dmu_objset_spa(os);
2774	zilog->zl_dmu_pool = dmu_objset_pool(os);
2775	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2776	zilog->zl_logbias = dmu_objset_logbias(os);
2777	zilog->zl_sync = dmu_objset_syncprop(os);
2778	zilog->zl_dirty_max_txg = 0;
2779	zilog->zl_last_lwb_opened = NULL;
2780	zilog->zl_last_lwb_latency = 0;
2781
2782	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2783	mutex_init(&zilog->zl_writer_lock, NULL, MUTEX_DEFAULT, NULL);
2784
2785	for (int i = 0; i < TXG_SIZE; i++) {
2786		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2787		    MUTEX_DEFAULT, NULL);
2788	}
2789
2790	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2791	    offsetof(lwb_t, lwb_node));
2792
2793	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2794	    offsetof(itx_t, itx_node));
2795
2796	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2797
2798	return (zilog);
2799}
2800
2801void
2802zil_free(zilog_t *zilog)
2803{
2804	zilog->zl_stop_sync = 1;
2805
2806	ASSERT0(zilog->zl_suspend);
2807	ASSERT0(zilog->zl_suspending);
2808
2809	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2810	list_destroy(&zilog->zl_lwb_list);
2811
2812	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2813	list_destroy(&zilog->zl_itx_commit_list);
2814
2815	for (int i = 0; i < TXG_SIZE; i++) {
2816		/*
2817		 * It's possible for an itx to be generated that doesn't dirty
2818		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2819		 * callback to remove the entry. We remove those here.
2820		 *
2821		 * Also free up the ziltest itxs.
2822		 */
2823		if (zilog->zl_itxg[i].itxg_itxs)
2824			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2825		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2826	}
2827
2828	mutex_destroy(&zilog->zl_writer_lock);
2829	mutex_destroy(&zilog->zl_lock);
2830
2831	cv_destroy(&zilog->zl_cv_suspend);
2832
2833	kmem_free(zilog, sizeof (zilog_t));
2834}
2835
2836/*
2837 * Open an intent log.
2838 */
2839zilog_t *
2840zil_open(objset_t *os, zil_get_data_t *get_data)
2841{
2842	zilog_t *zilog = dmu_objset_zil(os);
2843
2844	ASSERT3P(zilog->zl_get_data, ==, NULL);
2845	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2846	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2847
2848	zilog->zl_get_data = get_data;
2849
2850	return (zilog);
2851}
2852
2853/*
2854 * Close an intent log.
2855 */
2856void
2857zil_close(zilog_t *zilog)
2858{
2859	lwb_t *lwb;
2860	uint64_t txg;
2861
2862	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2863		zil_commit(zilog, 0);
2864	} else {
2865		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2866		ASSERT0(zilog->zl_dirty_max_txg);
2867		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2868	}
2869
2870	mutex_enter(&zilog->zl_lock);
2871	lwb = list_tail(&zilog->zl_lwb_list);
2872	if (lwb == NULL)
2873		txg = zilog->zl_dirty_max_txg;
2874	else
2875		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2876	mutex_exit(&zilog->zl_lock);
2877
2878	/*
2879	 * We need to use txg_wait_synced() to wait long enough for the
2880	 * ZIL to be clean, and to wait for all pending lwbs to be
2881	 * written out.
2882	 */
2883	if (txg != 0)
2884		txg_wait_synced(zilog->zl_dmu_pool, txg);
2885
2886	if (zilog_is_dirty(zilog))
2887		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2888	VERIFY(!zilog_is_dirty(zilog));
2889
2890	zilog->zl_get_data = NULL;
2891
2892	/*
2893	 * We should have only one lwb left on the list; remove it now.
2894	 */
2895	mutex_enter(&zilog->zl_lock);
2896	lwb = list_head(&zilog->zl_lwb_list);
2897	if (lwb != NULL) {
2898		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2899		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2900		list_remove(&zilog->zl_lwb_list, lwb);
2901		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2902		zil_free_lwb(zilog, lwb);
2903	}
2904	mutex_exit(&zilog->zl_lock);
2905}
2906
2907static char *suspend_tag = "zil suspending";
2908
2909/*
2910 * Suspend an intent log.  While in suspended mode, we still honor
2911 * synchronous semantics, but we rely on txg_wait_synced() to do it.
2912 * On old version pools, we suspend the log briefly when taking a
2913 * snapshot so that it will have an empty intent log.
2914 *
2915 * Long holds are not really intended to be used the way we do here --
2916 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
2917 * could fail.  Therefore we take pains to only put a long hold if it is
2918 * actually necessary.  Fortunately, it will only be necessary if the
2919 * objset is currently mounted (or the ZVOL equivalent).  In that case it
2920 * will already have a long hold, so we are not really making things any worse.
2921 *
2922 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2923 * zvol_state_t), and use their mechanism to prevent their hold from being
2924 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
2925 * very little gain.
2926 *
2927 * if cookiep == NULL, this does both the suspend & resume.
2928 * Otherwise, it returns with the dataset "long held", and the cookie
2929 * should be passed into zil_resume().
2930 */
2931int
2932zil_suspend(const char *osname, void **cookiep)
2933{
2934	objset_t *os;
2935	zilog_t *zilog;
2936	const zil_header_t *zh;
2937	int error;
2938
2939	error = dmu_objset_hold(osname, suspend_tag, &os);
2940	if (error != 0)
2941		return (error);
2942	zilog = dmu_objset_zil(os);
2943
2944	mutex_enter(&zilog->zl_lock);
2945	zh = zilog->zl_header;
2946
2947	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
2948		mutex_exit(&zilog->zl_lock);
2949		dmu_objset_rele(os, suspend_tag);
2950		return (SET_ERROR(EBUSY));
2951	}
2952
2953	/*
2954	 * Don't put a long hold in the cases where we can avoid it.  This
2955	 * is when there is no cookie so we are doing a suspend & resume
2956	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2957	 * for the suspend because it's already suspended, or there's no ZIL.
2958	 */
2959	if (cookiep == NULL && !zilog->zl_suspending &&
2960	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2961		mutex_exit(&zilog->zl_lock);
2962		dmu_objset_rele(os, suspend_tag);
2963		return (0);
2964	}
2965
2966	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2967	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2968
2969	zilog->zl_suspend++;
2970
2971	if (zilog->zl_suspend > 1) {
2972		/*
2973		 * Someone else is already suspending it.
2974		 * Just wait for them to finish.
2975		 */
2976
2977		while (zilog->zl_suspending)
2978			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2979		mutex_exit(&zilog->zl_lock);
2980
2981		if (cookiep == NULL)
2982			zil_resume(os);
2983		else
2984			*cookiep = os;
2985		return (0);
2986	}
2987
2988	/*
2989	 * If there is no pointer to an on-disk block, this ZIL must not
2990	 * be active (e.g. filesystem not mounted), so there's nothing
2991	 * to clean up.
2992	 */
2993	if (BP_IS_HOLE(&zh->zh_log)) {
2994		ASSERT(cookiep != NULL); /* fast path already handled */
2995
2996		*cookiep = os;
2997		mutex_exit(&zilog->zl_lock);
2998		return (0);
2999	}
3000
3001	zilog->zl_suspending = B_TRUE;
3002	mutex_exit(&zilog->zl_lock);
3003
3004	zil_commit(zilog, 0);
3005
3006	zil_destroy(zilog, B_FALSE);
3007
3008	mutex_enter(&zilog->zl_lock);
3009	zilog->zl_suspending = B_FALSE;
3010	cv_broadcast(&zilog->zl_cv_suspend);
3011	mutex_exit(&zilog->zl_lock);
3012
3013	if (cookiep == NULL)
3014		zil_resume(os);
3015	else
3016		*cookiep = os;
3017	return (0);
3018}
3019
3020void
3021zil_resume(void *cookie)
3022{
3023	objset_t *os = cookie;
3024	zilog_t *zilog = dmu_objset_zil(os);
3025
3026	mutex_enter(&zilog->zl_lock);
3027	ASSERT(zilog->zl_suspend != 0);
3028	zilog->zl_suspend--;
3029	mutex_exit(&zilog->zl_lock);
3030	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3031	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3032}
3033
3034typedef struct zil_replay_arg {
3035	zil_replay_func_t **zr_replay;
3036	void		*zr_arg;
3037	boolean_t	zr_byteswap;
3038	char		*zr_lr;
3039} zil_replay_arg_t;
3040
3041static int
3042zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3043{
3044	char name[ZFS_MAX_DATASET_NAME_LEN];
3045
3046	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3047
3048	dmu_objset_name(zilog->zl_os, name);
3049
3050	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3051	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3052	    (u_longlong_t)lr->lrc_seq,
3053	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3054	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3055
3056	return (error);
3057}
3058
3059static int
3060zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3061{
3062	zil_replay_arg_t *zr = zra;
3063	const zil_header_t *zh = zilog->zl_header;
3064	uint64_t reclen = lr->lrc_reclen;
3065	uint64_t txtype = lr->lrc_txtype;
3066	int error = 0;
3067
3068	zilog->zl_replaying_seq = lr->lrc_seq;
3069
3070	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3071		return (0);
3072
3073	if (lr->lrc_txg < claim_txg)		/* already committed */
3074		return (0);
3075
3076	/* Strip case-insensitive bit, still present in log record */
3077	txtype &= ~TX_CI;
3078
3079	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3080		return (zil_replay_error(zilog, lr, EINVAL));
3081
3082	/*
3083	 * If this record type can be logged out of order, the object
3084	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3085	 */
3086	if (TX_OOO(txtype)) {
3087		error = dmu_object_info(zilog->zl_os,
3088		    ((lr_ooo_t *)lr)->lr_foid, NULL);
3089		if (error == ENOENT || error == EEXIST)
3090			return (0);
3091	}
3092
3093	/*
3094	 * Make a copy of the data so we can revise and extend it.
3095	 */
3096	bcopy(lr, zr->zr_lr, reclen);
3097
3098	/*
3099	 * If this is a TX_WRITE with a blkptr, suck in the data.
3100	 */
3101	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3102		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3103		    zr->zr_lr + reclen);
3104		if (error != 0)
3105			return (zil_replay_error(zilog, lr, error));
3106	}
3107
3108	/*
3109	 * The log block containing this lr may have been byteswapped
3110	 * so that we can easily examine common fields like lrc_txtype.
3111	 * However, the log is a mix of different record types, and only the
3112	 * replay vectors know how to byteswap their records.  Therefore, if
3113	 * the lr was byteswapped, undo it before invoking the replay vector.
3114	 */
3115	if (zr->zr_byteswap)
3116		byteswap_uint64_array(zr->zr_lr, reclen);
3117
3118	/*
3119	 * We must now do two things atomically: replay this log record,
3120	 * and update the log header sequence number to reflect the fact that
3121	 * we did so. At the end of each replay function the sequence number
3122	 * is updated if we are in replay mode.
3123	 */
3124	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3125	if (error != 0) {
3126		/*
3127		 * The DMU's dnode layer doesn't see removes until the txg
3128		 * commits, so a subsequent claim can spuriously fail with
3129		 * EEXIST. So if we receive any error we try syncing out
3130		 * any removes then retry the transaction.  Note that we
3131		 * specify B_FALSE for byteswap now, so we don't do it twice.
3132		 */
3133		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3134		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3135		if (error != 0)
3136			return (zil_replay_error(zilog, lr, error));
3137	}
3138	return (0);
3139}
3140
3141/* ARGSUSED */
3142static int
3143zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3144{
3145	zilog->zl_replay_blks++;
3146
3147	return (0);
3148}
3149
3150/*
3151 * If this dataset has a non-empty intent log, replay it and destroy it.
3152 */
3153void
3154zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3155{
3156	zilog_t *zilog = dmu_objset_zil(os);
3157	const zil_header_t *zh = zilog->zl_header;
3158	zil_replay_arg_t zr;
3159
3160	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3161		zil_destroy(zilog, B_TRUE);
3162		return;
3163	}
3164
3165	zr.zr_replay = replay_func;
3166	zr.zr_arg = arg;
3167	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3168	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3169
3170	/*
3171	 * Wait for in-progress removes to sync before starting replay.
3172	 */
3173	txg_wait_synced(zilog->zl_dmu_pool, 0);
3174
3175	zilog->zl_replay = B_TRUE;
3176	zilog->zl_replay_time = ddi_get_lbolt();
3177	ASSERT(zilog->zl_replay_blks == 0);
3178	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3179	    zh->zh_claim_txg);
3180	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3181
3182	zil_destroy(zilog, B_FALSE);
3183	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3184	zilog->zl_replay = B_FALSE;
3185}
3186
3187boolean_t
3188zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3189{
3190	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3191		return (B_TRUE);
3192
3193	if (zilog->zl_replay) {
3194		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3195		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3196		    zilog->zl_replaying_seq;
3197		return (B_TRUE);
3198	}
3199
3200	return (B_FALSE);
3201}
3202
3203/* ARGSUSED */
3204int
3205zil_vdev_offline(const char *osname, void *arg)
3206{
3207	int error;
3208
3209	error = zil_suspend(osname, NULL);
3210	if (error != 0)
3211		return (SET_ERROR(EEXIST));
3212	return (0);
3213}
3214