1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/spa_impl.h>
32#include <sys/dmu.h>
33#include <sys/zap.h>
34#include <sys/arc.h>
35#include <sys/stat.h>
36#include <sys/resource.h>
37#include <sys/zil.h>
38#include <sys/zil_impl.h>
39#include <sys/dsl_dataset.h>
40#include <sys/vdev_impl.h>
41#include <sys/dmu_tx.h>
42#include <sys/dsl_pool.h>
43#include <sys/abd.h>
44
45/*
46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47 * calls that change the file system. Each itx has enough information to
48 * be able to replay them after a system crash, power loss, or
49 * equivalent failure mode. These are stored in memory until either:
50 *
51 *   1. they are committed to the pool by the DMU transaction group
52 *      (txg), at which point they can be discarded; or
53 *   2. they are committed to the on-disk ZIL for the dataset being
54 *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55 *      requirement).
56 *
57 * In the event of a crash or power loss, the itxs contained by each
58 * dataset's on-disk ZIL will be replayed when that dataset is first
59 * instantianted (e.g. if the dataset is a normal fileystem, when it is
60 * first mounted).
61 *
62 * As hinted at above, there is one ZIL per dataset (both the in-memory
63 * representation, and the on-disk representation). The on-disk format
64 * consists of 3 parts:
65 *
66 * 	- a single, per-dataset, ZIL header; which points to a chain of
67 * 	- zero or more ZIL blocks; each of which contains
68 * 	- zero or more ZIL records
69 *
70 * A ZIL record holds the information necessary to replay a single
71 * system call transaction. A ZIL block can hold many ZIL records, and
72 * the blocks are chained together, similarly to a singly linked list.
73 *
74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75 * block in the chain, and the ZIL header points to the first block in
76 * the chain.
77 *
78 * Note, there is not a fixed place in the pool to hold these ZIL
79 * blocks; they are dynamically allocated and freed as needed from the
80 * blocks available on the pool, though they can be preferentially
81 * allocated from a dedicated "log" vdev.
82 */
83
84/*
85 * This controls the amount of time that a ZIL block (lwb) will remain
86 * "open" when it isn't "full", and it has a thread waiting for it to be
87 * committed to stable storage. Please refer to the zil_commit_waiter()
88 * function (and the comments within it) for more details.
89 */
90int zfs_commit_timeout_pct = 5;
91
92/*
93 * Disable intent logging replay.  This global ZIL switch affects all pools.
94 */
95int zil_replay_disable = 0;
96SYSCTL_DECL(_vfs_zfs);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
98    &zil_replay_disable, 0, "Disable intent logging replay");
99
100/*
101 * Tunable parameter for debugging or performance analysis.  Setting
102 * zfs_nocacheflush will cause corruption on power loss if a volatile
103 * out-of-order write cache is enabled.
104 */
105boolean_t zfs_nocacheflush = B_FALSE;
106SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RWTUN,
107    &zfs_nocacheflush, 0, "Disable cache flush");
108boolean_t zfs_trim_enabled = B_TRUE;
109SYSCTL_DECL(_vfs_zfs_trim);
110SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
111    "Enable ZFS TRIM");
112
113/*
114 * Limit SLOG write size per commit executed with synchronous priority.
115 * Any writes above that will be executed with lower (asynchronous) priority
116 * to limit potential SLOG device abuse by single active ZIL writer.
117 */
118uint64_t zil_slog_bulk = 768 * 1024;
119SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
120    &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");
121
122static kmem_cache_t *zil_lwb_cache;
123static kmem_cache_t *zil_zcw_cache;
124
125#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
126    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
127
128static int
129zil_bp_compare(const void *x1, const void *x2)
130{
131	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
132	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
133
134	int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
135	if (likely(cmp))
136		return (cmp);
137
138	return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
139}
140
141static void
142zil_bp_tree_init(zilog_t *zilog)
143{
144	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
145	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
146}
147
148static void
149zil_bp_tree_fini(zilog_t *zilog)
150{
151	avl_tree_t *t = &zilog->zl_bp_tree;
152	zil_bp_node_t *zn;
153	void *cookie = NULL;
154
155	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
156		kmem_free(zn, sizeof (zil_bp_node_t));
157
158	avl_destroy(t);
159}
160
161int
162zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
163{
164	avl_tree_t *t = &zilog->zl_bp_tree;
165	const dva_t *dva;
166	zil_bp_node_t *zn;
167	avl_index_t where;
168
169	if (BP_IS_EMBEDDED(bp))
170		return (0);
171
172	dva = BP_IDENTITY(bp);
173
174	if (avl_find(t, dva, &where) != NULL)
175		return (SET_ERROR(EEXIST));
176
177	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
178	zn->zn_dva = *dva;
179	avl_insert(t, zn, where);
180
181	return (0);
182}
183
184static zil_header_t *
185zil_header_in_syncing_context(zilog_t *zilog)
186{
187	return ((zil_header_t *)zilog->zl_header);
188}
189
190static void
191zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
192{
193	zio_cksum_t *zc = &bp->blk_cksum;
194
195	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
196	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
197	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
198	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
199}
200
201/*
202 * Read a log block and make sure it's valid.
203 */
204static int
205zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
206    char **end)
207{
208	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
209	arc_flags_t aflags = ARC_FLAG_WAIT;
210	arc_buf_t *abuf = NULL;
211	zbookmark_phys_t zb;
212	int error;
213
214	if (zilog->zl_header->zh_claim_txg == 0)
215		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
216
217	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
218		zio_flags |= ZIO_FLAG_SPECULATIVE;
219
220	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
221	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
222
223	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
224	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
225
226	if (error == 0) {
227		zio_cksum_t cksum = bp->blk_cksum;
228
229		/*
230		 * Validate the checksummed log block.
231		 *
232		 * Sequence numbers should be... sequential.  The checksum
233		 * verifier for the next block should be bp's checksum plus 1.
234		 *
235		 * Also check the log chain linkage and size used.
236		 */
237		cksum.zc_word[ZIL_ZC_SEQ]++;
238
239		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
240			zil_chain_t *zilc = abuf->b_data;
241			char *lr = (char *)(zilc + 1);
242			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
243
244			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
245			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
246				error = SET_ERROR(ECKSUM);
247			} else {
248				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
249				bcopy(lr, dst, len);
250				*end = (char *)dst + len;
251				*nbp = zilc->zc_next_blk;
252			}
253		} else {
254			char *lr = abuf->b_data;
255			uint64_t size = BP_GET_LSIZE(bp);
256			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
257
258			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
259			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
260			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
261				error = SET_ERROR(ECKSUM);
262			} else {
263				ASSERT3U(zilc->zc_nused, <=,
264				    SPA_OLD_MAXBLOCKSIZE);
265				bcopy(lr, dst, zilc->zc_nused);
266				*end = (char *)dst + zilc->zc_nused;
267				*nbp = zilc->zc_next_blk;
268			}
269		}
270
271		arc_buf_destroy(abuf, &abuf);
272	}
273
274	return (error);
275}
276
277/*
278 * Read a TX_WRITE log data block.
279 */
280static int
281zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
282{
283	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
284	const blkptr_t *bp = &lr->lr_blkptr;
285	arc_flags_t aflags = ARC_FLAG_WAIT;
286	arc_buf_t *abuf = NULL;
287	zbookmark_phys_t zb;
288	int error;
289
290	if (BP_IS_HOLE(bp)) {
291		if (wbuf != NULL)
292			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
293		return (0);
294	}
295
296	if (zilog->zl_header->zh_claim_txg == 0)
297		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
298
299	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
300	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
301
302	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
303	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
304
305	if (error == 0) {
306		if (wbuf != NULL)
307			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
308		arc_buf_destroy(abuf, &abuf);
309	}
310
311	return (error);
312}
313
314/*
315 * Parse the intent log, and call parse_func for each valid record within.
316 */
317int
318zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
319    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
320{
321	const zil_header_t *zh = zilog->zl_header;
322	boolean_t claimed = !!zh->zh_claim_txg;
323	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
324	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
325	uint64_t max_blk_seq = 0;
326	uint64_t max_lr_seq = 0;
327	uint64_t blk_count = 0;
328	uint64_t lr_count = 0;
329	blkptr_t blk, next_blk;
330	char *lrbuf, *lrp;
331	int error = 0;
332
333	/*
334	 * Old logs didn't record the maximum zh_claim_lr_seq.
335	 */
336	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
337		claim_lr_seq = UINT64_MAX;
338
339	/*
340	 * Starting at the block pointed to by zh_log we read the log chain.
341	 * For each block in the chain we strongly check that block to
342	 * ensure its validity.  We stop when an invalid block is found.
343	 * For each block pointer in the chain we call parse_blk_func().
344	 * For each record in each valid block we call parse_lr_func().
345	 * If the log has been claimed, stop if we encounter a sequence
346	 * number greater than the highest claimed sequence number.
347	 */
348	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
349	zil_bp_tree_init(zilog);
350
351	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
352		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
353		int reclen;
354		char *end;
355
356		if (blk_seq > claim_blk_seq)
357			break;
358		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
359			break;
360		ASSERT3U(max_blk_seq, <, blk_seq);
361		max_blk_seq = blk_seq;
362		blk_count++;
363
364		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
365			break;
366
367		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
368		if (error != 0)
369			break;
370
371		for (lrp = lrbuf; lrp < end; lrp += reclen) {
372			lr_t *lr = (lr_t *)lrp;
373			reclen = lr->lrc_reclen;
374			ASSERT3U(reclen, >=, sizeof (lr_t));
375			if (lr->lrc_seq > claim_lr_seq)
376				goto done;
377			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
378				goto done;
379			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
380			max_lr_seq = lr->lrc_seq;
381			lr_count++;
382		}
383	}
384done:
385	zilog->zl_parse_error = error;
386	zilog->zl_parse_blk_seq = max_blk_seq;
387	zilog->zl_parse_lr_seq = max_lr_seq;
388	zilog->zl_parse_blk_count = blk_count;
389	zilog->zl_parse_lr_count = lr_count;
390
391	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
392	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
393
394	zil_bp_tree_fini(zilog);
395	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
396
397	return (error);
398}
399
400/* ARGSUSED */
401static int
402zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
403{
404	ASSERT(!BP_IS_HOLE(bp));
405
406	/*
407	 * As we call this function from the context of a rewind to a
408	 * checkpoint, each ZIL block whose txg is later than the txg
409	 * that we rewind to is invalid. Thus, we return -1 so
410	 * zil_parse() doesn't attempt to read it.
411	 */
412	if (bp->blk_birth >= first_txg)
413		return (-1);
414
415	if (zil_bp_tree_add(zilog, bp) != 0)
416		return (0);
417
418	zio_free(zilog->zl_spa, first_txg, bp);
419	return (0);
420}
421
422/* ARGSUSED */
423static int
424zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
425{
426	return (0);
427}
428
429static int
430zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
431{
432	/*
433	 * Claim log block if not already committed and not already claimed.
434	 * If tx == NULL, just verify that the block is claimable.
435	 */
436	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
437	    zil_bp_tree_add(zilog, bp) != 0)
438		return (0);
439
440	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
441	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
442	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
443}
444
445static int
446zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
447{
448	lr_write_t *lr = (lr_write_t *)lrc;
449	int error;
450
451	if (lrc->lrc_txtype != TX_WRITE)
452		return (0);
453
454	/*
455	 * If the block is not readable, don't claim it.  This can happen
456	 * in normal operation when a log block is written to disk before
457	 * some of the dmu_sync() blocks it points to.  In this case, the
458	 * transaction cannot have been committed to anyone (we would have
459	 * waited for all writes to be stable first), so it is semantically
460	 * correct to declare this the end of the log.
461	 */
462	if (lr->lr_blkptr.blk_birth >= first_txg &&
463	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
464		return (error);
465	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
466}
467
468/* ARGSUSED */
469static int
470zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
471{
472	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
473
474	return (0);
475}
476
477static int
478zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
479{
480	lr_write_t *lr = (lr_write_t *)lrc;
481	blkptr_t *bp = &lr->lr_blkptr;
482
483	/*
484	 * If we previously claimed it, we need to free it.
485	 */
486	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
487	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
488	    !BP_IS_HOLE(bp))
489		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
490
491	return (0);
492}
493
494static int
495zil_lwb_vdev_compare(const void *x1, const void *x2)
496{
497	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
498	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
499
500	return (AVL_CMP(v1, v2));
501}
502
503static lwb_t *
504zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
505{
506	lwb_t *lwb;
507
508	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
509	lwb->lwb_zilog = zilog;
510	lwb->lwb_blk = *bp;
511	lwb->lwb_slog = slog;
512	lwb->lwb_state = LWB_STATE_CLOSED;
513	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
514	lwb->lwb_max_txg = txg;
515	lwb->lwb_write_zio = NULL;
516	lwb->lwb_root_zio = NULL;
517	lwb->lwb_tx = NULL;
518	lwb->lwb_issued_timestamp = 0;
519	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
520		lwb->lwb_nused = sizeof (zil_chain_t);
521		lwb->lwb_sz = BP_GET_LSIZE(bp);
522	} else {
523		lwb->lwb_nused = 0;
524		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
525	}
526
527	mutex_enter(&zilog->zl_lock);
528	list_insert_tail(&zilog->zl_lwb_list, lwb);
529	mutex_exit(&zilog->zl_lock);
530
531	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
532	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
533	VERIFY(list_is_empty(&lwb->lwb_waiters));
534
535	return (lwb);
536}
537
538static void
539zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
540{
541	ASSERT(MUTEX_HELD(&zilog->zl_lock));
542	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
543	VERIFY(list_is_empty(&lwb->lwb_waiters));
544	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
545	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
546	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
547	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
548	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
549	    lwb->lwb_state == LWB_STATE_DONE);
550
551	/*
552	 * Clear the zilog's field to indicate this lwb is no longer
553	 * valid, and prevent use-after-free errors.
554	 */
555	if (zilog->zl_last_lwb_opened == lwb)
556		zilog->zl_last_lwb_opened = NULL;
557
558	kmem_cache_free(zil_lwb_cache, lwb);
559}
560
561/*
562 * Called when we create in-memory log transactions so that we know
563 * to cleanup the itxs at the end of spa_sync().
564 */
565void
566zilog_dirty(zilog_t *zilog, uint64_t txg)
567{
568	dsl_pool_t *dp = zilog->zl_dmu_pool;
569	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
570
571	ASSERT(spa_writeable(zilog->zl_spa));
572
573	if (ds->ds_is_snapshot)
574		panic("dirtying snapshot!");
575
576	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
577		/* up the hold count until we can be written out */
578		dmu_buf_add_ref(ds->ds_dbuf, zilog);
579
580		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
581	}
582}
583
584/*
585 * Determine if the zil is dirty in the specified txg. Callers wanting to
586 * ensure that the dirty state does not change must hold the itxg_lock for
587 * the specified txg. Holding the lock will ensure that the zil cannot be
588 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
589 * state.
590 */
591boolean_t
592zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
593{
594	dsl_pool_t *dp = zilog->zl_dmu_pool;
595
596	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
597		return (B_TRUE);
598	return (B_FALSE);
599}
600
601/*
602 * Determine if the zil is dirty. The zil is considered dirty if it has
603 * any pending itx records that have not been cleaned by zil_clean().
604 */
605boolean_t
606zilog_is_dirty(zilog_t *zilog)
607{
608	dsl_pool_t *dp = zilog->zl_dmu_pool;
609
610	for (int t = 0; t < TXG_SIZE; t++) {
611		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
612			return (B_TRUE);
613	}
614	return (B_FALSE);
615}
616
617/*
618 * Create an on-disk intent log.
619 */
620static lwb_t *
621zil_create(zilog_t *zilog)
622{
623	const zil_header_t *zh = zilog->zl_header;
624	lwb_t *lwb = NULL;
625	uint64_t txg = 0;
626	dmu_tx_t *tx = NULL;
627	blkptr_t blk;
628	int error = 0;
629	boolean_t slog = FALSE;
630
631	/*
632	 * Wait for any previous destroy to complete.
633	 */
634	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
635
636	ASSERT(zh->zh_claim_txg == 0);
637	ASSERT(zh->zh_replay_seq == 0);
638
639	blk = zh->zh_log;
640
641	/*
642	 * Allocate an initial log block if:
643	 *    - there isn't one already
644	 *    - the existing block is the wrong endianess
645	 */
646	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
647		tx = dmu_tx_create(zilog->zl_os);
648		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
649		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
650		txg = dmu_tx_get_txg(tx);
651
652		if (!BP_IS_HOLE(&blk)) {
653			zio_free(zilog->zl_spa, txg, &blk);
654			BP_ZERO(&blk);
655		}
656
657		error = zio_alloc_zil(zilog->zl_spa,
658		    zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
659		    ZIL_MIN_BLKSZ, &slog);
660
661		if (error == 0)
662			zil_init_log_chain(zilog, &blk);
663	}
664
665	/*
666	 * Allocate a log write block (lwb) for the first log block.
667	 */
668	if (error == 0)
669		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
670
671	/*
672	 * If we just allocated the first log block, commit our transaction
673	 * and wait for zil_sync() to stuff the block poiner into zh_log.
674	 * (zh is part of the MOS, so we cannot modify it in open context.)
675	 */
676	if (tx != NULL) {
677		dmu_tx_commit(tx);
678		txg_wait_synced(zilog->zl_dmu_pool, txg);
679	}
680
681	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
682
683	return (lwb);
684}
685
686/*
687 * In one tx, free all log blocks and clear the log header. If keep_first
688 * is set, then we're replaying a log with no content. We want to keep the
689 * first block, however, so that the first synchronous transaction doesn't
690 * require a txg_wait_synced() in zil_create(). We don't need to
691 * txg_wait_synced() here either when keep_first is set, because both
692 * zil_create() and zil_destroy() will wait for any in-progress destroys
693 * to complete.
694 */
695void
696zil_destroy(zilog_t *zilog, boolean_t keep_first)
697{
698	const zil_header_t *zh = zilog->zl_header;
699	lwb_t *lwb;
700	dmu_tx_t *tx;
701	uint64_t txg;
702
703	/*
704	 * Wait for any previous destroy to complete.
705	 */
706	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
707
708	zilog->zl_old_header = *zh;		/* debugging aid */
709
710	if (BP_IS_HOLE(&zh->zh_log))
711		return;
712
713	tx = dmu_tx_create(zilog->zl_os);
714	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
715	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
716	txg = dmu_tx_get_txg(tx);
717
718	mutex_enter(&zilog->zl_lock);
719
720	ASSERT3U(zilog->zl_destroy_txg, <, txg);
721	zilog->zl_destroy_txg = txg;
722	zilog->zl_keep_first = keep_first;
723
724	if (!list_is_empty(&zilog->zl_lwb_list)) {
725		ASSERT(zh->zh_claim_txg == 0);
726		VERIFY(!keep_first);
727		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
728			list_remove(&zilog->zl_lwb_list, lwb);
729			if (lwb->lwb_buf != NULL)
730				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
731			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
732			zil_free_lwb(zilog, lwb);
733		}
734	} else if (!keep_first) {
735		zil_destroy_sync(zilog, tx);
736	}
737	mutex_exit(&zilog->zl_lock);
738
739	dmu_tx_commit(tx);
740}
741
742void
743zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
744{
745	ASSERT(list_is_empty(&zilog->zl_lwb_list));
746	(void) zil_parse(zilog, zil_free_log_block,
747	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
748}
749
750int
751zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
752{
753	dmu_tx_t *tx = txarg;
754	zilog_t *zilog;
755	uint64_t first_txg;
756	zil_header_t *zh;
757	objset_t *os;
758	int error;
759
760	error = dmu_objset_own_obj(dp, ds->ds_object,
761	    DMU_OST_ANY, B_FALSE, FTAG, &os);
762	if (error != 0) {
763		/*
764		 * EBUSY indicates that the objset is inconsistent, in which
765		 * case it can not have a ZIL.
766		 */
767		if (error != EBUSY) {
768			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
769			    (unsigned long long)ds->ds_object, error);
770		}
771		return (0);
772	}
773
774	zilog = dmu_objset_zil(os);
775	zh = zil_header_in_syncing_context(zilog);
776	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
777	first_txg = spa_min_claim_txg(zilog->zl_spa);
778
779	/*
780	 * If the spa_log_state is not set to be cleared, check whether
781	 * the current uberblock is a checkpoint one and if the current
782	 * header has been claimed before moving on.
783	 *
784	 * If the current uberblock is a checkpointed uberblock then
785	 * one of the following scenarios took place:
786	 *
787	 * 1] We are currently rewinding to the checkpoint of the pool.
788	 * 2] We crashed in the middle of a checkpoint rewind but we
789	 *    did manage to write the checkpointed uberblock to the
790	 *    vdev labels, so when we tried to import the pool again
791	 *    the checkpointed uberblock was selected from the import
792	 *    procedure.
793	 *
794	 * In both cases we want to zero out all the ZIL blocks, except
795	 * the ones that have been claimed at the time of the checkpoint
796	 * (their zh_claim_txg != 0). The reason is that these blocks
797	 * may be corrupted since we may have reused their locations on
798	 * disk after we took the checkpoint.
799	 *
800	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
801	 * when we first figure out whether the current uberblock is
802	 * checkpointed or not. Unfortunately, that would discard all
803	 * the logs, including the ones that are claimed, and we would
804	 * leak space.
805	 */
806	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
807	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
808	    zh->zh_claim_txg == 0)) {
809		if (!BP_IS_HOLE(&zh->zh_log)) {
810			(void) zil_parse(zilog, zil_clear_log_block,
811			    zil_noop_log_record, tx, first_txg);
812		}
813		BP_ZERO(&zh->zh_log);
814		dsl_dataset_dirty(dmu_objset_ds(os), tx);
815		dmu_objset_disown(os, FTAG);
816		return (0);
817	}
818
819	/*
820	 * If we are not rewinding and opening the pool normally, then
821	 * the min_claim_txg should be equal to the first txg of the pool.
822	 */
823	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
824
825	/*
826	 * Claim all log blocks if we haven't already done so, and remember
827	 * the highest claimed sequence number.  This ensures that if we can
828	 * read only part of the log now (e.g. due to a missing device),
829	 * but we can read the entire log later, we will not try to replay
830	 * or destroy beyond the last block we successfully claimed.
831	 */
832	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
833	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
834		(void) zil_parse(zilog, zil_claim_log_block,
835		    zil_claim_log_record, tx, first_txg);
836		zh->zh_claim_txg = first_txg;
837		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
838		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
839		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
840			zh->zh_flags |= ZIL_REPLAY_NEEDED;
841		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
842		dsl_dataset_dirty(dmu_objset_ds(os), tx);
843	}
844
845	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
846	dmu_objset_disown(os, FTAG);
847	return (0);
848}
849
850/*
851 * Check the log by walking the log chain.
852 * Checksum errors are ok as they indicate the end of the chain.
853 * Any other error (no device or read failure) returns an error.
854 */
855/* ARGSUSED */
856int
857zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
858{
859	zilog_t *zilog;
860	objset_t *os;
861	blkptr_t *bp;
862	int error;
863
864	ASSERT(tx == NULL);
865
866	error = dmu_objset_from_ds(ds, &os);
867	if (error != 0) {
868		cmn_err(CE_WARN, "can't open objset %llu, error %d",
869		    (unsigned long long)ds->ds_object, error);
870		return (0);
871	}
872
873	zilog = dmu_objset_zil(os);
874	bp = (blkptr_t *)&zilog->zl_header->zh_log;
875
876	if (!BP_IS_HOLE(bp)) {
877		vdev_t *vd;
878		boolean_t valid = B_TRUE;
879
880		/*
881		 * Check the first block and determine if it's on a log device
882		 * which may have been removed or faulted prior to loading this
883		 * pool.  If so, there's no point in checking the rest of the
884		 * log as its content should have already been synced to the
885		 * pool.
886		 */
887		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
888		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
889		if (vd->vdev_islog && vdev_is_dead(vd))
890			valid = vdev_log_state_valid(vd);
891		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
892
893		if (!valid)
894			return (0);
895
896		/*
897		 * Check whether the current uberblock is checkpointed (e.g.
898		 * we are rewinding) and whether the current header has been
899		 * claimed or not. If it hasn't then skip verifying it. We
900		 * do this because its ZIL blocks may be part of the pool's
901		 * state before the rewind, which is no longer valid.
902		 */
903		zil_header_t *zh = zil_header_in_syncing_context(zilog);
904		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
905		    zh->zh_claim_txg == 0)
906			return (0);
907	}
908
909	/*
910	 * Because tx == NULL, zil_claim_log_block() will not actually claim
911	 * any blocks, but just determine whether it is possible to do so.
912	 * In addition to checking the log chain, zil_claim_log_block()
913	 * will invoke zio_claim() with a done func of spa_claim_notify(),
914	 * which will update spa_max_claim_txg.  See spa_load() for details.
915	 */
916	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
917	    zilog->zl_header->zh_claim_txg ? -1ULL :
918	    spa_min_claim_txg(os->os_spa));
919
920	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
921}
922
923/*
924 * When an itx is "skipped", this function is used to properly mark the
925 * waiter as "done, and signal any thread(s) waiting on it. An itx can
926 * be skipped (and not committed to an lwb) for a variety of reasons,
927 * one of them being that the itx was committed via spa_sync(), prior to
928 * it being committed to an lwb; this can happen if a thread calling
929 * zil_commit() is racing with spa_sync().
930 */
931static void
932zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
933{
934	mutex_enter(&zcw->zcw_lock);
935	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
936	zcw->zcw_done = B_TRUE;
937	cv_broadcast(&zcw->zcw_cv);
938	mutex_exit(&zcw->zcw_lock);
939}
940
941/*
942 * This function is used when the given waiter is to be linked into an
943 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
944 * At this point, the waiter will no longer be referenced by the itx,
945 * and instead, will be referenced by the lwb.
946 */
947static void
948zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
949{
950	/*
951	 * The lwb_waiters field of the lwb is protected by the zilog's
952	 * zl_lock, thus it must be held when calling this function.
953	 */
954	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
955
956	mutex_enter(&zcw->zcw_lock);
957	ASSERT(!list_link_active(&zcw->zcw_node));
958	ASSERT3P(zcw->zcw_lwb, ==, NULL);
959	ASSERT3P(lwb, !=, NULL);
960	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
961	    lwb->lwb_state == LWB_STATE_ISSUED);
962
963	list_insert_tail(&lwb->lwb_waiters, zcw);
964	zcw->zcw_lwb = lwb;
965	mutex_exit(&zcw->zcw_lock);
966}
967
968/*
969 * This function is used when zio_alloc_zil() fails to allocate a ZIL
970 * block, and the given waiter must be linked to the "nolwb waiters"
971 * list inside of zil_process_commit_list().
972 */
973static void
974zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
975{
976	mutex_enter(&zcw->zcw_lock);
977	ASSERT(!list_link_active(&zcw->zcw_node));
978	ASSERT3P(zcw->zcw_lwb, ==, NULL);
979	list_insert_tail(nolwb, zcw);
980	mutex_exit(&zcw->zcw_lock);
981}
982
983void
984zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
985{
986	avl_tree_t *t = &lwb->lwb_vdev_tree;
987	avl_index_t where;
988	zil_vdev_node_t *zv, zvsearch;
989	int ndvas = BP_GET_NDVAS(bp);
990	int i;
991
992	if (zfs_nocacheflush)
993		return;
994
995	mutex_enter(&lwb->lwb_vdev_lock);
996	for (i = 0; i < ndvas; i++) {
997		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
998		if (avl_find(t, &zvsearch, &where) == NULL) {
999			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1000			zv->zv_vdev = zvsearch.zv_vdev;
1001			avl_insert(t, zv, where);
1002		}
1003	}
1004	mutex_exit(&lwb->lwb_vdev_lock);
1005}
1006
1007void
1008zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1009{
1010	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1011}
1012
1013/*
1014 * This function is a called after all VDEVs associated with a given lwb
1015 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1016 * as the lwb write completes, if "zfs_nocacheflush" is set.
1017 *
1018 * The intention is for this function to be called as soon as the
1019 * contents of an lwb are considered "stable" on disk, and will survive
1020 * any sudden loss of power. At this point, any threads waiting for the
1021 * lwb to reach this state are signalled, and the "waiter" structures
1022 * are marked "done".
1023 */
1024static void
1025zil_lwb_flush_vdevs_done(zio_t *zio)
1026{
1027	lwb_t *lwb = zio->io_private;
1028	zilog_t *zilog = lwb->lwb_zilog;
1029	dmu_tx_t *tx = lwb->lwb_tx;
1030	zil_commit_waiter_t *zcw;
1031
1032	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1033
1034	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1035
1036	mutex_enter(&zilog->zl_lock);
1037
1038	/*
1039	 * Ensure the lwb buffer pointer is cleared before releasing the
1040	 * txg. If we have had an allocation failure and the txg is
1041	 * waiting to sync then we want zil_sync() to remove the lwb so
1042	 * that it's not picked up as the next new one in
1043	 * zil_process_commit_list(). zil_sync() will only remove the
1044	 * lwb if lwb_buf is null.
1045	 */
1046	lwb->lwb_buf = NULL;
1047	lwb->lwb_tx = NULL;
1048
1049	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1050	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1051
1052	lwb->lwb_root_zio = NULL;
1053	lwb->lwb_state = LWB_STATE_DONE;
1054
1055	if (zilog->zl_last_lwb_opened == lwb) {
1056		/*
1057		 * Remember the highest committed log sequence number
1058		 * for ztest. We only update this value when all the log
1059		 * writes succeeded, because ztest wants to ASSERT that
1060		 * it got the whole log chain.
1061		 */
1062		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1063	}
1064
1065	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1066		mutex_enter(&zcw->zcw_lock);
1067
1068		ASSERT(list_link_active(&zcw->zcw_node));
1069		list_remove(&lwb->lwb_waiters, zcw);
1070
1071		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1072		zcw->zcw_lwb = NULL;
1073
1074		zcw->zcw_zio_error = zio->io_error;
1075
1076		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1077		zcw->zcw_done = B_TRUE;
1078		cv_broadcast(&zcw->zcw_cv);
1079
1080		mutex_exit(&zcw->zcw_lock);
1081	}
1082
1083	mutex_exit(&zilog->zl_lock);
1084
1085	/*
1086	 * Now that we've written this log block, we have a stable pointer
1087	 * to the next block in the chain, so it's OK to let the txg in
1088	 * which we allocated the next block sync.
1089	 */
1090	dmu_tx_commit(tx);
1091}
1092
1093/*
1094 * This is called when an lwb write completes. This means, this specific
1095 * lwb was written to disk, and all dependent lwb have also been
1096 * written to disk.
1097 *
1098 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1099 * the VDEVs involved in writing out this specific lwb. The lwb will be
1100 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1101 * zio completion callback for the lwb's root zio.
1102 */
1103static void
1104zil_lwb_write_done(zio_t *zio)
1105{
1106	lwb_t *lwb = zio->io_private;
1107	spa_t *spa = zio->io_spa;
1108	zilog_t *zilog = lwb->lwb_zilog;
1109	avl_tree_t *t = &lwb->lwb_vdev_tree;
1110	void *cookie = NULL;
1111	zil_vdev_node_t *zv;
1112
1113	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1114
1115	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1116	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1117	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1118	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1119	ASSERT(!BP_IS_GANG(zio->io_bp));
1120	ASSERT(!BP_IS_HOLE(zio->io_bp));
1121	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1122
1123	abd_put(zio->io_abd);
1124
1125	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1126
1127	mutex_enter(&zilog->zl_lock);
1128	lwb->lwb_write_zio = NULL;
1129	mutex_exit(&zilog->zl_lock);
1130
1131	if (avl_numnodes(t) == 0)
1132		return;
1133
1134	/*
1135	 * If there was an IO error, we're not going to call zio_flush()
1136	 * on these vdevs, so we simply empty the tree and free the
1137	 * nodes. We avoid calling zio_flush() since there isn't any
1138	 * good reason for doing so, after the lwb block failed to be
1139	 * written out.
1140	 */
1141	if (zio->io_error != 0) {
1142		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1143			kmem_free(zv, sizeof (*zv));
1144		return;
1145	}
1146
1147	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1148		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1149		if (vd != NULL)
1150			zio_flush(lwb->lwb_root_zio, vd);
1151		kmem_free(zv, sizeof (*zv));
1152	}
1153}
1154
1155/*
1156 * This function's purpose is to "open" an lwb such that it is ready to
1157 * accept new itxs being committed to it. To do this, the lwb's zio
1158 * structures are created, and linked to the lwb. This function is
1159 * idempotent; if the passed in lwb has already been opened, this
1160 * function is essentially a no-op.
1161 */
1162static void
1163zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1164{
1165	zbookmark_phys_t zb;
1166	zio_priority_t prio;
1167
1168	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1169	ASSERT3P(lwb, !=, NULL);
1170	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1171	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1172
1173	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1174	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1175	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1176
1177	if (lwb->lwb_root_zio == NULL) {
1178		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1179		    BP_GET_LSIZE(&lwb->lwb_blk));
1180
1181		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1182			prio = ZIO_PRIORITY_SYNC_WRITE;
1183		else
1184			prio = ZIO_PRIORITY_ASYNC_WRITE;
1185
1186		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1187		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1188		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1189
1190		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1191		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1192		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1193		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1194		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1195
1196		lwb->lwb_state = LWB_STATE_OPENED;
1197
1198		mutex_enter(&zilog->zl_lock);
1199
1200		/*
1201		 * The zilog's "zl_last_lwb_opened" field is used to
1202		 * build the lwb/zio dependency chain, which is used to
1203		 * preserve the ordering of lwb completions that is
1204		 * required by the semantics of the ZIL. Each new lwb
1205		 * zio becomes a parent of the "previous" lwb zio, such
1206		 * that the new lwb's zio cannot complete until the
1207		 * "previous" lwb's zio completes.
1208		 *
1209		 * This is required by the semantics of zil_commit();
1210		 * the commit waiters attached to the lwbs will be woken
1211		 * in the lwb zio's completion callback, so this zio
1212		 * dependency graph ensures the waiters are woken in the
1213		 * correct order (the same order the lwbs were created).
1214		 */
1215		lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1216		if (last_lwb_opened != NULL &&
1217		    last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1218			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1219			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1220			ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1221			zio_add_child(lwb->lwb_root_zio,
1222			    last_lwb_opened->lwb_root_zio);
1223		}
1224		zilog->zl_last_lwb_opened = lwb;
1225
1226		mutex_exit(&zilog->zl_lock);
1227	}
1228
1229	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1230	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1231	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1232}
1233
1234/*
1235 * Define a limited set of intent log block sizes.
1236 *
1237 * These must be a multiple of 4KB. Note only the amount used (again
1238 * aligned to 4KB) actually gets written. However, we can't always just
1239 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1240 */
1241struct {
1242	uint64_t	limit;
1243	uint64_t	blksz;
1244} zil_block_buckets[] = {
1245    { 4096,		4096 },			/* non TX_WRITE */
1246    { 8192 + 4096,	8192 + 4096 },		/* database */
1247    { 32768 + 4096,	32768 + 4096 },		/* NFS writes */
1248    { 65536 + 4096,	65536 + 4096 },		/* 64KB writes */
1249    { 131072,		131072 },		/* < 128KB writes */
1250    { 131072 + 4096,	65536 + 4096 },		/* 128KB writes */
1251    { UINT64_MAX,	SPA_OLD_MAXBLOCKSIZE},	/* > 128KB writes */
1252};
1253
1254/*
1255 * Maximum block size used by the ZIL.  This is picked up when the ZIL is
1256 * initialized.  Otherwise this should not be used directly; see
1257 * zl_max_block_size instead.
1258 */
1259int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1260SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_maxblocksize, CTLFLAG_RWTUN,
1261    &zil_maxblocksize, 0, "Limit in bytes of ZIL log block size");
1262
1263/*
1264 * Start a log block write and advance to the next log block.
1265 * Calls are serialized.
1266 */
1267static lwb_t *
1268zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1269{
1270	lwb_t *nlwb = NULL;
1271	zil_chain_t *zilc;
1272	spa_t *spa = zilog->zl_spa;
1273	blkptr_t *bp;
1274	dmu_tx_t *tx;
1275	uint64_t txg;
1276	uint64_t zil_blksz, wsz;
1277	int i, error;
1278	boolean_t slog;
1279
1280	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1281	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1282	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1283	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1284
1285	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1286		zilc = (zil_chain_t *)lwb->lwb_buf;
1287		bp = &zilc->zc_next_blk;
1288	} else {
1289		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1290		bp = &zilc->zc_next_blk;
1291	}
1292
1293	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1294
1295	/*
1296	 * Allocate the next block and save its address in this block
1297	 * before writing it in order to establish the log chain.
1298	 * Note that if the allocation of nlwb synced before we wrote
1299	 * the block that points at it (lwb), we'd leak it if we crashed.
1300	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1301	 * We dirty the dataset to ensure that zil_sync() will be called
1302	 * to clean up in the event of allocation failure or I/O failure.
1303	 */
1304
1305	tx = dmu_tx_create(zilog->zl_os);
1306
1307	/*
1308	 * Since we are not going to create any new dirty data, and we
1309	 * can even help with clearing the existing dirty data, we
1310	 * should not be subject to the dirty data based delays. We
1311	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1312	 */
1313	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1314
1315	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1316	txg = dmu_tx_get_txg(tx);
1317
1318	lwb->lwb_tx = tx;
1319
1320	/*
1321	 * Log blocks are pre-allocated. Here we select the size of the next
1322	 * block, based on size used in the last block.
1323	 * - first find the smallest bucket that will fit the block from a
1324	 *   limited set of block sizes. This is because it's faster to write
1325	 *   blocks allocated from the same metaslab as they are adjacent or
1326	 *   close.
1327	 * - next find the maximum from the new suggested size and an array of
1328	 *   previous sizes. This lessens a picket fence effect of wrongly
1329	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1330	 *   requests.
1331	 *
1332	 * Note we only write what is used, but we can't just allocate
1333	 * the maximum block size because we can exhaust the available
1334	 * pool log space.
1335	 */
1336	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1337	for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1338		continue;
1339	zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1340	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1341	for (i = 0; i < ZIL_PREV_BLKS; i++)
1342		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1343	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1344
1345	BP_ZERO(bp);
1346
1347	/* pass the old blkptr in order to spread log blocks across devs */
1348	error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1349	    txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1350	if (error == 0) {
1351		ASSERT3U(bp->blk_birth, ==, txg);
1352		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1353		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1354
1355		/*
1356		 * Allocate a new log write block (lwb).
1357		 */
1358		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1359	}
1360
1361	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1362		/* For Slim ZIL only write what is used. */
1363		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1364		ASSERT3U(wsz, <=, lwb->lwb_sz);
1365		zio_shrink(lwb->lwb_write_zio, wsz);
1366
1367	} else {
1368		wsz = lwb->lwb_sz;
1369	}
1370
1371	zilc->zc_pad = 0;
1372	zilc->zc_nused = lwb->lwb_nused;
1373	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1374
1375	/*
1376	 * clear unused data for security
1377	 */
1378	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1379
1380	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1381
1382	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1383	lwb->lwb_issued_timestamp = gethrtime();
1384	lwb->lwb_state = LWB_STATE_ISSUED;
1385
1386	zio_nowait(lwb->lwb_root_zio);
1387	zio_nowait(lwb->lwb_write_zio);
1388
1389	/*
1390	 * If there was an allocation failure then nlwb will be null which
1391	 * forces a txg_wait_synced().
1392	 */
1393	return (nlwb);
1394}
1395
1396/*
1397 * Maximum amount of write data that can be put into single log block.
1398 */
1399uint64_t
1400zil_max_log_data(zilog_t *zilog)
1401{
1402	return (zilog->zl_max_block_size -
1403	    sizeof (zil_chain_t) - sizeof (lr_write_t));
1404}
1405
1406/*
1407 * Maximum amount of log space we agree to waste to reduce number of
1408 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1409 */
1410static inline uint64_t
1411zil_max_waste_space(zilog_t *zilog)
1412{
1413	return (zil_max_log_data(zilog) / 8);
1414}
1415
1416/*
1417 * Maximum amount of write data for WR_COPIED.  For correctness, consumers
1418 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1419 * maximum sized log block, because each WR_COPIED record must fit in a
1420 * single log block.  For space efficiency, we want to fit two records into a
1421 * max-sized log block.
1422 */
1423uint64_t
1424zil_max_copied_data(zilog_t *zilog)
1425{
1426	return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1427	    sizeof (lr_write_t));
1428}
1429
1430static lwb_t *
1431zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1432{
1433	lr_t *lrcb, *lrc;
1434	lr_write_t *lrwb, *lrw;
1435	char *lr_buf;
1436	uint64_t dlen, dnow, lwb_sp, reclen, txg, max_log_data;
1437
1438	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1439	ASSERT3P(lwb, !=, NULL);
1440	ASSERT3P(lwb->lwb_buf, !=, NULL);
1441
1442	zil_lwb_write_open(zilog, lwb);
1443
1444	lrc = &itx->itx_lr;
1445	lrw = (lr_write_t *)lrc;
1446
1447	/*
1448	 * A commit itx doesn't represent any on-disk state; instead
1449	 * it's simply used as a place holder on the commit list, and
1450	 * provides a mechanism for attaching a "commit waiter" onto the
1451	 * correct lwb (such that the waiter can be signalled upon
1452	 * completion of that lwb). Thus, we don't process this itx's
1453	 * log record if it's a commit itx (these itx's don't have log
1454	 * records), and instead link the itx's waiter onto the lwb's
1455	 * list of waiters.
1456	 *
1457	 * For more details, see the comment above zil_commit().
1458	 */
1459	if (lrc->lrc_txtype == TX_COMMIT) {
1460		mutex_enter(&zilog->zl_lock);
1461		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1462		itx->itx_private = NULL;
1463		mutex_exit(&zilog->zl_lock);
1464		return (lwb);
1465	}
1466
1467	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1468		dlen = P2ROUNDUP_TYPED(
1469		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1470	} else {
1471		dlen = 0;
1472	}
1473	reclen = lrc->lrc_reclen;
1474	zilog->zl_cur_used += (reclen + dlen);
1475	txg = lrc->lrc_txg;
1476
1477	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1478
1479cont:
1480	/*
1481	 * If this record won't fit in the current log block, start a new one.
1482	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1483	 */
1484	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1485	max_log_data = zil_max_log_data(zilog);
1486	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1487	    lwb_sp < zil_max_waste_space(zilog) &&
1488	    (dlen % max_log_data == 0 ||
1489	    lwb_sp < reclen + dlen % max_log_data))) {
1490		lwb = zil_lwb_write_issue(zilog, lwb);
1491		if (lwb == NULL)
1492			return (NULL);
1493		zil_lwb_write_open(zilog, lwb);
1494		ASSERT(LWB_EMPTY(lwb));
1495		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1496
1497		/*
1498		 * There must be enough space in the new, empty log block to
1499		 * hold reclen.  For WR_COPIED, we need to fit the whole
1500		 * record in one block, and reclen is the header size + the
1501		 * data size. For WR_NEED_COPY, we can create multiple
1502		 * records, splitting the data into multiple blocks, so we
1503		 * only need to fit one word of data per block; in this case
1504		 * reclen is just the header size (no data).
1505		 */
1506		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1507	}
1508
1509	dnow = MIN(dlen, lwb_sp - reclen);
1510	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1511	bcopy(lrc, lr_buf, reclen);
1512	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1513	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1514
1515	/*
1516	 * If it's a write, fetch the data or get its blkptr as appropriate.
1517	 */
1518	if (lrc->lrc_txtype == TX_WRITE) {
1519		if (txg > spa_freeze_txg(zilog->zl_spa))
1520			txg_wait_synced(zilog->zl_dmu_pool, txg);
1521		if (itx->itx_wr_state != WR_COPIED) {
1522			char *dbuf;
1523			int error;
1524
1525			if (itx->itx_wr_state == WR_NEED_COPY) {
1526				dbuf = lr_buf + reclen;
1527				lrcb->lrc_reclen += dnow;
1528				if (lrwb->lr_length > dnow)
1529					lrwb->lr_length = dnow;
1530				lrw->lr_offset += dnow;
1531				lrw->lr_length -= dnow;
1532			} else {
1533				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1534				dbuf = NULL;
1535			}
1536
1537			/*
1538			 * We pass in the "lwb_write_zio" rather than
1539			 * "lwb_root_zio" so that the "lwb_write_zio"
1540			 * becomes the parent of any zio's created by
1541			 * the "zl_get_data" callback. The vdevs are
1542			 * flushed after the "lwb_write_zio" completes,
1543			 * so we want to make sure that completion
1544			 * callback waits for these additional zio's,
1545			 * such that the vdevs used by those zio's will
1546			 * be included in the lwb's vdev tree, and those
1547			 * vdevs will be properly flushed. If we passed
1548			 * in "lwb_root_zio" here, then these additional
1549			 * vdevs may not be flushed; e.g. if these zio's
1550			 * completed after "lwb_write_zio" completed.
1551			 */
1552			error = zilog->zl_get_data(itx->itx_private,
1553			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1554
1555			if (error == EIO) {
1556				txg_wait_synced(zilog->zl_dmu_pool, txg);
1557				return (lwb);
1558			}
1559			if (error != 0) {
1560				ASSERT(error == ENOENT || error == EEXIST ||
1561				    error == EALREADY);
1562				return (lwb);
1563			}
1564		}
1565	}
1566
1567	/*
1568	 * We're actually making an entry, so update lrc_seq to be the
1569	 * log record sequence number.  Note that this is generally not
1570	 * equal to the itx sequence number because not all transactions
1571	 * are synchronous, and sometimes spa_sync() gets there first.
1572	 */
1573	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1574	lwb->lwb_nused += reclen + dnow;
1575
1576	zil_lwb_add_txg(lwb, txg);
1577
1578	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1579	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1580
1581	dlen -= dnow;
1582	if (dlen > 0) {
1583		zilog->zl_cur_used += reclen;
1584		goto cont;
1585	}
1586
1587	return (lwb);
1588}
1589
1590itx_t *
1591zil_itx_create(uint64_t txtype, size_t lrsize)
1592{
1593	itx_t *itx;
1594
1595	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1596
1597	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1598	itx->itx_lr.lrc_txtype = txtype;
1599	itx->itx_lr.lrc_reclen = lrsize;
1600	itx->itx_lr.lrc_seq = 0;	/* defensive */
1601	itx->itx_sync = B_TRUE;		/* default is synchronous */
1602
1603	return (itx);
1604}
1605
1606void
1607zil_itx_destroy(itx_t *itx)
1608{
1609	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1610}
1611
1612/*
1613 * Free up the sync and async itxs. The itxs_t has already been detached
1614 * so no locks are needed.
1615 */
1616static void
1617zil_itxg_clean(itxs_t *itxs)
1618{
1619	itx_t *itx;
1620	list_t *list;
1621	avl_tree_t *t;
1622	void *cookie;
1623	itx_async_node_t *ian;
1624
1625	list = &itxs->i_sync_list;
1626	while ((itx = list_head(list)) != NULL) {
1627		/*
1628		 * In the general case, commit itxs will not be found
1629		 * here, as they'll be committed to an lwb via
1630		 * zil_lwb_commit(), and free'd in that function. Having
1631		 * said that, it is still possible for commit itxs to be
1632		 * found here, due to the following race:
1633		 *
1634		 *	- a thread calls zil_commit() which assigns the
1635		 *	  commit itx to a per-txg i_sync_list
1636		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1637		 *	  while the waiter is still on the i_sync_list
1638		 *
1639		 * There's nothing to prevent syncing the txg while the
1640		 * waiter is on the i_sync_list. This normally doesn't
1641		 * happen because spa_sync() is slower than zil_commit(),
1642		 * but if zil_commit() calls txg_wait_synced() (e.g.
1643		 * because zil_create() or zil_commit_writer_stall() is
1644		 * called) we will hit this case.
1645		 */
1646		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1647			zil_commit_waiter_skip(itx->itx_private);
1648
1649		list_remove(list, itx);
1650		zil_itx_destroy(itx);
1651	}
1652
1653	cookie = NULL;
1654	t = &itxs->i_async_tree;
1655	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1656		list = &ian->ia_list;
1657		while ((itx = list_head(list)) != NULL) {
1658			list_remove(list, itx);
1659			/* commit itxs should never be on the async lists. */
1660			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1661			zil_itx_destroy(itx);
1662		}
1663		list_destroy(list);
1664		kmem_free(ian, sizeof (itx_async_node_t));
1665	}
1666	avl_destroy(t);
1667
1668	kmem_free(itxs, sizeof (itxs_t));
1669}
1670
1671static int
1672zil_aitx_compare(const void *x1, const void *x2)
1673{
1674	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1675	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1676
1677	return (AVL_CMP(o1, o2));
1678}
1679
1680/*
1681 * Remove all async itx with the given oid.
1682 */
1683static void
1684zil_remove_async(zilog_t *zilog, uint64_t oid)
1685{
1686	uint64_t otxg, txg;
1687	itx_async_node_t *ian;
1688	avl_tree_t *t;
1689	avl_index_t where;
1690	list_t clean_list;
1691	itx_t *itx;
1692
1693	ASSERT(oid != 0);
1694	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1695
1696	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1697		otxg = ZILTEST_TXG;
1698	else
1699		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1700
1701	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1702		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1703
1704		mutex_enter(&itxg->itxg_lock);
1705		if (itxg->itxg_txg != txg) {
1706			mutex_exit(&itxg->itxg_lock);
1707			continue;
1708		}
1709
1710		/*
1711		 * Locate the object node and append its list.
1712		 */
1713		t = &itxg->itxg_itxs->i_async_tree;
1714		ian = avl_find(t, &oid, &where);
1715		if (ian != NULL)
1716			list_move_tail(&clean_list, &ian->ia_list);
1717		mutex_exit(&itxg->itxg_lock);
1718	}
1719	while ((itx = list_head(&clean_list)) != NULL) {
1720		list_remove(&clean_list, itx);
1721		/* commit itxs should never be on the async lists. */
1722		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1723		zil_itx_destroy(itx);
1724	}
1725	list_destroy(&clean_list);
1726}
1727
1728void
1729zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1730{
1731	uint64_t txg;
1732	itxg_t *itxg;
1733	itxs_t *itxs, *clean = NULL;
1734
1735	/*
1736	 * Object ids can be re-instantiated in the next txg so
1737	 * remove any async transactions to avoid future leaks.
1738	 * This can happen if a fsync occurs on the re-instantiated
1739	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1740	 * the new file data and flushes a write record for the old object.
1741	 */
1742	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1743		zil_remove_async(zilog, itx->itx_oid);
1744
1745	/*
1746	 * Ensure the data of a renamed file is committed before the rename.
1747	 */
1748	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1749		zil_async_to_sync(zilog, itx->itx_oid);
1750
1751	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1752		txg = ZILTEST_TXG;
1753	else
1754		txg = dmu_tx_get_txg(tx);
1755
1756	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1757	mutex_enter(&itxg->itxg_lock);
1758	itxs = itxg->itxg_itxs;
1759	if (itxg->itxg_txg != txg) {
1760		if (itxs != NULL) {
1761			/*
1762			 * The zil_clean callback hasn't got around to cleaning
1763			 * this itxg. Save the itxs for release below.
1764			 * This should be rare.
1765			 */
1766			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1767			    "txg %llu", itxg->itxg_txg);
1768			clean = itxg->itxg_itxs;
1769		}
1770		itxg->itxg_txg = txg;
1771		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1772
1773		list_create(&itxs->i_sync_list, sizeof (itx_t),
1774		    offsetof(itx_t, itx_node));
1775		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1776		    sizeof (itx_async_node_t),
1777		    offsetof(itx_async_node_t, ia_node));
1778	}
1779	if (itx->itx_sync) {
1780		list_insert_tail(&itxs->i_sync_list, itx);
1781	} else {
1782		avl_tree_t *t = &itxs->i_async_tree;
1783		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1784		itx_async_node_t *ian;
1785		avl_index_t where;
1786
1787		ian = avl_find(t, &foid, &where);
1788		if (ian == NULL) {
1789			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1790			list_create(&ian->ia_list, sizeof (itx_t),
1791			    offsetof(itx_t, itx_node));
1792			ian->ia_foid = foid;
1793			avl_insert(t, ian, where);
1794		}
1795		list_insert_tail(&ian->ia_list, itx);
1796	}
1797
1798	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1799
1800	/*
1801	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1802	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1803	 * need to be careful to always dirty the ZIL using the "real"
1804	 * TXG (not itxg_txg) even when the SPA is frozen.
1805	 */
1806	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1807	mutex_exit(&itxg->itxg_lock);
1808
1809	/* Release the old itxs now we've dropped the lock */
1810	if (clean != NULL)
1811		zil_itxg_clean(clean);
1812}
1813
1814/*
1815 * If there are any in-memory intent log transactions which have now been
1816 * synced then start up a taskq to free them. We should only do this after we
1817 * have written out the uberblocks (i.e. txg has been comitted) so that
1818 * don't inadvertently clean out in-memory log records that would be required
1819 * by zil_commit().
1820 */
1821void
1822zil_clean(zilog_t *zilog, uint64_t synced_txg)
1823{
1824	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1825	itxs_t *clean_me;
1826
1827	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1828
1829	mutex_enter(&itxg->itxg_lock);
1830	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1831		mutex_exit(&itxg->itxg_lock);
1832		return;
1833	}
1834	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1835	ASSERT3U(itxg->itxg_txg, !=, 0);
1836	clean_me = itxg->itxg_itxs;
1837	itxg->itxg_itxs = NULL;
1838	itxg->itxg_txg = 0;
1839	mutex_exit(&itxg->itxg_lock);
1840	/*
1841	 * Preferably start a task queue to free up the old itxs but
1842	 * if taskq_dispatch can't allocate resources to do that then
1843	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1844	 * created a bad performance problem.
1845	 */
1846	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1847	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1848	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1849	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1850		zil_itxg_clean(clean_me);
1851}
1852
1853/*
1854 * This function will traverse the queue of itxs that need to be
1855 * committed, and move them onto the ZIL's zl_itx_commit_list.
1856 */
1857static void
1858zil_get_commit_list(zilog_t *zilog)
1859{
1860	uint64_t otxg, txg;
1861	list_t *commit_list = &zilog->zl_itx_commit_list;
1862
1863	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1864
1865	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1866		otxg = ZILTEST_TXG;
1867	else
1868		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1869
1870	/*
1871	 * This is inherently racy, since there is nothing to prevent
1872	 * the last synced txg from changing. That's okay since we'll
1873	 * only commit things in the future.
1874	 */
1875	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1876		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1877
1878		mutex_enter(&itxg->itxg_lock);
1879		if (itxg->itxg_txg != txg) {
1880			mutex_exit(&itxg->itxg_lock);
1881			continue;
1882		}
1883
1884		/*
1885		 * If we're adding itx records to the zl_itx_commit_list,
1886		 * then the zil better be dirty in this "txg". We can assert
1887		 * that here since we're holding the itxg_lock which will
1888		 * prevent spa_sync from cleaning it. Once we add the itxs
1889		 * to the zl_itx_commit_list we must commit it to disk even
1890		 * if it's unnecessary (i.e. the txg was synced).
1891		 */
1892		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1893		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1894		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1895
1896		mutex_exit(&itxg->itxg_lock);
1897	}
1898}
1899
1900/*
1901 * Move the async itxs for a specified object to commit into sync lists.
1902 */
1903void
1904zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1905{
1906	uint64_t otxg, txg;
1907	itx_async_node_t *ian;
1908	avl_tree_t *t;
1909	avl_index_t where;
1910
1911	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1912		otxg = ZILTEST_TXG;
1913	else
1914		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1915
1916	/*
1917	 * This is inherently racy, since there is nothing to prevent
1918	 * the last synced txg from changing.
1919	 */
1920	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1921		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1922
1923		mutex_enter(&itxg->itxg_lock);
1924		if (itxg->itxg_txg != txg) {
1925			mutex_exit(&itxg->itxg_lock);
1926			continue;
1927		}
1928
1929		/*
1930		 * If a foid is specified then find that node and append its
1931		 * list. Otherwise walk the tree appending all the lists
1932		 * to the sync list. We add to the end rather than the
1933		 * beginning to ensure the create has happened.
1934		 */
1935		t = &itxg->itxg_itxs->i_async_tree;
1936		if (foid != 0) {
1937			ian = avl_find(t, &foid, &where);
1938			if (ian != NULL) {
1939				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1940				    &ian->ia_list);
1941			}
1942		} else {
1943			void *cookie = NULL;
1944
1945			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1946				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1947				    &ian->ia_list);
1948				list_destroy(&ian->ia_list);
1949				kmem_free(ian, sizeof (itx_async_node_t));
1950			}
1951		}
1952		mutex_exit(&itxg->itxg_lock);
1953	}
1954}
1955
1956/*
1957 * This function will prune commit itxs that are at the head of the
1958 * commit list (it won't prune past the first non-commit itx), and
1959 * either: a) attach them to the last lwb that's still pending
1960 * completion, or b) skip them altogether.
1961 *
1962 * This is used as a performance optimization to prevent commit itxs
1963 * from generating new lwbs when it's unnecessary to do so.
1964 */
1965static void
1966zil_prune_commit_list(zilog_t *zilog)
1967{
1968	itx_t *itx;
1969
1970	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1971
1972	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1973		lr_t *lrc = &itx->itx_lr;
1974		if (lrc->lrc_txtype != TX_COMMIT)
1975			break;
1976
1977		mutex_enter(&zilog->zl_lock);
1978
1979		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1980		if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1981			/*
1982			 * All of the itxs this waiter was waiting on
1983			 * must have already completed (or there were
1984			 * never any itx's for it to wait on), so it's
1985			 * safe to skip this waiter and mark it done.
1986			 */
1987			zil_commit_waiter_skip(itx->itx_private);
1988		} else {
1989			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1990			itx->itx_private = NULL;
1991		}
1992
1993		mutex_exit(&zilog->zl_lock);
1994
1995		list_remove(&zilog->zl_itx_commit_list, itx);
1996		zil_itx_destroy(itx);
1997	}
1998
1999	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2000}
2001
2002static void
2003zil_commit_writer_stall(zilog_t *zilog)
2004{
2005	/*
2006	 * When zio_alloc_zil() fails to allocate the next lwb block on
2007	 * disk, we must call txg_wait_synced() to ensure all of the
2008	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2009	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2010	 * to zil_process_commit_list()) will have to call zil_create(),
2011	 * and start a new ZIL chain.
2012	 *
2013	 * Since zil_alloc_zil() failed, the lwb that was previously
2014	 * issued does not have a pointer to the "next" lwb on disk.
2015	 * Thus, if another ZIL writer thread was to allocate the "next"
2016	 * on-disk lwb, that block could be leaked in the event of a
2017	 * crash (because the previous lwb on-disk would not point to
2018	 * it).
2019	 *
2020	 * We must hold the zilog's zl_issuer_lock while we do this, to
2021	 * ensure no new threads enter zil_process_commit_list() until
2022	 * all lwb's in the zl_lwb_list have been synced and freed
2023	 * (which is achieved via the txg_wait_synced() call).
2024	 */
2025	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2026	txg_wait_synced(zilog->zl_dmu_pool, 0);
2027	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2028}
2029
2030/*
2031 * This function will traverse the commit list, creating new lwbs as
2032 * needed, and committing the itxs from the commit list to these newly
2033 * created lwbs. Additionally, as a new lwb is created, the previous
2034 * lwb will be issued to the zio layer to be written to disk.
2035 */
2036static void
2037zil_process_commit_list(zilog_t *zilog)
2038{
2039	spa_t *spa = zilog->zl_spa;
2040	list_t nolwb_waiters;
2041	lwb_t *lwb;
2042	itx_t *itx;
2043
2044	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2045
2046	/*
2047	 * Return if there's nothing to commit before we dirty the fs by
2048	 * calling zil_create().
2049	 */
2050	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2051		return;
2052
2053	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2054	    offsetof(zil_commit_waiter_t, zcw_node));
2055
2056	lwb = list_tail(&zilog->zl_lwb_list);
2057	if (lwb == NULL) {
2058		lwb = zil_create(zilog);
2059	} else {
2060		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2061		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2062	}
2063
2064	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2065		lr_t *lrc = &itx->itx_lr;
2066		uint64_t txg = lrc->lrc_txg;
2067
2068		ASSERT3U(txg, !=, 0);
2069
2070		if (lrc->lrc_txtype == TX_COMMIT) {
2071			DTRACE_PROBE2(zil__process__commit__itx,
2072			    zilog_t *, zilog, itx_t *, itx);
2073		} else {
2074			DTRACE_PROBE2(zil__process__normal__itx,
2075			    zilog_t *, zilog, itx_t *, itx);
2076		}
2077
2078		boolean_t synced = txg <= spa_last_synced_txg(spa);
2079		boolean_t frozen = txg > spa_freeze_txg(spa);
2080
2081		/*
2082		 * If the txg of this itx has already been synced out, then
2083		 * we don't need to commit this itx to an lwb. This is
2084		 * because the data of this itx will have already been
2085		 * written to the main pool. This is inherently racy, and
2086		 * it's still ok to commit an itx whose txg has already
2087		 * been synced; this will result in a write that's
2088		 * unnecessary, but will do no harm.
2089		 *
2090		 * With that said, we always want to commit TX_COMMIT itxs
2091		 * to an lwb, regardless of whether or not that itx's txg
2092		 * has been synced out. We do this to ensure any OPENED lwb
2093		 * will always have at least one zil_commit_waiter_t linked
2094		 * to the lwb.
2095		 *
2096		 * As a counter-example, if we skipped TX_COMMIT itx's
2097		 * whose txg had already been synced, the following
2098		 * situation could occur if we happened to be racing with
2099		 * spa_sync:
2100		 *
2101		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2102		 *    itx's txg is 10 and the last synced txg is 9.
2103		 * 2. spa_sync finishes syncing out txg 10.
2104		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2105		 *    whose txg is 10, so we skip it rather than committing
2106		 *    it to the lwb used in (1).
2107		 *
2108		 * If the itx that is skipped in (3) is the last TX_COMMIT
2109		 * itx in the commit list, than it's possible for the lwb
2110		 * used in (1) to remain in the OPENED state indefinitely.
2111		 *
2112		 * To prevent the above scenario from occuring, ensuring
2113		 * that once an lwb is OPENED it will transition to ISSUED
2114		 * and eventually DONE, we always commit TX_COMMIT itx's to
2115		 * an lwb here, even if that itx's txg has already been
2116		 * synced.
2117		 *
2118		 * Finally, if the pool is frozen, we _always_ commit the
2119		 * itx.  The point of freezing the pool is to prevent data
2120		 * from being written to the main pool via spa_sync, and
2121		 * instead rely solely on the ZIL to persistently store the
2122		 * data; i.e.  when the pool is frozen, the last synced txg
2123		 * value can't be trusted.
2124		 */
2125		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2126			if (lwb != NULL) {
2127				lwb = zil_lwb_commit(zilog, itx, lwb);
2128			} else if (lrc->lrc_txtype == TX_COMMIT) {
2129				ASSERT3P(lwb, ==, NULL);
2130				zil_commit_waiter_link_nolwb(
2131				    itx->itx_private, &nolwb_waiters);
2132			}
2133		}
2134
2135		list_remove(&zilog->zl_itx_commit_list, itx);
2136		zil_itx_destroy(itx);
2137	}
2138
2139	if (lwb == NULL) {
2140		/*
2141		 * This indicates zio_alloc_zil() failed to allocate the
2142		 * "next" lwb on-disk. When this happens, we must stall
2143		 * the ZIL write pipeline; see the comment within
2144		 * zil_commit_writer_stall() for more details.
2145		 */
2146		zil_commit_writer_stall(zilog);
2147
2148		/*
2149		 * Additionally, we have to signal and mark the "nolwb"
2150		 * waiters as "done" here, since without an lwb, we
2151		 * can't do this via zil_lwb_flush_vdevs_done() like
2152		 * normal.
2153		 */
2154		zil_commit_waiter_t *zcw;
2155		while (zcw = list_head(&nolwb_waiters)) {
2156			zil_commit_waiter_skip(zcw);
2157			list_remove(&nolwb_waiters, zcw);
2158		}
2159	} else {
2160		ASSERT(list_is_empty(&nolwb_waiters));
2161		ASSERT3P(lwb, !=, NULL);
2162		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2163		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2164
2165		/*
2166		 * At this point, the ZIL block pointed at by the "lwb"
2167		 * variable is in one of the following states: "closed"
2168		 * or "open".
2169		 *
2170		 * If its "closed", then no itxs have been committed to
2171		 * it, so there's no point in issuing its zio (i.e.
2172		 * it's "empty").
2173		 *
2174		 * If its "open" state, then it contains one or more
2175		 * itxs that eventually need to be committed to stable
2176		 * storage. In this case we intentionally do not issue
2177		 * the lwb's zio to disk yet, and instead rely on one of
2178		 * the following two mechanisms for issuing the zio:
2179		 *
2180		 * 1. Ideally, there will be more ZIL activity occuring
2181		 * on the system, such that this function will be
2182		 * immediately called again (not necessarily by the same
2183		 * thread) and this lwb's zio will be issued via
2184		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2185		 * be "full" when it is issued to disk, and we'll make
2186		 * use of the lwb's size the best we can.
2187		 *
2188		 * 2. If there isn't sufficient ZIL activity occuring on
2189		 * the system, such that this lwb's zio isn't issued via
2190		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2191		 * lwb's zio. If this occurs, the lwb is not guaranteed
2192		 * to be "full" by the time its zio is issued, and means
2193		 * the size of the lwb was "too large" given the amount
2194		 * of ZIL activity occuring on the system at that time.
2195		 *
2196		 * We do this for a couple of reasons:
2197		 *
2198		 * 1. To try and reduce the number of IOPs needed to
2199		 * write the same number of itxs. If an lwb has space
2200		 * available in it's buffer for more itxs, and more itxs
2201		 * will be committed relatively soon (relative to the
2202		 * latency of performing a write), then it's beneficial
2203		 * to wait for these "next" itxs. This way, more itxs
2204		 * can be committed to stable storage with fewer writes.
2205		 *
2206		 * 2. To try and use the largest lwb block size that the
2207		 * incoming rate of itxs can support. Again, this is to
2208		 * try and pack as many itxs into as few lwbs as
2209		 * possible, without significantly impacting the latency
2210		 * of each individual itx.
2211		 */
2212	}
2213}
2214
2215/*
2216 * This function is responsible for ensuring the passed in commit waiter
2217 * (and associated commit itx) is committed to an lwb. If the waiter is
2218 * not already committed to an lwb, all itxs in the zilog's queue of
2219 * itxs will be processed. The assumption is the passed in waiter's
2220 * commit itx will found in the queue just like the other non-commit
2221 * itxs, such that when the entire queue is processed, the waiter will
2222 * have been commited to an lwb.
2223 *
2224 * The lwb associated with the passed in waiter is not guaranteed to
2225 * have been issued by the time this function completes. If the lwb is
2226 * not issued, we rely on future calls to zil_commit_writer() to issue
2227 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2228 */
2229static void
2230zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2231{
2232	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2233	ASSERT(spa_writeable(zilog->zl_spa));
2234
2235	mutex_enter(&zilog->zl_issuer_lock);
2236
2237	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2238		/*
2239		 * It's possible that, while we were waiting to acquire
2240		 * the "zl_issuer_lock", another thread committed this
2241		 * waiter to an lwb. If that occurs, we bail out early,
2242		 * without processing any of the zilog's queue of itxs.
2243		 *
2244		 * On certain workloads and system configurations, the
2245		 * "zl_issuer_lock" can become highly contended. In an
2246		 * attempt to reduce this contention, we immediately drop
2247		 * the lock if the waiter has already been processed.
2248		 *
2249		 * We've measured this optimization to reduce CPU spent
2250		 * contending on this lock by up to 5%, using a system
2251		 * with 32 CPUs, low latency storage (~50 usec writes),
2252		 * and 1024 threads performing sync writes.
2253		 */
2254		goto out;
2255	}
2256
2257	zil_get_commit_list(zilog);
2258	zil_prune_commit_list(zilog);
2259	zil_process_commit_list(zilog);
2260
2261out:
2262	mutex_exit(&zilog->zl_issuer_lock);
2263}
2264
2265static void
2266zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2267{
2268	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2269	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2270	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2271
2272	lwb_t *lwb = zcw->zcw_lwb;
2273	ASSERT3P(lwb, !=, NULL);
2274	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2275
2276	/*
2277	 * If the lwb has already been issued by another thread, we can
2278	 * immediately return since there's no work to be done (the
2279	 * point of this function is to issue the lwb). Additionally, we
2280	 * do this prior to acquiring the zl_issuer_lock, to avoid
2281	 * acquiring it when it's not necessary to do so.
2282	 */
2283	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2284	    lwb->lwb_state == LWB_STATE_DONE)
2285		return;
2286
2287	/*
2288	 * In order to call zil_lwb_write_issue() we must hold the
2289	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2290	 * since we're already holding the commit waiter's "zcw_lock",
2291	 * and those two locks are aquired in the opposite order
2292	 * elsewhere.
2293	 */
2294	mutex_exit(&zcw->zcw_lock);
2295	mutex_enter(&zilog->zl_issuer_lock);
2296	mutex_enter(&zcw->zcw_lock);
2297
2298	/*
2299	 * Since we just dropped and re-acquired the commit waiter's
2300	 * lock, we have to re-check to see if the waiter was marked
2301	 * "done" during that process. If the waiter was marked "done",
2302	 * the "lwb" pointer is no longer valid (it can be free'd after
2303	 * the waiter is marked "done"), so without this check we could
2304	 * wind up with a use-after-free error below.
2305	 */
2306	if (zcw->zcw_done)
2307		goto out;
2308
2309	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2310
2311	/*
2312	 * We've already checked this above, but since we hadn't acquired
2313	 * the zilog's zl_issuer_lock, we have to perform this check a
2314	 * second time while holding the lock.
2315	 *
2316	 * We don't need to hold the zl_lock since the lwb cannot transition
2317	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2318	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2319	 * that transition since we treat the lwb the same, whether it's in
2320	 * the ISSUED or DONE states.
2321	 *
2322	 * The important thing, is we treat the lwb differently depending on
2323	 * if it's ISSUED or OPENED, and block any other threads that might
2324	 * attempt to issue this lwb. For that reason we hold the
2325	 * zl_issuer_lock when checking the lwb_state; we must not call
2326	 * zil_lwb_write_issue() if the lwb had already been issued.
2327	 *
2328	 * See the comment above the lwb_state_t structure definition for
2329	 * more details on the lwb states, and locking requirements.
2330	 */
2331	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2332	    lwb->lwb_state == LWB_STATE_DONE)
2333		goto out;
2334
2335	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2336
2337	/*
2338	 * As described in the comments above zil_commit_waiter() and
2339	 * zil_process_commit_list(), we need to issue this lwb's zio
2340	 * since we've reached the commit waiter's timeout and it still
2341	 * hasn't been issued.
2342	 */
2343	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2344
2345	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2346
2347	/*
2348	 * Since the lwb's zio hadn't been issued by the time this thread
2349	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2350	 * to influence the zil block size selection algorithm.
2351	 *
2352	 * By having to issue the lwb's zio here, it means the size of the
2353	 * lwb was too large, given the incoming throughput of itxs.  By
2354	 * setting "zl_cur_used" to zero, we communicate this fact to the
2355	 * block size selection algorithm, so it can take this informaiton
2356	 * into account, and potentially select a smaller size for the
2357	 * next lwb block that is allocated.
2358	 */
2359	zilog->zl_cur_used = 0;
2360
2361	if (nlwb == NULL) {
2362		/*
2363		 * When zil_lwb_write_issue() returns NULL, this
2364		 * indicates zio_alloc_zil() failed to allocate the
2365		 * "next" lwb on-disk. When this occurs, the ZIL write
2366		 * pipeline must be stalled; see the comment within the
2367		 * zil_commit_writer_stall() function for more details.
2368		 *
2369		 * We must drop the commit waiter's lock prior to
2370		 * calling zil_commit_writer_stall() or else we can wind
2371		 * up with the following deadlock:
2372		 *
2373		 * - This thread is waiting for the txg to sync while
2374		 *   holding the waiter's lock; txg_wait_synced() is
2375		 *   used within txg_commit_writer_stall().
2376		 *
2377		 * - The txg can't sync because it is waiting for this
2378		 *   lwb's zio callback to call dmu_tx_commit().
2379		 *
2380		 * - The lwb's zio callback can't call dmu_tx_commit()
2381		 *   because it's blocked trying to acquire the waiter's
2382		 *   lock, which occurs prior to calling dmu_tx_commit()
2383		 */
2384		mutex_exit(&zcw->zcw_lock);
2385		zil_commit_writer_stall(zilog);
2386		mutex_enter(&zcw->zcw_lock);
2387	}
2388
2389out:
2390	mutex_exit(&zilog->zl_issuer_lock);
2391	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2392}
2393
2394/*
2395 * This function is responsible for performing the following two tasks:
2396 *
2397 * 1. its primary responsibility is to block until the given "commit
2398 *    waiter" is considered "done".
2399 *
2400 * 2. its secondary responsibility is to issue the zio for the lwb that
2401 *    the given "commit waiter" is waiting on, if this function has
2402 *    waited "long enough" and the lwb is still in the "open" state.
2403 *
2404 * Given a sufficient amount of itxs being generated and written using
2405 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2406 * function. If this does not occur, this secondary responsibility will
2407 * ensure the lwb is issued even if there is not other synchronous
2408 * activity on the system.
2409 *
2410 * For more details, see zil_process_commit_list(); more specifically,
2411 * the comment at the bottom of that function.
2412 */
2413static void
2414zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2415{
2416	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2417	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2418	ASSERT(spa_writeable(zilog->zl_spa));
2419
2420	mutex_enter(&zcw->zcw_lock);
2421
2422	/*
2423	 * The timeout is scaled based on the lwb latency to avoid
2424	 * significantly impacting the latency of each individual itx.
2425	 * For more details, see the comment at the bottom of the
2426	 * zil_process_commit_list() function.
2427	 */
2428	int pct = MAX(zfs_commit_timeout_pct, 1);
2429#if defined(illumos) || !defined(_KERNEL)
2430	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2431	hrtime_t wakeup = gethrtime() + sleep;
2432#else
2433	sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100);
2434	sbintime_t wakeup = getsbinuptime() + sleep;
2435#endif
2436	boolean_t timedout = B_FALSE;
2437
2438	while (!zcw->zcw_done) {
2439		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2440
2441		lwb_t *lwb = zcw->zcw_lwb;
2442
2443		/*
2444		 * Usually, the waiter will have a non-NULL lwb field here,
2445		 * but it's possible for it to be NULL as a result of
2446		 * zil_commit() racing with spa_sync().
2447		 *
2448		 * When zil_clean() is called, it's possible for the itxg
2449		 * list (which may be cleaned via a taskq) to contain
2450		 * commit itxs. When this occurs, the commit waiters linked
2451		 * off of these commit itxs will not be committed to an
2452		 * lwb.  Additionally, these commit waiters will not be
2453		 * marked done until zil_commit_waiter_skip() is called via
2454		 * zil_itxg_clean().
2455		 *
2456		 * Thus, it's possible for this commit waiter (i.e. the
2457		 * "zcw" variable) to be found in this "in between" state;
2458		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2459		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2460		 */
2461		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2462
2463		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2464			ASSERT3B(timedout, ==, B_FALSE);
2465
2466			/*
2467			 * If the lwb hasn't been issued yet, then we
2468			 * need to wait with a timeout, in case this
2469			 * function needs to issue the lwb after the
2470			 * timeout is reached; responsibility (2) from
2471			 * the comment above this function.
2472			 */
2473#if defined(illumos) || !defined(_KERNEL)
2474			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2475			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2476			    CALLOUT_FLAG_ABSOLUTE);
2477
2478			if (timeleft >= 0 || zcw->zcw_done)
2479				continue;
2480#else
2481			int wait_err = cv_timedwait_sbt(&zcw->zcw_cv,
2482			    &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE);
2483			if (wait_err != EWOULDBLOCK || zcw->zcw_done)
2484				continue;
2485#endif
2486
2487			timedout = B_TRUE;
2488			zil_commit_waiter_timeout(zilog, zcw);
2489
2490			if (!zcw->zcw_done) {
2491				/*
2492				 * If the commit waiter has already been
2493				 * marked "done", it's possible for the
2494				 * waiter's lwb structure to have already
2495				 * been freed.  Thus, we can only reliably
2496				 * make these assertions if the waiter
2497				 * isn't done.
2498				 */
2499				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2500				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2501			}
2502		} else {
2503			/*
2504			 * If the lwb isn't open, then it must have already
2505			 * been issued. In that case, there's no need to
2506			 * use a timeout when waiting for the lwb to
2507			 * complete.
2508			 *
2509			 * Additionally, if the lwb is NULL, the waiter
2510			 * will soon be signalled and marked done via
2511			 * zil_clean() and zil_itxg_clean(), so no timeout
2512			 * is required.
2513			 */
2514
2515			IMPLY(lwb != NULL,
2516			    lwb->lwb_state == LWB_STATE_ISSUED ||
2517			    lwb->lwb_state == LWB_STATE_DONE);
2518			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2519		}
2520	}
2521
2522	mutex_exit(&zcw->zcw_lock);
2523}
2524
2525static zil_commit_waiter_t *
2526zil_alloc_commit_waiter()
2527{
2528	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2529
2530	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2531	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2532	list_link_init(&zcw->zcw_node);
2533	zcw->zcw_lwb = NULL;
2534	zcw->zcw_done = B_FALSE;
2535	zcw->zcw_zio_error = 0;
2536
2537	return (zcw);
2538}
2539
2540static void
2541zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2542{
2543	ASSERT(!list_link_active(&zcw->zcw_node));
2544	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2545	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2546	mutex_destroy(&zcw->zcw_lock);
2547	cv_destroy(&zcw->zcw_cv);
2548	kmem_cache_free(zil_zcw_cache, zcw);
2549}
2550
2551/*
2552 * This function is used to create a TX_COMMIT itx and assign it. This
2553 * way, it will be linked into the ZIL's list of synchronous itxs, and
2554 * then later committed to an lwb (or skipped) when
2555 * zil_process_commit_list() is called.
2556 */
2557static void
2558zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2559{
2560	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2561	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2562
2563	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2564	itx->itx_sync = B_TRUE;
2565	itx->itx_private = zcw;
2566
2567	zil_itx_assign(zilog, itx, tx);
2568
2569	dmu_tx_commit(tx);
2570}
2571
2572/*
2573 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2574 *
2575 * When writing ZIL transactions to the on-disk representation of the
2576 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2577 * itxs can be committed to a single lwb. Once a lwb is written and
2578 * committed to stable storage (i.e. the lwb is written, and vdevs have
2579 * been flushed), each itx that was committed to that lwb is also
2580 * considered to be committed to stable storage.
2581 *
2582 * When an itx is committed to an lwb, the log record (lr_t) contained
2583 * by the itx is copied into the lwb's zio buffer, and once this buffer
2584 * is written to disk, it becomes an on-disk ZIL block.
2585 *
2586 * As itxs are generated, they're inserted into the ZIL's queue of
2587 * uncommitted itxs. The semantics of zil_commit() are such that it will
2588 * block until all itxs that were in the queue when it was called, are
2589 * committed to stable storage.
2590 *
2591 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2592 * itxs, for all objects in the dataset, will be committed to stable
2593 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2594 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2595 * that correspond to the foid passed in, will be committed to stable
2596 * storage prior to zil_commit() returning.
2597 *
2598 * Generally speaking, when zil_commit() is called, the consumer doesn't
2599 * actually care about _all_ of the uncommitted itxs. Instead, they're
2600 * simply trying to waiting for a specific itx to be committed to disk,
2601 * but the interface(s) for interacting with the ZIL don't allow such
2602 * fine-grained communication. A better interface would allow a consumer
2603 * to create and assign an itx, and then pass a reference to this itx to
2604 * zil_commit(); such that zil_commit() would return as soon as that
2605 * specific itx was committed to disk (instead of waiting for _all_
2606 * itxs to be committed).
2607 *
2608 * When a thread calls zil_commit() a special "commit itx" will be
2609 * generated, along with a corresponding "waiter" for this commit itx.
2610 * zil_commit() will wait on this waiter's CV, such that when the waiter
2611 * is marked done, and signalled, zil_commit() will return.
2612 *
2613 * This commit itx is inserted into the queue of uncommitted itxs. This
2614 * provides an easy mechanism for determining which itxs were in the
2615 * queue prior to zil_commit() having been called, and which itxs were
2616 * added after zil_commit() was called.
2617 *
2618 * The commit it is special; it doesn't have any on-disk representation.
2619 * When a commit itx is "committed" to an lwb, the waiter associated
2620 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2621 * completes, each waiter on the lwb's list is marked done and signalled
2622 * -- allowing the thread waiting on the waiter to return from zil_commit().
2623 *
2624 * It's important to point out a few critical factors that allow us
2625 * to make use of the commit itxs, commit waiters, per-lwb lists of
2626 * commit waiters, and zio completion callbacks like we're doing:
2627 *
2628 *   1. The list of waiters for each lwb is traversed, and each commit
2629 *      waiter is marked "done" and signalled, in the zio completion
2630 *      callback of the lwb's zio[*].
2631 *
2632 *      * Actually, the waiters are signalled in the zio completion
2633 *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2634 *        that are sent to the vdevs upon completion of the lwb zio.
2635 *
2636 *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2637 *      itxs, the order in which they are inserted is preserved[*]; as
2638 *      itxs are added to the queue, they are added to the tail of
2639 *      in-memory linked lists.
2640 *
2641 *      When committing the itxs to lwbs (to be written to disk), they
2642 *      are committed in the same order in which the itxs were added to
2643 *      the uncommitted queue's linked list(s); i.e. the linked list of
2644 *      itxs to commit is traversed from head to tail, and each itx is
2645 *      committed to an lwb in that order.
2646 *
2647 *      * To clarify:
2648 *
2649 *        - the order of "sync" itxs is preserved w.r.t. other
2650 *          "sync" itxs, regardless of the corresponding objects.
2651 *        - the order of "async" itxs is preserved w.r.t. other
2652 *          "async" itxs corresponding to the same object.
2653 *        - the order of "async" itxs is *not* preserved w.r.t. other
2654 *          "async" itxs corresponding to different objects.
2655 *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2656 *          versa) is *not* preserved, even for itxs that correspond
2657 *          to the same object.
2658 *
2659 *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2660 *      zil_get_commit_list(), and zil_process_commit_list().
2661 *
2662 *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2663 *      lwb cannot be considered committed to stable storage, until its
2664 *      "previous" lwb is also committed to stable storage. This fact,
2665 *      coupled with the fact described above, means that itxs are
2666 *      committed in (roughly) the order in which they were generated.
2667 *      This is essential because itxs are dependent on prior itxs.
2668 *      Thus, we *must not* deem an itx as being committed to stable
2669 *      storage, until *all* prior itxs have also been committed to
2670 *      stable storage.
2671 *
2672 *      To enforce this ordering of lwb zio's, while still leveraging as
2673 *      much of the underlying storage performance as possible, we rely
2674 *      on two fundamental concepts:
2675 *
2676 *          1. The creation and issuance of lwb zio's is protected by
2677 *             the zilog's "zl_issuer_lock", which ensures only a single
2678 *             thread is creating and/or issuing lwb's at a time
2679 *          2. The "previous" lwb is a child of the "current" lwb
2680 *             (leveraging the zio parent-child depenency graph)
2681 *
2682 *      By relying on this parent-child zio relationship, we can have
2683 *      many lwb zio's concurrently issued to the underlying storage,
2684 *      but the order in which they complete will be the same order in
2685 *      which they were created.
2686 */
2687void
2688zil_commit(zilog_t *zilog, uint64_t foid)
2689{
2690	/*
2691	 * We should never attempt to call zil_commit on a snapshot for
2692	 * a couple of reasons:
2693	 *
2694	 * 1. A snapshot may never be modified, thus it cannot have any
2695	 *    in-flight itxs that would have modified the dataset.
2696	 *
2697	 * 2. By design, when zil_commit() is called, a commit itx will
2698	 *    be assigned to this zilog; as a result, the zilog will be
2699	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2700	 *    checks in the code that enforce this invariant, and will
2701	 *    cause a panic if it's not upheld.
2702	 */
2703	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2704
2705	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2706		return;
2707
2708	if (!spa_writeable(zilog->zl_spa)) {
2709		/*
2710		 * If the SPA is not writable, there should never be any
2711		 * pending itxs waiting to be committed to disk. If that
2712		 * weren't true, we'd skip writing those itxs out, and
2713		 * would break the sematics of zil_commit(); thus, we're
2714		 * verifying that truth before we return to the caller.
2715		 */
2716		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2717		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2718		for (int i = 0; i < TXG_SIZE; i++)
2719			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2720		return;
2721	}
2722
2723	/*
2724	 * If the ZIL is suspended, we don't want to dirty it by calling
2725	 * zil_commit_itx_assign() below, nor can we write out
2726	 * lwbs like would be done in zil_commit_write(). Thus, we
2727	 * simply rely on txg_wait_synced() to maintain the necessary
2728	 * semantics, and avoid calling those functions altogether.
2729	 */
2730	if (zilog->zl_suspend > 0) {
2731		txg_wait_synced(zilog->zl_dmu_pool, 0);
2732		return;
2733	}
2734
2735	zil_commit_impl(zilog, foid);
2736}
2737
2738void
2739zil_commit_impl(zilog_t *zilog, uint64_t foid)
2740{
2741	/*
2742	 * Move the "async" itxs for the specified foid to the "sync"
2743	 * queues, such that they will be later committed (or skipped)
2744	 * to an lwb when zil_process_commit_list() is called.
2745	 *
2746	 * Since these "async" itxs must be committed prior to this
2747	 * call to zil_commit returning, we must perform this operation
2748	 * before we call zil_commit_itx_assign().
2749	 */
2750	zil_async_to_sync(zilog, foid);
2751
2752	/*
2753	 * We allocate a new "waiter" structure which will initially be
2754	 * linked to the commit itx using the itx's "itx_private" field.
2755	 * Since the commit itx doesn't represent any on-disk state,
2756	 * when it's committed to an lwb, rather than copying the its
2757	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2758	 * added to the lwb's list of waiters. Then, when the lwb is
2759	 * committed to stable storage, each waiter in the lwb's list of
2760	 * waiters will be marked "done", and signalled.
2761	 *
2762	 * We must create the waiter and assign the commit itx prior to
2763	 * calling zil_commit_writer(), or else our specific commit itx
2764	 * is not guaranteed to be committed to an lwb prior to calling
2765	 * zil_commit_waiter().
2766	 */
2767	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2768	zil_commit_itx_assign(zilog, zcw);
2769
2770	zil_commit_writer(zilog, zcw);
2771	zil_commit_waiter(zilog, zcw);
2772
2773	if (zcw->zcw_zio_error != 0) {
2774		/*
2775		 * If there was an error writing out the ZIL blocks that
2776		 * this thread is waiting on, then we fallback to
2777		 * relying on spa_sync() to write out the data this
2778		 * thread is waiting on. Obviously this has performance
2779		 * implications, but the expectation is for this to be
2780		 * an exceptional case, and shouldn't occur often.
2781		 */
2782		DTRACE_PROBE2(zil__commit__io__error,
2783		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2784		txg_wait_synced(zilog->zl_dmu_pool, 0);
2785	}
2786
2787	zil_free_commit_waiter(zcw);
2788}
2789
2790/*
2791 * Called in syncing context to free committed log blocks and update log header.
2792 */
2793void
2794zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2795{
2796	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2797	uint64_t txg = dmu_tx_get_txg(tx);
2798	spa_t *spa = zilog->zl_spa;
2799	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2800	lwb_t *lwb;
2801
2802	/*
2803	 * We don't zero out zl_destroy_txg, so make sure we don't try
2804	 * to destroy it twice.
2805	 */
2806	if (spa_sync_pass(spa) != 1)
2807		return;
2808
2809	mutex_enter(&zilog->zl_lock);
2810
2811	ASSERT(zilog->zl_stop_sync == 0);
2812
2813	if (*replayed_seq != 0) {
2814		ASSERT(zh->zh_replay_seq < *replayed_seq);
2815		zh->zh_replay_seq = *replayed_seq;
2816		*replayed_seq = 0;
2817	}
2818
2819	if (zilog->zl_destroy_txg == txg) {
2820		blkptr_t blk = zh->zh_log;
2821
2822		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2823
2824		bzero(zh, sizeof (zil_header_t));
2825		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2826
2827		if (zilog->zl_keep_first) {
2828			/*
2829			 * If this block was part of log chain that couldn't
2830			 * be claimed because a device was missing during
2831			 * zil_claim(), but that device later returns,
2832			 * then this block could erroneously appear valid.
2833			 * To guard against this, assign a new GUID to the new
2834			 * log chain so it doesn't matter what blk points to.
2835			 */
2836			zil_init_log_chain(zilog, &blk);
2837			zh->zh_log = blk;
2838		}
2839	}
2840
2841	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2842		zh->zh_log = lwb->lwb_blk;
2843		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2844			break;
2845		list_remove(&zilog->zl_lwb_list, lwb);
2846		zio_free(spa, txg, &lwb->lwb_blk);
2847		zil_free_lwb(zilog, lwb);
2848
2849		/*
2850		 * If we don't have anything left in the lwb list then
2851		 * we've had an allocation failure and we need to zero
2852		 * out the zil_header blkptr so that we don't end
2853		 * up freeing the same block twice.
2854		 */
2855		if (list_head(&zilog->zl_lwb_list) == NULL)
2856			BP_ZERO(&zh->zh_log);
2857	}
2858	mutex_exit(&zilog->zl_lock);
2859}
2860
2861/* ARGSUSED */
2862static int
2863zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2864{
2865	lwb_t *lwb = vbuf;
2866	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2867	    offsetof(zil_commit_waiter_t, zcw_node));
2868	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2869	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2870	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2871	return (0);
2872}
2873
2874/* ARGSUSED */
2875static void
2876zil_lwb_dest(void *vbuf, void *unused)
2877{
2878	lwb_t *lwb = vbuf;
2879	mutex_destroy(&lwb->lwb_vdev_lock);
2880	avl_destroy(&lwb->lwb_vdev_tree);
2881	list_destroy(&lwb->lwb_waiters);
2882}
2883
2884void
2885zil_init(void)
2886{
2887	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2888	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2889
2890	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2891	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2892}
2893
2894void
2895zil_fini(void)
2896{
2897	kmem_cache_destroy(zil_zcw_cache);
2898	kmem_cache_destroy(zil_lwb_cache);
2899}
2900
2901void
2902zil_set_sync(zilog_t *zilog, uint64_t sync)
2903{
2904	zilog->zl_sync = sync;
2905}
2906
2907void
2908zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2909{
2910	zilog->zl_logbias = logbias;
2911}
2912
2913zilog_t *
2914zil_alloc(objset_t *os, zil_header_t *zh_phys)
2915{
2916	zilog_t *zilog;
2917
2918	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2919
2920	zilog->zl_header = zh_phys;
2921	zilog->zl_os = os;
2922	zilog->zl_spa = dmu_objset_spa(os);
2923	zilog->zl_dmu_pool = dmu_objset_pool(os);
2924	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2925	zilog->zl_logbias = dmu_objset_logbias(os);
2926	zilog->zl_sync = dmu_objset_syncprop(os);
2927	zilog->zl_dirty_max_txg = 0;
2928	zilog->zl_last_lwb_opened = NULL;
2929	zilog->zl_last_lwb_latency = 0;
2930	zilog->zl_max_block_size = zil_maxblocksize;
2931
2932	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2933	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2934
2935	for (int i = 0; i < TXG_SIZE; i++) {
2936		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2937		    MUTEX_DEFAULT, NULL);
2938	}
2939
2940	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2941	    offsetof(lwb_t, lwb_node));
2942
2943	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2944	    offsetof(itx_t, itx_node));
2945
2946	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2947
2948	return (zilog);
2949}
2950
2951void
2952zil_free(zilog_t *zilog)
2953{
2954	zilog->zl_stop_sync = 1;
2955
2956	ASSERT0(zilog->zl_suspend);
2957	ASSERT0(zilog->zl_suspending);
2958
2959	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2960	list_destroy(&zilog->zl_lwb_list);
2961
2962	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2963	list_destroy(&zilog->zl_itx_commit_list);
2964
2965	for (int i = 0; i < TXG_SIZE; i++) {
2966		/*
2967		 * It's possible for an itx to be generated that doesn't dirty
2968		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2969		 * callback to remove the entry. We remove those here.
2970		 *
2971		 * Also free up the ziltest itxs.
2972		 */
2973		if (zilog->zl_itxg[i].itxg_itxs)
2974			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2975		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2976	}
2977
2978	mutex_destroy(&zilog->zl_issuer_lock);
2979	mutex_destroy(&zilog->zl_lock);
2980
2981	cv_destroy(&zilog->zl_cv_suspend);
2982
2983	kmem_free(zilog, sizeof (zilog_t));
2984}
2985
2986/*
2987 * Open an intent log.
2988 */
2989zilog_t *
2990zil_open(objset_t *os, zil_get_data_t *get_data)
2991{
2992	zilog_t *zilog = dmu_objset_zil(os);
2993
2994	ASSERT3P(zilog->zl_get_data, ==, NULL);
2995	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2996	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2997
2998	zilog->zl_get_data = get_data;
2999
3000	return (zilog);
3001}
3002
3003/*
3004 * Close an intent log.
3005 */
3006void
3007zil_close(zilog_t *zilog)
3008{
3009	lwb_t *lwb;
3010	uint64_t txg;
3011
3012	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3013		zil_commit(zilog, 0);
3014	} else {
3015		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3016		ASSERT0(zilog->zl_dirty_max_txg);
3017		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3018	}
3019
3020	mutex_enter(&zilog->zl_lock);
3021	lwb = list_tail(&zilog->zl_lwb_list);
3022	if (lwb == NULL)
3023		txg = zilog->zl_dirty_max_txg;
3024	else
3025		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3026	mutex_exit(&zilog->zl_lock);
3027
3028	/*
3029	 * We need to use txg_wait_synced() to wait long enough for the
3030	 * ZIL to be clean, and to wait for all pending lwbs to be
3031	 * written out.
3032	 */
3033	if (txg != 0)
3034		txg_wait_synced(zilog->zl_dmu_pool, txg);
3035
3036	if (zilog_is_dirty(zilog))
3037		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
3038	VERIFY(!zilog_is_dirty(zilog));
3039
3040	zilog->zl_get_data = NULL;
3041
3042	/*
3043	 * We should have only one lwb left on the list; remove it now.
3044	 */
3045	mutex_enter(&zilog->zl_lock);
3046	lwb = list_head(&zilog->zl_lwb_list);
3047	if (lwb != NULL) {
3048		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3049		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3050		list_remove(&zilog->zl_lwb_list, lwb);
3051		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3052		zil_free_lwb(zilog, lwb);
3053	}
3054	mutex_exit(&zilog->zl_lock);
3055}
3056
3057static char *suspend_tag = "zil suspending";
3058
3059/*
3060 * Suspend an intent log.  While in suspended mode, we still honor
3061 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3062 * On old version pools, we suspend the log briefly when taking a
3063 * snapshot so that it will have an empty intent log.
3064 *
3065 * Long holds are not really intended to be used the way we do here --
3066 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3067 * could fail.  Therefore we take pains to only put a long hold if it is
3068 * actually necessary.  Fortunately, it will only be necessary if the
3069 * objset is currently mounted (or the ZVOL equivalent).  In that case it
3070 * will already have a long hold, so we are not really making things any worse.
3071 *
3072 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3073 * zvol_state_t), and use their mechanism to prevent their hold from being
3074 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3075 * very little gain.
3076 *
3077 * if cookiep == NULL, this does both the suspend & resume.
3078 * Otherwise, it returns with the dataset "long held", and the cookie
3079 * should be passed into zil_resume().
3080 */
3081int
3082zil_suspend(const char *osname, void **cookiep)
3083{
3084	objset_t *os;
3085	zilog_t *zilog;
3086	const zil_header_t *zh;
3087	int error;
3088
3089	error = dmu_objset_hold(osname, suspend_tag, &os);
3090	if (error != 0)
3091		return (error);
3092	zilog = dmu_objset_zil(os);
3093
3094	mutex_enter(&zilog->zl_lock);
3095	zh = zilog->zl_header;
3096
3097	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3098		mutex_exit(&zilog->zl_lock);
3099		dmu_objset_rele(os, suspend_tag);
3100		return (SET_ERROR(EBUSY));
3101	}
3102
3103	/*
3104	 * Don't put a long hold in the cases where we can avoid it.  This
3105	 * is when there is no cookie so we are doing a suspend & resume
3106	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3107	 * for the suspend because it's already suspended, or there's no ZIL.
3108	 */
3109	if (cookiep == NULL && !zilog->zl_suspending &&
3110	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3111		mutex_exit(&zilog->zl_lock);
3112		dmu_objset_rele(os, suspend_tag);
3113		return (0);
3114	}
3115
3116	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3117	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3118
3119	zilog->zl_suspend++;
3120
3121	if (zilog->zl_suspend > 1) {
3122		/*
3123		 * Someone else is already suspending it.
3124		 * Just wait for them to finish.
3125		 */
3126
3127		while (zilog->zl_suspending)
3128			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3129		mutex_exit(&zilog->zl_lock);
3130
3131		if (cookiep == NULL)
3132			zil_resume(os);
3133		else
3134			*cookiep = os;
3135		return (0);
3136	}
3137
3138	/*
3139	 * If there is no pointer to an on-disk block, this ZIL must not
3140	 * be active (e.g. filesystem not mounted), so there's nothing
3141	 * to clean up.
3142	 */
3143	if (BP_IS_HOLE(&zh->zh_log)) {
3144		ASSERT(cookiep != NULL); /* fast path already handled */
3145
3146		*cookiep = os;
3147		mutex_exit(&zilog->zl_lock);
3148		return (0);
3149	}
3150
3151	zilog->zl_suspending = B_TRUE;
3152	mutex_exit(&zilog->zl_lock);
3153
3154	/*
3155	 * We need to use zil_commit_impl to ensure we wait for all
3156	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3157	 * to disk before proceeding. If we used zil_commit instead, it
3158	 * would just call txg_wait_synced(), because zl_suspend is set.
3159	 * txg_wait_synced() doesn't wait for these lwb's to be
3160	 * LWB_STATE_DONE before returning.
3161	 */
3162	zil_commit_impl(zilog, 0);
3163
3164	/*
3165	 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3166	 * txg_wait_synced() to ensure the data from the zilog has
3167	 * migrated to the main pool before calling zil_destroy().
3168	 */
3169	txg_wait_synced(zilog->zl_dmu_pool, 0);
3170
3171	zil_destroy(zilog, B_FALSE);
3172
3173	mutex_enter(&zilog->zl_lock);
3174	zilog->zl_suspending = B_FALSE;
3175	cv_broadcast(&zilog->zl_cv_suspend);
3176	mutex_exit(&zilog->zl_lock);
3177
3178	if (cookiep == NULL)
3179		zil_resume(os);
3180	else
3181		*cookiep = os;
3182	return (0);
3183}
3184
3185void
3186zil_resume(void *cookie)
3187{
3188	objset_t *os = cookie;
3189	zilog_t *zilog = dmu_objset_zil(os);
3190
3191	mutex_enter(&zilog->zl_lock);
3192	ASSERT(zilog->zl_suspend != 0);
3193	zilog->zl_suspend--;
3194	mutex_exit(&zilog->zl_lock);
3195	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3196	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3197}
3198
3199typedef struct zil_replay_arg {
3200	zil_replay_func_t **zr_replay;
3201	void		*zr_arg;
3202	boolean_t	zr_byteswap;
3203	char		*zr_lr;
3204} zil_replay_arg_t;
3205
3206static int
3207zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3208{
3209	char name[ZFS_MAX_DATASET_NAME_LEN];
3210
3211	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3212
3213	dmu_objset_name(zilog->zl_os, name);
3214
3215	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3216	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3217	    (u_longlong_t)lr->lrc_seq,
3218	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3219	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3220
3221	return (error);
3222}
3223
3224static int
3225zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3226{
3227	zil_replay_arg_t *zr = zra;
3228	const zil_header_t *zh = zilog->zl_header;
3229	uint64_t reclen = lr->lrc_reclen;
3230	uint64_t txtype = lr->lrc_txtype;
3231	int error = 0;
3232
3233	zilog->zl_replaying_seq = lr->lrc_seq;
3234
3235	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3236		return (0);
3237
3238	if (lr->lrc_txg < claim_txg)		/* already committed */
3239		return (0);
3240
3241	/* Strip case-insensitive bit, still present in log record */
3242	txtype &= ~TX_CI;
3243
3244	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3245		return (zil_replay_error(zilog, lr, EINVAL));
3246
3247	/*
3248	 * If this record type can be logged out of order, the object
3249	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3250	 */
3251	if (TX_OOO(txtype)) {
3252		error = dmu_object_info(zilog->zl_os,
3253		    ((lr_ooo_t *)lr)->lr_foid, NULL);
3254		if (error == ENOENT || error == EEXIST)
3255			return (0);
3256	}
3257
3258	/*
3259	 * Make a copy of the data so we can revise and extend it.
3260	 */
3261	bcopy(lr, zr->zr_lr, reclen);
3262
3263	/*
3264	 * If this is a TX_WRITE with a blkptr, suck in the data.
3265	 */
3266	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3267		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3268		    zr->zr_lr + reclen);
3269		if (error != 0)
3270			return (zil_replay_error(zilog, lr, error));
3271	}
3272
3273	/*
3274	 * The log block containing this lr may have been byteswapped
3275	 * so that we can easily examine common fields like lrc_txtype.
3276	 * However, the log is a mix of different record types, and only the
3277	 * replay vectors know how to byteswap their records.  Therefore, if
3278	 * the lr was byteswapped, undo it before invoking the replay vector.
3279	 */
3280	if (zr->zr_byteswap)
3281		byteswap_uint64_array(zr->zr_lr, reclen);
3282
3283	/*
3284	 * We must now do two things atomically: replay this log record,
3285	 * and update the log header sequence number to reflect the fact that
3286	 * we did so. At the end of each replay function the sequence number
3287	 * is updated if we are in replay mode.
3288	 */
3289	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3290	if (error != 0) {
3291		/*
3292		 * The DMU's dnode layer doesn't see removes until the txg
3293		 * commits, so a subsequent claim can spuriously fail with
3294		 * EEXIST. So if we receive any error we try syncing out
3295		 * any removes then retry the transaction.  Note that we
3296		 * specify B_FALSE for byteswap now, so we don't do it twice.
3297		 */
3298		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3299		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3300		if (error != 0)
3301			return (zil_replay_error(zilog, lr, error));
3302	}
3303	return (0);
3304}
3305
3306/* ARGSUSED */
3307static int
3308zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3309{
3310	zilog->zl_replay_blks++;
3311
3312	return (0);
3313}
3314
3315/*
3316 * If this dataset has a non-empty intent log, replay it and destroy it.
3317 */
3318void
3319zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3320{
3321	zilog_t *zilog = dmu_objset_zil(os);
3322	const zil_header_t *zh = zilog->zl_header;
3323	zil_replay_arg_t zr;
3324
3325	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3326		zil_destroy(zilog, B_TRUE);
3327		return;
3328	}
3329
3330	zr.zr_replay = replay_func;
3331	zr.zr_arg = arg;
3332	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3333	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3334
3335	/*
3336	 * Wait for in-progress removes to sync before starting replay.
3337	 */
3338	txg_wait_synced(zilog->zl_dmu_pool, 0);
3339
3340	zilog->zl_replay = B_TRUE;
3341	zilog->zl_replay_time = ddi_get_lbolt();
3342	ASSERT(zilog->zl_replay_blks == 0);
3343	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3344	    zh->zh_claim_txg);
3345	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3346
3347	zil_destroy(zilog, B_FALSE);
3348	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3349	zilog->zl_replay = B_FALSE;
3350}
3351
3352boolean_t
3353zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3354{
3355	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3356		return (B_TRUE);
3357
3358	if (zilog->zl_replay) {
3359		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3360		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3361		    zilog->zl_replaying_seq;
3362		return (B_TRUE);
3363	}
3364
3365	return (B_FALSE);
3366}
3367
3368/* ARGSUSED */
3369int
3370zil_reset(const char *osname, void *arg)
3371{
3372	int error;
3373
3374	error = zil_suspend(osname, NULL);
3375	if (error != 0)
3376		return (SET_ERROR(EEXIST));
3377	return (0);
3378}
3379