zil.c revision 315441
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42
43/*
44 * The zfs intent log (ZIL) saves transaction records of system calls
45 * that change the file system in memory with enough information
46 * to be able to replay them. These are stored in memory until
47 * either the DMU transaction group (txg) commits them to the stable pool
48 * and they can be discarded, or they are flushed to the stable log
49 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50 * requirement. In the event of a panic or power fail then those log
51 * records (transactions) are replayed.
52 *
53 * There is one ZIL per file system. Its on-disk (pool) format consists
54 * of 3 parts:
55 *
56 * 	- ZIL header
57 * 	- ZIL blocks
58 * 	- ZIL records
59 *
60 * A log record holds a system call transaction. Log blocks can
61 * hold many log records and the blocks are chained together.
62 * Each ZIL block contains a block pointer (blkptr_t) to the next
63 * ZIL block in the chain. The ZIL header points to the first
64 * block in the chain. Note there is not a fixed place in the pool
65 * to hold blocks. They are dynamically allocated and freed as
66 * needed from the blocks available. Figure X shows the ZIL structure:
67 */
68
69/*
70 * Disable intent logging replay.  This global ZIL switch affects all pools.
71 */
72int zil_replay_disable = 0;
73SYSCTL_DECL(_vfs_zfs);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
75    &zil_replay_disable, 0, "Disable intent logging replay");
76
77/*
78 * Tunable parameter for debugging or performance analysis.  Setting
79 * zfs_nocacheflush will cause corruption on power loss if a volatile
80 * out-of-order write cache is enabled.
81 */
82boolean_t zfs_nocacheflush = B_FALSE;
83SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
84    &zfs_nocacheflush, 0, "Disable cache flush");
85boolean_t zfs_trim_enabled = B_TRUE;
86SYSCTL_DECL(_vfs_zfs_trim);
87SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
88    "Enable ZFS TRIM");
89
90/*
91 * Limit SLOG write size per commit executed with synchronous priority.
92 * Any writes above that executed with lower (asynchronous) priority to
93 * limit potential SLOG device abuse by single active ZIL writer.
94 */
95uint64_t zil_slog_limit = 768 * 1024;
96SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_limit, CTLFLAG_RWTUN,
97    &zil_slog_limit, 0, "Maximal SLOG commit size with sync priority");
98
99static kmem_cache_t *zil_lwb_cache;
100
101#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
102    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
103
104
105/*
106 * ziltest is by and large an ugly hack, but very useful in
107 * checking replay without tedious work.
108 * When running ziltest we want to keep all itx's and so maintain
109 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
110 * We subtract TXG_CONCURRENT_STATES to allow for common code.
111 */
112#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
113
114static int
115zil_bp_compare(const void *x1, const void *x2)
116{
117	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
118	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
119
120	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
121		return (-1);
122	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
123		return (1);
124
125	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
126		return (-1);
127	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
128		return (1);
129
130	return (0);
131}
132
133static void
134zil_bp_tree_init(zilog_t *zilog)
135{
136	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
137	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
138}
139
140static void
141zil_bp_tree_fini(zilog_t *zilog)
142{
143	avl_tree_t *t = &zilog->zl_bp_tree;
144	zil_bp_node_t *zn;
145	void *cookie = NULL;
146
147	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
148		kmem_free(zn, sizeof (zil_bp_node_t));
149
150	avl_destroy(t);
151}
152
153int
154zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
155{
156	avl_tree_t *t = &zilog->zl_bp_tree;
157	const dva_t *dva;
158	zil_bp_node_t *zn;
159	avl_index_t where;
160
161	if (BP_IS_EMBEDDED(bp))
162		return (0);
163
164	dva = BP_IDENTITY(bp);
165
166	if (avl_find(t, dva, &where) != NULL)
167		return (SET_ERROR(EEXIST));
168
169	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
170	zn->zn_dva = *dva;
171	avl_insert(t, zn, where);
172
173	return (0);
174}
175
176static zil_header_t *
177zil_header_in_syncing_context(zilog_t *zilog)
178{
179	return ((zil_header_t *)zilog->zl_header);
180}
181
182static void
183zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
184{
185	zio_cksum_t *zc = &bp->blk_cksum;
186
187	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
188	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
189	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
190	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
191}
192
193/*
194 * Read a log block and make sure it's valid.
195 */
196static int
197zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
198    char **end)
199{
200	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
201	arc_flags_t aflags = ARC_FLAG_WAIT;
202	arc_buf_t *abuf = NULL;
203	zbookmark_phys_t zb;
204	int error;
205
206	if (zilog->zl_header->zh_claim_txg == 0)
207		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
208
209	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
210		zio_flags |= ZIO_FLAG_SPECULATIVE;
211
212	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
213	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
214
215	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
216	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
217
218	if (error == 0) {
219		zio_cksum_t cksum = bp->blk_cksum;
220
221		/*
222		 * Validate the checksummed log block.
223		 *
224		 * Sequence numbers should be... sequential.  The checksum
225		 * verifier for the next block should be bp's checksum plus 1.
226		 *
227		 * Also check the log chain linkage and size used.
228		 */
229		cksum.zc_word[ZIL_ZC_SEQ]++;
230
231		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
232			zil_chain_t *zilc = abuf->b_data;
233			char *lr = (char *)(zilc + 1);
234			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
235
236			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
237			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
238				error = SET_ERROR(ECKSUM);
239			} else {
240				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
241				bcopy(lr, dst, len);
242				*end = (char *)dst + len;
243				*nbp = zilc->zc_next_blk;
244			}
245		} else {
246			char *lr = abuf->b_data;
247			uint64_t size = BP_GET_LSIZE(bp);
248			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
249
250			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
251			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
252			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
253				error = SET_ERROR(ECKSUM);
254			} else {
255				ASSERT3U(zilc->zc_nused, <=,
256				    SPA_OLD_MAXBLOCKSIZE);
257				bcopy(lr, dst, zilc->zc_nused);
258				*end = (char *)dst + zilc->zc_nused;
259				*nbp = zilc->zc_next_blk;
260			}
261		}
262
263		arc_buf_destroy(abuf, &abuf);
264	}
265
266	return (error);
267}
268
269/*
270 * Read a TX_WRITE log data block.
271 */
272static int
273zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
274{
275	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
276	const blkptr_t *bp = &lr->lr_blkptr;
277	arc_flags_t aflags = ARC_FLAG_WAIT;
278	arc_buf_t *abuf = NULL;
279	zbookmark_phys_t zb;
280	int error;
281
282	if (BP_IS_HOLE(bp)) {
283		if (wbuf != NULL)
284			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
285		return (0);
286	}
287
288	if (zilog->zl_header->zh_claim_txg == 0)
289		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
290
291	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
292	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
293
294	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
295	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
296
297	if (error == 0) {
298		if (wbuf != NULL)
299			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
300		arc_buf_destroy(abuf, &abuf);
301	}
302
303	return (error);
304}
305
306/*
307 * Parse the intent log, and call parse_func for each valid record within.
308 */
309int
310zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
311    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
312{
313	const zil_header_t *zh = zilog->zl_header;
314	boolean_t claimed = !!zh->zh_claim_txg;
315	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
316	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
317	uint64_t max_blk_seq = 0;
318	uint64_t max_lr_seq = 0;
319	uint64_t blk_count = 0;
320	uint64_t lr_count = 0;
321	blkptr_t blk, next_blk;
322	char *lrbuf, *lrp;
323	int error = 0;
324
325	/*
326	 * Old logs didn't record the maximum zh_claim_lr_seq.
327	 */
328	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
329		claim_lr_seq = UINT64_MAX;
330
331	/*
332	 * Starting at the block pointed to by zh_log we read the log chain.
333	 * For each block in the chain we strongly check that block to
334	 * ensure its validity.  We stop when an invalid block is found.
335	 * For each block pointer in the chain we call parse_blk_func().
336	 * For each record in each valid block we call parse_lr_func().
337	 * If the log has been claimed, stop if we encounter a sequence
338	 * number greater than the highest claimed sequence number.
339	 */
340	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
341	zil_bp_tree_init(zilog);
342
343	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
344		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
345		int reclen;
346		char *end;
347
348		if (blk_seq > claim_blk_seq)
349			break;
350		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
351			break;
352		ASSERT3U(max_blk_seq, <, blk_seq);
353		max_blk_seq = blk_seq;
354		blk_count++;
355
356		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
357			break;
358
359		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
360		if (error != 0)
361			break;
362
363		for (lrp = lrbuf; lrp < end; lrp += reclen) {
364			lr_t *lr = (lr_t *)lrp;
365			reclen = lr->lrc_reclen;
366			ASSERT3U(reclen, >=, sizeof (lr_t));
367			if (lr->lrc_seq > claim_lr_seq)
368				goto done;
369			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
370				goto done;
371			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
372			max_lr_seq = lr->lrc_seq;
373			lr_count++;
374		}
375	}
376done:
377	zilog->zl_parse_error = error;
378	zilog->zl_parse_blk_seq = max_blk_seq;
379	zilog->zl_parse_lr_seq = max_lr_seq;
380	zilog->zl_parse_blk_count = blk_count;
381	zilog->zl_parse_lr_count = lr_count;
382
383	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
384	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
385
386	zil_bp_tree_fini(zilog);
387	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
388
389	return (error);
390}
391
392static int
393zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
394{
395	/*
396	 * Claim log block if not already committed and not already claimed.
397	 * If tx == NULL, just verify that the block is claimable.
398	 */
399	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
400	    zil_bp_tree_add(zilog, bp) != 0)
401		return (0);
402
403	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
404	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
405	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
406}
407
408static int
409zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
410{
411	lr_write_t *lr = (lr_write_t *)lrc;
412	int error;
413
414	if (lrc->lrc_txtype != TX_WRITE)
415		return (0);
416
417	/*
418	 * If the block is not readable, don't claim it.  This can happen
419	 * in normal operation when a log block is written to disk before
420	 * some of the dmu_sync() blocks it points to.  In this case, the
421	 * transaction cannot have been committed to anyone (we would have
422	 * waited for all writes to be stable first), so it is semantically
423	 * correct to declare this the end of the log.
424	 */
425	if (lr->lr_blkptr.blk_birth >= first_txg &&
426	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
427		return (error);
428	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
429}
430
431/* ARGSUSED */
432static int
433zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
434{
435	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
436
437	return (0);
438}
439
440static int
441zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
442{
443	lr_write_t *lr = (lr_write_t *)lrc;
444	blkptr_t *bp = &lr->lr_blkptr;
445
446	/*
447	 * If we previously claimed it, we need to free it.
448	 */
449	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
450	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
451	    !BP_IS_HOLE(bp))
452		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
453
454	return (0);
455}
456
457static lwb_t *
458zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
459{
460	lwb_t *lwb;
461
462	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
463	lwb->lwb_zilog = zilog;
464	lwb->lwb_blk = *bp;
465	lwb->lwb_slog = slog;
466	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
467	lwb->lwb_max_txg = txg;
468	lwb->lwb_zio = NULL;
469	lwb->lwb_tx = NULL;
470	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
471		lwb->lwb_nused = sizeof (zil_chain_t);
472		lwb->lwb_sz = BP_GET_LSIZE(bp);
473	} else {
474		lwb->lwb_nused = 0;
475		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
476	}
477
478	mutex_enter(&zilog->zl_lock);
479	list_insert_tail(&zilog->zl_lwb_list, lwb);
480	mutex_exit(&zilog->zl_lock);
481
482	return (lwb);
483}
484
485/*
486 * Called when we create in-memory log transactions so that we know
487 * to cleanup the itxs at the end of spa_sync().
488 */
489void
490zilog_dirty(zilog_t *zilog, uint64_t txg)
491{
492	dsl_pool_t *dp = zilog->zl_dmu_pool;
493	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
494
495	if (ds->ds_is_snapshot)
496		panic("dirtying snapshot!");
497
498	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
499		/* up the hold count until we can be written out */
500		dmu_buf_add_ref(ds->ds_dbuf, zilog);
501	}
502}
503
504/*
505 * Determine if the zil is dirty in the specified txg. Callers wanting to
506 * ensure that the dirty state does not change must hold the itxg_lock for
507 * the specified txg. Holding the lock will ensure that the zil cannot be
508 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
509 * state.
510 */
511boolean_t
512zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
513{
514	dsl_pool_t *dp = zilog->zl_dmu_pool;
515
516	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
517		return (B_TRUE);
518	return (B_FALSE);
519}
520
521/*
522 * Determine if the zil is dirty. The zil is considered dirty if it has
523 * any pending itx records that have not been cleaned by zil_clean().
524 */
525boolean_t
526zilog_is_dirty(zilog_t *zilog)
527{
528	dsl_pool_t *dp = zilog->zl_dmu_pool;
529
530	for (int t = 0; t < TXG_SIZE; t++) {
531		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
532			return (B_TRUE);
533	}
534	return (B_FALSE);
535}
536
537/*
538 * Create an on-disk intent log.
539 */
540static lwb_t *
541zil_create(zilog_t *zilog)
542{
543	const zil_header_t *zh = zilog->zl_header;
544	lwb_t *lwb = NULL;
545	uint64_t txg = 0;
546	dmu_tx_t *tx = NULL;
547	blkptr_t blk;
548	int error = 0;
549	boolean_t slog = FALSE;
550
551	/*
552	 * Wait for any previous destroy to complete.
553	 */
554	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
555
556	ASSERT(zh->zh_claim_txg == 0);
557	ASSERT(zh->zh_replay_seq == 0);
558
559	blk = zh->zh_log;
560
561	/*
562	 * Allocate an initial log block if:
563	 *    - there isn't one already
564	 *    - the existing block is the wrong endianess
565	 */
566	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
567		tx = dmu_tx_create(zilog->zl_os);
568		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
569		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
570		txg = dmu_tx_get_txg(tx);
571
572		if (!BP_IS_HOLE(&blk)) {
573			zio_free_zil(zilog->zl_spa, txg, &blk);
574			BP_ZERO(&blk);
575		}
576
577		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
578		    ZIL_MIN_BLKSZ, &slog);
579
580		if (error == 0)
581			zil_init_log_chain(zilog, &blk);
582	}
583
584	/*
585	 * Allocate a log write buffer (lwb) for the first log block.
586	 */
587	if (error == 0)
588		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
589
590	/*
591	 * If we just allocated the first log block, commit our transaction
592	 * and wait for zil_sync() to stuff the block poiner into zh_log.
593	 * (zh is part of the MOS, so we cannot modify it in open context.)
594	 */
595	if (tx != NULL) {
596		dmu_tx_commit(tx);
597		txg_wait_synced(zilog->zl_dmu_pool, txg);
598	}
599
600	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
601
602	return (lwb);
603}
604
605/*
606 * In one tx, free all log blocks and clear the log header.
607 * If keep_first is set, then we're replaying a log with no content.
608 * We want to keep the first block, however, so that the first
609 * synchronous transaction doesn't require a txg_wait_synced()
610 * in zil_create().  We don't need to txg_wait_synced() here either
611 * when keep_first is set, because both zil_create() and zil_destroy()
612 * will wait for any in-progress destroys to complete.
613 */
614void
615zil_destroy(zilog_t *zilog, boolean_t keep_first)
616{
617	const zil_header_t *zh = zilog->zl_header;
618	lwb_t *lwb;
619	dmu_tx_t *tx;
620	uint64_t txg;
621
622	/*
623	 * Wait for any previous destroy to complete.
624	 */
625	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
626
627	zilog->zl_old_header = *zh;		/* debugging aid */
628
629	if (BP_IS_HOLE(&zh->zh_log))
630		return;
631
632	tx = dmu_tx_create(zilog->zl_os);
633	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
634	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
635	txg = dmu_tx_get_txg(tx);
636
637	mutex_enter(&zilog->zl_lock);
638
639	ASSERT3U(zilog->zl_destroy_txg, <, txg);
640	zilog->zl_destroy_txg = txg;
641	zilog->zl_keep_first = keep_first;
642
643	if (!list_is_empty(&zilog->zl_lwb_list)) {
644		ASSERT(zh->zh_claim_txg == 0);
645		VERIFY(!keep_first);
646		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
647			list_remove(&zilog->zl_lwb_list, lwb);
648			if (lwb->lwb_buf != NULL)
649				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
650			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
651			kmem_cache_free(zil_lwb_cache, lwb);
652		}
653	} else if (!keep_first) {
654		zil_destroy_sync(zilog, tx);
655	}
656	mutex_exit(&zilog->zl_lock);
657
658	dmu_tx_commit(tx);
659}
660
661void
662zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
663{
664	ASSERT(list_is_empty(&zilog->zl_lwb_list));
665	(void) zil_parse(zilog, zil_free_log_block,
666	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
667}
668
669int
670zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
671{
672	dmu_tx_t *tx = txarg;
673	uint64_t first_txg = dmu_tx_get_txg(tx);
674	zilog_t *zilog;
675	zil_header_t *zh;
676	objset_t *os;
677	int error;
678
679	error = dmu_objset_own_obj(dp, ds->ds_object,
680	    DMU_OST_ANY, B_FALSE, FTAG, &os);
681	if (error != 0) {
682		/*
683		 * EBUSY indicates that the objset is inconsistent, in which
684		 * case it can not have a ZIL.
685		 */
686		if (error != EBUSY) {
687			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
688			    (unsigned long long)ds->ds_object, error);
689		}
690		return (0);
691	}
692
693	zilog = dmu_objset_zil(os);
694	zh = zil_header_in_syncing_context(zilog);
695
696	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
697		if (!BP_IS_HOLE(&zh->zh_log))
698			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
699		BP_ZERO(&zh->zh_log);
700		dsl_dataset_dirty(dmu_objset_ds(os), tx);
701		dmu_objset_disown(os, FTAG);
702		return (0);
703	}
704
705	/*
706	 * Claim all log blocks if we haven't already done so, and remember
707	 * the highest claimed sequence number.  This ensures that if we can
708	 * read only part of the log now (e.g. due to a missing device),
709	 * but we can read the entire log later, we will not try to replay
710	 * or destroy beyond the last block we successfully claimed.
711	 */
712	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
713	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
714		(void) zil_parse(zilog, zil_claim_log_block,
715		    zil_claim_log_record, tx, first_txg);
716		zh->zh_claim_txg = first_txg;
717		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
718		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
719		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
720			zh->zh_flags |= ZIL_REPLAY_NEEDED;
721		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
722		dsl_dataset_dirty(dmu_objset_ds(os), tx);
723	}
724
725	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
726	dmu_objset_disown(os, FTAG);
727	return (0);
728}
729
730/*
731 * Check the log by walking the log chain.
732 * Checksum errors are ok as they indicate the end of the chain.
733 * Any other error (no device or read failure) returns an error.
734 */
735/* ARGSUSED */
736int
737zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
738{
739	zilog_t *zilog;
740	objset_t *os;
741	blkptr_t *bp;
742	int error;
743
744	ASSERT(tx == NULL);
745
746	error = dmu_objset_from_ds(ds, &os);
747	if (error != 0) {
748		cmn_err(CE_WARN, "can't open objset %llu, error %d",
749		    (unsigned long long)ds->ds_object, error);
750		return (0);
751	}
752
753	zilog = dmu_objset_zil(os);
754	bp = (blkptr_t *)&zilog->zl_header->zh_log;
755
756	/*
757	 * Check the first block and determine if it's on a log device
758	 * which may have been removed or faulted prior to loading this
759	 * pool.  If so, there's no point in checking the rest of the log
760	 * as its content should have already been synced to the pool.
761	 */
762	if (!BP_IS_HOLE(bp)) {
763		vdev_t *vd;
764		boolean_t valid = B_TRUE;
765
766		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
767		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
768		if (vd->vdev_islog && vdev_is_dead(vd))
769			valid = vdev_log_state_valid(vd);
770		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
771
772		if (!valid)
773			return (0);
774	}
775
776	/*
777	 * Because tx == NULL, zil_claim_log_block() will not actually claim
778	 * any blocks, but just determine whether it is possible to do so.
779	 * In addition to checking the log chain, zil_claim_log_block()
780	 * will invoke zio_claim() with a done func of spa_claim_notify(),
781	 * which will update spa_max_claim_txg.  See spa_load() for details.
782	 */
783	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
784	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
785
786	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
787}
788
789static int
790zil_vdev_compare(const void *x1, const void *x2)
791{
792	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
793	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
794
795	if (v1 < v2)
796		return (-1);
797	if (v1 > v2)
798		return (1);
799
800	return (0);
801}
802
803void
804zil_add_block(zilog_t *zilog, const blkptr_t *bp)
805{
806	avl_tree_t *t = &zilog->zl_vdev_tree;
807	avl_index_t where;
808	zil_vdev_node_t *zv, zvsearch;
809	int ndvas = BP_GET_NDVAS(bp);
810	int i;
811
812	if (zfs_nocacheflush)
813		return;
814
815	ASSERT(zilog->zl_writer);
816
817	/*
818	 * Even though we're zl_writer, we still need a lock because the
819	 * zl_get_data() callbacks may have dmu_sync() done callbacks
820	 * that will run concurrently.
821	 */
822	mutex_enter(&zilog->zl_vdev_lock);
823	for (i = 0; i < ndvas; i++) {
824		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
825		if (avl_find(t, &zvsearch, &where) == NULL) {
826			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
827			zv->zv_vdev = zvsearch.zv_vdev;
828			avl_insert(t, zv, where);
829		}
830	}
831	mutex_exit(&zilog->zl_vdev_lock);
832}
833
834static void
835zil_flush_vdevs(zilog_t *zilog)
836{
837	spa_t *spa = zilog->zl_spa;
838	avl_tree_t *t = &zilog->zl_vdev_tree;
839	void *cookie = NULL;
840	zil_vdev_node_t *zv;
841	zio_t *zio = NULL;
842
843	ASSERT(zilog->zl_writer);
844
845	/*
846	 * We don't need zl_vdev_lock here because we're the zl_writer,
847	 * and all zl_get_data() callbacks are done.
848	 */
849	if (avl_numnodes(t) == 0)
850		return;
851
852	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
853
854	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
855		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
856		if (vd != NULL && !vd->vdev_nowritecache) {
857			if (zio == NULL)
858				zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
859			zio_flush(zio, vd);
860		}
861		kmem_free(zv, sizeof (*zv));
862	}
863
864	/*
865	 * Wait for all the flushes to complete.  Not all devices actually
866	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
867	 */
868	if (zio)
869		(void) zio_wait(zio);
870
871	spa_config_exit(spa, SCL_STATE, FTAG);
872}
873
874/*
875 * Function called when a log block write completes
876 */
877static void
878zil_lwb_write_done(zio_t *zio)
879{
880	lwb_t *lwb = zio->io_private;
881	zilog_t *zilog = lwb->lwb_zilog;
882	dmu_tx_t *tx = lwb->lwb_tx;
883
884	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
885	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
886	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
887	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
888	ASSERT(!BP_IS_GANG(zio->io_bp));
889	ASSERT(!BP_IS_HOLE(zio->io_bp));
890	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
891
892	/*
893	 * Ensure the lwb buffer pointer is cleared before releasing
894	 * the txg. If we have had an allocation failure and
895	 * the txg is waiting to sync then we want want zil_sync()
896	 * to remove the lwb so that it's not picked up as the next new
897	 * one in zil_commit_writer(). zil_sync() will only remove
898	 * the lwb if lwb_buf is null.
899	 */
900	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
901	mutex_enter(&zilog->zl_lock);
902	lwb->lwb_buf = NULL;
903	lwb->lwb_tx = NULL;
904	mutex_exit(&zilog->zl_lock);
905
906	/*
907	 * Now that we've written this log block, we have a stable pointer
908	 * to the next block in the chain, so it's OK to let the txg in
909	 * which we allocated the next block sync.
910	 */
911	dmu_tx_commit(tx);
912}
913
914/*
915 * Initialize the io for a log block.
916 */
917static void
918zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
919{
920	zbookmark_phys_t zb;
921	zio_priority_t prio;
922
923	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
924	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
925	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
926
927	if (zilog->zl_root_zio == NULL) {
928		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
929		    ZIO_FLAG_CANFAIL);
930	}
931	if (lwb->lwb_zio == NULL) {
932		if (zilog->zl_cur_used <= zil_slog_limit || !lwb->lwb_slog)
933			prio = ZIO_PRIORITY_SYNC_WRITE;
934		else
935			prio = ZIO_PRIORITY_ASYNC_WRITE;
936		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
937		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
938		    zil_lwb_write_done, lwb, prio,
939		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
940	}
941}
942
943/*
944 * Define a limited set of intent log block sizes.
945 *
946 * These must be a multiple of 4KB. Note only the amount used (again
947 * aligned to 4KB) actually gets written. However, we can't always just
948 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
949 */
950uint64_t zil_block_buckets[] = {
951    4096,		/* non TX_WRITE */
952    8192+4096,		/* data base */
953    32*1024 + 4096, 	/* NFS writes */
954    UINT64_MAX
955};
956
957/*
958 * Start a log block write and advance to the next log block.
959 * Calls are serialized.
960 */
961static lwb_t *
962zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb, boolean_t last)
963{
964	lwb_t *nlwb = NULL;
965	zil_chain_t *zilc;
966	spa_t *spa = zilog->zl_spa;
967	blkptr_t *bp;
968	dmu_tx_t *tx;
969	uint64_t txg;
970	uint64_t zil_blksz, wsz;
971	int i, error;
972	boolean_t slog;
973
974	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
975		zilc = (zil_chain_t *)lwb->lwb_buf;
976		bp = &zilc->zc_next_blk;
977	} else {
978		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
979		bp = &zilc->zc_next_blk;
980	}
981
982	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
983
984	/*
985	 * Allocate the next block and save its address in this block
986	 * before writing it in order to establish the log chain.
987	 * Note that if the allocation of nlwb synced before we wrote
988	 * the block that points at it (lwb), we'd leak it if we crashed.
989	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
990	 * We dirty the dataset to ensure that zil_sync() will be called
991	 * to clean up in the event of allocation failure or I/O failure.
992	 */
993	tx = dmu_tx_create(zilog->zl_os);
994	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
995	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
996	txg = dmu_tx_get_txg(tx);
997
998	lwb->lwb_tx = tx;
999
1000	/*
1001	 * Log blocks are pre-allocated. Here we select the size of the next
1002	 * block, based on size used in the last block.
1003	 * - first find the smallest bucket that will fit the block from a
1004	 *   limited set of block sizes. This is because it's faster to write
1005	 *   blocks allocated from the same metaslab as they are adjacent or
1006	 *   close.
1007	 * - next find the maximum from the new suggested size and an array of
1008	 *   previous sizes. This lessens a picket fence effect of wrongly
1009	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1010	 *   requests.
1011	 *
1012	 * Note we only write what is used, but we can't just allocate
1013	 * the maximum block size because we can exhaust the available
1014	 * pool log space.
1015	 */
1016	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1017	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1018		continue;
1019	zil_blksz = zil_block_buckets[i];
1020	if (zil_blksz == UINT64_MAX)
1021		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1022	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1023	for (i = 0; i < ZIL_PREV_BLKS; i++)
1024		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1025	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1026
1027	BP_ZERO(bp);
1028	/* pass the old blkptr in order to spread log blocks across devs */
1029	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1030	if (error == 0) {
1031		ASSERT3U(bp->blk_birth, ==, txg);
1032		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1033		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1034
1035		/*
1036		 * Allocate a new log write buffer (lwb).
1037		 */
1038		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1039
1040		/* Record the block for later vdev flushing */
1041		zil_add_block(zilog, &lwb->lwb_blk);
1042	}
1043
1044	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1045		/* For Slim ZIL only write what is used. */
1046		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1047		ASSERT3U(wsz, <=, lwb->lwb_sz);
1048		zio_shrink(lwb->lwb_zio, wsz);
1049
1050	} else {
1051		wsz = lwb->lwb_sz;
1052	}
1053
1054	zilc->zc_pad = 0;
1055	zilc->zc_nused = lwb->lwb_nused;
1056	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1057
1058	/*
1059	 * clear unused data for security
1060	 */
1061	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1062
1063	if (last)
1064		lwb->lwb_zio->io_pipeline &= ~ZIO_STAGE_ISSUE_ASYNC;
1065	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1066
1067	/*
1068	 * If there was an allocation failure then nlwb will be null which
1069	 * forces a txg_wait_synced().
1070	 */
1071	return (nlwb);
1072}
1073
1074static lwb_t *
1075zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1076{
1077	lr_t *lrcb, *lrc = &itx->itx_lr; /* common log record */
1078	lr_write_t *lrwb, *lrw = (lr_write_t *)lrc;
1079	char *lr_buf;
1080	uint64_t txg = lrc->lrc_txg;
1081	uint64_t reclen = lrc->lrc_reclen;
1082	uint64_t dlen = 0;
1083	uint64_t dnow, lwb_sp;
1084
1085	if (lwb == NULL)
1086		return (NULL);
1087
1088	ASSERT(lwb->lwb_buf != NULL);
1089
1090	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1091		dlen = P2ROUNDUP_TYPED(
1092		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1093
1094	zilog->zl_cur_used += (reclen + dlen);
1095
1096	zil_lwb_write_init(zilog, lwb);
1097
1098cont:
1099	/*
1100	 * If this record won't fit in the current log block, start a new one.
1101	 * For WR_NEED_COPY optimize layout for minimal number of chunks, but
1102	 * try to keep wasted space withing reasonable range (12%).
1103	 */
1104	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1105	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1106	    lwb_sp < ZIL_MAX_LOG_DATA / 8 && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1107	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1108		lwb = zil_lwb_write_start(zilog, lwb, B_FALSE);
1109		if (lwb == NULL)
1110			return (NULL);
1111		zil_lwb_write_init(zilog, lwb);
1112		ASSERT(LWB_EMPTY(lwb));
1113		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1114		ASSERT3U(reclen + MIN(dlen, sizeof(uint64_t)), <=, lwb_sp);
1115	}
1116
1117	dnow = MIN(dlen, lwb_sp - reclen);
1118	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1119	bcopy(lrc, lr_buf, reclen);
1120	lrcb = (lr_t *)lr_buf;
1121	lrwb = (lr_write_t *)lrcb;
1122
1123	/*
1124	 * If it's a write, fetch the data or get its blkptr as appropriate.
1125	 */
1126	if (lrc->lrc_txtype == TX_WRITE) {
1127		if (txg > spa_freeze_txg(zilog->zl_spa))
1128			txg_wait_synced(zilog->zl_dmu_pool, txg);
1129		if (itx->itx_wr_state != WR_COPIED) {
1130			char *dbuf;
1131			int error;
1132
1133			if (itx->itx_wr_state == WR_NEED_COPY) {
1134				dbuf = lr_buf + reclen;
1135				lrcb->lrc_reclen += dnow;
1136				if (lrwb->lr_length > dnow)
1137					lrwb->lr_length = dnow;
1138				lrw->lr_offset += dnow;
1139				lrw->lr_length -= dnow;
1140			} else {
1141				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1142				dbuf = NULL;
1143			}
1144			error = zilog->zl_get_data(
1145			    itx->itx_private, lrwb, dbuf, lwb->lwb_zio);
1146			if (error == EIO) {
1147				txg_wait_synced(zilog->zl_dmu_pool, txg);
1148				return (lwb);
1149			}
1150			if (error != 0) {
1151				ASSERT(error == ENOENT || error == EEXIST ||
1152				    error == EALREADY);
1153				return (lwb);
1154			}
1155		}
1156	}
1157
1158	/*
1159	 * We're actually making an entry, so update lrc_seq to be the
1160	 * log record sequence number.  Note that this is generally not
1161	 * equal to the itx sequence number because not all transactions
1162	 * are synchronous, and sometimes spa_sync() gets there first.
1163	 */
1164	lrcb->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1165	lwb->lwb_nused += reclen + dnow;
1166	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1167	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1168	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1169
1170	dlen -= dnow;
1171	if (dlen > 0) {
1172		zilog->zl_cur_used += reclen;
1173		goto cont;
1174	}
1175
1176	return (lwb);
1177}
1178
1179itx_t *
1180zil_itx_create(uint64_t txtype, size_t lrsize)
1181{
1182	itx_t *itx;
1183
1184	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1185
1186	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1187	itx->itx_lr.lrc_txtype = txtype;
1188	itx->itx_lr.lrc_reclen = lrsize;
1189	itx->itx_lr.lrc_seq = 0;	/* defensive */
1190	itx->itx_sync = B_TRUE;		/* default is synchronous */
1191
1192	return (itx);
1193}
1194
1195void
1196zil_itx_destroy(itx_t *itx)
1197{
1198	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1199}
1200
1201/*
1202 * Free up the sync and async itxs. The itxs_t has already been detached
1203 * so no locks are needed.
1204 */
1205static void
1206zil_itxg_clean(itxs_t *itxs)
1207{
1208	itx_t *itx;
1209	list_t *list;
1210	avl_tree_t *t;
1211	void *cookie;
1212	itx_async_node_t *ian;
1213
1214	list = &itxs->i_sync_list;
1215	while ((itx = list_head(list)) != NULL) {
1216		list_remove(list, itx);
1217		kmem_free(itx, offsetof(itx_t, itx_lr) +
1218		    itx->itx_lr.lrc_reclen);
1219	}
1220
1221	cookie = NULL;
1222	t = &itxs->i_async_tree;
1223	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1224		list = &ian->ia_list;
1225		while ((itx = list_head(list)) != NULL) {
1226			list_remove(list, itx);
1227			kmem_free(itx, offsetof(itx_t, itx_lr) +
1228			    itx->itx_lr.lrc_reclen);
1229		}
1230		list_destroy(list);
1231		kmem_free(ian, sizeof (itx_async_node_t));
1232	}
1233	avl_destroy(t);
1234
1235	kmem_free(itxs, sizeof (itxs_t));
1236}
1237
1238static int
1239zil_aitx_compare(const void *x1, const void *x2)
1240{
1241	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1242	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1243
1244	if (o1 < o2)
1245		return (-1);
1246	if (o1 > o2)
1247		return (1);
1248
1249	return (0);
1250}
1251
1252/*
1253 * Remove all async itx with the given oid.
1254 */
1255static void
1256zil_remove_async(zilog_t *zilog, uint64_t oid)
1257{
1258	uint64_t otxg, txg;
1259	itx_async_node_t *ian;
1260	avl_tree_t *t;
1261	avl_index_t where;
1262	list_t clean_list;
1263	itx_t *itx;
1264
1265	ASSERT(oid != 0);
1266	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1267
1268	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1269		otxg = ZILTEST_TXG;
1270	else
1271		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1272
1273	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1274		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1275
1276		mutex_enter(&itxg->itxg_lock);
1277		if (itxg->itxg_txg != txg) {
1278			mutex_exit(&itxg->itxg_lock);
1279			continue;
1280		}
1281
1282		/*
1283		 * Locate the object node and append its list.
1284		 */
1285		t = &itxg->itxg_itxs->i_async_tree;
1286		ian = avl_find(t, &oid, &where);
1287		if (ian != NULL)
1288			list_move_tail(&clean_list, &ian->ia_list);
1289		mutex_exit(&itxg->itxg_lock);
1290	}
1291	while ((itx = list_head(&clean_list)) != NULL) {
1292		list_remove(&clean_list, itx);
1293		kmem_free(itx, offsetof(itx_t, itx_lr) +
1294		    itx->itx_lr.lrc_reclen);
1295	}
1296	list_destroy(&clean_list);
1297}
1298
1299void
1300zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1301{
1302	uint64_t txg;
1303	itxg_t *itxg;
1304	itxs_t *itxs, *clean = NULL;
1305
1306	/*
1307	 * Object ids can be re-instantiated in the next txg so
1308	 * remove any async transactions to avoid future leaks.
1309	 * This can happen if a fsync occurs on the re-instantiated
1310	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1311	 * the new file data and flushes a write record for the old object.
1312	 */
1313	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1314		zil_remove_async(zilog, itx->itx_oid);
1315
1316	/*
1317	 * Ensure the data of a renamed file is committed before the rename.
1318	 */
1319	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1320		zil_async_to_sync(zilog, itx->itx_oid);
1321
1322	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1323		txg = ZILTEST_TXG;
1324	else
1325		txg = dmu_tx_get_txg(tx);
1326
1327	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1328	mutex_enter(&itxg->itxg_lock);
1329	itxs = itxg->itxg_itxs;
1330	if (itxg->itxg_txg != txg) {
1331		if (itxs != NULL) {
1332			/*
1333			 * The zil_clean callback hasn't got around to cleaning
1334			 * this itxg. Save the itxs for release below.
1335			 * This should be rare.
1336			 */
1337			clean = itxg->itxg_itxs;
1338		}
1339		itxg->itxg_txg = txg;
1340		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1341
1342		list_create(&itxs->i_sync_list, sizeof (itx_t),
1343		    offsetof(itx_t, itx_node));
1344		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1345		    sizeof (itx_async_node_t),
1346		    offsetof(itx_async_node_t, ia_node));
1347	}
1348	if (itx->itx_sync) {
1349		list_insert_tail(&itxs->i_sync_list, itx);
1350	} else {
1351		avl_tree_t *t = &itxs->i_async_tree;
1352		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1353		itx_async_node_t *ian;
1354		avl_index_t where;
1355
1356		ian = avl_find(t, &foid, &where);
1357		if (ian == NULL) {
1358			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1359			list_create(&ian->ia_list, sizeof (itx_t),
1360			    offsetof(itx_t, itx_node));
1361			ian->ia_foid = foid;
1362			avl_insert(t, ian, where);
1363		}
1364		list_insert_tail(&ian->ia_list, itx);
1365	}
1366
1367	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1368	zilog_dirty(zilog, txg);
1369	mutex_exit(&itxg->itxg_lock);
1370
1371	/* Release the old itxs now we've dropped the lock */
1372	if (clean != NULL)
1373		zil_itxg_clean(clean);
1374}
1375
1376/*
1377 * If there are any in-memory intent log transactions which have now been
1378 * synced then start up a taskq to free them. We should only do this after we
1379 * have written out the uberblocks (i.e. txg has been comitted) so that
1380 * don't inadvertently clean out in-memory log records that would be required
1381 * by zil_commit().
1382 */
1383void
1384zil_clean(zilog_t *zilog, uint64_t synced_txg)
1385{
1386	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1387	itxs_t *clean_me;
1388
1389	mutex_enter(&itxg->itxg_lock);
1390	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1391		mutex_exit(&itxg->itxg_lock);
1392		return;
1393	}
1394	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1395	ASSERT(itxg->itxg_txg != 0);
1396	ASSERT(zilog->zl_clean_taskq != NULL);
1397	clean_me = itxg->itxg_itxs;
1398	itxg->itxg_itxs = NULL;
1399	itxg->itxg_txg = 0;
1400	mutex_exit(&itxg->itxg_lock);
1401	/*
1402	 * Preferably start a task queue to free up the old itxs but
1403	 * if taskq_dispatch can't allocate resources to do that then
1404	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1405	 * created a bad performance problem.
1406	 */
1407	if (taskq_dispatch(zilog->zl_clean_taskq,
1408	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1409		zil_itxg_clean(clean_me);
1410}
1411
1412/*
1413 * Get the list of itxs to commit into zl_itx_commit_list.
1414 */
1415static void
1416zil_get_commit_list(zilog_t *zilog)
1417{
1418	uint64_t otxg, txg;
1419	list_t *commit_list = &zilog->zl_itx_commit_list;
1420
1421	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1422		otxg = ZILTEST_TXG;
1423	else
1424		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1425
1426	/*
1427	 * This is inherently racy, since there is nothing to prevent
1428	 * the last synced txg from changing. That's okay since we'll
1429	 * only commit things in the future.
1430	 */
1431	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1432		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1433
1434		mutex_enter(&itxg->itxg_lock);
1435		if (itxg->itxg_txg != txg) {
1436			mutex_exit(&itxg->itxg_lock);
1437			continue;
1438		}
1439
1440		/*
1441		 * If we're adding itx records to the zl_itx_commit_list,
1442		 * then the zil better be dirty in this "txg". We can assert
1443		 * that here since we're holding the itxg_lock which will
1444		 * prevent spa_sync from cleaning it. Once we add the itxs
1445		 * to the zl_itx_commit_list we must commit it to disk even
1446		 * if it's unnecessary (i.e. the txg was synced).
1447		 */
1448		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1449		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1450		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1451
1452		mutex_exit(&itxg->itxg_lock);
1453	}
1454}
1455
1456/*
1457 * Move the async itxs for a specified object to commit into sync lists.
1458 */
1459void
1460zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1461{
1462	uint64_t otxg, txg;
1463	itx_async_node_t *ian;
1464	avl_tree_t *t;
1465	avl_index_t where;
1466
1467	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1468		otxg = ZILTEST_TXG;
1469	else
1470		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1471
1472	/*
1473	 * This is inherently racy, since there is nothing to prevent
1474	 * the last synced txg from changing.
1475	 */
1476	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1477		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1478
1479		mutex_enter(&itxg->itxg_lock);
1480		if (itxg->itxg_txg != txg) {
1481			mutex_exit(&itxg->itxg_lock);
1482			continue;
1483		}
1484
1485		/*
1486		 * If a foid is specified then find that node and append its
1487		 * list. Otherwise walk the tree appending all the lists
1488		 * to the sync list. We add to the end rather than the
1489		 * beginning to ensure the create has happened.
1490		 */
1491		t = &itxg->itxg_itxs->i_async_tree;
1492		if (foid != 0) {
1493			ian = avl_find(t, &foid, &where);
1494			if (ian != NULL) {
1495				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1496				    &ian->ia_list);
1497			}
1498		} else {
1499			void *cookie = NULL;
1500
1501			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1502				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1503				    &ian->ia_list);
1504				list_destroy(&ian->ia_list);
1505				kmem_free(ian, sizeof (itx_async_node_t));
1506			}
1507		}
1508		mutex_exit(&itxg->itxg_lock);
1509	}
1510}
1511
1512static void
1513zil_commit_writer(zilog_t *zilog)
1514{
1515	uint64_t txg;
1516	itx_t *itx;
1517	lwb_t *lwb;
1518	spa_t *spa = zilog->zl_spa;
1519	int error = 0;
1520
1521	ASSERT(zilog->zl_root_zio == NULL);
1522
1523	mutex_exit(&zilog->zl_lock);
1524
1525	zil_get_commit_list(zilog);
1526
1527	/*
1528	 * Return if there's nothing to commit before we dirty the fs by
1529	 * calling zil_create().
1530	 */
1531	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1532		mutex_enter(&zilog->zl_lock);
1533		return;
1534	}
1535
1536	if (zilog->zl_suspend) {
1537		lwb = NULL;
1538	} else {
1539		lwb = list_tail(&zilog->zl_lwb_list);
1540		if (lwb == NULL)
1541			lwb = zil_create(zilog);
1542	}
1543
1544	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1545	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1546		txg = itx->itx_lr.lrc_txg;
1547		ASSERT3U(txg, !=, 0);
1548
1549		/*
1550		 * This is inherently racy and may result in us writing
1551		 * out a log block for a txg that was just synced. This is
1552		 * ok since we'll end cleaning up that log block the next
1553		 * time we call zil_sync().
1554		 */
1555		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1556			lwb = zil_lwb_commit(zilog, itx, lwb);
1557		list_remove(&zilog->zl_itx_commit_list, itx);
1558		kmem_free(itx, offsetof(itx_t, itx_lr)
1559		    + itx->itx_lr.lrc_reclen);
1560	}
1561	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1562
1563	/* write the last block out */
1564	if (lwb != NULL && lwb->lwb_zio != NULL)
1565		lwb = zil_lwb_write_start(zilog, lwb, B_TRUE);
1566
1567	zilog->zl_cur_used = 0;
1568
1569	/*
1570	 * Wait if necessary for the log blocks to be on stable storage.
1571	 */
1572	if (zilog->zl_root_zio) {
1573		error = zio_wait(zilog->zl_root_zio);
1574		zilog->zl_root_zio = NULL;
1575		zil_flush_vdevs(zilog);
1576	}
1577
1578	if (error || lwb == NULL)
1579		txg_wait_synced(zilog->zl_dmu_pool, 0);
1580
1581	mutex_enter(&zilog->zl_lock);
1582
1583	/*
1584	 * Remember the highest committed log sequence number for ztest.
1585	 * We only update this value when all the log writes succeeded,
1586	 * because ztest wants to ASSERT that it got the whole log chain.
1587	 */
1588	if (error == 0 && lwb != NULL)
1589		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1590}
1591
1592/*
1593 * Commit zfs transactions to stable storage.
1594 * If foid is 0 push out all transactions, otherwise push only those
1595 * for that object or might reference that object.
1596 *
1597 * itxs are committed in batches. In a heavily stressed zil there will be
1598 * a commit writer thread who is writing out a bunch of itxs to the log
1599 * for a set of committing threads (cthreads) in the same batch as the writer.
1600 * Those cthreads are all waiting on the same cv for that batch.
1601 *
1602 * There will also be a different and growing batch of threads that are
1603 * waiting to commit (qthreads). When the committing batch completes
1604 * a transition occurs such that the cthreads exit and the qthreads become
1605 * cthreads. One of the new cthreads becomes the writer thread for the
1606 * batch. Any new threads arriving become new qthreads.
1607 *
1608 * Only 2 condition variables are needed and there's no transition
1609 * between the two cvs needed. They just flip-flop between qthreads
1610 * and cthreads.
1611 *
1612 * Using this scheme we can efficiently wakeup up only those threads
1613 * that have been committed.
1614 */
1615void
1616zil_commit(zilog_t *zilog, uint64_t foid)
1617{
1618	uint64_t mybatch;
1619
1620	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1621		return;
1622
1623	/* move the async itxs for the foid to the sync queues */
1624	zil_async_to_sync(zilog, foid);
1625
1626	mutex_enter(&zilog->zl_lock);
1627	mybatch = zilog->zl_next_batch;
1628	while (zilog->zl_writer) {
1629		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1630		if (mybatch <= zilog->zl_com_batch) {
1631			mutex_exit(&zilog->zl_lock);
1632			return;
1633		}
1634	}
1635
1636	zilog->zl_next_batch++;
1637	zilog->zl_writer = B_TRUE;
1638	zil_commit_writer(zilog);
1639	zilog->zl_com_batch = mybatch;
1640	zilog->zl_writer = B_FALSE;
1641	mutex_exit(&zilog->zl_lock);
1642
1643	/* wake up one thread to become the next writer */
1644	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1645
1646	/* wake up all threads waiting for this batch to be committed */
1647	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1648}
1649
1650/*
1651 * Called in syncing context to free committed log blocks and update log header.
1652 */
1653void
1654zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1655{
1656	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1657	uint64_t txg = dmu_tx_get_txg(tx);
1658	spa_t *spa = zilog->zl_spa;
1659	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1660	lwb_t *lwb;
1661
1662	/*
1663	 * We don't zero out zl_destroy_txg, so make sure we don't try
1664	 * to destroy it twice.
1665	 */
1666	if (spa_sync_pass(spa) != 1)
1667		return;
1668
1669	mutex_enter(&zilog->zl_lock);
1670
1671	ASSERT(zilog->zl_stop_sync == 0);
1672
1673	if (*replayed_seq != 0) {
1674		ASSERT(zh->zh_replay_seq < *replayed_seq);
1675		zh->zh_replay_seq = *replayed_seq;
1676		*replayed_seq = 0;
1677	}
1678
1679	if (zilog->zl_destroy_txg == txg) {
1680		blkptr_t blk = zh->zh_log;
1681
1682		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1683
1684		bzero(zh, sizeof (zil_header_t));
1685		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1686
1687		if (zilog->zl_keep_first) {
1688			/*
1689			 * If this block was part of log chain that couldn't
1690			 * be claimed because a device was missing during
1691			 * zil_claim(), but that device later returns,
1692			 * then this block could erroneously appear valid.
1693			 * To guard against this, assign a new GUID to the new
1694			 * log chain so it doesn't matter what blk points to.
1695			 */
1696			zil_init_log_chain(zilog, &blk);
1697			zh->zh_log = blk;
1698		}
1699	}
1700
1701	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1702		zh->zh_log = lwb->lwb_blk;
1703		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1704			break;
1705		list_remove(&zilog->zl_lwb_list, lwb);
1706		zio_free_zil(spa, txg, &lwb->lwb_blk);
1707		kmem_cache_free(zil_lwb_cache, lwb);
1708
1709		/*
1710		 * If we don't have anything left in the lwb list then
1711		 * we've had an allocation failure and we need to zero
1712		 * out the zil_header blkptr so that we don't end
1713		 * up freeing the same block twice.
1714		 */
1715		if (list_head(&zilog->zl_lwb_list) == NULL)
1716			BP_ZERO(&zh->zh_log);
1717	}
1718	mutex_exit(&zilog->zl_lock);
1719}
1720
1721void
1722zil_init(void)
1723{
1724	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1725	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1726}
1727
1728void
1729zil_fini(void)
1730{
1731	kmem_cache_destroy(zil_lwb_cache);
1732}
1733
1734void
1735zil_set_sync(zilog_t *zilog, uint64_t sync)
1736{
1737	zilog->zl_sync = sync;
1738}
1739
1740void
1741zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1742{
1743	zilog->zl_logbias = logbias;
1744}
1745
1746zilog_t *
1747zil_alloc(objset_t *os, zil_header_t *zh_phys)
1748{
1749	zilog_t *zilog;
1750
1751	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1752
1753	zilog->zl_header = zh_phys;
1754	zilog->zl_os = os;
1755	zilog->zl_spa = dmu_objset_spa(os);
1756	zilog->zl_dmu_pool = dmu_objset_pool(os);
1757	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1758	zilog->zl_logbias = dmu_objset_logbias(os);
1759	zilog->zl_sync = dmu_objset_syncprop(os);
1760	zilog->zl_next_batch = 1;
1761
1762	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1763
1764	for (int i = 0; i < TXG_SIZE; i++) {
1765		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1766		    MUTEX_DEFAULT, NULL);
1767	}
1768
1769	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1770	    offsetof(lwb_t, lwb_node));
1771
1772	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1773	    offsetof(itx_t, itx_node));
1774
1775	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1776
1777	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1778	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1779
1780	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1781	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1782	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1783	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1784
1785	return (zilog);
1786}
1787
1788void
1789zil_free(zilog_t *zilog)
1790{
1791	zilog->zl_stop_sync = 1;
1792
1793	ASSERT0(zilog->zl_suspend);
1794	ASSERT0(zilog->zl_suspending);
1795
1796	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1797	list_destroy(&zilog->zl_lwb_list);
1798
1799	avl_destroy(&zilog->zl_vdev_tree);
1800	mutex_destroy(&zilog->zl_vdev_lock);
1801
1802	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1803	list_destroy(&zilog->zl_itx_commit_list);
1804
1805	for (int i = 0; i < TXG_SIZE; i++) {
1806		/*
1807		 * It's possible for an itx to be generated that doesn't dirty
1808		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1809		 * callback to remove the entry. We remove those here.
1810		 *
1811		 * Also free up the ziltest itxs.
1812		 */
1813		if (zilog->zl_itxg[i].itxg_itxs)
1814			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1815		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1816	}
1817
1818	mutex_destroy(&zilog->zl_lock);
1819
1820	cv_destroy(&zilog->zl_cv_writer);
1821	cv_destroy(&zilog->zl_cv_suspend);
1822	cv_destroy(&zilog->zl_cv_batch[0]);
1823	cv_destroy(&zilog->zl_cv_batch[1]);
1824
1825	kmem_free(zilog, sizeof (zilog_t));
1826}
1827
1828/*
1829 * Open an intent log.
1830 */
1831zilog_t *
1832zil_open(objset_t *os, zil_get_data_t *get_data)
1833{
1834	zilog_t *zilog = dmu_objset_zil(os);
1835
1836	ASSERT(zilog->zl_clean_taskq == NULL);
1837	ASSERT(zilog->zl_get_data == NULL);
1838	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1839
1840	zilog->zl_get_data = get_data;
1841	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1842	    2, 2, TASKQ_PREPOPULATE);
1843
1844	return (zilog);
1845}
1846
1847/*
1848 * Close an intent log.
1849 */
1850void
1851zil_close(zilog_t *zilog)
1852{
1853	lwb_t *lwb;
1854	uint64_t txg = 0;
1855
1856	zil_commit(zilog, 0); /* commit all itx */
1857
1858	/*
1859	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1860	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1861	 * callbacks have occurred that may clean the zil.  Only then can we
1862	 * destroy the zl_clean_taskq.
1863	 */
1864	mutex_enter(&zilog->zl_lock);
1865	lwb = list_tail(&zilog->zl_lwb_list);
1866	if (lwb != NULL)
1867		txg = lwb->lwb_max_txg;
1868	mutex_exit(&zilog->zl_lock);
1869	if (txg)
1870		txg_wait_synced(zilog->zl_dmu_pool, txg);
1871
1872	if (zilog_is_dirty(zilog))
1873		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1874	VERIFY(!zilog_is_dirty(zilog));
1875
1876	taskq_destroy(zilog->zl_clean_taskq);
1877	zilog->zl_clean_taskq = NULL;
1878	zilog->zl_get_data = NULL;
1879
1880	/*
1881	 * We should have only one LWB left on the list; remove it now.
1882	 */
1883	mutex_enter(&zilog->zl_lock);
1884	lwb = list_head(&zilog->zl_lwb_list);
1885	if (lwb != NULL) {
1886		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1887		list_remove(&zilog->zl_lwb_list, lwb);
1888		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1889		kmem_cache_free(zil_lwb_cache, lwb);
1890	}
1891	mutex_exit(&zilog->zl_lock);
1892}
1893
1894static char *suspend_tag = "zil suspending";
1895
1896/*
1897 * Suspend an intent log.  While in suspended mode, we still honor
1898 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1899 * On old version pools, we suspend the log briefly when taking a
1900 * snapshot so that it will have an empty intent log.
1901 *
1902 * Long holds are not really intended to be used the way we do here --
1903 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1904 * could fail.  Therefore we take pains to only put a long hold if it is
1905 * actually necessary.  Fortunately, it will only be necessary if the
1906 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1907 * will already have a long hold, so we are not really making things any worse.
1908 *
1909 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1910 * zvol_state_t), and use their mechanism to prevent their hold from being
1911 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1912 * very little gain.
1913 *
1914 * if cookiep == NULL, this does both the suspend & resume.
1915 * Otherwise, it returns with the dataset "long held", and the cookie
1916 * should be passed into zil_resume().
1917 */
1918int
1919zil_suspend(const char *osname, void **cookiep)
1920{
1921	objset_t *os;
1922	zilog_t *zilog;
1923	const zil_header_t *zh;
1924	int error;
1925
1926	error = dmu_objset_hold(osname, suspend_tag, &os);
1927	if (error != 0)
1928		return (error);
1929	zilog = dmu_objset_zil(os);
1930
1931	mutex_enter(&zilog->zl_lock);
1932	zh = zilog->zl_header;
1933
1934	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1935		mutex_exit(&zilog->zl_lock);
1936		dmu_objset_rele(os, suspend_tag);
1937		return (SET_ERROR(EBUSY));
1938	}
1939
1940	/*
1941	 * Don't put a long hold in the cases where we can avoid it.  This
1942	 * is when there is no cookie so we are doing a suspend & resume
1943	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1944	 * for the suspend because it's already suspended, or there's no ZIL.
1945	 */
1946	if (cookiep == NULL && !zilog->zl_suspending &&
1947	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1948		mutex_exit(&zilog->zl_lock);
1949		dmu_objset_rele(os, suspend_tag);
1950		return (0);
1951	}
1952
1953	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1954	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1955
1956	zilog->zl_suspend++;
1957
1958	if (zilog->zl_suspend > 1) {
1959		/*
1960		 * Someone else is already suspending it.
1961		 * Just wait for them to finish.
1962		 */
1963
1964		while (zilog->zl_suspending)
1965			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1966		mutex_exit(&zilog->zl_lock);
1967
1968		if (cookiep == NULL)
1969			zil_resume(os);
1970		else
1971			*cookiep = os;
1972		return (0);
1973	}
1974
1975	/*
1976	 * If there is no pointer to an on-disk block, this ZIL must not
1977	 * be active (e.g. filesystem not mounted), so there's nothing
1978	 * to clean up.
1979	 */
1980	if (BP_IS_HOLE(&zh->zh_log)) {
1981		ASSERT(cookiep != NULL); /* fast path already handled */
1982
1983		*cookiep = os;
1984		mutex_exit(&zilog->zl_lock);
1985		return (0);
1986	}
1987
1988	zilog->zl_suspending = B_TRUE;
1989	mutex_exit(&zilog->zl_lock);
1990
1991	zil_commit(zilog, 0);
1992
1993	zil_destroy(zilog, B_FALSE);
1994
1995	mutex_enter(&zilog->zl_lock);
1996	zilog->zl_suspending = B_FALSE;
1997	cv_broadcast(&zilog->zl_cv_suspend);
1998	mutex_exit(&zilog->zl_lock);
1999
2000	if (cookiep == NULL)
2001		zil_resume(os);
2002	else
2003		*cookiep = os;
2004	return (0);
2005}
2006
2007void
2008zil_resume(void *cookie)
2009{
2010	objset_t *os = cookie;
2011	zilog_t *zilog = dmu_objset_zil(os);
2012
2013	mutex_enter(&zilog->zl_lock);
2014	ASSERT(zilog->zl_suspend != 0);
2015	zilog->zl_suspend--;
2016	mutex_exit(&zilog->zl_lock);
2017	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2018	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2019}
2020
2021typedef struct zil_replay_arg {
2022	zil_replay_func_t **zr_replay;
2023	void		*zr_arg;
2024	boolean_t	zr_byteswap;
2025	char		*zr_lr;
2026} zil_replay_arg_t;
2027
2028static int
2029zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2030{
2031	char name[ZFS_MAX_DATASET_NAME_LEN];
2032
2033	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
2034
2035	dmu_objset_name(zilog->zl_os, name);
2036
2037	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2038	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2039	    (u_longlong_t)lr->lrc_seq,
2040	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2041	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
2042
2043	return (error);
2044}
2045
2046static int
2047zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2048{
2049	zil_replay_arg_t *zr = zra;
2050	const zil_header_t *zh = zilog->zl_header;
2051	uint64_t reclen = lr->lrc_reclen;
2052	uint64_t txtype = lr->lrc_txtype;
2053	int error = 0;
2054
2055	zilog->zl_replaying_seq = lr->lrc_seq;
2056
2057	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2058		return (0);
2059
2060	if (lr->lrc_txg < claim_txg)		/* already committed */
2061		return (0);
2062
2063	/* Strip case-insensitive bit, still present in log record */
2064	txtype &= ~TX_CI;
2065
2066	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2067		return (zil_replay_error(zilog, lr, EINVAL));
2068
2069	/*
2070	 * If this record type can be logged out of order, the object
2071	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2072	 */
2073	if (TX_OOO(txtype)) {
2074		error = dmu_object_info(zilog->zl_os,
2075		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2076		if (error == ENOENT || error == EEXIST)
2077			return (0);
2078	}
2079
2080	/*
2081	 * Make a copy of the data so we can revise and extend it.
2082	 */
2083	bcopy(lr, zr->zr_lr, reclen);
2084
2085	/*
2086	 * If this is a TX_WRITE with a blkptr, suck in the data.
2087	 */
2088	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2089		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2090		    zr->zr_lr + reclen);
2091		if (error != 0)
2092			return (zil_replay_error(zilog, lr, error));
2093	}
2094
2095	/*
2096	 * The log block containing this lr may have been byteswapped
2097	 * so that we can easily examine common fields like lrc_txtype.
2098	 * However, the log is a mix of different record types, and only the
2099	 * replay vectors know how to byteswap their records.  Therefore, if
2100	 * the lr was byteswapped, undo it before invoking the replay vector.
2101	 */
2102	if (zr->zr_byteswap)
2103		byteswap_uint64_array(zr->zr_lr, reclen);
2104
2105	/*
2106	 * We must now do two things atomically: replay this log record,
2107	 * and update the log header sequence number to reflect the fact that
2108	 * we did so. At the end of each replay function the sequence number
2109	 * is updated if we are in replay mode.
2110	 */
2111	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2112	if (error != 0) {
2113		/*
2114		 * The DMU's dnode layer doesn't see removes until the txg
2115		 * commits, so a subsequent claim can spuriously fail with
2116		 * EEXIST. So if we receive any error we try syncing out
2117		 * any removes then retry the transaction.  Note that we
2118		 * specify B_FALSE for byteswap now, so we don't do it twice.
2119		 */
2120		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2121		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2122		if (error != 0)
2123			return (zil_replay_error(zilog, lr, error));
2124	}
2125	return (0);
2126}
2127
2128/* ARGSUSED */
2129static int
2130zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2131{
2132	zilog->zl_replay_blks++;
2133
2134	return (0);
2135}
2136
2137/*
2138 * If this dataset has a non-empty intent log, replay it and destroy it.
2139 */
2140void
2141zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2142{
2143	zilog_t *zilog = dmu_objset_zil(os);
2144	const zil_header_t *zh = zilog->zl_header;
2145	zil_replay_arg_t zr;
2146
2147	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2148		zil_destroy(zilog, B_TRUE);
2149		return;
2150	}
2151
2152	zr.zr_replay = replay_func;
2153	zr.zr_arg = arg;
2154	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2155	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2156
2157	/*
2158	 * Wait for in-progress removes to sync before starting replay.
2159	 */
2160	txg_wait_synced(zilog->zl_dmu_pool, 0);
2161
2162	zilog->zl_replay = B_TRUE;
2163	zilog->zl_replay_time = ddi_get_lbolt();
2164	ASSERT(zilog->zl_replay_blks == 0);
2165	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2166	    zh->zh_claim_txg);
2167	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2168
2169	zil_destroy(zilog, B_FALSE);
2170	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2171	zilog->zl_replay = B_FALSE;
2172}
2173
2174boolean_t
2175zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2176{
2177	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2178		return (B_TRUE);
2179
2180	if (zilog->zl_replay) {
2181		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2182		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2183		    zilog->zl_replaying_seq;
2184		return (B_TRUE);
2185	}
2186
2187	return (B_FALSE);
2188}
2189
2190/* ARGSUSED */
2191int
2192zil_vdev_offline(const char *osname, void *arg)
2193{
2194	int error;
2195
2196	error = zil_suspend(osname, NULL);
2197	if (error != 0)
2198		return (SET_ERROR(EEXIST));
2199	return (0);
2200}
2201