zil.c revision 315384
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42
43/*
44 * The zfs intent log (ZIL) saves transaction records of system calls
45 * that change the file system in memory with enough information
46 * to be able to replay them. These are stored in memory until
47 * either the DMU transaction group (txg) commits them to the stable pool
48 * and they can be discarded, or they are flushed to the stable log
49 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50 * requirement. In the event of a panic or power fail then those log
51 * records (transactions) are replayed.
52 *
53 * There is one ZIL per file system. Its on-disk (pool) format consists
54 * of 3 parts:
55 *
56 * 	- ZIL header
57 * 	- ZIL blocks
58 * 	- ZIL records
59 *
60 * A log record holds a system call transaction. Log blocks can
61 * hold many log records and the blocks are chained together.
62 * Each ZIL block contains a block pointer (blkptr_t) to the next
63 * ZIL block in the chain. The ZIL header points to the first
64 * block in the chain. Note there is not a fixed place in the pool
65 * to hold blocks. They are dynamically allocated and freed as
66 * needed from the blocks available. Figure X shows the ZIL structure:
67 */
68
69/*
70 * Disable intent logging replay.  This global ZIL switch affects all pools.
71 */
72int zil_replay_disable = 0;
73SYSCTL_DECL(_vfs_zfs);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
75    &zil_replay_disable, 0, "Disable intent logging replay");
76
77/*
78 * Tunable parameter for debugging or performance analysis.  Setting
79 * zfs_nocacheflush will cause corruption on power loss if a volatile
80 * out-of-order write cache is enabled.
81 */
82boolean_t zfs_nocacheflush = B_FALSE;
83SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
84    &zfs_nocacheflush, 0, "Disable cache flush");
85boolean_t zfs_trim_enabled = B_TRUE;
86SYSCTL_DECL(_vfs_zfs_trim);
87SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
88    "Enable ZFS TRIM");
89
90static kmem_cache_t *zil_lwb_cache;
91
92#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
93    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
94
95
96/*
97 * ziltest is by and large an ugly hack, but very useful in
98 * checking replay without tedious work.
99 * When running ziltest we want to keep all itx's and so maintain
100 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
101 * We subtract TXG_CONCURRENT_STATES to allow for common code.
102 */
103#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
104
105static int
106zil_bp_compare(const void *x1, const void *x2)
107{
108	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
109	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
110
111	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
112		return (-1);
113	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
114		return (1);
115
116	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
117		return (-1);
118	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
119		return (1);
120
121	return (0);
122}
123
124static void
125zil_bp_tree_init(zilog_t *zilog)
126{
127	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
128	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
129}
130
131static void
132zil_bp_tree_fini(zilog_t *zilog)
133{
134	avl_tree_t *t = &zilog->zl_bp_tree;
135	zil_bp_node_t *zn;
136	void *cookie = NULL;
137
138	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
139		kmem_free(zn, sizeof (zil_bp_node_t));
140
141	avl_destroy(t);
142}
143
144int
145zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
146{
147	avl_tree_t *t = &zilog->zl_bp_tree;
148	const dva_t *dva;
149	zil_bp_node_t *zn;
150	avl_index_t where;
151
152	if (BP_IS_EMBEDDED(bp))
153		return (0);
154
155	dva = BP_IDENTITY(bp);
156
157	if (avl_find(t, dva, &where) != NULL)
158		return (SET_ERROR(EEXIST));
159
160	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
161	zn->zn_dva = *dva;
162	avl_insert(t, zn, where);
163
164	return (0);
165}
166
167static zil_header_t *
168zil_header_in_syncing_context(zilog_t *zilog)
169{
170	return ((zil_header_t *)zilog->zl_header);
171}
172
173static void
174zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
175{
176	zio_cksum_t *zc = &bp->blk_cksum;
177
178	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
179	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
180	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
181	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
182}
183
184/*
185 * Read a log block and make sure it's valid.
186 */
187static int
188zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
189    char **end)
190{
191	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
192	arc_flags_t aflags = ARC_FLAG_WAIT;
193	arc_buf_t *abuf = NULL;
194	zbookmark_phys_t zb;
195	int error;
196
197	if (zilog->zl_header->zh_claim_txg == 0)
198		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
199
200	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
201		zio_flags |= ZIO_FLAG_SPECULATIVE;
202
203	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
204	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
205
206	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
207	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
208
209	if (error == 0) {
210		zio_cksum_t cksum = bp->blk_cksum;
211
212		/*
213		 * Validate the checksummed log block.
214		 *
215		 * Sequence numbers should be... sequential.  The checksum
216		 * verifier for the next block should be bp's checksum plus 1.
217		 *
218		 * Also check the log chain linkage and size used.
219		 */
220		cksum.zc_word[ZIL_ZC_SEQ]++;
221
222		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
223			zil_chain_t *zilc = abuf->b_data;
224			char *lr = (char *)(zilc + 1);
225			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
226
227			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
228			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
229				error = SET_ERROR(ECKSUM);
230			} else {
231				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
232				bcopy(lr, dst, len);
233				*end = (char *)dst + len;
234				*nbp = zilc->zc_next_blk;
235			}
236		} else {
237			char *lr = abuf->b_data;
238			uint64_t size = BP_GET_LSIZE(bp);
239			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
240
241			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
242			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
243			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
244				error = SET_ERROR(ECKSUM);
245			} else {
246				ASSERT3U(zilc->zc_nused, <=,
247				    SPA_OLD_MAXBLOCKSIZE);
248				bcopy(lr, dst, zilc->zc_nused);
249				*end = (char *)dst + zilc->zc_nused;
250				*nbp = zilc->zc_next_blk;
251			}
252		}
253
254		arc_buf_destroy(abuf, &abuf);
255	}
256
257	return (error);
258}
259
260/*
261 * Read a TX_WRITE log data block.
262 */
263static int
264zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
265{
266	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
267	const blkptr_t *bp = &lr->lr_blkptr;
268	arc_flags_t aflags = ARC_FLAG_WAIT;
269	arc_buf_t *abuf = NULL;
270	zbookmark_phys_t zb;
271	int error;
272
273	if (BP_IS_HOLE(bp)) {
274		if (wbuf != NULL)
275			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
276		return (0);
277	}
278
279	if (zilog->zl_header->zh_claim_txg == 0)
280		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
281
282	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
283	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
284
285	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
286	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
287
288	if (error == 0) {
289		if (wbuf != NULL)
290			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
291		arc_buf_destroy(abuf, &abuf);
292	}
293
294	return (error);
295}
296
297/*
298 * Parse the intent log, and call parse_func for each valid record within.
299 */
300int
301zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
302    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
303{
304	const zil_header_t *zh = zilog->zl_header;
305	boolean_t claimed = !!zh->zh_claim_txg;
306	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
307	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
308	uint64_t max_blk_seq = 0;
309	uint64_t max_lr_seq = 0;
310	uint64_t blk_count = 0;
311	uint64_t lr_count = 0;
312	blkptr_t blk, next_blk;
313	char *lrbuf, *lrp;
314	int error = 0;
315
316	/*
317	 * Old logs didn't record the maximum zh_claim_lr_seq.
318	 */
319	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
320		claim_lr_seq = UINT64_MAX;
321
322	/*
323	 * Starting at the block pointed to by zh_log we read the log chain.
324	 * For each block in the chain we strongly check that block to
325	 * ensure its validity.  We stop when an invalid block is found.
326	 * For each block pointer in the chain we call parse_blk_func().
327	 * For each record in each valid block we call parse_lr_func().
328	 * If the log has been claimed, stop if we encounter a sequence
329	 * number greater than the highest claimed sequence number.
330	 */
331	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
332	zil_bp_tree_init(zilog);
333
334	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
335		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
336		int reclen;
337		char *end;
338
339		if (blk_seq > claim_blk_seq)
340			break;
341		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
342			break;
343		ASSERT3U(max_blk_seq, <, blk_seq);
344		max_blk_seq = blk_seq;
345		blk_count++;
346
347		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
348			break;
349
350		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
351		if (error != 0)
352			break;
353
354		for (lrp = lrbuf; lrp < end; lrp += reclen) {
355			lr_t *lr = (lr_t *)lrp;
356			reclen = lr->lrc_reclen;
357			ASSERT3U(reclen, >=, sizeof (lr_t));
358			if (lr->lrc_seq > claim_lr_seq)
359				goto done;
360			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
361				goto done;
362			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
363			max_lr_seq = lr->lrc_seq;
364			lr_count++;
365		}
366	}
367done:
368	zilog->zl_parse_error = error;
369	zilog->zl_parse_blk_seq = max_blk_seq;
370	zilog->zl_parse_lr_seq = max_lr_seq;
371	zilog->zl_parse_blk_count = blk_count;
372	zilog->zl_parse_lr_count = lr_count;
373
374	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
375	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
376
377	zil_bp_tree_fini(zilog);
378	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
379
380	return (error);
381}
382
383static int
384zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
385{
386	/*
387	 * Claim log block if not already committed and not already claimed.
388	 * If tx == NULL, just verify that the block is claimable.
389	 */
390	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
391	    zil_bp_tree_add(zilog, bp) != 0)
392		return (0);
393
394	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
395	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
396	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
397}
398
399static int
400zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
401{
402	lr_write_t *lr = (lr_write_t *)lrc;
403	int error;
404
405	if (lrc->lrc_txtype != TX_WRITE)
406		return (0);
407
408	/*
409	 * If the block is not readable, don't claim it.  This can happen
410	 * in normal operation when a log block is written to disk before
411	 * some of the dmu_sync() blocks it points to.  In this case, the
412	 * transaction cannot have been committed to anyone (we would have
413	 * waited for all writes to be stable first), so it is semantically
414	 * correct to declare this the end of the log.
415	 */
416	if (lr->lr_blkptr.blk_birth >= first_txg &&
417	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
418		return (error);
419	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
420}
421
422/* ARGSUSED */
423static int
424zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
425{
426	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
427
428	return (0);
429}
430
431static int
432zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
433{
434	lr_write_t *lr = (lr_write_t *)lrc;
435	blkptr_t *bp = &lr->lr_blkptr;
436
437	/*
438	 * If we previously claimed it, we need to free it.
439	 */
440	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
441	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
442	    !BP_IS_HOLE(bp))
443		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
444
445	return (0);
446}
447
448static lwb_t *
449zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
450{
451	lwb_t *lwb;
452
453	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
454	lwb->lwb_zilog = zilog;
455	lwb->lwb_blk = *bp;
456	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
457	lwb->lwb_max_txg = txg;
458	lwb->lwb_zio = NULL;
459	lwb->lwb_tx = NULL;
460	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
461		lwb->lwb_nused = sizeof (zil_chain_t);
462		lwb->lwb_sz = BP_GET_LSIZE(bp);
463	} else {
464		lwb->lwb_nused = 0;
465		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
466	}
467
468	mutex_enter(&zilog->zl_lock);
469	list_insert_tail(&zilog->zl_lwb_list, lwb);
470	mutex_exit(&zilog->zl_lock);
471
472	return (lwb);
473}
474
475/*
476 * Called when we create in-memory log transactions so that we know
477 * to cleanup the itxs at the end of spa_sync().
478 */
479void
480zilog_dirty(zilog_t *zilog, uint64_t txg)
481{
482	dsl_pool_t *dp = zilog->zl_dmu_pool;
483	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
484
485	if (ds->ds_is_snapshot)
486		panic("dirtying snapshot!");
487
488	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
489		/* up the hold count until we can be written out */
490		dmu_buf_add_ref(ds->ds_dbuf, zilog);
491	}
492}
493
494/*
495 * Determine if the zil is dirty in the specified txg. Callers wanting to
496 * ensure that the dirty state does not change must hold the itxg_lock for
497 * the specified txg. Holding the lock will ensure that the zil cannot be
498 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
499 * state.
500 */
501boolean_t
502zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
503{
504	dsl_pool_t *dp = zilog->zl_dmu_pool;
505
506	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
507		return (B_TRUE);
508	return (B_FALSE);
509}
510
511/*
512 * Determine if the zil is dirty. The zil is considered dirty if it has
513 * any pending itx records that have not been cleaned by zil_clean().
514 */
515boolean_t
516zilog_is_dirty(zilog_t *zilog)
517{
518	dsl_pool_t *dp = zilog->zl_dmu_pool;
519
520	for (int t = 0; t < TXG_SIZE; t++) {
521		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
522			return (B_TRUE);
523	}
524	return (B_FALSE);
525}
526
527/*
528 * Create an on-disk intent log.
529 */
530static lwb_t *
531zil_create(zilog_t *zilog)
532{
533	const zil_header_t *zh = zilog->zl_header;
534	lwb_t *lwb = NULL;
535	uint64_t txg = 0;
536	dmu_tx_t *tx = NULL;
537	blkptr_t blk;
538	int error = 0;
539
540	/*
541	 * Wait for any previous destroy to complete.
542	 */
543	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
544
545	ASSERT(zh->zh_claim_txg == 0);
546	ASSERT(zh->zh_replay_seq == 0);
547
548	blk = zh->zh_log;
549
550	/*
551	 * Allocate an initial log block if:
552	 *    - there isn't one already
553	 *    - the existing block is the wrong endianess
554	 */
555	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
556		tx = dmu_tx_create(zilog->zl_os);
557		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
558		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
559		txg = dmu_tx_get_txg(tx);
560
561		if (!BP_IS_HOLE(&blk)) {
562			zio_free_zil(zilog->zl_spa, txg, &blk);
563			BP_ZERO(&blk);
564		}
565
566		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
567		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
568
569		if (error == 0)
570			zil_init_log_chain(zilog, &blk);
571	}
572
573	/*
574	 * Allocate a log write buffer (lwb) for the first log block.
575	 */
576	if (error == 0)
577		lwb = zil_alloc_lwb(zilog, &blk, txg);
578
579	/*
580	 * If we just allocated the first log block, commit our transaction
581	 * and wait for zil_sync() to stuff the block poiner into zh_log.
582	 * (zh is part of the MOS, so we cannot modify it in open context.)
583	 */
584	if (tx != NULL) {
585		dmu_tx_commit(tx);
586		txg_wait_synced(zilog->zl_dmu_pool, txg);
587	}
588
589	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
590
591	return (lwb);
592}
593
594/*
595 * In one tx, free all log blocks and clear the log header.
596 * If keep_first is set, then we're replaying a log with no content.
597 * We want to keep the first block, however, so that the first
598 * synchronous transaction doesn't require a txg_wait_synced()
599 * in zil_create().  We don't need to txg_wait_synced() here either
600 * when keep_first is set, because both zil_create() and zil_destroy()
601 * will wait for any in-progress destroys to complete.
602 */
603void
604zil_destroy(zilog_t *zilog, boolean_t keep_first)
605{
606	const zil_header_t *zh = zilog->zl_header;
607	lwb_t *lwb;
608	dmu_tx_t *tx;
609	uint64_t txg;
610
611	/*
612	 * Wait for any previous destroy to complete.
613	 */
614	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
615
616	zilog->zl_old_header = *zh;		/* debugging aid */
617
618	if (BP_IS_HOLE(&zh->zh_log))
619		return;
620
621	tx = dmu_tx_create(zilog->zl_os);
622	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
623	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
624	txg = dmu_tx_get_txg(tx);
625
626	mutex_enter(&zilog->zl_lock);
627
628	ASSERT3U(zilog->zl_destroy_txg, <, txg);
629	zilog->zl_destroy_txg = txg;
630	zilog->zl_keep_first = keep_first;
631
632	if (!list_is_empty(&zilog->zl_lwb_list)) {
633		ASSERT(zh->zh_claim_txg == 0);
634		VERIFY(!keep_first);
635		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
636			list_remove(&zilog->zl_lwb_list, lwb);
637			if (lwb->lwb_buf != NULL)
638				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
639			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
640			kmem_cache_free(zil_lwb_cache, lwb);
641		}
642	} else if (!keep_first) {
643		zil_destroy_sync(zilog, tx);
644	}
645	mutex_exit(&zilog->zl_lock);
646
647	dmu_tx_commit(tx);
648}
649
650void
651zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
652{
653	ASSERT(list_is_empty(&zilog->zl_lwb_list));
654	(void) zil_parse(zilog, zil_free_log_block,
655	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
656}
657
658int
659zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
660{
661	dmu_tx_t *tx = txarg;
662	uint64_t first_txg = dmu_tx_get_txg(tx);
663	zilog_t *zilog;
664	zil_header_t *zh;
665	objset_t *os;
666	int error;
667
668	error = dmu_objset_own_obj(dp, ds->ds_object,
669	    DMU_OST_ANY, B_FALSE, FTAG, &os);
670	if (error != 0) {
671		/*
672		 * EBUSY indicates that the objset is inconsistent, in which
673		 * case it can not have a ZIL.
674		 */
675		if (error != EBUSY) {
676			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
677			    (unsigned long long)ds->ds_object, error);
678		}
679		return (0);
680	}
681
682	zilog = dmu_objset_zil(os);
683	zh = zil_header_in_syncing_context(zilog);
684
685	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
686		if (!BP_IS_HOLE(&zh->zh_log))
687			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
688		BP_ZERO(&zh->zh_log);
689		dsl_dataset_dirty(dmu_objset_ds(os), tx);
690		dmu_objset_disown(os, FTAG);
691		return (0);
692	}
693
694	/*
695	 * Claim all log blocks if we haven't already done so, and remember
696	 * the highest claimed sequence number.  This ensures that if we can
697	 * read only part of the log now (e.g. due to a missing device),
698	 * but we can read the entire log later, we will not try to replay
699	 * or destroy beyond the last block we successfully claimed.
700	 */
701	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
702	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
703		(void) zil_parse(zilog, zil_claim_log_block,
704		    zil_claim_log_record, tx, first_txg);
705		zh->zh_claim_txg = first_txg;
706		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
707		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
708		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
709			zh->zh_flags |= ZIL_REPLAY_NEEDED;
710		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
711		dsl_dataset_dirty(dmu_objset_ds(os), tx);
712	}
713
714	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
715	dmu_objset_disown(os, FTAG);
716	return (0);
717}
718
719/*
720 * Check the log by walking the log chain.
721 * Checksum errors are ok as they indicate the end of the chain.
722 * Any other error (no device or read failure) returns an error.
723 */
724/* ARGSUSED */
725int
726zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
727{
728	zilog_t *zilog;
729	objset_t *os;
730	blkptr_t *bp;
731	int error;
732
733	ASSERT(tx == NULL);
734
735	error = dmu_objset_from_ds(ds, &os);
736	if (error != 0) {
737		cmn_err(CE_WARN, "can't open objset %llu, error %d",
738		    (unsigned long long)ds->ds_object, error);
739		return (0);
740	}
741
742	zilog = dmu_objset_zil(os);
743	bp = (blkptr_t *)&zilog->zl_header->zh_log;
744
745	/*
746	 * Check the first block and determine if it's on a log device
747	 * which may have been removed or faulted prior to loading this
748	 * pool.  If so, there's no point in checking the rest of the log
749	 * as its content should have already been synced to the pool.
750	 */
751	if (!BP_IS_HOLE(bp)) {
752		vdev_t *vd;
753		boolean_t valid = B_TRUE;
754
755		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
756		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
757		if (vd->vdev_islog && vdev_is_dead(vd))
758			valid = vdev_log_state_valid(vd);
759		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
760
761		if (!valid)
762			return (0);
763	}
764
765	/*
766	 * Because tx == NULL, zil_claim_log_block() will not actually claim
767	 * any blocks, but just determine whether it is possible to do so.
768	 * In addition to checking the log chain, zil_claim_log_block()
769	 * will invoke zio_claim() with a done func of spa_claim_notify(),
770	 * which will update spa_max_claim_txg.  See spa_load() for details.
771	 */
772	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
773	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
774
775	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
776}
777
778static int
779zil_vdev_compare(const void *x1, const void *x2)
780{
781	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
782	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
783
784	if (v1 < v2)
785		return (-1);
786	if (v1 > v2)
787		return (1);
788
789	return (0);
790}
791
792void
793zil_add_block(zilog_t *zilog, const blkptr_t *bp)
794{
795	avl_tree_t *t = &zilog->zl_vdev_tree;
796	avl_index_t where;
797	zil_vdev_node_t *zv, zvsearch;
798	int ndvas = BP_GET_NDVAS(bp);
799	int i;
800
801	if (zfs_nocacheflush)
802		return;
803
804	ASSERT(zilog->zl_writer);
805
806	/*
807	 * Even though we're zl_writer, we still need a lock because the
808	 * zl_get_data() callbacks may have dmu_sync() done callbacks
809	 * that will run concurrently.
810	 */
811	mutex_enter(&zilog->zl_vdev_lock);
812	for (i = 0; i < ndvas; i++) {
813		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
814		if (avl_find(t, &zvsearch, &where) == NULL) {
815			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
816			zv->zv_vdev = zvsearch.zv_vdev;
817			avl_insert(t, zv, where);
818		}
819	}
820	mutex_exit(&zilog->zl_vdev_lock);
821}
822
823static void
824zil_flush_vdevs(zilog_t *zilog)
825{
826	spa_t *spa = zilog->zl_spa;
827	avl_tree_t *t = &zilog->zl_vdev_tree;
828	void *cookie = NULL;
829	zil_vdev_node_t *zv;
830	zio_t *zio = NULL;
831
832	ASSERT(zilog->zl_writer);
833
834	/*
835	 * We don't need zl_vdev_lock here because we're the zl_writer,
836	 * and all zl_get_data() callbacks are done.
837	 */
838	if (avl_numnodes(t) == 0)
839		return;
840
841	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
842
843	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
844		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
845		if (vd != NULL && !vd->vdev_nowritecache) {
846			if (zio == NULL)
847				zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
848			zio_flush(zio, vd);
849		}
850		kmem_free(zv, sizeof (*zv));
851	}
852
853	/*
854	 * Wait for all the flushes to complete.  Not all devices actually
855	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
856	 */
857	if (zio)
858		(void) zio_wait(zio);
859
860	spa_config_exit(spa, SCL_STATE, FTAG);
861}
862
863/*
864 * Function called when a log block write completes
865 */
866static void
867zil_lwb_write_done(zio_t *zio)
868{
869	lwb_t *lwb = zio->io_private;
870	zilog_t *zilog = lwb->lwb_zilog;
871	dmu_tx_t *tx = lwb->lwb_tx;
872
873	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
874	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
875	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
876	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
877	ASSERT(!BP_IS_GANG(zio->io_bp));
878	ASSERT(!BP_IS_HOLE(zio->io_bp));
879	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
880
881	/*
882	 * Ensure the lwb buffer pointer is cleared before releasing
883	 * the txg. If we have had an allocation failure and
884	 * the txg is waiting to sync then we want want zil_sync()
885	 * to remove the lwb so that it's not picked up as the next new
886	 * one in zil_commit_writer(). zil_sync() will only remove
887	 * the lwb if lwb_buf is null.
888	 */
889	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
890	mutex_enter(&zilog->zl_lock);
891	lwb->lwb_buf = NULL;
892	lwb->lwb_tx = NULL;
893	mutex_exit(&zilog->zl_lock);
894
895	/*
896	 * Now that we've written this log block, we have a stable pointer
897	 * to the next block in the chain, so it's OK to let the txg in
898	 * which we allocated the next block sync.
899	 */
900	dmu_tx_commit(tx);
901}
902
903/*
904 * Initialize the io for a log block.
905 */
906static void
907zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
908{
909	zbookmark_phys_t zb;
910
911	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
912	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
913	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
914
915	if (zilog->zl_root_zio == NULL) {
916		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
917		    ZIO_FLAG_CANFAIL);
918	}
919	if (lwb->lwb_zio == NULL) {
920		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
921		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
922		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
923		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
924	}
925}
926
927/*
928 * Define a limited set of intent log block sizes.
929 *
930 * These must be a multiple of 4KB. Note only the amount used (again
931 * aligned to 4KB) actually gets written. However, we can't always just
932 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
933 */
934uint64_t zil_block_buckets[] = {
935    4096,		/* non TX_WRITE */
936    8192+4096,		/* data base */
937    32*1024 + 4096, 	/* NFS writes */
938    UINT64_MAX
939};
940
941/*
942 * Use the slog as long as the logbias is 'latency' and the current commit size
943 * is less than the limit or the total list size is less than 2X the limit.
944 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
945 */
946uint64_t zil_slog_limit = 1024 * 1024;
947#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
948	(((zilog)->zl_cur_used < zil_slog_limit) || \
949	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
950
951/*
952 * Start a log block write and advance to the next log block.
953 * Calls are serialized.
954 */
955static lwb_t *
956zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
957{
958	lwb_t *nlwb = NULL;
959	zil_chain_t *zilc;
960	spa_t *spa = zilog->zl_spa;
961	blkptr_t *bp;
962	dmu_tx_t *tx;
963	uint64_t txg;
964	uint64_t zil_blksz, wsz;
965	int i, error;
966
967	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
968		zilc = (zil_chain_t *)lwb->lwb_buf;
969		bp = &zilc->zc_next_blk;
970	} else {
971		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
972		bp = &zilc->zc_next_blk;
973	}
974
975	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
976
977	/*
978	 * Allocate the next block and save its address in this block
979	 * before writing it in order to establish the log chain.
980	 * Note that if the allocation of nlwb synced before we wrote
981	 * the block that points at it (lwb), we'd leak it if we crashed.
982	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
983	 * We dirty the dataset to ensure that zil_sync() will be called
984	 * to clean up in the event of allocation failure or I/O failure.
985	 */
986	tx = dmu_tx_create(zilog->zl_os);
987	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
988	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
989	txg = dmu_tx_get_txg(tx);
990
991	lwb->lwb_tx = tx;
992
993	/*
994	 * Log blocks are pre-allocated. Here we select the size of the next
995	 * block, based on size used in the last block.
996	 * - first find the smallest bucket that will fit the block from a
997	 *   limited set of block sizes. This is because it's faster to write
998	 *   blocks allocated from the same metaslab as they are adjacent or
999	 *   close.
1000	 * - next find the maximum from the new suggested size and an array of
1001	 *   previous sizes. This lessens a picket fence effect of wrongly
1002	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1003	 *   requests.
1004	 *
1005	 * Note we only write what is used, but we can't just allocate
1006	 * the maximum block size because we can exhaust the available
1007	 * pool log space.
1008	 */
1009	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1010	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1011		continue;
1012	zil_blksz = zil_block_buckets[i];
1013	if (zil_blksz == UINT64_MAX)
1014		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1015	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1016	for (i = 0; i < ZIL_PREV_BLKS; i++)
1017		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1018	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1019
1020	BP_ZERO(bp);
1021	/* pass the old blkptr in order to spread log blocks across devs */
1022	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1023	    USE_SLOG(zilog));
1024	if (error == 0) {
1025		ASSERT3U(bp->blk_birth, ==, txg);
1026		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1027		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1028
1029		/*
1030		 * Allocate a new log write buffer (lwb).
1031		 */
1032		nlwb = zil_alloc_lwb(zilog, bp, txg);
1033
1034		/* Record the block for later vdev flushing */
1035		zil_add_block(zilog, &lwb->lwb_blk);
1036	}
1037
1038	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1039		/* For Slim ZIL only write what is used. */
1040		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1041		ASSERT3U(wsz, <=, lwb->lwb_sz);
1042		zio_shrink(lwb->lwb_zio, wsz);
1043
1044	} else {
1045		wsz = lwb->lwb_sz;
1046	}
1047
1048	zilc->zc_pad = 0;
1049	zilc->zc_nused = lwb->lwb_nused;
1050	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1051
1052	/*
1053	 * clear unused data for security
1054	 */
1055	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1056
1057	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1058
1059	/*
1060	 * If there was an allocation failure then nlwb will be null which
1061	 * forces a txg_wait_synced().
1062	 */
1063	return (nlwb);
1064}
1065
1066static lwb_t *
1067zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1068{
1069	lr_t *lrc = &itx->itx_lr; /* common log record */
1070	lr_write_t *lrw = (lr_write_t *)lrc;
1071	char *lr_buf;
1072	uint64_t txg = lrc->lrc_txg;
1073	uint64_t reclen = lrc->lrc_reclen;
1074	uint64_t dlen = 0;
1075
1076	if (lwb == NULL)
1077		return (NULL);
1078
1079	ASSERT(lwb->lwb_buf != NULL);
1080
1081	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1082		dlen = P2ROUNDUP_TYPED(
1083		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1084
1085	zilog->zl_cur_used += (reclen + dlen);
1086
1087	zil_lwb_write_init(zilog, lwb);
1088
1089	/*
1090	 * If this record won't fit in the current log block, start a new one.
1091	 */
1092	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1093		lwb = zil_lwb_write_start(zilog, lwb);
1094		if (lwb == NULL)
1095			return (NULL);
1096		zil_lwb_write_init(zilog, lwb);
1097		ASSERT(LWB_EMPTY(lwb));
1098		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1099			txg_wait_synced(zilog->zl_dmu_pool, txg);
1100			return (lwb);
1101		}
1102	}
1103
1104	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1105	bcopy(lrc, lr_buf, reclen);
1106	lrc = (lr_t *)lr_buf;
1107	lrw = (lr_write_t *)lrc;
1108
1109	/*
1110	 * If it's a write, fetch the data or get its blkptr as appropriate.
1111	 */
1112	if (lrc->lrc_txtype == TX_WRITE) {
1113		if (txg > spa_freeze_txg(zilog->zl_spa))
1114			txg_wait_synced(zilog->zl_dmu_pool, txg);
1115		if (itx->itx_wr_state != WR_COPIED) {
1116			char *dbuf;
1117			int error;
1118
1119			if (dlen) {
1120				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1121				dbuf = lr_buf + reclen;
1122				lrw->lr_common.lrc_reclen += dlen;
1123			} else {
1124				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1125				dbuf = NULL;
1126			}
1127			error = zilog->zl_get_data(
1128			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1129			if (error == EIO) {
1130				txg_wait_synced(zilog->zl_dmu_pool, txg);
1131				return (lwb);
1132			}
1133			if (error != 0) {
1134				ASSERT(error == ENOENT || error == EEXIST ||
1135				    error == EALREADY);
1136				return (lwb);
1137			}
1138		}
1139	}
1140
1141	/*
1142	 * We're actually making an entry, so update lrc_seq to be the
1143	 * log record sequence number.  Note that this is generally not
1144	 * equal to the itx sequence number because not all transactions
1145	 * are synchronous, and sometimes spa_sync() gets there first.
1146	 */
1147	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1148	lwb->lwb_nused += reclen + dlen;
1149	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1150	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1151	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1152
1153	return (lwb);
1154}
1155
1156itx_t *
1157zil_itx_create(uint64_t txtype, size_t lrsize)
1158{
1159	itx_t *itx;
1160
1161	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1162
1163	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1164	itx->itx_lr.lrc_txtype = txtype;
1165	itx->itx_lr.lrc_reclen = lrsize;
1166	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1167	itx->itx_lr.lrc_seq = 0;	/* defensive */
1168	itx->itx_sync = B_TRUE;		/* default is synchronous */
1169
1170	return (itx);
1171}
1172
1173void
1174zil_itx_destroy(itx_t *itx)
1175{
1176	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1177}
1178
1179/*
1180 * Free up the sync and async itxs. The itxs_t has already been detached
1181 * so no locks are needed.
1182 */
1183static void
1184zil_itxg_clean(itxs_t *itxs)
1185{
1186	itx_t *itx;
1187	list_t *list;
1188	avl_tree_t *t;
1189	void *cookie;
1190	itx_async_node_t *ian;
1191
1192	list = &itxs->i_sync_list;
1193	while ((itx = list_head(list)) != NULL) {
1194		list_remove(list, itx);
1195		kmem_free(itx, offsetof(itx_t, itx_lr) +
1196		    itx->itx_lr.lrc_reclen);
1197	}
1198
1199	cookie = NULL;
1200	t = &itxs->i_async_tree;
1201	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1202		list = &ian->ia_list;
1203		while ((itx = list_head(list)) != NULL) {
1204			list_remove(list, itx);
1205			kmem_free(itx, offsetof(itx_t, itx_lr) +
1206			    itx->itx_lr.lrc_reclen);
1207		}
1208		list_destroy(list);
1209		kmem_free(ian, sizeof (itx_async_node_t));
1210	}
1211	avl_destroy(t);
1212
1213	kmem_free(itxs, sizeof (itxs_t));
1214}
1215
1216static int
1217zil_aitx_compare(const void *x1, const void *x2)
1218{
1219	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1220	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1221
1222	if (o1 < o2)
1223		return (-1);
1224	if (o1 > o2)
1225		return (1);
1226
1227	return (0);
1228}
1229
1230/*
1231 * Remove all async itx with the given oid.
1232 */
1233static void
1234zil_remove_async(zilog_t *zilog, uint64_t oid)
1235{
1236	uint64_t otxg, txg;
1237	itx_async_node_t *ian;
1238	avl_tree_t *t;
1239	avl_index_t where;
1240	list_t clean_list;
1241	itx_t *itx;
1242
1243	ASSERT(oid != 0);
1244	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1245
1246	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1247		otxg = ZILTEST_TXG;
1248	else
1249		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1250
1251	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1252		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1253
1254		mutex_enter(&itxg->itxg_lock);
1255		if (itxg->itxg_txg != txg) {
1256			mutex_exit(&itxg->itxg_lock);
1257			continue;
1258		}
1259
1260		/*
1261		 * Locate the object node and append its list.
1262		 */
1263		t = &itxg->itxg_itxs->i_async_tree;
1264		ian = avl_find(t, &oid, &where);
1265		if (ian != NULL)
1266			list_move_tail(&clean_list, &ian->ia_list);
1267		mutex_exit(&itxg->itxg_lock);
1268	}
1269	while ((itx = list_head(&clean_list)) != NULL) {
1270		list_remove(&clean_list, itx);
1271		kmem_free(itx, offsetof(itx_t, itx_lr) +
1272		    itx->itx_lr.lrc_reclen);
1273	}
1274	list_destroy(&clean_list);
1275}
1276
1277void
1278zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1279{
1280	uint64_t txg;
1281	itxg_t *itxg;
1282	itxs_t *itxs, *clean = NULL;
1283
1284	/*
1285	 * Object ids can be re-instantiated in the next txg so
1286	 * remove any async transactions to avoid future leaks.
1287	 * This can happen if a fsync occurs on the re-instantiated
1288	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1289	 * the new file data and flushes a write record for the old object.
1290	 */
1291	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1292		zil_remove_async(zilog, itx->itx_oid);
1293
1294	/*
1295	 * Ensure the data of a renamed file is committed before the rename.
1296	 */
1297	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1298		zil_async_to_sync(zilog, itx->itx_oid);
1299
1300	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1301		txg = ZILTEST_TXG;
1302	else
1303		txg = dmu_tx_get_txg(tx);
1304
1305	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1306	mutex_enter(&itxg->itxg_lock);
1307	itxs = itxg->itxg_itxs;
1308	if (itxg->itxg_txg != txg) {
1309		if (itxs != NULL) {
1310			/*
1311			 * The zil_clean callback hasn't got around to cleaning
1312			 * this itxg. Save the itxs for release below.
1313			 * This should be rare.
1314			 */
1315			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1316			itxg->itxg_sod = 0;
1317			clean = itxg->itxg_itxs;
1318		}
1319		ASSERT(itxg->itxg_sod == 0);
1320		itxg->itxg_txg = txg;
1321		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1322
1323		list_create(&itxs->i_sync_list, sizeof (itx_t),
1324		    offsetof(itx_t, itx_node));
1325		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1326		    sizeof (itx_async_node_t),
1327		    offsetof(itx_async_node_t, ia_node));
1328	}
1329	if (itx->itx_sync) {
1330		list_insert_tail(&itxs->i_sync_list, itx);
1331		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1332		itxg->itxg_sod += itx->itx_sod;
1333	} else {
1334		avl_tree_t *t = &itxs->i_async_tree;
1335		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1336		itx_async_node_t *ian;
1337		avl_index_t where;
1338
1339		ian = avl_find(t, &foid, &where);
1340		if (ian == NULL) {
1341			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1342			list_create(&ian->ia_list, sizeof (itx_t),
1343			    offsetof(itx_t, itx_node));
1344			ian->ia_foid = foid;
1345			avl_insert(t, ian, where);
1346		}
1347		list_insert_tail(&ian->ia_list, itx);
1348	}
1349
1350	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1351	zilog_dirty(zilog, txg);
1352	mutex_exit(&itxg->itxg_lock);
1353
1354	/* Release the old itxs now we've dropped the lock */
1355	if (clean != NULL)
1356		zil_itxg_clean(clean);
1357}
1358
1359/*
1360 * If there are any in-memory intent log transactions which have now been
1361 * synced then start up a taskq to free them. We should only do this after we
1362 * have written out the uberblocks (i.e. txg has been comitted) so that
1363 * don't inadvertently clean out in-memory log records that would be required
1364 * by zil_commit().
1365 */
1366void
1367zil_clean(zilog_t *zilog, uint64_t synced_txg)
1368{
1369	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1370	itxs_t *clean_me;
1371
1372	mutex_enter(&itxg->itxg_lock);
1373	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1374		mutex_exit(&itxg->itxg_lock);
1375		return;
1376	}
1377	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1378	ASSERT(itxg->itxg_txg != 0);
1379	ASSERT(zilog->zl_clean_taskq != NULL);
1380	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1381	itxg->itxg_sod = 0;
1382	clean_me = itxg->itxg_itxs;
1383	itxg->itxg_itxs = NULL;
1384	itxg->itxg_txg = 0;
1385	mutex_exit(&itxg->itxg_lock);
1386	/*
1387	 * Preferably start a task queue to free up the old itxs but
1388	 * if taskq_dispatch can't allocate resources to do that then
1389	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1390	 * created a bad performance problem.
1391	 */
1392	if (taskq_dispatch(zilog->zl_clean_taskq,
1393	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1394		zil_itxg_clean(clean_me);
1395}
1396
1397/*
1398 * Get the list of itxs to commit into zl_itx_commit_list.
1399 */
1400static void
1401zil_get_commit_list(zilog_t *zilog)
1402{
1403	uint64_t otxg, txg;
1404	list_t *commit_list = &zilog->zl_itx_commit_list;
1405	uint64_t push_sod = 0;
1406
1407	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1408		otxg = ZILTEST_TXG;
1409	else
1410		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1411
1412	/*
1413	 * This is inherently racy, since there is nothing to prevent
1414	 * the last synced txg from changing. That's okay since we'll
1415	 * only commit things in the future.
1416	 */
1417	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1418		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1419
1420		mutex_enter(&itxg->itxg_lock);
1421		if (itxg->itxg_txg != txg) {
1422			mutex_exit(&itxg->itxg_lock);
1423			continue;
1424		}
1425
1426		/*
1427		 * If we're adding itx records to the zl_itx_commit_list,
1428		 * then the zil better be dirty in this "txg". We can assert
1429		 * that here since we're holding the itxg_lock which will
1430		 * prevent spa_sync from cleaning it. Once we add the itxs
1431		 * to the zl_itx_commit_list we must commit it to disk even
1432		 * if it's unnecessary (i.e. the txg was synced).
1433		 */
1434		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1435		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1436		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1437		push_sod += itxg->itxg_sod;
1438		itxg->itxg_sod = 0;
1439
1440		mutex_exit(&itxg->itxg_lock);
1441	}
1442	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1443}
1444
1445/*
1446 * Move the async itxs for a specified object to commit into sync lists.
1447 */
1448void
1449zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1450{
1451	uint64_t otxg, txg;
1452	itx_async_node_t *ian;
1453	avl_tree_t *t;
1454	avl_index_t where;
1455
1456	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1457		otxg = ZILTEST_TXG;
1458	else
1459		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1460
1461	/*
1462	 * This is inherently racy, since there is nothing to prevent
1463	 * the last synced txg from changing.
1464	 */
1465	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1466		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1467
1468		mutex_enter(&itxg->itxg_lock);
1469		if (itxg->itxg_txg != txg) {
1470			mutex_exit(&itxg->itxg_lock);
1471			continue;
1472		}
1473
1474		/*
1475		 * If a foid is specified then find that node and append its
1476		 * list. Otherwise walk the tree appending all the lists
1477		 * to the sync list. We add to the end rather than the
1478		 * beginning to ensure the create has happened.
1479		 */
1480		t = &itxg->itxg_itxs->i_async_tree;
1481		if (foid != 0) {
1482			ian = avl_find(t, &foid, &where);
1483			if (ian != NULL) {
1484				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1485				    &ian->ia_list);
1486			}
1487		} else {
1488			void *cookie = NULL;
1489
1490			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1491				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1492				    &ian->ia_list);
1493				list_destroy(&ian->ia_list);
1494				kmem_free(ian, sizeof (itx_async_node_t));
1495			}
1496		}
1497		mutex_exit(&itxg->itxg_lock);
1498	}
1499}
1500
1501static void
1502zil_commit_writer(zilog_t *zilog)
1503{
1504	uint64_t txg;
1505	itx_t *itx;
1506	lwb_t *lwb;
1507	spa_t *spa = zilog->zl_spa;
1508	int error = 0;
1509
1510	ASSERT(zilog->zl_root_zio == NULL);
1511
1512	mutex_exit(&zilog->zl_lock);
1513
1514	zil_get_commit_list(zilog);
1515
1516	/*
1517	 * Return if there's nothing to commit before we dirty the fs by
1518	 * calling zil_create().
1519	 */
1520	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1521		mutex_enter(&zilog->zl_lock);
1522		return;
1523	}
1524
1525	if (zilog->zl_suspend) {
1526		lwb = NULL;
1527	} else {
1528		lwb = list_tail(&zilog->zl_lwb_list);
1529		if (lwb == NULL)
1530			lwb = zil_create(zilog);
1531	}
1532
1533	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1534	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1535		txg = itx->itx_lr.lrc_txg;
1536		ASSERT3U(txg, !=, 0);
1537
1538		/*
1539		 * This is inherently racy and may result in us writing
1540		 * out a log block for a txg that was just synced. This is
1541		 * ok since we'll end cleaning up that log block the next
1542		 * time we call zil_sync().
1543		 */
1544		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1545			lwb = zil_lwb_commit(zilog, itx, lwb);
1546		list_remove(&zilog->zl_itx_commit_list, itx);
1547		kmem_free(itx, offsetof(itx_t, itx_lr)
1548		    + itx->itx_lr.lrc_reclen);
1549	}
1550	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1551
1552	/* write the last block out */
1553	if (lwb != NULL && lwb->lwb_zio != NULL)
1554		lwb = zil_lwb_write_start(zilog, lwb);
1555
1556	zilog->zl_cur_used = 0;
1557
1558	/*
1559	 * Wait if necessary for the log blocks to be on stable storage.
1560	 */
1561	if (zilog->zl_root_zio) {
1562		error = zio_wait(zilog->zl_root_zio);
1563		zilog->zl_root_zio = NULL;
1564		zil_flush_vdevs(zilog);
1565	}
1566
1567	if (error || lwb == NULL)
1568		txg_wait_synced(zilog->zl_dmu_pool, 0);
1569
1570	mutex_enter(&zilog->zl_lock);
1571
1572	/*
1573	 * Remember the highest committed log sequence number for ztest.
1574	 * We only update this value when all the log writes succeeded,
1575	 * because ztest wants to ASSERT that it got the whole log chain.
1576	 */
1577	if (error == 0 && lwb != NULL)
1578		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1579}
1580
1581/*
1582 * Commit zfs transactions to stable storage.
1583 * If foid is 0 push out all transactions, otherwise push only those
1584 * for that object or might reference that object.
1585 *
1586 * itxs are committed in batches. In a heavily stressed zil there will be
1587 * a commit writer thread who is writing out a bunch of itxs to the log
1588 * for a set of committing threads (cthreads) in the same batch as the writer.
1589 * Those cthreads are all waiting on the same cv for that batch.
1590 *
1591 * There will also be a different and growing batch of threads that are
1592 * waiting to commit (qthreads). When the committing batch completes
1593 * a transition occurs such that the cthreads exit and the qthreads become
1594 * cthreads. One of the new cthreads becomes the writer thread for the
1595 * batch. Any new threads arriving become new qthreads.
1596 *
1597 * Only 2 condition variables are needed and there's no transition
1598 * between the two cvs needed. They just flip-flop between qthreads
1599 * and cthreads.
1600 *
1601 * Using this scheme we can efficiently wakeup up only those threads
1602 * that have been committed.
1603 */
1604void
1605zil_commit(zilog_t *zilog, uint64_t foid)
1606{
1607	uint64_t mybatch;
1608
1609	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1610		return;
1611
1612	/* move the async itxs for the foid to the sync queues */
1613	zil_async_to_sync(zilog, foid);
1614
1615	mutex_enter(&zilog->zl_lock);
1616	mybatch = zilog->zl_next_batch;
1617	while (zilog->zl_writer) {
1618		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1619		if (mybatch <= zilog->zl_com_batch) {
1620			mutex_exit(&zilog->zl_lock);
1621			return;
1622		}
1623	}
1624
1625	zilog->zl_next_batch++;
1626	zilog->zl_writer = B_TRUE;
1627	zil_commit_writer(zilog);
1628	zilog->zl_com_batch = mybatch;
1629	zilog->zl_writer = B_FALSE;
1630	mutex_exit(&zilog->zl_lock);
1631
1632	/* wake up one thread to become the next writer */
1633	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1634
1635	/* wake up all threads waiting for this batch to be committed */
1636	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1637}
1638
1639/*
1640 * Called in syncing context to free committed log blocks and update log header.
1641 */
1642void
1643zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1644{
1645	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1646	uint64_t txg = dmu_tx_get_txg(tx);
1647	spa_t *spa = zilog->zl_spa;
1648	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1649	lwb_t *lwb;
1650
1651	/*
1652	 * We don't zero out zl_destroy_txg, so make sure we don't try
1653	 * to destroy it twice.
1654	 */
1655	if (spa_sync_pass(spa) != 1)
1656		return;
1657
1658	mutex_enter(&zilog->zl_lock);
1659
1660	ASSERT(zilog->zl_stop_sync == 0);
1661
1662	if (*replayed_seq != 0) {
1663		ASSERT(zh->zh_replay_seq < *replayed_seq);
1664		zh->zh_replay_seq = *replayed_seq;
1665		*replayed_seq = 0;
1666	}
1667
1668	if (zilog->zl_destroy_txg == txg) {
1669		blkptr_t blk = zh->zh_log;
1670
1671		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1672
1673		bzero(zh, sizeof (zil_header_t));
1674		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1675
1676		if (zilog->zl_keep_first) {
1677			/*
1678			 * If this block was part of log chain that couldn't
1679			 * be claimed because a device was missing during
1680			 * zil_claim(), but that device later returns,
1681			 * then this block could erroneously appear valid.
1682			 * To guard against this, assign a new GUID to the new
1683			 * log chain so it doesn't matter what blk points to.
1684			 */
1685			zil_init_log_chain(zilog, &blk);
1686			zh->zh_log = blk;
1687		}
1688	}
1689
1690	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1691		zh->zh_log = lwb->lwb_blk;
1692		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1693			break;
1694		list_remove(&zilog->zl_lwb_list, lwb);
1695		zio_free_zil(spa, txg, &lwb->lwb_blk);
1696		kmem_cache_free(zil_lwb_cache, lwb);
1697
1698		/*
1699		 * If we don't have anything left in the lwb list then
1700		 * we've had an allocation failure and we need to zero
1701		 * out the zil_header blkptr so that we don't end
1702		 * up freeing the same block twice.
1703		 */
1704		if (list_head(&zilog->zl_lwb_list) == NULL)
1705			BP_ZERO(&zh->zh_log);
1706	}
1707	mutex_exit(&zilog->zl_lock);
1708}
1709
1710void
1711zil_init(void)
1712{
1713	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1714	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1715}
1716
1717void
1718zil_fini(void)
1719{
1720	kmem_cache_destroy(zil_lwb_cache);
1721}
1722
1723void
1724zil_set_sync(zilog_t *zilog, uint64_t sync)
1725{
1726	zilog->zl_sync = sync;
1727}
1728
1729void
1730zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1731{
1732	zilog->zl_logbias = logbias;
1733}
1734
1735zilog_t *
1736zil_alloc(objset_t *os, zil_header_t *zh_phys)
1737{
1738	zilog_t *zilog;
1739
1740	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1741
1742	zilog->zl_header = zh_phys;
1743	zilog->zl_os = os;
1744	zilog->zl_spa = dmu_objset_spa(os);
1745	zilog->zl_dmu_pool = dmu_objset_pool(os);
1746	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1747	zilog->zl_logbias = dmu_objset_logbias(os);
1748	zilog->zl_sync = dmu_objset_syncprop(os);
1749	zilog->zl_next_batch = 1;
1750
1751	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1752
1753	for (int i = 0; i < TXG_SIZE; i++) {
1754		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1755		    MUTEX_DEFAULT, NULL);
1756	}
1757
1758	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1759	    offsetof(lwb_t, lwb_node));
1760
1761	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1762	    offsetof(itx_t, itx_node));
1763
1764	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1765
1766	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1767	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1768
1769	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1770	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1771	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1772	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1773
1774	return (zilog);
1775}
1776
1777void
1778zil_free(zilog_t *zilog)
1779{
1780	zilog->zl_stop_sync = 1;
1781
1782	ASSERT0(zilog->zl_suspend);
1783	ASSERT0(zilog->zl_suspending);
1784
1785	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1786	list_destroy(&zilog->zl_lwb_list);
1787
1788	avl_destroy(&zilog->zl_vdev_tree);
1789	mutex_destroy(&zilog->zl_vdev_lock);
1790
1791	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1792	list_destroy(&zilog->zl_itx_commit_list);
1793
1794	for (int i = 0; i < TXG_SIZE; i++) {
1795		/*
1796		 * It's possible for an itx to be generated that doesn't dirty
1797		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1798		 * callback to remove the entry. We remove those here.
1799		 *
1800		 * Also free up the ziltest itxs.
1801		 */
1802		if (zilog->zl_itxg[i].itxg_itxs)
1803			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1804		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1805	}
1806
1807	mutex_destroy(&zilog->zl_lock);
1808
1809	cv_destroy(&zilog->zl_cv_writer);
1810	cv_destroy(&zilog->zl_cv_suspend);
1811	cv_destroy(&zilog->zl_cv_batch[0]);
1812	cv_destroy(&zilog->zl_cv_batch[1]);
1813
1814	kmem_free(zilog, sizeof (zilog_t));
1815}
1816
1817/*
1818 * Open an intent log.
1819 */
1820zilog_t *
1821zil_open(objset_t *os, zil_get_data_t *get_data)
1822{
1823	zilog_t *zilog = dmu_objset_zil(os);
1824
1825	ASSERT(zilog->zl_clean_taskq == NULL);
1826	ASSERT(zilog->zl_get_data == NULL);
1827	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1828
1829	zilog->zl_get_data = get_data;
1830	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1831	    2, 2, TASKQ_PREPOPULATE);
1832
1833	return (zilog);
1834}
1835
1836/*
1837 * Close an intent log.
1838 */
1839void
1840zil_close(zilog_t *zilog)
1841{
1842	lwb_t *lwb;
1843	uint64_t txg = 0;
1844
1845	zil_commit(zilog, 0); /* commit all itx */
1846
1847	/*
1848	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1849	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1850	 * callbacks have occurred that may clean the zil.  Only then can we
1851	 * destroy the zl_clean_taskq.
1852	 */
1853	mutex_enter(&zilog->zl_lock);
1854	lwb = list_tail(&zilog->zl_lwb_list);
1855	if (lwb != NULL)
1856		txg = lwb->lwb_max_txg;
1857	mutex_exit(&zilog->zl_lock);
1858	if (txg)
1859		txg_wait_synced(zilog->zl_dmu_pool, txg);
1860
1861	if (zilog_is_dirty(zilog))
1862		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1863	VERIFY(!zilog_is_dirty(zilog));
1864
1865	taskq_destroy(zilog->zl_clean_taskq);
1866	zilog->zl_clean_taskq = NULL;
1867	zilog->zl_get_data = NULL;
1868
1869	/*
1870	 * We should have only one LWB left on the list; remove it now.
1871	 */
1872	mutex_enter(&zilog->zl_lock);
1873	lwb = list_head(&zilog->zl_lwb_list);
1874	if (lwb != NULL) {
1875		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1876		list_remove(&zilog->zl_lwb_list, lwb);
1877		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1878		kmem_cache_free(zil_lwb_cache, lwb);
1879	}
1880	mutex_exit(&zilog->zl_lock);
1881}
1882
1883static char *suspend_tag = "zil suspending";
1884
1885/*
1886 * Suspend an intent log.  While in suspended mode, we still honor
1887 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1888 * On old version pools, we suspend the log briefly when taking a
1889 * snapshot so that it will have an empty intent log.
1890 *
1891 * Long holds are not really intended to be used the way we do here --
1892 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1893 * could fail.  Therefore we take pains to only put a long hold if it is
1894 * actually necessary.  Fortunately, it will only be necessary if the
1895 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1896 * will already have a long hold, so we are not really making things any worse.
1897 *
1898 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1899 * zvol_state_t), and use their mechanism to prevent their hold from being
1900 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1901 * very little gain.
1902 *
1903 * if cookiep == NULL, this does both the suspend & resume.
1904 * Otherwise, it returns with the dataset "long held", and the cookie
1905 * should be passed into zil_resume().
1906 */
1907int
1908zil_suspend(const char *osname, void **cookiep)
1909{
1910	objset_t *os;
1911	zilog_t *zilog;
1912	const zil_header_t *zh;
1913	int error;
1914
1915	error = dmu_objset_hold(osname, suspend_tag, &os);
1916	if (error != 0)
1917		return (error);
1918	zilog = dmu_objset_zil(os);
1919
1920	mutex_enter(&zilog->zl_lock);
1921	zh = zilog->zl_header;
1922
1923	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1924		mutex_exit(&zilog->zl_lock);
1925		dmu_objset_rele(os, suspend_tag);
1926		return (SET_ERROR(EBUSY));
1927	}
1928
1929	/*
1930	 * Don't put a long hold in the cases where we can avoid it.  This
1931	 * is when there is no cookie so we are doing a suspend & resume
1932	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1933	 * for the suspend because it's already suspended, or there's no ZIL.
1934	 */
1935	if (cookiep == NULL && !zilog->zl_suspending &&
1936	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1937		mutex_exit(&zilog->zl_lock);
1938		dmu_objset_rele(os, suspend_tag);
1939		return (0);
1940	}
1941
1942	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1943	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1944
1945	zilog->zl_suspend++;
1946
1947	if (zilog->zl_suspend > 1) {
1948		/*
1949		 * Someone else is already suspending it.
1950		 * Just wait for them to finish.
1951		 */
1952
1953		while (zilog->zl_suspending)
1954			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1955		mutex_exit(&zilog->zl_lock);
1956
1957		if (cookiep == NULL)
1958			zil_resume(os);
1959		else
1960			*cookiep = os;
1961		return (0);
1962	}
1963
1964	/*
1965	 * If there is no pointer to an on-disk block, this ZIL must not
1966	 * be active (e.g. filesystem not mounted), so there's nothing
1967	 * to clean up.
1968	 */
1969	if (BP_IS_HOLE(&zh->zh_log)) {
1970		ASSERT(cookiep != NULL); /* fast path already handled */
1971
1972		*cookiep = os;
1973		mutex_exit(&zilog->zl_lock);
1974		return (0);
1975	}
1976
1977	zilog->zl_suspending = B_TRUE;
1978	mutex_exit(&zilog->zl_lock);
1979
1980	zil_commit(zilog, 0);
1981
1982	zil_destroy(zilog, B_FALSE);
1983
1984	mutex_enter(&zilog->zl_lock);
1985	zilog->zl_suspending = B_FALSE;
1986	cv_broadcast(&zilog->zl_cv_suspend);
1987	mutex_exit(&zilog->zl_lock);
1988
1989	if (cookiep == NULL)
1990		zil_resume(os);
1991	else
1992		*cookiep = os;
1993	return (0);
1994}
1995
1996void
1997zil_resume(void *cookie)
1998{
1999	objset_t *os = cookie;
2000	zilog_t *zilog = dmu_objset_zil(os);
2001
2002	mutex_enter(&zilog->zl_lock);
2003	ASSERT(zilog->zl_suspend != 0);
2004	zilog->zl_suspend--;
2005	mutex_exit(&zilog->zl_lock);
2006	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2007	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2008}
2009
2010typedef struct zil_replay_arg {
2011	zil_replay_func_t **zr_replay;
2012	void		*zr_arg;
2013	boolean_t	zr_byteswap;
2014	char		*zr_lr;
2015} zil_replay_arg_t;
2016
2017static int
2018zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2019{
2020	char name[ZFS_MAX_DATASET_NAME_LEN];
2021
2022	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
2023
2024	dmu_objset_name(zilog->zl_os, name);
2025
2026	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2027	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2028	    (u_longlong_t)lr->lrc_seq,
2029	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2030	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
2031
2032	return (error);
2033}
2034
2035static int
2036zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2037{
2038	zil_replay_arg_t *zr = zra;
2039	const zil_header_t *zh = zilog->zl_header;
2040	uint64_t reclen = lr->lrc_reclen;
2041	uint64_t txtype = lr->lrc_txtype;
2042	int error = 0;
2043
2044	zilog->zl_replaying_seq = lr->lrc_seq;
2045
2046	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2047		return (0);
2048
2049	if (lr->lrc_txg < claim_txg)		/* already committed */
2050		return (0);
2051
2052	/* Strip case-insensitive bit, still present in log record */
2053	txtype &= ~TX_CI;
2054
2055	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2056		return (zil_replay_error(zilog, lr, EINVAL));
2057
2058	/*
2059	 * If this record type can be logged out of order, the object
2060	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2061	 */
2062	if (TX_OOO(txtype)) {
2063		error = dmu_object_info(zilog->zl_os,
2064		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2065		if (error == ENOENT || error == EEXIST)
2066			return (0);
2067	}
2068
2069	/*
2070	 * Make a copy of the data so we can revise and extend it.
2071	 */
2072	bcopy(lr, zr->zr_lr, reclen);
2073
2074	/*
2075	 * If this is a TX_WRITE with a blkptr, suck in the data.
2076	 */
2077	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2078		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2079		    zr->zr_lr + reclen);
2080		if (error != 0)
2081			return (zil_replay_error(zilog, lr, error));
2082	}
2083
2084	/*
2085	 * The log block containing this lr may have been byteswapped
2086	 * so that we can easily examine common fields like lrc_txtype.
2087	 * However, the log is a mix of different record types, and only the
2088	 * replay vectors know how to byteswap their records.  Therefore, if
2089	 * the lr was byteswapped, undo it before invoking the replay vector.
2090	 */
2091	if (zr->zr_byteswap)
2092		byteswap_uint64_array(zr->zr_lr, reclen);
2093
2094	/*
2095	 * We must now do two things atomically: replay this log record,
2096	 * and update the log header sequence number to reflect the fact that
2097	 * we did so. At the end of each replay function the sequence number
2098	 * is updated if we are in replay mode.
2099	 */
2100	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2101	if (error != 0) {
2102		/*
2103		 * The DMU's dnode layer doesn't see removes until the txg
2104		 * commits, so a subsequent claim can spuriously fail with
2105		 * EEXIST. So if we receive any error we try syncing out
2106		 * any removes then retry the transaction.  Note that we
2107		 * specify B_FALSE for byteswap now, so we don't do it twice.
2108		 */
2109		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2110		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2111		if (error != 0)
2112			return (zil_replay_error(zilog, lr, error));
2113	}
2114	return (0);
2115}
2116
2117/* ARGSUSED */
2118static int
2119zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2120{
2121	zilog->zl_replay_blks++;
2122
2123	return (0);
2124}
2125
2126/*
2127 * If this dataset has a non-empty intent log, replay it and destroy it.
2128 */
2129void
2130zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2131{
2132	zilog_t *zilog = dmu_objset_zil(os);
2133	const zil_header_t *zh = zilog->zl_header;
2134	zil_replay_arg_t zr;
2135
2136	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2137		zil_destroy(zilog, B_TRUE);
2138		return;
2139	}
2140
2141	zr.zr_replay = replay_func;
2142	zr.zr_arg = arg;
2143	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2144	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2145
2146	/*
2147	 * Wait for in-progress removes to sync before starting replay.
2148	 */
2149	txg_wait_synced(zilog->zl_dmu_pool, 0);
2150
2151	zilog->zl_replay = B_TRUE;
2152	zilog->zl_replay_time = ddi_get_lbolt();
2153	ASSERT(zilog->zl_replay_blks == 0);
2154	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2155	    zh->zh_claim_txg);
2156	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2157
2158	zil_destroy(zilog, B_FALSE);
2159	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2160	zilog->zl_replay = B_FALSE;
2161}
2162
2163boolean_t
2164zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2165{
2166	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2167		return (B_TRUE);
2168
2169	if (zilog->zl_replay) {
2170		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2171		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2172		    zilog->zl_replaying_seq;
2173		return (B_TRUE);
2174	}
2175
2176	return (B_FALSE);
2177}
2178
2179/* ARGSUSED */
2180int
2181zil_vdev_offline(const char *osname, void *arg)
2182{
2183	int error;
2184
2185	error = zil_suspend(osname, NULL);
2186	if (error != 0)
2187		return (SET_ERROR(EEXIST));
2188	return (0);
2189}
2190