zil.c revision 308595
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Integros [integros.com]
26 */
27
28/* Portions Copyright 2010 Robert Milkowski */
29
30#include <sys/zfs_context.h>
31#include <sys/spa.h>
32#include <sys/dmu.h>
33#include <sys/zap.h>
34#include <sys/arc.h>
35#include <sys/stat.h>
36#include <sys/resource.h>
37#include <sys/zil.h>
38#include <sys/zil_impl.h>
39#include <sys/dsl_dataset.h>
40#include <sys/vdev_impl.h>
41#include <sys/dmu_tx.h>
42#include <sys/dsl_pool.h>
43
44/*
45 * The zfs intent log (ZIL) saves transaction records of system calls
46 * that change the file system in memory with enough information
47 * to be able to replay them. These are stored in memory until
48 * either the DMU transaction group (txg) commits them to the stable pool
49 * and they can be discarded, or they are flushed to the stable log
50 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
51 * requirement. In the event of a panic or power fail then those log
52 * records (transactions) are replayed.
53 *
54 * There is one ZIL per file system. Its on-disk (pool) format consists
55 * of 3 parts:
56 *
57 * 	- ZIL header
58 * 	- ZIL blocks
59 * 	- ZIL records
60 *
61 * A log record holds a system call transaction. Log blocks can
62 * hold many log records and the blocks are chained together.
63 * Each ZIL block contains a block pointer (blkptr_t) to the next
64 * ZIL block in the chain. The ZIL header points to the first
65 * block in the chain. Note there is not a fixed place in the pool
66 * to hold blocks. They are dynamically allocated and freed as
67 * needed from the blocks available. Figure X shows the ZIL structure:
68 */
69
70/*
71 * Disable intent logging replay.  This global ZIL switch affects all pools.
72 */
73int zil_replay_disable = 0;
74SYSCTL_DECL(_vfs_zfs);
75SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
76    &zil_replay_disable, 0, "Disable intent logging replay");
77
78/*
79 * Tunable parameter for debugging or performance analysis.  Setting
80 * zfs_nocacheflush will cause corruption on power loss if a volatile
81 * out-of-order write cache is enabled.
82 */
83boolean_t zfs_nocacheflush = B_FALSE;
84SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
85    &zfs_nocacheflush, 0, "Disable cache flush");
86boolean_t zfs_trim_enabled = B_TRUE;
87SYSCTL_DECL(_vfs_zfs_trim);
88SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
89    "Enable ZFS TRIM");
90
91static kmem_cache_t *zil_lwb_cache;
92
93#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
94    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
95
96
97/*
98 * ziltest is by and large an ugly hack, but very useful in
99 * checking replay without tedious work.
100 * When running ziltest we want to keep all itx's and so maintain
101 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
102 * We subtract TXG_CONCURRENT_STATES to allow for common code.
103 */
104#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
105
106static int
107zil_bp_compare(const void *x1, const void *x2)
108{
109	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
110	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
111
112	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
113		return (-1);
114	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
115		return (1);
116
117	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
118		return (-1);
119	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
120		return (1);
121
122	return (0);
123}
124
125static void
126zil_bp_tree_init(zilog_t *zilog)
127{
128	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
129	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
130}
131
132static void
133zil_bp_tree_fini(zilog_t *zilog)
134{
135	avl_tree_t *t = &zilog->zl_bp_tree;
136	zil_bp_node_t *zn;
137	void *cookie = NULL;
138
139	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
140		kmem_free(zn, sizeof (zil_bp_node_t));
141
142	avl_destroy(t);
143}
144
145int
146zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
147{
148	avl_tree_t *t = &zilog->zl_bp_tree;
149	const dva_t *dva;
150	zil_bp_node_t *zn;
151	avl_index_t where;
152
153	if (BP_IS_EMBEDDED(bp))
154		return (0);
155
156	dva = BP_IDENTITY(bp);
157
158	if (avl_find(t, dva, &where) != NULL)
159		return (SET_ERROR(EEXIST));
160
161	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
162	zn->zn_dva = *dva;
163	avl_insert(t, zn, where);
164
165	return (0);
166}
167
168static zil_header_t *
169zil_header_in_syncing_context(zilog_t *zilog)
170{
171	return ((zil_header_t *)zilog->zl_header);
172}
173
174static void
175zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
176{
177	zio_cksum_t *zc = &bp->blk_cksum;
178
179	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
180	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
181	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
182	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
183}
184
185/*
186 * Read a log block and make sure it's valid.
187 */
188static int
189zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
190    char **end)
191{
192	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
193	arc_flags_t aflags = ARC_FLAG_WAIT;
194	arc_buf_t *abuf = NULL;
195	zbookmark_phys_t zb;
196	int error;
197
198	if (zilog->zl_header->zh_claim_txg == 0)
199		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
200
201	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
202		zio_flags |= ZIO_FLAG_SPECULATIVE;
203
204	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
205	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
206
207	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
208	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
209
210	if (error == 0) {
211		zio_cksum_t cksum = bp->blk_cksum;
212
213		/*
214		 * Validate the checksummed log block.
215		 *
216		 * Sequence numbers should be... sequential.  The checksum
217		 * verifier for the next block should be bp's checksum plus 1.
218		 *
219		 * Also check the log chain linkage and size used.
220		 */
221		cksum.zc_word[ZIL_ZC_SEQ]++;
222
223		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
224			zil_chain_t *zilc = abuf->b_data;
225			char *lr = (char *)(zilc + 1);
226			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
227
228			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
229			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
230				error = SET_ERROR(ECKSUM);
231			} else {
232				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
233				bcopy(lr, dst, len);
234				*end = (char *)dst + len;
235				*nbp = zilc->zc_next_blk;
236			}
237		} else {
238			char *lr = abuf->b_data;
239			uint64_t size = BP_GET_LSIZE(bp);
240			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
241
242			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
243			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
244			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
245				error = SET_ERROR(ECKSUM);
246			} else {
247				ASSERT3U(zilc->zc_nused, <=,
248				    SPA_OLD_MAXBLOCKSIZE);
249				bcopy(lr, dst, zilc->zc_nused);
250				*end = (char *)dst + zilc->zc_nused;
251				*nbp = zilc->zc_next_blk;
252			}
253		}
254
255		arc_buf_destroy(abuf, &abuf);
256	}
257
258	return (error);
259}
260
261/*
262 * Read a TX_WRITE log data block.
263 */
264static int
265zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
266{
267	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
268	const blkptr_t *bp = &lr->lr_blkptr;
269	arc_flags_t aflags = ARC_FLAG_WAIT;
270	arc_buf_t *abuf = NULL;
271	zbookmark_phys_t zb;
272	int error;
273
274	if (BP_IS_HOLE(bp)) {
275		if (wbuf != NULL)
276			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
277		return (0);
278	}
279
280	if (zilog->zl_header->zh_claim_txg == 0)
281		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
282
283	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
284	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
285
286	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
287	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
288
289	if (error == 0) {
290		if (wbuf != NULL)
291			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
292		arc_buf_destroy(abuf, &abuf);
293	}
294
295	return (error);
296}
297
298/*
299 * Parse the intent log, and call parse_func for each valid record within.
300 */
301int
302zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
303    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
304{
305	const zil_header_t *zh = zilog->zl_header;
306	boolean_t claimed = !!zh->zh_claim_txg;
307	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
308	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
309	uint64_t max_blk_seq = 0;
310	uint64_t max_lr_seq = 0;
311	uint64_t blk_count = 0;
312	uint64_t lr_count = 0;
313	blkptr_t blk, next_blk;
314	char *lrbuf, *lrp;
315	int error = 0;
316
317	/*
318	 * Old logs didn't record the maximum zh_claim_lr_seq.
319	 */
320	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
321		claim_lr_seq = UINT64_MAX;
322
323	/*
324	 * Starting at the block pointed to by zh_log we read the log chain.
325	 * For each block in the chain we strongly check that block to
326	 * ensure its validity.  We stop when an invalid block is found.
327	 * For each block pointer in the chain we call parse_blk_func().
328	 * For each record in each valid block we call parse_lr_func().
329	 * If the log has been claimed, stop if we encounter a sequence
330	 * number greater than the highest claimed sequence number.
331	 */
332	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
333	zil_bp_tree_init(zilog);
334
335	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
336		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
337		int reclen;
338		char *end;
339
340		if (blk_seq > claim_blk_seq)
341			break;
342		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
343			break;
344		ASSERT3U(max_blk_seq, <, blk_seq);
345		max_blk_seq = blk_seq;
346		blk_count++;
347
348		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
349			break;
350
351		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
352		if (error != 0)
353			break;
354
355		for (lrp = lrbuf; lrp < end; lrp += reclen) {
356			lr_t *lr = (lr_t *)lrp;
357			reclen = lr->lrc_reclen;
358			ASSERT3U(reclen, >=, sizeof (lr_t));
359			if (lr->lrc_seq > claim_lr_seq)
360				goto done;
361			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
362				goto done;
363			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
364			max_lr_seq = lr->lrc_seq;
365			lr_count++;
366		}
367	}
368done:
369	zilog->zl_parse_error = error;
370	zilog->zl_parse_blk_seq = max_blk_seq;
371	zilog->zl_parse_lr_seq = max_lr_seq;
372	zilog->zl_parse_blk_count = blk_count;
373	zilog->zl_parse_lr_count = lr_count;
374
375	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
376	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
377
378	zil_bp_tree_fini(zilog);
379	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
380
381	return (error);
382}
383
384static int
385zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
386{
387	/*
388	 * Claim log block if not already committed and not already claimed.
389	 * If tx == NULL, just verify that the block is claimable.
390	 */
391	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
392	    zil_bp_tree_add(zilog, bp) != 0)
393		return (0);
394
395	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
396	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
397	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
398}
399
400static int
401zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
402{
403	lr_write_t *lr = (lr_write_t *)lrc;
404	int error;
405
406	if (lrc->lrc_txtype != TX_WRITE)
407		return (0);
408
409	/*
410	 * If the block is not readable, don't claim it.  This can happen
411	 * in normal operation when a log block is written to disk before
412	 * some of the dmu_sync() blocks it points to.  In this case, the
413	 * transaction cannot have been committed to anyone (we would have
414	 * waited for all writes to be stable first), so it is semantically
415	 * correct to declare this the end of the log.
416	 */
417	if (lr->lr_blkptr.blk_birth >= first_txg &&
418	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
419		return (error);
420	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
421}
422
423/* ARGSUSED */
424static int
425zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
426{
427	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
428
429	return (0);
430}
431
432static int
433zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
434{
435	lr_write_t *lr = (lr_write_t *)lrc;
436	blkptr_t *bp = &lr->lr_blkptr;
437
438	/*
439	 * If we previously claimed it, we need to free it.
440	 */
441	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
442	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
443	    !BP_IS_HOLE(bp))
444		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
445
446	return (0);
447}
448
449static lwb_t *
450zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
451{
452	lwb_t *lwb;
453
454	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
455	lwb->lwb_zilog = zilog;
456	lwb->lwb_blk = *bp;
457	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
458	lwb->lwb_max_txg = txg;
459	lwb->lwb_zio = NULL;
460	lwb->lwb_tx = NULL;
461	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
462		lwb->lwb_nused = sizeof (zil_chain_t);
463		lwb->lwb_sz = BP_GET_LSIZE(bp);
464	} else {
465		lwb->lwb_nused = 0;
466		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
467	}
468
469	mutex_enter(&zilog->zl_lock);
470	list_insert_tail(&zilog->zl_lwb_list, lwb);
471	mutex_exit(&zilog->zl_lock);
472
473	return (lwb);
474}
475
476/*
477 * Called when we create in-memory log transactions so that we know
478 * to cleanup the itxs at the end of spa_sync().
479 */
480void
481zilog_dirty(zilog_t *zilog, uint64_t txg)
482{
483	dsl_pool_t *dp = zilog->zl_dmu_pool;
484	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
485
486	if (ds->ds_is_snapshot)
487		panic("dirtying snapshot!");
488
489	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
490		/* up the hold count until we can be written out */
491		dmu_buf_add_ref(ds->ds_dbuf, zilog);
492	}
493}
494
495boolean_t
496zilog_is_dirty(zilog_t *zilog)
497{
498	dsl_pool_t *dp = zilog->zl_dmu_pool;
499
500	for (int t = 0; t < TXG_SIZE; t++) {
501		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
502			return (B_TRUE);
503	}
504	return (B_FALSE);
505}
506
507/*
508 * Create an on-disk intent log.
509 */
510static lwb_t *
511zil_create(zilog_t *zilog)
512{
513	const zil_header_t *zh = zilog->zl_header;
514	lwb_t *lwb = NULL;
515	uint64_t txg = 0;
516	dmu_tx_t *tx = NULL;
517	blkptr_t blk;
518	int error = 0;
519
520	/*
521	 * Wait for any previous destroy to complete.
522	 */
523	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
524
525	ASSERT(zh->zh_claim_txg == 0);
526	ASSERT(zh->zh_replay_seq == 0);
527
528	blk = zh->zh_log;
529
530	/*
531	 * Allocate an initial log block if:
532	 *    - there isn't one already
533	 *    - the existing block is the wrong endianess
534	 */
535	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
536		tx = dmu_tx_create(zilog->zl_os);
537		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
538		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
539		txg = dmu_tx_get_txg(tx);
540
541		if (!BP_IS_HOLE(&blk)) {
542			zio_free_zil(zilog->zl_spa, txg, &blk);
543			BP_ZERO(&blk);
544		}
545
546		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
547		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
548
549		if (error == 0)
550			zil_init_log_chain(zilog, &blk);
551	}
552
553	/*
554	 * Allocate a log write buffer (lwb) for the first log block.
555	 */
556	if (error == 0)
557		lwb = zil_alloc_lwb(zilog, &blk, txg);
558
559	/*
560	 * If we just allocated the first log block, commit our transaction
561	 * and wait for zil_sync() to stuff the block poiner into zh_log.
562	 * (zh is part of the MOS, so we cannot modify it in open context.)
563	 */
564	if (tx != NULL) {
565		dmu_tx_commit(tx);
566		txg_wait_synced(zilog->zl_dmu_pool, txg);
567	}
568
569	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
570
571	return (lwb);
572}
573
574/*
575 * In one tx, free all log blocks and clear the log header.
576 * If keep_first is set, then we're replaying a log with no content.
577 * We want to keep the first block, however, so that the first
578 * synchronous transaction doesn't require a txg_wait_synced()
579 * in zil_create().  We don't need to txg_wait_synced() here either
580 * when keep_first is set, because both zil_create() and zil_destroy()
581 * will wait for any in-progress destroys to complete.
582 */
583void
584zil_destroy(zilog_t *zilog, boolean_t keep_first)
585{
586	const zil_header_t *zh = zilog->zl_header;
587	lwb_t *lwb;
588	dmu_tx_t *tx;
589	uint64_t txg;
590
591	/*
592	 * Wait for any previous destroy to complete.
593	 */
594	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
595
596	zilog->zl_old_header = *zh;		/* debugging aid */
597
598	if (BP_IS_HOLE(&zh->zh_log))
599		return;
600
601	tx = dmu_tx_create(zilog->zl_os);
602	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
603	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
604	txg = dmu_tx_get_txg(tx);
605
606	mutex_enter(&zilog->zl_lock);
607
608	ASSERT3U(zilog->zl_destroy_txg, <, txg);
609	zilog->zl_destroy_txg = txg;
610	zilog->zl_keep_first = keep_first;
611
612	if (!list_is_empty(&zilog->zl_lwb_list)) {
613		ASSERT(zh->zh_claim_txg == 0);
614		VERIFY(!keep_first);
615		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
616			list_remove(&zilog->zl_lwb_list, lwb);
617			if (lwb->lwb_buf != NULL)
618				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
619			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
620			kmem_cache_free(zil_lwb_cache, lwb);
621		}
622	} else if (!keep_first) {
623		zil_destroy_sync(zilog, tx);
624	}
625	mutex_exit(&zilog->zl_lock);
626
627	dmu_tx_commit(tx);
628}
629
630void
631zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
632{
633	ASSERT(list_is_empty(&zilog->zl_lwb_list));
634	(void) zil_parse(zilog, zil_free_log_block,
635	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
636}
637
638int
639zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
640{
641	dmu_tx_t *tx = txarg;
642	uint64_t first_txg = dmu_tx_get_txg(tx);
643	zilog_t *zilog;
644	zil_header_t *zh;
645	objset_t *os;
646	int error;
647
648	error = dmu_objset_own_obj(dp, ds->ds_object,
649	    DMU_OST_ANY, B_FALSE, FTAG, &os);
650	if (error != 0) {
651		/*
652		 * EBUSY indicates that the objset is inconsistent, in which
653		 * case it can not have a ZIL.
654		 */
655		if (error != EBUSY) {
656			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
657			    (unsigned long long)ds->ds_object, error);
658		}
659		return (0);
660	}
661
662	zilog = dmu_objset_zil(os);
663	zh = zil_header_in_syncing_context(zilog);
664
665	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
666		if (!BP_IS_HOLE(&zh->zh_log))
667			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
668		BP_ZERO(&zh->zh_log);
669		dsl_dataset_dirty(dmu_objset_ds(os), tx);
670		dmu_objset_disown(os, FTAG);
671		return (0);
672	}
673
674	/*
675	 * Claim all log blocks if we haven't already done so, and remember
676	 * the highest claimed sequence number.  This ensures that if we can
677	 * read only part of the log now (e.g. due to a missing device),
678	 * but we can read the entire log later, we will not try to replay
679	 * or destroy beyond the last block we successfully claimed.
680	 */
681	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
682	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
683		(void) zil_parse(zilog, zil_claim_log_block,
684		    zil_claim_log_record, tx, first_txg);
685		zh->zh_claim_txg = first_txg;
686		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
687		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
688		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
689			zh->zh_flags |= ZIL_REPLAY_NEEDED;
690		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
691		dsl_dataset_dirty(dmu_objset_ds(os), tx);
692	}
693
694	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
695	dmu_objset_disown(os, FTAG);
696	return (0);
697}
698
699/*
700 * Check the log by walking the log chain.
701 * Checksum errors are ok as they indicate the end of the chain.
702 * Any other error (no device or read failure) returns an error.
703 */
704/* ARGSUSED */
705int
706zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
707{
708	zilog_t *zilog;
709	objset_t *os;
710	blkptr_t *bp;
711	int error;
712
713	ASSERT(tx == NULL);
714
715	error = dmu_objset_from_ds(ds, &os);
716	if (error != 0) {
717		cmn_err(CE_WARN, "can't open objset %llu, error %d",
718		    (unsigned long long)ds->ds_object, error);
719		return (0);
720	}
721
722	zilog = dmu_objset_zil(os);
723	bp = (blkptr_t *)&zilog->zl_header->zh_log;
724
725	/*
726	 * Check the first block and determine if it's on a log device
727	 * which may have been removed or faulted prior to loading this
728	 * pool.  If so, there's no point in checking the rest of the log
729	 * as its content should have already been synced to the pool.
730	 */
731	if (!BP_IS_HOLE(bp)) {
732		vdev_t *vd;
733		boolean_t valid = B_TRUE;
734
735		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
736		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
737		if (vd->vdev_islog && vdev_is_dead(vd))
738			valid = vdev_log_state_valid(vd);
739		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
740
741		if (!valid)
742			return (0);
743	}
744
745	/*
746	 * Because tx == NULL, zil_claim_log_block() will not actually claim
747	 * any blocks, but just determine whether it is possible to do so.
748	 * In addition to checking the log chain, zil_claim_log_block()
749	 * will invoke zio_claim() with a done func of spa_claim_notify(),
750	 * which will update spa_max_claim_txg.  See spa_load() for details.
751	 */
752	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
753	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
754
755	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
756}
757
758static int
759zil_vdev_compare(const void *x1, const void *x2)
760{
761	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
762	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
763
764	if (v1 < v2)
765		return (-1);
766	if (v1 > v2)
767		return (1);
768
769	return (0);
770}
771
772void
773zil_add_block(zilog_t *zilog, const blkptr_t *bp)
774{
775	avl_tree_t *t = &zilog->zl_vdev_tree;
776	avl_index_t where;
777	zil_vdev_node_t *zv, zvsearch;
778	int ndvas = BP_GET_NDVAS(bp);
779	int i;
780
781	if (zfs_nocacheflush)
782		return;
783
784	ASSERT(zilog->zl_writer);
785
786	/*
787	 * Even though we're zl_writer, we still need a lock because the
788	 * zl_get_data() callbacks may have dmu_sync() done callbacks
789	 * that will run concurrently.
790	 */
791	mutex_enter(&zilog->zl_vdev_lock);
792	for (i = 0; i < ndvas; i++) {
793		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
794		if (avl_find(t, &zvsearch, &where) == NULL) {
795			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
796			zv->zv_vdev = zvsearch.zv_vdev;
797			avl_insert(t, zv, where);
798		}
799	}
800	mutex_exit(&zilog->zl_vdev_lock);
801}
802
803static void
804zil_flush_vdevs(zilog_t *zilog)
805{
806	spa_t *spa = zilog->zl_spa;
807	avl_tree_t *t = &zilog->zl_vdev_tree;
808	void *cookie = NULL;
809	zil_vdev_node_t *zv;
810	zio_t *zio;
811
812	ASSERT(zilog->zl_writer);
813
814	/*
815	 * We don't need zl_vdev_lock here because we're the zl_writer,
816	 * and all zl_get_data() callbacks are done.
817	 */
818	if (avl_numnodes(t) == 0)
819		return;
820
821	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
822
823	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
824
825	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
826		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
827		if (vd != NULL)
828			zio_flush(zio, vd);
829		kmem_free(zv, sizeof (*zv));
830	}
831
832	/*
833	 * Wait for all the flushes to complete.  Not all devices actually
834	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
835	 */
836	(void) zio_wait(zio);
837
838	spa_config_exit(spa, SCL_STATE, FTAG);
839}
840
841/*
842 * Function called when a log block write completes
843 */
844static void
845zil_lwb_write_done(zio_t *zio)
846{
847	lwb_t *lwb = zio->io_private;
848	zilog_t *zilog = lwb->lwb_zilog;
849	dmu_tx_t *tx = lwb->lwb_tx;
850
851	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
852	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
853	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
854	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
855	ASSERT(!BP_IS_GANG(zio->io_bp));
856	ASSERT(!BP_IS_HOLE(zio->io_bp));
857	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
858
859	/*
860	 * Ensure the lwb buffer pointer is cleared before releasing
861	 * the txg. If we have had an allocation failure and
862	 * the txg is waiting to sync then we want want zil_sync()
863	 * to remove the lwb so that it's not picked up as the next new
864	 * one in zil_commit_writer(). zil_sync() will only remove
865	 * the lwb if lwb_buf is null.
866	 */
867	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
868	mutex_enter(&zilog->zl_lock);
869	lwb->lwb_buf = NULL;
870	lwb->lwb_tx = NULL;
871	mutex_exit(&zilog->zl_lock);
872
873	/*
874	 * Now that we've written this log block, we have a stable pointer
875	 * to the next block in the chain, so it's OK to let the txg in
876	 * which we allocated the next block sync.
877	 */
878	dmu_tx_commit(tx);
879}
880
881/*
882 * Initialize the io for a log block.
883 */
884static void
885zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
886{
887	zbookmark_phys_t zb;
888
889	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
890	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
891	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
892
893	if (zilog->zl_root_zio == NULL) {
894		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
895		    ZIO_FLAG_CANFAIL);
896	}
897	if (lwb->lwb_zio == NULL) {
898		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
899		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
900		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
901		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
902	}
903}
904
905/*
906 * Define a limited set of intent log block sizes.
907 *
908 * These must be a multiple of 4KB. Note only the amount used (again
909 * aligned to 4KB) actually gets written. However, we can't always just
910 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
911 */
912uint64_t zil_block_buckets[] = {
913    4096,		/* non TX_WRITE */
914    8192+4096,		/* data base */
915    32*1024 + 4096, 	/* NFS writes */
916    UINT64_MAX
917};
918
919/*
920 * Use the slog as long as the logbias is 'latency' and the current commit size
921 * is less than the limit or the total list size is less than 2X the limit.
922 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
923 */
924uint64_t zil_slog_limit = 1024 * 1024;
925#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
926	(((zilog)->zl_cur_used < zil_slog_limit) || \
927	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
928
929/*
930 * Start a log block write and advance to the next log block.
931 * Calls are serialized.
932 */
933static lwb_t *
934zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
935{
936	lwb_t *nlwb = NULL;
937	zil_chain_t *zilc;
938	spa_t *spa = zilog->zl_spa;
939	blkptr_t *bp;
940	dmu_tx_t *tx;
941	uint64_t txg;
942	uint64_t zil_blksz, wsz;
943	int i, error;
944
945	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
946		zilc = (zil_chain_t *)lwb->lwb_buf;
947		bp = &zilc->zc_next_blk;
948	} else {
949		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
950		bp = &zilc->zc_next_blk;
951	}
952
953	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
954
955	/*
956	 * Allocate the next block and save its address in this block
957	 * before writing it in order to establish the log chain.
958	 * Note that if the allocation of nlwb synced before we wrote
959	 * the block that points at it (lwb), we'd leak it if we crashed.
960	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
961	 * We dirty the dataset to ensure that zil_sync() will be called
962	 * to clean up in the event of allocation failure or I/O failure.
963	 */
964	tx = dmu_tx_create(zilog->zl_os);
965	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
966	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
967	txg = dmu_tx_get_txg(tx);
968
969	lwb->lwb_tx = tx;
970
971	/*
972	 * Log blocks are pre-allocated. Here we select the size of the next
973	 * block, based on size used in the last block.
974	 * - first find the smallest bucket that will fit the block from a
975	 *   limited set of block sizes. This is because it's faster to write
976	 *   blocks allocated from the same metaslab as they are adjacent or
977	 *   close.
978	 * - next find the maximum from the new suggested size and an array of
979	 *   previous sizes. This lessens a picket fence effect of wrongly
980	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
981	 *   requests.
982	 *
983	 * Note we only write what is used, but we can't just allocate
984	 * the maximum block size because we can exhaust the available
985	 * pool log space.
986	 */
987	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
988	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
989		continue;
990	zil_blksz = zil_block_buckets[i];
991	if (zil_blksz == UINT64_MAX)
992		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
993	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
994	for (i = 0; i < ZIL_PREV_BLKS; i++)
995		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
996	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
997
998	BP_ZERO(bp);
999	/* pass the old blkptr in order to spread log blocks across devs */
1000	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1001	    USE_SLOG(zilog));
1002	if (error == 0) {
1003		ASSERT3U(bp->blk_birth, ==, txg);
1004		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1005		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1006
1007		/*
1008		 * Allocate a new log write buffer (lwb).
1009		 */
1010		nlwb = zil_alloc_lwb(zilog, bp, txg);
1011
1012		/* Record the block for later vdev flushing */
1013		zil_add_block(zilog, &lwb->lwb_blk);
1014	}
1015
1016	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1017		/* For Slim ZIL only write what is used. */
1018		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1019		ASSERT3U(wsz, <=, lwb->lwb_sz);
1020		zio_shrink(lwb->lwb_zio, wsz);
1021
1022	} else {
1023		wsz = lwb->lwb_sz;
1024	}
1025
1026	zilc->zc_pad = 0;
1027	zilc->zc_nused = lwb->lwb_nused;
1028	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1029
1030	/*
1031	 * clear unused data for security
1032	 */
1033	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1034
1035	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1036
1037	/*
1038	 * If there was an allocation failure then nlwb will be null which
1039	 * forces a txg_wait_synced().
1040	 */
1041	return (nlwb);
1042}
1043
1044static lwb_t *
1045zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1046{
1047	lr_t *lrc = &itx->itx_lr; /* common log record */
1048	lr_write_t *lrw = (lr_write_t *)lrc;
1049	char *lr_buf;
1050	uint64_t txg = lrc->lrc_txg;
1051	uint64_t reclen = lrc->lrc_reclen;
1052	uint64_t dlen = 0;
1053
1054	if (lwb == NULL)
1055		return (NULL);
1056
1057	ASSERT(lwb->lwb_buf != NULL);
1058	ASSERT(zilog_is_dirty(zilog) ||
1059	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1060
1061	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1062		dlen = P2ROUNDUP_TYPED(
1063		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1064
1065	zilog->zl_cur_used += (reclen + dlen);
1066
1067	zil_lwb_write_init(zilog, lwb);
1068
1069	/*
1070	 * If this record won't fit in the current log block, start a new one.
1071	 */
1072	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1073		lwb = zil_lwb_write_start(zilog, lwb);
1074		if (lwb == NULL)
1075			return (NULL);
1076		zil_lwb_write_init(zilog, lwb);
1077		ASSERT(LWB_EMPTY(lwb));
1078		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1079			txg_wait_synced(zilog->zl_dmu_pool, txg);
1080			return (lwb);
1081		}
1082	}
1083
1084	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1085	bcopy(lrc, lr_buf, reclen);
1086	lrc = (lr_t *)lr_buf;
1087	lrw = (lr_write_t *)lrc;
1088
1089	/*
1090	 * If it's a write, fetch the data or get its blkptr as appropriate.
1091	 */
1092	if (lrc->lrc_txtype == TX_WRITE) {
1093		if (txg > spa_freeze_txg(zilog->zl_spa))
1094			txg_wait_synced(zilog->zl_dmu_pool, txg);
1095		if (itx->itx_wr_state != WR_COPIED) {
1096			char *dbuf;
1097			int error;
1098
1099			if (dlen) {
1100				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1101				dbuf = lr_buf + reclen;
1102				lrw->lr_common.lrc_reclen += dlen;
1103			} else {
1104				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1105				dbuf = NULL;
1106			}
1107			error = zilog->zl_get_data(
1108			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1109			if (error == EIO) {
1110				txg_wait_synced(zilog->zl_dmu_pool, txg);
1111				return (lwb);
1112			}
1113			if (error != 0) {
1114				ASSERT(error == ENOENT || error == EEXIST ||
1115				    error == EALREADY);
1116				return (lwb);
1117			}
1118		}
1119	}
1120
1121	/*
1122	 * We're actually making an entry, so update lrc_seq to be the
1123	 * log record sequence number.  Note that this is generally not
1124	 * equal to the itx sequence number because not all transactions
1125	 * are synchronous, and sometimes spa_sync() gets there first.
1126	 */
1127	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1128	lwb->lwb_nused += reclen + dlen;
1129	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1130	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1131	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1132
1133	return (lwb);
1134}
1135
1136itx_t *
1137zil_itx_create(uint64_t txtype, size_t lrsize)
1138{
1139	itx_t *itx;
1140
1141	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1142
1143	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1144	itx->itx_lr.lrc_txtype = txtype;
1145	itx->itx_lr.lrc_reclen = lrsize;
1146	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1147	itx->itx_lr.lrc_seq = 0;	/* defensive */
1148	itx->itx_sync = B_TRUE;		/* default is synchronous */
1149
1150	return (itx);
1151}
1152
1153void
1154zil_itx_destroy(itx_t *itx)
1155{
1156	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1157}
1158
1159/*
1160 * Free up the sync and async itxs. The itxs_t has already been detached
1161 * so no locks are needed.
1162 */
1163static void
1164zil_itxg_clean(itxs_t *itxs)
1165{
1166	itx_t *itx;
1167	list_t *list;
1168	avl_tree_t *t;
1169	void *cookie;
1170	itx_async_node_t *ian;
1171
1172	list = &itxs->i_sync_list;
1173	while ((itx = list_head(list)) != NULL) {
1174		list_remove(list, itx);
1175		kmem_free(itx, offsetof(itx_t, itx_lr) +
1176		    itx->itx_lr.lrc_reclen);
1177	}
1178
1179	cookie = NULL;
1180	t = &itxs->i_async_tree;
1181	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1182		list = &ian->ia_list;
1183		while ((itx = list_head(list)) != NULL) {
1184			list_remove(list, itx);
1185			kmem_free(itx, offsetof(itx_t, itx_lr) +
1186			    itx->itx_lr.lrc_reclen);
1187		}
1188		list_destroy(list);
1189		kmem_free(ian, sizeof (itx_async_node_t));
1190	}
1191	avl_destroy(t);
1192
1193	kmem_free(itxs, sizeof (itxs_t));
1194}
1195
1196static int
1197zil_aitx_compare(const void *x1, const void *x2)
1198{
1199	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1200	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1201
1202	if (o1 < o2)
1203		return (-1);
1204	if (o1 > o2)
1205		return (1);
1206
1207	return (0);
1208}
1209
1210/*
1211 * Remove all async itx with the given oid.
1212 */
1213static void
1214zil_remove_async(zilog_t *zilog, uint64_t oid)
1215{
1216	uint64_t otxg, txg;
1217	itx_async_node_t *ian;
1218	avl_tree_t *t;
1219	avl_index_t where;
1220	list_t clean_list;
1221	itx_t *itx;
1222
1223	ASSERT(oid != 0);
1224	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1225
1226	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1227		otxg = ZILTEST_TXG;
1228	else
1229		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1230
1231	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1232		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1233
1234		mutex_enter(&itxg->itxg_lock);
1235		if (itxg->itxg_txg != txg) {
1236			mutex_exit(&itxg->itxg_lock);
1237			continue;
1238		}
1239
1240		/*
1241		 * Locate the object node and append its list.
1242		 */
1243		t = &itxg->itxg_itxs->i_async_tree;
1244		ian = avl_find(t, &oid, &where);
1245		if (ian != NULL)
1246			list_move_tail(&clean_list, &ian->ia_list);
1247		mutex_exit(&itxg->itxg_lock);
1248	}
1249	while ((itx = list_head(&clean_list)) != NULL) {
1250		list_remove(&clean_list, itx);
1251		kmem_free(itx, offsetof(itx_t, itx_lr) +
1252		    itx->itx_lr.lrc_reclen);
1253	}
1254	list_destroy(&clean_list);
1255}
1256
1257void
1258zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1259{
1260	uint64_t txg;
1261	itxg_t *itxg;
1262	itxs_t *itxs, *clean = NULL;
1263
1264	/*
1265	 * Object ids can be re-instantiated in the next txg so
1266	 * remove any async transactions to avoid future leaks.
1267	 * This can happen if a fsync occurs on the re-instantiated
1268	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1269	 * the new file data and flushes a write record for the old object.
1270	 */
1271	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1272		zil_remove_async(zilog, itx->itx_oid);
1273
1274	/*
1275	 * Ensure the data of a renamed file is committed before the rename.
1276	 */
1277	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1278		zil_async_to_sync(zilog, itx->itx_oid);
1279
1280	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1281		txg = ZILTEST_TXG;
1282	else
1283		txg = dmu_tx_get_txg(tx);
1284
1285	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1286	mutex_enter(&itxg->itxg_lock);
1287	itxs = itxg->itxg_itxs;
1288	if (itxg->itxg_txg != txg) {
1289		if (itxs != NULL) {
1290			/*
1291			 * The zil_clean callback hasn't got around to cleaning
1292			 * this itxg. Save the itxs for release below.
1293			 * This should be rare.
1294			 */
1295			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1296			itxg->itxg_sod = 0;
1297			clean = itxg->itxg_itxs;
1298		}
1299		ASSERT(itxg->itxg_sod == 0);
1300		itxg->itxg_txg = txg;
1301		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1302
1303		list_create(&itxs->i_sync_list, sizeof (itx_t),
1304		    offsetof(itx_t, itx_node));
1305		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1306		    sizeof (itx_async_node_t),
1307		    offsetof(itx_async_node_t, ia_node));
1308	}
1309	if (itx->itx_sync) {
1310		list_insert_tail(&itxs->i_sync_list, itx);
1311		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1312		itxg->itxg_sod += itx->itx_sod;
1313	} else {
1314		avl_tree_t *t = &itxs->i_async_tree;
1315		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1316		itx_async_node_t *ian;
1317		avl_index_t where;
1318
1319		ian = avl_find(t, &foid, &where);
1320		if (ian == NULL) {
1321			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1322			list_create(&ian->ia_list, sizeof (itx_t),
1323			    offsetof(itx_t, itx_node));
1324			ian->ia_foid = foid;
1325			avl_insert(t, ian, where);
1326		}
1327		list_insert_tail(&ian->ia_list, itx);
1328	}
1329
1330	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1331	zilog_dirty(zilog, txg);
1332	mutex_exit(&itxg->itxg_lock);
1333
1334	/* Release the old itxs now we've dropped the lock */
1335	if (clean != NULL)
1336		zil_itxg_clean(clean);
1337}
1338
1339/*
1340 * If there are any in-memory intent log transactions which have now been
1341 * synced then start up a taskq to free them. We should only do this after we
1342 * have written out the uberblocks (i.e. txg has been comitted) so that
1343 * don't inadvertently clean out in-memory log records that would be required
1344 * by zil_commit().
1345 */
1346void
1347zil_clean(zilog_t *zilog, uint64_t synced_txg)
1348{
1349	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1350	itxs_t *clean_me;
1351
1352	mutex_enter(&itxg->itxg_lock);
1353	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1354		mutex_exit(&itxg->itxg_lock);
1355		return;
1356	}
1357	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1358	ASSERT(itxg->itxg_txg != 0);
1359	ASSERT(zilog->zl_clean_taskq != NULL);
1360	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1361	itxg->itxg_sod = 0;
1362	clean_me = itxg->itxg_itxs;
1363	itxg->itxg_itxs = NULL;
1364	itxg->itxg_txg = 0;
1365	mutex_exit(&itxg->itxg_lock);
1366	/*
1367	 * Preferably start a task queue to free up the old itxs but
1368	 * if taskq_dispatch can't allocate resources to do that then
1369	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1370	 * created a bad performance problem.
1371	 */
1372	if (taskq_dispatch(zilog->zl_clean_taskq,
1373	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1374		zil_itxg_clean(clean_me);
1375}
1376
1377/*
1378 * Get the list of itxs to commit into zl_itx_commit_list.
1379 */
1380static void
1381zil_get_commit_list(zilog_t *zilog)
1382{
1383	uint64_t otxg, txg;
1384	list_t *commit_list = &zilog->zl_itx_commit_list;
1385	uint64_t push_sod = 0;
1386
1387	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1388		otxg = ZILTEST_TXG;
1389	else
1390		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1391
1392	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1393		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1394
1395		mutex_enter(&itxg->itxg_lock);
1396		if (itxg->itxg_txg != txg) {
1397			mutex_exit(&itxg->itxg_lock);
1398			continue;
1399		}
1400
1401		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1402		push_sod += itxg->itxg_sod;
1403		itxg->itxg_sod = 0;
1404
1405		mutex_exit(&itxg->itxg_lock);
1406	}
1407	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1408}
1409
1410/*
1411 * Move the async itxs for a specified object to commit into sync lists.
1412 */
1413void
1414zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1415{
1416	uint64_t otxg, txg;
1417	itx_async_node_t *ian;
1418	avl_tree_t *t;
1419	avl_index_t where;
1420
1421	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1422		otxg = ZILTEST_TXG;
1423	else
1424		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1425
1426	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1427		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1428
1429		mutex_enter(&itxg->itxg_lock);
1430		if (itxg->itxg_txg != txg) {
1431			mutex_exit(&itxg->itxg_lock);
1432			continue;
1433		}
1434
1435		/*
1436		 * If a foid is specified then find that node and append its
1437		 * list. Otherwise walk the tree appending all the lists
1438		 * to the sync list. We add to the end rather than the
1439		 * beginning to ensure the create has happened.
1440		 */
1441		t = &itxg->itxg_itxs->i_async_tree;
1442		if (foid != 0) {
1443			ian = avl_find(t, &foid, &where);
1444			if (ian != NULL) {
1445				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1446				    &ian->ia_list);
1447			}
1448		} else {
1449			void *cookie = NULL;
1450
1451			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1452				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1453				    &ian->ia_list);
1454				list_destroy(&ian->ia_list);
1455				kmem_free(ian, sizeof (itx_async_node_t));
1456			}
1457		}
1458		mutex_exit(&itxg->itxg_lock);
1459	}
1460}
1461
1462static void
1463zil_commit_writer(zilog_t *zilog)
1464{
1465	uint64_t txg;
1466	itx_t *itx;
1467	lwb_t *lwb;
1468	spa_t *spa = zilog->zl_spa;
1469	int error = 0;
1470
1471	ASSERT(zilog->zl_root_zio == NULL);
1472
1473	mutex_exit(&zilog->zl_lock);
1474
1475	zil_get_commit_list(zilog);
1476
1477	/*
1478	 * Return if there's nothing to commit before we dirty the fs by
1479	 * calling zil_create().
1480	 */
1481	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1482		mutex_enter(&zilog->zl_lock);
1483		return;
1484	}
1485
1486	if (zilog->zl_suspend) {
1487		lwb = NULL;
1488	} else {
1489		lwb = list_tail(&zilog->zl_lwb_list);
1490		if (lwb == NULL)
1491			lwb = zil_create(zilog);
1492	}
1493
1494	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1495	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1496		txg = itx->itx_lr.lrc_txg;
1497		ASSERT(txg);
1498
1499		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1500			lwb = zil_lwb_commit(zilog, itx, lwb);
1501		list_remove(&zilog->zl_itx_commit_list, itx);
1502		kmem_free(itx, offsetof(itx_t, itx_lr)
1503		    + itx->itx_lr.lrc_reclen);
1504	}
1505	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1506
1507	/* write the last block out */
1508	if (lwb != NULL && lwb->lwb_zio != NULL)
1509		lwb = zil_lwb_write_start(zilog, lwb);
1510
1511	zilog->zl_cur_used = 0;
1512
1513	/*
1514	 * Wait if necessary for the log blocks to be on stable storage.
1515	 */
1516	if (zilog->zl_root_zio) {
1517		error = zio_wait(zilog->zl_root_zio);
1518		zilog->zl_root_zio = NULL;
1519		zil_flush_vdevs(zilog);
1520	}
1521
1522	if (error || lwb == NULL)
1523		txg_wait_synced(zilog->zl_dmu_pool, 0);
1524
1525	mutex_enter(&zilog->zl_lock);
1526
1527	/*
1528	 * Remember the highest committed log sequence number for ztest.
1529	 * We only update this value when all the log writes succeeded,
1530	 * because ztest wants to ASSERT that it got the whole log chain.
1531	 */
1532	if (error == 0 && lwb != NULL)
1533		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1534}
1535
1536/*
1537 * Commit zfs transactions to stable storage.
1538 * If foid is 0 push out all transactions, otherwise push only those
1539 * for that object or might reference that object.
1540 *
1541 * itxs are committed in batches. In a heavily stressed zil there will be
1542 * a commit writer thread who is writing out a bunch of itxs to the log
1543 * for a set of committing threads (cthreads) in the same batch as the writer.
1544 * Those cthreads are all waiting on the same cv for that batch.
1545 *
1546 * There will also be a different and growing batch of threads that are
1547 * waiting to commit (qthreads). When the committing batch completes
1548 * a transition occurs such that the cthreads exit and the qthreads become
1549 * cthreads. One of the new cthreads becomes the writer thread for the
1550 * batch. Any new threads arriving become new qthreads.
1551 *
1552 * Only 2 condition variables are needed and there's no transition
1553 * between the two cvs needed. They just flip-flop between qthreads
1554 * and cthreads.
1555 *
1556 * Using this scheme we can efficiently wakeup up only those threads
1557 * that have been committed.
1558 */
1559void
1560zil_commit(zilog_t *zilog, uint64_t foid)
1561{
1562	uint64_t mybatch;
1563
1564	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1565		return;
1566
1567	/* move the async itxs for the foid to the sync queues */
1568	zil_async_to_sync(zilog, foid);
1569
1570	mutex_enter(&zilog->zl_lock);
1571	mybatch = zilog->zl_next_batch;
1572	while (zilog->zl_writer) {
1573		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1574		if (mybatch <= zilog->zl_com_batch) {
1575			mutex_exit(&zilog->zl_lock);
1576			return;
1577		}
1578	}
1579
1580	zilog->zl_next_batch++;
1581	zilog->zl_writer = B_TRUE;
1582	zil_commit_writer(zilog);
1583	zilog->zl_com_batch = mybatch;
1584	zilog->zl_writer = B_FALSE;
1585	mutex_exit(&zilog->zl_lock);
1586
1587	/* wake up one thread to become the next writer */
1588	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1589
1590	/* wake up all threads waiting for this batch to be committed */
1591	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1592}
1593
1594/*
1595 * Called in syncing context to free committed log blocks and update log header.
1596 */
1597void
1598zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1599{
1600	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1601	uint64_t txg = dmu_tx_get_txg(tx);
1602	spa_t *spa = zilog->zl_spa;
1603	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1604	lwb_t *lwb;
1605
1606	/*
1607	 * We don't zero out zl_destroy_txg, so make sure we don't try
1608	 * to destroy it twice.
1609	 */
1610	if (spa_sync_pass(spa) != 1)
1611		return;
1612
1613	mutex_enter(&zilog->zl_lock);
1614
1615	ASSERT(zilog->zl_stop_sync == 0);
1616
1617	if (*replayed_seq != 0) {
1618		ASSERT(zh->zh_replay_seq < *replayed_seq);
1619		zh->zh_replay_seq = *replayed_seq;
1620		*replayed_seq = 0;
1621	}
1622
1623	if (zilog->zl_destroy_txg == txg) {
1624		blkptr_t blk = zh->zh_log;
1625
1626		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1627
1628		bzero(zh, sizeof (zil_header_t));
1629		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1630
1631		if (zilog->zl_keep_first) {
1632			/*
1633			 * If this block was part of log chain that couldn't
1634			 * be claimed because a device was missing during
1635			 * zil_claim(), but that device later returns,
1636			 * then this block could erroneously appear valid.
1637			 * To guard against this, assign a new GUID to the new
1638			 * log chain so it doesn't matter what blk points to.
1639			 */
1640			zil_init_log_chain(zilog, &blk);
1641			zh->zh_log = blk;
1642		}
1643	}
1644
1645	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1646		zh->zh_log = lwb->lwb_blk;
1647		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1648			break;
1649		list_remove(&zilog->zl_lwb_list, lwb);
1650		zio_free_zil(spa, txg, &lwb->lwb_blk);
1651		kmem_cache_free(zil_lwb_cache, lwb);
1652
1653		/*
1654		 * If we don't have anything left in the lwb list then
1655		 * we've had an allocation failure and we need to zero
1656		 * out the zil_header blkptr so that we don't end
1657		 * up freeing the same block twice.
1658		 */
1659		if (list_head(&zilog->zl_lwb_list) == NULL)
1660			BP_ZERO(&zh->zh_log);
1661	}
1662	mutex_exit(&zilog->zl_lock);
1663}
1664
1665void
1666zil_init(void)
1667{
1668	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1669	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1670}
1671
1672void
1673zil_fini(void)
1674{
1675	kmem_cache_destroy(zil_lwb_cache);
1676}
1677
1678void
1679zil_set_sync(zilog_t *zilog, uint64_t sync)
1680{
1681	zilog->zl_sync = sync;
1682}
1683
1684void
1685zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1686{
1687	zilog->zl_logbias = logbias;
1688}
1689
1690zilog_t *
1691zil_alloc(objset_t *os, zil_header_t *zh_phys)
1692{
1693	zilog_t *zilog;
1694
1695	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1696
1697	zilog->zl_header = zh_phys;
1698	zilog->zl_os = os;
1699	zilog->zl_spa = dmu_objset_spa(os);
1700	zilog->zl_dmu_pool = dmu_objset_pool(os);
1701	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1702	zilog->zl_logbias = dmu_objset_logbias(os);
1703	zilog->zl_sync = dmu_objset_syncprop(os);
1704	zilog->zl_next_batch = 1;
1705
1706	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1707
1708	for (int i = 0; i < TXG_SIZE; i++) {
1709		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1710		    MUTEX_DEFAULT, NULL);
1711	}
1712
1713	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1714	    offsetof(lwb_t, lwb_node));
1715
1716	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1717	    offsetof(itx_t, itx_node));
1718
1719	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1720
1721	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1722	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1723
1724	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1725	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1726	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1727	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1728
1729	return (zilog);
1730}
1731
1732void
1733zil_free(zilog_t *zilog)
1734{
1735	zilog->zl_stop_sync = 1;
1736
1737	ASSERT0(zilog->zl_suspend);
1738	ASSERT0(zilog->zl_suspending);
1739
1740	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1741	list_destroy(&zilog->zl_lwb_list);
1742
1743	avl_destroy(&zilog->zl_vdev_tree);
1744	mutex_destroy(&zilog->zl_vdev_lock);
1745
1746	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1747	list_destroy(&zilog->zl_itx_commit_list);
1748
1749	for (int i = 0; i < TXG_SIZE; i++) {
1750		/*
1751		 * It's possible for an itx to be generated that doesn't dirty
1752		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1753		 * callback to remove the entry. We remove those here.
1754		 *
1755		 * Also free up the ziltest itxs.
1756		 */
1757		if (zilog->zl_itxg[i].itxg_itxs)
1758			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1759		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1760	}
1761
1762	mutex_destroy(&zilog->zl_lock);
1763
1764	cv_destroy(&zilog->zl_cv_writer);
1765	cv_destroy(&zilog->zl_cv_suspend);
1766	cv_destroy(&zilog->zl_cv_batch[0]);
1767	cv_destroy(&zilog->zl_cv_batch[1]);
1768
1769	kmem_free(zilog, sizeof (zilog_t));
1770}
1771
1772/*
1773 * Open an intent log.
1774 */
1775zilog_t *
1776zil_open(objset_t *os, zil_get_data_t *get_data)
1777{
1778	zilog_t *zilog = dmu_objset_zil(os);
1779
1780	ASSERT(zilog->zl_clean_taskq == NULL);
1781	ASSERT(zilog->zl_get_data == NULL);
1782	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1783
1784	zilog->zl_get_data = get_data;
1785	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1786	    2, 2, TASKQ_PREPOPULATE);
1787
1788	return (zilog);
1789}
1790
1791/*
1792 * Close an intent log.
1793 */
1794void
1795zil_close(zilog_t *zilog)
1796{
1797	lwb_t *lwb;
1798	uint64_t txg = 0;
1799
1800	zil_commit(zilog, 0); /* commit all itx */
1801
1802	/*
1803	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1804	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1805	 * callbacks have occurred that may clean the zil.  Only then can we
1806	 * destroy the zl_clean_taskq.
1807	 */
1808	mutex_enter(&zilog->zl_lock);
1809	lwb = list_tail(&zilog->zl_lwb_list);
1810	if (lwb != NULL)
1811		txg = lwb->lwb_max_txg;
1812	mutex_exit(&zilog->zl_lock);
1813	if (txg)
1814		txg_wait_synced(zilog->zl_dmu_pool, txg);
1815	ASSERT(!zilog_is_dirty(zilog));
1816
1817	taskq_destroy(zilog->zl_clean_taskq);
1818	zilog->zl_clean_taskq = NULL;
1819	zilog->zl_get_data = NULL;
1820
1821	/*
1822	 * We should have only one LWB left on the list; remove it now.
1823	 */
1824	mutex_enter(&zilog->zl_lock);
1825	lwb = list_head(&zilog->zl_lwb_list);
1826	if (lwb != NULL) {
1827		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1828		list_remove(&zilog->zl_lwb_list, lwb);
1829		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1830		kmem_cache_free(zil_lwb_cache, lwb);
1831	}
1832	mutex_exit(&zilog->zl_lock);
1833}
1834
1835static char *suspend_tag = "zil suspending";
1836
1837/*
1838 * Suspend an intent log.  While in suspended mode, we still honor
1839 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1840 * On old version pools, we suspend the log briefly when taking a
1841 * snapshot so that it will have an empty intent log.
1842 *
1843 * Long holds are not really intended to be used the way we do here --
1844 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1845 * could fail.  Therefore we take pains to only put a long hold if it is
1846 * actually necessary.  Fortunately, it will only be necessary if the
1847 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1848 * will already have a long hold, so we are not really making things any worse.
1849 *
1850 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1851 * zvol_state_t), and use their mechanism to prevent their hold from being
1852 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1853 * very little gain.
1854 *
1855 * if cookiep == NULL, this does both the suspend & resume.
1856 * Otherwise, it returns with the dataset "long held", and the cookie
1857 * should be passed into zil_resume().
1858 */
1859int
1860zil_suspend(const char *osname, void **cookiep)
1861{
1862	objset_t *os;
1863	zilog_t *zilog;
1864	const zil_header_t *zh;
1865	int error;
1866
1867	error = dmu_objset_hold(osname, suspend_tag, &os);
1868	if (error != 0)
1869		return (error);
1870	zilog = dmu_objset_zil(os);
1871
1872	mutex_enter(&zilog->zl_lock);
1873	zh = zilog->zl_header;
1874
1875	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1876		mutex_exit(&zilog->zl_lock);
1877		dmu_objset_rele(os, suspend_tag);
1878		return (SET_ERROR(EBUSY));
1879	}
1880
1881	/*
1882	 * Don't put a long hold in the cases where we can avoid it.  This
1883	 * is when there is no cookie so we are doing a suspend & resume
1884	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1885	 * for the suspend because it's already suspended, or there's no ZIL.
1886	 */
1887	if (cookiep == NULL && !zilog->zl_suspending &&
1888	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1889		mutex_exit(&zilog->zl_lock);
1890		dmu_objset_rele(os, suspend_tag);
1891		return (0);
1892	}
1893
1894	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1895	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1896
1897	zilog->zl_suspend++;
1898
1899	if (zilog->zl_suspend > 1) {
1900		/*
1901		 * Someone else is already suspending it.
1902		 * Just wait for them to finish.
1903		 */
1904
1905		while (zilog->zl_suspending)
1906			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1907		mutex_exit(&zilog->zl_lock);
1908
1909		if (cookiep == NULL)
1910			zil_resume(os);
1911		else
1912			*cookiep = os;
1913		return (0);
1914	}
1915
1916	/*
1917	 * If there is no pointer to an on-disk block, this ZIL must not
1918	 * be active (e.g. filesystem not mounted), so there's nothing
1919	 * to clean up.
1920	 */
1921	if (BP_IS_HOLE(&zh->zh_log)) {
1922		ASSERT(cookiep != NULL); /* fast path already handled */
1923
1924		*cookiep = os;
1925		mutex_exit(&zilog->zl_lock);
1926		return (0);
1927	}
1928
1929	zilog->zl_suspending = B_TRUE;
1930	mutex_exit(&zilog->zl_lock);
1931
1932	zil_commit(zilog, 0);
1933
1934	zil_destroy(zilog, B_FALSE);
1935
1936	mutex_enter(&zilog->zl_lock);
1937	zilog->zl_suspending = B_FALSE;
1938	cv_broadcast(&zilog->zl_cv_suspend);
1939	mutex_exit(&zilog->zl_lock);
1940
1941	if (cookiep == NULL)
1942		zil_resume(os);
1943	else
1944		*cookiep = os;
1945	return (0);
1946}
1947
1948void
1949zil_resume(void *cookie)
1950{
1951	objset_t *os = cookie;
1952	zilog_t *zilog = dmu_objset_zil(os);
1953
1954	mutex_enter(&zilog->zl_lock);
1955	ASSERT(zilog->zl_suspend != 0);
1956	zilog->zl_suspend--;
1957	mutex_exit(&zilog->zl_lock);
1958	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1959	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1960}
1961
1962typedef struct zil_replay_arg {
1963	zil_replay_func_t **zr_replay;
1964	void		*zr_arg;
1965	boolean_t	zr_byteswap;
1966	char		*zr_lr;
1967} zil_replay_arg_t;
1968
1969static int
1970zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1971{
1972	char name[ZFS_MAX_DATASET_NAME_LEN];
1973
1974	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1975
1976	dmu_objset_name(zilog->zl_os, name);
1977
1978	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1979	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1980	    (u_longlong_t)lr->lrc_seq,
1981	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1982	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1983
1984	return (error);
1985}
1986
1987static int
1988zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1989{
1990	zil_replay_arg_t *zr = zra;
1991	const zil_header_t *zh = zilog->zl_header;
1992	uint64_t reclen = lr->lrc_reclen;
1993	uint64_t txtype = lr->lrc_txtype;
1994	int error = 0;
1995
1996	zilog->zl_replaying_seq = lr->lrc_seq;
1997
1998	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1999		return (0);
2000
2001	if (lr->lrc_txg < claim_txg)		/* already committed */
2002		return (0);
2003
2004	/* Strip case-insensitive bit, still present in log record */
2005	txtype &= ~TX_CI;
2006
2007	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2008		return (zil_replay_error(zilog, lr, EINVAL));
2009
2010	/*
2011	 * If this record type can be logged out of order, the object
2012	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2013	 */
2014	if (TX_OOO(txtype)) {
2015		error = dmu_object_info(zilog->zl_os,
2016		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2017		if (error == ENOENT || error == EEXIST)
2018			return (0);
2019	}
2020
2021	/*
2022	 * Make a copy of the data so we can revise and extend it.
2023	 */
2024	bcopy(lr, zr->zr_lr, reclen);
2025
2026	/*
2027	 * If this is a TX_WRITE with a blkptr, suck in the data.
2028	 */
2029	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2030		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2031		    zr->zr_lr + reclen);
2032		if (error != 0)
2033			return (zil_replay_error(zilog, lr, error));
2034	}
2035
2036	/*
2037	 * The log block containing this lr may have been byteswapped
2038	 * so that we can easily examine common fields like lrc_txtype.
2039	 * However, the log is a mix of different record types, and only the
2040	 * replay vectors know how to byteswap their records.  Therefore, if
2041	 * the lr was byteswapped, undo it before invoking the replay vector.
2042	 */
2043	if (zr->zr_byteswap)
2044		byteswap_uint64_array(zr->zr_lr, reclen);
2045
2046	/*
2047	 * We must now do two things atomically: replay this log record,
2048	 * and update the log header sequence number to reflect the fact that
2049	 * we did so. At the end of each replay function the sequence number
2050	 * is updated if we are in replay mode.
2051	 */
2052	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2053	if (error != 0) {
2054		/*
2055		 * The DMU's dnode layer doesn't see removes until the txg
2056		 * commits, so a subsequent claim can spuriously fail with
2057		 * EEXIST. So if we receive any error we try syncing out
2058		 * any removes then retry the transaction.  Note that we
2059		 * specify B_FALSE for byteswap now, so we don't do it twice.
2060		 */
2061		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2062		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2063		if (error != 0)
2064			return (zil_replay_error(zilog, lr, error));
2065	}
2066	return (0);
2067}
2068
2069/* ARGSUSED */
2070static int
2071zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2072{
2073	zilog->zl_replay_blks++;
2074
2075	return (0);
2076}
2077
2078/*
2079 * If this dataset has a non-empty intent log, replay it and destroy it.
2080 */
2081void
2082zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2083{
2084	zilog_t *zilog = dmu_objset_zil(os);
2085	const zil_header_t *zh = zilog->zl_header;
2086	zil_replay_arg_t zr;
2087
2088	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2089		zil_destroy(zilog, B_TRUE);
2090		return;
2091	}
2092
2093	zr.zr_replay = replay_func;
2094	zr.zr_arg = arg;
2095	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2096	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2097
2098	/*
2099	 * Wait for in-progress removes to sync before starting replay.
2100	 */
2101	txg_wait_synced(zilog->zl_dmu_pool, 0);
2102
2103	zilog->zl_replay = B_TRUE;
2104	zilog->zl_replay_time = ddi_get_lbolt();
2105	ASSERT(zilog->zl_replay_blks == 0);
2106	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2107	    zh->zh_claim_txg);
2108	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2109
2110	zil_destroy(zilog, B_FALSE);
2111	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2112	zilog->zl_replay = B_FALSE;
2113}
2114
2115boolean_t
2116zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2117{
2118	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2119		return (B_TRUE);
2120
2121	if (zilog->zl_replay) {
2122		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2123		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2124		    zilog->zl_replaying_seq;
2125		return (B_TRUE);
2126	}
2127
2128	return (B_FALSE);
2129}
2130
2131/* ARGSUSED */
2132int
2133zil_vdev_offline(const char *osname, void *arg)
2134{
2135	int error;
2136
2137	error = zil_suspend(osname, NULL);
2138	if (error != 0)
2139		return (SET_ERROR(EEXIST));
2140	return (0);
2141}
2142