zil.c revision 307108
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42
43/*
44 * The zfs intent log (ZIL) saves transaction records of system calls
45 * that change the file system in memory with enough information
46 * to be able to replay them. These are stored in memory until
47 * either the DMU transaction group (txg) commits them to the stable pool
48 * and they can be discarded, or they are flushed to the stable log
49 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50 * requirement. In the event of a panic or power fail then those log
51 * records (transactions) are replayed.
52 *
53 * There is one ZIL per file system. Its on-disk (pool) format consists
54 * of 3 parts:
55 *
56 * 	- ZIL header
57 * 	- ZIL blocks
58 * 	- ZIL records
59 *
60 * A log record holds a system call transaction. Log blocks can
61 * hold many log records and the blocks are chained together.
62 * Each ZIL block contains a block pointer (blkptr_t) to the next
63 * ZIL block in the chain. The ZIL header points to the first
64 * block in the chain. Note there is not a fixed place in the pool
65 * to hold blocks. They are dynamically allocated and freed as
66 * needed from the blocks available. Figure X shows the ZIL structure:
67 */
68
69/*
70 * Disable intent logging replay.  This global ZIL switch affects all pools.
71 */
72int zil_replay_disable = 0;
73SYSCTL_DECL(_vfs_zfs);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
75    &zil_replay_disable, 0, "Disable intent logging replay");
76
77/*
78 * Tunable parameter for debugging or performance analysis.  Setting
79 * zfs_nocacheflush will cause corruption on power loss if a volatile
80 * out-of-order write cache is enabled.
81 */
82boolean_t zfs_nocacheflush = B_FALSE;
83SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
84    &zfs_nocacheflush, 0, "Disable cache flush");
85boolean_t zfs_trim_enabled = B_TRUE;
86SYSCTL_DECL(_vfs_zfs_trim);
87SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
88    "Enable ZFS TRIM");
89
90static kmem_cache_t *zil_lwb_cache;
91
92static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
93
94#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
95    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
96
97
98/*
99 * ziltest is by and large an ugly hack, but very useful in
100 * checking replay without tedious work.
101 * When running ziltest we want to keep all itx's and so maintain
102 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
103 * We subtract TXG_CONCURRENT_STATES to allow for common code.
104 */
105#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
106
107static int
108zil_bp_compare(const void *x1, const void *x2)
109{
110	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
111	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
112
113	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
114		return (-1);
115	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
116		return (1);
117
118	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
119		return (-1);
120	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
121		return (1);
122
123	return (0);
124}
125
126static void
127zil_bp_tree_init(zilog_t *zilog)
128{
129	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
130	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
131}
132
133static void
134zil_bp_tree_fini(zilog_t *zilog)
135{
136	avl_tree_t *t = &zilog->zl_bp_tree;
137	zil_bp_node_t *zn;
138	void *cookie = NULL;
139
140	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
141		kmem_free(zn, sizeof (zil_bp_node_t));
142
143	avl_destroy(t);
144}
145
146int
147zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
148{
149	avl_tree_t *t = &zilog->zl_bp_tree;
150	const dva_t *dva;
151	zil_bp_node_t *zn;
152	avl_index_t where;
153
154	if (BP_IS_EMBEDDED(bp))
155		return (0);
156
157	dva = BP_IDENTITY(bp);
158
159	if (avl_find(t, dva, &where) != NULL)
160		return (SET_ERROR(EEXIST));
161
162	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
163	zn->zn_dva = *dva;
164	avl_insert(t, zn, where);
165
166	return (0);
167}
168
169static zil_header_t *
170zil_header_in_syncing_context(zilog_t *zilog)
171{
172	return ((zil_header_t *)zilog->zl_header);
173}
174
175static void
176zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
177{
178	zio_cksum_t *zc = &bp->blk_cksum;
179
180	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
181	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
182	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
183	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
184}
185
186/*
187 * Read a log block and make sure it's valid.
188 */
189static int
190zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
191    char **end)
192{
193	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
194	arc_flags_t aflags = ARC_FLAG_WAIT;
195	arc_buf_t *abuf = NULL;
196	zbookmark_phys_t zb;
197	int error;
198
199	if (zilog->zl_header->zh_claim_txg == 0)
200		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
201
202	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
203		zio_flags |= ZIO_FLAG_SPECULATIVE;
204
205	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
206	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
207
208	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
209	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
210
211	if (error == 0) {
212		zio_cksum_t cksum = bp->blk_cksum;
213
214		/*
215		 * Validate the checksummed log block.
216		 *
217		 * Sequence numbers should be... sequential.  The checksum
218		 * verifier for the next block should be bp's checksum plus 1.
219		 *
220		 * Also check the log chain linkage and size used.
221		 */
222		cksum.zc_word[ZIL_ZC_SEQ]++;
223
224		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
225			zil_chain_t *zilc = abuf->b_data;
226			char *lr = (char *)(zilc + 1);
227			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
228
229			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
230			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
231				error = SET_ERROR(ECKSUM);
232			} else {
233				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
234				bcopy(lr, dst, len);
235				*end = (char *)dst + len;
236				*nbp = zilc->zc_next_blk;
237			}
238		} else {
239			char *lr = abuf->b_data;
240			uint64_t size = BP_GET_LSIZE(bp);
241			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
242
243			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
244			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
245			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
246				error = SET_ERROR(ECKSUM);
247			} else {
248				ASSERT3U(zilc->zc_nused, <=,
249				    SPA_OLD_MAXBLOCKSIZE);
250				bcopy(lr, dst, zilc->zc_nused);
251				*end = (char *)dst + zilc->zc_nused;
252				*nbp = zilc->zc_next_blk;
253			}
254		}
255
256		VERIFY(arc_buf_remove_ref(abuf, &abuf));
257	}
258
259	return (error);
260}
261
262/*
263 * Read a TX_WRITE log data block.
264 */
265static int
266zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
267{
268	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
269	const blkptr_t *bp = &lr->lr_blkptr;
270	arc_flags_t aflags = ARC_FLAG_WAIT;
271	arc_buf_t *abuf = NULL;
272	zbookmark_phys_t zb;
273	int error;
274
275	if (BP_IS_HOLE(bp)) {
276		if (wbuf != NULL)
277			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
278		return (0);
279	}
280
281	if (zilog->zl_header->zh_claim_txg == 0)
282		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
283
284	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
285	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
286
287	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
288	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
289
290	if (error == 0) {
291		if (wbuf != NULL)
292			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
293		(void) arc_buf_remove_ref(abuf, &abuf);
294	}
295
296	return (error);
297}
298
299/*
300 * Parse the intent log, and call parse_func for each valid record within.
301 */
302int
303zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
304    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
305{
306	const zil_header_t *zh = zilog->zl_header;
307	boolean_t claimed = !!zh->zh_claim_txg;
308	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
309	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
310	uint64_t max_blk_seq = 0;
311	uint64_t max_lr_seq = 0;
312	uint64_t blk_count = 0;
313	uint64_t lr_count = 0;
314	blkptr_t blk, next_blk;
315	char *lrbuf, *lrp;
316	int error = 0;
317
318	/*
319	 * Old logs didn't record the maximum zh_claim_lr_seq.
320	 */
321	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
322		claim_lr_seq = UINT64_MAX;
323
324	/*
325	 * Starting at the block pointed to by zh_log we read the log chain.
326	 * For each block in the chain we strongly check that block to
327	 * ensure its validity.  We stop when an invalid block is found.
328	 * For each block pointer in the chain we call parse_blk_func().
329	 * For each record in each valid block we call parse_lr_func().
330	 * If the log has been claimed, stop if we encounter a sequence
331	 * number greater than the highest claimed sequence number.
332	 */
333	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
334	zil_bp_tree_init(zilog);
335
336	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
337		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
338		int reclen;
339		char *end;
340
341		if (blk_seq > claim_blk_seq)
342			break;
343		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
344			break;
345		ASSERT3U(max_blk_seq, <, blk_seq);
346		max_blk_seq = blk_seq;
347		blk_count++;
348
349		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
350			break;
351
352		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
353		if (error != 0)
354			break;
355
356		for (lrp = lrbuf; lrp < end; lrp += reclen) {
357			lr_t *lr = (lr_t *)lrp;
358			reclen = lr->lrc_reclen;
359			ASSERT3U(reclen, >=, sizeof (lr_t));
360			if (lr->lrc_seq > claim_lr_seq)
361				goto done;
362			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
363				goto done;
364			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
365			max_lr_seq = lr->lrc_seq;
366			lr_count++;
367		}
368	}
369done:
370	zilog->zl_parse_error = error;
371	zilog->zl_parse_blk_seq = max_blk_seq;
372	zilog->zl_parse_lr_seq = max_lr_seq;
373	zilog->zl_parse_blk_count = blk_count;
374	zilog->zl_parse_lr_count = lr_count;
375
376	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
377	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
378
379	zil_bp_tree_fini(zilog);
380	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
381
382	return (error);
383}
384
385static int
386zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
387{
388	/*
389	 * Claim log block if not already committed and not already claimed.
390	 * If tx == NULL, just verify that the block is claimable.
391	 */
392	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
393	    zil_bp_tree_add(zilog, bp) != 0)
394		return (0);
395
396	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
397	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
398	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
399}
400
401static int
402zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
403{
404	lr_write_t *lr = (lr_write_t *)lrc;
405	int error;
406
407	if (lrc->lrc_txtype != TX_WRITE)
408		return (0);
409
410	/*
411	 * If the block is not readable, don't claim it.  This can happen
412	 * in normal operation when a log block is written to disk before
413	 * some of the dmu_sync() blocks it points to.  In this case, the
414	 * transaction cannot have been committed to anyone (we would have
415	 * waited for all writes to be stable first), so it is semantically
416	 * correct to declare this the end of the log.
417	 */
418	if (lr->lr_blkptr.blk_birth >= first_txg &&
419	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
420		return (error);
421	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
422}
423
424/* ARGSUSED */
425static int
426zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
427{
428	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
429
430	return (0);
431}
432
433static int
434zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
435{
436	lr_write_t *lr = (lr_write_t *)lrc;
437	blkptr_t *bp = &lr->lr_blkptr;
438
439	/*
440	 * If we previously claimed it, we need to free it.
441	 */
442	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
443	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
444	    !BP_IS_HOLE(bp))
445		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
446
447	return (0);
448}
449
450static lwb_t *
451zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
452{
453	lwb_t *lwb;
454
455	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
456	lwb->lwb_zilog = zilog;
457	lwb->lwb_blk = *bp;
458	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
459	lwb->lwb_max_txg = txg;
460	lwb->lwb_zio = NULL;
461	lwb->lwb_tx = NULL;
462	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
463		lwb->lwb_nused = sizeof (zil_chain_t);
464		lwb->lwb_sz = BP_GET_LSIZE(bp);
465	} else {
466		lwb->lwb_nused = 0;
467		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
468	}
469
470	mutex_enter(&zilog->zl_lock);
471	list_insert_tail(&zilog->zl_lwb_list, lwb);
472	mutex_exit(&zilog->zl_lock);
473
474	return (lwb);
475}
476
477/*
478 * Called when we create in-memory log transactions so that we know
479 * to cleanup the itxs at the end of spa_sync().
480 */
481void
482zilog_dirty(zilog_t *zilog, uint64_t txg)
483{
484	dsl_pool_t *dp = zilog->zl_dmu_pool;
485	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
486
487	if (ds->ds_is_snapshot)
488		panic("dirtying snapshot!");
489
490	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
491		/* up the hold count until we can be written out */
492		dmu_buf_add_ref(ds->ds_dbuf, zilog);
493	}
494}
495
496boolean_t
497zilog_is_dirty(zilog_t *zilog)
498{
499	dsl_pool_t *dp = zilog->zl_dmu_pool;
500
501	for (int t = 0; t < TXG_SIZE; t++) {
502		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
503			return (B_TRUE);
504	}
505	return (B_FALSE);
506}
507
508/*
509 * Create an on-disk intent log.
510 */
511static lwb_t *
512zil_create(zilog_t *zilog)
513{
514	const zil_header_t *zh = zilog->zl_header;
515	lwb_t *lwb = NULL;
516	uint64_t txg = 0;
517	dmu_tx_t *tx = NULL;
518	blkptr_t blk;
519	int error = 0;
520
521	/*
522	 * Wait for any previous destroy to complete.
523	 */
524	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
525
526	ASSERT(zh->zh_claim_txg == 0);
527	ASSERT(zh->zh_replay_seq == 0);
528
529	blk = zh->zh_log;
530
531	/*
532	 * Allocate an initial log block if:
533	 *    - there isn't one already
534	 *    - the existing block is the wrong endianess
535	 */
536	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
537		tx = dmu_tx_create(zilog->zl_os);
538		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
539		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
540		txg = dmu_tx_get_txg(tx);
541
542		if (!BP_IS_HOLE(&blk)) {
543			zio_free_zil(zilog->zl_spa, txg, &blk);
544			BP_ZERO(&blk);
545		}
546
547		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
548		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
549
550		if (error == 0)
551			zil_init_log_chain(zilog, &blk);
552	}
553
554	/*
555	 * Allocate a log write buffer (lwb) for the first log block.
556	 */
557	if (error == 0)
558		lwb = zil_alloc_lwb(zilog, &blk, txg);
559
560	/*
561	 * If we just allocated the first log block, commit our transaction
562	 * and wait for zil_sync() to stuff the block poiner into zh_log.
563	 * (zh is part of the MOS, so we cannot modify it in open context.)
564	 */
565	if (tx != NULL) {
566		dmu_tx_commit(tx);
567		txg_wait_synced(zilog->zl_dmu_pool, txg);
568	}
569
570	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
571
572	return (lwb);
573}
574
575/*
576 * In one tx, free all log blocks and clear the log header.
577 * If keep_first is set, then we're replaying a log with no content.
578 * We want to keep the first block, however, so that the first
579 * synchronous transaction doesn't require a txg_wait_synced()
580 * in zil_create().  We don't need to txg_wait_synced() here either
581 * when keep_first is set, because both zil_create() and zil_destroy()
582 * will wait for any in-progress destroys to complete.
583 */
584void
585zil_destroy(zilog_t *zilog, boolean_t keep_first)
586{
587	const zil_header_t *zh = zilog->zl_header;
588	lwb_t *lwb;
589	dmu_tx_t *tx;
590	uint64_t txg;
591
592	/*
593	 * Wait for any previous destroy to complete.
594	 */
595	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
596
597	zilog->zl_old_header = *zh;		/* debugging aid */
598
599	if (BP_IS_HOLE(&zh->zh_log))
600		return;
601
602	tx = dmu_tx_create(zilog->zl_os);
603	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
604	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
605	txg = dmu_tx_get_txg(tx);
606
607	mutex_enter(&zilog->zl_lock);
608
609	ASSERT3U(zilog->zl_destroy_txg, <, txg);
610	zilog->zl_destroy_txg = txg;
611	zilog->zl_keep_first = keep_first;
612
613	if (!list_is_empty(&zilog->zl_lwb_list)) {
614		ASSERT(zh->zh_claim_txg == 0);
615		VERIFY(!keep_first);
616		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
617			list_remove(&zilog->zl_lwb_list, lwb);
618			if (lwb->lwb_buf != NULL)
619				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
620			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
621			kmem_cache_free(zil_lwb_cache, lwb);
622		}
623	} else if (!keep_first) {
624		zil_destroy_sync(zilog, tx);
625	}
626	mutex_exit(&zilog->zl_lock);
627
628	dmu_tx_commit(tx);
629}
630
631void
632zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
633{
634	ASSERT(list_is_empty(&zilog->zl_lwb_list));
635	(void) zil_parse(zilog, zil_free_log_block,
636	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
637}
638
639int
640zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
641{
642	dmu_tx_t *tx = txarg;
643	uint64_t first_txg = dmu_tx_get_txg(tx);
644	zilog_t *zilog;
645	zil_header_t *zh;
646	objset_t *os;
647	int error;
648
649	error = dmu_objset_own_obj(dp, ds->ds_object,
650	    DMU_OST_ANY, B_FALSE, FTAG, &os);
651	if (error != 0) {
652		/*
653		 * EBUSY indicates that the objset is inconsistent, in which
654		 * case it can not have a ZIL.
655		 */
656		if (error != EBUSY) {
657			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
658			    (unsigned long long)ds->ds_object, error);
659		}
660		return (0);
661	}
662
663	zilog = dmu_objset_zil(os);
664	zh = zil_header_in_syncing_context(zilog);
665
666	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
667		if (!BP_IS_HOLE(&zh->zh_log))
668			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
669		BP_ZERO(&zh->zh_log);
670		dsl_dataset_dirty(dmu_objset_ds(os), tx);
671		dmu_objset_disown(os, FTAG);
672		return (0);
673	}
674
675	/*
676	 * Claim all log blocks if we haven't already done so, and remember
677	 * the highest claimed sequence number.  This ensures that if we can
678	 * read only part of the log now (e.g. due to a missing device),
679	 * but we can read the entire log later, we will not try to replay
680	 * or destroy beyond the last block we successfully claimed.
681	 */
682	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
683	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
684		(void) zil_parse(zilog, zil_claim_log_block,
685		    zil_claim_log_record, tx, first_txg);
686		zh->zh_claim_txg = first_txg;
687		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
688		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
689		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
690			zh->zh_flags |= ZIL_REPLAY_NEEDED;
691		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
692		dsl_dataset_dirty(dmu_objset_ds(os), tx);
693	}
694
695	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
696	dmu_objset_disown(os, FTAG);
697	return (0);
698}
699
700/*
701 * Check the log by walking the log chain.
702 * Checksum errors are ok as they indicate the end of the chain.
703 * Any other error (no device or read failure) returns an error.
704 */
705/* ARGSUSED */
706int
707zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
708{
709	zilog_t *zilog;
710	objset_t *os;
711	blkptr_t *bp;
712	int error;
713
714	ASSERT(tx == NULL);
715
716	error = dmu_objset_from_ds(ds, &os);
717	if (error != 0) {
718		cmn_err(CE_WARN, "can't open objset %llu, error %d",
719		    (unsigned long long)ds->ds_object, error);
720		return (0);
721	}
722
723	zilog = dmu_objset_zil(os);
724	bp = (blkptr_t *)&zilog->zl_header->zh_log;
725
726	/*
727	 * Check the first block and determine if it's on a log device
728	 * which may have been removed or faulted prior to loading this
729	 * pool.  If so, there's no point in checking the rest of the log
730	 * as its content should have already been synced to the pool.
731	 */
732	if (!BP_IS_HOLE(bp)) {
733		vdev_t *vd;
734		boolean_t valid = B_TRUE;
735
736		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
737		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
738		if (vd->vdev_islog && vdev_is_dead(vd))
739			valid = vdev_log_state_valid(vd);
740		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
741
742		if (!valid)
743			return (0);
744	}
745
746	/*
747	 * Because tx == NULL, zil_claim_log_block() will not actually claim
748	 * any blocks, but just determine whether it is possible to do so.
749	 * In addition to checking the log chain, zil_claim_log_block()
750	 * will invoke zio_claim() with a done func of spa_claim_notify(),
751	 * which will update spa_max_claim_txg.  See spa_load() for details.
752	 */
753	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
754	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
755
756	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
757}
758
759static int
760zil_vdev_compare(const void *x1, const void *x2)
761{
762	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
763	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
764
765	if (v1 < v2)
766		return (-1);
767	if (v1 > v2)
768		return (1);
769
770	return (0);
771}
772
773void
774zil_add_block(zilog_t *zilog, const blkptr_t *bp)
775{
776	avl_tree_t *t = &zilog->zl_vdev_tree;
777	avl_index_t where;
778	zil_vdev_node_t *zv, zvsearch;
779	int ndvas = BP_GET_NDVAS(bp);
780	int i;
781
782	if (zfs_nocacheflush)
783		return;
784
785	ASSERT(zilog->zl_writer);
786
787	/*
788	 * Even though we're zl_writer, we still need a lock because the
789	 * zl_get_data() callbacks may have dmu_sync() done callbacks
790	 * that will run concurrently.
791	 */
792	mutex_enter(&zilog->zl_vdev_lock);
793	for (i = 0; i < ndvas; i++) {
794		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
795		if (avl_find(t, &zvsearch, &where) == NULL) {
796			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
797			zv->zv_vdev = zvsearch.zv_vdev;
798			avl_insert(t, zv, where);
799		}
800	}
801	mutex_exit(&zilog->zl_vdev_lock);
802}
803
804static void
805zil_flush_vdevs(zilog_t *zilog)
806{
807	spa_t *spa = zilog->zl_spa;
808	avl_tree_t *t = &zilog->zl_vdev_tree;
809	void *cookie = NULL;
810	zil_vdev_node_t *zv;
811	zio_t *zio;
812
813	ASSERT(zilog->zl_writer);
814
815	/*
816	 * We don't need zl_vdev_lock here because we're the zl_writer,
817	 * and all zl_get_data() callbacks are done.
818	 */
819	if (avl_numnodes(t) == 0)
820		return;
821
822	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
823
824	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
825
826	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
827		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
828		if (vd != NULL)
829			zio_flush(zio, vd);
830		kmem_free(zv, sizeof (*zv));
831	}
832
833	/*
834	 * Wait for all the flushes to complete.  Not all devices actually
835	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
836	 */
837	(void) zio_wait(zio);
838
839	spa_config_exit(spa, SCL_STATE, FTAG);
840}
841
842/*
843 * Function called when a log block write completes
844 */
845static void
846zil_lwb_write_done(zio_t *zio)
847{
848	lwb_t *lwb = zio->io_private;
849	zilog_t *zilog = lwb->lwb_zilog;
850	dmu_tx_t *tx = lwb->lwb_tx;
851
852	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
853	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
854	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
855	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
856	ASSERT(!BP_IS_GANG(zio->io_bp));
857	ASSERT(!BP_IS_HOLE(zio->io_bp));
858	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
859
860	/*
861	 * Ensure the lwb buffer pointer is cleared before releasing
862	 * the txg. If we have had an allocation failure and
863	 * the txg is waiting to sync then we want want zil_sync()
864	 * to remove the lwb so that it's not picked up as the next new
865	 * one in zil_commit_writer(). zil_sync() will only remove
866	 * the lwb if lwb_buf is null.
867	 */
868	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
869	mutex_enter(&zilog->zl_lock);
870	lwb->lwb_buf = NULL;
871	lwb->lwb_tx = NULL;
872	mutex_exit(&zilog->zl_lock);
873
874	/*
875	 * Now that we've written this log block, we have a stable pointer
876	 * to the next block in the chain, so it's OK to let the txg in
877	 * which we allocated the next block sync.
878	 */
879	dmu_tx_commit(tx);
880}
881
882/*
883 * Initialize the io for a log block.
884 */
885static void
886zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
887{
888	zbookmark_phys_t zb;
889
890	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
891	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
892	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
893
894	if (zilog->zl_root_zio == NULL) {
895		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
896		    ZIO_FLAG_CANFAIL);
897	}
898	if (lwb->lwb_zio == NULL) {
899		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
900		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
901		    zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
902		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
903	}
904}
905
906/*
907 * Define a limited set of intent log block sizes.
908 *
909 * These must be a multiple of 4KB. Note only the amount used (again
910 * aligned to 4KB) actually gets written. However, we can't always just
911 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
912 */
913uint64_t zil_block_buckets[] = {
914    4096,		/* non TX_WRITE */
915    8192+4096,		/* data base */
916    32*1024 + 4096, 	/* NFS writes */
917    UINT64_MAX
918};
919
920/*
921 * Use the slog as long as the logbias is 'latency' and the current commit size
922 * is less than the limit or the total list size is less than 2X the limit.
923 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
924 */
925uint64_t zil_slog_limit = 1024 * 1024;
926#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
927	(((zilog)->zl_cur_used < zil_slog_limit) || \
928	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
929
930/*
931 * Start a log block write and advance to the next log block.
932 * Calls are serialized.
933 */
934static lwb_t *
935zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
936{
937	lwb_t *nlwb = NULL;
938	zil_chain_t *zilc;
939	spa_t *spa = zilog->zl_spa;
940	blkptr_t *bp;
941	dmu_tx_t *tx;
942	uint64_t txg;
943	uint64_t zil_blksz, wsz;
944	int i, error;
945
946	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
947		zilc = (zil_chain_t *)lwb->lwb_buf;
948		bp = &zilc->zc_next_blk;
949	} else {
950		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
951		bp = &zilc->zc_next_blk;
952	}
953
954	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
955
956	/*
957	 * Allocate the next block and save its address in this block
958	 * before writing it in order to establish the log chain.
959	 * Note that if the allocation of nlwb synced before we wrote
960	 * the block that points at it (lwb), we'd leak it if we crashed.
961	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
962	 * We dirty the dataset to ensure that zil_sync() will be called
963	 * to clean up in the event of allocation failure or I/O failure.
964	 */
965	tx = dmu_tx_create(zilog->zl_os);
966	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
967	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
968	txg = dmu_tx_get_txg(tx);
969
970	lwb->lwb_tx = tx;
971
972	/*
973	 * Log blocks are pre-allocated. Here we select the size of the next
974	 * block, based on size used in the last block.
975	 * - first find the smallest bucket that will fit the block from a
976	 *   limited set of block sizes. This is because it's faster to write
977	 *   blocks allocated from the same metaslab as they are adjacent or
978	 *   close.
979	 * - next find the maximum from the new suggested size and an array of
980	 *   previous sizes. This lessens a picket fence effect of wrongly
981	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
982	 *   requests.
983	 *
984	 * Note we only write what is used, but we can't just allocate
985	 * the maximum block size because we can exhaust the available
986	 * pool log space.
987	 */
988	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
989	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
990		continue;
991	zil_blksz = zil_block_buckets[i];
992	if (zil_blksz == UINT64_MAX)
993		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
994	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
995	for (i = 0; i < ZIL_PREV_BLKS; i++)
996		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
997	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
998
999	BP_ZERO(bp);
1000	/* pass the old blkptr in order to spread log blocks across devs */
1001	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
1002	    USE_SLOG(zilog));
1003	if (error == 0) {
1004		ASSERT3U(bp->blk_birth, ==, txg);
1005		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1006		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1007
1008		/*
1009		 * Allocate a new log write buffer (lwb).
1010		 */
1011		nlwb = zil_alloc_lwb(zilog, bp, txg);
1012
1013		/* Record the block for later vdev flushing */
1014		zil_add_block(zilog, &lwb->lwb_blk);
1015	}
1016
1017	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1018		/* For Slim ZIL only write what is used. */
1019		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1020		ASSERT3U(wsz, <=, lwb->lwb_sz);
1021		zio_shrink(lwb->lwb_zio, wsz);
1022
1023	} else {
1024		wsz = lwb->lwb_sz;
1025	}
1026
1027	zilc->zc_pad = 0;
1028	zilc->zc_nused = lwb->lwb_nused;
1029	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1030
1031	/*
1032	 * clear unused data for security
1033	 */
1034	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1035
1036	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1037
1038	/*
1039	 * If there was an allocation failure then nlwb will be null which
1040	 * forces a txg_wait_synced().
1041	 */
1042	return (nlwb);
1043}
1044
1045static lwb_t *
1046zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1047{
1048	lr_t *lrc = &itx->itx_lr; /* common log record */
1049	lr_write_t *lrw = (lr_write_t *)lrc;
1050	char *lr_buf;
1051	uint64_t txg = lrc->lrc_txg;
1052	uint64_t reclen = lrc->lrc_reclen;
1053	uint64_t dlen = 0;
1054
1055	if (lwb == NULL)
1056		return (NULL);
1057
1058	ASSERT(lwb->lwb_buf != NULL);
1059	ASSERT(zilog_is_dirty(zilog) ||
1060	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1061
1062	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1063		dlen = P2ROUNDUP_TYPED(
1064		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1065
1066	zilog->zl_cur_used += (reclen + dlen);
1067
1068	zil_lwb_write_init(zilog, lwb);
1069
1070	/*
1071	 * If this record won't fit in the current log block, start a new one.
1072	 */
1073	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1074		lwb = zil_lwb_write_start(zilog, lwb);
1075		if (lwb == NULL)
1076			return (NULL);
1077		zil_lwb_write_init(zilog, lwb);
1078		ASSERT(LWB_EMPTY(lwb));
1079		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1080			txg_wait_synced(zilog->zl_dmu_pool, txg);
1081			return (lwb);
1082		}
1083	}
1084
1085	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1086	bcopy(lrc, lr_buf, reclen);
1087	lrc = (lr_t *)lr_buf;
1088	lrw = (lr_write_t *)lrc;
1089
1090	/*
1091	 * If it's a write, fetch the data or get its blkptr as appropriate.
1092	 */
1093	if (lrc->lrc_txtype == TX_WRITE) {
1094		if (txg > spa_freeze_txg(zilog->zl_spa))
1095			txg_wait_synced(zilog->zl_dmu_pool, txg);
1096		if (itx->itx_wr_state != WR_COPIED) {
1097			char *dbuf;
1098			int error;
1099
1100			if (dlen) {
1101				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1102				dbuf = lr_buf + reclen;
1103				lrw->lr_common.lrc_reclen += dlen;
1104			} else {
1105				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1106				dbuf = NULL;
1107			}
1108			error = zilog->zl_get_data(
1109			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1110			if (error == EIO) {
1111				txg_wait_synced(zilog->zl_dmu_pool, txg);
1112				return (lwb);
1113			}
1114			if (error != 0) {
1115				ASSERT(error == ENOENT || error == EEXIST ||
1116				    error == EALREADY);
1117				return (lwb);
1118			}
1119		}
1120	}
1121
1122	/*
1123	 * We're actually making an entry, so update lrc_seq to be the
1124	 * log record sequence number.  Note that this is generally not
1125	 * equal to the itx sequence number because not all transactions
1126	 * are synchronous, and sometimes spa_sync() gets there first.
1127	 */
1128	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1129	lwb->lwb_nused += reclen + dlen;
1130	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1131	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1132	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1133
1134	return (lwb);
1135}
1136
1137itx_t *
1138zil_itx_create(uint64_t txtype, size_t lrsize)
1139{
1140	itx_t *itx;
1141
1142	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1143
1144	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1145	itx->itx_lr.lrc_txtype = txtype;
1146	itx->itx_lr.lrc_reclen = lrsize;
1147	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1148	itx->itx_lr.lrc_seq = 0;	/* defensive */
1149	itx->itx_sync = B_TRUE;		/* default is synchronous */
1150
1151	return (itx);
1152}
1153
1154void
1155zil_itx_destroy(itx_t *itx)
1156{
1157	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1158}
1159
1160/*
1161 * Free up the sync and async itxs. The itxs_t has already been detached
1162 * so no locks are needed.
1163 */
1164static void
1165zil_itxg_clean(itxs_t *itxs)
1166{
1167	itx_t *itx;
1168	list_t *list;
1169	avl_tree_t *t;
1170	void *cookie;
1171	itx_async_node_t *ian;
1172
1173	list = &itxs->i_sync_list;
1174	while ((itx = list_head(list)) != NULL) {
1175		list_remove(list, itx);
1176		kmem_free(itx, offsetof(itx_t, itx_lr) +
1177		    itx->itx_lr.lrc_reclen);
1178	}
1179
1180	cookie = NULL;
1181	t = &itxs->i_async_tree;
1182	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1183		list = &ian->ia_list;
1184		while ((itx = list_head(list)) != NULL) {
1185			list_remove(list, itx);
1186			kmem_free(itx, offsetof(itx_t, itx_lr) +
1187			    itx->itx_lr.lrc_reclen);
1188		}
1189		list_destroy(list);
1190		kmem_free(ian, sizeof (itx_async_node_t));
1191	}
1192	avl_destroy(t);
1193
1194	kmem_free(itxs, sizeof (itxs_t));
1195}
1196
1197static int
1198zil_aitx_compare(const void *x1, const void *x2)
1199{
1200	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1201	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1202
1203	if (o1 < o2)
1204		return (-1);
1205	if (o1 > o2)
1206		return (1);
1207
1208	return (0);
1209}
1210
1211/*
1212 * Remove all async itx with the given oid.
1213 */
1214static void
1215zil_remove_async(zilog_t *zilog, uint64_t oid)
1216{
1217	uint64_t otxg, txg;
1218	itx_async_node_t *ian;
1219	avl_tree_t *t;
1220	avl_index_t where;
1221	list_t clean_list;
1222	itx_t *itx;
1223
1224	ASSERT(oid != 0);
1225	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1226
1227	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1228		otxg = ZILTEST_TXG;
1229	else
1230		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1231
1232	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1233		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1234
1235		mutex_enter(&itxg->itxg_lock);
1236		if (itxg->itxg_txg != txg) {
1237			mutex_exit(&itxg->itxg_lock);
1238			continue;
1239		}
1240
1241		/*
1242		 * Locate the object node and append its list.
1243		 */
1244		t = &itxg->itxg_itxs->i_async_tree;
1245		ian = avl_find(t, &oid, &where);
1246		if (ian != NULL)
1247			list_move_tail(&clean_list, &ian->ia_list);
1248		mutex_exit(&itxg->itxg_lock);
1249	}
1250	while ((itx = list_head(&clean_list)) != NULL) {
1251		list_remove(&clean_list, itx);
1252		kmem_free(itx, offsetof(itx_t, itx_lr) +
1253		    itx->itx_lr.lrc_reclen);
1254	}
1255	list_destroy(&clean_list);
1256}
1257
1258void
1259zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1260{
1261	uint64_t txg;
1262	itxg_t *itxg;
1263	itxs_t *itxs, *clean = NULL;
1264
1265	/*
1266	 * Object ids can be re-instantiated in the next txg so
1267	 * remove any async transactions to avoid future leaks.
1268	 * This can happen if a fsync occurs on the re-instantiated
1269	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1270	 * the new file data and flushes a write record for the old object.
1271	 */
1272	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1273		zil_remove_async(zilog, itx->itx_oid);
1274
1275	/*
1276	 * Ensure the data of a renamed file is committed before the rename.
1277	 */
1278	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1279		zil_async_to_sync(zilog, itx->itx_oid);
1280
1281	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1282		txg = ZILTEST_TXG;
1283	else
1284		txg = dmu_tx_get_txg(tx);
1285
1286	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1287	mutex_enter(&itxg->itxg_lock);
1288	itxs = itxg->itxg_itxs;
1289	if (itxg->itxg_txg != txg) {
1290		if (itxs != NULL) {
1291			/*
1292			 * The zil_clean callback hasn't got around to cleaning
1293			 * this itxg. Save the itxs for release below.
1294			 * This should be rare.
1295			 */
1296			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1297			itxg->itxg_sod = 0;
1298			clean = itxg->itxg_itxs;
1299		}
1300		ASSERT(itxg->itxg_sod == 0);
1301		itxg->itxg_txg = txg;
1302		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1303
1304		list_create(&itxs->i_sync_list, sizeof (itx_t),
1305		    offsetof(itx_t, itx_node));
1306		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1307		    sizeof (itx_async_node_t),
1308		    offsetof(itx_async_node_t, ia_node));
1309	}
1310	if (itx->itx_sync) {
1311		list_insert_tail(&itxs->i_sync_list, itx);
1312		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1313		itxg->itxg_sod += itx->itx_sod;
1314	} else {
1315		avl_tree_t *t = &itxs->i_async_tree;
1316		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1317		itx_async_node_t *ian;
1318		avl_index_t where;
1319
1320		ian = avl_find(t, &foid, &where);
1321		if (ian == NULL) {
1322			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1323			list_create(&ian->ia_list, sizeof (itx_t),
1324			    offsetof(itx_t, itx_node));
1325			ian->ia_foid = foid;
1326			avl_insert(t, ian, where);
1327		}
1328		list_insert_tail(&ian->ia_list, itx);
1329	}
1330
1331	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1332	zilog_dirty(zilog, txg);
1333	mutex_exit(&itxg->itxg_lock);
1334
1335	/* Release the old itxs now we've dropped the lock */
1336	if (clean != NULL)
1337		zil_itxg_clean(clean);
1338}
1339
1340/*
1341 * If there are any in-memory intent log transactions which have now been
1342 * synced then start up a taskq to free them. We should only do this after we
1343 * have written out the uberblocks (i.e. txg has been comitted) so that
1344 * don't inadvertently clean out in-memory log records that would be required
1345 * by zil_commit().
1346 */
1347void
1348zil_clean(zilog_t *zilog, uint64_t synced_txg)
1349{
1350	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1351	itxs_t *clean_me;
1352
1353	mutex_enter(&itxg->itxg_lock);
1354	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1355		mutex_exit(&itxg->itxg_lock);
1356		return;
1357	}
1358	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1359	ASSERT(itxg->itxg_txg != 0);
1360	ASSERT(zilog->zl_clean_taskq != NULL);
1361	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1362	itxg->itxg_sod = 0;
1363	clean_me = itxg->itxg_itxs;
1364	itxg->itxg_itxs = NULL;
1365	itxg->itxg_txg = 0;
1366	mutex_exit(&itxg->itxg_lock);
1367	/*
1368	 * Preferably start a task queue to free up the old itxs but
1369	 * if taskq_dispatch can't allocate resources to do that then
1370	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1371	 * created a bad performance problem.
1372	 */
1373	if (taskq_dispatch(zilog->zl_clean_taskq,
1374	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1375		zil_itxg_clean(clean_me);
1376}
1377
1378/*
1379 * Get the list of itxs to commit into zl_itx_commit_list.
1380 */
1381static void
1382zil_get_commit_list(zilog_t *zilog)
1383{
1384	uint64_t otxg, txg;
1385	list_t *commit_list = &zilog->zl_itx_commit_list;
1386	uint64_t push_sod = 0;
1387
1388	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1389		otxg = ZILTEST_TXG;
1390	else
1391		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1392
1393	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1394		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1395
1396		mutex_enter(&itxg->itxg_lock);
1397		if (itxg->itxg_txg != txg) {
1398			mutex_exit(&itxg->itxg_lock);
1399			continue;
1400		}
1401
1402		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1403		push_sod += itxg->itxg_sod;
1404		itxg->itxg_sod = 0;
1405
1406		mutex_exit(&itxg->itxg_lock);
1407	}
1408	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1409}
1410
1411/*
1412 * Move the async itxs for a specified object to commit into sync lists.
1413 */
1414static void
1415zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1416{
1417	uint64_t otxg, txg;
1418	itx_async_node_t *ian;
1419	avl_tree_t *t;
1420	avl_index_t where;
1421
1422	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1423		otxg = ZILTEST_TXG;
1424	else
1425		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1426
1427	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1428		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1429
1430		mutex_enter(&itxg->itxg_lock);
1431		if (itxg->itxg_txg != txg) {
1432			mutex_exit(&itxg->itxg_lock);
1433			continue;
1434		}
1435
1436		/*
1437		 * If a foid is specified then find that node and append its
1438		 * list. Otherwise walk the tree appending all the lists
1439		 * to the sync list. We add to the end rather than the
1440		 * beginning to ensure the create has happened.
1441		 */
1442		t = &itxg->itxg_itxs->i_async_tree;
1443		if (foid != 0) {
1444			ian = avl_find(t, &foid, &where);
1445			if (ian != NULL) {
1446				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1447				    &ian->ia_list);
1448			}
1449		} else {
1450			void *cookie = NULL;
1451
1452			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1453				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1454				    &ian->ia_list);
1455				list_destroy(&ian->ia_list);
1456				kmem_free(ian, sizeof (itx_async_node_t));
1457			}
1458		}
1459		mutex_exit(&itxg->itxg_lock);
1460	}
1461}
1462
1463static void
1464zil_commit_writer(zilog_t *zilog)
1465{
1466	uint64_t txg;
1467	itx_t *itx;
1468	lwb_t *lwb;
1469	spa_t *spa = zilog->zl_spa;
1470	int error = 0;
1471
1472	ASSERT(zilog->zl_root_zio == NULL);
1473
1474	mutex_exit(&zilog->zl_lock);
1475
1476	zil_get_commit_list(zilog);
1477
1478	/*
1479	 * Return if there's nothing to commit before we dirty the fs by
1480	 * calling zil_create().
1481	 */
1482	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1483		mutex_enter(&zilog->zl_lock);
1484		return;
1485	}
1486
1487	if (zilog->zl_suspend) {
1488		lwb = NULL;
1489	} else {
1490		lwb = list_tail(&zilog->zl_lwb_list);
1491		if (lwb == NULL)
1492			lwb = zil_create(zilog);
1493	}
1494
1495	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1496	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1497		txg = itx->itx_lr.lrc_txg;
1498		ASSERT(txg);
1499
1500		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1501			lwb = zil_lwb_commit(zilog, itx, lwb);
1502		list_remove(&zilog->zl_itx_commit_list, itx);
1503		kmem_free(itx, offsetof(itx_t, itx_lr)
1504		    + itx->itx_lr.lrc_reclen);
1505	}
1506	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1507
1508	/* write the last block out */
1509	if (lwb != NULL && lwb->lwb_zio != NULL)
1510		lwb = zil_lwb_write_start(zilog, lwb);
1511
1512	zilog->zl_cur_used = 0;
1513
1514	/*
1515	 * Wait if necessary for the log blocks to be on stable storage.
1516	 */
1517	if (zilog->zl_root_zio) {
1518		error = zio_wait(zilog->zl_root_zio);
1519		zilog->zl_root_zio = NULL;
1520		zil_flush_vdevs(zilog);
1521	}
1522
1523	if (error || lwb == NULL)
1524		txg_wait_synced(zilog->zl_dmu_pool, 0);
1525
1526	mutex_enter(&zilog->zl_lock);
1527
1528	/*
1529	 * Remember the highest committed log sequence number for ztest.
1530	 * We only update this value when all the log writes succeeded,
1531	 * because ztest wants to ASSERT that it got the whole log chain.
1532	 */
1533	if (error == 0 && lwb != NULL)
1534		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1535}
1536
1537/*
1538 * Commit zfs transactions to stable storage.
1539 * If foid is 0 push out all transactions, otherwise push only those
1540 * for that object or might reference that object.
1541 *
1542 * itxs are committed in batches. In a heavily stressed zil there will be
1543 * a commit writer thread who is writing out a bunch of itxs to the log
1544 * for a set of committing threads (cthreads) in the same batch as the writer.
1545 * Those cthreads are all waiting on the same cv for that batch.
1546 *
1547 * There will also be a different and growing batch of threads that are
1548 * waiting to commit (qthreads). When the committing batch completes
1549 * a transition occurs such that the cthreads exit and the qthreads become
1550 * cthreads. One of the new cthreads becomes the writer thread for the
1551 * batch. Any new threads arriving become new qthreads.
1552 *
1553 * Only 2 condition variables are needed and there's no transition
1554 * between the two cvs needed. They just flip-flop between qthreads
1555 * and cthreads.
1556 *
1557 * Using this scheme we can efficiently wakeup up only those threads
1558 * that have been committed.
1559 */
1560void
1561zil_commit(zilog_t *zilog, uint64_t foid)
1562{
1563	uint64_t mybatch;
1564
1565	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1566		return;
1567
1568	/* move the async itxs for the foid to the sync queues */
1569	zil_async_to_sync(zilog, foid);
1570
1571	mutex_enter(&zilog->zl_lock);
1572	mybatch = zilog->zl_next_batch;
1573	while (zilog->zl_writer) {
1574		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1575		if (mybatch <= zilog->zl_com_batch) {
1576			mutex_exit(&zilog->zl_lock);
1577			return;
1578		}
1579	}
1580
1581	zilog->zl_next_batch++;
1582	zilog->zl_writer = B_TRUE;
1583	zil_commit_writer(zilog);
1584	zilog->zl_com_batch = mybatch;
1585	zilog->zl_writer = B_FALSE;
1586	mutex_exit(&zilog->zl_lock);
1587
1588	/* wake up one thread to become the next writer */
1589	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1590
1591	/* wake up all threads waiting for this batch to be committed */
1592	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1593}
1594
1595/*
1596 * Called in syncing context to free committed log blocks and update log header.
1597 */
1598void
1599zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1600{
1601	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1602	uint64_t txg = dmu_tx_get_txg(tx);
1603	spa_t *spa = zilog->zl_spa;
1604	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1605	lwb_t *lwb;
1606
1607	/*
1608	 * We don't zero out zl_destroy_txg, so make sure we don't try
1609	 * to destroy it twice.
1610	 */
1611	if (spa_sync_pass(spa) != 1)
1612		return;
1613
1614	mutex_enter(&zilog->zl_lock);
1615
1616	ASSERT(zilog->zl_stop_sync == 0);
1617
1618	if (*replayed_seq != 0) {
1619		ASSERT(zh->zh_replay_seq < *replayed_seq);
1620		zh->zh_replay_seq = *replayed_seq;
1621		*replayed_seq = 0;
1622	}
1623
1624	if (zilog->zl_destroy_txg == txg) {
1625		blkptr_t blk = zh->zh_log;
1626
1627		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1628
1629		bzero(zh, sizeof (zil_header_t));
1630		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1631
1632		if (zilog->zl_keep_first) {
1633			/*
1634			 * If this block was part of log chain that couldn't
1635			 * be claimed because a device was missing during
1636			 * zil_claim(), but that device later returns,
1637			 * then this block could erroneously appear valid.
1638			 * To guard against this, assign a new GUID to the new
1639			 * log chain so it doesn't matter what blk points to.
1640			 */
1641			zil_init_log_chain(zilog, &blk);
1642			zh->zh_log = blk;
1643		}
1644	}
1645
1646	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1647		zh->zh_log = lwb->lwb_blk;
1648		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1649			break;
1650		list_remove(&zilog->zl_lwb_list, lwb);
1651		zio_free_zil(spa, txg, &lwb->lwb_blk);
1652		kmem_cache_free(zil_lwb_cache, lwb);
1653
1654		/*
1655		 * If we don't have anything left in the lwb list then
1656		 * we've had an allocation failure and we need to zero
1657		 * out the zil_header blkptr so that we don't end
1658		 * up freeing the same block twice.
1659		 */
1660		if (list_head(&zilog->zl_lwb_list) == NULL)
1661			BP_ZERO(&zh->zh_log);
1662	}
1663	mutex_exit(&zilog->zl_lock);
1664}
1665
1666void
1667zil_init(void)
1668{
1669	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1670	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1671}
1672
1673void
1674zil_fini(void)
1675{
1676	kmem_cache_destroy(zil_lwb_cache);
1677}
1678
1679void
1680zil_set_sync(zilog_t *zilog, uint64_t sync)
1681{
1682	zilog->zl_sync = sync;
1683}
1684
1685void
1686zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1687{
1688	zilog->zl_logbias = logbias;
1689}
1690
1691zilog_t *
1692zil_alloc(objset_t *os, zil_header_t *zh_phys)
1693{
1694	zilog_t *zilog;
1695
1696	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1697
1698	zilog->zl_header = zh_phys;
1699	zilog->zl_os = os;
1700	zilog->zl_spa = dmu_objset_spa(os);
1701	zilog->zl_dmu_pool = dmu_objset_pool(os);
1702	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1703	zilog->zl_logbias = dmu_objset_logbias(os);
1704	zilog->zl_sync = dmu_objset_syncprop(os);
1705	zilog->zl_next_batch = 1;
1706
1707	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1708
1709	for (int i = 0; i < TXG_SIZE; i++) {
1710		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1711		    MUTEX_DEFAULT, NULL);
1712	}
1713
1714	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1715	    offsetof(lwb_t, lwb_node));
1716
1717	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1718	    offsetof(itx_t, itx_node));
1719
1720	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1721
1722	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1723	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1724
1725	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1726	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1727	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1728	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1729
1730	return (zilog);
1731}
1732
1733void
1734zil_free(zilog_t *zilog)
1735{
1736	zilog->zl_stop_sync = 1;
1737
1738	ASSERT0(zilog->zl_suspend);
1739	ASSERT0(zilog->zl_suspending);
1740
1741	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1742	list_destroy(&zilog->zl_lwb_list);
1743
1744	avl_destroy(&zilog->zl_vdev_tree);
1745	mutex_destroy(&zilog->zl_vdev_lock);
1746
1747	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1748	list_destroy(&zilog->zl_itx_commit_list);
1749
1750	for (int i = 0; i < TXG_SIZE; i++) {
1751		/*
1752		 * It's possible for an itx to be generated that doesn't dirty
1753		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1754		 * callback to remove the entry. We remove those here.
1755		 *
1756		 * Also free up the ziltest itxs.
1757		 */
1758		if (zilog->zl_itxg[i].itxg_itxs)
1759			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1760		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1761	}
1762
1763	mutex_destroy(&zilog->zl_lock);
1764
1765	cv_destroy(&zilog->zl_cv_writer);
1766	cv_destroy(&zilog->zl_cv_suspend);
1767	cv_destroy(&zilog->zl_cv_batch[0]);
1768	cv_destroy(&zilog->zl_cv_batch[1]);
1769
1770	kmem_free(zilog, sizeof (zilog_t));
1771}
1772
1773/*
1774 * Open an intent log.
1775 */
1776zilog_t *
1777zil_open(objset_t *os, zil_get_data_t *get_data)
1778{
1779	zilog_t *zilog = dmu_objset_zil(os);
1780
1781	ASSERT(zilog->zl_clean_taskq == NULL);
1782	ASSERT(zilog->zl_get_data == NULL);
1783	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1784
1785	zilog->zl_get_data = get_data;
1786	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1787	    2, 2, TASKQ_PREPOPULATE);
1788
1789	return (zilog);
1790}
1791
1792/*
1793 * Close an intent log.
1794 */
1795void
1796zil_close(zilog_t *zilog)
1797{
1798	lwb_t *lwb;
1799	uint64_t txg = 0;
1800
1801	zil_commit(zilog, 0); /* commit all itx */
1802
1803	/*
1804	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1805	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1806	 * callbacks have occurred that may clean the zil.  Only then can we
1807	 * destroy the zl_clean_taskq.
1808	 */
1809	mutex_enter(&zilog->zl_lock);
1810	lwb = list_tail(&zilog->zl_lwb_list);
1811	if (lwb != NULL)
1812		txg = lwb->lwb_max_txg;
1813	mutex_exit(&zilog->zl_lock);
1814	if (txg)
1815		txg_wait_synced(zilog->zl_dmu_pool, txg);
1816	ASSERT(!zilog_is_dirty(zilog));
1817
1818	taskq_destroy(zilog->zl_clean_taskq);
1819	zilog->zl_clean_taskq = NULL;
1820	zilog->zl_get_data = NULL;
1821
1822	/*
1823	 * We should have only one LWB left on the list; remove it now.
1824	 */
1825	mutex_enter(&zilog->zl_lock);
1826	lwb = list_head(&zilog->zl_lwb_list);
1827	if (lwb != NULL) {
1828		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1829		list_remove(&zilog->zl_lwb_list, lwb);
1830		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1831		kmem_cache_free(zil_lwb_cache, lwb);
1832	}
1833	mutex_exit(&zilog->zl_lock);
1834}
1835
1836static char *suspend_tag = "zil suspending";
1837
1838/*
1839 * Suspend an intent log.  While in suspended mode, we still honor
1840 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1841 * On old version pools, we suspend the log briefly when taking a
1842 * snapshot so that it will have an empty intent log.
1843 *
1844 * Long holds are not really intended to be used the way we do here --
1845 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1846 * could fail.  Therefore we take pains to only put a long hold if it is
1847 * actually necessary.  Fortunately, it will only be necessary if the
1848 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1849 * will already have a long hold, so we are not really making things any worse.
1850 *
1851 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1852 * zvol_state_t), and use their mechanism to prevent their hold from being
1853 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1854 * very little gain.
1855 *
1856 * if cookiep == NULL, this does both the suspend & resume.
1857 * Otherwise, it returns with the dataset "long held", and the cookie
1858 * should be passed into zil_resume().
1859 */
1860int
1861zil_suspend(const char *osname, void **cookiep)
1862{
1863	objset_t *os;
1864	zilog_t *zilog;
1865	const zil_header_t *zh;
1866	int error;
1867
1868	error = dmu_objset_hold(osname, suspend_tag, &os);
1869	if (error != 0)
1870		return (error);
1871	zilog = dmu_objset_zil(os);
1872
1873	mutex_enter(&zilog->zl_lock);
1874	zh = zilog->zl_header;
1875
1876	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1877		mutex_exit(&zilog->zl_lock);
1878		dmu_objset_rele(os, suspend_tag);
1879		return (SET_ERROR(EBUSY));
1880	}
1881
1882	/*
1883	 * Don't put a long hold in the cases where we can avoid it.  This
1884	 * is when there is no cookie so we are doing a suspend & resume
1885	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1886	 * for the suspend because it's already suspended, or there's no ZIL.
1887	 */
1888	if (cookiep == NULL && !zilog->zl_suspending &&
1889	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1890		mutex_exit(&zilog->zl_lock);
1891		dmu_objset_rele(os, suspend_tag);
1892		return (0);
1893	}
1894
1895	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1896	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1897
1898	zilog->zl_suspend++;
1899
1900	if (zilog->zl_suspend > 1) {
1901		/*
1902		 * Someone else is already suspending it.
1903		 * Just wait for them to finish.
1904		 */
1905
1906		while (zilog->zl_suspending)
1907			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1908		mutex_exit(&zilog->zl_lock);
1909
1910		if (cookiep == NULL)
1911			zil_resume(os);
1912		else
1913			*cookiep = os;
1914		return (0);
1915	}
1916
1917	/*
1918	 * If there is no pointer to an on-disk block, this ZIL must not
1919	 * be active (e.g. filesystem not mounted), so there's nothing
1920	 * to clean up.
1921	 */
1922	if (BP_IS_HOLE(&zh->zh_log)) {
1923		ASSERT(cookiep != NULL); /* fast path already handled */
1924
1925		*cookiep = os;
1926		mutex_exit(&zilog->zl_lock);
1927		return (0);
1928	}
1929
1930	zilog->zl_suspending = B_TRUE;
1931	mutex_exit(&zilog->zl_lock);
1932
1933	zil_commit(zilog, 0);
1934
1935	zil_destroy(zilog, B_FALSE);
1936
1937	mutex_enter(&zilog->zl_lock);
1938	zilog->zl_suspending = B_FALSE;
1939	cv_broadcast(&zilog->zl_cv_suspend);
1940	mutex_exit(&zilog->zl_lock);
1941
1942	if (cookiep == NULL)
1943		zil_resume(os);
1944	else
1945		*cookiep = os;
1946	return (0);
1947}
1948
1949void
1950zil_resume(void *cookie)
1951{
1952	objset_t *os = cookie;
1953	zilog_t *zilog = dmu_objset_zil(os);
1954
1955	mutex_enter(&zilog->zl_lock);
1956	ASSERT(zilog->zl_suspend != 0);
1957	zilog->zl_suspend--;
1958	mutex_exit(&zilog->zl_lock);
1959	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1960	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1961}
1962
1963typedef struct zil_replay_arg {
1964	zil_replay_func_t **zr_replay;
1965	void		*zr_arg;
1966	boolean_t	zr_byteswap;
1967	char		*zr_lr;
1968} zil_replay_arg_t;
1969
1970static int
1971zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1972{
1973	char name[ZFS_MAX_DATASET_NAME_LEN];
1974
1975	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1976
1977	dmu_objset_name(zilog->zl_os, name);
1978
1979	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1980	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1981	    (u_longlong_t)lr->lrc_seq,
1982	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1983	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1984
1985	return (error);
1986}
1987
1988static int
1989zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1990{
1991	zil_replay_arg_t *zr = zra;
1992	const zil_header_t *zh = zilog->zl_header;
1993	uint64_t reclen = lr->lrc_reclen;
1994	uint64_t txtype = lr->lrc_txtype;
1995	int error = 0;
1996
1997	zilog->zl_replaying_seq = lr->lrc_seq;
1998
1999	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2000		return (0);
2001
2002	if (lr->lrc_txg < claim_txg)		/* already committed */
2003		return (0);
2004
2005	/* Strip case-insensitive bit, still present in log record */
2006	txtype &= ~TX_CI;
2007
2008	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2009		return (zil_replay_error(zilog, lr, EINVAL));
2010
2011	/*
2012	 * If this record type can be logged out of order, the object
2013	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2014	 */
2015	if (TX_OOO(txtype)) {
2016		error = dmu_object_info(zilog->zl_os,
2017		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2018		if (error == ENOENT || error == EEXIST)
2019			return (0);
2020	}
2021
2022	/*
2023	 * Make a copy of the data so we can revise and extend it.
2024	 */
2025	bcopy(lr, zr->zr_lr, reclen);
2026
2027	/*
2028	 * If this is a TX_WRITE with a blkptr, suck in the data.
2029	 */
2030	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2031		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2032		    zr->zr_lr + reclen);
2033		if (error != 0)
2034			return (zil_replay_error(zilog, lr, error));
2035	}
2036
2037	/*
2038	 * The log block containing this lr may have been byteswapped
2039	 * so that we can easily examine common fields like lrc_txtype.
2040	 * However, the log is a mix of different record types, and only the
2041	 * replay vectors know how to byteswap their records.  Therefore, if
2042	 * the lr was byteswapped, undo it before invoking the replay vector.
2043	 */
2044	if (zr->zr_byteswap)
2045		byteswap_uint64_array(zr->zr_lr, reclen);
2046
2047	/*
2048	 * We must now do two things atomically: replay this log record,
2049	 * and update the log header sequence number to reflect the fact that
2050	 * we did so. At the end of each replay function the sequence number
2051	 * is updated if we are in replay mode.
2052	 */
2053	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2054	if (error != 0) {
2055		/*
2056		 * The DMU's dnode layer doesn't see removes until the txg
2057		 * commits, so a subsequent claim can spuriously fail with
2058		 * EEXIST. So if we receive any error we try syncing out
2059		 * any removes then retry the transaction.  Note that we
2060		 * specify B_FALSE for byteswap now, so we don't do it twice.
2061		 */
2062		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2063		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2064		if (error != 0)
2065			return (zil_replay_error(zilog, lr, error));
2066	}
2067	return (0);
2068}
2069
2070/* ARGSUSED */
2071static int
2072zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2073{
2074	zilog->zl_replay_blks++;
2075
2076	return (0);
2077}
2078
2079/*
2080 * If this dataset has a non-empty intent log, replay it and destroy it.
2081 */
2082void
2083zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2084{
2085	zilog_t *zilog = dmu_objset_zil(os);
2086	const zil_header_t *zh = zilog->zl_header;
2087	zil_replay_arg_t zr;
2088
2089	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2090		zil_destroy(zilog, B_TRUE);
2091		return;
2092	}
2093
2094	zr.zr_replay = replay_func;
2095	zr.zr_arg = arg;
2096	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2097	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2098
2099	/*
2100	 * Wait for in-progress removes to sync before starting replay.
2101	 */
2102	txg_wait_synced(zilog->zl_dmu_pool, 0);
2103
2104	zilog->zl_replay = B_TRUE;
2105	zilog->zl_replay_time = ddi_get_lbolt();
2106	ASSERT(zilog->zl_replay_blks == 0);
2107	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2108	    zh->zh_claim_txg);
2109	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2110
2111	zil_destroy(zilog, B_FALSE);
2112	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2113	zilog->zl_replay = B_FALSE;
2114}
2115
2116boolean_t
2117zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2118{
2119	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2120		return (B_TRUE);
2121
2122	if (zilog->zl_replay) {
2123		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2124		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2125		    zilog->zl_replaying_seq;
2126		return (B_TRUE);
2127	}
2128
2129	return (B_FALSE);
2130}
2131
2132/* ARGSUSED */
2133int
2134zil_vdev_offline(const char *osname, void *arg)
2135{
2136	int error;
2137
2138	error = zil_suspend(osname, NULL);
2139	if (error != 0)
2140		return (SET_ERROR(EEXIST));
2141	return (0);
2142}
2143