zil.c revision 249195
1697Spaul/*
21156Sjkh * CDDL HEADER START
31156Sjkh *
41156Sjkh * The contents of this file are subject to the terms of the
51156Sjkh * Common Development and Distribution License (the "License").
61156Sjkh * You may not use this file except in compliance with the License.
71156Sjkh *
81156Sjkh * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
91156Sjkh * or http://www.opensolaris.org/os/licensing.
101156Sjkh * See the License for the specific language governing permissions
111156Sjkh * and limitations under the License.
121156Sjkh *
131156Sjkh * When distributing Covered Code, include this CDDL HEADER in each
141156Sjkh * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
151156Sjkh * If applicable, add the following below this CDDL HEADER, with the
161156Sjkh * fields enclosed by brackets "[]" replaced with your own identifying
1713771Smpp * information: Portions Copyright [yyyy] [name of copyright owner]
181156Sjkh *
191156Sjkh * CDDL HEADER END
201156Sjkh */
211156Sjkh/*
221156Sjkh * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
231156Sjkh * Copyright (c) 2013 by Delphix. All rights reserved.
241156Sjkh */
251156Sjkh
261156Sjkh/* Portions Copyright 2010 Robert Milkowski */
271156Sjkh
281156Sjkh#include <sys/zfs_context.h>
291156Sjkh#include <sys/spa.h>
3050473Speter#include <sys/dmu.h>
311156Sjkh#include <sys/zap.h>
321156Sjkh#include <sys/arc.h>
331156Sjkh#include <sys/stat.h>
34697Spaul#include <sys/resource.h>
35697Spaul#include <sys/zil.h>
361156Sjkh#include <sys/zil_impl.h>
371156Sjkh#include <sys/dsl_dataset.h>
381156Sjkh#include <sys/vdev_impl.h>
39697Spaul#include <sys/dmu_tx.h>
40697Spaul#include <sys/dsl_pool.h>
41102284Speter
42102284Speter/*
43697Spaul * The zfs intent log (ZIL) saves transaction records of system calls
4436311Sdfr * that change the file system in memory with enough information
4536311Sdfr * to be able to replay them. These are stored in memory until
4636311Sdfr * either the DMU transaction group (txg) commits them to the stable pool
4736311Sdfr * and they can be discarded, or they are flushed to the stable log
4836311Sdfr * (also in the pool) due to a fsync, O_DSYNC or other synchronous
4936311Sdfr * requirement. In the event of a panic or power fail then those log
5036311Sdfr * records (transactions) are replayed.
5136311Sdfr *
5236311Sdfr * There is one ZIL per file system. Its on-disk (pool) format consists
5336311Sdfr * of 3 parts:
5436311Sdfr *
5536311Sdfr * 	- ZIL header
5636311Sdfr * 	- ZIL blocks
5736311Sdfr * 	- ZIL records
5836311Sdfr *
5966043Sjdp * A log record holds a system call transaction. Log blocks can
6066043Sjdp * hold many log records and the blocks are chained together.
6136311Sdfr * Each ZIL block contains a block pointer (blkptr_t) to the next
6236311Sdfr * ZIL block in the chain. The ZIL header points to the first
6336311Sdfr * block in the chain. Note there is not a fixed place in the pool
6436311Sdfr * to hold blocks. They are dynamically allocated and freed as
6536311Sdfr * needed from the blocks available. Figure X shows the ZIL structure:
6636311Sdfr */
6736311Sdfr
68102284Speter/*
69 * This global ZIL switch affects all pools
70 */
71int zil_replay_disable = 0;    /* disable intent logging replay */
72SYSCTL_DECL(_vfs_zfs);
73TUNABLE_INT("vfs.zfs.zil_replay_disable", &zil_replay_disable);
74SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RW,
75    &zil_replay_disable, 0, "Disable intent logging replay");
76
77/*
78 * Tunable parameter for debugging or performance analysis.  Setting
79 * zfs_nocacheflush will cause corruption on power loss if a volatile
80 * out-of-order write cache is enabled.
81 */
82boolean_t zfs_nocacheflush = B_FALSE;
83TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
84SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
85    &zfs_nocacheflush, 0, "Disable cache flush");
86boolean_t zfs_notrim = B_TRUE;
87TUNABLE_INT("vfs.zfs.trim_disable", &zfs_notrim);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, trim_disable, CTLFLAG_RDTUN, &zfs_notrim, 0,
89    "Disable trim");
90
91static kmem_cache_t *zil_lwb_cache;
92
93static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
94
95#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
96    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
97
98
99/*
100 * ziltest is by and large an ugly hack, but very useful in
101 * checking replay without tedious work.
102 * When running ziltest we want to keep all itx's and so maintain
103 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
104 * We subtract TXG_CONCURRENT_STATES to allow for common code.
105 */
106#define	ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
107
108static int
109zil_bp_compare(const void *x1, const void *x2)
110{
111	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
112	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
113
114	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
115		return (-1);
116	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
117		return (1);
118
119	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
120		return (-1);
121	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
122		return (1);
123
124	return (0);
125}
126
127static void
128zil_bp_tree_init(zilog_t *zilog)
129{
130	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
131	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
132}
133
134static void
135zil_bp_tree_fini(zilog_t *zilog)
136{
137	avl_tree_t *t = &zilog->zl_bp_tree;
138	zil_bp_node_t *zn;
139	void *cookie = NULL;
140
141	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
142		kmem_free(zn, sizeof (zil_bp_node_t));
143
144	avl_destroy(t);
145}
146
147int
148zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
149{
150	avl_tree_t *t = &zilog->zl_bp_tree;
151	const dva_t *dva = BP_IDENTITY(bp);
152	zil_bp_node_t *zn;
153	avl_index_t where;
154
155	if (avl_find(t, dva, &where) != NULL)
156		return (SET_ERROR(EEXIST));
157
158	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
159	zn->zn_dva = *dva;
160	avl_insert(t, zn, where);
161
162	return (0);
163}
164
165static zil_header_t *
166zil_header_in_syncing_context(zilog_t *zilog)
167{
168	return ((zil_header_t *)zilog->zl_header);
169}
170
171static void
172zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
173{
174	zio_cksum_t *zc = &bp->blk_cksum;
175
176	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
177	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
178	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
179	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
180}
181
182/*
183 * Read a log block and make sure it's valid.
184 */
185static int
186zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
187    char **end)
188{
189	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
190	uint32_t aflags = ARC_WAIT;
191	arc_buf_t *abuf = NULL;
192	zbookmark_t zb;
193	int error;
194
195	if (zilog->zl_header->zh_claim_txg == 0)
196		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
197
198	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
199		zio_flags |= ZIO_FLAG_SPECULATIVE;
200
201	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
202	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
203
204	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
205	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
206
207	if (error == 0) {
208		zio_cksum_t cksum = bp->blk_cksum;
209
210		/*
211		 * Validate the checksummed log block.
212		 *
213		 * Sequence numbers should be... sequential.  The checksum
214		 * verifier for the next block should be bp's checksum plus 1.
215		 *
216		 * Also check the log chain linkage and size used.
217		 */
218		cksum.zc_word[ZIL_ZC_SEQ]++;
219
220		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
221			zil_chain_t *zilc = abuf->b_data;
222			char *lr = (char *)(zilc + 1);
223			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
224
225			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
226			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
227				error = SET_ERROR(ECKSUM);
228			} else {
229				bcopy(lr, dst, len);
230				*end = (char *)dst + len;
231				*nbp = zilc->zc_next_blk;
232			}
233		} else {
234			char *lr = abuf->b_data;
235			uint64_t size = BP_GET_LSIZE(bp);
236			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
237
238			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
239			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
240			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
241				error = SET_ERROR(ECKSUM);
242			} else {
243				bcopy(lr, dst, zilc->zc_nused);
244				*end = (char *)dst + zilc->zc_nused;
245				*nbp = zilc->zc_next_blk;
246			}
247		}
248
249		VERIFY(arc_buf_remove_ref(abuf, &abuf));
250	}
251
252	return (error);
253}
254
255/*
256 * Read a TX_WRITE log data block.
257 */
258static int
259zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
260{
261	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
262	const blkptr_t *bp = &lr->lr_blkptr;
263	uint32_t aflags = ARC_WAIT;
264	arc_buf_t *abuf = NULL;
265	zbookmark_t zb;
266	int error;
267
268	if (BP_IS_HOLE(bp)) {
269		if (wbuf != NULL)
270			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
271		return (0);
272	}
273
274	if (zilog->zl_header->zh_claim_txg == 0)
275		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
276
277	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
278	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
279
280	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
281	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
282
283	if (error == 0) {
284		if (wbuf != NULL)
285			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
286		(void) arc_buf_remove_ref(abuf, &abuf);
287	}
288
289	return (error);
290}
291
292/*
293 * Parse the intent log, and call parse_func for each valid record within.
294 */
295int
296zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
297    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
298{
299	const zil_header_t *zh = zilog->zl_header;
300	boolean_t claimed = !!zh->zh_claim_txg;
301	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
302	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
303	uint64_t max_blk_seq = 0;
304	uint64_t max_lr_seq = 0;
305	uint64_t blk_count = 0;
306	uint64_t lr_count = 0;
307	blkptr_t blk, next_blk;
308	char *lrbuf, *lrp;
309	int error = 0;
310
311	/*
312	 * Old logs didn't record the maximum zh_claim_lr_seq.
313	 */
314	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
315		claim_lr_seq = UINT64_MAX;
316
317	/*
318	 * Starting at the block pointed to by zh_log we read the log chain.
319	 * For each block in the chain we strongly check that block to
320	 * ensure its validity.  We stop when an invalid block is found.
321	 * For each block pointer in the chain we call parse_blk_func().
322	 * For each record in each valid block we call parse_lr_func().
323	 * If the log has been claimed, stop if we encounter a sequence
324	 * number greater than the highest claimed sequence number.
325	 */
326	lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
327	zil_bp_tree_init(zilog);
328
329	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
330		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
331		int reclen;
332		char *end;
333
334		if (blk_seq > claim_blk_seq)
335			break;
336		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
337			break;
338		ASSERT3U(max_blk_seq, <, blk_seq);
339		max_blk_seq = blk_seq;
340		blk_count++;
341
342		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
343			break;
344
345		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
346		if (error != 0)
347			break;
348
349		for (lrp = lrbuf; lrp < end; lrp += reclen) {
350			lr_t *lr = (lr_t *)lrp;
351			reclen = lr->lrc_reclen;
352			ASSERT3U(reclen, >=, sizeof (lr_t));
353			if (lr->lrc_seq > claim_lr_seq)
354				goto done;
355			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
356				goto done;
357			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
358			max_lr_seq = lr->lrc_seq;
359			lr_count++;
360		}
361	}
362done:
363	zilog->zl_parse_error = error;
364	zilog->zl_parse_blk_seq = max_blk_seq;
365	zilog->zl_parse_lr_seq = max_lr_seq;
366	zilog->zl_parse_blk_count = blk_count;
367	zilog->zl_parse_lr_count = lr_count;
368
369	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
370	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
371
372	zil_bp_tree_fini(zilog);
373	zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
374
375	return (error);
376}
377
378static int
379zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
380{
381	/*
382	 * Claim log block if not already committed and not already claimed.
383	 * If tx == NULL, just verify that the block is claimable.
384	 */
385	if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0)
386		return (0);
387
388	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
389	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
390	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
391}
392
393static int
394zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
395{
396	lr_write_t *lr = (lr_write_t *)lrc;
397	int error;
398
399	if (lrc->lrc_txtype != TX_WRITE)
400		return (0);
401
402	/*
403	 * If the block is not readable, don't claim it.  This can happen
404	 * in normal operation when a log block is written to disk before
405	 * some of the dmu_sync() blocks it points to.  In this case, the
406	 * transaction cannot have been committed to anyone (we would have
407	 * waited for all writes to be stable first), so it is semantically
408	 * correct to declare this the end of the log.
409	 */
410	if (lr->lr_blkptr.blk_birth >= first_txg &&
411	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
412		return (error);
413	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
414}
415
416/* ARGSUSED */
417static int
418zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
419{
420	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
421
422	return (0);
423}
424
425static int
426zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
427{
428	lr_write_t *lr = (lr_write_t *)lrc;
429	blkptr_t *bp = &lr->lr_blkptr;
430
431	/*
432	 * If we previously claimed it, we need to free it.
433	 */
434	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
435	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0)
436		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
437
438	return (0);
439}
440
441static lwb_t *
442zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
443{
444	lwb_t *lwb;
445
446	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
447	lwb->lwb_zilog = zilog;
448	lwb->lwb_blk = *bp;
449	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
450	lwb->lwb_max_txg = txg;
451	lwb->lwb_zio = NULL;
452	lwb->lwb_tx = NULL;
453	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
454		lwb->lwb_nused = sizeof (zil_chain_t);
455		lwb->lwb_sz = BP_GET_LSIZE(bp);
456	} else {
457		lwb->lwb_nused = 0;
458		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
459	}
460
461	mutex_enter(&zilog->zl_lock);
462	list_insert_tail(&zilog->zl_lwb_list, lwb);
463	mutex_exit(&zilog->zl_lock);
464
465	return (lwb);
466}
467
468/*
469 * Called when we create in-memory log transactions so that we know
470 * to cleanup the itxs at the end of spa_sync().
471 */
472void
473zilog_dirty(zilog_t *zilog, uint64_t txg)
474{
475	dsl_pool_t *dp = zilog->zl_dmu_pool;
476	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
477
478	if (dsl_dataset_is_snapshot(ds))
479		panic("dirtying snapshot!");
480
481	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
482		/* up the hold count until we can be written out */
483		dmu_buf_add_ref(ds->ds_dbuf, zilog);
484	}
485}
486
487boolean_t
488zilog_is_dirty(zilog_t *zilog)
489{
490	dsl_pool_t *dp = zilog->zl_dmu_pool;
491
492	for (int t = 0; t < TXG_SIZE; t++) {
493		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
494			return (B_TRUE);
495	}
496	return (B_FALSE);
497}
498
499/*
500 * Create an on-disk intent log.
501 */
502static lwb_t *
503zil_create(zilog_t *zilog)
504{
505	const zil_header_t *zh = zilog->zl_header;
506	lwb_t *lwb = NULL;
507	uint64_t txg = 0;
508	dmu_tx_t *tx = NULL;
509	blkptr_t blk;
510	int error = 0;
511
512	/*
513	 * Wait for any previous destroy to complete.
514	 */
515	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
516
517	ASSERT(zh->zh_claim_txg == 0);
518	ASSERT(zh->zh_replay_seq == 0);
519
520	blk = zh->zh_log;
521
522	/*
523	 * Allocate an initial log block if:
524	 *    - there isn't one already
525	 *    - the existing block is the wrong endianess
526	 */
527	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
528		tx = dmu_tx_create(zilog->zl_os);
529		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
530		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
531		txg = dmu_tx_get_txg(tx);
532
533		if (!BP_IS_HOLE(&blk)) {
534			zio_free_zil(zilog->zl_spa, txg, &blk);
535			BP_ZERO(&blk);
536		}
537
538		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
539		    ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
540
541		if (error == 0)
542			zil_init_log_chain(zilog, &blk);
543	}
544
545	/*
546	 * Allocate a log write buffer (lwb) for the first log block.
547	 */
548	if (error == 0)
549		lwb = zil_alloc_lwb(zilog, &blk, txg);
550
551	/*
552	 * If we just allocated the first log block, commit our transaction
553	 * and wait for zil_sync() to stuff the block poiner into zh_log.
554	 * (zh is part of the MOS, so we cannot modify it in open context.)
555	 */
556	if (tx != NULL) {
557		dmu_tx_commit(tx);
558		txg_wait_synced(zilog->zl_dmu_pool, txg);
559	}
560
561	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
562
563	return (lwb);
564}
565
566/*
567 * In one tx, free all log blocks and clear the log header.
568 * If keep_first is set, then we're replaying a log with no content.
569 * We want to keep the first block, however, so that the first
570 * synchronous transaction doesn't require a txg_wait_synced()
571 * in zil_create().  We don't need to txg_wait_synced() here either
572 * when keep_first is set, because both zil_create() and zil_destroy()
573 * will wait for any in-progress destroys to complete.
574 */
575void
576zil_destroy(zilog_t *zilog, boolean_t keep_first)
577{
578	const zil_header_t *zh = zilog->zl_header;
579	lwb_t *lwb;
580	dmu_tx_t *tx;
581	uint64_t txg;
582
583	/*
584	 * Wait for any previous destroy to complete.
585	 */
586	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
587
588	zilog->zl_old_header = *zh;		/* debugging aid */
589
590	if (BP_IS_HOLE(&zh->zh_log))
591		return;
592
593	tx = dmu_tx_create(zilog->zl_os);
594	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
595	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
596	txg = dmu_tx_get_txg(tx);
597
598	mutex_enter(&zilog->zl_lock);
599
600	ASSERT3U(zilog->zl_destroy_txg, <, txg);
601	zilog->zl_destroy_txg = txg;
602	zilog->zl_keep_first = keep_first;
603
604	if (!list_is_empty(&zilog->zl_lwb_list)) {
605		ASSERT(zh->zh_claim_txg == 0);
606		VERIFY(!keep_first);
607		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
608			list_remove(&zilog->zl_lwb_list, lwb);
609			if (lwb->lwb_buf != NULL)
610				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
611			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
612			kmem_cache_free(zil_lwb_cache, lwb);
613		}
614	} else if (!keep_first) {
615		zil_destroy_sync(zilog, tx);
616	}
617	mutex_exit(&zilog->zl_lock);
618
619	dmu_tx_commit(tx);
620}
621
622void
623zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
624{
625	ASSERT(list_is_empty(&zilog->zl_lwb_list));
626	(void) zil_parse(zilog, zil_free_log_block,
627	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
628}
629
630int
631zil_claim(const char *osname, void *txarg)
632{
633	dmu_tx_t *tx = txarg;
634	uint64_t first_txg = dmu_tx_get_txg(tx);
635	zilog_t *zilog;
636	zil_header_t *zh;
637	objset_t *os;
638	int error;
639
640	error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
641	if (error != 0) {
642		cmn_err(CE_WARN, "can't open objset for %s", osname);
643		return (0);
644	}
645
646	zilog = dmu_objset_zil(os);
647	zh = zil_header_in_syncing_context(zilog);
648
649	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
650		if (!BP_IS_HOLE(&zh->zh_log))
651			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
652		BP_ZERO(&zh->zh_log);
653		dsl_dataset_dirty(dmu_objset_ds(os), tx);
654		dmu_objset_disown(os, FTAG);
655		return (0);
656	}
657
658	/*
659	 * Claim all log blocks if we haven't already done so, and remember
660	 * the highest claimed sequence number.  This ensures that if we can
661	 * read only part of the log now (e.g. due to a missing device),
662	 * but we can read the entire log later, we will not try to replay
663	 * or destroy beyond the last block we successfully claimed.
664	 */
665	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
666	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
667		(void) zil_parse(zilog, zil_claim_log_block,
668		    zil_claim_log_record, tx, first_txg);
669		zh->zh_claim_txg = first_txg;
670		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
671		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
672		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
673			zh->zh_flags |= ZIL_REPLAY_NEEDED;
674		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
675		dsl_dataset_dirty(dmu_objset_ds(os), tx);
676	}
677
678	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
679	dmu_objset_disown(os, FTAG);
680	return (0);
681}
682
683/*
684 * Check the log by walking the log chain.
685 * Checksum errors are ok as they indicate the end of the chain.
686 * Any other error (no device or read failure) returns an error.
687 */
688int
689zil_check_log_chain(const char *osname, void *tx)
690{
691	zilog_t *zilog;
692	objset_t *os;
693	blkptr_t *bp;
694	int error;
695
696	ASSERT(tx == NULL);
697
698	error = dmu_objset_hold(osname, FTAG, &os);
699	if (error != 0) {
700		cmn_err(CE_WARN, "can't open objset for %s", osname);
701		return (0);
702	}
703
704	zilog = dmu_objset_zil(os);
705	bp = (blkptr_t *)&zilog->zl_header->zh_log;
706
707	/*
708	 * Check the first block and determine if it's on a log device
709	 * which may have been removed or faulted prior to loading this
710	 * pool.  If so, there's no point in checking the rest of the log
711	 * as its content should have already been synced to the pool.
712	 */
713	if (!BP_IS_HOLE(bp)) {
714		vdev_t *vd;
715		boolean_t valid = B_TRUE;
716
717		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
718		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
719		if (vd->vdev_islog && vdev_is_dead(vd))
720			valid = vdev_log_state_valid(vd);
721		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
722
723		if (!valid) {
724			dmu_objset_rele(os, FTAG);
725			return (0);
726		}
727	}
728
729	/*
730	 * Because tx == NULL, zil_claim_log_block() will not actually claim
731	 * any blocks, but just determine whether it is possible to do so.
732	 * In addition to checking the log chain, zil_claim_log_block()
733	 * will invoke zio_claim() with a done func of spa_claim_notify(),
734	 * which will update spa_max_claim_txg.  See spa_load() for details.
735	 */
736	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
737	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
738
739	dmu_objset_rele(os, FTAG);
740
741	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
742}
743
744static int
745zil_vdev_compare(const void *x1, const void *x2)
746{
747	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
748	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
749
750	if (v1 < v2)
751		return (-1);
752	if (v1 > v2)
753		return (1);
754
755	return (0);
756}
757
758void
759zil_add_block(zilog_t *zilog, const blkptr_t *bp)
760{
761	avl_tree_t *t = &zilog->zl_vdev_tree;
762	avl_index_t where;
763	zil_vdev_node_t *zv, zvsearch;
764	int ndvas = BP_GET_NDVAS(bp);
765	int i;
766
767	if (zfs_nocacheflush)
768		return;
769
770	ASSERT(zilog->zl_writer);
771
772	/*
773	 * Even though we're zl_writer, we still need a lock because the
774	 * zl_get_data() callbacks may have dmu_sync() done callbacks
775	 * that will run concurrently.
776	 */
777	mutex_enter(&zilog->zl_vdev_lock);
778	for (i = 0; i < ndvas; i++) {
779		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
780		if (avl_find(t, &zvsearch, &where) == NULL) {
781			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
782			zv->zv_vdev = zvsearch.zv_vdev;
783			avl_insert(t, zv, where);
784		}
785	}
786	mutex_exit(&zilog->zl_vdev_lock);
787}
788
789static void
790zil_flush_vdevs(zilog_t *zilog)
791{
792	spa_t *spa = zilog->zl_spa;
793	avl_tree_t *t = &zilog->zl_vdev_tree;
794	void *cookie = NULL;
795	zil_vdev_node_t *zv;
796	zio_t *zio;
797
798	ASSERT(zilog->zl_writer);
799
800	/*
801	 * We don't need zl_vdev_lock here because we're the zl_writer,
802	 * and all zl_get_data() callbacks are done.
803	 */
804	if (avl_numnodes(t) == 0)
805		return;
806
807	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
808
809	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
810
811	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
812		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
813		if (vd != NULL)
814			zio_flush(zio, vd);
815		kmem_free(zv, sizeof (*zv));
816	}
817
818	/*
819	 * Wait for all the flushes to complete.  Not all devices actually
820	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
821	 */
822	(void) zio_wait(zio);
823
824	spa_config_exit(spa, SCL_STATE, FTAG);
825}
826
827/*
828 * Function called when a log block write completes
829 */
830static void
831zil_lwb_write_done(zio_t *zio)
832{
833	lwb_t *lwb = zio->io_private;
834	zilog_t *zilog = lwb->lwb_zilog;
835	dmu_tx_t *tx = lwb->lwb_tx;
836
837	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
838	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
839	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
840	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
841	ASSERT(!BP_IS_GANG(zio->io_bp));
842	ASSERT(!BP_IS_HOLE(zio->io_bp));
843	ASSERT(zio->io_bp->blk_fill == 0);
844
845	/*
846	 * Ensure the lwb buffer pointer is cleared before releasing
847	 * the txg. If we have had an allocation failure and
848	 * the txg is waiting to sync then we want want zil_sync()
849	 * to remove the lwb so that it's not picked up as the next new
850	 * one in zil_commit_writer(). zil_sync() will only remove
851	 * the lwb if lwb_buf is null.
852	 */
853	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
854	mutex_enter(&zilog->zl_lock);
855	lwb->lwb_buf = NULL;
856	lwb->lwb_tx = NULL;
857	mutex_exit(&zilog->zl_lock);
858
859	/*
860	 * Now that we've written this log block, we have a stable pointer
861	 * to the next block in the chain, so it's OK to let the txg in
862	 * which we allocated the next block sync.
863	 */
864	dmu_tx_commit(tx);
865}
866
867/*
868 * Initialize the io for a log block.
869 */
870static void
871zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
872{
873	zbookmark_t zb;
874
875	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
876	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
877	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
878
879	if (zilog->zl_root_zio == NULL) {
880		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
881		    ZIO_FLAG_CANFAIL);
882	}
883	if (lwb->lwb_zio == NULL) {
884		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
885		    0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
886		    zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE,
887		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
888	}
889}
890
891/*
892 * Define a limited set of intent log block sizes.
893 * These must be a multiple of 4KB. Note only the amount used (again
894 * aligned to 4KB) actually gets written. However, we can't always just
895 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
896 */
897uint64_t zil_block_buckets[] = {
898    4096,		/* non TX_WRITE */
899    8192+4096,		/* data base */
900    32*1024 + 4096, 	/* NFS writes */
901    UINT64_MAX
902};
903
904/*
905 * Use the slog as long as the logbias is 'latency' and the current commit size
906 * is less than the limit or the total list size is less than 2X the limit.
907 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
908 */
909uint64_t zil_slog_limit = 1024 * 1024;
910#define	USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
911	(((zilog)->zl_cur_used < zil_slog_limit) || \
912	((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
913
914/*
915 * Start a log block write and advance to the next log block.
916 * Calls are serialized.
917 */
918static lwb_t *
919zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
920{
921	lwb_t *nlwb = NULL;
922	zil_chain_t *zilc;
923	spa_t *spa = zilog->zl_spa;
924	blkptr_t *bp;
925	dmu_tx_t *tx;
926	uint64_t txg;
927	uint64_t zil_blksz, wsz;
928	int i, error;
929
930	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
931		zilc = (zil_chain_t *)lwb->lwb_buf;
932		bp = &zilc->zc_next_blk;
933	} else {
934		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
935		bp = &zilc->zc_next_blk;
936	}
937
938	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
939
940	/*
941	 * Allocate the next block and save its address in this block
942	 * before writing it in order to establish the log chain.
943	 * Note that if the allocation of nlwb synced before we wrote
944	 * the block that points at it (lwb), we'd leak it if we crashed.
945	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
946	 * We dirty the dataset to ensure that zil_sync() will be called
947	 * to clean up in the event of allocation failure or I/O failure.
948	 */
949	tx = dmu_tx_create(zilog->zl_os);
950	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
951	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
952	txg = dmu_tx_get_txg(tx);
953
954	lwb->lwb_tx = tx;
955
956	/*
957	 * Log blocks are pre-allocated. Here we select the size of the next
958	 * block, based on size used in the last block.
959	 * - first find the smallest bucket that will fit the block from a
960	 *   limited set of block sizes. This is because it's faster to write
961	 *   blocks allocated from the same metaslab as they are adjacent or
962	 *   close.
963	 * - next find the maximum from the new suggested size and an array of
964	 *   previous sizes. This lessens a picket fence effect of wrongly
965	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
966	 *   requests.
967	 *
968	 * Note we only write what is used, but we can't just allocate
969	 * the maximum block size because we can exhaust the available
970	 * pool log space.
971	 */
972	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
973	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
974		continue;
975	zil_blksz = zil_block_buckets[i];
976	if (zil_blksz == UINT64_MAX)
977		zil_blksz = SPA_MAXBLOCKSIZE;
978	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
979	for (i = 0; i < ZIL_PREV_BLKS; i++)
980		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
981	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
982
983	BP_ZERO(bp);
984	/* pass the old blkptr in order to spread log blocks across devs */
985	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
986	    USE_SLOG(zilog));
987	if (error == 0) {
988		ASSERT3U(bp->blk_birth, ==, txg);
989		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
990		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
991
992		/*
993		 * Allocate a new log write buffer (lwb).
994		 */
995		nlwb = zil_alloc_lwb(zilog, bp, txg);
996
997		/* Record the block for later vdev flushing */
998		zil_add_block(zilog, &lwb->lwb_blk);
999	}
1000
1001	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1002		/* For Slim ZIL only write what is used. */
1003		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1004		ASSERT3U(wsz, <=, lwb->lwb_sz);
1005		zio_shrink(lwb->lwb_zio, wsz);
1006
1007	} else {
1008		wsz = lwb->lwb_sz;
1009	}
1010
1011	zilc->zc_pad = 0;
1012	zilc->zc_nused = lwb->lwb_nused;
1013	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1014
1015	/*
1016	 * clear unused data for security
1017	 */
1018	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1019
1020	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1021
1022	/*
1023	 * If there was an allocation failure then nlwb will be null which
1024	 * forces a txg_wait_synced().
1025	 */
1026	return (nlwb);
1027}
1028
1029static lwb_t *
1030zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1031{
1032	lr_t *lrc = &itx->itx_lr; /* common log record */
1033	lr_write_t *lrw = (lr_write_t *)lrc;
1034	char *lr_buf;
1035	uint64_t txg = lrc->lrc_txg;
1036	uint64_t reclen = lrc->lrc_reclen;
1037	uint64_t dlen = 0;
1038
1039	if (lwb == NULL)
1040		return (NULL);
1041
1042	ASSERT(lwb->lwb_buf != NULL);
1043	ASSERT(zilog_is_dirty(zilog) ||
1044	    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1045
1046	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1047		dlen = P2ROUNDUP_TYPED(
1048		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1049
1050	zilog->zl_cur_used += (reclen + dlen);
1051
1052	zil_lwb_write_init(zilog, lwb);
1053
1054	/*
1055	 * If this record won't fit in the current log block, start a new one.
1056	 */
1057	if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1058		lwb = zil_lwb_write_start(zilog, lwb);
1059		if (lwb == NULL)
1060			return (NULL);
1061		zil_lwb_write_init(zilog, lwb);
1062		ASSERT(LWB_EMPTY(lwb));
1063		if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1064			txg_wait_synced(zilog->zl_dmu_pool, txg);
1065			return (lwb);
1066		}
1067	}
1068
1069	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1070	bcopy(lrc, lr_buf, reclen);
1071	lrc = (lr_t *)lr_buf;
1072	lrw = (lr_write_t *)lrc;
1073
1074	/*
1075	 * If it's a write, fetch the data or get its blkptr as appropriate.
1076	 */
1077	if (lrc->lrc_txtype == TX_WRITE) {
1078		if (txg > spa_freeze_txg(zilog->zl_spa))
1079			txg_wait_synced(zilog->zl_dmu_pool, txg);
1080		if (itx->itx_wr_state != WR_COPIED) {
1081			char *dbuf;
1082			int error;
1083
1084			if (dlen) {
1085				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1086				dbuf = lr_buf + reclen;
1087				lrw->lr_common.lrc_reclen += dlen;
1088			} else {
1089				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1090				dbuf = NULL;
1091			}
1092			error = zilog->zl_get_data(
1093			    itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1094			if (error == EIO) {
1095				txg_wait_synced(zilog->zl_dmu_pool, txg);
1096				return (lwb);
1097			}
1098			if (error != 0) {
1099				ASSERT(error == ENOENT || error == EEXIST ||
1100				    error == EALREADY);
1101				return (lwb);
1102			}
1103		}
1104	}
1105
1106	/*
1107	 * We're actually making an entry, so update lrc_seq to be the
1108	 * log record sequence number.  Note that this is generally not
1109	 * equal to the itx sequence number because not all transactions
1110	 * are synchronous, and sometimes spa_sync() gets there first.
1111	 */
1112	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1113	lwb->lwb_nused += reclen + dlen;
1114	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1115	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1116	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1117
1118	return (lwb);
1119}
1120
1121itx_t *
1122zil_itx_create(uint64_t txtype, size_t lrsize)
1123{
1124	itx_t *itx;
1125
1126	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1127
1128	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1129	itx->itx_lr.lrc_txtype = txtype;
1130	itx->itx_lr.lrc_reclen = lrsize;
1131	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1132	itx->itx_lr.lrc_seq = 0;	/* defensive */
1133	itx->itx_sync = B_TRUE;		/* default is synchronous */
1134
1135	return (itx);
1136}
1137
1138void
1139zil_itx_destroy(itx_t *itx)
1140{
1141	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1142}
1143
1144/*
1145 * Free up the sync and async itxs. The itxs_t has already been detached
1146 * so no locks are needed.
1147 */
1148static void
1149zil_itxg_clean(itxs_t *itxs)
1150{
1151	itx_t *itx;
1152	list_t *list;
1153	avl_tree_t *t;
1154	void *cookie;
1155	itx_async_node_t *ian;
1156
1157	list = &itxs->i_sync_list;
1158	while ((itx = list_head(list)) != NULL) {
1159		list_remove(list, itx);
1160		kmem_free(itx, offsetof(itx_t, itx_lr) +
1161		    itx->itx_lr.lrc_reclen);
1162	}
1163
1164	cookie = NULL;
1165	t = &itxs->i_async_tree;
1166	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1167		list = &ian->ia_list;
1168		while ((itx = list_head(list)) != NULL) {
1169			list_remove(list, itx);
1170			kmem_free(itx, offsetof(itx_t, itx_lr) +
1171			    itx->itx_lr.lrc_reclen);
1172		}
1173		list_destroy(list);
1174		kmem_free(ian, sizeof (itx_async_node_t));
1175	}
1176	avl_destroy(t);
1177
1178	kmem_free(itxs, sizeof (itxs_t));
1179}
1180
1181static int
1182zil_aitx_compare(const void *x1, const void *x2)
1183{
1184	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1185	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1186
1187	if (o1 < o2)
1188		return (-1);
1189	if (o1 > o2)
1190		return (1);
1191
1192	return (0);
1193}
1194
1195/*
1196 * Remove all async itx with the given oid.
1197 */
1198static void
1199zil_remove_async(zilog_t *zilog, uint64_t oid)
1200{
1201	uint64_t otxg, txg;
1202	itx_async_node_t *ian;
1203	avl_tree_t *t;
1204	avl_index_t where;
1205	list_t clean_list;
1206	itx_t *itx;
1207
1208	ASSERT(oid != 0);
1209	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1210
1211	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1212		otxg = ZILTEST_TXG;
1213	else
1214		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1215
1216	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1217		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1218
1219		mutex_enter(&itxg->itxg_lock);
1220		if (itxg->itxg_txg != txg) {
1221			mutex_exit(&itxg->itxg_lock);
1222			continue;
1223		}
1224
1225		/*
1226		 * Locate the object node and append its list.
1227		 */
1228		t = &itxg->itxg_itxs->i_async_tree;
1229		ian = avl_find(t, &oid, &where);
1230		if (ian != NULL)
1231			list_move_tail(&clean_list, &ian->ia_list);
1232		mutex_exit(&itxg->itxg_lock);
1233	}
1234	while ((itx = list_head(&clean_list)) != NULL) {
1235		list_remove(&clean_list, itx);
1236		kmem_free(itx, offsetof(itx_t, itx_lr) +
1237		    itx->itx_lr.lrc_reclen);
1238	}
1239	list_destroy(&clean_list);
1240}
1241
1242void
1243zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1244{
1245	uint64_t txg;
1246	itxg_t *itxg;
1247	itxs_t *itxs, *clean = NULL;
1248
1249	/*
1250	 * Object ids can be re-instantiated in the next txg so
1251	 * remove any async transactions to avoid future leaks.
1252	 * This can happen if a fsync occurs on the re-instantiated
1253	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1254	 * the new file data and flushes a write record for the old object.
1255	 */
1256	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1257		zil_remove_async(zilog, itx->itx_oid);
1258
1259	/*
1260	 * Ensure the data of a renamed file is committed before the rename.
1261	 */
1262	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1263		zil_async_to_sync(zilog, itx->itx_oid);
1264
1265	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1266		txg = ZILTEST_TXG;
1267	else
1268		txg = dmu_tx_get_txg(tx);
1269
1270	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1271	mutex_enter(&itxg->itxg_lock);
1272	itxs = itxg->itxg_itxs;
1273	if (itxg->itxg_txg != txg) {
1274		if (itxs != NULL) {
1275			/*
1276			 * The zil_clean callback hasn't got around to cleaning
1277			 * this itxg. Save the itxs for release below.
1278			 * This should be rare.
1279			 */
1280			atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1281			itxg->itxg_sod = 0;
1282			clean = itxg->itxg_itxs;
1283		}
1284		ASSERT(itxg->itxg_sod == 0);
1285		itxg->itxg_txg = txg;
1286		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1287
1288		list_create(&itxs->i_sync_list, sizeof (itx_t),
1289		    offsetof(itx_t, itx_node));
1290		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1291		    sizeof (itx_async_node_t),
1292		    offsetof(itx_async_node_t, ia_node));
1293	}
1294	if (itx->itx_sync) {
1295		list_insert_tail(&itxs->i_sync_list, itx);
1296		atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1297		itxg->itxg_sod += itx->itx_sod;
1298	} else {
1299		avl_tree_t *t = &itxs->i_async_tree;
1300		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1301		itx_async_node_t *ian;
1302		avl_index_t where;
1303
1304		ian = avl_find(t, &foid, &where);
1305		if (ian == NULL) {
1306			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1307			list_create(&ian->ia_list, sizeof (itx_t),
1308			    offsetof(itx_t, itx_node));
1309			ian->ia_foid = foid;
1310			avl_insert(t, ian, where);
1311		}
1312		list_insert_tail(&ian->ia_list, itx);
1313	}
1314
1315	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1316	zilog_dirty(zilog, txg);
1317	mutex_exit(&itxg->itxg_lock);
1318
1319	/* Release the old itxs now we've dropped the lock */
1320	if (clean != NULL)
1321		zil_itxg_clean(clean);
1322}
1323
1324/*
1325 * If there are any in-memory intent log transactions which have now been
1326 * synced then start up a taskq to free them. We should only do this after we
1327 * have written out the uberblocks (i.e. txg has been comitted) so that
1328 * don't inadvertently clean out in-memory log records that would be required
1329 * by zil_commit().
1330 */
1331void
1332zil_clean(zilog_t *zilog, uint64_t synced_txg)
1333{
1334	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1335	itxs_t *clean_me;
1336
1337	mutex_enter(&itxg->itxg_lock);
1338	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1339		mutex_exit(&itxg->itxg_lock);
1340		return;
1341	}
1342	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1343	ASSERT(itxg->itxg_txg != 0);
1344	ASSERT(zilog->zl_clean_taskq != NULL);
1345	atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1346	itxg->itxg_sod = 0;
1347	clean_me = itxg->itxg_itxs;
1348	itxg->itxg_itxs = NULL;
1349	itxg->itxg_txg = 0;
1350	mutex_exit(&itxg->itxg_lock);
1351	/*
1352	 * Preferably start a task queue to free up the old itxs but
1353	 * if taskq_dispatch can't allocate resources to do that then
1354	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1355	 * created a bad performance problem.
1356	 */
1357	if (taskq_dispatch(zilog->zl_clean_taskq,
1358	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1359		zil_itxg_clean(clean_me);
1360}
1361
1362/*
1363 * Get the list of itxs to commit into zl_itx_commit_list.
1364 */
1365static void
1366zil_get_commit_list(zilog_t *zilog)
1367{
1368	uint64_t otxg, txg;
1369	list_t *commit_list = &zilog->zl_itx_commit_list;
1370	uint64_t push_sod = 0;
1371
1372	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1373		otxg = ZILTEST_TXG;
1374	else
1375		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1376
1377	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1378		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1379
1380		mutex_enter(&itxg->itxg_lock);
1381		if (itxg->itxg_txg != txg) {
1382			mutex_exit(&itxg->itxg_lock);
1383			continue;
1384		}
1385
1386		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1387		push_sod += itxg->itxg_sod;
1388		itxg->itxg_sod = 0;
1389
1390		mutex_exit(&itxg->itxg_lock);
1391	}
1392	atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1393}
1394
1395/*
1396 * Move the async itxs for a specified object to commit into sync lists.
1397 */
1398static void
1399zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1400{
1401	uint64_t otxg, txg;
1402	itx_async_node_t *ian;
1403	avl_tree_t *t;
1404	avl_index_t where;
1405
1406	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1407		otxg = ZILTEST_TXG;
1408	else
1409		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1410
1411	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1412		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1413
1414		mutex_enter(&itxg->itxg_lock);
1415		if (itxg->itxg_txg != txg) {
1416			mutex_exit(&itxg->itxg_lock);
1417			continue;
1418		}
1419
1420		/*
1421		 * If a foid is specified then find that node and append its
1422		 * list. Otherwise walk the tree appending all the lists
1423		 * to the sync list. We add to the end rather than the
1424		 * beginning to ensure the create has happened.
1425		 */
1426		t = &itxg->itxg_itxs->i_async_tree;
1427		if (foid != 0) {
1428			ian = avl_find(t, &foid, &where);
1429			if (ian != NULL) {
1430				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1431				    &ian->ia_list);
1432			}
1433		} else {
1434			void *cookie = NULL;
1435
1436			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1437				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1438				    &ian->ia_list);
1439				list_destroy(&ian->ia_list);
1440				kmem_free(ian, sizeof (itx_async_node_t));
1441			}
1442		}
1443		mutex_exit(&itxg->itxg_lock);
1444	}
1445}
1446
1447static void
1448zil_commit_writer(zilog_t *zilog)
1449{
1450	uint64_t txg;
1451	itx_t *itx;
1452	lwb_t *lwb;
1453	spa_t *spa = zilog->zl_spa;
1454	int error = 0;
1455
1456	ASSERT(zilog->zl_root_zio == NULL);
1457
1458	mutex_exit(&zilog->zl_lock);
1459
1460	zil_get_commit_list(zilog);
1461
1462	/*
1463	 * Return if there's nothing to commit before we dirty the fs by
1464	 * calling zil_create().
1465	 */
1466	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1467		mutex_enter(&zilog->zl_lock);
1468		return;
1469	}
1470
1471	if (zilog->zl_suspend) {
1472		lwb = NULL;
1473	} else {
1474		lwb = list_tail(&zilog->zl_lwb_list);
1475		if (lwb == NULL)
1476			lwb = zil_create(zilog);
1477	}
1478
1479	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1480	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1481		txg = itx->itx_lr.lrc_txg;
1482		ASSERT(txg);
1483
1484		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1485			lwb = zil_lwb_commit(zilog, itx, lwb);
1486		list_remove(&zilog->zl_itx_commit_list, itx);
1487		kmem_free(itx, offsetof(itx_t, itx_lr)
1488		    + itx->itx_lr.lrc_reclen);
1489	}
1490	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1491
1492	/* write the last block out */
1493	if (lwb != NULL && lwb->lwb_zio != NULL)
1494		lwb = zil_lwb_write_start(zilog, lwb);
1495
1496	zilog->zl_cur_used = 0;
1497
1498	/*
1499	 * Wait if necessary for the log blocks to be on stable storage.
1500	 */
1501	if (zilog->zl_root_zio) {
1502		error = zio_wait(zilog->zl_root_zio);
1503		zilog->zl_root_zio = NULL;
1504		zil_flush_vdevs(zilog);
1505	}
1506
1507	if (error || lwb == NULL)
1508		txg_wait_synced(zilog->zl_dmu_pool, 0);
1509
1510	mutex_enter(&zilog->zl_lock);
1511
1512	/*
1513	 * Remember the highest committed log sequence number for ztest.
1514	 * We only update this value when all the log writes succeeded,
1515	 * because ztest wants to ASSERT that it got the whole log chain.
1516	 */
1517	if (error == 0 && lwb != NULL)
1518		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1519}
1520
1521/*
1522 * Commit zfs transactions to stable storage.
1523 * If foid is 0 push out all transactions, otherwise push only those
1524 * for that object or might reference that object.
1525 *
1526 * itxs are committed in batches. In a heavily stressed zil there will be
1527 * a commit writer thread who is writing out a bunch of itxs to the log
1528 * for a set of committing threads (cthreads) in the same batch as the writer.
1529 * Those cthreads are all waiting on the same cv for that batch.
1530 *
1531 * There will also be a different and growing batch of threads that are
1532 * waiting to commit (qthreads). When the committing batch completes
1533 * a transition occurs such that the cthreads exit and the qthreads become
1534 * cthreads. One of the new cthreads becomes the writer thread for the
1535 * batch. Any new threads arriving become new qthreads.
1536 *
1537 * Only 2 condition variables are needed and there's no transition
1538 * between the two cvs needed. They just flip-flop between qthreads
1539 * and cthreads.
1540 *
1541 * Using this scheme we can efficiently wakeup up only those threads
1542 * that have been committed.
1543 */
1544void
1545zil_commit(zilog_t *zilog, uint64_t foid)
1546{
1547	uint64_t mybatch;
1548
1549	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1550		return;
1551
1552	/* move the async itxs for the foid to the sync queues */
1553	zil_async_to_sync(zilog, foid);
1554
1555	mutex_enter(&zilog->zl_lock);
1556	mybatch = zilog->zl_next_batch;
1557	while (zilog->zl_writer) {
1558		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1559		if (mybatch <= zilog->zl_com_batch) {
1560			mutex_exit(&zilog->zl_lock);
1561			return;
1562		}
1563	}
1564
1565	zilog->zl_next_batch++;
1566	zilog->zl_writer = B_TRUE;
1567	zil_commit_writer(zilog);
1568	zilog->zl_com_batch = mybatch;
1569	zilog->zl_writer = B_FALSE;
1570	mutex_exit(&zilog->zl_lock);
1571
1572	/* wake up one thread to become the next writer */
1573	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1574
1575	/* wake up all threads waiting for this batch to be committed */
1576	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1577}
1578
1579/*
1580 * Called in syncing context to free committed log blocks and update log header.
1581 */
1582void
1583zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1584{
1585	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1586	uint64_t txg = dmu_tx_get_txg(tx);
1587	spa_t *spa = zilog->zl_spa;
1588	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1589	lwb_t *lwb;
1590
1591	/*
1592	 * We don't zero out zl_destroy_txg, so make sure we don't try
1593	 * to destroy it twice.
1594	 */
1595	if (spa_sync_pass(spa) != 1)
1596		return;
1597
1598	mutex_enter(&zilog->zl_lock);
1599
1600	ASSERT(zilog->zl_stop_sync == 0);
1601
1602	if (*replayed_seq != 0) {
1603		ASSERT(zh->zh_replay_seq < *replayed_seq);
1604		zh->zh_replay_seq = *replayed_seq;
1605		*replayed_seq = 0;
1606	}
1607
1608	if (zilog->zl_destroy_txg == txg) {
1609		blkptr_t blk = zh->zh_log;
1610
1611		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1612
1613		bzero(zh, sizeof (zil_header_t));
1614		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1615
1616		if (zilog->zl_keep_first) {
1617			/*
1618			 * If this block was part of log chain that couldn't
1619			 * be claimed because a device was missing during
1620			 * zil_claim(), but that device later returns,
1621			 * then this block could erroneously appear valid.
1622			 * To guard against this, assign a new GUID to the new
1623			 * log chain so it doesn't matter what blk points to.
1624			 */
1625			zil_init_log_chain(zilog, &blk);
1626			zh->zh_log = blk;
1627		}
1628	}
1629
1630	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1631		zh->zh_log = lwb->lwb_blk;
1632		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1633			break;
1634		list_remove(&zilog->zl_lwb_list, lwb);
1635		zio_free_zil(spa, txg, &lwb->lwb_blk);
1636		kmem_cache_free(zil_lwb_cache, lwb);
1637
1638		/*
1639		 * If we don't have anything left in the lwb list then
1640		 * we've had an allocation failure and we need to zero
1641		 * out the zil_header blkptr so that we don't end
1642		 * up freeing the same block twice.
1643		 */
1644		if (list_head(&zilog->zl_lwb_list) == NULL)
1645			BP_ZERO(&zh->zh_log);
1646	}
1647	mutex_exit(&zilog->zl_lock);
1648}
1649
1650void
1651zil_init(void)
1652{
1653	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1654	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1655}
1656
1657void
1658zil_fini(void)
1659{
1660	kmem_cache_destroy(zil_lwb_cache);
1661}
1662
1663void
1664zil_set_sync(zilog_t *zilog, uint64_t sync)
1665{
1666	zilog->zl_sync = sync;
1667}
1668
1669void
1670zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1671{
1672	zilog->zl_logbias = logbias;
1673}
1674
1675zilog_t *
1676zil_alloc(objset_t *os, zil_header_t *zh_phys)
1677{
1678	zilog_t *zilog;
1679
1680	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1681
1682	zilog->zl_header = zh_phys;
1683	zilog->zl_os = os;
1684	zilog->zl_spa = dmu_objset_spa(os);
1685	zilog->zl_dmu_pool = dmu_objset_pool(os);
1686	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1687	zilog->zl_logbias = dmu_objset_logbias(os);
1688	zilog->zl_sync = dmu_objset_syncprop(os);
1689	zilog->zl_next_batch = 1;
1690
1691	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1692
1693	for (int i = 0; i < TXG_SIZE; i++) {
1694		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1695		    MUTEX_DEFAULT, NULL);
1696	}
1697
1698	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1699	    offsetof(lwb_t, lwb_node));
1700
1701	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1702	    offsetof(itx_t, itx_node));
1703
1704	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1705
1706	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1707	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1708
1709	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1710	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1711	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1712	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1713
1714	return (zilog);
1715}
1716
1717void
1718zil_free(zilog_t *zilog)
1719{
1720	zilog->zl_stop_sync = 1;
1721
1722	ASSERT0(zilog->zl_suspend);
1723	ASSERT0(zilog->zl_suspending);
1724
1725	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1726	list_destroy(&zilog->zl_lwb_list);
1727
1728	avl_destroy(&zilog->zl_vdev_tree);
1729	mutex_destroy(&zilog->zl_vdev_lock);
1730
1731	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1732	list_destroy(&zilog->zl_itx_commit_list);
1733
1734	for (int i = 0; i < TXG_SIZE; i++) {
1735		/*
1736		 * It's possible for an itx to be generated that doesn't dirty
1737		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1738		 * callback to remove the entry. We remove those here.
1739		 *
1740		 * Also free up the ziltest itxs.
1741		 */
1742		if (zilog->zl_itxg[i].itxg_itxs)
1743			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1744		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1745	}
1746
1747	mutex_destroy(&zilog->zl_lock);
1748
1749	cv_destroy(&zilog->zl_cv_writer);
1750	cv_destroy(&zilog->zl_cv_suspend);
1751	cv_destroy(&zilog->zl_cv_batch[0]);
1752	cv_destroy(&zilog->zl_cv_batch[1]);
1753
1754	kmem_free(zilog, sizeof (zilog_t));
1755}
1756
1757/*
1758 * Open an intent log.
1759 */
1760zilog_t *
1761zil_open(objset_t *os, zil_get_data_t *get_data)
1762{
1763	zilog_t *zilog = dmu_objset_zil(os);
1764
1765	ASSERT(zilog->zl_clean_taskq == NULL);
1766	ASSERT(zilog->zl_get_data == NULL);
1767	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1768
1769	zilog->zl_get_data = get_data;
1770	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1771	    2, 2, TASKQ_PREPOPULATE);
1772
1773	return (zilog);
1774}
1775
1776/*
1777 * Close an intent log.
1778 */
1779void
1780zil_close(zilog_t *zilog)
1781{
1782	lwb_t *lwb;
1783	uint64_t txg = 0;
1784
1785	zil_commit(zilog, 0); /* commit all itx */
1786
1787	/*
1788	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1789	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1790	 * callbacks have occurred that may clean the zil.  Only then can we
1791	 * destroy the zl_clean_taskq.
1792	 */
1793	mutex_enter(&zilog->zl_lock);
1794	lwb = list_tail(&zilog->zl_lwb_list);
1795	if (lwb != NULL)
1796		txg = lwb->lwb_max_txg;
1797	mutex_exit(&zilog->zl_lock);
1798	if (txg)
1799		txg_wait_synced(zilog->zl_dmu_pool, txg);
1800	ASSERT(!zilog_is_dirty(zilog));
1801
1802	taskq_destroy(zilog->zl_clean_taskq);
1803	zilog->zl_clean_taskq = NULL;
1804	zilog->zl_get_data = NULL;
1805
1806	/*
1807	 * We should have only one LWB left on the list; remove it now.
1808	 */
1809	mutex_enter(&zilog->zl_lock);
1810	lwb = list_head(&zilog->zl_lwb_list);
1811	if (lwb != NULL) {
1812		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1813		list_remove(&zilog->zl_lwb_list, lwb);
1814		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1815		kmem_cache_free(zil_lwb_cache, lwb);
1816	}
1817	mutex_exit(&zilog->zl_lock);
1818}
1819
1820static char *suspend_tag = "zil suspending";
1821
1822/*
1823 * Suspend an intent log.  While in suspended mode, we still honor
1824 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1825 * On old version pools, we suspend the log briefly when taking a
1826 * snapshot so that it will have an empty intent log.
1827 *
1828 * Long holds are not really intended to be used the way we do here --
1829 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1830 * could fail.  Therefore we take pains to only put a long hold if it is
1831 * actually necessary.  Fortunately, it will only be necessary if the
1832 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1833 * will already have a long hold, so we are not really making things any worse.
1834 *
1835 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1836 * zvol_state_t), and use their mechanism to prevent their hold from being
1837 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1838 * very little gain.
1839 *
1840 * if cookiep == NULL, this does both the suspend & resume.
1841 * Otherwise, it returns with the dataset "long held", and the cookie
1842 * should be passed into zil_resume().
1843 */
1844int
1845zil_suspend(const char *osname, void **cookiep)
1846{
1847	objset_t *os;
1848	zilog_t *zilog;
1849	const zil_header_t *zh;
1850	int error;
1851
1852	error = dmu_objset_hold(osname, suspend_tag, &os);
1853	if (error != 0)
1854		return (error);
1855	zilog = dmu_objset_zil(os);
1856
1857	mutex_enter(&zilog->zl_lock);
1858	zh = zilog->zl_header;
1859
1860	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1861		mutex_exit(&zilog->zl_lock);
1862		dmu_objset_rele(os, suspend_tag);
1863		return (SET_ERROR(EBUSY));
1864	}
1865
1866	/*
1867	 * Don't put a long hold in the cases where we can avoid it.  This
1868	 * is when there is no cookie so we are doing a suspend & resume
1869	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1870	 * for the suspend because it's already suspended, or there's no ZIL.
1871	 */
1872	if (cookiep == NULL && !zilog->zl_suspending &&
1873	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1874		mutex_exit(&zilog->zl_lock);
1875		dmu_objset_rele(os, suspend_tag);
1876		return (0);
1877	}
1878
1879	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1880	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1881
1882	zilog->zl_suspend++;
1883
1884	if (zilog->zl_suspend > 1) {
1885		/*
1886		 * Someone else is already suspending it.
1887		 * Just wait for them to finish.
1888		 */
1889
1890		while (zilog->zl_suspending)
1891			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1892		mutex_exit(&zilog->zl_lock);
1893
1894		if (cookiep == NULL)
1895			zil_resume(os);
1896		else
1897			*cookiep = os;
1898		return (0);
1899	}
1900
1901	/*
1902	 * If there is no pointer to an on-disk block, this ZIL must not
1903	 * be active (e.g. filesystem not mounted), so there's nothing
1904	 * to clean up.
1905	 */
1906	if (BP_IS_HOLE(&zh->zh_log)) {
1907		ASSERT(cookiep != NULL); /* fast path already handled */
1908
1909		*cookiep = os;
1910		mutex_exit(&zilog->zl_lock);
1911		return (0);
1912	}
1913
1914	zilog->zl_suspending = B_TRUE;
1915	mutex_exit(&zilog->zl_lock);
1916
1917	zil_commit(zilog, 0);
1918
1919	zil_destroy(zilog, B_FALSE);
1920
1921	mutex_enter(&zilog->zl_lock);
1922	zilog->zl_suspending = B_FALSE;
1923	cv_broadcast(&zilog->zl_cv_suspend);
1924	mutex_exit(&zilog->zl_lock);
1925
1926	if (cookiep == NULL)
1927		zil_resume(os);
1928	else
1929		*cookiep = os;
1930	return (0);
1931}
1932
1933void
1934zil_resume(void *cookie)
1935{
1936	objset_t *os = cookie;
1937	zilog_t *zilog = dmu_objset_zil(os);
1938
1939	mutex_enter(&zilog->zl_lock);
1940	ASSERT(zilog->zl_suspend != 0);
1941	zilog->zl_suspend--;
1942	mutex_exit(&zilog->zl_lock);
1943	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
1944	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
1945}
1946
1947typedef struct zil_replay_arg {
1948	zil_replay_func_t **zr_replay;
1949	void		*zr_arg;
1950	boolean_t	zr_byteswap;
1951	char		*zr_lr;
1952} zil_replay_arg_t;
1953
1954static int
1955zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1956{
1957	char name[MAXNAMELEN];
1958
1959	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
1960
1961	dmu_objset_name(zilog->zl_os, name);
1962
1963	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1964	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1965	    (u_longlong_t)lr->lrc_seq,
1966	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1967	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1968
1969	return (error);
1970}
1971
1972static int
1973zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1974{
1975	zil_replay_arg_t *zr = zra;
1976	const zil_header_t *zh = zilog->zl_header;
1977	uint64_t reclen = lr->lrc_reclen;
1978	uint64_t txtype = lr->lrc_txtype;
1979	int error = 0;
1980
1981	zilog->zl_replaying_seq = lr->lrc_seq;
1982
1983	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1984		return (0);
1985
1986	if (lr->lrc_txg < claim_txg)		/* already committed */
1987		return (0);
1988
1989	/* Strip case-insensitive bit, still present in log record */
1990	txtype &= ~TX_CI;
1991
1992	if (txtype == 0 || txtype >= TX_MAX_TYPE)
1993		return (zil_replay_error(zilog, lr, EINVAL));
1994
1995	/*
1996	 * If this record type can be logged out of order, the object
1997	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
1998	 */
1999	if (TX_OOO(txtype)) {
2000		error = dmu_object_info(zilog->zl_os,
2001		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2002		if (error == ENOENT || error == EEXIST)
2003			return (0);
2004	}
2005
2006	/*
2007	 * Make a copy of the data so we can revise and extend it.
2008	 */
2009	bcopy(lr, zr->zr_lr, reclen);
2010
2011	/*
2012	 * If this is a TX_WRITE with a blkptr, suck in the data.
2013	 */
2014	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2015		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2016		    zr->zr_lr + reclen);
2017		if (error != 0)
2018			return (zil_replay_error(zilog, lr, error));
2019	}
2020
2021	/*
2022	 * The log block containing this lr may have been byteswapped
2023	 * so that we can easily examine common fields like lrc_txtype.
2024	 * However, the log is a mix of different record types, and only the
2025	 * replay vectors know how to byteswap their records.  Therefore, if
2026	 * the lr was byteswapped, undo it before invoking the replay vector.
2027	 */
2028	if (zr->zr_byteswap)
2029		byteswap_uint64_array(zr->zr_lr, reclen);
2030
2031	/*
2032	 * We must now do two things atomically: replay this log record,
2033	 * and update the log header sequence number to reflect the fact that
2034	 * we did so. At the end of each replay function the sequence number
2035	 * is updated if we are in replay mode.
2036	 */
2037	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2038	if (error != 0) {
2039		/*
2040		 * The DMU's dnode layer doesn't see removes until the txg
2041		 * commits, so a subsequent claim can spuriously fail with
2042		 * EEXIST. So if we receive any error we try syncing out
2043		 * any removes then retry the transaction.  Note that we
2044		 * specify B_FALSE for byteswap now, so we don't do it twice.
2045		 */
2046		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2047		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2048		if (error != 0)
2049			return (zil_replay_error(zilog, lr, error));
2050	}
2051	return (0);
2052}
2053
2054/* ARGSUSED */
2055static int
2056zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2057{
2058	zilog->zl_replay_blks++;
2059
2060	return (0);
2061}
2062
2063/*
2064 * If this dataset has a non-empty intent log, replay it and destroy it.
2065 */
2066void
2067zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2068{
2069	zilog_t *zilog = dmu_objset_zil(os);
2070	const zil_header_t *zh = zilog->zl_header;
2071	zil_replay_arg_t zr;
2072
2073	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2074		zil_destroy(zilog, B_TRUE);
2075		return;
2076	}
2077	//printf("ZFS: Replaying ZIL on %s...\n", os->os->os_spa->spa_name);
2078
2079	zr.zr_replay = replay_func;
2080	zr.zr_arg = arg;
2081	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2082	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2083
2084	/*
2085	 * Wait for in-progress removes to sync before starting replay.
2086	 */
2087	txg_wait_synced(zilog->zl_dmu_pool, 0);
2088
2089	zilog->zl_replay = B_TRUE;
2090	zilog->zl_replay_time = ddi_get_lbolt();
2091	ASSERT(zilog->zl_replay_blks == 0);
2092	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2093	    zh->zh_claim_txg);
2094	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2095
2096	zil_destroy(zilog, B_FALSE);
2097	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2098	zilog->zl_replay = B_FALSE;
2099	//printf("ZFS: Replay of ZIL on %s finished.\n", os->os->os_spa->spa_name);
2100}
2101
2102boolean_t
2103zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2104{
2105	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2106		return (B_TRUE);
2107
2108	if (zilog->zl_replay) {
2109		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2110		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2111		    zilog->zl_replaying_seq;
2112		return (B_TRUE);
2113	}
2114
2115	return (B_FALSE);
2116}
2117
2118/* ARGSUSED */
2119int
2120zil_vdev_offline(const char *osname, void *arg)
2121{
2122	int error;
2123
2124	error = zil_suspend(osname, NULL);
2125	if (error != 0)
2126		return (SET_ERROR(EEXIST));
2127	return (0);
2128}
2129