zil.c revision 209962
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26#include <sys/zfs_context.h>
27#include <sys/spa.h>
28#include <sys/dmu.h>
29#include <sys/zap.h>
30#include <sys/arc.h>
31#include <sys/stat.h>
32#include <sys/resource.h>
33#include <sys/zil.h>
34#include <sys/zil_impl.h>
35#include <sys/dsl_dataset.h>
36#include <sys/vdev.h>
37#include <sys/dmu_tx.h>
38
39/*
40 * The zfs intent log (ZIL) saves transaction records of system calls
41 * that change the file system in memory with enough information
42 * to be able to replay them. These are stored in memory until
43 * either the DMU transaction group (txg) commits them to the stable pool
44 * and they can be discarded, or they are flushed to the stable log
45 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
46 * requirement. In the event of a panic or power fail then those log
47 * records (transactions) are replayed.
48 *
49 * There is one ZIL per file system. Its on-disk (pool) format consists
50 * of 3 parts:
51 *
52 * 	- ZIL header
53 * 	- ZIL blocks
54 * 	- ZIL records
55 *
56 * A log record holds a system call transaction. Log blocks can
57 * hold many log records and the blocks are chained together.
58 * Each ZIL block contains a block pointer (blkptr_t) to the next
59 * ZIL block in the chain. The ZIL header points to the first
60 * block in the chain. Note there is not a fixed place in the pool
61 * to hold blocks. They are dynamically allocated and freed as
62 * needed from the blocks available. Figure X shows the ZIL structure:
63 */
64
65/*
66 * This global ZIL switch affects all pools
67 */
68int zil_disable = 0;	/* disable intent logging */
69SYSCTL_DECL(_vfs_zfs);
70TUNABLE_INT("vfs.zfs.zil_disable", &zil_disable);
71SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_disable, CTLFLAG_RW, &zil_disable, 0,
72    "Disable ZFS Intent Log (ZIL)");
73
74/*
75 * Tunable parameter for debugging or performance analysis.  Setting
76 * zfs_nocacheflush will cause corruption on power loss if a volatile
77 * out-of-order write cache is enabled.
78 */
79boolean_t zfs_nocacheflush = B_FALSE;
80TUNABLE_INT("vfs.zfs.cache_flush_disable", &zfs_nocacheflush);
81SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
82    &zfs_nocacheflush, 0, "Disable cache flush");
83
84static kmem_cache_t *zil_lwb_cache;
85
86static int
87zil_dva_compare(const void *x1, const void *x2)
88{
89	const dva_t *dva1 = x1;
90	const dva_t *dva2 = x2;
91
92	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
93		return (-1);
94	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
95		return (1);
96
97	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
98		return (-1);
99	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
100		return (1);
101
102	return (0);
103}
104
105static void
106zil_dva_tree_init(avl_tree_t *t)
107{
108	avl_create(t, zil_dva_compare, sizeof (zil_dva_node_t),
109	    offsetof(zil_dva_node_t, zn_node));
110}
111
112static void
113zil_dva_tree_fini(avl_tree_t *t)
114{
115	zil_dva_node_t *zn;
116	void *cookie = NULL;
117
118	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
119		kmem_free(zn, sizeof (zil_dva_node_t));
120
121	avl_destroy(t);
122}
123
124static int
125zil_dva_tree_add(avl_tree_t *t, dva_t *dva)
126{
127	zil_dva_node_t *zn;
128	avl_index_t where;
129
130	if (avl_find(t, dva, &where) != NULL)
131		return (EEXIST);
132
133	zn = kmem_alloc(sizeof (zil_dva_node_t), KM_SLEEP);
134	zn->zn_dva = *dva;
135	avl_insert(t, zn, where);
136
137	return (0);
138}
139
140static zil_header_t *
141zil_header_in_syncing_context(zilog_t *zilog)
142{
143	return ((zil_header_t *)zilog->zl_header);
144}
145
146static void
147zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
148{
149	zio_cksum_t *zc = &bp->blk_cksum;
150
151	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
152	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
153	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
154	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
155}
156
157/*
158 * Read a log block, make sure it's valid, and byteswap it if necessary.
159 */
160static int
161zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, arc_buf_t **abufpp)
162{
163	blkptr_t blk = *bp;
164	zbookmark_t zb;
165	uint32_t aflags = ARC_WAIT;
166	int error;
167
168	zb.zb_objset = bp->blk_cksum.zc_word[ZIL_ZC_OBJSET];
169	zb.zb_object = 0;
170	zb.zb_level = -1;
171	zb.zb_blkid = bp->blk_cksum.zc_word[ZIL_ZC_SEQ];
172
173	*abufpp = NULL;
174
175	/*
176	 * We shouldn't be doing any scrubbing while we're doing log
177	 * replay, it's OK to not lock.
178	 */
179	error = arc_read_nolock(NULL, zilog->zl_spa, &blk,
180	    arc_getbuf_func, abufpp, ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_CANFAIL |
181	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB, &aflags, &zb);
182
183	if (error == 0) {
184		char *data = (*abufpp)->b_data;
185		uint64_t blksz = BP_GET_LSIZE(bp);
186		zil_trailer_t *ztp = (zil_trailer_t *)(data + blksz) - 1;
187		zio_cksum_t cksum = bp->blk_cksum;
188
189		/*
190		 * Validate the checksummed log block.
191		 *
192		 * Sequence numbers should be... sequential.  The checksum
193		 * verifier for the next block should be bp's checksum plus 1.
194		 *
195		 * Also check the log chain linkage and size used.
196		 */
197		cksum.zc_word[ZIL_ZC_SEQ]++;
198
199		if (bcmp(&cksum, &ztp->zit_next_blk.blk_cksum,
200		    sizeof (cksum)) || BP_IS_HOLE(&ztp->zit_next_blk) ||
201		    (ztp->zit_nused > (blksz - sizeof (zil_trailer_t)))) {
202			error = ECKSUM;
203		}
204
205		if (error) {
206			VERIFY(arc_buf_remove_ref(*abufpp, abufpp) == 1);
207			*abufpp = NULL;
208		}
209	}
210
211	dprintf("error %d on %llu:%llu\n", error, zb.zb_objset, zb.zb_blkid);
212
213	return (error);
214}
215
216/*
217 * Parse the intent log, and call parse_func for each valid record within.
218 * Return the highest sequence number.
219 */
220uint64_t
221zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
222    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
223{
224	const zil_header_t *zh = zilog->zl_header;
225	uint64_t claim_seq = zh->zh_claim_seq;
226	uint64_t seq = 0;
227	uint64_t max_seq = 0;
228	blkptr_t blk = zh->zh_log;
229	arc_buf_t *abuf;
230	char *lrbuf, *lrp;
231	zil_trailer_t *ztp;
232	int reclen, error;
233
234	if (BP_IS_HOLE(&blk))
235		return (max_seq);
236
237	/*
238	 * Starting at the block pointed to by zh_log we read the log chain.
239	 * For each block in the chain we strongly check that block to
240	 * ensure its validity.  We stop when an invalid block is found.
241	 * For each block pointer in the chain we call parse_blk_func().
242	 * For each record in each valid block we call parse_lr_func().
243	 * If the log has been claimed, stop if we encounter a sequence
244	 * number greater than the highest claimed sequence number.
245	 */
246	zil_dva_tree_init(&zilog->zl_dva_tree);
247	for (;;) {
248		seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
249
250		if (claim_seq != 0 && seq > claim_seq)
251			break;
252
253		ASSERT(max_seq < seq);
254		max_seq = seq;
255
256		error = zil_read_log_block(zilog, &blk, &abuf);
257
258		if (parse_blk_func != NULL)
259			parse_blk_func(zilog, &blk, arg, txg);
260
261		if (error)
262			break;
263
264		lrbuf = abuf->b_data;
265		ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1;
266		blk = ztp->zit_next_blk;
267
268		if (parse_lr_func == NULL) {
269			VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
270			continue;
271		}
272
273		for (lrp = lrbuf; lrp < lrbuf + ztp->zit_nused; lrp += reclen) {
274			lr_t *lr = (lr_t *)lrp;
275			reclen = lr->lrc_reclen;
276			ASSERT3U(reclen, >=, sizeof (lr_t));
277			parse_lr_func(zilog, lr, arg, txg);
278		}
279		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
280	}
281	zil_dva_tree_fini(&zilog->zl_dva_tree);
282
283	return (max_seq);
284}
285
286/* ARGSUSED */
287static void
288zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
289{
290	spa_t *spa = zilog->zl_spa;
291	int err;
292
293	/*
294	 * Claim log block if not already committed and not already claimed.
295	 */
296	if (bp->blk_birth >= first_txg &&
297	    zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp)) == 0) {
298		err = zio_wait(zio_claim(NULL, spa, first_txg, bp, NULL, NULL,
299		    ZIO_FLAG_MUSTSUCCEED));
300		ASSERT(err == 0);
301	}
302}
303
304static void
305zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
306{
307	if (lrc->lrc_txtype == TX_WRITE) {
308		lr_write_t *lr = (lr_write_t *)lrc;
309		zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg);
310	}
311}
312
313/* ARGSUSED */
314static void
315zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
316{
317	zio_free_blk(zilog->zl_spa, bp, dmu_tx_get_txg(tx));
318}
319
320static void
321zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
322{
323	/*
324	 * If we previously claimed it, we need to free it.
325	 */
326	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE) {
327		lr_write_t *lr = (lr_write_t *)lrc;
328		blkptr_t *bp = &lr->lr_blkptr;
329		if (bp->blk_birth >= claim_txg &&
330		    !zil_dva_tree_add(&zilog->zl_dva_tree, BP_IDENTITY(bp))) {
331			(void) arc_free(NULL, zilog->zl_spa,
332			    dmu_tx_get_txg(tx), bp, NULL, NULL, ARC_WAIT);
333		}
334	}
335}
336
337/*
338 * Create an on-disk intent log.
339 */
340static void
341zil_create(zilog_t *zilog)
342{
343	const zil_header_t *zh = zilog->zl_header;
344	lwb_t *lwb;
345	uint64_t txg = 0;
346	dmu_tx_t *tx = NULL;
347	blkptr_t blk;
348	int error = 0;
349
350	/*
351	 * Wait for any previous destroy to complete.
352	 */
353	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
354
355	ASSERT(zh->zh_claim_txg == 0);
356	ASSERT(zh->zh_replay_seq == 0);
357
358	blk = zh->zh_log;
359
360	/*
361	 * If we don't already have an initial log block or we have one
362	 * but it's the wrong endianness then allocate one.
363	 */
364	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
365		tx = dmu_tx_create(zilog->zl_os);
366		(void) dmu_tx_assign(tx, TXG_WAIT);
367		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
368		txg = dmu_tx_get_txg(tx);
369
370		if (!BP_IS_HOLE(&blk)) {
371			zio_free_blk(zilog->zl_spa, &blk, txg);
372			BP_ZERO(&blk);
373		}
374
375		error = zio_alloc_blk(zilog->zl_spa, ZIL_MIN_BLKSZ, &blk,
376		    NULL, txg);
377
378		if (error == 0)
379			zil_init_log_chain(zilog, &blk);
380	}
381
382	/*
383	 * Allocate a log write buffer (lwb) for the first log block.
384	 */
385	if (error == 0) {
386		lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
387		lwb->lwb_zilog = zilog;
388		lwb->lwb_blk = blk;
389		lwb->lwb_nused = 0;
390		lwb->lwb_sz = BP_GET_LSIZE(&lwb->lwb_blk);
391		lwb->lwb_buf = zio_buf_alloc(lwb->lwb_sz);
392		lwb->lwb_max_txg = txg;
393		lwb->lwb_zio = NULL;
394
395		mutex_enter(&zilog->zl_lock);
396		list_insert_tail(&zilog->zl_lwb_list, lwb);
397		mutex_exit(&zilog->zl_lock);
398	}
399
400	/*
401	 * If we just allocated the first log block, commit our transaction
402	 * and wait for zil_sync() to stuff the block poiner into zh_log.
403	 * (zh is part of the MOS, so we cannot modify it in open context.)
404	 */
405	if (tx != NULL) {
406		dmu_tx_commit(tx);
407		txg_wait_synced(zilog->zl_dmu_pool, txg);
408	}
409
410	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
411}
412
413/*
414 * In one tx, free all log blocks and clear the log header.
415 * If keep_first is set, then we're replaying a log with no content.
416 * We want to keep the first block, however, so that the first
417 * synchronous transaction doesn't require a txg_wait_synced()
418 * in zil_create().  We don't need to txg_wait_synced() here either
419 * when keep_first is set, because both zil_create() and zil_destroy()
420 * will wait for any in-progress destroys to complete.
421 */
422void
423zil_destroy(zilog_t *zilog, boolean_t keep_first)
424{
425	const zil_header_t *zh = zilog->zl_header;
426	lwb_t *lwb;
427	dmu_tx_t *tx;
428	uint64_t txg;
429
430	/*
431	 * Wait for any previous destroy to complete.
432	 */
433	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
434
435	if (BP_IS_HOLE(&zh->zh_log))
436		return;
437
438	tx = dmu_tx_create(zilog->zl_os);
439	(void) dmu_tx_assign(tx, TXG_WAIT);
440	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
441	txg = dmu_tx_get_txg(tx);
442
443	mutex_enter(&zilog->zl_lock);
444
445	/*
446	 * It is possible for the ZIL to get the previously mounted zilog
447	 * structure of the same dataset if quickly remounted and the dbuf
448	 * eviction has not completed. In this case we can see a non
449	 * empty lwb list and keep_first will be set. We fix this by
450	 * clearing the keep_first. This will be slower but it's very rare.
451	 */
452	if (!list_is_empty(&zilog->zl_lwb_list) && keep_first)
453		keep_first = B_FALSE;
454
455	ASSERT3U(zilog->zl_destroy_txg, <, txg);
456	zilog->zl_destroy_txg = txg;
457	zilog->zl_keep_first = keep_first;
458
459	if (!list_is_empty(&zilog->zl_lwb_list)) {
460		ASSERT(zh->zh_claim_txg == 0);
461		ASSERT(!keep_first);
462		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
463			list_remove(&zilog->zl_lwb_list, lwb);
464			if (lwb->lwb_buf != NULL)
465				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
466			zio_free_blk(zilog->zl_spa, &lwb->lwb_blk, txg);
467			kmem_cache_free(zil_lwb_cache, lwb);
468		}
469	} else {
470		if (!keep_first) {
471			(void) zil_parse(zilog, zil_free_log_block,
472			    zil_free_log_record, tx, zh->zh_claim_txg);
473		}
474	}
475	mutex_exit(&zilog->zl_lock);
476
477	dmu_tx_commit(tx);
478}
479
480/*
481 * return true if the initial log block is not valid
482 */
483static boolean_t
484zil_empty(zilog_t *zilog)
485{
486	const zil_header_t *zh = zilog->zl_header;
487	arc_buf_t *abuf = NULL;
488
489	if (BP_IS_HOLE(&zh->zh_log))
490		return (B_TRUE);
491
492	if (zil_read_log_block(zilog, &zh->zh_log, &abuf) != 0)
493		return (B_TRUE);
494
495	VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
496	return (B_FALSE);
497}
498
499int
500zil_claim(char *osname, void *txarg)
501{
502	dmu_tx_t *tx = txarg;
503	uint64_t first_txg = dmu_tx_get_txg(tx);
504	zilog_t *zilog;
505	zil_header_t *zh;
506	objset_t *os;
507	int error;
508
509	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os);
510	if (error) {
511		cmn_err(CE_WARN, "can't open objset for %s", osname);
512		return (0);
513	}
514
515	zilog = dmu_objset_zil(os);
516	zh = zil_header_in_syncing_context(zilog);
517
518	/*
519	 * Record here whether the zil has any records to replay.
520	 * If the header block pointer is null or the block points
521	 * to the stubby then we know there are no valid log records.
522	 * We use the header to store this state as the the zilog gets
523	 * freed later in dmu_objset_close().
524	 * The flags (and the rest of the header fields) are cleared in
525	 * zil_sync() as a result of a zil_destroy(), after replaying the log.
526	 *
527	 * Note, the intent log can be empty but still need the
528	 * stubby to be claimed.
529	 */
530	if (!zil_empty(zilog))
531		zh->zh_flags |= ZIL_REPLAY_NEEDED;
532
533	/*
534	 * Claim all log blocks if we haven't already done so, and remember
535	 * the highest claimed sequence number.  This ensures that if we can
536	 * read only part of the log now (e.g. due to a missing device),
537	 * but we can read the entire log later, we will not try to replay
538	 * or destroy beyond the last block we successfully claimed.
539	 */
540	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
541	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
542		zh->zh_claim_txg = first_txg;
543		zh->zh_claim_seq = zil_parse(zilog, zil_claim_log_block,
544		    zil_claim_log_record, tx, first_txg);
545		dsl_dataset_dirty(dmu_objset_ds(os), tx);
546	}
547
548	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
549	dmu_objset_close(os);
550	return (0);
551}
552
553/*
554 * Check the log by walking the log chain.
555 * Checksum errors are ok as they indicate the end of the chain.
556 * Any other error (no device or read failure) returns an error.
557 */
558/* ARGSUSED */
559int
560zil_check_log_chain(char *osname, void *txarg)
561{
562	zilog_t *zilog;
563	zil_header_t *zh;
564	blkptr_t blk;
565	arc_buf_t *abuf;
566	objset_t *os;
567	char *lrbuf;
568	zil_trailer_t *ztp;
569	int error;
570
571	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os);
572	if (error) {
573		cmn_err(CE_WARN, "can't open objset for %s", osname);
574		return (0);
575	}
576
577	zilog = dmu_objset_zil(os);
578	zh = zil_header_in_syncing_context(zilog);
579	blk = zh->zh_log;
580	if (BP_IS_HOLE(&blk)) {
581		dmu_objset_close(os);
582		return (0); /* no chain */
583	}
584
585	for (;;) {
586		error = zil_read_log_block(zilog, &blk, &abuf);
587		if (error)
588			break;
589		lrbuf = abuf->b_data;
590		ztp = (zil_trailer_t *)(lrbuf + BP_GET_LSIZE(&blk)) - 1;
591		blk = ztp->zit_next_blk;
592		VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
593	}
594	dmu_objset_close(os);
595	if (error == ECKSUM)
596		return (0); /* normal end of chain */
597	return (error);
598}
599
600/*
601 * Clear a log chain
602 */
603/* ARGSUSED */
604int
605zil_clear_log_chain(char *osname, void *txarg)
606{
607	zilog_t *zilog;
608	zil_header_t *zh;
609	objset_t *os;
610	dmu_tx_t *tx;
611	int error;
612
613	error = dmu_objset_open(osname, DMU_OST_ANY, DS_MODE_USER, &os);
614	if (error) {
615		cmn_err(CE_WARN, "can't open objset for %s", osname);
616		return (0);
617	}
618
619	zilog = dmu_objset_zil(os);
620	tx = dmu_tx_create(zilog->zl_os);
621	(void) dmu_tx_assign(tx, TXG_WAIT);
622	zh = zil_header_in_syncing_context(zilog);
623	BP_ZERO(&zh->zh_log);
624	dsl_dataset_dirty(dmu_objset_ds(os), tx);
625	dmu_tx_commit(tx);
626	dmu_objset_close(os);
627	return (0);
628}
629
630static int
631zil_vdev_compare(const void *x1, const void *x2)
632{
633	uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
634	uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
635
636	if (v1 < v2)
637		return (-1);
638	if (v1 > v2)
639		return (1);
640
641	return (0);
642}
643
644void
645zil_add_block(zilog_t *zilog, blkptr_t *bp)
646{
647	avl_tree_t *t = &zilog->zl_vdev_tree;
648	avl_index_t where;
649	zil_vdev_node_t *zv, zvsearch;
650	int ndvas = BP_GET_NDVAS(bp);
651	int i;
652
653	if (zfs_nocacheflush)
654		return;
655
656	ASSERT(zilog->zl_writer);
657
658	/*
659	 * Even though we're zl_writer, we still need a lock because the
660	 * zl_get_data() callbacks may have dmu_sync() done callbacks
661	 * that will run concurrently.
662	 */
663	mutex_enter(&zilog->zl_vdev_lock);
664	for (i = 0; i < ndvas; i++) {
665		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
666		if (avl_find(t, &zvsearch, &where) == NULL) {
667			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
668			zv->zv_vdev = zvsearch.zv_vdev;
669			avl_insert(t, zv, where);
670		}
671	}
672	mutex_exit(&zilog->zl_vdev_lock);
673}
674
675void
676zil_flush_vdevs(zilog_t *zilog)
677{
678	spa_t *spa = zilog->zl_spa;
679	avl_tree_t *t = &zilog->zl_vdev_tree;
680	void *cookie = NULL;
681	zil_vdev_node_t *zv;
682	zio_t *zio;
683
684	ASSERT(zilog->zl_writer);
685
686	/*
687	 * We don't need zl_vdev_lock here because we're the zl_writer,
688	 * and all zl_get_data() callbacks are done.
689	 */
690	if (avl_numnodes(t) == 0)
691		return;
692
693	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
694
695	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
696
697	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
698		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
699		if (vd != NULL)
700			zio_flush(zio, vd);
701		kmem_free(zv, sizeof (*zv));
702	}
703
704	/*
705	 * Wait for all the flushes to complete.  Not all devices actually
706	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
707	 */
708	(void) zio_wait(zio);
709
710	spa_config_exit(spa, SCL_STATE, FTAG);
711}
712
713/*
714 * Function called when a log block write completes
715 */
716static void
717zil_lwb_write_done(zio_t *zio)
718{
719	lwb_t *lwb = zio->io_private;
720	zilog_t *zilog = lwb->lwb_zilog;
721
722	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
723	ASSERT(BP_GET_CHECKSUM(zio->io_bp) == ZIO_CHECKSUM_ZILOG);
724	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
725	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
726	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
727	ASSERT(!BP_IS_GANG(zio->io_bp));
728	ASSERT(!BP_IS_HOLE(zio->io_bp));
729	ASSERT(zio->io_bp->blk_fill == 0);
730
731	/*
732	 * Ensure the lwb buffer pointer is cleared before releasing
733	 * the txg. If we have had an allocation failure and
734	 * the txg is waiting to sync then we want want zil_sync()
735	 * to remove the lwb so that it's not picked up as the next new
736	 * one in zil_commit_writer(). zil_sync() will only remove
737	 * the lwb if lwb_buf is null.
738	 */
739	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
740	mutex_enter(&zilog->zl_lock);
741	lwb->lwb_buf = NULL;
742	if (zio->io_error)
743		zilog->zl_log_error = B_TRUE;
744
745	/*
746	 * Now that we've written this log block, we have a stable pointer
747	 * to the next block in the chain, so it's OK to let the txg in
748	 * which we allocated the next block sync. We still have the
749	 * zl_lock to ensure zil_sync doesn't kmem free the lwb.
750	 */
751	txg_rele_to_sync(&lwb->lwb_txgh);
752	mutex_exit(&zilog->zl_lock);
753}
754
755/*
756 * Initialize the io for a log block.
757 */
758static void
759zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
760{
761	zbookmark_t zb;
762
763	zb.zb_objset = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET];
764	zb.zb_object = 0;
765	zb.zb_level = -1;
766	zb.zb_blkid = lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
767
768	if (zilog->zl_root_zio == NULL) {
769		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
770		    ZIO_FLAG_CANFAIL);
771	}
772	if (lwb->lwb_zio == NULL) {
773		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
774		    0, &lwb->lwb_blk, lwb->lwb_buf,
775		    lwb->lwb_sz, zil_lwb_write_done, lwb,
776		    ZIO_PRIORITY_LOG_WRITE, ZIO_FLAG_CANFAIL, &zb);
777	}
778}
779
780/*
781 * Start a log block write and advance to the next log block.
782 * Calls are serialized.
783 */
784static lwb_t *
785zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
786{
787	lwb_t *nlwb;
788	zil_trailer_t *ztp = (zil_trailer_t *)(lwb->lwb_buf + lwb->lwb_sz) - 1;
789	spa_t *spa = zilog->zl_spa;
790	blkptr_t *bp = &ztp->zit_next_blk;
791	uint64_t txg;
792	uint64_t zil_blksz;
793	int error;
794
795	ASSERT(lwb->lwb_nused <= ZIL_BLK_DATA_SZ(lwb));
796
797	/*
798	 * Allocate the next block and save its address in this block
799	 * before writing it in order to establish the log chain.
800	 * Note that if the allocation of nlwb synced before we wrote
801	 * the block that points at it (lwb), we'd leak it if we crashed.
802	 * Therefore, we don't do txg_rele_to_sync() until zil_lwb_write_done().
803	 */
804	txg = txg_hold_open(zilog->zl_dmu_pool, &lwb->lwb_txgh);
805	txg_rele_to_quiesce(&lwb->lwb_txgh);
806
807	/*
808	 * Pick a ZIL blocksize. We request a size that is the
809	 * maximum of the previous used size, the current used size and
810	 * the amount waiting in the queue.
811	 */
812	zil_blksz = MAX(zilog->zl_prev_used,
813	    zilog->zl_cur_used + sizeof (*ztp));
814	zil_blksz = MAX(zil_blksz, zilog->zl_itx_list_sz + sizeof (*ztp));
815	zil_blksz = P2ROUNDUP_TYPED(zil_blksz, ZIL_MIN_BLKSZ, uint64_t);
816	if (zil_blksz > ZIL_MAX_BLKSZ)
817		zil_blksz = ZIL_MAX_BLKSZ;
818
819	BP_ZERO(bp);
820	/* pass the old blkptr in order to spread log blocks across devs */
821	error = zio_alloc_blk(spa, zil_blksz, bp, &lwb->lwb_blk, txg);
822	if (error) {
823		dmu_tx_t *tx = dmu_tx_create_assigned(zilog->zl_dmu_pool, txg);
824
825		/*
826		 * We dirty the dataset to ensure that zil_sync() will
827		 * be called to remove this lwb from our zl_lwb_list.
828		 * Failing to do so, may leave an lwb with a NULL lwb_buf
829		 * hanging around on the zl_lwb_list.
830		 */
831		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
832		dmu_tx_commit(tx);
833
834		/*
835		 * Since we've just experienced an allocation failure so we
836		 * terminate the current lwb and send it on its way.
837		 */
838		ztp->zit_pad = 0;
839		ztp->zit_nused = lwb->lwb_nused;
840		ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
841		zio_nowait(lwb->lwb_zio);
842
843		/*
844		 * By returning NULL the caller will call tx_wait_synced()
845		 */
846		return (NULL);
847	}
848
849	ASSERT3U(bp->blk_birth, ==, txg);
850	ztp->zit_pad = 0;
851	ztp->zit_nused = lwb->lwb_nused;
852	ztp->zit_bt.zbt_cksum = lwb->lwb_blk.blk_cksum;
853	bp->blk_cksum = lwb->lwb_blk.blk_cksum;
854	bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
855
856	/*
857	 * Allocate a new log write buffer (lwb).
858	 */
859	nlwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
860
861	nlwb->lwb_zilog = zilog;
862	nlwb->lwb_blk = *bp;
863	nlwb->lwb_nused = 0;
864	nlwb->lwb_sz = BP_GET_LSIZE(&nlwb->lwb_blk);
865	nlwb->lwb_buf = zio_buf_alloc(nlwb->lwb_sz);
866	nlwb->lwb_max_txg = txg;
867	nlwb->lwb_zio = NULL;
868
869	/*
870	 * Put new lwb at the end of the log chain
871	 */
872	mutex_enter(&zilog->zl_lock);
873	list_insert_tail(&zilog->zl_lwb_list, nlwb);
874	mutex_exit(&zilog->zl_lock);
875
876	/* Record the block for later vdev flushing */
877	zil_add_block(zilog, &lwb->lwb_blk);
878
879	/*
880	 * kick off the write for the old log block
881	 */
882	dprintf_bp(&lwb->lwb_blk, "lwb %p txg %llu: ", lwb, txg);
883	ASSERT(lwb->lwb_zio);
884	zio_nowait(lwb->lwb_zio);
885
886	return (nlwb);
887}
888
889static lwb_t *
890zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
891{
892	lr_t *lrc = &itx->itx_lr; /* common log record */
893	lr_write_t *lr = (lr_write_t *)lrc;
894	uint64_t txg = lrc->lrc_txg;
895	uint64_t reclen = lrc->lrc_reclen;
896	uint64_t dlen;
897
898	if (lwb == NULL)
899		return (NULL);
900	ASSERT(lwb->lwb_buf != NULL);
901
902	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
903		dlen = P2ROUNDUP_TYPED(
904		    lr->lr_length, sizeof (uint64_t), uint64_t);
905	else
906		dlen = 0;
907
908	zilog->zl_cur_used += (reclen + dlen);
909
910	zil_lwb_write_init(zilog, lwb);
911
912	/*
913	 * If this record won't fit in the current log block, start a new one.
914	 */
915	if (lwb->lwb_nused + reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
916		lwb = zil_lwb_write_start(zilog, lwb);
917		if (lwb == NULL)
918			return (NULL);
919		zil_lwb_write_init(zilog, lwb);
920		ASSERT(lwb->lwb_nused == 0);
921		if (reclen + dlen > ZIL_BLK_DATA_SZ(lwb)) {
922			txg_wait_synced(zilog->zl_dmu_pool, txg);
923			return (lwb);
924		}
925	}
926
927	/*
928	 * Update the lrc_seq, to be log record sequence number. See zil.h
929	 * Then copy the record to the log buffer.
930	 */
931	lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
932	bcopy(lrc, lwb->lwb_buf + lwb->lwb_nused, reclen);
933
934	/*
935	 * If it's a write, fetch the data or get its blkptr as appropriate.
936	 */
937	if (lrc->lrc_txtype == TX_WRITE) {
938		if (txg > spa_freeze_txg(zilog->zl_spa))
939			txg_wait_synced(zilog->zl_dmu_pool, txg);
940		if (itx->itx_wr_state != WR_COPIED) {
941			char *dbuf;
942			int error;
943
944			/* alignment is guaranteed */
945			lr = (lr_write_t *)(lwb->lwb_buf + lwb->lwb_nused);
946			if (dlen) {
947				ASSERT(itx->itx_wr_state == WR_NEED_COPY);
948				dbuf = lwb->lwb_buf + lwb->lwb_nused + reclen;
949				lr->lr_common.lrc_reclen += dlen;
950			} else {
951				ASSERT(itx->itx_wr_state == WR_INDIRECT);
952				dbuf = NULL;
953			}
954			error = zilog->zl_get_data(
955			    itx->itx_private, lr, dbuf, lwb->lwb_zio);
956			if (error) {
957				ASSERT(error == ENOENT || error == EEXIST ||
958				    error == EALREADY);
959				return (lwb);
960			}
961		}
962	}
963
964	lwb->lwb_nused += reclen + dlen;
965	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
966	ASSERT3U(lwb->lwb_nused, <=, ZIL_BLK_DATA_SZ(lwb));
967	ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
968
969	return (lwb);
970}
971
972itx_t *
973zil_itx_create(uint64_t txtype, size_t lrsize)
974{
975	itx_t *itx;
976
977	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
978
979	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
980	itx->itx_lr.lrc_txtype = txtype;
981	itx->itx_lr.lrc_reclen = lrsize;
982	itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
983	itx->itx_lr.lrc_seq = 0;	/* defensive */
984
985	return (itx);
986}
987
988uint64_t
989zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
990{
991	uint64_t seq;
992
993	ASSERT(itx->itx_lr.lrc_seq == 0);
994
995	mutex_enter(&zilog->zl_lock);
996	list_insert_tail(&zilog->zl_itx_list, itx);
997	zilog->zl_itx_list_sz += itx->itx_sod;
998	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
999	itx->itx_lr.lrc_seq = seq = ++zilog->zl_itx_seq;
1000	mutex_exit(&zilog->zl_lock);
1001
1002	return (seq);
1003}
1004
1005/*
1006 * Free up all in-memory intent log transactions that have now been synced.
1007 */
1008static void
1009zil_itx_clean(zilog_t *zilog)
1010{
1011	uint64_t synced_txg = spa_last_synced_txg(zilog->zl_spa);
1012	uint64_t freeze_txg = spa_freeze_txg(zilog->zl_spa);
1013	list_t clean_list;
1014	itx_t *itx;
1015
1016	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1017
1018	mutex_enter(&zilog->zl_lock);
1019	/* wait for a log writer to finish walking list */
1020	while (zilog->zl_writer) {
1021		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1022	}
1023
1024	/*
1025	 * Move the sync'd log transactions to a separate list so we can call
1026	 * kmem_free without holding the zl_lock.
1027	 *
1028	 * There is no need to set zl_writer as we don't drop zl_lock here
1029	 */
1030	while ((itx = list_head(&zilog->zl_itx_list)) != NULL &&
1031	    itx->itx_lr.lrc_txg <= MIN(synced_txg, freeze_txg)) {
1032		list_remove(&zilog->zl_itx_list, itx);
1033		zilog->zl_itx_list_sz -= itx->itx_sod;
1034		list_insert_tail(&clean_list, itx);
1035	}
1036	cv_broadcast(&zilog->zl_cv_writer);
1037	mutex_exit(&zilog->zl_lock);
1038
1039	/* destroy sync'd log transactions */
1040	while ((itx = list_head(&clean_list)) != NULL) {
1041		list_remove(&clean_list, itx);
1042		kmem_free(itx, offsetof(itx_t, itx_lr)
1043		    + itx->itx_lr.lrc_reclen);
1044	}
1045	list_destroy(&clean_list);
1046}
1047
1048/*
1049 * If there are any in-memory intent log transactions which have now been
1050 * synced then start up a taskq to free them.
1051 */
1052void
1053zil_clean(zilog_t *zilog)
1054{
1055	itx_t *itx;
1056
1057	mutex_enter(&zilog->zl_lock);
1058	itx = list_head(&zilog->zl_itx_list);
1059	if ((itx != NULL) &&
1060	    (itx->itx_lr.lrc_txg <= spa_last_synced_txg(zilog->zl_spa))) {
1061		(void) taskq_dispatch(zilog->zl_clean_taskq,
1062		    (task_func_t *)zil_itx_clean, zilog, TQ_SLEEP);
1063	}
1064	mutex_exit(&zilog->zl_lock);
1065}
1066
1067static void
1068zil_commit_writer(zilog_t *zilog, uint64_t seq, uint64_t foid)
1069{
1070	uint64_t txg;
1071	uint64_t commit_seq = 0;
1072	itx_t *itx, *itx_next = (itx_t *)-1;
1073	lwb_t *lwb;
1074	spa_t *spa;
1075
1076	zilog->zl_writer = B_TRUE;
1077	ASSERT(zilog->zl_root_zio == NULL);
1078	spa = zilog->zl_spa;
1079
1080	if (zilog->zl_suspend) {
1081		lwb = NULL;
1082	} else {
1083		lwb = list_tail(&zilog->zl_lwb_list);
1084		if (lwb == NULL) {
1085			/*
1086			 * Return if there's nothing to flush before we
1087			 * dirty the fs by calling zil_create()
1088			 */
1089			if (list_is_empty(&zilog->zl_itx_list)) {
1090				zilog->zl_writer = B_FALSE;
1091				return;
1092			}
1093			mutex_exit(&zilog->zl_lock);
1094			zil_create(zilog);
1095			mutex_enter(&zilog->zl_lock);
1096			lwb = list_tail(&zilog->zl_lwb_list);
1097		}
1098	}
1099
1100	/* Loop through in-memory log transactions filling log blocks. */
1101	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1102	for (;;) {
1103		/*
1104		 * Find the next itx to push:
1105		 * Push all transactions related to specified foid and all
1106		 * other transactions except TX_WRITE, TX_TRUNCATE,
1107		 * TX_SETATTR and TX_ACL for all other files.
1108		 */
1109		if (itx_next != (itx_t *)-1)
1110			itx = itx_next;
1111		else
1112			itx = list_head(&zilog->zl_itx_list);
1113		for (; itx != NULL; itx = list_next(&zilog->zl_itx_list, itx)) {
1114			if (foid == 0) /* push all foids? */
1115				break;
1116			if (itx->itx_sync) /* push all O_[D]SYNC */
1117				break;
1118			switch (itx->itx_lr.lrc_txtype) {
1119			case TX_SETATTR:
1120			case TX_WRITE:
1121			case TX_TRUNCATE:
1122			case TX_ACL:
1123				/* lr_foid is same offset for these records */
1124				if (((lr_write_t *)&itx->itx_lr)->lr_foid
1125				    != foid) {
1126					continue; /* skip this record */
1127				}
1128			}
1129			break;
1130		}
1131		if (itx == NULL)
1132			break;
1133
1134		if ((itx->itx_lr.lrc_seq > seq) &&
1135		    ((lwb == NULL) || (lwb->lwb_nused == 0) ||
1136		    (lwb->lwb_nused + itx->itx_sod > ZIL_BLK_DATA_SZ(lwb)))) {
1137			break;
1138		}
1139
1140		/*
1141		 * Save the next pointer.  Even though we soon drop
1142		 * zl_lock all threads that may change the list
1143		 * (another writer or zil_itx_clean) can't do so until
1144		 * they have zl_writer.
1145		 */
1146		itx_next = list_next(&zilog->zl_itx_list, itx);
1147		list_remove(&zilog->zl_itx_list, itx);
1148		zilog->zl_itx_list_sz -= itx->itx_sod;
1149		mutex_exit(&zilog->zl_lock);
1150		txg = itx->itx_lr.lrc_txg;
1151		ASSERT(txg);
1152
1153		if (txg > spa_last_synced_txg(spa) ||
1154		    txg > spa_freeze_txg(spa))
1155			lwb = zil_lwb_commit(zilog, itx, lwb);
1156		kmem_free(itx, offsetof(itx_t, itx_lr)
1157		    + itx->itx_lr.lrc_reclen);
1158		mutex_enter(&zilog->zl_lock);
1159	}
1160	DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1161	/* determine commit sequence number */
1162	itx = list_head(&zilog->zl_itx_list);
1163	if (itx)
1164		commit_seq = itx->itx_lr.lrc_seq;
1165	else
1166		commit_seq = zilog->zl_itx_seq;
1167	mutex_exit(&zilog->zl_lock);
1168
1169	/* write the last block out */
1170	if (lwb != NULL && lwb->lwb_zio != NULL)
1171		lwb = zil_lwb_write_start(zilog, lwb);
1172
1173	zilog->zl_prev_used = zilog->zl_cur_used;
1174	zilog->zl_cur_used = 0;
1175
1176	/*
1177	 * Wait if necessary for the log blocks to be on stable storage.
1178	 */
1179	if (zilog->zl_root_zio) {
1180		DTRACE_PROBE1(zil__cw3, zilog_t *, zilog);
1181		(void) zio_wait(zilog->zl_root_zio);
1182		zilog->zl_root_zio = NULL;
1183		DTRACE_PROBE1(zil__cw4, zilog_t *, zilog);
1184		zil_flush_vdevs(zilog);
1185	}
1186
1187	if (zilog->zl_log_error || lwb == NULL) {
1188		zilog->zl_log_error = 0;
1189		txg_wait_synced(zilog->zl_dmu_pool, 0);
1190	}
1191
1192	mutex_enter(&zilog->zl_lock);
1193	zilog->zl_writer = B_FALSE;
1194
1195	ASSERT3U(commit_seq, >=, zilog->zl_commit_seq);
1196	zilog->zl_commit_seq = commit_seq;
1197}
1198
1199/*
1200 * Push zfs transactions to stable storage up to the supplied sequence number.
1201 * If foid is 0 push out all transactions, otherwise push only those
1202 * for that file or might have been used to create that file.
1203 */
1204void
1205zil_commit(zilog_t *zilog, uint64_t seq, uint64_t foid)
1206{
1207	if (zilog == NULL || seq == 0)
1208		return;
1209
1210	mutex_enter(&zilog->zl_lock);
1211
1212	seq = MIN(seq, zilog->zl_itx_seq);	/* cap seq at largest itx seq */
1213
1214	while (zilog->zl_writer) {
1215		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1216		if (seq < zilog->zl_commit_seq) {
1217			mutex_exit(&zilog->zl_lock);
1218			return;
1219		}
1220	}
1221	zil_commit_writer(zilog, seq, foid); /* drops zl_lock */
1222	/* wake up others waiting on the commit */
1223	cv_broadcast(&zilog->zl_cv_writer);
1224	mutex_exit(&zilog->zl_lock);
1225}
1226
1227/*
1228 * Called in syncing context to free committed log blocks and update log header.
1229 */
1230void
1231zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1232{
1233	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1234	uint64_t txg = dmu_tx_get_txg(tx);
1235	spa_t *spa = zilog->zl_spa;
1236	lwb_t *lwb;
1237
1238	/*
1239	 * We don't zero out zl_destroy_txg, so make sure we don't try
1240	 * to destroy it twice.
1241	 */
1242	if (spa_sync_pass(spa) != 1)
1243		return;
1244
1245	mutex_enter(&zilog->zl_lock);
1246
1247	ASSERT(zilog->zl_stop_sync == 0);
1248
1249	zh->zh_replay_seq = zilog->zl_replayed_seq[txg & TXG_MASK];
1250
1251	if (zilog->zl_destroy_txg == txg) {
1252		blkptr_t blk = zh->zh_log;
1253
1254		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1255
1256		bzero(zh, sizeof (zil_header_t));
1257		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1258
1259		if (zilog->zl_keep_first) {
1260			/*
1261			 * If this block was part of log chain that couldn't
1262			 * be claimed because a device was missing during
1263			 * zil_claim(), but that device later returns,
1264			 * then this block could erroneously appear valid.
1265			 * To guard against this, assign a new GUID to the new
1266			 * log chain so it doesn't matter what blk points to.
1267			 */
1268			zil_init_log_chain(zilog, &blk);
1269			zh->zh_log = blk;
1270		}
1271	}
1272
1273	for (;;) {
1274		lwb = list_head(&zilog->zl_lwb_list);
1275		if (lwb == NULL) {
1276			mutex_exit(&zilog->zl_lock);
1277			return;
1278		}
1279		zh->zh_log = lwb->lwb_blk;
1280		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1281			break;
1282		list_remove(&zilog->zl_lwb_list, lwb);
1283		zio_free_blk(spa, &lwb->lwb_blk, txg);
1284		kmem_cache_free(zil_lwb_cache, lwb);
1285
1286		/*
1287		 * If we don't have anything left in the lwb list then
1288		 * we've had an allocation failure and we need to zero
1289		 * out the zil_header blkptr so that we don't end
1290		 * up freeing the same block twice.
1291		 */
1292		if (list_head(&zilog->zl_lwb_list) == NULL)
1293			BP_ZERO(&zh->zh_log);
1294	}
1295	mutex_exit(&zilog->zl_lock);
1296}
1297
1298void
1299zil_init(void)
1300{
1301	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1302	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1303}
1304
1305void
1306zil_fini(void)
1307{
1308	kmem_cache_destroy(zil_lwb_cache);
1309}
1310
1311zilog_t *
1312zil_alloc(objset_t *os, zil_header_t *zh_phys)
1313{
1314	zilog_t *zilog;
1315
1316	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1317
1318	zilog->zl_header = zh_phys;
1319	zilog->zl_os = os;
1320	zilog->zl_spa = dmu_objset_spa(os);
1321	zilog->zl_dmu_pool = dmu_objset_pool(os);
1322	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1323
1324	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1325
1326	list_create(&zilog->zl_itx_list, sizeof (itx_t),
1327	    offsetof(itx_t, itx_node));
1328
1329	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1330	    offsetof(lwb_t, lwb_node));
1331
1332	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1333
1334	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1335	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1336
1337	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1338	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1339
1340	return (zilog);
1341}
1342
1343void
1344zil_free(zilog_t *zilog)
1345{
1346	lwb_t *lwb;
1347
1348	zilog->zl_stop_sync = 1;
1349
1350	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1351		list_remove(&zilog->zl_lwb_list, lwb);
1352		if (lwb->lwb_buf != NULL)
1353			zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1354		kmem_cache_free(zil_lwb_cache, lwb);
1355	}
1356	list_destroy(&zilog->zl_lwb_list);
1357
1358	avl_destroy(&zilog->zl_vdev_tree);
1359	mutex_destroy(&zilog->zl_vdev_lock);
1360
1361	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1362	list_destroy(&zilog->zl_itx_list);
1363	mutex_destroy(&zilog->zl_lock);
1364
1365	cv_destroy(&zilog->zl_cv_writer);
1366	cv_destroy(&zilog->zl_cv_suspend);
1367
1368	kmem_free(zilog, sizeof (zilog_t));
1369}
1370
1371/*
1372 * Open an intent log.
1373 */
1374zilog_t *
1375zil_open(objset_t *os, zil_get_data_t *get_data)
1376{
1377	zilog_t *zilog = dmu_objset_zil(os);
1378
1379	zilog->zl_get_data = get_data;
1380	zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1381	    2, 2, TASKQ_PREPOPULATE);
1382
1383	return (zilog);
1384}
1385
1386/*
1387 * Close an intent log.
1388 */
1389void
1390zil_close(zilog_t *zilog)
1391{
1392	/*
1393	 * If the log isn't already committed, mark the objset dirty
1394	 * (so zil_sync() will be called) and wait for that txg to sync.
1395	 */
1396	if (!zil_is_committed(zilog)) {
1397		uint64_t txg;
1398		dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1399		(void) dmu_tx_assign(tx, TXG_WAIT);
1400		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1401		txg = dmu_tx_get_txg(tx);
1402		dmu_tx_commit(tx);
1403		txg_wait_synced(zilog->zl_dmu_pool, txg);
1404	}
1405
1406	taskq_destroy(zilog->zl_clean_taskq);
1407	zilog->zl_clean_taskq = NULL;
1408	zilog->zl_get_data = NULL;
1409
1410	zil_itx_clean(zilog);
1411	ASSERT(list_head(&zilog->zl_itx_list) == NULL);
1412}
1413
1414/*
1415 * Suspend an intent log.  While in suspended mode, we still honor
1416 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1417 * We suspend the log briefly when taking a snapshot so that the snapshot
1418 * contains all the data it's supposed to, and has an empty intent log.
1419 */
1420int
1421zil_suspend(zilog_t *zilog)
1422{
1423	const zil_header_t *zh = zilog->zl_header;
1424
1425	mutex_enter(&zilog->zl_lock);
1426	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1427		mutex_exit(&zilog->zl_lock);
1428		return (EBUSY);
1429	}
1430	if (zilog->zl_suspend++ != 0) {
1431		/*
1432		 * Someone else already began a suspend.
1433		 * Just wait for them to finish.
1434		 */
1435		while (zilog->zl_suspending)
1436			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1437		mutex_exit(&zilog->zl_lock);
1438		return (0);
1439	}
1440	zilog->zl_suspending = B_TRUE;
1441	mutex_exit(&zilog->zl_lock);
1442
1443	zil_commit(zilog, UINT64_MAX, 0);
1444
1445	/*
1446	 * Wait for any in-flight log writes to complete.
1447	 */
1448	mutex_enter(&zilog->zl_lock);
1449	while (zilog->zl_writer)
1450		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1451	mutex_exit(&zilog->zl_lock);
1452
1453	zil_destroy(zilog, B_FALSE);
1454
1455	mutex_enter(&zilog->zl_lock);
1456	zilog->zl_suspending = B_FALSE;
1457	cv_broadcast(&zilog->zl_cv_suspend);
1458	mutex_exit(&zilog->zl_lock);
1459
1460	return (0);
1461}
1462
1463void
1464zil_resume(zilog_t *zilog)
1465{
1466	mutex_enter(&zilog->zl_lock);
1467	ASSERT(zilog->zl_suspend != 0);
1468	zilog->zl_suspend--;
1469	mutex_exit(&zilog->zl_lock);
1470}
1471
1472/*
1473 * Read in the data for the dmu_sync()ed block, and change the log
1474 * record to write this whole block.
1475 */
1476void
1477zil_get_replay_data(zilog_t *zilog, lr_write_t *lr)
1478{
1479	blkptr_t *wbp = &lr->lr_blkptr;
1480	char *wbuf = (char *)(lr + 1); /* data follows lr_write_t */
1481	uint64_t blksz;
1482
1483	if (BP_IS_HOLE(wbp)) {	/* compressed to a hole */
1484		blksz = BP_GET_LSIZE(&lr->lr_blkptr);
1485		/*
1486		 * If the blksz is zero then we must be replaying a log
1487		 * from an version prior to setting the blksize of null blocks.
1488		 * So we just zero the actual write size reqeusted.
1489		 */
1490		if (blksz == 0) {
1491			bzero(wbuf, lr->lr_length);
1492			return;
1493		}
1494		bzero(wbuf, blksz);
1495	} else {
1496		/*
1497		 * A subsequent write may have overwritten this block, in which
1498		 * case wbp may have been been freed and reallocated, and our
1499		 * read of wbp may fail with a checksum error.  We can safely
1500		 * ignore this because the later write will provide the
1501		 * correct data.
1502		 */
1503		zbookmark_t zb;
1504
1505		zb.zb_objset = dmu_objset_id(zilog->zl_os);
1506		zb.zb_object = lr->lr_foid;
1507		zb.zb_level = 0;
1508		zb.zb_blkid = -1; /* unknown */
1509
1510		blksz = BP_GET_LSIZE(&lr->lr_blkptr);
1511		(void) zio_wait(zio_read(NULL, zilog->zl_spa, wbp, wbuf, blksz,
1512		    NULL, NULL, ZIO_PRIORITY_SYNC_READ,
1513		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, &zb));
1514	}
1515	lr->lr_offset -= lr->lr_offset % blksz;
1516	lr->lr_length = blksz;
1517}
1518
1519typedef struct zil_replay_arg {
1520	objset_t	*zr_os;
1521	zil_replay_func_t **zr_replay;
1522	void		*zr_arg;
1523	boolean_t	zr_byteswap;
1524	char		*zr_lrbuf;
1525} zil_replay_arg_t;
1526
1527static void
1528zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1529{
1530	zil_replay_arg_t *zr = zra;
1531	const zil_header_t *zh = zilog->zl_header;
1532	uint64_t reclen = lr->lrc_reclen;
1533	uint64_t txtype = lr->lrc_txtype;
1534	char *name;
1535	int pass, error;
1536
1537	if (!zilog->zl_replay)			/* giving up */
1538		return;
1539
1540	if (lr->lrc_txg < claim_txg)		/* already committed */
1541		return;
1542
1543	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
1544		return;
1545
1546	/* Strip case-insensitive bit, still present in log record */
1547	txtype &= ~TX_CI;
1548
1549	if (txtype == 0 || txtype >= TX_MAX_TYPE) {
1550		error = EINVAL;
1551		goto bad;
1552	}
1553
1554	/*
1555	 * Make a copy of the data so we can revise and extend it.
1556	 */
1557	bcopy(lr, zr->zr_lrbuf, reclen);
1558
1559	/*
1560	 * The log block containing this lr may have been byteswapped
1561	 * so that we can easily examine common fields like lrc_txtype.
1562	 * However, the log is a mix of different data types, and only the
1563	 * replay vectors know how to byteswap their records.  Therefore, if
1564	 * the lr was byteswapped, undo it before invoking the replay vector.
1565	 */
1566	if (zr->zr_byteswap)
1567		byteswap_uint64_array(zr->zr_lrbuf, reclen);
1568
1569	/*
1570	 * We must now do two things atomically: replay this log record,
1571	 * and update the log header sequence number to reflect the fact that
1572	 * we did so. At the end of each replay function the sequence number
1573	 * is updated if we are in replay mode.
1574	 */
1575	for (pass = 1; pass <= 2; pass++) {
1576		zilog->zl_replaying_seq = lr->lrc_seq;
1577		/* Only byteswap (if needed) on the 1st pass.  */
1578		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lrbuf,
1579		    zr->zr_byteswap && pass == 1);
1580
1581		if (!error)
1582			return;
1583
1584		/*
1585		 * The DMU's dnode layer doesn't see removes until the txg
1586		 * commits, so a subsequent claim can spuriously fail with
1587		 * EEXIST. So if we receive any error we try syncing out
1588		 * any removes then retry the transaction.
1589		 */
1590		if (pass == 1)
1591			txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1592	}
1593
1594bad:
1595	ASSERT(error);
1596	name = kmem_alloc(MAXNAMELEN, KM_SLEEP);
1597	dmu_objset_name(zr->zr_os, name);
1598	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1599	    "dataset %s, seq 0x%llx, txtype %llu %s\n",
1600	    error, name, (u_longlong_t)lr->lrc_seq, (u_longlong_t)txtype,
1601	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
1602	zilog->zl_replay = B_FALSE;
1603	kmem_free(name, MAXNAMELEN);
1604}
1605
1606/* ARGSUSED */
1607static void
1608zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1609{
1610	zilog->zl_replay_blks++;
1611}
1612
1613/*
1614 * If this dataset has a non-empty intent log, replay it and destroy it.
1615 */
1616void
1617zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
1618{
1619	zilog_t *zilog = dmu_objset_zil(os);
1620	const zil_header_t *zh = zilog->zl_header;
1621	zil_replay_arg_t zr;
1622
1623	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
1624		zil_destroy(zilog, B_TRUE);
1625		return;
1626	}
1627	//printf("ZFS: Replaying ZIL on %s...\n", os->os->os_spa->spa_name);
1628
1629	zr.zr_os = os;
1630	zr.zr_replay = replay_func;
1631	zr.zr_arg = arg;
1632	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1633	zr.zr_lrbuf = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1634
1635	/*
1636	 * Wait for in-progress removes to sync before starting replay.
1637	 */
1638	txg_wait_synced(zilog->zl_dmu_pool, 0);
1639
1640	zilog->zl_replay = B_TRUE;
1641	zilog->zl_replay_time = LBOLT;
1642	ASSERT(zilog->zl_replay_blks == 0);
1643	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
1644	    zh->zh_claim_txg);
1645	kmem_free(zr.zr_lrbuf, 2 * SPA_MAXBLOCKSIZE);
1646
1647	zil_destroy(zilog, B_FALSE);
1648	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1649	zilog->zl_replay = B_FALSE;
1650	//printf("ZFS: Replay of ZIL on %s finished.\n", os->os->os_spa->spa_name);
1651}
1652
1653/*
1654 * Report whether all transactions are committed
1655 */
1656int
1657zil_is_committed(zilog_t *zilog)
1658{
1659	lwb_t *lwb;
1660	int ret;
1661
1662	mutex_enter(&zilog->zl_lock);
1663	while (zilog->zl_writer)
1664		cv_wait(&zilog->zl_cv_writer, &zilog->zl_lock);
1665
1666	/* recent unpushed intent log transactions? */
1667	if (!list_is_empty(&zilog->zl_itx_list)) {
1668		ret = B_FALSE;
1669		goto out;
1670	}
1671
1672	/* intent log never used? */
1673	lwb = list_head(&zilog->zl_lwb_list);
1674	if (lwb == NULL) {
1675		ret = B_TRUE;
1676		goto out;
1677	}
1678
1679	/*
1680	 * more than 1 log buffer means zil_sync() hasn't yet freed
1681	 * entries after a txg has committed
1682	 */
1683	if (list_next(&zilog->zl_lwb_list, lwb)) {
1684		ret = B_FALSE;
1685		goto out;
1686	}
1687
1688	ASSERT(zil_empty(zilog));
1689	ret = B_TRUE;
1690out:
1691	cv_broadcast(&zilog->zl_cv_writer);
1692	mutex_exit(&zilog->zl_lock);
1693	return (ret);
1694}
1695