zil.c revision 339134
1168404Spjd/*
2168404Spjd * CDDL HEADER START
3168404Spjd *
4168404Spjd * The contents of this file are subject to the terms of the
5168404Spjd * Common Development and Distribution License (the "License").
6168404Spjd * You may not use this file except in compliance with the License.
7168404Spjd *
8168404Spjd * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9168404Spjd * or http://www.opensolaris.org/os/licensing.
10168404Spjd * See the License for the specific language governing permissions
11168404Spjd * and limitations under the License.
12168404Spjd *
13168404Spjd * When distributing Covered Code, include this CDDL HEADER in each
14168404Spjd * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15168404Spjd * If applicable, add the following below this CDDL HEADER, with the
16168404Spjd * fields enclosed by brackets "[]" replaced with your own identifying
17168404Spjd * information: Portions Copyright [yyyy] [name of copyright owner]
18168404Spjd *
19168404Spjd * CDDL HEADER END
20168404Spjd */
21168404Spjd/*
22219089Spjd * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23339105Smav * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24296519Smav * Copyright (c) 2014 Integros [integros.com]
25168404Spjd */
26168404Spjd
27219089Spjd/* Portions Copyright 2010 Robert Milkowski */
28219089Spjd
29168404Spjd#include <sys/zfs_context.h>
30168404Spjd#include <sys/spa.h>
31332547Smav#include <sys/spa_impl.h>
32168404Spjd#include <sys/dmu.h>
33168404Spjd#include <sys/zap.h>
34168404Spjd#include <sys/arc.h>
35168404Spjd#include <sys/stat.h>
36168404Spjd#include <sys/resource.h>
37168404Spjd#include <sys/zil.h>
38168404Spjd#include <sys/zil_impl.h>
39168404Spjd#include <sys/dsl_dataset.h>
40219089Spjd#include <sys/vdev_impl.h>
41168404Spjd#include <sys/dmu_tx.h>
42219089Spjd#include <sys/dsl_pool.h>
43321610Smav#include <sys/abd.h>
44168404Spjd
45168404Spjd/*
46325132Savg * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47325132Savg * calls that change the file system. Each itx has enough information to
48325132Savg * be able to replay them after a system crash, power loss, or
49325132Savg * equivalent failure mode. These are stored in memory until either:
50168404Spjd *
51325132Savg *   1. they are committed to the pool by the DMU transaction group
52325132Savg *      (txg), at which point they can be discarded; or
53325132Savg *   2. they are committed to the on-disk ZIL for the dataset being
54325132Savg *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55325132Savg *      requirement).
56168404Spjd *
57325132Savg * In the event of a crash or power loss, the itxs contained by each
58325132Savg * dataset's on-disk ZIL will be replayed when that dataset is first
59325132Savg * instantianted (e.g. if the dataset is a normal fileystem, when it is
60325132Savg * first mounted).
61168404Spjd *
62325132Savg * As hinted at above, there is one ZIL per dataset (both the in-memory
63325132Savg * representation, and the on-disk representation). The on-disk format
64325132Savg * consists of 3 parts:
65325132Savg *
66325132Savg * 	- a single, per-dataset, ZIL header; which points to a chain of
67325132Savg * 	- zero or more ZIL blocks; each of which contains
68325132Savg * 	- zero or more ZIL records
69325132Savg *
70325132Savg * A ZIL record holds the information necessary to replay a single
71325132Savg * system call transaction. A ZIL block can hold many ZIL records, and
72325132Savg * the blocks are chained together, similarly to a singly linked list.
73325132Savg *
74325132Savg * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75325132Savg * block in the chain, and the ZIL header points to the first block in
76325132Savg * the chain.
77325132Savg *
78325132Savg * Note, there is not a fixed place in the pool to hold these ZIL
79325132Savg * blocks; they are dynamically allocated and freed as needed from the
80325132Savg * blocks available on the pool, though they can be preferentially
81325132Savg * allocated from a dedicated "log" vdev.
82168404Spjd */
83168404Spjd
84168404Spjd/*
85325132Savg * This controls the amount of time that a ZIL block (lwb) will remain
86325132Savg * "open" when it isn't "full", and it has a thread waiting for it to be
87325132Savg * committed to stable storage. Please refer to the zil_commit_waiter()
88325132Savg * function (and the comments within it) for more details.
89325132Savg */
90325132Savgint zfs_commit_timeout_pct = 5;
91325132Savg
92325132Savg/*
93251631Sdelphij * Disable intent logging replay.  This global ZIL switch affects all pools.
94168404Spjd */
95251631Sdelphijint zil_replay_disable = 0;
96168404SpjdSYSCTL_DECL(_vfs_zfs);
97267992ShselaskySYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
98219089Spjd    &zil_replay_disable, 0, "Disable intent logging replay");
99168404Spjd
100168404Spjd/*
101168404Spjd * Tunable parameter for debugging or performance analysis.  Setting
102168404Spjd * zfs_nocacheflush will cause corruption on power loss if a volatile
103168404Spjd * out-of-order write cache is enabled.
104168404Spjd */
105168404Spjdboolean_t zfs_nocacheflush = B_FALSE;
106168404SpjdSYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
107168404Spjd    &zfs_nocacheflush, 0, "Disable cache flush");
108249921Ssmhboolean_t zfs_trim_enabled = B_TRUE;
109249921SsmhSYSCTL_DECL(_vfs_zfs_trim);
110249921SsmhSYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
111249921Ssmh    "Enable ZFS TRIM");
112168404Spjd
113315441Smav/*
114315441Smav * Limit SLOG write size per commit executed with synchronous priority.
115321611Smav * Any writes above that will be executed with lower (asynchronous) priority
116321611Smav * to limit potential SLOG device abuse by single active ZIL writer.
117315441Smav */
118321611Smavuint64_t zil_slog_bulk = 768 * 1024;
119321611SmavSYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
120321611Smav    &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");
121315441Smav
122168404Spjdstatic kmem_cache_t *zil_lwb_cache;
123325132Savgstatic kmem_cache_t *zil_zcw_cache;
124168404Spjd
125219089Spjd#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
126219089Spjd    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
127219089Spjd
128168404Spjdstatic int
129219089Spjdzil_bp_compare(const void *x1, const void *x2)
130168404Spjd{
131219089Spjd	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
132219089Spjd	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
133168404Spjd
134168404Spjd	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
135168404Spjd		return (-1);
136168404Spjd	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
137168404Spjd		return (1);
138168404Spjd
139168404Spjd	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
140168404Spjd		return (-1);
141168404Spjd	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
142168404Spjd		return (1);
143168404Spjd
144168404Spjd	return (0);
145168404Spjd}
146168404Spjd
147168404Spjdstatic void
148219089Spjdzil_bp_tree_init(zilog_t *zilog)
149168404Spjd{
150219089Spjd	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
151219089Spjd	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
152168404Spjd}
153168404Spjd
154168404Spjdstatic void
155219089Spjdzil_bp_tree_fini(zilog_t *zilog)
156168404Spjd{
157219089Spjd	avl_tree_t *t = &zilog->zl_bp_tree;
158219089Spjd	zil_bp_node_t *zn;
159168404Spjd	void *cookie = NULL;
160168404Spjd
161168404Spjd	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
162219089Spjd		kmem_free(zn, sizeof (zil_bp_node_t));
163168404Spjd
164168404Spjd	avl_destroy(t);
165168404Spjd}
166168404Spjd
167219089Spjdint
168219089Spjdzil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
169168404Spjd{
170219089Spjd	avl_tree_t *t = &zilog->zl_bp_tree;
171268075Sdelphij	const dva_t *dva;
172219089Spjd	zil_bp_node_t *zn;
173168404Spjd	avl_index_t where;
174168404Spjd
175268075Sdelphij	if (BP_IS_EMBEDDED(bp))
176268075Sdelphij		return (0);
177268075Sdelphij
178268075Sdelphij	dva = BP_IDENTITY(bp);
179268075Sdelphij
180168404Spjd	if (avl_find(t, dva, &where) != NULL)
181249195Smm		return (SET_ERROR(EEXIST));
182168404Spjd
183219089Spjd	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
184168404Spjd	zn->zn_dva = *dva;
185168404Spjd	avl_insert(t, zn, where);
186168404Spjd
187168404Spjd	return (0);
188168404Spjd}
189168404Spjd
190168404Spjdstatic zil_header_t *
191168404Spjdzil_header_in_syncing_context(zilog_t *zilog)
192168404Spjd{
193168404Spjd	return ((zil_header_t *)zilog->zl_header);
194168404Spjd}
195168404Spjd
196168404Spjdstatic void
197168404Spjdzil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
198168404Spjd{
199168404Spjd	zio_cksum_t *zc = &bp->blk_cksum;
200168404Spjd
201168404Spjd	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
202168404Spjd	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
203168404Spjd	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
204168404Spjd	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
205168404Spjd}
206168404Spjd
207168404Spjd/*
208219089Spjd * Read a log block and make sure it's valid.
209168404Spjd */
210168404Spjdstatic int
211219089Spjdzil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
212219089Spjd    char **end)
213168404Spjd{
214219089Spjd	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
215275811Sdelphij	arc_flags_t aflags = ARC_FLAG_WAIT;
216219089Spjd	arc_buf_t *abuf = NULL;
217268123Sdelphij	zbookmark_phys_t zb;
218168404Spjd	int error;
219168404Spjd
220219089Spjd	if (zilog->zl_header->zh_claim_txg == 0)
221219089Spjd		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
222168404Spjd
223219089Spjd	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
224219089Spjd		zio_flags |= ZIO_FLAG_SPECULATIVE;
225168404Spjd
226219089Spjd	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
227219089Spjd	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
228168404Spjd
229246666Smm	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
230219089Spjd	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
231219089Spjd
232168404Spjd	if (error == 0) {
233168404Spjd		zio_cksum_t cksum = bp->blk_cksum;
234168404Spjd
235168404Spjd		/*
236185029Spjd		 * Validate the checksummed log block.
237185029Spjd		 *
238168404Spjd		 * Sequence numbers should be... sequential.  The checksum
239168404Spjd		 * verifier for the next block should be bp's checksum plus 1.
240185029Spjd		 *
241185029Spjd		 * Also check the log chain linkage and size used.
242168404Spjd		 */
243168404Spjd		cksum.zc_word[ZIL_ZC_SEQ]++;
244168404Spjd
245219089Spjd		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
246219089Spjd			zil_chain_t *zilc = abuf->b_data;
247219089Spjd			char *lr = (char *)(zilc + 1);
248219089Spjd			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
249219089Spjd
250219089Spjd			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
251219089Spjd			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
252249195Smm				error = SET_ERROR(ECKSUM);
253219089Spjd			} else {
254274337Sdelphij				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
255219089Spjd				bcopy(lr, dst, len);
256219089Spjd				*end = (char *)dst + len;
257219089Spjd				*nbp = zilc->zc_next_blk;
258219089Spjd			}
259219089Spjd		} else {
260219089Spjd			char *lr = abuf->b_data;
261219089Spjd			uint64_t size = BP_GET_LSIZE(bp);
262219089Spjd			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
263219089Spjd
264219089Spjd			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
265219089Spjd			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
266219089Spjd			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
267249195Smm				error = SET_ERROR(ECKSUM);
268219089Spjd			} else {
269274337Sdelphij				ASSERT3U(zilc->zc_nused, <=,
270274337Sdelphij				    SPA_OLD_MAXBLOCKSIZE);
271219089Spjd				bcopy(lr, dst, zilc->zc_nused);
272219089Spjd				*end = (char *)dst + zilc->zc_nused;
273219089Spjd				*nbp = zilc->zc_next_blk;
274219089Spjd			}
275185029Spjd		}
276168404Spjd
277307265Smav		arc_buf_destroy(abuf, &abuf);
278168404Spjd	}
279168404Spjd
280219089Spjd	return (error);
281219089Spjd}
282168404Spjd
283219089Spjd/*
284219089Spjd * Read a TX_WRITE log data block.
285219089Spjd */
286219089Spjdstatic int
287219089Spjdzil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
288219089Spjd{
289219089Spjd	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
290219089Spjd	const blkptr_t *bp = &lr->lr_blkptr;
291275811Sdelphij	arc_flags_t aflags = ARC_FLAG_WAIT;
292219089Spjd	arc_buf_t *abuf = NULL;
293268123Sdelphij	zbookmark_phys_t zb;
294219089Spjd	int error;
295219089Spjd
296219089Spjd	if (BP_IS_HOLE(bp)) {
297219089Spjd		if (wbuf != NULL)
298219089Spjd			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
299219089Spjd		return (0);
300219089Spjd	}
301219089Spjd
302219089Spjd	if (zilog->zl_header->zh_claim_txg == 0)
303219089Spjd		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
304219089Spjd
305219089Spjd	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
306219089Spjd	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
307219089Spjd
308246666Smm	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
309219089Spjd	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
310219089Spjd
311219089Spjd	if (error == 0) {
312219089Spjd		if (wbuf != NULL)
313219089Spjd			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
314307265Smav		arc_buf_destroy(abuf, &abuf);
315219089Spjd	}
316219089Spjd
317168404Spjd	return (error);
318168404Spjd}
319168404Spjd
320168404Spjd/*
321168404Spjd * Parse the intent log, and call parse_func for each valid record within.
322168404Spjd */
323219089Spjdint
324168404Spjdzil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
325168404Spjd    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
326168404Spjd{
327168404Spjd	const zil_header_t *zh = zilog->zl_header;
328219089Spjd	boolean_t claimed = !!zh->zh_claim_txg;
329219089Spjd	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
330219089Spjd	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
331219089Spjd	uint64_t max_blk_seq = 0;
332219089Spjd	uint64_t max_lr_seq = 0;
333219089Spjd	uint64_t blk_count = 0;
334219089Spjd	uint64_t lr_count = 0;
335219089Spjd	blkptr_t blk, next_blk;
336168404Spjd	char *lrbuf, *lrp;
337219089Spjd	int error = 0;
338168404Spjd
339219089Spjd	/*
340219089Spjd	 * Old logs didn't record the maximum zh_claim_lr_seq.
341219089Spjd	 */
342219089Spjd	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
343219089Spjd		claim_lr_seq = UINT64_MAX;
344168404Spjd
345168404Spjd	/*
346168404Spjd	 * Starting at the block pointed to by zh_log we read the log chain.
347168404Spjd	 * For each block in the chain we strongly check that block to
348168404Spjd	 * ensure its validity.  We stop when an invalid block is found.
349168404Spjd	 * For each block pointer in the chain we call parse_blk_func().
350168404Spjd	 * For each record in each valid block we call parse_lr_func().
351168404Spjd	 * If the log has been claimed, stop if we encounter a sequence
352168404Spjd	 * number greater than the highest claimed sequence number.
353168404Spjd	 */
354274337Sdelphij	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
355219089Spjd	zil_bp_tree_init(zilog);
356168404Spjd
357219089Spjd	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
358219089Spjd		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
359219089Spjd		int reclen;
360219089Spjd		char *end;
361219089Spjd
362219089Spjd		if (blk_seq > claim_blk_seq)
363168404Spjd			break;
364219089Spjd		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
365219089Spjd			break;
366219089Spjd		ASSERT3U(max_blk_seq, <, blk_seq);
367219089Spjd		max_blk_seq = blk_seq;
368219089Spjd		blk_count++;
369168404Spjd
370219089Spjd		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
371219089Spjd			break;
372168404Spjd
373219089Spjd		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
374248571Smm		if (error != 0)
375168404Spjd			break;
376168404Spjd
377219089Spjd		for (lrp = lrbuf; lrp < end; lrp += reclen) {
378168404Spjd			lr_t *lr = (lr_t *)lrp;
379168404Spjd			reclen = lr->lrc_reclen;
380168404Spjd			ASSERT3U(reclen, >=, sizeof (lr_t));
381219089Spjd			if (lr->lrc_seq > claim_lr_seq)
382219089Spjd				goto done;
383219089Spjd			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
384219089Spjd				goto done;
385219089Spjd			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
386219089Spjd			max_lr_seq = lr->lrc_seq;
387219089Spjd			lr_count++;
388168404Spjd		}
389168404Spjd	}
390219089Spjddone:
391219089Spjd	zilog->zl_parse_error = error;
392219089Spjd	zilog->zl_parse_blk_seq = max_blk_seq;
393219089Spjd	zilog->zl_parse_lr_seq = max_lr_seq;
394219089Spjd	zilog->zl_parse_blk_count = blk_count;
395219089Spjd	zilog->zl_parse_lr_count = lr_count;
396168404Spjd
397219089Spjd	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
398219089Spjd	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
399219089Spjd
400219089Spjd	zil_bp_tree_fini(zilog);
401274337Sdelphij	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
402219089Spjd
403219089Spjd	return (error);
404168404Spjd}
405168404Spjd
406332547Smav/* ARGSUSED */
407219089Spjdstatic int
408332547Smavzil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
409332547Smav{
410332547Smav	ASSERT(!BP_IS_HOLE(bp));
411332547Smav
412332547Smav	/*
413332547Smav	 * As we call this function from the context of a rewind to a
414332547Smav	 * checkpoint, each ZIL block whose txg is later than the txg
415332547Smav	 * that we rewind to is invalid. Thus, we return -1 so
416332547Smav	 * zil_parse() doesn't attempt to read it.
417332547Smav	 */
418332547Smav	if (bp->blk_birth >= first_txg)
419332547Smav		return (-1);
420332547Smav
421332547Smav	if (zil_bp_tree_add(zilog, bp) != 0)
422332547Smav		return (0);
423332547Smav
424332547Smav	zio_free(zilog->zl_spa, first_txg, bp);
425332547Smav	return (0);
426332547Smav}
427332547Smav
428332547Smav/* ARGSUSED */
429332547Smavstatic int
430332547Smavzil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
431332547Smav{
432332547Smav	return (0);
433332547Smav}
434332547Smav
435332547Smavstatic int
436168404Spjdzil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
437168404Spjd{
438168404Spjd	/*
439168404Spjd	 * Claim log block if not already committed and not already claimed.
440219089Spjd	 * If tx == NULL, just verify that the block is claimable.
441168404Spjd	 */
442260150Sdelphij	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
443260150Sdelphij	    zil_bp_tree_add(zilog, bp) != 0)
444219089Spjd		return (0);
445219089Spjd
446219089Spjd	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
447219089Spjd	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
448219089Spjd	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
449168404Spjd}
450168404Spjd
451219089Spjdstatic int
452168404Spjdzil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
453168404Spjd{
454219089Spjd	lr_write_t *lr = (lr_write_t *)lrc;
455219089Spjd	int error;
456219089Spjd
457219089Spjd	if (lrc->lrc_txtype != TX_WRITE)
458219089Spjd		return (0);
459219089Spjd
460219089Spjd	/*
461219089Spjd	 * If the block is not readable, don't claim it.  This can happen
462219089Spjd	 * in normal operation when a log block is written to disk before
463219089Spjd	 * some of the dmu_sync() blocks it points to.  In this case, the
464219089Spjd	 * transaction cannot have been committed to anyone (we would have
465219089Spjd	 * waited for all writes to be stable first), so it is semantically
466219089Spjd	 * correct to declare this the end of the log.
467219089Spjd	 */
468219089Spjd	if (lr->lr_blkptr.blk_birth >= first_txg &&
469219089Spjd	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
470219089Spjd		return (error);
471219089Spjd	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
472168404Spjd}
473168404Spjd
474168404Spjd/* ARGSUSED */
475219089Spjdstatic int
476168404Spjdzil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
477168404Spjd{
478332547Smav	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
479219089Spjd
480219089Spjd	return (0);
481168404Spjd}
482168404Spjd
483219089Spjdstatic int
484168404Spjdzil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
485168404Spjd{
486219089Spjd	lr_write_t *lr = (lr_write_t *)lrc;
487219089Spjd	blkptr_t *bp = &lr->lr_blkptr;
488219089Spjd
489168404Spjd	/*
490168404Spjd	 * If we previously claimed it, we need to free it.
491168404Spjd	 */
492219089Spjd	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
493260150Sdelphij	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
494260150Sdelphij	    !BP_IS_HOLE(bp))
495219089Spjd		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
496219089Spjd
497219089Spjd	return (0);
498219089Spjd}
499219089Spjd
500325132Savgstatic int
501325132Savgzil_lwb_vdev_compare(const void *x1, const void *x2)
502325132Savg{
503325132Savg	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
504325132Savg	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
505325132Savg
506325132Savg	if (v1 < v2)
507325132Savg		return (-1);
508325132Savg	if (v1 > v2)
509325132Savg		return (1);
510325132Savg
511325132Savg	return (0);
512325132Savg}
513325132Savg
514219089Spjdstatic lwb_t *
515315441Smavzil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
516219089Spjd{
517219089Spjd	lwb_t *lwb;
518219089Spjd
519219089Spjd	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
520219089Spjd	lwb->lwb_zilog = zilog;
521219089Spjd	lwb->lwb_blk = *bp;
522315441Smav	lwb->lwb_slog = slog;
523325132Savg	lwb->lwb_state = LWB_STATE_CLOSED;
524219089Spjd	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
525219089Spjd	lwb->lwb_max_txg = txg;
526325132Savg	lwb->lwb_write_zio = NULL;
527325132Savg	lwb->lwb_root_zio = NULL;
528219089Spjd	lwb->lwb_tx = NULL;
529325132Savg	lwb->lwb_issued_timestamp = 0;
530219089Spjd	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
531219089Spjd		lwb->lwb_nused = sizeof (zil_chain_t);
532219089Spjd		lwb->lwb_sz = BP_GET_LSIZE(bp);
533219089Spjd	} else {
534219089Spjd		lwb->lwb_nused = 0;
535219089Spjd		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
536168404Spjd	}
537219089Spjd
538219089Spjd	mutex_enter(&zilog->zl_lock);
539219089Spjd	list_insert_tail(&zilog->zl_lwb_list, lwb);
540219089Spjd	mutex_exit(&zilog->zl_lock);
541219089Spjd
542325132Savg	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
543325132Savg	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
544329486Smav	VERIFY(list_is_empty(&lwb->lwb_waiters));
545325132Savg
546219089Spjd	return (lwb);
547168404Spjd}
548168404Spjd
549325132Savgstatic void
550325132Savgzil_free_lwb(zilog_t *zilog, lwb_t *lwb)
551325132Savg{
552325132Savg	ASSERT(MUTEX_HELD(&zilog->zl_lock));
553325132Savg	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
554329486Smav	VERIFY(list_is_empty(&lwb->lwb_waiters));
555325132Savg	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
556325132Savg	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
557325132Savg	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
558329486Smav	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
559329486Smav	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
560329486Smav	    lwb->lwb_state == LWB_STATE_DONE);
561325132Savg
562325132Savg	/*
563325132Savg	 * Clear the zilog's field to indicate this lwb is no longer
564325132Savg	 * valid, and prevent use-after-free errors.
565325132Savg	 */
566325132Savg	if (zilog->zl_last_lwb_opened == lwb)
567325132Savg		zilog->zl_last_lwb_opened = NULL;
568325132Savg
569325132Savg	kmem_cache_free(zil_lwb_cache, lwb);
570325132Savg}
571325132Savg
572168404Spjd/*
573239620Smm * Called when we create in-memory log transactions so that we know
574239620Smm * to cleanup the itxs at the end of spa_sync().
575239620Smm */
576239620Smmvoid
577239620Smmzilog_dirty(zilog_t *zilog, uint64_t txg)
578239620Smm{
579239620Smm	dsl_pool_t *dp = zilog->zl_dmu_pool;
580239620Smm	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
581239620Smm
582325132Savg	ASSERT(spa_writeable(zilog->zl_spa));
583325132Savg
584286575Smav	if (ds->ds_is_snapshot)
585239620Smm		panic("dirtying snapshot!");
586239620Smm
587248571Smm	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
588239620Smm		/* up the hold count until we can be written out */
589239620Smm		dmu_buf_add_ref(ds->ds_dbuf, zilog);
590325132Savg
591325132Savg		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
592239620Smm	}
593239620Smm}
594239620Smm
595310515Savg/*
596310515Savg * Determine if the zil is dirty in the specified txg. Callers wanting to
597310515Savg * ensure that the dirty state does not change must hold the itxg_lock for
598310515Savg * the specified txg. Holding the lock will ensure that the zil cannot be
599310515Savg * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
600310515Savg * state.
601310515Savg */
602239620Smmboolean_t
603310515Savgzilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
604310515Savg{
605310515Savg	dsl_pool_t *dp = zilog->zl_dmu_pool;
606310515Savg
607310515Savg	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
608310515Savg		return (B_TRUE);
609310515Savg	return (B_FALSE);
610310515Savg}
611310515Savg
612310515Savg/*
613310515Savg * Determine if the zil is dirty. The zil is considered dirty if it has
614310515Savg * any pending itx records that have not been cleaned by zil_clean().
615310515Savg */
616310515Savgboolean_t
617239620Smmzilog_is_dirty(zilog_t *zilog)
618239620Smm{
619239620Smm	dsl_pool_t *dp = zilog->zl_dmu_pool;
620239620Smm
621239620Smm	for (int t = 0; t < TXG_SIZE; t++) {
622239620Smm		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
623239620Smm			return (B_TRUE);
624239620Smm	}
625239620Smm	return (B_FALSE);
626239620Smm}
627239620Smm
628239620Smm/*
629168404Spjd * Create an on-disk intent log.
630168404Spjd */
631219089Spjdstatic lwb_t *
632168404Spjdzil_create(zilog_t *zilog)
633168404Spjd{
634168404Spjd	const zil_header_t *zh = zilog->zl_header;
635219089Spjd	lwb_t *lwb = NULL;
636168404Spjd	uint64_t txg = 0;
637168404Spjd	dmu_tx_t *tx = NULL;
638168404Spjd	blkptr_t blk;
639168404Spjd	int error = 0;
640315441Smav	boolean_t slog = FALSE;
641168404Spjd
642168404Spjd	/*
643168404Spjd	 * Wait for any previous destroy to complete.
644168404Spjd	 */
645168404Spjd	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
646168404Spjd
647168404Spjd	ASSERT(zh->zh_claim_txg == 0);
648168404Spjd	ASSERT(zh->zh_replay_seq == 0);
649168404Spjd
650168404Spjd	blk = zh->zh_log;
651168404Spjd
652168404Spjd	/*
653219089Spjd	 * Allocate an initial log block if:
654219089Spjd	 *    - there isn't one already
655219089Spjd	 *    - the existing block is the wrong endianess
656168404Spjd	 */
657207908Smm	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
658168404Spjd		tx = dmu_tx_create(zilog->zl_os);
659325132Savg		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
660168404Spjd		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
661168404Spjd		txg = dmu_tx_get_txg(tx);
662168404Spjd
663207908Smm		if (!BP_IS_HOLE(&blk)) {
664332547Smav			zio_free(zilog->zl_spa, txg, &blk);
665207908Smm			BP_ZERO(&blk);
666207908Smm		}
667207908Smm
668339105Smav		error = zio_alloc_zil(zilog->zl_spa,
669339105Smav		    zilog->zl_os->os_dsl_dataset->ds_object, txg, &blk, NULL,
670315441Smav		    ZIL_MIN_BLKSZ, &slog);
671168404Spjd
672168404Spjd		if (error == 0)
673168404Spjd			zil_init_log_chain(zilog, &blk);
674168404Spjd	}
675168404Spjd
676168404Spjd	/*
677325132Savg	 * Allocate a log write block (lwb) for the first log block.
678168404Spjd	 */
679219089Spjd	if (error == 0)
680315441Smav		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
681168404Spjd
682168404Spjd	/*
683168404Spjd	 * If we just allocated the first log block, commit our transaction
684168404Spjd	 * and wait for zil_sync() to stuff the block poiner into zh_log.
685168404Spjd	 * (zh is part of the MOS, so we cannot modify it in open context.)
686168404Spjd	 */
687168404Spjd	if (tx != NULL) {
688168404Spjd		dmu_tx_commit(tx);
689168404Spjd		txg_wait_synced(zilog->zl_dmu_pool, txg);
690168404Spjd	}
691168404Spjd
692168404Spjd	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
693219089Spjd
694219089Spjd	return (lwb);
695168404Spjd}
696168404Spjd
697168404Spjd/*
698325132Savg * In one tx, free all log blocks and clear the log header. If keep_first
699325132Savg * is set, then we're replaying a log with no content. We want to keep the
700325132Savg * first block, however, so that the first synchronous transaction doesn't
701325132Savg * require a txg_wait_synced() in zil_create(). We don't need to
702325132Savg * txg_wait_synced() here either when keep_first is set, because both
703325132Savg * zil_create() and zil_destroy() will wait for any in-progress destroys
704325132Savg * to complete.
705168404Spjd */
706168404Spjdvoid
707168404Spjdzil_destroy(zilog_t *zilog, boolean_t keep_first)
708168404Spjd{
709168404Spjd	const zil_header_t *zh = zilog->zl_header;
710168404Spjd	lwb_t *lwb;
711168404Spjd	dmu_tx_t *tx;
712168404Spjd	uint64_t txg;
713168404Spjd
714168404Spjd	/*
715168404Spjd	 * Wait for any previous destroy to complete.
716168404Spjd	 */
717168404Spjd	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
718168404Spjd
719219089Spjd	zilog->zl_old_header = *zh;		/* debugging aid */
720219089Spjd
721168404Spjd	if (BP_IS_HOLE(&zh->zh_log))
722168404Spjd		return;
723168404Spjd
724168404Spjd	tx = dmu_tx_create(zilog->zl_os);
725325132Savg	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
726168404Spjd	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
727168404Spjd	txg = dmu_tx_get_txg(tx);
728168404Spjd
729168404Spjd	mutex_enter(&zilog->zl_lock);
730168404Spjd
731168404Spjd	ASSERT3U(zilog->zl_destroy_txg, <, txg);
732168404Spjd	zilog->zl_destroy_txg = txg;
733168404Spjd	zilog->zl_keep_first = keep_first;
734168404Spjd
735168404Spjd	if (!list_is_empty(&zilog->zl_lwb_list)) {
736168404Spjd		ASSERT(zh->zh_claim_txg == 0);
737224526Smm		VERIFY(!keep_first);
738168404Spjd		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
739168404Spjd			list_remove(&zilog->zl_lwb_list, lwb);
740168404Spjd			if (lwb->lwb_buf != NULL)
741168404Spjd				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
742325132Savg			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
743325132Savg			zil_free_lwb(zilog, lwb);
744168404Spjd		}
745219089Spjd	} else if (!keep_first) {
746239620Smm		zil_destroy_sync(zilog, tx);
747168404Spjd	}
748168404Spjd	mutex_exit(&zilog->zl_lock);
749168404Spjd
750168404Spjd	dmu_tx_commit(tx);
751185029Spjd}
752168404Spjd
753239620Smmvoid
754239620Smmzil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
755239620Smm{
756239620Smm	ASSERT(list_is_empty(&zilog->zl_lwb_list));
757239620Smm	(void) zil_parse(zilog, zil_free_log_block,
758239620Smm	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
759239620Smm}
760239620Smm
761168404Spjdint
762286686Smavzil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
763168404Spjd{
764168404Spjd	dmu_tx_t *tx = txarg;
765168404Spjd	zilog_t *zilog;
766332547Smav	uint64_t first_txg;
767168404Spjd	zil_header_t *zh;
768168404Spjd	objset_t *os;
769168404Spjd	int error;
770168404Spjd
771286686Smav	error = dmu_objset_own_obj(dp, ds->ds_object,
772286686Smav	    DMU_OST_ANY, B_FALSE, FTAG, &os);
773248571Smm	if (error != 0) {
774271534Sdelphij		/*
775271534Sdelphij		 * EBUSY indicates that the objset is inconsistent, in which
776271534Sdelphij		 * case it can not have a ZIL.
777271534Sdelphij		 */
778271534Sdelphij		if (error != EBUSY) {
779286686Smav			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
780286686Smav			    (unsigned long long)ds->ds_object, error);
781271534Sdelphij		}
782168404Spjd		return (0);
783168404Spjd	}
784168404Spjd
785168404Spjd	zilog = dmu_objset_zil(os);
786168404Spjd	zh = zil_header_in_syncing_context(zilog);
787332547Smav	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
788332547Smav	first_txg = spa_min_claim_txg(zilog->zl_spa);
789168404Spjd
790332547Smav	/*
791332547Smav	 * If the spa_log_state is not set to be cleared, check whether
792332547Smav	 * the current uberblock is a checkpoint one and if the current
793332547Smav	 * header has been claimed before moving on.
794332547Smav	 *
795332547Smav	 * If the current uberblock is a checkpointed uberblock then
796332547Smav	 * one of the following scenarios took place:
797332547Smav	 *
798332547Smav	 * 1] We are currently rewinding to the checkpoint of the pool.
799332547Smav	 * 2] We crashed in the middle of a checkpoint rewind but we
800332547Smav	 *    did manage to write the checkpointed uberblock to the
801332547Smav	 *    vdev labels, so when we tried to import the pool again
802332547Smav	 *    the checkpointed uberblock was selected from the import
803332547Smav	 *    procedure.
804332547Smav	 *
805332547Smav	 * In both cases we want to zero out all the ZIL blocks, except
806332547Smav	 * the ones that have been claimed at the time of the checkpoint
807332547Smav	 * (their zh_claim_txg != 0). The reason is that these blocks
808332547Smav	 * may be corrupted since we may have reused their locations on
809332547Smav	 * disk after we took the checkpoint.
810332547Smav	 *
811332547Smav	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
812332547Smav	 * when we first figure out whether the current uberblock is
813332547Smav	 * checkpointed or not. Unfortunately, that would discard all
814332547Smav	 * the logs, including the ones that are claimed, and we would
815332547Smav	 * leak space.
816332547Smav	 */
817332547Smav	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
818332547Smav	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
819332547Smav	    zh->zh_claim_txg == 0)) {
820332547Smav		if (!BP_IS_HOLE(&zh->zh_log)) {
821332547Smav			(void) zil_parse(zilog, zil_clear_log_block,
822332547Smav			    zil_noop_log_record, tx, first_txg);
823332547Smav		}
824213197Smm		BP_ZERO(&zh->zh_log);
825213197Smm		dsl_dataset_dirty(dmu_objset_ds(os), tx);
826248571Smm		dmu_objset_disown(os, FTAG);
827219089Spjd		return (0);
828213197Smm	}
829213197Smm
830168404Spjd	/*
831332547Smav	 * If we are not rewinding and opening the pool normally, then
832332547Smav	 * the min_claim_txg should be equal to the first txg of the pool.
833332547Smav	 */
834332547Smav	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
835332547Smav
836332547Smav	/*
837168404Spjd	 * Claim all log blocks if we haven't already done so, and remember
838168404Spjd	 * the highest claimed sequence number.  This ensures that if we can
839168404Spjd	 * read only part of the log now (e.g. due to a missing device),
840168404Spjd	 * but we can read the entire log later, we will not try to replay
841168404Spjd	 * or destroy beyond the last block we successfully claimed.
842168404Spjd	 */
843168404Spjd	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
844168404Spjd	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
845219089Spjd		(void) zil_parse(zilog, zil_claim_log_block,
846219089Spjd		    zil_claim_log_record, tx, first_txg);
847168404Spjd		zh->zh_claim_txg = first_txg;
848219089Spjd		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
849219089Spjd		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
850219089Spjd		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
851219089Spjd			zh->zh_flags |= ZIL_REPLAY_NEEDED;
852219089Spjd		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
853168404Spjd		dsl_dataset_dirty(dmu_objset_ds(os), tx);
854168404Spjd	}
855168404Spjd
856168404Spjd	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
857248571Smm	dmu_objset_disown(os, FTAG);
858168404Spjd	return (0);
859168404Spjd}
860168404Spjd
861185029Spjd/*
862185029Spjd * Check the log by walking the log chain.
863185029Spjd * Checksum errors are ok as they indicate the end of the chain.
864185029Spjd * Any other error (no device or read failure) returns an error.
865185029Spjd */
866286686Smav/* ARGSUSED */
867185029Spjdint
868286686Smavzil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
869168404Spjd{
870185029Spjd	zilog_t *zilog;
871185029Spjd	objset_t *os;
872219089Spjd	blkptr_t *bp;
873185029Spjd	int error;
874168404Spjd
875219089Spjd	ASSERT(tx == NULL);
876219089Spjd
877286686Smav	error = dmu_objset_from_ds(ds, &os);
878248571Smm	if (error != 0) {
879286686Smav		cmn_err(CE_WARN, "can't open objset %llu, error %d",
880286686Smav		    (unsigned long long)ds->ds_object, error);
881185029Spjd		return (0);
882185029Spjd	}
883168404Spjd
884185029Spjd	zilog = dmu_objset_zil(os);
885219089Spjd	bp = (blkptr_t *)&zilog->zl_header->zh_log;
886219089Spjd
887219089Spjd	if (!BP_IS_HOLE(bp)) {
888219089Spjd		vdev_t *vd;
889219089Spjd		boolean_t valid = B_TRUE;
890219089Spjd
891332547Smav		/*
892332547Smav		 * Check the first block and determine if it's on a log device
893332547Smav		 * which may have been removed or faulted prior to loading this
894332547Smav		 * pool.  If so, there's no point in checking the rest of the
895332547Smav		 * log as its content should have already been synced to the
896332547Smav		 * pool.
897332547Smav		 */
898219089Spjd		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
899219089Spjd		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
900219089Spjd		if (vd->vdev_islog && vdev_is_dead(vd))
901219089Spjd			valid = vdev_log_state_valid(vd);
902219089Spjd		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
903219089Spjd
904286686Smav		if (!valid)
905219089Spjd			return (0);
906332547Smav
907332547Smav		/*
908332547Smav		 * Check whether the current uberblock is checkpointed (e.g.
909332547Smav		 * we are rewinding) and whether the current header has been
910332547Smav		 * claimed or not. If it hasn't then skip verifying it. We
911332547Smav		 * do this because its ZIL blocks may be part of the pool's
912332547Smav		 * state before the rewind, which is no longer valid.
913332547Smav		 */
914332547Smav		zil_header_t *zh = zil_header_in_syncing_context(zilog);
915332547Smav		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
916332547Smav		    zh->zh_claim_txg == 0)
917332547Smav			return (0);
918168404Spjd	}
919185029Spjd
920219089Spjd	/*
921219089Spjd	 * Because tx == NULL, zil_claim_log_block() will not actually claim
922219089Spjd	 * any blocks, but just determine whether it is possible to do so.
923219089Spjd	 * In addition to checking the log chain, zil_claim_log_block()
924219089Spjd	 * will invoke zio_claim() with a done func of spa_claim_notify(),
925219089Spjd	 * which will update spa_max_claim_txg.  See spa_load() for details.
926219089Spjd	 */
927219089Spjd	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
928332547Smav	    zilog->zl_header->zh_claim_txg ? -1ULL :
929332547Smav	    spa_min_claim_txg(os->os_spa));
930219089Spjd
931219089Spjd	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
932168404Spjd}
933168404Spjd
934325132Savg/*
935325132Savg * When an itx is "skipped", this function is used to properly mark the
936325132Savg * waiter as "done, and signal any thread(s) waiting on it. An itx can
937325132Savg * be skipped (and not committed to an lwb) for a variety of reasons,
938325132Savg * one of them being that the itx was committed via spa_sync(), prior to
939325132Savg * it being committed to an lwb; this can happen if a thread calling
940325132Savg * zil_commit() is racing with spa_sync().
941325132Savg */
942325132Savgstatic void
943325132Savgzil_commit_waiter_skip(zil_commit_waiter_t *zcw)
944185029Spjd{
945325132Savg	mutex_enter(&zcw->zcw_lock);
946325132Savg	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
947325132Savg	zcw->zcw_done = B_TRUE;
948325132Savg	cv_broadcast(&zcw->zcw_cv);
949325132Savg	mutex_exit(&zcw->zcw_lock);
950325132Savg}
951185029Spjd
952325132Savg/*
953325132Savg * This function is used when the given waiter is to be linked into an
954325132Savg * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
955325132Savg * At this point, the waiter will no longer be referenced by the itx,
956325132Savg * and instead, will be referenced by the lwb.
957325132Savg */
958325132Savgstatic void
959325132Savgzil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
960325132Savg{
961329486Smav	/*
962329486Smav	 * The lwb_waiters field of the lwb is protected by the zilog's
963329486Smav	 * zl_lock, thus it must be held when calling this function.
964329486Smav	 */
965329486Smav	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
966329486Smav
967325132Savg	mutex_enter(&zcw->zcw_lock);
968325132Savg	ASSERT(!list_link_active(&zcw->zcw_node));
969325132Savg	ASSERT3P(zcw->zcw_lwb, ==, NULL);
970325132Savg	ASSERT3P(lwb, !=, NULL);
971325132Savg	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
972325132Savg	    lwb->lwb_state == LWB_STATE_ISSUED);
973185029Spjd
974325132Savg	list_insert_tail(&lwb->lwb_waiters, zcw);
975325132Savg	zcw->zcw_lwb = lwb;
976325132Savg	mutex_exit(&zcw->zcw_lock);
977185029Spjd}
978185029Spjd
979325132Savg/*
980325132Savg * This function is used when zio_alloc_zil() fails to allocate a ZIL
981325132Savg * block, and the given waiter must be linked to the "nolwb waiters"
982325132Savg * list inside of zil_process_commit_list().
983325132Savg */
984325132Savgstatic void
985325132Savgzil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
986325132Savg{
987325132Savg	mutex_enter(&zcw->zcw_lock);
988325132Savg	ASSERT(!list_link_active(&zcw->zcw_node));
989325132Savg	ASSERT3P(zcw->zcw_lwb, ==, NULL);
990325132Savg	list_insert_tail(nolwb, zcw);
991325132Savg	mutex_exit(&zcw->zcw_lock);
992325132Savg}
993325132Savg
994168404Spjdvoid
995325132Savgzil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
996168404Spjd{
997325132Savg	avl_tree_t *t = &lwb->lwb_vdev_tree;
998185029Spjd	avl_index_t where;
999185029Spjd	zil_vdev_node_t *zv, zvsearch;
1000185029Spjd	int ndvas = BP_GET_NDVAS(bp);
1001185029Spjd	int i;
1002168404Spjd
1003185029Spjd	if (zfs_nocacheflush)
1004185029Spjd		return;
1005168404Spjd
1006325132Savg	mutex_enter(&lwb->lwb_vdev_lock);
1007185029Spjd	for (i = 0; i < ndvas; i++) {
1008185029Spjd		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1009185029Spjd		if (avl_find(t, &zvsearch, &where) == NULL) {
1010185029Spjd			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1011185029Spjd			zv->zv_vdev = zvsearch.zv_vdev;
1012185029Spjd			avl_insert(t, zv, where);
1013185029Spjd		}
1014185029Spjd	}
1015325132Savg	mutex_exit(&lwb->lwb_vdev_lock);
1016168404Spjd}
1017168404Spjd
1018325132Savgvoid
1019325132Savgzil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1020325132Savg{
1021325132Savg	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1022325132Savg}
1023325132Savg
1024325132Savg/*
1025325132Savg * This function is a called after all VDEVs associated with a given lwb
1026325132Savg * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1027325132Savg * as the lwb write completes, if "zfs_nocacheflush" is set.
1028325132Savg *
1029325132Savg * The intention is for this function to be called as soon as the
1030325132Savg * contents of an lwb are considered "stable" on disk, and will survive
1031325132Savg * any sudden loss of power. At this point, any threads waiting for the
1032325132Savg * lwb to reach this state are signalled, and the "waiter" structures
1033325132Savg * are marked "done".
1034325132Savg */
1035219089Spjdstatic void
1036325132Savgzil_lwb_flush_vdevs_done(zio_t *zio)
1037168404Spjd{
1038325132Savg	lwb_t *lwb = zio->io_private;
1039325132Savg	zilog_t *zilog = lwb->lwb_zilog;
1040325132Savg	dmu_tx_t *tx = lwb->lwb_tx;
1041325132Savg	zil_commit_waiter_t *zcw;
1042168404Spjd
1043325132Savg	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1044168404Spjd
1045325132Savg	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1046325132Savg
1047325132Savg	mutex_enter(&zilog->zl_lock);
1048325132Savg
1049185029Spjd	/*
1050325132Savg	 * Ensure the lwb buffer pointer is cleared before releasing the
1051325132Savg	 * txg. If we have had an allocation failure and the txg is
1052325132Savg	 * waiting to sync then we want zil_sync() to remove the lwb so
1053325132Savg	 * that it's not picked up as the next new one in
1054325132Savg	 * zil_process_commit_list(). zil_sync() will only remove the
1055325132Savg	 * lwb if lwb_buf is null.
1056185029Spjd	 */
1057325132Savg	lwb->lwb_buf = NULL;
1058325132Savg	lwb->lwb_tx = NULL;
1059185029Spjd
1060325132Savg	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1061325132Savg	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1062185029Spjd
1063325132Savg	lwb->lwb_root_zio = NULL;
1064325132Savg	lwb->lwb_state = LWB_STATE_DONE;
1065325132Savg
1066325132Savg	if (zilog->zl_last_lwb_opened == lwb) {
1067325132Savg		/*
1068325132Savg		 * Remember the highest committed log sequence number
1069325132Savg		 * for ztest. We only update this value when all the log
1070325132Savg		 * writes succeeded, because ztest wants to ASSERT that
1071325132Savg		 * it got the whole log chain.
1072325132Savg		 */
1073325132Savg		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1074168404Spjd	}
1075168404Spjd
1076325132Savg	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1077325132Savg		mutex_enter(&zcw->zcw_lock);
1078325132Savg
1079325132Savg		ASSERT(list_link_active(&zcw->zcw_node));
1080325132Savg		list_remove(&lwb->lwb_waiters, zcw);
1081325132Savg
1082325132Savg		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1083325132Savg		zcw->zcw_lwb = NULL;
1084325132Savg
1085325132Savg		zcw->zcw_zio_error = zio->io_error;
1086325132Savg
1087325132Savg		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1088325132Savg		zcw->zcw_done = B_TRUE;
1089325132Savg		cv_broadcast(&zcw->zcw_cv);
1090325132Savg
1091325132Savg		mutex_exit(&zcw->zcw_lock);
1092325132Savg	}
1093325132Savg
1094325132Savg	mutex_exit(&zilog->zl_lock);
1095325132Savg
1096168404Spjd	/*
1097325132Savg	 * Now that we've written this log block, we have a stable pointer
1098325132Savg	 * to the next block in the chain, so it's OK to let the txg in
1099325132Savg	 * which we allocated the next block sync.
1100168404Spjd	 */
1101325132Savg	dmu_tx_commit(tx);
1102168404Spjd}
1103168404Spjd
1104168404Spjd/*
1105325132Savg * This is called when an lwb write completes. This means, this specific
1106325132Savg * lwb was written to disk, and all dependent lwb have also been
1107325132Savg * written to disk.
1108325132Savg *
1109325132Savg * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1110325132Savg * the VDEVs involved in writing out this specific lwb. The lwb will be
1111325132Savg * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1112325132Savg * zio completion callback for the lwb's root zio.
1113168404Spjd */
1114168404Spjdstatic void
1115168404Spjdzil_lwb_write_done(zio_t *zio)
1116168404Spjd{
1117168404Spjd	lwb_t *lwb = zio->io_private;
1118325132Savg	spa_t *spa = zio->io_spa;
1119168404Spjd	zilog_t *zilog = lwb->lwb_zilog;
1120325132Savg	avl_tree_t *t = &lwb->lwb_vdev_tree;
1121325132Savg	void *cookie = NULL;
1122325132Savg	zil_vdev_node_t *zv;
1123168404Spjd
1124325132Savg	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1125325132Savg
1126185029Spjd	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1127185029Spjd	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1128185029Spjd	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1129185029Spjd	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1130185029Spjd	ASSERT(!BP_IS_GANG(zio->io_bp));
1131185029Spjd	ASSERT(!BP_IS_HOLE(zio->io_bp));
1132268075Sdelphij	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1133185029Spjd
1134321610Smav	abd_put(zio->io_abd);
1135325132Savg
1136325132Savg	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1137325132Savg
1138168404Spjd	mutex_enter(&zilog->zl_lock);
1139325132Savg	lwb->lwb_write_zio = NULL;
1140219089Spjd	mutex_exit(&zilog->zl_lock);
1141209962Smm
1142325132Savg	if (avl_numnodes(t) == 0)
1143325132Savg		return;
1144325132Savg
1145209962Smm	/*
1146325132Savg	 * If there was an IO error, we're not going to call zio_flush()
1147325132Savg	 * on these vdevs, so we simply empty the tree and free the
1148325132Savg	 * nodes. We avoid calling zio_flush() since there isn't any
1149325132Savg	 * good reason for doing so, after the lwb block failed to be
1150325132Savg	 * written out.
1151209962Smm	 */
1152325132Savg	if (zio->io_error != 0) {
1153325132Savg		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1154325132Savg			kmem_free(zv, sizeof (*zv));
1155325132Savg		return;
1156325132Savg	}
1157325132Savg
1158325132Savg	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1159325132Savg		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1160325132Savg		if (vd != NULL)
1161325132Savg			zio_flush(lwb->lwb_root_zio, vd);
1162325132Savg		kmem_free(zv, sizeof (*zv));
1163325132Savg	}
1164168404Spjd}
1165168404Spjd
1166168404Spjd/*
1167325132Savg * This function's purpose is to "open" an lwb such that it is ready to
1168325132Savg * accept new itxs being committed to it. To do this, the lwb's zio
1169325132Savg * structures are created, and linked to the lwb. This function is
1170325132Savg * idempotent; if the passed in lwb has already been opened, this
1171325132Savg * function is essentially a no-op.
1172168404Spjd */
1173168404Spjdstatic void
1174325132Savgzil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1175168404Spjd{
1176268123Sdelphij	zbookmark_phys_t zb;
1177315441Smav	zio_priority_t prio;
1178168404Spjd
1179329485Smav	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1180325132Savg	ASSERT3P(lwb, !=, NULL);
1181325132Savg	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1182325132Savg	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1183325132Savg
1184219089Spjd	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1185219089Spjd	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1186219089Spjd	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1187168404Spjd
1188325132Savg	if (lwb->lwb_root_zio == NULL) {
1189321610Smav		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1190321610Smav		    BP_GET_LSIZE(&lwb->lwb_blk));
1191325132Savg
1192321611Smav		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1193315441Smav			prio = ZIO_PRIORITY_SYNC_WRITE;
1194315441Smav		else
1195315441Smav			prio = ZIO_PRIORITY_ASYNC_WRITE;
1196325132Savg
1197325132Savg		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1198325132Savg		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1199325132Savg		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1200325132Savg
1201325132Savg		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1202325132Savg		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1203325132Savg		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1204325132Savg		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1205325132Savg		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1206325132Savg
1207325132Savg		lwb->lwb_state = LWB_STATE_OPENED;
1208325132Savg
1209325132Savg		mutex_enter(&zilog->zl_lock);
1210325132Savg
1211325132Savg		/*
1212325132Savg		 * The zilog's "zl_last_lwb_opened" field is used to
1213325132Savg		 * build the lwb/zio dependency chain, which is used to
1214325132Savg		 * preserve the ordering of lwb completions that is
1215325132Savg		 * required by the semantics of the ZIL. Each new lwb
1216325132Savg		 * zio becomes a parent of the "previous" lwb zio, such
1217325132Savg		 * that the new lwb's zio cannot complete until the
1218325132Savg		 * "previous" lwb's zio completes.
1219325132Savg		 *
1220325132Savg		 * This is required by the semantics of zil_commit();
1221325132Savg		 * the commit waiters attached to the lwbs will be woken
1222325132Savg		 * in the lwb zio's completion callback, so this zio
1223325132Savg		 * dependency graph ensures the waiters are woken in the
1224325132Savg		 * correct order (the same order the lwbs were created).
1225325132Savg		 */
1226325132Savg		lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1227325132Savg		if (last_lwb_opened != NULL &&
1228325132Savg		    last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1229325132Savg			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1230325132Savg			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1231325132Savg			ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1232325132Savg			zio_add_child(lwb->lwb_root_zio,
1233325132Savg			    last_lwb_opened->lwb_root_zio);
1234325132Savg		}
1235325132Savg		zilog->zl_last_lwb_opened = lwb;
1236325132Savg
1237325132Savg		mutex_exit(&zilog->zl_lock);
1238168404Spjd	}
1239325132Savg
1240325132Savg	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1241325132Savg	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1242325132Savg	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1243168404Spjd}
1244168404Spjd
1245168404Spjd/*
1246219089Spjd * Define a limited set of intent log block sizes.
1247251631Sdelphij *
1248219089Spjd * These must be a multiple of 4KB. Note only the amount used (again
1249219089Spjd * aligned to 4KB) actually gets written. However, we can't always just
1250274337Sdelphij * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1251219089Spjd */
1252219089Spjduint64_t zil_block_buckets[] = {
1253219089Spjd    4096,		/* non TX_WRITE */
1254219089Spjd    8192+4096,		/* data base */
1255219089Spjd    32*1024 + 4096, 	/* NFS writes */
1256219089Spjd    UINT64_MAX
1257219089Spjd};
1258219089Spjd
1259219089Spjd/*
1260168404Spjd * Start a log block write and advance to the next log block.
1261168404Spjd * Calls are serialized.
1262168404Spjd */
1263168404Spjdstatic lwb_t *
1264325132Savgzil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1265168404Spjd{
1266219089Spjd	lwb_t *nlwb = NULL;
1267219089Spjd	zil_chain_t *zilc;
1268168404Spjd	spa_t *spa = zilog->zl_spa;
1269219089Spjd	blkptr_t *bp;
1270219089Spjd	dmu_tx_t *tx;
1271168404Spjd	uint64_t txg;
1272219089Spjd	uint64_t zil_blksz, wsz;
1273219089Spjd	int i, error;
1274315441Smav	boolean_t slog;
1275168404Spjd
1276329485Smav	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1277325132Savg	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1278325132Savg	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1279325132Savg	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1280325132Savg
1281219089Spjd	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1282219089Spjd		zilc = (zil_chain_t *)lwb->lwb_buf;
1283219089Spjd		bp = &zilc->zc_next_blk;
1284219089Spjd	} else {
1285219089Spjd		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1286219089Spjd		bp = &zilc->zc_next_blk;
1287219089Spjd	}
1288168404Spjd
1289219089Spjd	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1290219089Spjd
1291168404Spjd	/*
1292168404Spjd	 * Allocate the next block and save its address in this block
1293168404Spjd	 * before writing it in order to establish the log chain.
1294168404Spjd	 * Note that if the allocation of nlwb synced before we wrote
1295168404Spjd	 * the block that points at it (lwb), we'd leak it if we crashed.
1296219089Spjd	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1297219089Spjd	 * We dirty the dataset to ensure that zil_sync() will be called
1298219089Spjd	 * to clean up in the event of allocation failure or I/O failure.
1299168404Spjd	 */
1300325132Savg
1301219089Spjd	tx = dmu_tx_create(zilog->zl_os);
1302328235Smav
1303328235Smav	/*
1304330986Savg	 * Since we are not going to create any new dirty data, and we
1305330986Savg	 * can even help with clearing the existing dirty data, we
1306330986Savg	 * should not be subject to the dirty data based delays. We
1307330986Savg	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1308328235Smav	 */
1309330986Savg	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1310330986Savg
1311219089Spjd	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1312219089Spjd	txg = dmu_tx_get_txg(tx);
1313168404Spjd
1314219089Spjd	lwb->lwb_tx = tx;
1315219089Spjd
1316168404Spjd	/*
1317219089Spjd	 * Log blocks are pre-allocated. Here we select the size of the next
1318219089Spjd	 * block, based on size used in the last block.
1319219089Spjd	 * - first find the smallest bucket that will fit the block from a
1320219089Spjd	 *   limited set of block sizes. This is because it's faster to write
1321219089Spjd	 *   blocks allocated from the same metaslab as they are adjacent or
1322219089Spjd	 *   close.
1323219089Spjd	 * - next find the maximum from the new suggested size and an array of
1324219089Spjd	 *   previous sizes. This lessens a picket fence effect of wrongly
1325219089Spjd	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1326219089Spjd	 *   requests.
1327219089Spjd	 *
1328219089Spjd	 * Note we only write what is used, but we can't just allocate
1329219089Spjd	 * the maximum block size because we can exhaust the available
1330219089Spjd	 * pool log space.
1331168404Spjd	 */
1332219089Spjd	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1333219089Spjd	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1334219089Spjd		continue;
1335219089Spjd	zil_blksz = zil_block_buckets[i];
1336219089Spjd	if (zil_blksz == UINT64_MAX)
1337274337Sdelphij		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1338219089Spjd	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1339219089Spjd	for (i = 0; i < ZIL_PREV_BLKS; i++)
1340219089Spjd		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1341219089Spjd	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1342168404Spjd
1343168404Spjd	BP_ZERO(bp);
1344325132Savg
1345168404Spjd	/* pass the old blkptr in order to spread log blocks across devs */
1346339105Smav	error = zio_alloc_zil(spa, zilog->zl_os->os_dsl_dataset->ds_object,
1347339105Smav	    txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1348248571Smm	if (error == 0) {
1349219089Spjd		ASSERT3U(bp->blk_birth, ==, txg);
1350219089Spjd		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1351219089Spjd		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1352168404Spjd
1353168404Spjd		/*
1354325132Savg		 * Allocate a new log write block (lwb).
1355168404Spjd		 */
1356315441Smav		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1357168404Spjd	}
1358168404Spjd
1359219089Spjd	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1360219089Spjd		/* For Slim ZIL only write what is used. */
1361219089Spjd		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1362219089Spjd		ASSERT3U(wsz, <=, lwb->lwb_sz);
1363325132Savg		zio_shrink(lwb->lwb_write_zio, wsz);
1364168404Spjd
1365219089Spjd	} else {
1366219089Spjd		wsz = lwb->lwb_sz;
1367219089Spjd	}
1368168404Spjd
1369219089Spjd	zilc->zc_pad = 0;
1370219089Spjd	zilc->zc_nused = lwb->lwb_nused;
1371219089Spjd	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1372168404Spjd
1373168404Spjd	/*
1374219089Spjd	 * clear unused data for security
1375168404Spjd	 */
1376219089Spjd	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1377168404Spjd
1378325132Savg	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1379168404Spjd
1380325132Savg	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1381325132Savg	lwb->lwb_issued_timestamp = gethrtime();
1382325132Savg	lwb->lwb_state = LWB_STATE_ISSUED;
1383325132Savg
1384325132Savg	zio_nowait(lwb->lwb_root_zio);
1385325132Savg	zio_nowait(lwb->lwb_write_zio);
1386325132Savg
1387168404Spjd	/*
1388219089Spjd	 * If there was an allocation failure then nlwb will be null which
1389219089Spjd	 * forces a txg_wait_synced().
1390168404Spjd	 */
1391168404Spjd	return (nlwb);
1392168404Spjd}
1393168404Spjd
1394168404Spjdstatic lwb_t *
1395168404Spjdzil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1396168404Spjd{
1397321611Smav	lr_t *lrcb, *lrc;
1398321611Smav	lr_write_t *lrwb, *lrw;
1399219089Spjd	char *lr_buf;
1400321611Smav	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1401168404Spjd
1402329485Smav	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1403325132Savg	ASSERT3P(lwb, !=, NULL);
1404325132Savg	ASSERT3P(lwb->lwb_buf, !=, NULL);
1405219089Spjd
1406325132Savg	zil_lwb_write_open(zilog, lwb);
1407168404Spjd
1408325132Savg	lrc = &itx->itx_lr;
1409325132Savg	lrw = (lr_write_t *)lrc;
1410325132Savg
1411325132Savg	/*
1412325132Savg	 * A commit itx doesn't represent any on-disk state; instead
1413325132Savg	 * it's simply used as a place holder on the commit list, and
1414325132Savg	 * provides a mechanism for attaching a "commit waiter" onto the
1415325132Savg	 * correct lwb (such that the waiter can be signalled upon
1416325132Savg	 * completion of that lwb). Thus, we don't process this itx's
1417325132Savg	 * log record if it's a commit itx (these itx's don't have log
1418325132Savg	 * records), and instead link the itx's waiter onto the lwb's
1419325132Savg	 * list of waiters.
1420325132Savg	 *
1421325132Savg	 * For more details, see the comment above zil_commit().
1422325132Savg	 */
1423325132Savg	if (lrc->lrc_txtype == TX_COMMIT) {
1424329486Smav		mutex_enter(&zilog->zl_lock);
1425325132Savg		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1426325132Savg		itx->itx_private = NULL;
1427329486Smav		mutex_exit(&zilog->zl_lock);
1428325132Savg		return (lwb);
1429325132Savg	}
1430325132Savg
1431321611Smav	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1432168404Spjd		dlen = P2ROUNDUP_TYPED(
1433219089Spjd		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1434321611Smav	} else {
1435321611Smav		dlen = 0;
1436321611Smav	}
1437321611Smav	reclen = lrc->lrc_reclen;
1438168404Spjd	zilog->zl_cur_used += (reclen + dlen);
1439321611Smav	txg = lrc->lrc_txg;
1440168404Spjd
1441325132Savg	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1442168404Spjd
1443315441Smavcont:
1444168404Spjd	/*
1445168404Spjd	 * If this record won't fit in the current log block, start a new one.
1446321611Smav	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1447168404Spjd	 */
1448315441Smav	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1449315441Smav	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1450321611Smav	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1451315441Smav	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1452325132Savg		lwb = zil_lwb_write_issue(zilog, lwb);
1453168404Spjd		if (lwb == NULL)
1454168404Spjd			return (NULL);
1455325132Savg		zil_lwb_write_open(zilog, lwb);
1456219089Spjd		ASSERT(LWB_EMPTY(lwb));
1457315441Smav		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1458321611Smav		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1459168404Spjd	}
1460168404Spjd
1461315441Smav	dnow = MIN(dlen, lwb_sp - reclen);
1462219089Spjd	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1463219089Spjd	bcopy(lrc, lr_buf, reclen);
1464321611Smav	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1465321611Smav	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1466168404Spjd
1467168404Spjd	/*
1468168404Spjd	 * If it's a write, fetch the data or get its blkptr as appropriate.
1469168404Spjd	 */
1470168404Spjd	if (lrc->lrc_txtype == TX_WRITE) {
1471168404Spjd		if (txg > spa_freeze_txg(zilog->zl_spa))
1472168404Spjd			txg_wait_synced(zilog->zl_dmu_pool, txg);
1473168404Spjd		if (itx->itx_wr_state != WR_COPIED) {
1474168404Spjd			char *dbuf;
1475168404Spjd			int error;
1476168404Spjd
1477315441Smav			if (itx->itx_wr_state == WR_NEED_COPY) {
1478219089Spjd				dbuf = lr_buf + reclen;
1479315441Smav				lrcb->lrc_reclen += dnow;
1480315441Smav				if (lrwb->lr_length > dnow)
1481315441Smav					lrwb->lr_length = dnow;
1482315441Smav				lrw->lr_offset += dnow;
1483315441Smav				lrw->lr_length -= dnow;
1484168404Spjd			} else {
1485168404Spjd				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1486168404Spjd				dbuf = NULL;
1487168404Spjd			}
1488325132Savg
1489325132Savg			/*
1490325132Savg			 * We pass in the "lwb_write_zio" rather than
1491325132Savg			 * "lwb_root_zio" so that the "lwb_write_zio"
1492325132Savg			 * becomes the parent of any zio's created by
1493325132Savg			 * the "zl_get_data" callback. The vdevs are
1494325132Savg			 * flushed after the "lwb_write_zio" completes,
1495325132Savg			 * so we want to make sure that completion
1496325132Savg			 * callback waits for these additional zio's,
1497325132Savg			 * such that the vdevs used by those zio's will
1498325132Savg			 * be included in the lwb's vdev tree, and those
1499325132Savg			 * vdevs will be properly flushed. If we passed
1500325132Savg			 * in "lwb_root_zio" here, then these additional
1501325132Savg			 * vdevs may not be flushed; e.g. if these zio's
1502325132Savg			 * completed after "lwb_write_zio" completed.
1503325132Savg			 */
1504325132Savg			error = zilog->zl_get_data(itx->itx_private,
1505325132Savg			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1506325132Savg
1507214378Smm			if (error == EIO) {
1508214378Smm				txg_wait_synced(zilog->zl_dmu_pool, txg);
1509214378Smm				return (lwb);
1510214378Smm			}
1511248571Smm			if (error != 0) {
1512168404Spjd				ASSERT(error == ENOENT || error == EEXIST ||
1513168404Spjd				    error == EALREADY);
1514168404Spjd				return (lwb);
1515168404Spjd			}
1516168404Spjd		}
1517168404Spjd	}
1518168404Spjd
1519219089Spjd	/*
1520219089Spjd	 * We're actually making an entry, so update lrc_seq to be the
1521219089Spjd	 * log record sequence number.  Note that this is generally not
1522219089Spjd	 * equal to the itx sequence number because not all transactions
1523219089Spjd	 * are synchronous, and sometimes spa_sync() gets there first.
1524219089Spjd	 */
1525325132Savg	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1526315441Smav	lwb->lwb_nused += reclen + dnow;
1527325132Savg
1528325132Savg	zil_lwb_add_txg(lwb, txg);
1529325132Savg
1530219089Spjd	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1531240415Smm	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1532168404Spjd
1533315441Smav	dlen -= dnow;
1534315441Smav	if (dlen > 0) {
1535315441Smav		zilog->zl_cur_used += reclen;
1536315441Smav		goto cont;
1537315441Smav	}
1538315441Smav
1539168404Spjd	return (lwb);
1540168404Spjd}
1541168404Spjd
1542168404Spjditx_t *
1543185029Spjdzil_itx_create(uint64_t txtype, size_t lrsize)
1544168404Spjd{
1545168404Spjd	itx_t *itx;
1546168404Spjd
1547168404Spjd	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1548168404Spjd
1549168404Spjd	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1550168404Spjd	itx->itx_lr.lrc_txtype = txtype;
1551168404Spjd	itx->itx_lr.lrc_reclen = lrsize;
1552168404Spjd	itx->itx_lr.lrc_seq = 0;	/* defensive */
1553219089Spjd	itx->itx_sync = B_TRUE;		/* default is synchronous */
1554168404Spjd
1555168404Spjd	return (itx);
1556168404Spjd}
1557168404Spjd
1558219089Spjdvoid
1559219089Spjdzil_itx_destroy(itx_t *itx)
1560168404Spjd{
1561219089Spjd	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1562219089Spjd}
1563168404Spjd
1564219089Spjd/*
1565219089Spjd * Free up the sync and async itxs. The itxs_t has already been detached
1566219089Spjd * so no locks are needed.
1567219089Spjd */
1568219089Spjdstatic void
1569219089Spjdzil_itxg_clean(itxs_t *itxs)
1570219089Spjd{
1571219089Spjd	itx_t *itx;
1572219089Spjd	list_t *list;
1573219089Spjd	avl_tree_t *t;
1574219089Spjd	void *cookie;
1575219089Spjd	itx_async_node_t *ian;
1576168404Spjd
1577219089Spjd	list = &itxs->i_sync_list;
1578219089Spjd	while ((itx = list_head(list)) != NULL) {
1579325132Savg		/*
1580325132Savg		 * In the general case, commit itxs will not be found
1581325132Savg		 * here, as they'll be committed to an lwb via
1582325132Savg		 * zil_lwb_commit(), and free'd in that function. Having
1583325132Savg		 * said that, it is still possible for commit itxs to be
1584325132Savg		 * found here, due to the following race:
1585325132Savg		 *
1586325132Savg		 *	- a thread calls zil_commit() which assigns the
1587325132Savg		 *	  commit itx to a per-txg i_sync_list
1588325132Savg		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1589325132Savg		 *	  while the waiter is still on the i_sync_list
1590325132Savg		 *
1591325132Savg		 * There's nothing to prevent syncing the txg while the
1592325132Savg		 * waiter is on the i_sync_list. This normally doesn't
1593325132Savg		 * happen because spa_sync() is slower than zil_commit(),
1594325132Savg		 * but if zil_commit() calls txg_wait_synced() (e.g.
1595325132Savg		 * because zil_create() or zil_commit_writer_stall() is
1596325132Savg		 * called) we will hit this case.
1597325132Savg		 */
1598325132Savg		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1599325132Savg			zil_commit_waiter_skip(itx->itx_private);
1600325132Savg
1601219089Spjd		list_remove(list, itx);
1602325132Savg		zil_itx_destroy(itx);
1603219089Spjd	}
1604168404Spjd
1605219089Spjd	cookie = NULL;
1606219089Spjd	t = &itxs->i_async_tree;
1607219089Spjd	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1608219089Spjd		list = &ian->ia_list;
1609219089Spjd		while ((itx = list_head(list)) != NULL) {
1610219089Spjd			list_remove(list, itx);
1611325132Savg			/* commit itxs should never be on the async lists. */
1612325132Savg			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1613325132Savg			zil_itx_destroy(itx);
1614219089Spjd		}
1615219089Spjd		list_destroy(list);
1616219089Spjd		kmem_free(ian, sizeof (itx_async_node_t));
1617219089Spjd	}
1618219089Spjd	avl_destroy(t);
1619219089Spjd
1620219089Spjd	kmem_free(itxs, sizeof (itxs_t));
1621168404Spjd}
1622168404Spjd
1623219089Spjdstatic int
1624219089Spjdzil_aitx_compare(const void *x1, const void *x2)
1625219089Spjd{
1626219089Spjd	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1627219089Spjd	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1628219089Spjd
1629219089Spjd	if (o1 < o2)
1630219089Spjd		return (-1);
1631219089Spjd	if (o1 > o2)
1632219089Spjd		return (1);
1633219089Spjd
1634219089Spjd	return (0);
1635219089Spjd}
1636219089Spjd
1637168404Spjd/*
1638219089Spjd * Remove all async itx with the given oid.
1639168404Spjd */
1640168404Spjdstatic void
1641219089Spjdzil_remove_async(zilog_t *zilog, uint64_t oid)
1642168404Spjd{
1643219089Spjd	uint64_t otxg, txg;
1644219089Spjd	itx_async_node_t *ian;
1645219089Spjd	avl_tree_t *t;
1646219089Spjd	avl_index_t where;
1647168404Spjd	list_t clean_list;
1648168404Spjd	itx_t *itx;
1649168404Spjd
1650219089Spjd	ASSERT(oid != 0);
1651168404Spjd	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1652168404Spjd
1653219089Spjd	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1654219089Spjd		otxg = ZILTEST_TXG;
1655219089Spjd	else
1656219089Spjd		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1657219089Spjd
1658219089Spjd	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1659219089Spjd		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1660219089Spjd
1661219089Spjd		mutex_enter(&itxg->itxg_lock);
1662219089Spjd		if (itxg->itxg_txg != txg) {
1663219089Spjd			mutex_exit(&itxg->itxg_lock);
1664219089Spjd			continue;
1665219089Spjd		}
1666219089Spjd
1667219089Spjd		/*
1668219089Spjd		 * Locate the object node and append its list.
1669219089Spjd		 */
1670219089Spjd		t = &itxg->itxg_itxs->i_async_tree;
1671219089Spjd		ian = avl_find(t, &oid, &where);
1672219089Spjd		if (ian != NULL)
1673219089Spjd			list_move_tail(&clean_list, &ian->ia_list);
1674219089Spjd		mutex_exit(&itxg->itxg_lock);
1675168404Spjd	}
1676219089Spjd	while ((itx = list_head(&clean_list)) != NULL) {
1677219089Spjd		list_remove(&clean_list, itx);
1678325132Savg		/* commit itxs should never be on the async lists. */
1679325132Savg		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1680325132Savg		zil_itx_destroy(itx);
1681219089Spjd	}
1682219089Spjd	list_destroy(&clean_list);
1683219089Spjd}
1684168404Spjd
1685219089Spjdvoid
1686219089Spjdzil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1687219089Spjd{
1688219089Spjd	uint64_t txg;
1689219089Spjd	itxg_t *itxg;
1690219089Spjd	itxs_t *itxs, *clean = NULL;
1691219089Spjd
1692168404Spjd	/*
1693219089Spjd	 * Object ids can be re-instantiated in the next txg so
1694219089Spjd	 * remove any async transactions to avoid future leaks.
1695219089Spjd	 * This can happen if a fsync occurs on the re-instantiated
1696219089Spjd	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1697219089Spjd	 * the new file data and flushes a write record for the old object.
1698168404Spjd	 */
1699219089Spjd	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1700219089Spjd		zil_remove_async(zilog, itx->itx_oid);
1701219089Spjd
1702219089Spjd	/*
1703219089Spjd	 * Ensure the data of a renamed file is committed before the rename.
1704219089Spjd	 */
1705219089Spjd	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1706219089Spjd		zil_async_to_sync(zilog, itx->itx_oid);
1707219089Spjd
1708239620Smm	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1709219089Spjd		txg = ZILTEST_TXG;
1710219089Spjd	else
1711219089Spjd		txg = dmu_tx_get_txg(tx);
1712219089Spjd
1713219089Spjd	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1714219089Spjd	mutex_enter(&itxg->itxg_lock);
1715219089Spjd	itxs = itxg->itxg_itxs;
1716219089Spjd	if (itxg->itxg_txg != txg) {
1717219089Spjd		if (itxs != NULL) {
1718219089Spjd			/*
1719219089Spjd			 * The zil_clean callback hasn't got around to cleaning
1720219089Spjd			 * this itxg. Save the itxs for release below.
1721219089Spjd			 * This should be rare.
1722219089Spjd			 */
1723321611Smav			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1724321611Smav			    "txg %llu", itxg->itxg_txg);
1725219089Spjd			clean = itxg->itxg_itxs;
1726219089Spjd		}
1727219089Spjd		itxg->itxg_txg = txg;
1728219089Spjd		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1729219089Spjd
1730219089Spjd		list_create(&itxs->i_sync_list, sizeof (itx_t),
1731219089Spjd		    offsetof(itx_t, itx_node));
1732219089Spjd		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1733219089Spjd		    sizeof (itx_async_node_t),
1734219089Spjd		    offsetof(itx_async_node_t, ia_node));
1735168404Spjd	}
1736219089Spjd	if (itx->itx_sync) {
1737219089Spjd		list_insert_tail(&itxs->i_sync_list, itx);
1738219089Spjd	} else {
1739219089Spjd		avl_tree_t *t = &itxs->i_async_tree;
1740219089Spjd		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1741219089Spjd		itx_async_node_t *ian;
1742219089Spjd		avl_index_t where;
1743168404Spjd
1744219089Spjd		ian = avl_find(t, &foid, &where);
1745219089Spjd		if (ian == NULL) {
1746219089Spjd			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1747219089Spjd			list_create(&ian->ia_list, sizeof (itx_t),
1748219089Spjd			    offsetof(itx_t, itx_node));
1749219089Spjd			ian->ia_foid = foid;
1750219089Spjd			avl_insert(t, ian, where);
1751219089Spjd		}
1752219089Spjd		list_insert_tail(&ian->ia_list, itx);
1753168404Spjd	}
1754219089Spjd
1755219089Spjd	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1756325132Savg
1757325132Savg	/*
1758325132Savg	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1759325132Savg	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1760325132Savg	 * need to be careful to always dirty the ZIL using the "real"
1761325132Savg	 * TXG (not itxg_txg) even when the SPA is frozen.
1762325132Savg	 */
1763325132Savg	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1764219089Spjd	mutex_exit(&itxg->itxg_lock);
1765219089Spjd
1766219089Spjd	/* Release the old itxs now we've dropped the lock */
1767219089Spjd	if (clean != NULL)
1768219089Spjd		zil_itxg_clean(clean);
1769168404Spjd}
1770168404Spjd
1771168404Spjd/*
1772168404Spjd * If there are any in-memory intent log transactions which have now been
1773239620Smm * synced then start up a taskq to free them. We should only do this after we
1774239620Smm * have written out the uberblocks (i.e. txg has been comitted) so that
1775239620Smm * don't inadvertently clean out in-memory log records that would be required
1776239620Smm * by zil_commit().
1777168404Spjd */
1778168404Spjdvoid
1779219089Spjdzil_clean(zilog_t *zilog, uint64_t synced_txg)
1780168404Spjd{
1781219089Spjd	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1782219089Spjd	itxs_t *clean_me;
1783168404Spjd
1784325132Savg	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1785325132Savg
1786219089Spjd	mutex_enter(&itxg->itxg_lock);
1787219089Spjd	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1788219089Spjd		mutex_exit(&itxg->itxg_lock);
1789219089Spjd		return;
1790168404Spjd	}
1791219089Spjd	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1792324205Savg	ASSERT3U(itxg->itxg_txg, !=, 0);
1793219089Spjd	clean_me = itxg->itxg_itxs;
1794219089Spjd	itxg->itxg_itxs = NULL;
1795219089Spjd	itxg->itxg_txg = 0;
1796219089Spjd	mutex_exit(&itxg->itxg_lock);
1797219089Spjd	/*
1798219089Spjd	 * Preferably start a task queue to free up the old itxs but
1799219089Spjd	 * if taskq_dispatch can't allocate resources to do that then
1800219089Spjd	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1801219089Spjd	 * created a bad performance problem.
1802219089Spjd	 */
1803324205Savg	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1804324205Savg	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1805324205Savg	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1806219089Spjd	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1807219089Spjd		zil_itxg_clean(clean_me);
1808168404Spjd}
1809168404Spjd
1810219089Spjd/*
1811325132Savg * This function will traverse the queue of itxs that need to be
1812325132Savg * committed, and move them onto the ZIL's zl_itx_commit_list.
1813219089Spjd */
1814185029Spjdstatic void
1815219089Spjdzil_get_commit_list(zilog_t *zilog)
1816168404Spjd{
1817219089Spjd	uint64_t otxg, txg;
1818219089Spjd	list_t *commit_list = &zilog->zl_itx_commit_list;
1819219089Spjd
1820329485Smav	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1821325132Savg
1822219089Spjd	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1823219089Spjd		otxg = ZILTEST_TXG;
1824219089Spjd	else
1825219089Spjd		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1826219089Spjd
1827310515Savg	/*
1828310515Savg	 * This is inherently racy, since there is nothing to prevent
1829310515Savg	 * the last synced txg from changing. That's okay since we'll
1830310515Savg	 * only commit things in the future.
1831310515Savg	 */
1832219089Spjd	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1833219089Spjd		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1834219089Spjd
1835219089Spjd		mutex_enter(&itxg->itxg_lock);
1836219089Spjd		if (itxg->itxg_txg != txg) {
1837219089Spjd			mutex_exit(&itxg->itxg_lock);
1838219089Spjd			continue;
1839219089Spjd		}
1840219089Spjd
1841310515Savg		/*
1842310515Savg		 * If we're adding itx records to the zl_itx_commit_list,
1843310515Savg		 * then the zil better be dirty in this "txg". We can assert
1844310515Savg		 * that here since we're holding the itxg_lock which will
1845310515Savg		 * prevent spa_sync from cleaning it. Once we add the itxs
1846310515Savg		 * to the zl_itx_commit_list we must commit it to disk even
1847310515Savg		 * if it's unnecessary (i.e. the txg was synced).
1848310515Savg		 */
1849310515Savg		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1850310515Savg		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1851219089Spjd		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1852219089Spjd
1853219089Spjd		mutex_exit(&itxg->itxg_lock);
1854219089Spjd	}
1855219089Spjd}
1856219089Spjd
1857219089Spjd/*
1858219089Spjd * Move the async itxs for a specified object to commit into sync lists.
1859219089Spjd */
1860308595Smavvoid
1861219089Spjdzil_async_to_sync(zilog_t *zilog, uint64_t foid)
1862219089Spjd{
1863219089Spjd	uint64_t otxg, txg;
1864219089Spjd	itx_async_node_t *ian;
1865219089Spjd	avl_tree_t *t;
1866219089Spjd	avl_index_t where;
1867219089Spjd
1868219089Spjd	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1869219089Spjd		otxg = ZILTEST_TXG;
1870219089Spjd	else
1871219089Spjd		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1872219089Spjd
1873310515Savg	/*
1874310515Savg	 * This is inherently racy, since there is nothing to prevent
1875310515Savg	 * the last synced txg from changing.
1876310515Savg	 */
1877219089Spjd	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1878219089Spjd		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1879219089Spjd
1880219089Spjd		mutex_enter(&itxg->itxg_lock);
1881219089Spjd		if (itxg->itxg_txg != txg) {
1882219089Spjd			mutex_exit(&itxg->itxg_lock);
1883219089Spjd			continue;
1884219089Spjd		}
1885219089Spjd
1886219089Spjd		/*
1887219089Spjd		 * If a foid is specified then find that node and append its
1888219089Spjd		 * list. Otherwise walk the tree appending all the lists
1889219089Spjd		 * to the sync list. We add to the end rather than the
1890219089Spjd		 * beginning to ensure the create has happened.
1891219089Spjd		 */
1892219089Spjd		t = &itxg->itxg_itxs->i_async_tree;
1893219089Spjd		if (foid != 0) {
1894219089Spjd			ian = avl_find(t, &foid, &where);
1895219089Spjd			if (ian != NULL) {
1896219089Spjd				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1897219089Spjd				    &ian->ia_list);
1898219089Spjd			}
1899219089Spjd		} else {
1900219089Spjd			void *cookie = NULL;
1901219089Spjd
1902219089Spjd			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1903219089Spjd				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1904219089Spjd				    &ian->ia_list);
1905219089Spjd				list_destroy(&ian->ia_list);
1906219089Spjd				kmem_free(ian, sizeof (itx_async_node_t));
1907219089Spjd			}
1908219089Spjd		}
1909219089Spjd		mutex_exit(&itxg->itxg_lock);
1910219089Spjd	}
1911219089Spjd}
1912219089Spjd
1913325132Savg/*
1914325132Savg * This function will prune commit itxs that are at the head of the
1915325132Savg * commit list (it won't prune past the first non-commit itx), and
1916325132Savg * either: a) attach them to the last lwb that's still pending
1917325132Savg * completion, or b) skip them altogether.
1918325132Savg *
1919325132Savg * This is used as a performance optimization to prevent commit itxs
1920325132Savg * from generating new lwbs when it's unnecessary to do so.
1921325132Savg */
1922219089Spjdstatic void
1923325132Savgzil_prune_commit_list(zilog_t *zilog)
1924219089Spjd{
1925219089Spjd	itx_t *itx;
1926168404Spjd
1927329485Smav	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1928168404Spjd
1929325132Savg	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1930325132Savg		lr_t *lrc = &itx->itx_lr;
1931325132Savg		if (lrc->lrc_txtype != TX_COMMIT)
1932325132Savg			break;
1933219089Spjd
1934325132Savg		mutex_enter(&zilog->zl_lock);
1935219089Spjd
1936325132Savg		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1937325132Savg		if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1938325132Savg			/*
1939325132Savg			 * All of the itxs this waiter was waiting on
1940325132Savg			 * must have already completed (or there were
1941325132Savg			 * never any itx's for it to wait on), so it's
1942325132Savg			 * safe to skip this waiter and mark it done.
1943325132Savg			 */
1944325132Savg			zil_commit_waiter_skip(itx->itx_private);
1945325132Savg		} else {
1946325132Savg			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1947325132Savg			itx->itx_private = NULL;
1948325132Savg		}
1949325132Savg
1950325132Savg		mutex_exit(&zilog->zl_lock);
1951325132Savg
1952325132Savg		list_remove(&zilog->zl_itx_commit_list, itx);
1953325132Savg		zil_itx_destroy(itx);
1954325132Savg	}
1955325132Savg
1956325132Savg	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1957325132Savg}
1958325132Savg
1959325132Savgstatic void
1960325132Savgzil_commit_writer_stall(zilog_t *zilog)
1961325132Savg{
1962219089Spjd	/*
1963325132Savg	 * When zio_alloc_zil() fails to allocate the next lwb block on
1964325132Savg	 * disk, we must call txg_wait_synced() to ensure all of the
1965325132Savg	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1966325132Savg	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1967325132Savg	 * to zil_process_commit_list()) will have to call zil_create(),
1968325132Savg	 * and start a new ZIL chain.
1969325132Savg	 *
1970325132Savg	 * Since zil_alloc_zil() failed, the lwb that was previously
1971325132Savg	 * issued does not have a pointer to the "next" lwb on disk.
1972325132Savg	 * Thus, if another ZIL writer thread was to allocate the "next"
1973325132Savg	 * on-disk lwb, that block could be leaked in the event of a
1974325132Savg	 * crash (because the previous lwb on-disk would not point to
1975325132Savg	 * it).
1976325132Savg	 *
1977329485Smav	 * We must hold the zilog's zl_issuer_lock while we do this, to
1978325132Savg	 * ensure no new threads enter zil_process_commit_list() until
1979325132Savg	 * all lwb's in the zl_lwb_list have been synced and freed
1980325132Savg	 * (which is achieved via the txg_wait_synced() call).
1981325132Savg	 */
1982329485Smav	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1983325132Savg	txg_wait_synced(zilog->zl_dmu_pool, 0);
1984325132Savg	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1985325132Savg}
1986325132Savg
1987325132Savg/*
1988325132Savg * This function will traverse the commit list, creating new lwbs as
1989325132Savg * needed, and committing the itxs from the commit list to these newly
1990325132Savg * created lwbs. Additionally, as a new lwb is created, the previous
1991325132Savg * lwb will be issued to the zio layer to be written to disk.
1992325132Savg */
1993325132Savgstatic void
1994325132Savgzil_process_commit_list(zilog_t *zilog)
1995325132Savg{
1996325132Savg	spa_t *spa = zilog->zl_spa;
1997325132Savg	list_t nolwb_waiters;
1998325132Savg	lwb_t *lwb;
1999325132Savg	itx_t *itx;
2000325132Savg
2001329485Smav	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2002325132Savg
2003325132Savg	/*
2004219089Spjd	 * Return if there's nothing to commit before we dirty the fs by
2005219089Spjd	 * calling zil_create().
2006219089Spjd	 */
2007325132Savg	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2008219089Spjd		return;
2009219089Spjd
2010325132Savg	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2011325132Savg	    offsetof(zil_commit_waiter_t, zcw_node));
2012325132Savg
2013325132Savg	lwb = list_tail(&zilog->zl_lwb_list);
2014325132Savg	if (lwb == NULL) {
2015325132Savg		lwb = zil_create(zilog);
2016168404Spjd	} else {
2017325132Savg		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2018325132Savg		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2019168404Spjd	}
2020168404Spjd
2021219089Spjd	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2022325132Savg		lr_t *lrc = &itx->itx_lr;
2023325132Savg		uint64_t txg = lrc->lrc_txg;
2024325132Savg
2025310515Savg		ASSERT3U(txg, !=, 0);
2026168404Spjd
2027325132Savg		if (lrc->lrc_txtype == TX_COMMIT) {
2028325132Savg			DTRACE_PROBE2(zil__process__commit__itx,
2029325132Savg			    zilog_t *, zilog, itx_t *, itx);
2030325132Savg		} else {
2031325132Savg			DTRACE_PROBE2(zil__process__normal__itx,
2032325132Savg			    zilog_t *, zilog, itx_t *, itx);
2033325132Savg		}
2034325132Savg
2035325132Savg		boolean_t synced = txg <= spa_last_synced_txg(spa);
2036325132Savg		boolean_t frozen = txg > spa_freeze_txg(spa);
2037325132Savg
2038329486Smav		/*
2039329486Smav		 * If the txg of this itx has already been synced out, then
2040329486Smav		 * we don't need to commit this itx to an lwb. This is
2041329486Smav		 * because the data of this itx will have already been
2042329486Smav		 * written to the main pool. This is inherently racy, and
2043329486Smav		 * it's still ok to commit an itx whose txg has already
2044329486Smav		 * been synced; this will result in a write that's
2045329486Smav		 * unnecessary, but will do no harm.
2046329486Smav		 *
2047329486Smav		 * With that said, we always want to commit TX_COMMIT itxs
2048329486Smav		 * to an lwb, regardless of whether or not that itx's txg
2049329486Smav		 * has been synced out. We do this to ensure any OPENED lwb
2050329486Smav		 * will always have at least one zil_commit_waiter_t linked
2051329486Smav		 * to the lwb.
2052329486Smav		 *
2053329486Smav		 * As a counter-example, if we skipped TX_COMMIT itx's
2054329486Smav		 * whose txg had already been synced, the following
2055329486Smav		 * situation could occur if we happened to be racing with
2056329486Smav		 * spa_sync:
2057329486Smav		 *
2058329486Smav		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2059329486Smav		 *    itx's txg is 10 and the last synced txg is 9.
2060329486Smav		 * 2. spa_sync finishes syncing out txg 10.
2061329486Smav		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2062329486Smav		 *    whose txg is 10, so we skip it rather than committing
2063329486Smav		 *    it to the lwb used in (1).
2064329486Smav		 *
2065329486Smav		 * If the itx that is skipped in (3) is the last TX_COMMIT
2066329486Smav		 * itx in the commit list, than it's possible for the lwb
2067329486Smav		 * used in (1) to remain in the OPENED state indefinitely.
2068329486Smav		 *
2069329486Smav		 * To prevent the above scenario from occuring, ensuring
2070329486Smav		 * that once an lwb is OPENED it will transition to ISSUED
2071329486Smav		 * and eventually DONE, we always commit TX_COMMIT itx's to
2072329486Smav		 * an lwb here, even if that itx's txg has already been
2073329486Smav		 * synced.
2074329486Smav		 *
2075329486Smav		 * Finally, if the pool is frozen, we _always_ commit the
2076329486Smav		 * itx.  The point of freezing the pool is to prevent data
2077329486Smav		 * from being written to the main pool via spa_sync, and
2078329486Smav		 * instead rely solely on the ZIL to persistently store the
2079329486Smav		 * data; i.e.  when the pool is frozen, the last synced txg
2080329486Smav		 * value can't be trusted.
2081329486Smav		 */
2082329486Smav		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2083325132Savg			if (lwb != NULL) {
2084325132Savg				lwb = zil_lwb_commit(zilog, itx, lwb);
2085325132Savg			} else if (lrc->lrc_txtype == TX_COMMIT) {
2086325132Savg				ASSERT3P(lwb, ==, NULL);
2087325132Savg				zil_commit_waiter_link_nolwb(
2088325132Savg				    itx->itx_private, &nolwb_waiters);
2089325132Savg			}
2090325132Savg		}
2091325132Savg
2092219089Spjd		list_remove(&zilog->zl_itx_commit_list, itx);
2093325132Savg		zil_itx_destroy(itx);
2094168404Spjd	}
2095168404Spjd
2096325132Savg	if (lwb == NULL) {
2097325132Savg		/*
2098325132Savg		 * This indicates zio_alloc_zil() failed to allocate the
2099325132Savg		 * "next" lwb on-disk. When this happens, we must stall
2100325132Savg		 * the ZIL write pipeline; see the comment within
2101325132Savg		 * zil_commit_writer_stall() for more details.
2102325132Savg		 */
2103325132Savg		zil_commit_writer_stall(zilog);
2104168404Spjd
2105325132Savg		/*
2106325132Savg		 * Additionally, we have to signal and mark the "nolwb"
2107325132Savg		 * waiters as "done" here, since without an lwb, we
2108325132Savg		 * can't do this via zil_lwb_flush_vdevs_done() like
2109325132Savg		 * normal.
2110325132Savg		 */
2111325132Savg		zil_commit_waiter_t *zcw;
2112325132Savg		while (zcw = list_head(&nolwb_waiters)) {
2113325132Savg			zil_commit_waiter_skip(zcw);
2114325132Savg			list_remove(&nolwb_waiters, zcw);
2115325132Savg		}
2116325132Savg	} else {
2117325132Savg		ASSERT(list_is_empty(&nolwb_waiters));
2118325132Savg		ASSERT3P(lwb, !=, NULL);
2119325132Savg		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2120325132Savg		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2121168404Spjd
2122325132Savg		/*
2123325132Savg		 * At this point, the ZIL block pointed at by the "lwb"
2124325132Savg		 * variable is in one of the following states: "closed"
2125325132Savg		 * or "open".
2126325132Savg		 *
2127325132Savg		 * If its "closed", then no itxs have been committed to
2128325132Savg		 * it, so there's no point in issuing its zio (i.e.
2129325132Savg		 * it's "empty").
2130325132Savg		 *
2131325132Savg		 * If its "open" state, then it contains one or more
2132325132Savg		 * itxs that eventually need to be committed to stable
2133325132Savg		 * storage. In this case we intentionally do not issue
2134325132Savg		 * the lwb's zio to disk yet, and instead rely on one of
2135325132Savg		 * the following two mechanisms for issuing the zio:
2136325132Savg		 *
2137325132Savg		 * 1. Ideally, there will be more ZIL activity occuring
2138325132Savg		 * on the system, such that this function will be
2139325132Savg		 * immediately called again (not necessarily by the same
2140325132Savg		 * thread) and this lwb's zio will be issued via
2141325132Savg		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2142325132Savg		 * be "full" when it is issued to disk, and we'll make
2143325132Savg		 * use of the lwb's size the best we can.
2144325132Savg		 *
2145325132Savg		 * 2. If there isn't sufficient ZIL activity occuring on
2146325132Savg		 * the system, such that this lwb's zio isn't issued via
2147325132Savg		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2148325132Savg		 * lwb's zio. If this occurs, the lwb is not guaranteed
2149325132Savg		 * to be "full" by the time its zio is issued, and means
2150325132Savg		 * the size of the lwb was "too large" given the amount
2151325132Savg		 * of ZIL activity occuring on the system at that time.
2152325132Savg		 *
2153325132Savg		 * We do this for a couple of reasons:
2154325132Savg		 *
2155325132Savg		 * 1. To try and reduce the number of IOPs needed to
2156325132Savg		 * write the same number of itxs. If an lwb has space
2157325132Savg		 * available in it's buffer for more itxs, and more itxs
2158325132Savg		 * will be committed relatively soon (relative to the
2159325132Savg		 * latency of performing a write), then it's beneficial
2160325132Savg		 * to wait for these "next" itxs. This way, more itxs
2161325132Savg		 * can be committed to stable storage with fewer writes.
2162325132Savg		 *
2163325132Savg		 * 2. To try and use the largest lwb block size that the
2164325132Savg		 * incoming rate of itxs can support. Again, this is to
2165325132Savg		 * try and pack as many itxs into as few lwbs as
2166325132Savg		 * possible, without significantly impacting the latency
2167325132Savg		 * of each individual itx.
2168325132Savg		 */
2169325132Savg	}
2170325132Savg}
2171325132Savg
2172325132Savg/*
2173325132Savg * This function is responsible for ensuring the passed in commit waiter
2174325132Savg * (and associated commit itx) is committed to an lwb. If the waiter is
2175325132Savg * not already committed to an lwb, all itxs in the zilog's queue of
2176325132Savg * itxs will be processed. The assumption is the passed in waiter's
2177325132Savg * commit itx will found in the queue just like the other non-commit
2178325132Savg * itxs, such that when the entire queue is processed, the waiter will
2179325132Savg * have been commited to an lwb.
2180325132Savg *
2181325132Savg * The lwb associated with the passed in waiter is not guaranteed to
2182325132Savg * have been issued by the time this function completes. If the lwb is
2183325132Savg * not issued, we rely on future calls to zil_commit_writer() to issue
2184325132Savg * the lwb, or the timeout mechanism found in zil_commit_waiter().
2185325132Savg */
2186325132Savgstatic void
2187325132Savgzil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2188325132Savg{
2189325132Savg	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2190325132Savg	ASSERT(spa_writeable(zilog->zl_spa));
2191325132Savg
2192329485Smav	mutex_enter(&zilog->zl_issuer_lock);
2193325132Savg
2194325132Savg	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2195325132Savg		/*
2196325132Savg		 * It's possible that, while we were waiting to acquire
2197329485Smav		 * the "zl_issuer_lock", another thread committed this
2198325132Savg		 * waiter to an lwb. If that occurs, we bail out early,
2199325132Savg		 * without processing any of the zilog's queue of itxs.
2200325132Savg		 *
2201325132Savg		 * On certain workloads and system configurations, the
2202329485Smav		 * "zl_issuer_lock" can become highly contended. In an
2203325132Savg		 * attempt to reduce this contention, we immediately drop
2204325132Savg		 * the lock if the waiter has already been processed.
2205325132Savg		 *
2206325132Savg		 * We've measured this optimization to reduce CPU spent
2207325132Savg		 * contending on this lock by up to 5%, using a system
2208325132Savg		 * with 32 CPUs, low latency storage (~50 usec writes),
2209325132Savg		 * and 1024 threads performing sync writes.
2210325132Savg		 */
2211325132Savg		goto out;
2212325132Savg	}
2213325132Savg
2214325132Savg	zil_get_commit_list(zilog);
2215325132Savg	zil_prune_commit_list(zilog);
2216325132Savg	zil_process_commit_list(zilog);
2217325132Savg
2218325132Savgout:
2219329485Smav	mutex_exit(&zilog->zl_issuer_lock);
2220325132Savg}
2221325132Savg
2222325132Savgstatic void
2223325132Savgzil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2224325132Savg{
2225329485Smav	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2226325132Savg	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2227325132Savg	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2228325132Savg
2229325132Savg	lwb_t *lwb = zcw->zcw_lwb;
2230325132Savg	ASSERT3P(lwb, !=, NULL);
2231325132Savg	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2232325132Savg
2233168404Spjd	/*
2234325132Savg	 * If the lwb has already been issued by another thread, we can
2235325132Savg	 * immediately return since there's no work to be done (the
2236325132Savg	 * point of this function is to issue the lwb). Additionally, we
2237329485Smav	 * do this prior to acquiring the zl_issuer_lock, to avoid
2238325132Savg	 * acquiring it when it's not necessary to do so.
2239168404Spjd	 */
2240325132Savg	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2241325132Savg	    lwb->lwb_state == LWB_STATE_DONE)
2242325132Savg		return;
2243325132Savg
2244325132Savg	/*
2245325132Savg	 * In order to call zil_lwb_write_issue() we must hold the
2246329485Smav	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2247325132Savg	 * since we're already holding the commit waiter's "zcw_lock",
2248325132Savg	 * and those two locks are aquired in the opposite order
2249325132Savg	 * elsewhere.
2250325132Savg	 */
2251325132Savg	mutex_exit(&zcw->zcw_lock);
2252329485Smav	mutex_enter(&zilog->zl_issuer_lock);
2253325132Savg	mutex_enter(&zcw->zcw_lock);
2254325132Savg
2255325132Savg	/*
2256325132Savg	 * Since we just dropped and re-acquired the commit waiter's
2257325132Savg	 * lock, we have to re-check to see if the waiter was marked
2258325132Savg	 * "done" during that process. If the waiter was marked "done",
2259325132Savg	 * the "lwb" pointer is no longer valid (it can be free'd after
2260325132Savg	 * the waiter is marked "done"), so without this check we could
2261325132Savg	 * wind up with a use-after-free error below.
2262325132Savg	 */
2263325132Savg	if (zcw->zcw_done)
2264325132Savg		goto out;
2265325132Savg
2266325132Savg	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2267325132Savg
2268325132Savg	/*
2269329486Smav	 * We've already checked this above, but since we hadn't acquired
2270329486Smav	 * the zilog's zl_issuer_lock, we have to perform this check a
2271329486Smav	 * second time while holding the lock.
2272329486Smav	 *
2273329486Smav	 * We don't need to hold the zl_lock since the lwb cannot transition
2274329486Smav	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2275329486Smav	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2276329486Smav	 * that transition since we treat the lwb the same, whether it's in
2277329486Smav	 * the ISSUED or DONE states.
2278329486Smav	 *
2279329486Smav	 * The important thing, is we treat the lwb differently depending on
2280329486Smav	 * if it's ISSUED or OPENED, and block any other threads that might
2281329486Smav	 * attempt to issue this lwb. For that reason we hold the
2282329486Smav	 * zl_issuer_lock when checking the lwb_state; we must not call
2283325132Savg	 * zil_lwb_write_issue() if the lwb had already been issued.
2284329486Smav	 *
2285329486Smav	 * See the comment above the lwb_state_t structure definition for
2286329486Smav	 * more details on the lwb states, and locking requirements.
2287325132Savg	 */
2288325132Savg	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2289325132Savg	    lwb->lwb_state == LWB_STATE_DONE)
2290325132Savg		goto out;
2291325132Savg
2292325132Savg	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2293325132Savg
2294325132Savg	/*
2295325132Savg	 * As described in the comments above zil_commit_waiter() and
2296325132Savg	 * zil_process_commit_list(), we need to issue this lwb's zio
2297325132Savg	 * since we've reached the commit waiter's timeout and it still
2298325132Savg	 * hasn't been issued.
2299325132Savg	 */
2300325132Savg	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2301325132Savg
2302339134Smav	IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2303325132Savg
2304325132Savg	/*
2305325132Savg	 * Since the lwb's zio hadn't been issued by the time this thread
2306325132Savg	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2307325132Savg	 * to influence the zil block size selection algorithm.
2308325132Savg	 *
2309325132Savg	 * By having to issue the lwb's zio here, it means the size of the
2310325132Savg	 * lwb was too large, given the incoming throughput of itxs.  By
2311325132Savg	 * setting "zl_cur_used" to zero, we communicate this fact to the
2312325132Savg	 * block size selection algorithm, so it can take this informaiton
2313325132Savg	 * into account, and potentially select a smaller size for the
2314325132Savg	 * next lwb block that is allocated.
2315325132Savg	 */
2316325132Savg	zilog->zl_cur_used = 0;
2317325132Savg
2318325132Savg	if (nlwb == NULL) {
2319325132Savg		/*
2320325132Savg		 * When zil_lwb_write_issue() returns NULL, this
2321325132Savg		 * indicates zio_alloc_zil() failed to allocate the
2322325132Savg		 * "next" lwb on-disk. When this occurs, the ZIL write
2323325132Savg		 * pipeline must be stalled; see the comment within the
2324325132Savg		 * zil_commit_writer_stall() function for more details.
2325325132Savg		 *
2326325132Savg		 * We must drop the commit waiter's lock prior to
2327325132Savg		 * calling zil_commit_writer_stall() or else we can wind
2328325132Savg		 * up with the following deadlock:
2329325132Savg		 *
2330325132Savg		 * - This thread is waiting for the txg to sync while
2331325132Savg		 *   holding the waiter's lock; txg_wait_synced() is
2332325132Savg		 *   used within txg_commit_writer_stall().
2333325132Savg		 *
2334325132Savg		 * - The txg can't sync because it is waiting for this
2335325132Savg		 *   lwb's zio callback to call dmu_tx_commit().
2336325132Savg		 *
2337325132Savg		 * - The lwb's zio callback can't call dmu_tx_commit()
2338325132Savg		 *   because it's blocked trying to acquire the waiter's
2339325132Savg		 *   lock, which occurs prior to calling dmu_tx_commit()
2340325132Savg		 */
2341325132Savg		mutex_exit(&zcw->zcw_lock);
2342325132Savg		zil_commit_writer_stall(zilog);
2343325132Savg		mutex_enter(&zcw->zcw_lock);
2344168404Spjd	}
2345168404Spjd
2346325132Savgout:
2347329485Smav	mutex_exit(&zilog->zl_issuer_lock);
2348325132Savg	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2349325132Savg}
2350168404Spjd
2351325132Savg/*
2352325132Savg * This function is responsible for performing the following two tasks:
2353325132Savg *
2354325132Savg * 1. its primary responsibility is to block until the given "commit
2355325132Savg *    waiter" is considered "done".
2356325132Savg *
2357325132Savg * 2. its secondary responsibility is to issue the zio for the lwb that
2358325132Savg *    the given "commit waiter" is waiting on, if this function has
2359325132Savg *    waited "long enough" and the lwb is still in the "open" state.
2360325132Savg *
2361325132Savg * Given a sufficient amount of itxs being generated and written using
2362325132Savg * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2363325132Savg * function. If this does not occur, this secondary responsibility will
2364325132Savg * ensure the lwb is issued even if there is not other synchronous
2365325132Savg * activity on the system.
2366325132Savg *
2367325132Savg * For more details, see zil_process_commit_list(); more specifically,
2368325132Savg * the comment at the bottom of that function.
2369325132Savg */
2370325132Savgstatic void
2371325132Savgzil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2372325132Savg{
2373325132Savg	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2374329485Smav	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2375325132Savg	ASSERT(spa_writeable(zilog->zl_spa));
2376168404Spjd
2377325132Savg	mutex_enter(&zcw->zcw_lock);
2378325132Savg
2379219089Spjd	/*
2380325132Savg	 * The timeout is scaled based on the lwb latency to avoid
2381325132Savg	 * significantly impacting the latency of each individual itx.
2382325132Savg	 * For more details, see the comment at the bottom of the
2383325132Savg	 * zil_process_commit_list() function.
2384219089Spjd	 */
2385325132Savg	int pct = MAX(zfs_commit_timeout_pct, 1);
2386325132Savg#if defined(illumos) || !defined(_KERNEL)
2387325132Savg	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2388325132Savg	hrtime_t wakeup = gethrtime() + sleep;
2389325132Savg#else
2390325132Savg	sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100);
2391325132Savg	sbintime_t wakeup = getsbinuptime() + sleep;
2392325132Savg#endif
2393325132Savg	boolean_t timedout = B_FALSE;
2394325132Savg
2395325132Savg	while (!zcw->zcw_done) {
2396325132Savg		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2397325132Savg
2398325132Savg		lwb_t *lwb = zcw->zcw_lwb;
2399325132Savg
2400325132Savg		/*
2401325132Savg		 * Usually, the waiter will have a non-NULL lwb field here,
2402325132Savg		 * but it's possible for it to be NULL as a result of
2403325132Savg		 * zil_commit() racing with spa_sync().
2404325132Savg		 *
2405325132Savg		 * When zil_clean() is called, it's possible for the itxg
2406325132Savg		 * list (which may be cleaned via a taskq) to contain
2407325132Savg		 * commit itxs. When this occurs, the commit waiters linked
2408325132Savg		 * off of these commit itxs will not be committed to an
2409325132Savg		 * lwb.  Additionally, these commit waiters will not be
2410325132Savg		 * marked done until zil_commit_waiter_skip() is called via
2411325132Savg		 * zil_itxg_clean().
2412325132Savg		 *
2413325132Savg		 * Thus, it's possible for this commit waiter (i.e. the
2414325132Savg		 * "zcw" variable) to be found in this "in between" state;
2415325132Savg		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2416325132Savg		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2417325132Savg		 */
2418325132Savg		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2419325132Savg
2420325132Savg		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2421325132Savg			ASSERT3B(timedout, ==, B_FALSE);
2422325132Savg
2423325132Savg			/*
2424325132Savg			 * If the lwb hasn't been issued yet, then we
2425325132Savg			 * need to wait with a timeout, in case this
2426325132Savg			 * function needs to issue the lwb after the
2427325132Savg			 * timeout is reached; responsibility (2) from
2428325132Savg			 * the comment above this function.
2429325132Savg			 */
2430325132Savg#if defined(illumos) || !defined(_KERNEL)
2431325132Savg			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2432325132Savg			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2433325132Savg			    CALLOUT_FLAG_ABSOLUTE);
2434325132Savg
2435325132Savg			if (timeleft >= 0 || zcw->zcw_done)
2436325132Savg				continue;
2437325132Savg#else
2438325132Savg			int wait_err = cv_timedwait_sbt(&zcw->zcw_cv,
2439325132Savg			    &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE);
2440325132Savg			if (wait_err != EWOULDBLOCK || zcw->zcw_done)
2441325132Savg				continue;
2442325132Savg#endif
2443325132Savg
2444325132Savg			timedout = B_TRUE;
2445325132Savg			zil_commit_waiter_timeout(zilog, zcw);
2446325132Savg
2447325132Savg			if (!zcw->zcw_done) {
2448325132Savg				/*
2449325132Savg				 * If the commit waiter has already been
2450325132Savg				 * marked "done", it's possible for the
2451325132Savg				 * waiter's lwb structure to have already
2452325132Savg				 * been freed.  Thus, we can only reliably
2453325132Savg				 * make these assertions if the waiter
2454325132Savg				 * isn't done.
2455325132Savg				 */
2456325132Savg				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2457325132Savg				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2458325132Savg			}
2459325132Savg		} else {
2460325132Savg			/*
2461325132Savg			 * If the lwb isn't open, then it must have already
2462325132Savg			 * been issued. In that case, there's no need to
2463325132Savg			 * use a timeout when waiting for the lwb to
2464325132Savg			 * complete.
2465325132Savg			 *
2466325132Savg			 * Additionally, if the lwb is NULL, the waiter
2467325132Savg			 * will soon be signalled and marked done via
2468325132Savg			 * zil_clean() and zil_itxg_clean(), so no timeout
2469325132Savg			 * is required.
2470325132Savg			 */
2471325132Savg
2472325132Savg			IMPLY(lwb != NULL,
2473325132Savg			    lwb->lwb_state == LWB_STATE_ISSUED ||
2474325132Savg			    lwb->lwb_state == LWB_STATE_DONE);
2475325132Savg			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2476325132Savg		}
2477325132Savg	}
2478325132Savg
2479325132Savg	mutex_exit(&zcw->zcw_lock);
2480168404Spjd}
2481168404Spjd
2482325132Savgstatic zil_commit_waiter_t *
2483325132Savgzil_alloc_commit_waiter()
2484325132Savg{
2485325132Savg	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2486325132Savg
2487325132Savg	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2488325132Savg	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2489325132Savg	list_link_init(&zcw->zcw_node);
2490325132Savg	zcw->zcw_lwb = NULL;
2491325132Savg	zcw->zcw_done = B_FALSE;
2492325132Savg	zcw->zcw_zio_error = 0;
2493325132Savg
2494325132Savg	return (zcw);
2495325132Savg}
2496325132Savg
2497325132Savgstatic void
2498325132Savgzil_free_commit_waiter(zil_commit_waiter_t *zcw)
2499325132Savg{
2500325132Savg	ASSERT(!list_link_active(&zcw->zcw_node));
2501325132Savg	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2502325132Savg	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2503325132Savg	mutex_destroy(&zcw->zcw_lock);
2504325132Savg	cv_destroy(&zcw->zcw_cv);
2505325132Savg	kmem_cache_free(zil_zcw_cache, zcw);
2506325132Savg}
2507325132Savg
2508168404Spjd/*
2509325132Savg * This function is used to create a TX_COMMIT itx and assign it. This
2510325132Savg * way, it will be linked into the ZIL's list of synchronous itxs, and
2511325132Savg * then later committed to an lwb (or skipped) when
2512325132Savg * zil_process_commit_list() is called.
2513325132Savg */
2514325132Savgstatic void
2515325132Savgzil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2516325132Savg{
2517325132Savg	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2518325132Savg	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2519325132Savg
2520325132Savg	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2521325132Savg	itx->itx_sync = B_TRUE;
2522325132Savg	itx->itx_private = zcw;
2523325132Savg
2524325132Savg	zil_itx_assign(zilog, itx, tx);
2525325132Savg
2526325132Savg	dmu_tx_commit(tx);
2527325132Savg}
2528325132Savg
2529325132Savg/*
2530325132Savg * Commit ZFS Intent Log transactions (itxs) to stable storage.
2531219089Spjd *
2532325132Savg * When writing ZIL transactions to the on-disk representation of the
2533325132Savg * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2534325132Savg * itxs can be committed to a single lwb. Once a lwb is written and
2535325132Savg * committed to stable storage (i.e. the lwb is written, and vdevs have
2536325132Savg * been flushed), each itx that was committed to that lwb is also
2537325132Savg * considered to be committed to stable storage.
2538219089Spjd *
2539325132Savg * When an itx is committed to an lwb, the log record (lr_t) contained
2540325132Savg * by the itx is copied into the lwb's zio buffer, and once this buffer
2541325132Savg * is written to disk, it becomes an on-disk ZIL block.
2542219089Spjd *
2543325132Savg * As itxs are generated, they're inserted into the ZIL's queue of
2544325132Savg * uncommitted itxs. The semantics of zil_commit() are such that it will
2545325132Savg * block until all itxs that were in the queue when it was called, are
2546325132Savg * committed to stable storage.
2547219089Spjd *
2548325132Savg * If "foid" is zero, this means all "synchronous" and "asynchronous"
2549325132Savg * itxs, for all objects in the dataset, will be committed to stable
2550325132Savg * storage prior to zil_commit() returning. If "foid" is non-zero, all
2551325132Savg * "synchronous" itxs for all objects, but only "asynchronous" itxs
2552325132Savg * that correspond to the foid passed in, will be committed to stable
2553325132Savg * storage prior to zil_commit() returning.
2554325132Savg *
2555325132Savg * Generally speaking, when zil_commit() is called, the consumer doesn't
2556325132Savg * actually care about _all_ of the uncommitted itxs. Instead, they're
2557325132Savg * simply trying to waiting for a specific itx to be committed to disk,
2558325132Savg * but the interface(s) for interacting with the ZIL don't allow such
2559325132Savg * fine-grained communication. A better interface would allow a consumer
2560325132Savg * to create and assign an itx, and then pass a reference to this itx to
2561325132Savg * zil_commit(); such that zil_commit() would return as soon as that
2562325132Savg * specific itx was committed to disk (instead of waiting for _all_
2563325132Savg * itxs to be committed).
2564325132Savg *
2565325132Savg * When a thread calls zil_commit() a special "commit itx" will be
2566325132Savg * generated, along with a corresponding "waiter" for this commit itx.
2567325132Savg * zil_commit() will wait on this waiter's CV, such that when the waiter
2568325132Savg * is marked done, and signalled, zil_commit() will return.
2569325132Savg *
2570325132Savg * This commit itx is inserted into the queue of uncommitted itxs. This
2571325132Savg * provides an easy mechanism for determining which itxs were in the
2572325132Savg * queue prior to zil_commit() having been called, and which itxs were
2573325132Savg * added after zil_commit() was called.
2574325132Savg *
2575325132Savg * The commit it is special; it doesn't have any on-disk representation.
2576325132Savg * When a commit itx is "committed" to an lwb, the waiter associated
2577325132Savg * with it is linked onto the lwb's list of waiters. Then, when that lwb
2578325132Savg * completes, each waiter on the lwb's list is marked done and signalled
2579325132Savg * -- allowing the thread waiting on the waiter to return from zil_commit().
2580325132Savg *
2581325132Savg * It's important to point out a few critical factors that allow us
2582325132Savg * to make use of the commit itxs, commit waiters, per-lwb lists of
2583325132Savg * commit waiters, and zio completion callbacks like we're doing:
2584325132Savg *
2585325132Savg *   1. The list of waiters for each lwb is traversed, and each commit
2586325132Savg *      waiter is marked "done" and signalled, in the zio completion
2587325132Savg *      callback of the lwb's zio[*].
2588325132Savg *
2589325132Savg *      * Actually, the waiters are signalled in the zio completion
2590325132Savg *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2591325132Savg *        that are sent to the vdevs upon completion of the lwb zio.
2592325132Savg *
2593325132Savg *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2594325132Savg *      itxs, the order in which they are inserted is preserved[*]; as
2595325132Savg *      itxs are added to the queue, they are added to the tail of
2596325132Savg *      in-memory linked lists.
2597325132Savg *
2598325132Savg *      When committing the itxs to lwbs (to be written to disk), they
2599325132Savg *      are committed in the same order in which the itxs were added to
2600325132Savg *      the uncommitted queue's linked list(s); i.e. the linked list of
2601325132Savg *      itxs to commit is traversed from head to tail, and each itx is
2602325132Savg *      committed to an lwb in that order.
2603325132Savg *
2604325132Savg *      * To clarify:
2605325132Savg *
2606325132Savg *        - the order of "sync" itxs is preserved w.r.t. other
2607325132Savg *          "sync" itxs, regardless of the corresponding objects.
2608325132Savg *        - the order of "async" itxs is preserved w.r.t. other
2609325132Savg *          "async" itxs corresponding to the same object.
2610325132Savg *        - the order of "async" itxs is *not* preserved w.r.t. other
2611325132Savg *          "async" itxs corresponding to different objects.
2612325132Savg *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2613325132Savg *          versa) is *not* preserved, even for itxs that correspond
2614325132Savg *          to the same object.
2615325132Savg *
2616325132Savg *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2617325132Savg *      zil_get_commit_list(), and zil_process_commit_list().
2618325132Savg *
2619325132Savg *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2620325132Savg *      lwb cannot be considered committed to stable storage, until its
2621325132Savg *      "previous" lwb is also committed to stable storage. This fact,
2622325132Savg *      coupled with the fact described above, means that itxs are
2623325132Savg *      committed in (roughly) the order in which they were generated.
2624325132Savg *      This is essential because itxs are dependent on prior itxs.
2625325132Savg *      Thus, we *must not* deem an itx as being committed to stable
2626325132Savg *      storage, until *all* prior itxs have also been committed to
2627325132Savg *      stable storage.
2628325132Savg *
2629325132Savg *      To enforce this ordering of lwb zio's, while still leveraging as
2630325132Savg *      much of the underlying storage performance as possible, we rely
2631325132Savg *      on two fundamental concepts:
2632325132Savg *
2633325132Savg *          1. The creation and issuance of lwb zio's is protected by
2634329485Smav *             the zilog's "zl_issuer_lock", which ensures only a single
2635325132Savg *             thread is creating and/or issuing lwb's at a time
2636325132Savg *          2. The "previous" lwb is a child of the "current" lwb
2637325132Savg *             (leveraging the zio parent-child depenency graph)
2638325132Savg *
2639325132Savg *      By relying on this parent-child zio relationship, we can have
2640325132Savg *      many lwb zio's concurrently issued to the underlying storage,
2641325132Savg *      but the order in which they complete will be the same order in
2642325132Savg *      which they were created.
2643168404Spjd */
2644168404Spjdvoid
2645219089Spjdzil_commit(zilog_t *zilog, uint64_t foid)
2646168404Spjd{
2647325132Savg	/*
2648325132Savg	 * We should never attempt to call zil_commit on a snapshot for
2649325132Savg	 * a couple of reasons:
2650325132Savg	 *
2651325132Savg	 * 1. A snapshot may never be modified, thus it cannot have any
2652325132Savg	 *    in-flight itxs that would have modified the dataset.
2653325132Savg	 *
2654325132Savg	 * 2. By design, when zil_commit() is called, a commit itx will
2655325132Savg	 *    be assigned to this zilog; as a result, the zilog will be
2656325132Savg	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2657325132Savg	 *    checks in the code that enforce this invariant, and will
2658325132Savg	 *    cause a panic if it's not upheld.
2659325132Savg	 */
2660325132Savg	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2661219089Spjd
2662219089Spjd	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2663168404Spjd		return;
2664168404Spjd
2665325132Savg	if (!spa_writeable(zilog->zl_spa)) {
2666325132Savg		/*
2667325132Savg		 * If the SPA is not writable, there should never be any
2668325132Savg		 * pending itxs waiting to be committed to disk. If that
2669325132Savg		 * weren't true, we'd skip writing those itxs out, and
2670325132Savg		 * would break the sematics of zil_commit(); thus, we're
2671325132Savg		 * verifying that truth before we return to the caller.
2672325132Savg		 */
2673325132Savg		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2674325132Savg		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2675325132Savg		for (int i = 0; i < TXG_SIZE; i++)
2676325132Savg			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2677325132Savg		return;
2678325132Savg	}
2679219089Spjd
2680325132Savg	/*
2681325132Savg	 * If the ZIL is suspended, we don't want to dirty it by calling
2682325132Savg	 * zil_commit_itx_assign() below, nor can we write out
2683325132Savg	 * lwbs like would be done in zil_commit_write(). Thus, we
2684325132Savg	 * simply rely on txg_wait_synced() to maintain the necessary
2685325132Savg	 * semantics, and avoid calling those functions altogether.
2686325132Savg	 */
2687325132Savg	if (zilog->zl_suspend > 0) {
2688325132Savg		txg_wait_synced(zilog->zl_dmu_pool, 0);
2689325132Savg		return;
2690168404Spjd	}
2691219089Spjd
2692329486Smav	zil_commit_impl(zilog, foid);
2693329486Smav}
2694329486Smav
2695329486Smavvoid
2696329486Smavzil_commit_impl(zilog_t *zilog, uint64_t foid)
2697329486Smav{
2698325132Savg	/*
2699325132Savg	 * Move the "async" itxs for the specified foid to the "sync"
2700325132Savg	 * queues, such that they will be later committed (or skipped)
2701325132Savg	 * to an lwb when zil_process_commit_list() is called.
2702325132Savg	 *
2703325132Savg	 * Since these "async" itxs must be committed prior to this
2704325132Savg	 * call to zil_commit returning, we must perform this operation
2705325132Savg	 * before we call zil_commit_itx_assign().
2706325132Savg	 */
2707325132Savg	zil_async_to_sync(zilog, foid);
2708219089Spjd
2709325132Savg	/*
2710325132Savg	 * We allocate a new "waiter" structure which will initially be
2711325132Savg	 * linked to the commit itx using the itx's "itx_private" field.
2712325132Savg	 * Since the commit itx doesn't represent any on-disk state,
2713325132Savg	 * when it's committed to an lwb, rather than copying the its
2714325132Savg	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2715325132Savg	 * added to the lwb's list of waiters. Then, when the lwb is
2716325132Savg	 * committed to stable storage, each waiter in the lwb's list of
2717325132Savg	 * waiters will be marked "done", and signalled.
2718325132Savg	 *
2719325132Savg	 * We must create the waiter and assign the commit itx prior to
2720325132Savg	 * calling zil_commit_writer(), or else our specific commit itx
2721325132Savg	 * is not guaranteed to be committed to an lwb prior to calling
2722325132Savg	 * zil_commit_waiter().
2723325132Savg	 */
2724325132Savg	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2725325132Savg	zil_commit_itx_assign(zilog, zcw);
2726219089Spjd
2727325132Savg	zil_commit_writer(zilog, zcw);
2728325132Savg	zil_commit_waiter(zilog, zcw);
2729325132Savg
2730325132Savg	if (zcw->zcw_zio_error != 0) {
2731325132Savg		/*
2732325132Savg		 * If there was an error writing out the ZIL blocks that
2733325132Savg		 * this thread is waiting on, then we fallback to
2734325132Savg		 * relying on spa_sync() to write out the data this
2735325132Savg		 * thread is waiting on. Obviously this has performance
2736325132Savg		 * implications, but the expectation is for this to be
2737325132Savg		 * an exceptional case, and shouldn't occur often.
2738325132Savg		 */
2739325132Savg		DTRACE_PROBE2(zil__commit__io__error,
2740325132Savg		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2741325132Savg		txg_wait_synced(zilog->zl_dmu_pool, 0);
2742325132Savg	}
2743325132Savg
2744325132Savg	zil_free_commit_waiter(zcw);
2745168404Spjd}
2746168404Spjd
2747168404Spjd/*
2748168404Spjd * Called in syncing context to free committed log blocks and update log header.
2749168404Spjd */
2750168404Spjdvoid
2751168404Spjdzil_sync(zilog_t *zilog, dmu_tx_t *tx)
2752168404Spjd{
2753168404Spjd	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2754168404Spjd	uint64_t txg = dmu_tx_get_txg(tx);
2755168404Spjd	spa_t *spa = zilog->zl_spa;
2756219089Spjd	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2757168404Spjd	lwb_t *lwb;
2758168404Spjd
2759209962Smm	/*
2760209962Smm	 * We don't zero out zl_destroy_txg, so make sure we don't try
2761209962Smm	 * to destroy it twice.
2762209962Smm	 */
2763209962Smm	if (spa_sync_pass(spa) != 1)
2764209962Smm		return;
2765209962Smm
2766168404Spjd	mutex_enter(&zilog->zl_lock);
2767168404Spjd
2768168404Spjd	ASSERT(zilog->zl_stop_sync == 0);
2769168404Spjd
2770219089Spjd	if (*replayed_seq != 0) {
2771219089Spjd		ASSERT(zh->zh_replay_seq < *replayed_seq);
2772219089Spjd		zh->zh_replay_seq = *replayed_seq;
2773219089Spjd		*replayed_seq = 0;
2774219089Spjd	}
2775168404Spjd
2776168404Spjd	if (zilog->zl_destroy_txg == txg) {
2777168404Spjd		blkptr_t blk = zh->zh_log;
2778168404Spjd
2779168404Spjd		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2780168404Spjd
2781168404Spjd		bzero(zh, sizeof (zil_header_t));
2782209962Smm		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2783168404Spjd
2784168404Spjd		if (zilog->zl_keep_first) {
2785168404Spjd			/*
2786168404Spjd			 * If this block was part of log chain that couldn't
2787168404Spjd			 * be claimed because a device was missing during
2788168404Spjd			 * zil_claim(), but that device later returns,
2789168404Spjd			 * then this block could erroneously appear valid.
2790168404Spjd			 * To guard against this, assign a new GUID to the new
2791168404Spjd			 * log chain so it doesn't matter what blk points to.
2792168404Spjd			 */
2793168404Spjd			zil_init_log_chain(zilog, &blk);
2794168404Spjd			zh->zh_log = blk;
2795168404Spjd		}
2796168404Spjd	}
2797168404Spjd
2798213197Smm	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2799168404Spjd		zh->zh_log = lwb->lwb_blk;
2800168404Spjd		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2801168404Spjd			break;
2802168404Spjd		list_remove(&zilog->zl_lwb_list, lwb);
2803325132Savg		zio_free(spa, txg, &lwb->lwb_blk);
2804325132Savg		zil_free_lwb(zilog, lwb);
2805168404Spjd
2806168404Spjd		/*
2807168404Spjd		 * If we don't have anything left in the lwb list then
2808168404Spjd		 * we've had an allocation failure and we need to zero
2809168404Spjd		 * out the zil_header blkptr so that we don't end
2810168404Spjd		 * up freeing the same block twice.
2811168404Spjd		 */
2812168404Spjd		if (list_head(&zilog->zl_lwb_list) == NULL)
2813168404Spjd			BP_ZERO(&zh->zh_log);
2814168404Spjd	}
2815168404Spjd	mutex_exit(&zilog->zl_lock);
2816168404Spjd}
2817168404Spjd
2818325132Savg/* ARGSUSED */
2819325132Savgstatic int
2820325132Savgzil_lwb_cons(void *vbuf, void *unused, int kmflag)
2821325132Savg{
2822325132Savg	lwb_t *lwb = vbuf;
2823325132Savg	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2824325132Savg	    offsetof(zil_commit_waiter_t, zcw_node));
2825325132Savg	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2826325132Savg	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2827325132Savg	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2828325132Savg	return (0);
2829325132Savg}
2830325132Savg
2831325132Savg/* ARGSUSED */
2832325132Savgstatic void
2833325132Savgzil_lwb_dest(void *vbuf, void *unused)
2834325132Savg{
2835325132Savg	lwb_t *lwb = vbuf;
2836325132Savg	mutex_destroy(&lwb->lwb_vdev_lock);
2837325132Savg	avl_destroy(&lwb->lwb_vdev_tree);
2838325132Savg	list_destroy(&lwb->lwb_waiters);
2839325132Savg}
2840325132Savg
2841168404Spjdvoid
2842168404Spjdzil_init(void)
2843168404Spjd{
2844168404Spjd	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2845325132Savg	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2846325132Savg
2847325132Savg	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2848325132Savg	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2849168404Spjd}
2850168404Spjd
2851168404Spjdvoid
2852168404Spjdzil_fini(void)
2853168404Spjd{
2854325132Savg	kmem_cache_destroy(zil_zcw_cache);
2855168404Spjd	kmem_cache_destroy(zil_lwb_cache);
2856168404Spjd}
2857168404Spjd
2858219089Spjdvoid
2859219089Spjdzil_set_sync(zilog_t *zilog, uint64_t sync)
2860219089Spjd{
2861219089Spjd	zilog->zl_sync = sync;
2862219089Spjd}
2863219089Spjd
2864219089Spjdvoid
2865219089Spjdzil_set_logbias(zilog_t *zilog, uint64_t logbias)
2866219089Spjd{
2867219089Spjd	zilog->zl_logbias = logbias;
2868219089Spjd}
2869219089Spjd
2870168404Spjdzilog_t *
2871168404Spjdzil_alloc(objset_t *os, zil_header_t *zh_phys)
2872168404Spjd{
2873168404Spjd	zilog_t *zilog;
2874168404Spjd
2875168404Spjd	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2876168404Spjd
2877168404Spjd	zilog->zl_header = zh_phys;
2878168404Spjd	zilog->zl_os = os;
2879168404Spjd	zilog->zl_spa = dmu_objset_spa(os);
2880168404Spjd	zilog->zl_dmu_pool = dmu_objset_pool(os);
2881168404Spjd	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2882219089Spjd	zilog->zl_logbias = dmu_objset_logbias(os);
2883219089Spjd	zilog->zl_sync = dmu_objset_syncprop(os);
2884325132Savg	zilog->zl_dirty_max_txg = 0;
2885325132Savg	zilog->zl_last_lwb_opened = NULL;
2886325132Savg	zilog->zl_last_lwb_latency = 0;
2887168404Spjd
2888168404Spjd	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2889329485Smav	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2890168404Spjd
2891219089Spjd	for (int i = 0; i < TXG_SIZE; i++) {
2892219089Spjd		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2893219089Spjd		    MUTEX_DEFAULT, NULL);
2894219089Spjd	}
2895168404Spjd
2896168404Spjd	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2897168404Spjd	    offsetof(lwb_t, lwb_node));
2898168404Spjd
2899219089Spjd	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2900219089Spjd	    offsetof(itx_t, itx_node));
2901219089Spjd
2902185029Spjd	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2903185029Spjd
2904168404Spjd	return (zilog);
2905168404Spjd}
2906168404Spjd
2907168404Spjdvoid
2908168404Spjdzil_free(zilog_t *zilog)
2909168404Spjd{
2910168404Spjd	zilog->zl_stop_sync = 1;
2911168404Spjd
2912248571Smm	ASSERT0(zilog->zl_suspend);
2913248571Smm	ASSERT0(zilog->zl_suspending);
2914248571Smm
2915224526Smm	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2916168404Spjd	list_destroy(&zilog->zl_lwb_list);
2917168404Spjd
2918219089Spjd	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2919219089Spjd	list_destroy(&zilog->zl_itx_commit_list);
2920219089Spjd
2921219089Spjd	for (int i = 0; i < TXG_SIZE; i++) {
2922219089Spjd		/*
2923219089Spjd		 * It's possible for an itx to be generated that doesn't dirty
2924219089Spjd		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2925219089Spjd		 * callback to remove the entry. We remove those here.
2926219089Spjd		 *
2927219089Spjd		 * Also free up the ziltest itxs.
2928219089Spjd		 */
2929219089Spjd		if (zilog->zl_itxg[i].itxg_itxs)
2930219089Spjd			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2931219089Spjd		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2932219089Spjd	}
2933219089Spjd
2934329485Smav	mutex_destroy(&zilog->zl_issuer_lock);
2935168404Spjd	mutex_destroy(&zilog->zl_lock);
2936168404Spjd
2937185029Spjd	cv_destroy(&zilog->zl_cv_suspend);
2938185029Spjd
2939168404Spjd	kmem_free(zilog, sizeof (zilog_t));
2940168404Spjd}
2941168404Spjd
2942168404Spjd/*
2943168404Spjd * Open an intent log.
2944168404Spjd */
2945168404Spjdzilog_t *
2946168404Spjdzil_open(objset_t *os, zil_get_data_t *get_data)
2947168404Spjd{
2948168404Spjd	zilog_t *zilog = dmu_objset_zil(os);
2949168404Spjd
2950325132Savg	ASSERT3P(zilog->zl_get_data, ==, NULL);
2951325132Savg	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2952224526Smm	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2953224526Smm
2954168404Spjd	zilog->zl_get_data = get_data;
2955168404Spjd
2956168404Spjd	return (zilog);
2957168404Spjd}
2958168404Spjd
2959168404Spjd/*
2960168404Spjd * Close an intent log.
2961168404Spjd */
2962168404Spjdvoid
2963168404Spjdzil_close(zilog_t *zilog)
2964168404Spjd{
2965224526Smm	lwb_t *lwb;
2966325132Savg	uint64_t txg;
2967219089Spjd
2968325132Savg	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2969325132Savg		zil_commit(zilog, 0);
2970325132Savg	} else {
2971325132Savg		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2972325132Savg		ASSERT0(zilog->zl_dirty_max_txg);
2973325132Savg		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2974325132Savg	}
2975219089Spjd
2976219089Spjd	mutex_enter(&zilog->zl_lock);
2977224526Smm	lwb = list_tail(&zilog->zl_lwb_list);
2978325132Savg	if (lwb == NULL)
2979325132Savg		txg = zilog->zl_dirty_max_txg;
2980325132Savg	else
2981325132Savg		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2982219089Spjd	mutex_exit(&zilog->zl_lock);
2983325132Savg
2984325132Savg	/*
2985325132Savg	 * We need to use txg_wait_synced() to wait long enough for the
2986325132Savg	 * ZIL to be clean, and to wait for all pending lwbs to be
2987325132Savg	 * written out.
2988325132Savg	 */
2989325132Savg	if (txg != 0)
2990168404Spjd		txg_wait_synced(zilog->zl_dmu_pool, txg);
2991168404Spjd
2992310515Savg	if (zilog_is_dirty(zilog))
2993310515Savg		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2994310515Savg	VERIFY(!zilog_is_dirty(zilog));
2995310515Savg
2996168404Spjd	zilog->zl_get_data = NULL;
2997224526Smm
2998224526Smm	/*
2999325132Savg	 * We should have only one lwb left on the list; remove it now.
3000224526Smm	 */
3001224526Smm	mutex_enter(&zilog->zl_lock);
3002224526Smm	lwb = list_head(&zilog->zl_lwb_list);
3003224526Smm	if (lwb != NULL) {
3004325132Savg		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3005325132Savg		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3006224526Smm		list_remove(&zilog->zl_lwb_list, lwb);
3007224526Smm		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3008325132Savg		zil_free_lwb(zilog, lwb);
3009224526Smm	}
3010224526Smm	mutex_exit(&zilog->zl_lock);
3011168404Spjd}
3012168404Spjd
3013248571Smmstatic char *suspend_tag = "zil suspending";
3014248571Smm
3015168404Spjd/*
3016168404Spjd * Suspend an intent log.  While in suspended mode, we still honor
3017168404Spjd * synchronous semantics, but we rely on txg_wait_synced() to do it.
3018248571Smm * On old version pools, we suspend the log briefly when taking a
3019248571Smm * snapshot so that it will have an empty intent log.
3020248571Smm *
3021248571Smm * Long holds are not really intended to be used the way we do here --
3022248571Smm * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3023248571Smm * could fail.  Therefore we take pains to only put a long hold if it is
3024248571Smm * actually necessary.  Fortunately, it will only be necessary if the
3025248571Smm * objset is currently mounted (or the ZVOL equivalent).  In that case it
3026248571Smm * will already have a long hold, so we are not really making things any worse.
3027248571Smm *
3028248571Smm * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3029248571Smm * zvol_state_t), and use their mechanism to prevent their hold from being
3030248571Smm * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3031248571Smm * very little gain.
3032248571Smm *
3033248571Smm * if cookiep == NULL, this does both the suspend & resume.
3034248571Smm * Otherwise, it returns with the dataset "long held", and the cookie
3035248571Smm * should be passed into zil_resume().
3036168404Spjd */
3037168404Spjdint
3038248571Smmzil_suspend(const char *osname, void **cookiep)
3039168404Spjd{
3040248571Smm	objset_t *os;
3041248571Smm	zilog_t *zilog;
3042248571Smm	const zil_header_t *zh;
3043248571Smm	int error;
3044168404Spjd
3045248571Smm	error = dmu_objset_hold(osname, suspend_tag, &os);
3046248571Smm	if (error != 0)
3047248571Smm		return (error);
3048248571Smm	zilog = dmu_objset_zil(os);
3049248571Smm
3050168404Spjd	mutex_enter(&zilog->zl_lock);
3051248571Smm	zh = zilog->zl_header;
3052248571Smm
3053200724Sdelphij	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3054168404Spjd		mutex_exit(&zilog->zl_lock);
3055248571Smm		dmu_objset_rele(os, suspend_tag);
3056249195Smm		return (SET_ERROR(EBUSY));
3057168404Spjd	}
3058248571Smm
3059248571Smm	/*
3060248571Smm	 * Don't put a long hold in the cases where we can avoid it.  This
3061248571Smm	 * is when there is no cookie so we are doing a suspend & resume
3062248571Smm	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3063248571Smm	 * for the suspend because it's already suspended, or there's no ZIL.
3064248571Smm	 */
3065248571Smm	if (cookiep == NULL && !zilog->zl_suspending &&
3066248571Smm	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3067248571Smm		mutex_exit(&zilog->zl_lock);
3068248571Smm		dmu_objset_rele(os, suspend_tag);
3069248571Smm		return (0);
3070248571Smm	}
3071248571Smm
3072248571Smm	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3073248571Smm	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3074248571Smm
3075248571Smm	zilog->zl_suspend++;
3076248571Smm
3077248571Smm	if (zilog->zl_suspend > 1) {
3078168404Spjd		/*
3079248571Smm		 * Someone else is already suspending it.
3080168404Spjd		 * Just wait for them to finish.
3081168404Spjd		 */
3082248571Smm
3083168404Spjd		while (zilog->zl_suspending)
3084168404Spjd			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3085168404Spjd		mutex_exit(&zilog->zl_lock);
3086248571Smm
3087248571Smm		if (cookiep == NULL)
3088248571Smm			zil_resume(os);
3089248571Smm		else
3090248571Smm			*cookiep = os;
3091168404Spjd		return (0);
3092168404Spjd	}
3093248571Smm
3094248571Smm	/*
3095248571Smm	 * If there is no pointer to an on-disk block, this ZIL must not
3096248571Smm	 * be active (e.g. filesystem not mounted), so there's nothing
3097248571Smm	 * to clean up.
3098248571Smm	 */
3099248571Smm	if (BP_IS_HOLE(&zh->zh_log)) {
3100248571Smm		ASSERT(cookiep != NULL); /* fast path already handled */
3101248571Smm
3102248571Smm		*cookiep = os;
3103248571Smm		mutex_exit(&zilog->zl_lock);
3104248571Smm		return (0);
3105248571Smm	}
3106248571Smm
3107168404Spjd	zilog->zl_suspending = B_TRUE;
3108168404Spjd	mutex_exit(&zilog->zl_lock);
3109168404Spjd
3110329486Smav	/*
3111329486Smav	 * We need to use zil_commit_impl to ensure we wait for all
3112329486Smav	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3113329486Smav	 * to disk before proceeding. If we used zil_commit instead, it
3114329486Smav	 * would just call txg_wait_synced(), because zl_suspend is set.
3115329486Smav	 * txg_wait_synced() doesn't wait for these lwb's to be
3116329486Smav	 * LWB_STATE_DONE before returning.
3117329486Smav	 */
3118329486Smav	zil_commit_impl(zilog, 0);
3119168404Spjd
3120329486Smav	/*
3121329486Smav	 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3122329486Smav	 * txg_wait_synced() to ensure the data from the zilog has
3123329486Smav	 * migrated to the main pool before calling zil_destroy().
3124329486Smav	 */
3125329486Smav	txg_wait_synced(zilog->zl_dmu_pool, 0);
3126329486Smav
3127168404Spjd	zil_destroy(zilog, B_FALSE);
3128168404Spjd
3129168404Spjd	mutex_enter(&zilog->zl_lock);
3130168404Spjd	zilog->zl_suspending = B_FALSE;
3131168404Spjd	cv_broadcast(&zilog->zl_cv_suspend);
3132168404Spjd	mutex_exit(&zilog->zl_lock);
3133168404Spjd
3134248571Smm	if (cookiep == NULL)
3135248571Smm		zil_resume(os);
3136248571Smm	else
3137248571Smm		*cookiep = os;
3138168404Spjd	return (0);
3139168404Spjd}
3140168404Spjd
3141168404Spjdvoid
3142248571Smmzil_resume(void *cookie)
3143168404Spjd{
3144248571Smm	objset_t *os = cookie;
3145248571Smm	zilog_t *zilog = dmu_objset_zil(os);
3146248571Smm
3147168404Spjd	mutex_enter(&zilog->zl_lock);
3148168404Spjd	ASSERT(zilog->zl_suspend != 0);
3149168404Spjd	zilog->zl_suspend--;
3150168404Spjd	mutex_exit(&zilog->zl_lock);
3151248571Smm	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3152248571Smm	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3153168404Spjd}
3154168404Spjd
3155219089Spjdtypedef struct zil_replay_arg {
3156219089Spjd	zil_replay_func_t **zr_replay;
3157219089Spjd	void		*zr_arg;
3158219089Spjd	boolean_t	zr_byteswap;
3159219089Spjd	char		*zr_lr;
3160219089Spjd} zil_replay_arg_t;
3161219089Spjd
3162219089Spjdstatic int
3163219089Spjdzil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3164209962Smm{
3165307108Smav	char name[ZFS_MAX_DATASET_NAME_LEN];
3166209962Smm
3167219089Spjd	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3168209962Smm
3169219089Spjd	dmu_objset_name(zilog->zl_os, name);
3170209962Smm
3171219089Spjd	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3172219089Spjd	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3173219089Spjd	    (u_longlong_t)lr->lrc_seq,
3174219089Spjd	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3175219089Spjd	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3176219089Spjd
3177219089Spjd	return (error);
3178209962Smm}
3179209962Smm
3180219089Spjdstatic int
3181168404Spjdzil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3182168404Spjd{
3183168404Spjd	zil_replay_arg_t *zr = zra;
3184168404Spjd	const zil_header_t *zh = zilog->zl_header;
3185168404Spjd	uint64_t reclen = lr->lrc_reclen;
3186168404Spjd	uint64_t txtype = lr->lrc_txtype;
3187219089Spjd	int error = 0;
3188168404Spjd
3189219089Spjd	zilog->zl_replaying_seq = lr->lrc_seq;
3190168404Spjd
3191219089Spjd	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3192219089Spjd		return (0);
3193219089Spjd
3194168404Spjd	if (lr->lrc_txg < claim_txg)		/* already committed */
3195219089Spjd		return (0);
3196168404Spjd
3197185029Spjd	/* Strip case-insensitive bit, still present in log record */
3198185029Spjd	txtype &= ~TX_CI;
3199185029Spjd
3200219089Spjd	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3201219089Spjd		return (zil_replay_error(zilog, lr, EINVAL));
3202219089Spjd
3203219089Spjd	/*
3204219089Spjd	 * If this record type can be logged out of order, the object
3205219089Spjd	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3206219089Spjd	 */
3207219089Spjd	if (TX_OOO(txtype)) {
3208219089Spjd		error = dmu_object_info(zilog->zl_os,
3209219089Spjd		    ((lr_ooo_t *)lr)->lr_foid, NULL);
3210219089Spjd		if (error == ENOENT || error == EEXIST)
3211219089Spjd			return (0);
3212209962Smm	}
3213209962Smm
3214168404Spjd	/*
3215168404Spjd	 * Make a copy of the data so we can revise and extend it.
3216168404Spjd	 */
3217219089Spjd	bcopy(lr, zr->zr_lr, reclen);
3218168404Spjd
3219168404Spjd	/*
3220219089Spjd	 * If this is a TX_WRITE with a blkptr, suck in the data.
3221219089Spjd	 */
3222219089Spjd	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3223219089Spjd		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3224219089Spjd		    zr->zr_lr + reclen);
3225248571Smm		if (error != 0)
3226219089Spjd			return (zil_replay_error(zilog, lr, error));
3227219089Spjd	}
3228219089Spjd
3229219089Spjd	/*
3230168404Spjd	 * The log block containing this lr may have been byteswapped
3231168404Spjd	 * so that we can easily examine common fields like lrc_txtype.
3232219089Spjd	 * However, the log is a mix of different record types, and only the
3233168404Spjd	 * replay vectors know how to byteswap their records.  Therefore, if
3234168404Spjd	 * the lr was byteswapped, undo it before invoking the replay vector.
3235168404Spjd	 */
3236168404Spjd	if (zr->zr_byteswap)
3237219089Spjd		byteswap_uint64_array(zr->zr_lr, reclen);
3238168404Spjd
3239168404Spjd	/*
3240168404Spjd	 * We must now do two things atomically: replay this log record,
3241209962Smm	 * and update the log header sequence number to reflect the fact that
3242209962Smm	 * we did so. At the end of each replay function the sequence number
3243209962Smm	 * is updated if we are in replay mode.
3244168404Spjd	 */
3245219089Spjd	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3246248571Smm	if (error != 0) {
3247168404Spjd		/*
3248168404Spjd		 * The DMU's dnode layer doesn't see removes until the txg
3249168404Spjd		 * commits, so a subsequent claim can spuriously fail with
3250209962Smm		 * EEXIST. So if we receive any error we try syncing out
3251219089Spjd		 * any removes then retry the transaction.  Note that we
3252219089Spjd		 * specify B_FALSE for byteswap now, so we don't do it twice.
3253168404Spjd		 */
3254219089Spjd		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3255219089Spjd		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3256248571Smm		if (error != 0)
3257219089Spjd			return (zil_replay_error(zilog, lr, error));
3258168404Spjd	}
3259219089Spjd	return (0);
3260168404Spjd}
3261168404Spjd
3262168404Spjd/* ARGSUSED */
3263219089Spjdstatic int
3264168404Spjdzil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3265168404Spjd{
3266168404Spjd	zilog->zl_replay_blks++;
3267219089Spjd
3268219089Spjd	return (0);
3269168404Spjd}
3270168404Spjd
3271168404Spjd/*
3272168404Spjd * If this dataset has a non-empty intent log, replay it and destroy it.
3273168404Spjd */
3274168404Spjdvoid
3275209962Smmzil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3276168404Spjd{
3277168404Spjd	zilog_t *zilog = dmu_objset_zil(os);
3278168404Spjd	const zil_header_t *zh = zilog->zl_header;
3279168404Spjd	zil_replay_arg_t zr;
3280168404Spjd
3281200724Sdelphij	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3282168404Spjd		zil_destroy(zilog, B_TRUE);
3283168404Spjd		return;
3284168404Spjd	}
3285168404Spjd
3286168404Spjd	zr.zr_replay = replay_func;
3287168404Spjd	zr.zr_arg = arg;
3288168404Spjd	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3289219089Spjd	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3290168404Spjd
3291168404Spjd	/*
3292168404Spjd	 * Wait for in-progress removes to sync before starting replay.
3293168404Spjd	 */
3294168404Spjd	txg_wait_synced(zilog->zl_dmu_pool, 0);
3295168404Spjd
3296209962Smm	zilog->zl_replay = B_TRUE;
3297219089Spjd	zilog->zl_replay_time = ddi_get_lbolt();
3298168404Spjd	ASSERT(zilog->zl_replay_blks == 0);
3299168404Spjd	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3300168404Spjd	    zh->zh_claim_txg);
3301219089Spjd	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3302168404Spjd
3303168404Spjd	zil_destroy(zilog, B_FALSE);
3304185029Spjd	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3305209962Smm	zilog->zl_replay = B_FALSE;
3306168404Spjd}
3307168404Spjd
3308219089Spjdboolean_t
3309219089Spjdzil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3310168404Spjd{
3311219089Spjd	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3312219089Spjd		return (B_TRUE);
3313168404Spjd
3314219089Spjd	if (zilog->zl_replay) {
3315219089Spjd		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3316219089Spjd		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3317219089Spjd		    zilog->zl_replaying_seq;
3318219089Spjd		return (B_TRUE);
3319168404Spjd	}
3320168404Spjd
3321219089Spjd	return (B_FALSE);
3322168404Spjd}
3323213197Smm
3324213197Smm/* ARGSUSED */
3325213197Smmint
3326332525Smavzil_reset(const char *osname, void *arg)
3327213197Smm{
3328213197Smm	int error;
3329213197Smm
3330248571Smm	error = zil_suspend(osname, NULL);
3331248571Smm	if (error != 0)
3332249195Smm		return (SET_ERROR(EEXIST));
3333248571Smm	return (0);
3334213197Smm}
3335