zil.c revision 332547
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/spa_impl.h>
32#include <sys/dmu.h>
33#include <sys/zap.h>
34#include <sys/arc.h>
35#include <sys/stat.h>
36#include <sys/resource.h>
37#include <sys/zil.h>
38#include <sys/zil_impl.h>
39#include <sys/dsl_dataset.h>
40#include <sys/vdev_impl.h>
41#include <sys/dmu_tx.h>
42#include <sys/dsl_pool.h>
43#include <sys/abd.h>
44
45/*
46 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
47 * calls that change the file system. Each itx has enough information to
48 * be able to replay them after a system crash, power loss, or
49 * equivalent failure mode. These are stored in memory until either:
50 *
51 *   1. they are committed to the pool by the DMU transaction group
52 *      (txg), at which point they can be discarded; or
53 *   2. they are committed to the on-disk ZIL for the dataset being
54 *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
55 *      requirement).
56 *
57 * In the event of a crash or power loss, the itxs contained by each
58 * dataset's on-disk ZIL will be replayed when that dataset is first
59 * instantianted (e.g. if the dataset is a normal fileystem, when it is
60 * first mounted).
61 *
62 * As hinted at above, there is one ZIL per dataset (both the in-memory
63 * representation, and the on-disk representation). The on-disk format
64 * consists of 3 parts:
65 *
66 * 	- a single, per-dataset, ZIL header; which points to a chain of
67 * 	- zero or more ZIL blocks; each of which contains
68 * 	- zero or more ZIL records
69 *
70 * A ZIL record holds the information necessary to replay a single
71 * system call transaction. A ZIL block can hold many ZIL records, and
72 * the blocks are chained together, similarly to a singly linked list.
73 *
74 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
75 * block in the chain, and the ZIL header points to the first block in
76 * the chain.
77 *
78 * Note, there is not a fixed place in the pool to hold these ZIL
79 * blocks; they are dynamically allocated and freed as needed from the
80 * blocks available on the pool, though they can be preferentially
81 * allocated from a dedicated "log" vdev.
82 */
83
84/*
85 * This controls the amount of time that a ZIL block (lwb) will remain
86 * "open" when it isn't "full", and it has a thread waiting for it to be
87 * committed to stable storage. Please refer to the zil_commit_waiter()
88 * function (and the comments within it) for more details.
89 */
90int zfs_commit_timeout_pct = 5;
91
92/*
93 * Disable intent logging replay.  This global ZIL switch affects all pools.
94 */
95int zil_replay_disable = 0;
96SYSCTL_DECL(_vfs_zfs);
97SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
98    &zil_replay_disable, 0, "Disable intent logging replay");
99
100/*
101 * Tunable parameter for debugging or performance analysis.  Setting
102 * zfs_nocacheflush will cause corruption on power loss if a volatile
103 * out-of-order write cache is enabled.
104 */
105boolean_t zfs_nocacheflush = B_FALSE;
106SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
107    &zfs_nocacheflush, 0, "Disable cache flush");
108boolean_t zfs_trim_enabled = B_TRUE;
109SYSCTL_DECL(_vfs_zfs_trim);
110SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
111    "Enable ZFS TRIM");
112
113/*
114 * Limit SLOG write size per commit executed with synchronous priority.
115 * Any writes above that will be executed with lower (asynchronous) priority
116 * to limit potential SLOG device abuse by single active ZIL writer.
117 */
118uint64_t zil_slog_bulk = 768 * 1024;
119SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
120    &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");
121
122static kmem_cache_t *zil_lwb_cache;
123static kmem_cache_t *zil_zcw_cache;
124
125#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
126    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
127
128static int
129zil_bp_compare(const void *x1, const void *x2)
130{
131	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
132	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
133
134	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
135		return (-1);
136	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
137		return (1);
138
139	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
140		return (-1);
141	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
142		return (1);
143
144	return (0);
145}
146
147static void
148zil_bp_tree_init(zilog_t *zilog)
149{
150	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
151	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
152}
153
154static void
155zil_bp_tree_fini(zilog_t *zilog)
156{
157	avl_tree_t *t = &zilog->zl_bp_tree;
158	zil_bp_node_t *zn;
159	void *cookie = NULL;
160
161	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
162		kmem_free(zn, sizeof (zil_bp_node_t));
163
164	avl_destroy(t);
165}
166
167int
168zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
169{
170	avl_tree_t *t = &zilog->zl_bp_tree;
171	const dva_t *dva;
172	zil_bp_node_t *zn;
173	avl_index_t where;
174
175	if (BP_IS_EMBEDDED(bp))
176		return (0);
177
178	dva = BP_IDENTITY(bp);
179
180	if (avl_find(t, dva, &where) != NULL)
181		return (SET_ERROR(EEXIST));
182
183	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
184	zn->zn_dva = *dva;
185	avl_insert(t, zn, where);
186
187	return (0);
188}
189
190static zil_header_t *
191zil_header_in_syncing_context(zilog_t *zilog)
192{
193	return ((zil_header_t *)zilog->zl_header);
194}
195
196static void
197zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
198{
199	zio_cksum_t *zc = &bp->blk_cksum;
200
201	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
202	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
203	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
204	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
205}
206
207/*
208 * Read a log block and make sure it's valid.
209 */
210static int
211zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
212    char **end)
213{
214	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
215	arc_flags_t aflags = ARC_FLAG_WAIT;
216	arc_buf_t *abuf = NULL;
217	zbookmark_phys_t zb;
218	int error;
219
220	if (zilog->zl_header->zh_claim_txg == 0)
221		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
222
223	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
224		zio_flags |= ZIO_FLAG_SPECULATIVE;
225
226	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
227	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
228
229	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
230	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
231
232	if (error == 0) {
233		zio_cksum_t cksum = bp->blk_cksum;
234
235		/*
236		 * Validate the checksummed log block.
237		 *
238		 * Sequence numbers should be... sequential.  The checksum
239		 * verifier for the next block should be bp's checksum plus 1.
240		 *
241		 * Also check the log chain linkage and size used.
242		 */
243		cksum.zc_word[ZIL_ZC_SEQ]++;
244
245		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
246			zil_chain_t *zilc = abuf->b_data;
247			char *lr = (char *)(zilc + 1);
248			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
249
250			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
251			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
252				error = SET_ERROR(ECKSUM);
253			} else {
254				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
255				bcopy(lr, dst, len);
256				*end = (char *)dst + len;
257				*nbp = zilc->zc_next_blk;
258			}
259		} else {
260			char *lr = abuf->b_data;
261			uint64_t size = BP_GET_LSIZE(bp);
262			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
263
264			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
265			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
266			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
267				error = SET_ERROR(ECKSUM);
268			} else {
269				ASSERT3U(zilc->zc_nused, <=,
270				    SPA_OLD_MAXBLOCKSIZE);
271				bcopy(lr, dst, zilc->zc_nused);
272				*end = (char *)dst + zilc->zc_nused;
273				*nbp = zilc->zc_next_blk;
274			}
275		}
276
277		arc_buf_destroy(abuf, &abuf);
278	}
279
280	return (error);
281}
282
283/*
284 * Read a TX_WRITE log data block.
285 */
286static int
287zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
288{
289	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
290	const blkptr_t *bp = &lr->lr_blkptr;
291	arc_flags_t aflags = ARC_FLAG_WAIT;
292	arc_buf_t *abuf = NULL;
293	zbookmark_phys_t zb;
294	int error;
295
296	if (BP_IS_HOLE(bp)) {
297		if (wbuf != NULL)
298			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
299		return (0);
300	}
301
302	if (zilog->zl_header->zh_claim_txg == 0)
303		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
304
305	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
306	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
307
308	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
309	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
310
311	if (error == 0) {
312		if (wbuf != NULL)
313			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
314		arc_buf_destroy(abuf, &abuf);
315	}
316
317	return (error);
318}
319
320/*
321 * Parse the intent log, and call parse_func for each valid record within.
322 */
323int
324zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
325    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
326{
327	const zil_header_t *zh = zilog->zl_header;
328	boolean_t claimed = !!zh->zh_claim_txg;
329	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
330	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
331	uint64_t max_blk_seq = 0;
332	uint64_t max_lr_seq = 0;
333	uint64_t blk_count = 0;
334	uint64_t lr_count = 0;
335	blkptr_t blk, next_blk;
336	char *lrbuf, *lrp;
337	int error = 0;
338
339	/*
340	 * Old logs didn't record the maximum zh_claim_lr_seq.
341	 */
342	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
343		claim_lr_seq = UINT64_MAX;
344
345	/*
346	 * Starting at the block pointed to by zh_log we read the log chain.
347	 * For each block in the chain we strongly check that block to
348	 * ensure its validity.  We stop when an invalid block is found.
349	 * For each block pointer in the chain we call parse_blk_func().
350	 * For each record in each valid block we call parse_lr_func().
351	 * If the log has been claimed, stop if we encounter a sequence
352	 * number greater than the highest claimed sequence number.
353	 */
354	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
355	zil_bp_tree_init(zilog);
356
357	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
358		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
359		int reclen;
360		char *end;
361
362		if (blk_seq > claim_blk_seq)
363			break;
364		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
365			break;
366		ASSERT3U(max_blk_seq, <, blk_seq);
367		max_blk_seq = blk_seq;
368		blk_count++;
369
370		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
371			break;
372
373		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
374		if (error != 0)
375			break;
376
377		for (lrp = lrbuf; lrp < end; lrp += reclen) {
378			lr_t *lr = (lr_t *)lrp;
379			reclen = lr->lrc_reclen;
380			ASSERT3U(reclen, >=, sizeof (lr_t));
381			if (lr->lrc_seq > claim_lr_seq)
382				goto done;
383			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
384				goto done;
385			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
386			max_lr_seq = lr->lrc_seq;
387			lr_count++;
388		}
389	}
390done:
391	zilog->zl_parse_error = error;
392	zilog->zl_parse_blk_seq = max_blk_seq;
393	zilog->zl_parse_lr_seq = max_lr_seq;
394	zilog->zl_parse_blk_count = blk_count;
395	zilog->zl_parse_lr_count = lr_count;
396
397	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
398	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
399
400	zil_bp_tree_fini(zilog);
401	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
402
403	return (error);
404}
405
406/* ARGSUSED */
407static int
408zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
409{
410	ASSERT(!BP_IS_HOLE(bp));
411
412	/*
413	 * As we call this function from the context of a rewind to a
414	 * checkpoint, each ZIL block whose txg is later than the txg
415	 * that we rewind to is invalid. Thus, we return -1 so
416	 * zil_parse() doesn't attempt to read it.
417	 */
418	if (bp->blk_birth >= first_txg)
419		return (-1);
420
421	if (zil_bp_tree_add(zilog, bp) != 0)
422		return (0);
423
424	zio_free(zilog->zl_spa, first_txg, bp);
425	return (0);
426}
427
428/* ARGSUSED */
429static int
430zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
431{
432	return (0);
433}
434
435static int
436zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
437{
438	/*
439	 * Claim log block if not already committed and not already claimed.
440	 * If tx == NULL, just verify that the block is claimable.
441	 */
442	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
443	    zil_bp_tree_add(zilog, bp) != 0)
444		return (0);
445
446	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
447	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
448	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
449}
450
451static int
452zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
453{
454	lr_write_t *lr = (lr_write_t *)lrc;
455	int error;
456
457	if (lrc->lrc_txtype != TX_WRITE)
458		return (0);
459
460	/*
461	 * If the block is not readable, don't claim it.  This can happen
462	 * in normal operation when a log block is written to disk before
463	 * some of the dmu_sync() blocks it points to.  In this case, the
464	 * transaction cannot have been committed to anyone (we would have
465	 * waited for all writes to be stable first), so it is semantically
466	 * correct to declare this the end of the log.
467	 */
468	if (lr->lr_blkptr.blk_birth >= first_txg &&
469	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
470		return (error);
471	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
472}
473
474/* ARGSUSED */
475static int
476zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
477{
478	zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
479
480	return (0);
481}
482
483static int
484zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
485{
486	lr_write_t *lr = (lr_write_t *)lrc;
487	blkptr_t *bp = &lr->lr_blkptr;
488
489	/*
490	 * If we previously claimed it, we need to free it.
491	 */
492	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
493	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
494	    !BP_IS_HOLE(bp))
495		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
496
497	return (0);
498}
499
500static int
501zil_lwb_vdev_compare(const void *x1, const void *x2)
502{
503	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
504	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
505
506	if (v1 < v2)
507		return (-1);
508	if (v1 > v2)
509		return (1);
510
511	return (0);
512}
513
514static lwb_t *
515zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
516{
517	lwb_t *lwb;
518
519	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
520	lwb->lwb_zilog = zilog;
521	lwb->lwb_blk = *bp;
522	lwb->lwb_slog = slog;
523	lwb->lwb_state = LWB_STATE_CLOSED;
524	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
525	lwb->lwb_max_txg = txg;
526	lwb->lwb_write_zio = NULL;
527	lwb->lwb_root_zio = NULL;
528	lwb->lwb_tx = NULL;
529	lwb->lwb_issued_timestamp = 0;
530	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
531		lwb->lwb_nused = sizeof (zil_chain_t);
532		lwb->lwb_sz = BP_GET_LSIZE(bp);
533	} else {
534		lwb->lwb_nused = 0;
535		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
536	}
537
538	mutex_enter(&zilog->zl_lock);
539	list_insert_tail(&zilog->zl_lwb_list, lwb);
540	mutex_exit(&zilog->zl_lock);
541
542	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
543	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
544	VERIFY(list_is_empty(&lwb->lwb_waiters));
545
546	return (lwb);
547}
548
549static void
550zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
551{
552	ASSERT(MUTEX_HELD(&zilog->zl_lock));
553	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
554	VERIFY(list_is_empty(&lwb->lwb_waiters));
555	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
556	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
557	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
558	ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
559	ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
560	    lwb->lwb_state == LWB_STATE_DONE);
561
562	/*
563	 * Clear the zilog's field to indicate this lwb is no longer
564	 * valid, and prevent use-after-free errors.
565	 */
566	if (zilog->zl_last_lwb_opened == lwb)
567		zilog->zl_last_lwb_opened = NULL;
568
569	kmem_cache_free(zil_lwb_cache, lwb);
570}
571
572/*
573 * Called when we create in-memory log transactions so that we know
574 * to cleanup the itxs at the end of spa_sync().
575 */
576void
577zilog_dirty(zilog_t *zilog, uint64_t txg)
578{
579	dsl_pool_t *dp = zilog->zl_dmu_pool;
580	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
581
582	ASSERT(spa_writeable(zilog->zl_spa));
583
584	if (ds->ds_is_snapshot)
585		panic("dirtying snapshot!");
586
587	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
588		/* up the hold count until we can be written out */
589		dmu_buf_add_ref(ds->ds_dbuf, zilog);
590
591		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
592	}
593}
594
595/*
596 * Determine if the zil is dirty in the specified txg. Callers wanting to
597 * ensure that the dirty state does not change must hold the itxg_lock for
598 * the specified txg. Holding the lock will ensure that the zil cannot be
599 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
600 * state.
601 */
602boolean_t
603zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
604{
605	dsl_pool_t *dp = zilog->zl_dmu_pool;
606
607	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
608		return (B_TRUE);
609	return (B_FALSE);
610}
611
612/*
613 * Determine if the zil is dirty. The zil is considered dirty if it has
614 * any pending itx records that have not been cleaned by zil_clean().
615 */
616boolean_t
617zilog_is_dirty(zilog_t *zilog)
618{
619	dsl_pool_t *dp = zilog->zl_dmu_pool;
620
621	for (int t = 0; t < TXG_SIZE; t++) {
622		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
623			return (B_TRUE);
624	}
625	return (B_FALSE);
626}
627
628/*
629 * Create an on-disk intent log.
630 */
631static lwb_t *
632zil_create(zilog_t *zilog)
633{
634	const zil_header_t *zh = zilog->zl_header;
635	lwb_t *lwb = NULL;
636	uint64_t txg = 0;
637	dmu_tx_t *tx = NULL;
638	blkptr_t blk;
639	int error = 0;
640	boolean_t slog = FALSE;
641
642	/*
643	 * Wait for any previous destroy to complete.
644	 */
645	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
646
647	ASSERT(zh->zh_claim_txg == 0);
648	ASSERT(zh->zh_replay_seq == 0);
649
650	blk = zh->zh_log;
651
652	/*
653	 * Allocate an initial log block if:
654	 *    - there isn't one already
655	 *    - the existing block is the wrong endianess
656	 */
657	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
658		tx = dmu_tx_create(zilog->zl_os);
659		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
660		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
661		txg = dmu_tx_get_txg(tx);
662
663		if (!BP_IS_HOLE(&blk)) {
664			zio_free(zilog->zl_spa, txg, &blk);
665			BP_ZERO(&blk);
666		}
667
668		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
669		    ZIL_MIN_BLKSZ, &slog);
670
671		if (error == 0)
672			zil_init_log_chain(zilog, &blk);
673	}
674
675	/*
676	 * Allocate a log write block (lwb) for the first log block.
677	 */
678	if (error == 0)
679		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
680
681	/*
682	 * If we just allocated the first log block, commit our transaction
683	 * and wait for zil_sync() to stuff the block poiner into zh_log.
684	 * (zh is part of the MOS, so we cannot modify it in open context.)
685	 */
686	if (tx != NULL) {
687		dmu_tx_commit(tx);
688		txg_wait_synced(zilog->zl_dmu_pool, txg);
689	}
690
691	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
692
693	return (lwb);
694}
695
696/*
697 * In one tx, free all log blocks and clear the log header. If keep_first
698 * is set, then we're replaying a log with no content. We want to keep the
699 * first block, however, so that the first synchronous transaction doesn't
700 * require a txg_wait_synced() in zil_create(). We don't need to
701 * txg_wait_synced() here either when keep_first is set, because both
702 * zil_create() and zil_destroy() will wait for any in-progress destroys
703 * to complete.
704 */
705void
706zil_destroy(zilog_t *zilog, boolean_t keep_first)
707{
708	const zil_header_t *zh = zilog->zl_header;
709	lwb_t *lwb;
710	dmu_tx_t *tx;
711	uint64_t txg;
712
713	/*
714	 * Wait for any previous destroy to complete.
715	 */
716	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
717
718	zilog->zl_old_header = *zh;		/* debugging aid */
719
720	if (BP_IS_HOLE(&zh->zh_log))
721		return;
722
723	tx = dmu_tx_create(zilog->zl_os);
724	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
725	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
726	txg = dmu_tx_get_txg(tx);
727
728	mutex_enter(&zilog->zl_lock);
729
730	ASSERT3U(zilog->zl_destroy_txg, <, txg);
731	zilog->zl_destroy_txg = txg;
732	zilog->zl_keep_first = keep_first;
733
734	if (!list_is_empty(&zilog->zl_lwb_list)) {
735		ASSERT(zh->zh_claim_txg == 0);
736		VERIFY(!keep_first);
737		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
738			list_remove(&zilog->zl_lwb_list, lwb);
739			if (lwb->lwb_buf != NULL)
740				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
741			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
742			zil_free_lwb(zilog, lwb);
743		}
744	} else if (!keep_first) {
745		zil_destroy_sync(zilog, tx);
746	}
747	mutex_exit(&zilog->zl_lock);
748
749	dmu_tx_commit(tx);
750}
751
752void
753zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
754{
755	ASSERT(list_is_empty(&zilog->zl_lwb_list));
756	(void) zil_parse(zilog, zil_free_log_block,
757	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
758}
759
760int
761zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
762{
763	dmu_tx_t *tx = txarg;
764	zilog_t *zilog;
765	uint64_t first_txg;
766	zil_header_t *zh;
767	objset_t *os;
768	int error;
769
770	error = dmu_objset_own_obj(dp, ds->ds_object,
771	    DMU_OST_ANY, B_FALSE, FTAG, &os);
772	if (error != 0) {
773		/*
774		 * EBUSY indicates that the objset is inconsistent, in which
775		 * case it can not have a ZIL.
776		 */
777		if (error != EBUSY) {
778			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
779			    (unsigned long long)ds->ds_object, error);
780		}
781		return (0);
782	}
783
784	zilog = dmu_objset_zil(os);
785	zh = zil_header_in_syncing_context(zilog);
786	ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
787	first_txg = spa_min_claim_txg(zilog->zl_spa);
788
789	/*
790	 * If the spa_log_state is not set to be cleared, check whether
791	 * the current uberblock is a checkpoint one and if the current
792	 * header has been claimed before moving on.
793	 *
794	 * If the current uberblock is a checkpointed uberblock then
795	 * one of the following scenarios took place:
796	 *
797	 * 1] We are currently rewinding to the checkpoint of the pool.
798	 * 2] We crashed in the middle of a checkpoint rewind but we
799	 *    did manage to write the checkpointed uberblock to the
800	 *    vdev labels, so when we tried to import the pool again
801	 *    the checkpointed uberblock was selected from the import
802	 *    procedure.
803	 *
804	 * In both cases we want to zero out all the ZIL blocks, except
805	 * the ones that have been claimed at the time of the checkpoint
806	 * (their zh_claim_txg != 0). The reason is that these blocks
807	 * may be corrupted since we may have reused their locations on
808	 * disk after we took the checkpoint.
809	 *
810	 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
811	 * when we first figure out whether the current uberblock is
812	 * checkpointed or not. Unfortunately, that would discard all
813	 * the logs, including the ones that are claimed, and we would
814	 * leak space.
815	 */
816	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
817	    (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
818	    zh->zh_claim_txg == 0)) {
819		if (!BP_IS_HOLE(&zh->zh_log)) {
820			(void) zil_parse(zilog, zil_clear_log_block,
821			    zil_noop_log_record, tx, first_txg);
822		}
823		BP_ZERO(&zh->zh_log);
824		dsl_dataset_dirty(dmu_objset_ds(os), tx);
825		dmu_objset_disown(os, FTAG);
826		return (0);
827	}
828
829	/*
830	 * If we are not rewinding and opening the pool normally, then
831	 * the min_claim_txg should be equal to the first txg of the pool.
832	 */
833	ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
834
835	/*
836	 * Claim all log blocks if we haven't already done so, and remember
837	 * the highest claimed sequence number.  This ensures that if we can
838	 * read only part of the log now (e.g. due to a missing device),
839	 * but we can read the entire log later, we will not try to replay
840	 * or destroy beyond the last block we successfully claimed.
841	 */
842	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
843	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
844		(void) zil_parse(zilog, zil_claim_log_block,
845		    zil_claim_log_record, tx, first_txg);
846		zh->zh_claim_txg = first_txg;
847		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
848		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
849		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
850			zh->zh_flags |= ZIL_REPLAY_NEEDED;
851		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
852		dsl_dataset_dirty(dmu_objset_ds(os), tx);
853	}
854
855	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
856	dmu_objset_disown(os, FTAG);
857	return (0);
858}
859
860/*
861 * Check the log by walking the log chain.
862 * Checksum errors are ok as they indicate the end of the chain.
863 * Any other error (no device or read failure) returns an error.
864 */
865/* ARGSUSED */
866int
867zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
868{
869	zilog_t *zilog;
870	objset_t *os;
871	blkptr_t *bp;
872	int error;
873
874	ASSERT(tx == NULL);
875
876	error = dmu_objset_from_ds(ds, &os);
877	if (error != 0) {
878		cmn_err(CE_WARN, "can't open objset %llu, error %d",
879		    (unsigned long long)ds->ds_object, error);
880		return (0);
881	}
882
883	zilog = dmu_objset_zil(os);
884	bp = (blkptr_t *)&zilog->zl_header->zh_log;
885
886	if (!BP_IS_HOLE(bp)) {
887		vdev_t *vd;
888		boolean_t valid = B_TRUE;
889
890		/*
891		 * Check the first block and determine if it's on a log device
892		 * which may have been removed or faulted prior to loading this
893		 * pool.  If so, there's no point in checking the rest of the
894		 * log as its content should have already been synced to the
895		 * pool.
896		 */
897		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
898		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
899		if (vd->vdev_islog && vdev_is_dead(vd))
900			valid = vdev_log_state_valid(vd);
901		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
902
903		if (!valid)
904			return (0);
905
906		/*
907		 * Check whether the current uberblock is checkpointed (e.g.
908		 * we are rewinding) and whether the current header has been
909		 * claimed or not. If it hasn't then skip verifying it. We
910		 * do this because its ZIL blocks may be part of the pool's
911		 * state before the rewind, which is no longer valid.
912		 */
913		zil_header_t *zh = zil_header_in_syncing_context(zilog);
914		if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
915		    zh->zh_claim_txg == 0)
916			return (0);
917	}
918
919	/*
920	 * Because tx == NULL, zil_claim_log_block() will not actually claim
921	 * any blocks, but just determine whether it is possible to do so.
922	 * In addition to checking the log chain, zil_claim_log_block()
923	 * will invoke zio_claim() with a done func of spa_claim_notify(),
924	 * which will update spa_max_claim_txg.  See spa_load() for details.
925	 */
926	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
927	    zilog->zl_header->zh_claim_txg ? -1ULL :
928	    spa_min_claim_txg(os->os_spa));
929
930	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
931}
932
933/*
934 * When an itx is "skipped", this function is used to properly mark the
935 * waiter as "done, and signal any thread(s) waiting on it. An itx can
936 * be skipped (and not committed to an lwb) for a variety of reasons,
937 * one of them being that the itx was committed via spa_sync(), prior to
938 * it being committed to an lwb; this can happen if a thread calling
939 * zil_commit() is racing with spa_sync().
940 */
941static void
942zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
943{
944	mutex_enter(&zcw->zcw_lock);
945	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
946	zcw->zcw_done = B_TRUE;
947	cv_broadcast(&zcw->zcw_cv);
948	mutex_exit(&zcw->zcw_lock);
949}
950
951/*
952 * This function is used when the given waiter is to be linked into an
953 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
954 * At this point, the waiter will no longer be referenced by the itx,
955 * and instead, will be referenced by the lwb.
956 */
957static void
958zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
959{
960	/*
961	 * The lwb_waiters field of the lwb is protected by the zilog's
962	 * zl_lock, thus it must be held when calling this function.
963	 */
964	ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
965
966	mutex_enter(&zcw->zcw_lock);
967	ASSERT(!list_link_active(&zcw->zcw_node));
968	ASSERT3P(zcw->zcw_lwb, ==, NULL);
969	ASSERT3P(lwb, !=, NULL);
970	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
971	    lwb->lwb_state == LWB_STATE_ISSUED);
972
973	list_insert_tail(&lwb->lwb_waiters, zcw);
974	zcw->zcw_lwb = lwb;
975	mutex_exit(&zcw->zcw_lock);
976}
977
978/*
979 * This function is used when zio_alloc_zil() fails to allocate a ZIL
980 * block, and the given waiter must be linked to the "nolwb waiters"
981 * list inside of zil_process_commit_list().
982 */
983static void
984zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
985{
986	mutex_enter(&zcw->zcw_lock);
987	ASSERT(!list_link_active(&zcw->zcw_node));
988	ASSERT3P(zcw->zcw_lwb, ==, NULL);
989	list_insert_tail(nolwb, zcw);
990	mutex_exit(&zcw->zcw_lock);
991}
992
993void
994zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
995{
996	avl_tree_t *t = &lwb->lwb_vdev_tree;
997	avl_index_t where;
998	zil_vdev_node_t *zv, zvsearch;
999	int ndvas = BP_GET_NDVAS(bp);
1000	int i;
1001
1002	if (zfs_nocacheflush)
1003		return;
1004
1005	mutex_enter(&lwb->lwb_vdev_lock);
1006	for (i = 0; i < ndvas; i++) {
1007		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1008		if (avl_find(t, &zvsearch, &where) == NULL) {
1009			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1010			zv->zv_vdev = zvsearch.zv_vdev;
1011			avl_insert(t, zv, where);
1012		}
1013	}
1014	mutex_exit(&lwb->lwb_vdev_lock);
1015}
1016
1017void
1018zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1019{
1020	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1021}
1022
1023/*
1024 * This function is a called after all VDEVs associated with a given lwb
1025 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1026 * as the lwb write completes, if "zfs_nocacheflush" is set.
1027 *
1028 * The intention is for this function to be called as soon as the
1029 * contents of an lwb are considered "stable" on disk, and will survive
1030 * any sudden loss of power. At this point, any threads waiting for the
1031 * lwb to reach this state are signalled, and the "waiter" structures
1032 * are marked "done".
1033 */
1034static void
1035zil_lwb_flush_vdevs_done(zio_t *zio)
1036{
1037	lwb_t *lwb = zio->io_private;
1038	zilog_t *zilog = lwb->lwb_zilog;
1039	dmu_tx_t *tx = lwb->lwb_tx;
1040	zil_commit_waiter_t *zcw;
1041
1042	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1043
1044	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1045
1046	mutex_enter(&zilog->zl_lock);
1047
1048	/*
1049	 * Ensure the lwb buffer pointer is cleared before releasing the
1050	 * txg. If we have had an allocation failure and the txg is
1051	 * waiting to sync then we want zil_sync() to remove the lwb so
1052	 * that it's not picked up as the next new one in
1053	 * zil_process_commit_list(). zil_sync() will only remove the
1054	 * lwb if lwb_buf is null.
1055	 */
1056	lwb->lwb_buf = NULL;
1057	lwb->lwb_tx = NULL;
1058
1059	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1060	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1061
1062	lwb->lwb_root_zio = NULL;
1063	lwb->lwb_state = LWB_STATE_DONE;
1064
1065	if (zilog->zl_last_lwb_opened == lwb) {
1066		/*
1067		 * Remember the highest committed log sequence number
1068		 * for ztest. We only update this value when all the log
1069		 * writes succeeded, because ztest wants to ASSERT that
1070		 * it got the whole log chain.
1071		 */
1072		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1073	}
1074
1075	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1076		mutex_enter(&zcw->zcw_lock);
1077
1078		ASSERT(list_link_active(&zcw->zcw_node));
1079		list_remove(&lwb->lwb_waiters, zcw);
1080
1081		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1082		zcw->zcw_lwb = NULL;
1083
1084		zcw->zcw_zio_error = zio->io_error;
1085
1086		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1087		zcw->zcw_done = B_TRUE;
1088		cv_broadcast(&zcw->zcw_cv);
1089
1090		mutex_exit(&zcw->zcw_lock);
1091	}
1092
1093	mutex_exit(&zilog->zl_lock);
1094
1095	/*
1096	 * Now that we've written this log block, we have a stable pointer
1097	 * to the next block in the chain, so it's OK to let the txg in
1098	 * which we allocated the next block sync.
1099	 */
1100	dmu_tx_commit(tx);
1101}
1102
1103/*
1104 * This is called when an lwb write completes. This means, this specific
1105 * lwb was written to disk, and all dependent lwb have also been
1106 * written to disk.
1107 *
1108 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1109 * the VDEVs involved in writing out this specific lwb. The lwb will be
1110 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1111 * zio completion callback for the lwb's root zio.
1112 */
1113static void
1114zil_lwb_write_done(zio_t *zio)
1115{
1116	lwb_t *lwb = zio->io_private;
1117	spa_t *spa = zio->io_spa;
1118	zilog_t *zilog = lwb->lwb_zilog;
1119	avl_tree_t *t = &lwb->lwb_vdev_tree;
1120	void *cookie = NULL;
1121	zil_vdev_node_t *zv;
1122
1123	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1124
1125	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1126	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1127	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1128	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1129	ASSERT(!BP_IS_GANG(zio->io_bp));
1130	ASSERT(!BP_IS_HOLE(zio->io_bp));
1131	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1132
1133	abd_put(zio->io_abd);
1134
1135	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1136
1137	mutex_enter(&zilog->zl_lock);
1138	lwb->lwb_write_zio = NULL;
1139	mutex_exit(&zilog->zl_lock);
1140
1141	if (avl_numnodes(t) == 0)
1142		return;
1143
1144	/*
1145	 * If there was an IO error, we're not going to call zio_flush()
1146	 * on these vdevs, so we simply empty the tree and free the
1147	 * nodes. We avoid calling zio_flush() since there isn't any
1148	 * good reason for doing so, after the lwb block failed to be
1149	 * written out.
1150	 */
1151	if (zio->io_error != 0) {
1152		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1153			kmem_free(zv, sizeof (*zv));
1154		return;
1155	}
1156
1157	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1158		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1159		if (vd != NULL)
1160			zio_flush(lwb->lwb_root_zio, vd);
1161		kmem_free(zv, sizeof (*zv));
1162	}
1163}
1164
1165/*
1166 * This function's purpose is to "open" an lwb such that it is ready to
1167 * accept new itxs being committed to it. To do this, the lwb's zio
1168 * structures are created, and linked to the lwb. This function is
1169 * idempotent; if the passed in lwb has already been opened, this
1170 * function is essentially a no-op.
1171 */
1172static void
1173zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1174{
1175	zbookmark_phys_t zb;
1176	zio_priority_t prio;
1177
1178	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1179	ASSERT3P(lwb, !=, NULL);
1180	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1181	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1182
1183	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1184	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1185	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1186
1187	if (lwb->lwb_root_zio == NULL) {
1188		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1189		    BP_GET_LSIZE(&lwb->lwb_blk));
1190
1191		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1192			prio = ZIO_PRIORITY_SYNC_WRITE;
1193		else
1194			prio = ZIO_PRIORITY_ASYNC_WRITE;
1195
1196		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1197		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1198		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1199
1200		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1201		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1202		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1203		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1204		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1205
1206		lwb->lwb_state = LWB_STATE_OPENED;
1207
1208		mutex_enter(&zilog->zl_lock);
1209
1210		/*
1211		 * The zilog's "zl_last_lwb_opened" field is used to
1212		 * build the lwb/zio dependency chain, which is used to
1213		 * preserve the ordering of lwb completions that is
1214		 * required by the semantics of the ZIL. Each new lwb
1215		 * zio becomes a parent of the "previous" lwb zio, such
1216		 * that the new lwb's zio cannot complete until the
1217		 * "previous" lwb's zio completes.
1218		 *
1219		 * This is required by the semantics of zil_commit();
1220		 * the commit waiters attached to the lwbs will be woken
1221		 * in the lwb zio's completion callback, so this zio
1222		 * dependency graph ensures the waiters are woken in the
1223		 * correct order (the same order the lwbs were created).
1224		 */
1225		lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1226		if (last_lwb_opened != NULL &&
1227		    last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1228			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1229			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1230			ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1231			zio_add_child(lwb->lwb_root_zio,
1232			    last_lwb_opened->lwb_root_zio);
1233		}
1234		zilog->zl_last_lwb_opened = lwb;
1235
1236		mutex_exit(&zilog->zl_lock);
1237	}
1238
1239	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1240	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1241	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1242}
1243
1244/*
1245 * Define a limited set of intent log block sizes.
1246 *
1247 * These must be a multiple of 4KB. Note only the amount used (again
1248 * aligned to 4KB) actually gets written. However, we can't always just
1249 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1250 */
1251uint64_t zil_block_buckets[] = {
1252    4096,		/* non TX_WRITE */
1253    8192+4096,		/* data base */
1254    32*1024 + 4096, 	/* NFS writes */
1255    UINT64_MAX
1256};
1257
1258/*
1259 * Start a log block write and advance to the next log block.
1260 * Calls are serialized.
1261 */
1262static lwb_t *
1263zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1264{
1265	lwb_t *nlwb = NULL;
1266	zil_chain_t *zilc;
1267	spa_t *spa = zilog->zl_spa;
1268	blkptr_t *bp;
1269	dmu_tx_t *tx;
1270	uint64_t txg;
1271	uint64_t zil_blksz, wsz;
1272	int i, error;
1273	boolean_t slog;
1274
1275	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1276	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1277	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1278	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1279
1280	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1281		zilc = (zil_chain_t *)lwb->lwb_buf;
1282		bp = &zilc->zc_next_blk;
1283	} else {
1284		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1285		bp = &zilc->zc_next_blk;
1286	}
1287
1288	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1289
1290	/*
1291	 * Allocate the next block and save its address in this block
1292	 * before writing it in order to establish the log chain.
1293	 * Note that if the allocation of nlwb synced before we wrote
1294	 * the block that points at it (lwb), we'd leak it if we crashed.
1295	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1296	 * We dirty the dataset to ensure that zil_sync() will be called
1297	 * to clean up in the event of allocation failure or I/O failure.
1298	 */
1299
1300	tx = dmu_tx_create(zilog->zl_os);
1301
1302	/*
1303	 * Since we are not going to create any new dirty data, and we
1304	 * can even help with clearing the existing dirty data, we
1305	 * should not be subject to the dirty data based delays. We
1306	 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1307	 */
1308	VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1309
1310	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1311	txg = dmu_tx_get_txg(tx);
1312
1313	lwb->lwb_tx = tx;
1314
1315	/*
1316	 * Log blocks are pre-allocated. Here we select the size of the next
1317	 * block, based on size used in the last block.
1318	 * - first find the smallest bucket that will fit the block from a
1319	 *   limited set of block sizes. This is because it's faster to write
1320	 *   blocks allocated from the same metaslab as they are adjacent or
1321	 *   close.
1322	 * - next find the maximum from the new suggested size and an array of
1323	 *   previous sizes. This lessens a picket fence effect of wrongly
1324	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1325	 *   requests.
1326	 *
1327	 * Note we only write what is used, but we can't just allocate
1328	 * the maximum block size because we can exhaust the available
1329	 * pool log space.
1330	 */
1331	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1332	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1333		continue;
1334	zil_blksz = zil_block_buckets[i];
1335	if (zil_blksz == UINT64_MAX)
1336		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1337	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1338	for (i = 0; i < ZIL_PREV_BLKS; i++)
1339		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1340	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1341
1342	BP_ZERO(bp);
1343
1344	/* pass the old blkptr in order to spread log blocks across devs */
1345	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1346	if (error == 0) {
1347		ASSERT3U(bp->blk_birth, ==, txg);
1348		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1349		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1350
1351		/*
1352		 * Allocate a new log write block (lwb).
1353		 */
1354		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1355	}
1356
1357	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1358		/* For Slim ZIL only write what is used. */
1359		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1360		ASSERT3U(wsz, <=, lwb->lwb_sz);
1361		zio_shrink(lwb->lwb_write_zio, wsz);
1362
1363	} else {
1364		wsz = lwb->lwb_sz;
1365	}
1366
1367	zilc->zc_pad = 0;
1368	zilc->zc_nused = lwb->lwb_nused;
1369	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1370
1371	/*
1372	 * clear unused data for security
1373	 */
1374	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1375
1376	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1377
1378	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1379	lwb->lwb_issued_timestamp = gethrtime();
1380	lwb->lwb_state = LWB_STATE_ISSUED;
1381
1382	zio_nowait(lwb->lwb_root_zio);
1383	zio_nowait(lwb->lwb_write_zio);
1384
1385	/*
1386	 * If there was an allocation failure then nlwb will be null which
1387	 * forces a txg_wait_synced().
1388	 */
1389	return (nlwb);
1390}
1391
1392static lwb_t *
1393zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1394{
1395	lr_t *lrcb, *lrc;
1396	lr_write_t *lrwb, *lrw;
1397	char *lr_buf;
1398	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1399
1400	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1401	ASSERT3P(lwb, !=, NULL);
1402	ASSERT3P(lwb->lwb_buf, !=, NULL);
1403
1404	zil_lwb_write_open(zilog, lwb);
1405
1406	lrc = &itx->itx_lr;
1407	lrw = (lr_write_t *)lrc;
1408
1409	/*
1410	 * A commit itx doesn't represent any on-disk state; instead
1411	 * it's simply used as a place holder on the commit list, and
1412	 * provides a mechanism for attaching a "commit waiter" onto the
1413	 * correct lwb (such that the waiter can be signalled upon
1414	 * completion of that lwb). Thus, we don't process this itx's
1415	 * log record if it's a commit itx (these itx's don't have log
1416	 * records), and instead link the itx's waiter onto the lwb's
1417	 * list of waiters.
1418	 *
1419	 * For more details, see the comment above zil_commit().
1420	 */
1421	if (lrc->lrc_txtype == TX_COMMIT) {
1422		mutex_enter(&zilog->zl_lock);
1423		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1424		itx->itx_private = NULL;
1425		mutex_exit(&zilog->zl_lock);
1426		return (lwb);
1427	}
1428
1429	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1430		dlen = P2ROUNDUP_TYPED(
1431		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1432	} else {
1433		dlen = 0;
1434	}
1435	reclen = lrc->lrc_reclen;
1436	zilog->zl_cur_used += (reclen + dlen);
1437	txg = lrc->lrc_txg;
1438
1439	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1440
1441cont:
1442	/*
1443	 * If this record won't fit in the current log block, start a new one.
1444	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1445	 */
1446	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1447	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1448	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1449	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1450		lwb = zil_lwb_write_issue(zilog, lwb);
1451		if (lwb == NULL)
1452			return (NULL);
1453		zil_lwb_write_open(zilog, lwb);
1454		ASSERT(LWB_EMPTY(lwb));
1455		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1456		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1457	}
1458
1459	dnow = MIN(dlen, lwb_sp - reclen);
1460	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1461	bcopy(lrc, lr_buf, reclen);
1462	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1463	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1464
1465	/*
1466	 * If it's a write, fetch the data or get its blkptr as appropriate.
1467	 */
1468	if (lrc->lrc_txtype == TX_WRITE) {
1469		if (txg > spa_freeze_txg(zilog->zl_spa))
1470			txg_wait_synced(zilog->zl_dmu_pool, txg);
1471		if (itx->itx_wr_state != WR_COPIED) {
1472			char *dbuf;
1473			int error;
1474
1475			if (itx->itx_wr_state == WR_NEED_COPY) {
1476				dbuf = lr_buf + reclen;
1477				lrcb->lrc_reclen += dnow;
1478				if (lrwb->lr_length > dnow)
1479					lrwb->lr_length = dnow;
1480				lrw->lr_offset += dnow;
1481				lrw->lr_length -= dnow;
1482			} else {
1483				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1484				dbuf = NULL;
1485			}
1486
1487			/*
1488			 * We pass in the "lwb_write_zio" rather than
1489			 * "lwb_root_zio" so that the "lwb_write_zio"
1490			 * becomes the parent of any zio's created by
1491			 * the "zl_get_data" callback. The vdevs are
1492			 * flushed after the "lwb_write_zio" completes,
1493			 * so we want to make sure that completion
1494			 * callback waits for these additional zio's,
1495			 * such that the vdevs used by those zio's will
1496			 * be included in the lwb's vdev tree, and those
1497			 * vdevs will be properly flushed. If we passed
1498			 * in "lwb_root_zio" here, then these additional
1499			 * vdevs may not be flushed; e.g. if these zio's
1500			 * completed after "lwb_write_zio" completed.
1501			 */
1502			error = zilog->zl_get_data(itx->itx_private,
1503			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1504
1505			if (error == EIO) {
1506				txg_wait_synced(zilog->zl_dmu_pool, txg);
1507				return (lwb);
1508			}
1509			if (error != 0) {
1510				ASSERT(error == ENOENT || error == EEXIST ||
1511				    error == EALREADY);
1512				return (lwb);
1513			}
1514		}
1515	}
1516
1517	/*
1518	 * We're actually making an entry, so update lrc_seq to be the
1519	 * log record sequence number.  Note that this is generally not
1520	 * equal to the itx sequence number because not all transactions
1521	 * are synchronous, and sometimes spa_sync() gets there first.
1522	 */
1523	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1524	lwb->lwb_nused += reclen + dnow;
1525
1526	zil_lwb_add_txg(lwb, txg);
1527
1528	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1529	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1530
1531	dlen -= dnow;
1532	if (dlen > 0) {
1533		zilog->zl_cur_used += reclen;
1534		goto cont;
1535	}
1536
1537	return (lwb);
1538}
1539
1540itx_t *
1541zil_itx_create(uint64_t txtype, size_t lrsize)
1542{
1543	itx_t *itx;
1544
1545	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1546
1547	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1548	itx->itx_lr.lrc_txtype = txtype;
1549	itx->itx_lr.lrc_reclen = lrsize;
1550	itx->itx_lr.lrc_seq = 0;	/* defensive */
1551	itx->itx_sync = B_TRUE;		/* default is synchronous */
1552
1553	return (itx);
1554}
1555
1556void
1557zil_itx_destroy(itx_t *itx)
1558{
1559	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1560}
1561
1562/*
1563 * Free up the sync and async itxs. The itxs_t has already been detached
1564 * so no locks are needed.
1565 */
1566static void
1567zil_itxg_clean(itxs_t *itxs)
1568{
1569	itx_t *itx;
1570	list_t *list;
1571	avl_tree_t *t;
1572	void *cookie;
1573	itx_async_node_t *ian;
1574
1575	list = &itxs->i_sync_list;
1576	while ((itx = list_head(list)) != NULL) {
1577		/*
1578		 * In the general case, commit itxs will not be found
1579		 * here, as they'll be committed to an lwb via
1580		 * zil_lwb_commit(), and free'd in that function. Having
1581		 * said that, it is still possible for commit itxs to be
1582		 * found here, due to the following race:
1583		 *
1584		 *	- a thread calls zil_commit() which assigns the
1585		 *	  commit itx to a per-txg i_sync_list
1586		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1587		 *	  while the waiter is still on the i_sync_list
1588		 *
1589		 * There's nothing to prevent syncing the txg while the
1590		 * waiter is on the i_sync_list. This normally doesn't
1591		 * happen because spa_sync() is slower than zil_commit(),
1592		 * but if zil_commit() calls txg_wait_synced() (e.g.
1593		 * because zil_create() or zil_commit_writer_stall() is
1594		 * called) we will hit this case.
1595		 */
1596		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1597			zil_commit_waiter_skip(itx->itx_private);
1598
1599		list_remove(list, itx);
1600		zil_itx_destroy(itx);
1601	}
1602
1603	cookie = NULL;
1604	t = &itxs->i_async_tree;
1605	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1606		list = &ian->ia_list;
1607		while ((itx = list_head(list)) != NULL) {
1608			list_remove(list, itx);
1609			/* commit itxs should never be on the async lists. */
1610			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1611			zil_itx_destroy(itx);
1612		}
1613		list_destroy(list);
1614		kmem_free(ian, sizeof (itx_async_node_t));
1615	}
1616	avl_destroy(t);
1617
1618	kmem_free(itxs, sizeof (itxs_t));
1619}
1620
1621static int
1622zil_aitx_compare(const void *x1, const void *x2)
1623{
1624	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1625	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1626
1627	if (o1 < o2)
1628		return (-1);
1629	if (o1 > o2)
1630		return (1);
1631
1632	return (0);
1633}
1634
1635/*
1636 * Remove all async itx with the given oid.
1637 */
1638static void
1639zil_remove_async(zilog_t *zilog, uint64_t oid)
1640{
1641	uint64_t otxg, txg;
1642	itx_async_node_t *ian;
1643	avl_tree_t *t;
1644	avl_index_t where;
1645	list_t clean_list;
1646	itx_t *itx;
1647
1648	ASSERT(oid != 0);
1649	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1650
1651	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1652		otxg = ZILTEST_TXG;
1653	else
1654		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1655
1656	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1657		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1658
1659		mutex_enter(&itxg->itxg_lock);
1660		if (itxg->itxg_txg != txg) {
1661			mutex_exit(&itxg->itxg_lock);
1662			continue;
1663		}
1664
1665		/*
1666		 * Locate the object node and append its list.
1667		 */
1668		t = &itxg->itxg_itxs->i_async_tree;
1669		ian = avl_find(t, &oid, &where);
1670		if (ian != NULL)
1671			list_move_tail(&clean_list, &ian->ia_list);
1672		mutex_exit(&itxg->itxg_lock);
1673	}
1674	while ((itx = list_head(&clean_list)) != NULL) {
1675		list_remove(&clean_list, itx);
1676		/* commit itxs should never be on the async lists. */
1677		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1678		zil_itx_destroy(itx);
1679	}
1680	list_destroy(&clean_list);
1681}
1682
1683void
1684zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1685{
1686	uint64_t txg;
1687	itxg_t *itxg;
1688	itxs_t *itxs, *clean = NULL;
1689
1690	/*
1691	 * Object ids can be re-instantiated in the next txg so
1692	 * remove any async transactions to avoid future leaks.
1693	 * This can happen if a fsync occurs on the re-instantiated
1694	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1695	 * the new file data and flushes a write record for the old object.
1696	 */
1697	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1698		zil_remove_async(zilog, itx->itx_oid);
1699
1700	/*
1701	 * Ensure the data of a renamed file is committed before the rename.
1702	 */
1703	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1704		zil_async_to_sync(zilog, itx->itx_oid);
1705
1706	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1707		txg = ZILTEST_TXG;
1708	else
1709		txg = dmu_tx_get_txg(tx);
1710
1711	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1712	mutex_enter(&itxg->itxg_lock);
1713	itxs = itxg->itxg_itxs;
1714	if (itxg->itxg_txg != txg) {
1715		if (itxs != NULL) {
1716			/*
1717			 * The zil_clean callback hasn't got around to cleaning
1718			 * this itxg. Save the itxs for release below.
1719			 * This should be rare.
1720			 */
1721			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1722			    "txg %llu", itxg->itxg_txg);
1723			clean = itxg->itxg_itxs;
1724		}
1725		itxg->itxg_txg = txg;
1726		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1727
1728		list_create(&itxs->i_sync_list, sizeof (itx_t),
1729		    offsetof(itx_t, itx_node));
1730		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1731		    sizeof (itx_async_node_t),
1732		    offsetof(itx_async_node_t, ia_node));
1733	}
1734	if (itx->itx_sync) {
1735		list_insert_tail(&itxs->i_sync_list, itx);
1736	} else {
1737		avl_tree_t *t = &itxs->i_async_tree;
1738		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1739		itx_async_node_t *ian;
1740		avl_index_t where;
1741
1742		ian = avl_find(t, &foid, &where);
1743		if (ian == NULL) {
1744			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1745			list_create(&ian->ia_list, sizeof (itx_t),
1746			    offsetof(itx_t, itx_node));
1747			ian->ia_foid = foid;
1748			avl_insert(t, ian, where);
1749		}
1750		list_insert_tail(&ian->ia_list, itx);
1751	}
1752
1753	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1754
1755	/*
1756	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1757	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1758	 * need to be careful to always dirty the ZIL using the "real"
1759	 * TXG (not itxg_txg) even when the SPA is frozen.
1760	 */
1761	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1762	mutex_exit(&itxg->itxg_lock);
1763
1764	/* Release the old itxs now we've dropped the lock */
1765	if (clean != NULL)
1766		zil_itxg_clean(clean);
1767}
1768
1769/*
1770 * If there are any in-memory intent log transactions which have now been
1771 * synced then start up a taskq to free them. We should only do this after we
1772 * have written out the uberblocks (i.e. txg has been comitted) so that
1773 * don't inadvertently clean out in-memory log records that would be required
1774 * by zil_commit().
1775 */
1776void
1777zil_clean(zilog_t *zilog, uint64_t synced_txg)
1778{
1779	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1780	itxs_t *clean_me;
1781
1782	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1783
1784	mutex_enter(&itxg->itxg_lock);
1785	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1786		mutex_exit(&itxg->itxg_lock);
1787		return;
1788	}
1789	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1790	ASSERT3U(itxg->itxg_txg, !=, 0);
1791	clean_me = itxg->itxg_itxs;
1792	itxg->itxg_itxs = NULL;
1793	itxg->itxg_txg = 0;
1794	mutex_exit(&itxg->itxg_lock);
1795	/*
1796	 * Preferably start a task queue to free up the old itxs but
1797	 * if taskq_dispatch can't allocate resources to do that then
1798	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1799	 * created a bad performance problem.
1800	 */
1801	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1802	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1803	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1804	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1805		zil_itxg_clean(clean_me);
1806}
1807
1808/*
1809 * This function will traverse the queue of itxs that need to be
1810 * committed, and move them onto the ZIL's zl_itx_commit_list.
1811 */
1812static void
1813zil_get_commit_list(zilog_t *zilog)
1814{
1815	uint64_t otxg, txg;
1816	list_t *commit_list = &zilog->zl_itx_commit_list;
1817
1818	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1819
1820	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1821		otxg = ZILTEST_TXG;
1822	else
1823		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1824
1825	/*
1826	 * This is inherently racy, since there is nothing to prevent
1827	 * the last synced txg from changing. That's okay since we'll
1828	 * only commit things in the future.
1829	 */
1830	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1831		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1832
1833		mutex_enter(&itxg->itxg_lock);
1834		if (itxg->itxg_txg != txg) {
1835			mutex_exit(&itxg->itxg_lock);
1836			continue;
1837		}
1838
1839		/*
1840		 * If we're adding itx records to the zl_itx_commit_list,
1841		 * then the zil better be dirty in this "txg". We can assert
1842		 * that here since we're holding the itxg_lock which will
1843		 * prevent spa_sync from cleaning it. Once we add the itxs
1844		 * to the zl_itx_commit_list we must commit it to disk even
1845		 * if it's unnecessary (i.e. the txg was synced).
1846		 */
1847		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1848		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1849		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1850
1851		mutex_exit(&itxg->itxg_lock);
1852	}
1853}
1854
1855/*
1856 * Move the async itxs for a specified object to commit into sync lists.
1857 */
1858void
1859zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1860{
1861	uint64_t otxg, txg;
1862	itx_async_node_t *ian;
1863	avl_tree_t *t;
1864	avl_index_t where;
1865
1866	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1867		otxg = ZILTEST_TXG;
1868	else
1869		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1870
1871	/*
1872	 * This is inherently racy, since there is nothing to prevent
1873	 * the last synced txg from changing.
1874	 */
1875	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1876		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1877
1878		mutex_enter(&itxg->itxg_lock);
1879		if (itxg->itxg_txg != txg) {
1880			mutex_exit(&itxg->itxg_lock);
1881			continue;
1882		}
1883
1884		/*
1885		 * If a foid is specified then find that node and append its
1886		 * list. Otherwise walk the tree appending all the lists
1887		 * to the sync list. We add to the end rather than the
1888		 * beginning to ensure the create has happened.
1889		 */
1890		t = &itxg->itxg_itxs->i_async_tree;
1891		if (foid != 0) {
1892			ian = avl_find(t, &foid, &where);
1893			if (ian != NULL) {
1894				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1895				    &ian->ia_list);
1896			}
1897		} else {
1898			void *cookie = NULL;
1899
1900			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1901				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1902				    &ian->ia_list);
1903				list_destroy(&ian->ia_list);
1904				kmem_free(ian, sizeof (itx_async_node_t));
1905			}
1906		}
1907		mutex_exit(&itxg->itxg_lock);
1908	}
1909}
1910
1911/*
1912 * This function will prune commit itxs that are at the head of the
1913 * commit list (it won't prune past the first non-commit itx), and
1914 * either: a) attach them to the last lwb that's still pending
1915 * completion, or b) skip them altogether.
1916 *
1917 * This is used as a performance optimization to prevent commit itxs
1918 * from generating new lwbs when it's unnecessary to do so.
1919 */
1920static void
1921zil_prune_commit_list(zilog_t *zilog)
1922{
1923	itx_t *itx;
1924
1925	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1926
1927	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1928		lr_t *lrc = &itx->itx_lr;
1929		if (lrc->lrc_txtype != TX_COMMIT)
1930			break;
1931
1932		mutex_enter(&zilog->zl_lock);
1933
1934		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1935		if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1936			/*
1937			 * All of the itxs this waiter was waiting on
1938			 * must have already completed (or there were
1939			 * never any itx's for it to wait on), so it's
1940			 * safe to skip this waiter and mark it done.
1941			 */
1942			zil_commit_waiter_skip(itx->itx_private);
1943		} else {
1944			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1945			itx->itx_private = NULL;
1946		}
1947
1948		mutex_exit(&zilog->zl_lock);
1949
1950		list_remove(&zilog->zl_itx_commit_list, itx);
1951		zil_itx_destroy(itx);
1952	}
1953
1954	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1955}
1956
1957static void
1958zil_commit_writer_stall(zilog_t *zilog)
1959{
1960	/*
1961	 * When zio_alloc_zil() fails to allocate the next lwb block on
1962	 * disk, we must call txg_wait_synced() to ensure all of the
1963	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1964	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1965	 * to zil_process_commit_list()) will have to call zil_create(),
1966	 * and start a new ZIL chain.
1967	 *
1968	 * Since zil_alloc_zil() failed, the lwb that was previously
1969	 * issued does not have a pointer to the "next" lwb on disk.
1970	 * Thus, if another ZIL writer thread was to allocate the "next"
1971	 * on-disk lwb, that block could be leaked in the event of a
1972	 * crash (because the previous lwb on-disk would not point to
1973	 * it).
1974	 *
1975	 * We must hold the zilog's zl_issuer_lock while we do this, to
1976	 * ensure no new threads enter zil_process_commit_list() until
1977	 * all lwb's in the zl_lwb_list have been synced and freed
1978	 * (which is achieved via the txg_wait_synced() call).
1979	 */
1980	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1981	txg_wait_synced(zilog->zl_dmu_pool, 0);
1982	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1983}
1984
1985/*
1986 * This function will traverse the commit list, creating new lwbs as
1987 * needed, and committing the itxs from the commit list to these newly
1988 * created lwbs. Additionally, as a new lwb is created, the previous
1989 * lwb will be issued to the zio layer to be written to disk.
1990 */
1991static void
1992zil_process_commit_list(zilog_t *zilog)
1993{
1994	spa_t *spa = zilog->zl_spa;
1995	list_t nolwb_waiters;
1996	lwb_t *lwb;
1997	itx_t *itx;
1998
1999	ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2000
2001	/*
2002	 * Return if there's nothing to commit before we dirty the fs by
2003	 * calling zil_create().
2004	 */
2005	if (list_head(&zilog->zl_itx_commit_list) == NULL)
2006		return;
2007
2008	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2009	    offsetof(zil_commit_waiter_t, zcw_node));
2010
2011	lwb = list_tail(&zilog->zl_lwb_list);
2012	if (lwb == NULL) {
2013		lwb = zil_create(zilog);
2014	} else {
2015		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2016		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2017	}
2018
2019	while (itx = list_head(&zilog->zl_itx_commit_list)) {
2020		lr_t *lrc = &itx->itx_lr;
2021		uint64_t txg = lrc->lrc_txg;
2022
2023		ASSERT3U(txg, !=, 0);
2024
2025		if (lrc->lrc_txtype == TX_COMMIT) {
2026			DTRACE_PROBE2(zil__process__commit__itx,
2027			    zilog_t *, zilog, itx_t *, itx);
2028		} else {
2029			DTRACE_PROBE2(zil__process__normal__itx,
2030			    zilog_t *, zilog, itx_t *, itx);
2031		}
2032
2033		boolean_t synced = txg <= spa_last_synced_txg(spa);
2034		boolean_t frozen = txg > spa_freeze_txg(spa);
2035
2036		/*
2037		 * If the txg of this itx has already been synced out, then
2038		 * we don't need to commit this itx to an lwb. This is
2039		 * because the data of this itx will have already been
2040		 * written to the main pool. This is inherently racy, and
2041		 * it's still ok to commit an itx whose txg has already
2042		 * been synced; this will result in a write that's
2043		 * unnecessary, but will do no harm.
2044		 *
2045		 * With that said, we always want to commit TX_COMMIT itxs
2046		 * to an lwb, regardless of whether or not that itx's txg
2047		 * has been synced out. We do this to ensure any OPENED lwb
2048		 * will always have at least one zil_commit_waiter_t linked
2049		 * to the lwb.
2050		 *
2051		 * As a counter-example, if we skipped TX_COMMIT itx's
2052		 * whose txg had already been synced, the following
2053		 * situation could occur if we happened to be racing with
2054		 * spa_sync:
2055		 *
2056		 * 1. we commit a non-TX_COMMIT itx to an lwb, where the
2057		 *    itx's txg is 10 and the last synced txg is 9.
2058		 * 2. spa_sync finishes syncing out txg 10.
2059		 * 3. we move to the next itx in the list, it's a TX_COMMIT
2060		 *    whose txg is 10, so we skip it rather than committing
2061		 *    it to the lwb used in (1).
2062		 *
2063		 * If the itx that is skipped in (3) is the last TX_COMMIT
2064		 * itx in the commit list, than it's possible for the lwb
2065		 * used in (1) to remain in the OPENED state indefinitely.
2066		 *
2067		 * To prevent the above scenario from occuring, ensuring
2068		 * that once an lwb is OPENED it will transition to ISSUED
2069		 * and eventually DONE, we always commit TX_COMMIT itx's to
2070		 * an lwb here, even if that itx's txg has already been
2071		 * synced.
2072		 *
2073		 * Finally, if the pool is frozen, we _always_ commit the
2074		 * itx.  The point of freezing the pool is to prevent data
2075		 * from being written to the main pool via spa_sync, and
2076		 * instead rely solely on the ZIL to persistently store the
2077		 * data; i.e.  when the pool is frozen, the last synced txg
2078		 * value can't be trusted.
2079		 */
2080		if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2081			if (lwb != NULL) {
2082				lwb = zil_lwb_commit(zilog, itx, lwb);
2083			} else if (lrc->lrc_txtype == TX_COMMIT) {
2084				ASSERT3P(lwb, ==, NULL);
2085				zil_commit_waiter_link_nolwb(
2086				    itx->itx_private, &nolwb_waiters);
2087			}
2088		}
2089
2090		list_remove(&zilog->zl_itx_commit_list, itx);
2091		zil_itx_destroy(itx);
2092	}
2093
2094	if (lwb == NULL) {
2095		/*
2096		 * This indicates zio_alloc_zil() failed to allocate the
2097		 * "next" lwb on-disk. When this happens, we must stall
2098		 * the ZIL write pipeline; see the comment within
2099		 * zil_commit_writer_stall() for more details.
2100		 */
2101		zil_commit_writer_stall(zilog);
2102
2103		/*
2104		 * Additionally, we have to signal and mark the "nolwb"
2105		 * waiters as "done" here, since without an lwb, we
2106		 * can't do this via zil_lwb_flush_vdevs_done() like
2107		 * normal.
2108		 */
2109		zil_commit_waiter_t *zcw;
2110		while (zcw = list_head(&nolwb_waiters)) {
2111			zil_commit_waiter_skip(zcw);
2112			list_remove(&nolwb_waiters, zcw);
2113		}
2114	} else {
2115		ASSERT(list_is_empty(&nolwb_waiters));
2116		ASSERT3P(lwb, !=, NULL);
2117		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2118		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2119
2120		/*
2121		 * At this point, the ZIL block pointed at by the "lwb"
2122		 * variable is in one of the following states: "closed"
2123		 * or "open".
2124		 *
2125		 * If its "closed", then no itxs have been committed to
2126		 * it, so there's no point in issuing its zio (i.e.
2127		 * it's "empty").
2128		 *
2129		 * If its "open" state, then it contains one or more
2130		 * itxs that eventually need to be committed to stable
2131		 * storage. In this case we intentionally do not issue
2132		 * the lwb's zio to disk yet, and instead rely on one of
2133		 * the following two mechanisms for issuing the zio:
2134		 *
2135		 * 1. Ideally, there will be more ZIL activity occuring
2136		 * on the system, such that this function will be
2137		 * immediately called again (not necessarily by the same
2138		 * thread) and this lwb's zio will be issued via
2139		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2140		 * be "full" when it is issued to disk, and we'll make
2141		 * use of the lwb's size the best we can.
2142		 *
2143		 * 2. If there isn't sufficient ZIL activity occuring on
2144		 * the system, such that this lwb's zio isn't issued via
2145		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2146		 * lwb's zio. If this occurs, the lwb is not guaranteed
2147		 * to be "full" by the time its zio is issued, and means
2148		 * the size of the lwb was "too large" given the amount
2149		 * of ZIL activity occuring on the system at that time.
2150		 *
2151		 * We do this for a couple of reasons:
2152		 *
2153		 * 1. To try and reduce the number of IOPs needed to
2154		 * write the same number of itxs. If an lwb has space
2155		 * available in it's buffer for more itxs, and more itxs
2156		 * will be committed relatively soon (relative to the
2157		 * latency of performing a write), then it's beneficial
2158		 * to wait for these "next" itxs. This way, more itxs
2159		 * can be committed to stable storage with fewer writes.
2160		 *
2161		 * 2. To try and use the largest lwb block size that the
2162		 * incoming rate of itxs can support. Again, this is to
2163		 * try and pack as many itxs into as few lwbs as
2164		 * possible, without significantly impacting the latency
2165		 * of each individual itx.
2166		 */
2167	}
2168}
2169
2170/*
2171 * This function is responsible for ensuring the passed in commit waiter
2172 * (and associated commit itx) is committed to an lwb. If the waiter is
2173 * not already committed to an lwb, all itxs in the zilog's queue of
2174 * itxs will be processed. The assumption is the passed in waiter's
2175 * commit itx will found in the queue just like the other non-commit
2176 * itxs, such that when the entire queue is processed, the waiter will
2177 * have been commited to an lwb.
2178 *
2179 * The lwb associated with the passed in waiter is not guaranteed to
2180 * have been issued by the time this function completes. If the lwb is
2181 * not issued, we rely on future calls to zil_commit_writer() to issue
2182 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2183 */
2184static void
2185zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2186{
2187	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2188	ASSERT(spa_writeable(zilog->zl_spa));
2189
2190	mutex_enter(&zilog->zl_issuer_lock);
2191
2192	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2193		/*
2194		 * It's possible that, while we were waiting to acquire
2195		 * the "zl_issuer_lock", another thread committed this
2196		 * waiter to an lwb. If that occurs, we bail out early,
2197		 * without processing any of the zilog's queue of itxs.
2198		 *
2199		 * On certain workloads and system configurations, the
2200		 * "zl_issuer_lock" can become highly contended. In an
2201		 * attempt to reduce this contention, we immediately drop
2202		 * the lock if the waiter has already been processed.
2203		 *
2204		 * We've measured this optimization to reduce CPU spent
2205		 * contending on this lock by up to 5%, using a system
2206		 * with 32 CPUs, low latency storage (~50 usec writes),
2207		 * and 1024 threads performing sync writes.
2208		 */
2209		goto out;
2210	}
2211
2212	zil_get_commit_list(zilog);
2213	zil_prune_commit_list(zilog);
2214	zil_process_commit_list(zilog);
2215
2216out:
2217	mutex_exit(&zilog->zl_issuer_lock);
2218}
2219
2220static void
2221zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2222{
2223	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2224	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2225	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2226
2227	lwb_t *lwb = zcw->zcw_lwb;
2228	ASSERT3P(lwb, !=, NULL);
2229	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2230
2231	/*
2232	 * If the lwb has already been issued by another thread, we can
2233	 * immediately return since there's no work to be done (the
2234	 * point of this function is to issue the lwb). Additionally, we
2235	 * do this prior to acquiring the zl_issuer_lock, to avoid
2236	 * acquiring it when it's not necessary to do so.
2237	 */
2238	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2239	    lwb->lwb_state == LWB_STATE_DONE)
2240		return;
2241
2242	/*
2243	 * In order to call zil_lwb_write_issue() we must hold the
2244	 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2245	 * since we're already holding the commit waiter's "zcw_lock",
2246	 * and those two locks are aquired in the opposite order
2247	 * elsewhere.
2248	 */
2249	mutex_exit(&zcw->zcw_lock);
2250	mutex_enter(&zilog->zl_issuer_lock);
2251	mutex_enter(&zcw->zcw_lock);
2252
2253	/*
2254	 * Since we just dropped and re-acquired the commit waiter's
2255	 * lock, we have to re-check to see if the waiter was marked
2256	 * "done" during that process. If the waiter was marked "done",
2257	 * the "lwb" pointer is no longer valid (it can be free'd after
2258	 * the waiter is marked "done"), so without this check we could
2259	 * wind up with a use-after-free error below.
2260	 */
2261	if (zcw->zcw_done)
2262		goto out;
2263
2264	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2265
2266	/*
2267	 * We've already checked this above, but since we hadn't acquired
2268	 * the zilog's zl_issuer_lock, we have to perform this check a
2269	 * second time while holding the lock.
2270	 *
2271	 * We don't need to hold the zl_lock since the lwb cannot transition
2272	 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2273	 * _can_ transition from ISSUED to DONE, but it's OK to race with
2274	 * that transition since we treat the lwb the same, whether it's in
2275	 * the ISSUED or DONE states.
2276	 *
2277	 * The important thing, is we treat the lwb differently depending on
2278	 * if it's ISSUED or OPENED, and block any other threads that might
2279	 * attempt to issue this lwb. For that reason we hold the
2280	 * zl_issuer_lock when checking the lwb_state; we must not call
2281	 * zil_lwb_write_issue() if the lwb had already been issued.
2282	 *
2283	 * See the comment above the lwb_state_t structure definition for
2284	 * more details on the lwb states, and locking requirements.
2285	 */
2286	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2287	    lwb->lwb_state == LWB_STATE_DONE)
2288		goto out;
2289
2290	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2291
2292	/*
2293	 * As described in the comments above zil_commit_waiter() and
2294	 * zil_process_commit_list(), we need to issue this lwb's zio
2295	 * since we've reached the commit waiter's timeout and it still
2296	 * hasn't been issued.
2297	 */
2298	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2299
2300	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2301
2302	/*
2303	 * Since the lwb's zio hadn't been issued by the time this thread
2304	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2305	 * to influence the zil block size selection algorithm.
2306	 *
2307	 * By having to issue the lwb's zio here, it means the size of the
2308	 * lwb was too large, given the incoming throughput of itxs.  By
2309	 * setting "zl_cur_used" to zero, we communicate this fact to the
2310	 * block size selection algorithm, so it can take this informaiton
2311	 * into account, and potentially select a smaller size for the
2312	 * next lwb block that is allocated.
2313	 */
2314	zilog->zl_cur_used = 0;
2315
2316	if (nlwb == NULL) {
2317		/*
2318		 * When zil_lwb_write_issue() returns NULL, this
2319		 * indicates zio_alloc_zil() failed to allocate the
2320		 * "next" lwb on-disk. When this occurs, the ZIL write
2321		 * pipeline must be stalled; see the comment within the
2322		 * zil_commit_writer_stall() function for more details.
2323		 *
2324		 * We must drop the commit waiter's lock prior to
2325		 * calling zil_commit_writer_stall() or else we can wind
2326		 * up with the following deadlock:
2327		 *
2328		 * - This thread is waiting for the txg to sync while
2329		 *   holding the waiter's lock; txg_wait_synced() is
2330		 *   used within txg_commit_writer_stall().
2331		 *
2332		 * - The txg can't sync because it is waiting for this
2333		 *   lwb's zio callback to call dmu_tx_commit().
2334		 *
2335		 * - The lwb's zio callback can't call dmu_tx_commit()
2336		 *   because it's blocked trying to acquire the waiter's
2337		 *   lock, which occurs prior to calling dmu_tx_commit()
2338		 */
2339		mutex_exit(&zcw->zcw_lock);
2340		zil_commit_writer_stall(zilog);
2341		mutex_enter(&zcw->zcw_lock);
2342	}
2343
2344out:
2345	mutex_exit(&zilog->zl_issuer_lock);
2346	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2347}
2348
2349/*
2350 * This function is responsible for performing the following two tasks:
2351 *
2352 * 1. its primary responsibility is to block until the given "commit
2353 *    waiter" is considered "done".
2354 *
2355 * 2. its secondary responsibility is to issue the zio for the lwb that
2356 *    the given "commit waiter" is waiting on, if this function has
2357 *    waited "long enough" and the lwb is still in the "open" state.
2358 *
2359 * Given a sufficient amount of itxs being generated and written using
2360 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2361 * function. If this does not occur, this secondary responsibility will
2362 * ensure the lwb is issued even if there is not other synchronous
2363 * activity on the system.
2364 *
2365 * For more details, see zil_process_commit_list(); more specifically,
2366 * the comment at the bottom of that function.
2367 */
2368static void
2369zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2370{
2371	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2372	ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2373	ASSERT(spa_writeable(zilog->zl_spa));
2374
2375	mutex_enter(&zcw->zcw_lock);
2376
2377	/*
2378	 * The timeout is scaled based on the lwb latency to avoid
2379	 * significantly impacting the latency of each individual itx.
2380	 * For more details, see the comment at the bottom of the
2381	 * zil_process_commit_list() function.
2382	 */
2383	int pct = MAX(zfs_commit_timeout_pct, 1);
2384#if defined(illumos) || !defined(_KERNEL)
2385	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2386	hrtime_t wakeup = gethrtime() + sleep;
2387#else
2388	sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100);
2389	sbintime_t wakeup = getsbinuptime() + sleep;
2390#endif
2391	boolean_t timedout = B_FALSE;
2392
2393	while (!zcw->zcw_done) {
2394		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2395
2396		lwb_t *lwb = zcw->zcw_lwb;
2397
2398		/*
2399		 * Usually, the waiter will have a non-NULL lwb field here,
2400		 * but it's possible for it to be NULL as a result of
2401		 * zil_commit() racing with spa_sync().
2402		 *
2403		 * When zil_clean() is called, it's possible for the itxg
2404		 * list (which may be cleaned via a taskq) to contain
2405		 * commit itxs. When this occurs, the commit waiters linked
2406		 * off of these commit itxs will not be committed to an
2407		 * lwb.  Additionally, these commit waiters will not be
2408		 * marked done until zil_commit_waiter_skip() is called via
2409		 * zil_itxg_clean().
2410		 *
2411		 * Thus, it's possible for this commit waiter (i.e. the
2412		 * "zcw" variable) to be found in this "in between" state;
2413		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2414		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2415		 */
2416		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2417
2418		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2419			ASSERT3B(timedout, ==, B_FALSE);
2420
2421			/*
2422			 * If the lwb hasn't been issued yet, then we
2423			 * need to wait with a timeout, in case this
2424			 * function needs to issue the lwb after the
2425			 * timeout is reached; responsibility (2) from
2426			 * the comment above this function.
2427			 */
2428#if defined(illumos) || !defined(_KERNEL)
2429			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2430			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2431			    CALLOUT_FLAG_ABSOLUTE);
2432
2433			if (timeleft >= 0 || zcw->zcw_done)
2434				continue;
2435#else
2436			int wait_err = cv_timedwait_sbt(&zcw->zcw_cv,
2437			    &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE);
2438			if (wait_err != EWOULDBLOCK || zcw->zcw_done)
2439				continue;
2440#endif
2441
2442			timedout = B_TRUE;
2443			zil_commit_waiter_timeout(zilog, zcw);
2444
2445			if (!zcw->zcw_done) {
2446				/*
2447				 * If the commit waiter has already been
2448				 * marked "done", it's possible for the
2449				 * waiter's lwb structure to have already
2450				 * been freed.  Thus, we can only reliably
2451				 * make these assertions if the waiter
2452				 * isn't done.
2453				 */
2454				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2455				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2456			}
2457		} else {
2458			/*
2459			 * If the lwb isn't open, then it must have already
2460			 * been issued. In that case, there's no need to
2461			 * use a timeout when waiting for the lwb to
2462			 * complete.
2463			 *
2464			 * Additionally, if the lwb is NULL, the waiter
2465			 * will soon be signalled and marked done via
2466			 * zil_clean() and zil_itxg_clean(), so no timeout
2467			 * is required.
2468			 */
2469
2470			IMPLY(lwb != NULL,
2471			    lwb->lwb_state == LWB_STATE_ISSUED ||
2472			    lwb->lwb_state == LWB_STATE_DONE);
2473			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2474		}
2475	}
2476
2477	mutex_exit(&zcw->zcw_lock);
2478}
2479
2480static zil_commit_waiter_t *
2481zil_alloc_commit_waiter()
2482{
2483	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2484
2485	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2486	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2487	list_link_init(&zcw->zcw_node);
2488	zcw->zcw_lwb = NULL;
2489	zcw->zcw_done = B_FALSE;
2490	zcw->zcw_zio_error = 0;
2491
2492	return (zcw);
2493}
2494
2495static void
2496zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2497{
2498	ASSERT(!list_link_active(&zcw->zcw_node));
2499	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2500	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2501	mutex_destroy(&zcw->zcw_lock);
2502	cv_destroy(&zcw->zcw_cv);
2503	kmem_cache_free(zil_zcw_cache, zcw);
2504}
2505
2506/*
2507 * This function is used to create a TX_COMMIT itx and assign it. This
2508 * way, it will be linked into the ZIL's list of synchronous itxs, and
2509 * then later committed to an lwb (or skipped) when
2510 * zil_process_commit_list() is called.
2511 */
2512static void
2513zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2514{
2515	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2516	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2517
2518	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2519	itx->itx_sync = B_TRUE;
2520	itx->itx_private = zcw;
2521
2522	zil_itx_assign(zilog, itx, tx);
2523
2524	dmu_tx_commit(tx);
2525}
2526
2527/*
2528 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2529 *
2530 * When writing ZIL transactions to the on-disk representation of the
2531 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2532 * itxs can be committed to a single lwb. Once a lwb is written and
2533 * committed to stable storage (i.e. the lwb is written, and vdevs have
2534 * been flushed), each itx that was committed to that lwb is also
2535 * considered to be committed to stable storage.
2536 *
2537 * When an itx is committed to an lwb, the log record (lr_t) contained
2538 * by the itx is copied into the lwb's zio buffer, and once this buffer
2539 * is written to disk, it becomes an on-disk ZIL block.
2540 *
2541 * As itxs are generated, they're inserted into the ZIL's queue of
2542 * uncommitted itxs. The semantics of zil_commit() are such that it will
2543 * block until all itxs that were in the queue when it was called, are
2544 * committed to stable storage.
2545 *
2546 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2547 * itxs, for all objects in the dataset, will be committed to stable
2548 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2549 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2550 * that correspond to the foid passed in, will be committed to stable
2551 * storage prior to zil_commit() returning.
2552 *
2553 * Generally speaking, when zil_commit() is called, the consumer doesn't
2554 * actually care about _all_ of the uncommitted itxs. Instead, they're
2555 * simply trying to waiting for a specific itx to be committed to disk,
2556 * but the interface(s) for interacting with the ZIL don't allow such
2557 * fine-grained communication. A better interface would allow a consumer
2558 * to create and assign an itx, and then pass a reference to this itx to
2559 * zil_commit(); such that zil_commit() would return as soon as that
2560 * specific itx was committed to disk (instead of waiting for _all_
2561 * itxs to be committed).
2562 *
2563 * When a thread calls zil_commit() a special "commit itx" will be
2564 * generated, along with a corresponding "waiter" for this commit itx.
2565 * zil_commit() will wait on this waiter's CV, such that when the waiter
2566 * is marked done, and signalled, zil_commit() will return.
2567 *
2568 * This commit itx is inserted into the queue of uncommitted itxs. This
2569 * provides an easy mechanism for determining which itxs were in the
2570 * queue prior to zil_commit() having been called, and which itxs were
2571 * added after zil_commit() was called.
2572 *
2573 * The commit it is special; it doesn't have any on-disk representation.
2574 * When a commit itx is "committed" to an lwb, the waiter associated
2575 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2576 * completes, each waiter on the lwb's list is marked done and signalled
2577 * -- allowing the thread waiting on the waiter to return from zil_commit().
2578 *
2579 * It's important to point out a few critical factors that allow us
2580 * to make use of the commit itxs, commit waiters, per-lwb lists of
2581 * commit waiters, and zio completion callbacks like we're doing:
2582 *
2583 *   1. The list of waiters for each lwb is traversed, and each commit
2584 *      waiter is marked "done" and signalled, in the zio completion
2585 *      callback of the lwb's zio[*].
2586 *
2587 *      * Actually, the waiters are signalled in the zio completion
2588 *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2589 *        that are sent to the vdevs upon completion of the lwb zio.
2590 *
2591 *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2592 *      itxs, the order in which they are inserted is preserved[*]; as
2593 *      itxs are added to the queue, they are added to the tail of
2594 *      in-memory linked lists.
2595 *
2596 *      When committing the itxs to lwbs (to be written to disk), they
2597 *      are committed in the same order in which the itxs were added to
2598 *      the uncommitted queue's linked list(s); i.e. the linked list of
2599 *      itxs to commit is traversed from head to tail, and each itx is
2600 *      committed to an lwb in that order.
2601 *
2602 *      * To clarify:
2603 *
2604 *        - the order of "sync" itxs is preserved w.r.t. other
2605 *          "sync" itxs, regardless of the corresponding objects.
2606 *        - the order of "async" itxs is preserved w.r.t. other
2607 *          "async" itxs corresponding to the same object.
2608 *        - the order of "async" itxs is *not* preserved w.r.t. other
2609 *          "async" itxs corresponding to different objects.
2610 *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2611 *          versa) is *not* preserved, even for itxs that correspond
2612 *          to the same object.
2613 *
2614 *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2615 *      zil_get_commit_list(), and zil_process_commit_list().
2616 *
2617 *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2618 *      lwb cannot be considered committed to stable storage, until its
2619 *      "previous" lwb is also committed to stable storage. This fact,
2620 *      coupled with the fact described above, means that itxs are
2621 *      committed in (roughly) the order in which they were generated.
2622 *      This is essential because itxs are dependent on prior itxs.
2623 *      Thus, we *must not* deem an itx as being committed to stable
2624 *      storage, until *all* prior itxs have also been committed to
2625 *      stable storage.
2626 *
2627 *      To enforce this ordering of lwb zio's, while still leveraging as
2628 *      much of the underlying storage performance as possible, we rely
2629 *      on two fundamental concepts:
2630 *
2631 *          1. The creation and issuance of lwb zio's is protected by
2632 *             the zilog's "zl_issuer_lock", which ensures only a single
2633 *             thread is creating and/or issuing lwb's at a time
2634 *          2. The "previous" lwb is a child of the "current" lwb
2635 *             (leveraging the zio parent-child depenency graph)
2636 *
2637 *      By relying on this parent-child zio relationship, we can have
2638 *      many lwb zio's concurrently issued to the underlying storage,
2639 *      but the order in which they complete will be the same order in
2640 *      which they were created.
2641 */
2642void
2643zil_commit(zilog_t *zilog, uint64_t foid)
2644{
2645	/*
2646	 * We should never attempt to call zil_commit on a snapshot for
2647	 * a couple of reasons:
2648	 *
2649	 * 1. A snapshot may never be modified, thus it cannot have any
2650	 *    in-flight itxs that would have modified the dataset.
2651	 *
2652	 * 2. By design, when zil_commit() is called, a commit itx will
2653	 *    be assigned to this zilog; as a result, the zilog will be
2654	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2655	 *    checks in the code that enforce this invariant, and will
2656	 *    cause a panic if it's not upheld.
2657	 */
2658	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2659
2660	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2661		return;
2662
2663	if (!spa_writeable(zilog->zl_spa)) {
2664		/*
2665		 * If the SPA is not writable, there should never be any
2666		 * pending itxs waiting to be committed to disk. If that
2667		 * weren't true, we'd skip writing those itxs out, and
2668		 * would break the sematics of zil_commit(); thus, we're
2669		 * verifying that truth before we return to the caller.
2670		 */
2671		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2672		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2673		for (int i = 0; i < TXG_SIZE; i++)
2674			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2675		return;
2676	}
2677
2678	/*
2679	 * If the ZIL is suspended, we don't want to dirty it by calling
2680	 * zil_commit_itx_assign() below, nor can we write out
2681	 * lwbs like would be done in zil_commit_write(). Thus, we
2682	 * simply rely on txg_wait_synced() to maintain the necessary
2683	 * semantics, and avoid calling those functions altogether.
2684	 */
2685	if (zilog->zl_suspend > 0) {
2686		txg_wait_synced(zilog->zl_dmu_pool, 0);
2687		return;
2688	}
2689
2690	zil_commit_impl(zilog, foid);
2691}
2692
2693void
2694zil_commit_impl(zilog_t *zilog, uint64_t foid)
2695{
2696	/*
2697	 * Move the "async" itxs for the specified foid to the "sync"
2698	 * queues, such that they will be later committed (or skipped)
2699	 * to an lwb when zil_process_commit_list() is called.
2700	 *
2701	 * Since these "async" itxs must be committed prior to this
2702	 * call to zil_commit returning, we must perform this operation
2703	 * before we call zil_commit_itx_assign().
2704	 */
2705	zil_async_to_sync(zilog, foid);
2706
2707	/*
2708	 * We allocate a new "waiter" structure which will initially be
2709	 * linked to the commit itx using the itx's "itx_private" field.
2710	 * Since the commit itx doesn't represent any on-disk state,
2711	 * when it's committed to an lwb, rather than copying the its
2712	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2713	 * added to the lwb's list of waiters. Then, when the lwb is
2714	 * committed to stable storage, each waiter in the lwb's list of
2715	 * waiters will be marked "done", and signalled.
2716	 *
2717	 * We must create the waiter and assign the commit itx prior to
2718	 * calling zil_commit_writer(), or else our specific commit itx
2719	 * is not guaranteed to be committed to an lwb prior to calling
2720	 * zil_commit_waiter().
2721	 */
2722	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2723	zil_commit_itx_assign(zilog, zcw);
2724
2725	zil_commit_writer(zilog, zcw);
2726	zil_commit_waiter(zilog, zcw);
2727
2728	if (zcw->zcw_zio_error != 0) {
2729		/*
2730		 * If there was an error writing out the ZIL blocks that
2731		 * this thread is waiting on, then we fallback to
2732		 * relying on spa_sync() to write out the data this
2733		 * thread is waiting on. Obviously this has performance
2734		 * implications, but the expectation is for this to be
2735		 * an exceptional case, and shouldn't occur often.
2736		 */
2737		DTRACE_PROBE2(zil__commit__io__error,
2738		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2739		txg_wait_synced(zilog->zl_dmu_pool, 0);
2740	}
2741
2742	zil_free_commit_waiter(zcw);
2743}
2744
2745/*
2746 * Called in syncing context to free committed log blocks and update log header.
2747 */
2748void
2749zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2750{
2751	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2752	uint64_t txg = dmu_tx_get_txg(tx);
2753	spa_t *spa = zilog->zl_spa;
2754	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2755	lwb_t *lwb;
2756
2757	/*
2758	 * We don't zero out zl_destroy_txg, so make sure we don't try
2759	 * to destroy it twice.
2760	 */
2761	if (spa_sync_pass(spa) != 1)
2762		return;
2763
2764	mutex_enter(&zilog->zl_lock);
2765
2766	ASSERT(zilog->zl_stop_sync == 0);
2767
2768	if (*replayed_seq != 0) {
2769		ASSERT(zh->zh_replay_seq < *replayed_seq);
2770		zh->zh_replay_seq = *replayed_seq;
2771		*replayed_seq = 0;
2772	}
2773
2774	if (zilog->zl_destroy_txg == txg) {
2775		blkptr_t blk = zh->zh_log;
2776
2777		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2778
2779		bzero(zh, sizeof (zil_header_t));
2780		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2781
2782		if (zilog->zl_keep_first) {
2783			/*
2784			 * If this block was part of log chain that couldn't
2785			 * be claimed because a device was missing during
2786			 * zil_claim(), but that device later returns,
2787			 * then this block could erroneously appear valid.
2788			 * To guard against this, assign a new GUID to the new
2789			 * log chain so it doesn't matter what blk points to.
2790			 */
2791			zil_init_log_chain(zilog, &blk);
2792			zh->zh_log = blk;
2793		}
2794	}
2795
2796	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2797		zh->zh_log = lwb->lwb_blk;
2798		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2799			break;
2800		list_remove(&zilog->zl_lwb_list, lwb);
2801		zio_free(spa, txg, &lwb->lwb_blk);
2802		zil_free_lwb(zilog, lwb);
2803
2804		/*
2805		 * If we don't have anything left in the lwb list then
2806		 * we've had an allocation failure and we need to zero
2807		 * out the zil_header blkptr so that we don't end
2808		 * up freeing the same block twice.
2809		 */
2810		if (list_head(&zilog->zl_lwb_list) == NULL)
2811			BP_ZERO(&zh->zh_log);
2812	}
2813	mutex_exit(&zilog->zl_lock);
2814}
2815
2816/* ARGSUSED */
2817static int
2818zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2819{
2820	lwb_t *lwb = vbuf;
2821	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2822	    offsetof(zil_commit_waiter_t, zcw_node));
2823	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2824	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2825	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2826	return (0);
2827}
2828
2829/* ARGSUSED */
2830static void
2831zil_lwb_dest(void *vbuf, void *unused)
2832{
2833	lwb_t *lwb = vbuf;
2834	mutex_destroy(&lwb->lwb_vdev_lock);
2835	avl_destroy(&lwb->lwb_vdev_tree);
2836	list_destroy(&lwb->lwb_waiters);
2837}
2838
2839void
2840zil_init(void)
2841{
2842	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2843	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2844
2845	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2846	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2847}
2848
2849void
2850zil_fini(void)
2851{
2852	kmem_cache_destroy(zil_zcw_cache);
2853	kmem_cache_destroy(zil_lwb_cache);
2854}
2855
2856void
2857zil_set_sync(zilog_t *zilog, uint64_t sync)
2858{
2859	zilog->zl_sync = sync;
2860}
2861
2862void
2863zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2864{
2865	zilog->zl_logbias = logbias;
2866}
2867
2868zilog_t *
2869zil_alloc(objset_t *os, zil_header_t *zh_phys)
2870{
2871	zilog_t *zilog;
2872
2873	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2874
2875	zilog->zl_header = zh_phys;
2876	zilog->zl_os = os;
2877	zilog->zl_spa = dmu_objset_spa(os);
2878	zilog->zl_dmu_pool = dmu_objset_pool(os);
2879	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2880	zilog->zl_logbias = dmu_objset_logbias(os);
2881	zilog->zl_sync = dmu_objset_syncprop(os);
2882	zilog->zl_dirty_max_txg = 0;
2883	zilog->zl_last_lwb_opened = NULL;
2884	zilog->zl_last_lwb_latency = 0;
2885
2886	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2887	mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
2888
2889	for (int i = 0; i < TXG_SIZE; i++) {
2890		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2891		    MUTEX_DEFAULT, NULL);
2892	}
2893
2894	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2895	    offsetof(lwb_t, lwb_node));
2896
2897	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2898	    offsetof(itx_t, itx_node));
2899
2900	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2901
2902	return (zilog);
2903}
2904
2905void
2906zil_free(zilog_t *zilog)
2907{
2908	zilog->zl_stop_sync = 1;
2909
2910	ASSERT0(zilog->zl_suspend);
2911	ASSERT0(zilog->zl_suspending);
2912
2913	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2914	list_destroy(&zilog->zl_lwb_list);
2915
2916	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2917	list_destroy(&zilog->zl_itx_commit_list);
2918
2919	for (int i = 0; i < TXG_SIZE; i++) {
2920		/*
2921		 * It's possible for an itx to be generated that doesn't dirty
2922		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2923		 * callback to remove the entry. We remove those here.
2924		 *
2925		 * Also free up the ziltest itxs.
2926		 */
2927		if (zilog->zl_itxg[i].itxg_itxs)
2928			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2929		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2930	}
2931
2932	mutex_destroy(&zilog->zl_issuer_lock);
2933	mutex_destroy(&zilog->zl_lock);
2934
2935	cv_destroy(&zilog->zl_cv_suspend);
2936
2937	kmem_free(zilog, sizeof (zilog_t));
2938}
2939
2940/*
2941 * Open an intent log.
2942 */
2943zilog_t *
2944zil_open(objset_t *os, zil_get_data_t *get_data)
2945{
2946	zilog_t *zilog = dmu_objset_zil(os);
2947
2948	ASSERT3P(zilog->zl_get_data, ==, NULL);
2949	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2950	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2951
2952	zilog->zl_get_data = get_data;
2953
2954	return (zilog);
2955}
2956
2957/*
2958 * Close an intent log.
2959 */
2960void
2961zil_close(zilog_t *zilog)
2962{
2963	lwb_t *lwb;
2964	uint64_t txg;
2965
2966	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2967		zil_commit(zilog, 0);
2968	} else {
2969		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2970		ASSERT0(zilog->zl_dirty_max_txg);
2971		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2972	}
2973
2974	mutex_enter(&zilog->zl_lock);
2975	lwb = list_tail(&zilog->zl_lwb_list);
2976	if (lwb == NULL)
2977		txg = zilog->zl_dirty_max_txg;
2978	else
2979		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2980	mutex_exit(&zilog->zl_lock);
2981
2982	/*
2983	 * We need to use txg_wait_synced() to wait long enough for the
2984	 * ZIL to be clean, and to wait for all pending lwbs to be
2985	 * written out.
2986	 */
2987	if (txg != 0)
2988		txg_wait_synced(zilog->zl_dmu_pool, txg);
2989
2990	if (zilog_is_dirty(zilog))
2991		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2992	VERIFY(!zilog_is_dirty(zilog));
2993
2994	zilog->zl_get_data = NULL;
2995
2996	/*
2997	 * We should have only one lwb left on the list; remove it now.
2998	 */
2999	mutex_enter(&zilog->zl_lock);
3000	lwb = list_head(&zilog->zl_lwb_list);
3001	if (lwb != NULL) {
3002		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3003		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3004		list_remove(&zilog->zl_lwb_list, lwb);
3005		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3006		zil_free_lwb(zilog, lwb);
3007	}
3008	mutex_exit(&zilog->zl_lock);
3009}
3010
3011static char *suspend_tag = "zil suspending";
3012
3013/*
3014 * Suspend an intent log.  While in suspended mode, we still honor
3015 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3016 * On old version pools, we suspend the log briefly when taking a
3017 * snapshot so that it will have an empty intent log.
3018 *
3019 * Long holds are not really intended to be used the way we do here --
3020 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
3021 * could fail.  Therefore we take pains to only put a long hold if it is
3022 * actually necessary.  Fortunately, it will only be necessary if the
3023 * objset is currently mounted (or the ZVOL equivalent).  In that case it
3024 * will already have a long hold, so we are not really making things any worse.
3025 *
3026 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3027 * zvol_state_t), and use their mechanism to prevent their hold from being
3028 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
3029 * very little gain.
3030 *
3031 * if cookiep == NULL, this does both the suspend & resume.
3032 * Otherwise, it returns with the dataset "long held", and the cookie
3033 * should be passed into zil_resume().
3034 */
3035int
3036zil_suspend(const char *osname, void **cookiep)
3037{
3038	objset_t *os;
3039	zilog_t *zilog;
3040	const zil_header_t *zh;
3041	int error;
3042
3043	error = dmu_objset_hold(osname, suspend_tag, &os);
3044	if (error != 0)
3045		return (error);
3046	zilog = dmu_objset_zil(os);
3047
3048	mutex_enter(&zilog->zl_lock);
3049	zh = zilog->zl_header;
3050
3051	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
3052		mutex_exit(&zilog->zl_lock);
3053		dmu_objset_rele(os, suspend_tag);
3054		return (SET_ERROR(EBUSY));
3055	}
3056
3057	/*
3058	 * Don't put a long hold in the cases where we can avoid it.  This
3059	 * is when there is no cookie so we are doing a suspend & resume
3060	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3061	 * for the suspend because it's already suspended, or there's no ZIL.
3062	 */
3063	if (cookiep == NULL && !zilog->zl_suspending &&
3064	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3065		mutex_exit(&zilog->zl_lock);
3066		dmu_objset_rele(os, suspend_tag);
3067		return (0);
3068	}
3069
3070	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3071	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3072
3073	zilog->zl_suspend++;
3074
3075	if (zilog->zl_suspend > 1) {
3076		/*
3077		 * Someone else is already suspending it.
3078		 * Just wait for them to finish.
3079		 */
3080
3081		while (zilog->zl_suspending)
3082			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3083		mutex_exit(&zilog->zl_lock);
3084
3085		if (cookiep == NULL)
3086			zil_resume(os);
3087		else
3088			*cookiep = os;
3089		return (0);
3090	}
3091
3092	/*
3093	 * If there is no pointer to an on-disk block, this ZIL must not
3094	 * be active (e.g. filesystem not mounted), so there's nothing
3095	 * to clean up.
3096	 */
3097	if (BP_IS_HOLE(&zh->zh_log)) {
3098		ASSERT(cookiep != NULL); /* fast path already handled */
3099
3100		*cookiep = os;
3101		mutex_exit(&zilog->zl_lock);
3102		return (0);
3103	}
3104
3105	zilog->zl_suspending = B_TRUE;
3106	mutex_exit(&zilog->zl_lock);
3107
3108	/*
3109	 * We need to use zil_commit_impl to ensure we wait for all
3110	 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwb's to be committed
3111	 * to disk before proceeding. If we used zil_commit instead, it
3112	 * would just call txg_wait_synced(), because zl_suspend is set.
3113	 * txg_wait_synced() doesn't wait for these lwb's to be
3114	 * LWB_STATE_DONE before returning.
3115	 */
3116	zil_commit_impl(zilog, 0);
3117
3118	/*
3119	 * Now that we've ensured all lwb's are LWB_STATE_DONE, we use
3120	 * txg_wait_synced() to ensure the data from the zilog has
3121	 * migrated to the main pool before calling zil_destroy().
3122	 */
3123	txg_wait_synced(zilog->zl_dmu_pool, 0);
3124
3125	zil_destroy(zilog, B_FALSE);
3126
3127	mutex_enter(&zilog->zl_lock);
3128	zilog->zl_suspending = B_FALSE;
3129	cv_broadcast(&zilog->zl_cv_suspend);
3130	mutex_exit(&zilog->zl_lock);
3131
3132	if (cookiep == NULL)
3133		zil_resume(os);
3134	else
3135		*cookiep = os;
3136	return (0);
3137}
3138
3139void
3140zil_resume(void *cookie)
3141{
3142	objset_t *os = cookie;
3143	zilog_t *zilog = dmu_objset_zil(os);
3144
3145	mutex_enter(&zilog->zl_lock);
3146	ASSERT(zilog->zl_suspend != 0);
3147	zilog->zl_suspend--;
3148	mutex_exit(&zilog->zl_lock);
3149	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3150	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3151}
3152
3153typedef struct zil_replay_arg {
3154	zil_replay_func_t **zr_replay;
3155	void		*zr_arg;
3156	boolean_t	zr_byteswap;
3157	char		*zr_lr;
3158} zil_replay_arg_t;
3159
3160static int
3161zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3162{
3163	char name[ZFS_MAX_DATASET_NAME_LEN];
3164
3165	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3166
3167	dmu_objset_name(zilog->zl_os, name);
3168
3169	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3170	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3171	    (u_longlong_t)lr->lrc_seq,
3172	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3173	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3174
3175	return (error);
3176}
3177
3178static int
3179zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3180{
3181	zil_replay_arg_t *zr = zra;
3182	const zil_header_t *zh = zilog->zl_header;
3183	uint64_t reclen = lr->lrc_reclen;
3184	uint64_t txtype = lr->lrc_txtype;
3185	int error = 0;
3186
3187	zilog->zl_replaying_seq = lr->lrc_seq;
3188
3189	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3190		return (0);
3191
3192	if (lr->lrc_txg < claim_txg)		/* already committed */
3193		return (0);
3194
3195	/* Strip case-insensitive bit, still present in log record */
3196	txtype &= ~TX_CI;
3197
3198	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3199		return (zil_replay_error(zilog, lr, EINVAL));
3200
3201	/*
3202	 * If this record type can be logged out of order, the object
3203	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3204	 */
3205	if (TX_OOO(txtype)) {
3206		error = dmu_object_info(zilog->zl_os,
3207		    ((lr_ooo_t *)lr)->lr_foid, NULL);
3208		if (error == ENOENT || error == EEXIST)
3209			return (0);
3210	}
3211
3212	/*
3213	 * Make a copy of the data so we can revise and extend it.
3214	 */
3215	bcopy(lr, zr->zr_lr, reclen);
3216
3217	/*
3218	 * If this is a TX_WRITE with a blkptr, suck in the data.
3219	 */
3220	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3221		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3222		    zr->zr_lr + reclen);
3223		if (error != 0)
3224			return (zil_replay_error(zilog, lr, error));
3225	}
3226
3227	/*
3228	 * The log block containing this lr may have been byteswapped
3229	 * so that we can easily examine common fields like lrc_txtype.
3230	 * However, the log is a mix of different record types, and only the
3231	 * replay vectors know how to byteswap their records.  Therefore, if
3232	 * the lr was byteswapped, undo it before invoking the replay vector.
3233	 */
3234	if (zr->zr_byteswap)
3235		byteswap_uint64_array(zr->zr_lr, reclen);
3236
3237	/*
3238	 * We must now do two things atomically: replay this log record,
3239	 * and update the log header sequence number to reflect the fact that
3240	 * we did so. At the end of each replay function the sequence number
3241	 * is updated if we are in replay mode.
3242	 */
3243	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3244	if (error != 0) {
3245		/*
3246		 * The DMU's dnode layer doesn't see removes until the txg
3247		 * commits, so a subsequent claim can spuriously fail with
3248		 * EEXIST. So if we receive any error we try syncing out
3249		 * any removes then retry the transaction.  Note that we
3250		 * specify B_FALSE for byteswap now, so we don't do it twice.
3251		 */
3252		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3253		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3254		if (error != 0)
3255			return (zil_replay_error(zilog, lr, error));
3256	}
3257	return (0);
3258}
3259
3260/* ARGSUSED */
3261static int
3262zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3263{
3264	zilog->zl_replay_blks++;
3265
3266	return (0);
3267}
3268
3269/*
3270 * If this dataset has a non-empty intent log, replay it and destroy it.
3271 */
3272void
3273zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3274{
3275	zilog_t *zilog = dmu_objset_zil(os);
3276	const zil_header_t *zh = zilog->zl_header;
3277	zil_replay_arg_t zr;
3278
3279	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3280		zil_destroy(zilog, B_TRUE);
3281		return;
3282	}
3283
3284	zr.zr_replay = replay_func;
3285	zr.zr_arg = arg;
3286	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3287	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3288
3289	/*
3290	 * Wait for in-progress removes to sync before starting replay.
3291	 */
3292	txg_wait_synced(zilog->zl_dmu_pool, 0);
3293
3294	zilog->zl_replay = B_TRUE;
3295	zilog->zl_replay_time = ddi_get_lbolt();
3296	ASSERT(zilog->zl_replay_blks == 0);
3297	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3298	    zh->zh_claim_txg);
3299	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3300
3301	zil_destroy(zilog, B_FALSE);
3302	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3303	zilog->zl_replay = B_FALSE;
3304}
3305
3306boolean_t
3307zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3308{
3309	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3310		return (B_TRUE);
3311
3312	if (zilog->zl_replay) {
3313		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3314		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3315		    zilog->zl_replaying_seq;
3316		return (B_TRUE);
3317	}
3318
3319	return (B_FALSE);
3320}
3321
3322/* ARGSUSED */
3323int
3324zil_reset(const char *osname, void *arg)
3325{
3326	int error;
3327
3328	error = zil_suspend(osname, NULL);
3329	if (error != 0)
3330		return (SET_ERROR(EEXIST));
3331	return (0);
3332}
3333