zil.c revision 325132
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27/* Portions Copyright 2010 Robert Milkowski */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/zap.h>
33#include <sys/arc.h>
34#include <sys/stat.h>
35#include <sys/resource.h>
36#include <sys/zil.h>
37#include <sys/zil_impl.h>
38#include <sys/dsl_dataset.h>
39#include <sys/vdev_impl.h>
40#include <sys/dmu_tx.h>
41#include <sys/dsl_pool.h>
42#include <sys/abd.h>
43
44/*
45 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
46 * calls that change the file system. Each itx has enough information to
47 * be able to replay them after a system crash, power loss, or
48 * equivalent failure mode. These are stored in memory until either:
49 *
50 *   1. they are committed to the pool by the DMU transaction group
51 *      (txg), at which point they can be discarded; or
52 *   2. they are committed to the on-disk ZIL for the dataset being
53 *      modified (e.g. due to an fsync, O_DSYNC, or other synchronous
54 *      requirement).
55 *
56 * In the event of a crash or power loss, the itxs contained by each
57 * dataset's on-disk ZIL will be replayed when that dataset is first
58 * instantianted (e.g. if the dataset is a normal fileystem, when it is
59 * first mounted).
60 *
61 * As hinted at above, there is one ZIL per dataset (both the in-memory
62 * representation, and the on-disk representation). The on-disk format
63 * consists of 3 parts:
64 *
65 * 	- a single, per-dataset, ZIL header; which points to a chain of
66 * 	- zero or more ZIL blocks; each of which contains
67 * 	- zero or more ZIL records
68 *
69 * A ZIL record holds the information necessary to replay a single
70 * system call transaction. A ZIL block can hold many ZIL records, and
71 * the blocks are chained together, similarly to a singly linked list.
72 *
73 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
74 * block in the chain, and the ZIL header points to the first block in
75 * the chain.
76 *
77 * Note, there is not a fixed place in the pool to hold these ZIL
78 * blocks; they are dynamically allocated and freed as needed from the
79 * blocks available on the pool, though they can be preferentially
80 * allocated from a dedicated "log" vdev.
81 */
82
83/*
84 * This controls the amount of time that a ZIL block (lwb) will remain
85 * "open" when it isn't "full", and it has a thread waiting for it to be
86 * committed to stable storage. Please refer to the zil_commit_waiter()
87 * function (and the comments within it) for more details.
88 */
89int zfs_commit_timeout_pct = 5;
90
91/*
92 * Disable intent logging replay.  This global ZIL switch affects all pools.
93 */
94int zil_replay_disable = 0;
95SYSCTL_DECL(_vfs_zfs);
96SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
97    &zil_replay_disable, 0, "Disable intent logging replay");
98
99/*
100 * Tunable parameter for debugging or performance analysis.  Setting
101 * zfs_nocacheflush will cause corruption on power loss if a volatile
102 * out-of-order write cache is enabled.
103 */
104boolean_t zfs_nocacheflush = B_FALSE;
105SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
106    &zfs_nocacheflush, 0, "Disable cache flush");
107boolean_t zfs_trim_enabled = B_TRUE;
108SYSCTL_DECL(_vfs_zfs_trim);
109SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
110    "Enable ZFS TRIM");
111
112/*
113 * Limit SLOG write size per commit executed with synchronous priority.
114 * Any writes above that will be executed with lower (asynchronous) priority
115 * to limit potential SLOG device abuse by single active ZIL writer.
116 */
117uint64_t zil_slog_bulk = 768 * 1024;
118SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
119    &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");
120
121static kmem_cache_t *zil_lwb_cache;
122static kmem_cache_t *zil_zcw_cache;
123
124#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
125    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
126
127static int
128zil_bp_compare(const void *x1, const void *x2)
129{
130	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
131	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
132
133	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
134		return (-1);
135	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
136		return (1);
137
138	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
139		return (-1);
140	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
141		return (1);
142
143	return (0);
144}
145
146static void
147zil_bp_tree_init(zilog_t *zilog)
148{
149	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
150	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
151}
152
153static void
154zil_bp_tree_fini(zilog_t *zilog)
155{
156	avl_tree_t *t = &zilog->zl_bp_tree;
157	zil_bp_node_t *zn;
158	void *cookie = NULL;
159
160	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
161		kmem_free(zn, sizeof (zil_bp_node_t));
162
163	avl_destroy(t);
164}
165
166int
167zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
168{
169	avl_tree_t *t = &zilog->zl_bp_tree;
170	const dva_t *dva;
171	zil_bp_node_t *zn;
172	avl_index_t where;
173
174	if (BP_IS_EMBEDDED(bp))
175		return (0);
176
177	dva = BP_IDENTITY(bp);
178
179	if (avl_find(t, dva, &where) != NULL)
180		return (SET_ERROR(EEXIST));
181
182	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
183	zn->zn_dva = *dva;
184	avl_insert(t, zn, where);
185
186	return (0);
187}
188
189static zil_header_t *
190zil_header_in_syncing_context(zilog_t *zilog)
191{
192	return ((zil_header_t *)zilog->zl_header);
193}
194
195static void
196zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
197{
198	zio_cksum_t *zc = &bp->blk_cksum;
199
200	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
201	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
202	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
203	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
204}
205
206/*
207 * Read a log block and make sure it's valid.
208 */
209static int
210zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
211    char **end)
212{
213	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
214	arc_flags_t aflags = ARC_FLAG_WAIT;
215	arc_buf_t *abuf = NULL;
216	zbookmark_phys_t zb;
217	int error;
218
219	if (zilog->zl_header->zh_claim_txg == 0)
220		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
221
222	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
223		zio_flags |= ZIO_FLAG_SPECULATIVE;
224
225	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
226	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
227
228	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
229	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
230
231	if (error == 0) {
232		zio_cksum_t cksum = bp->blk_cksum;
233
234		/*
235		 * Validate the checksummed log block.
236		 *
237		 * Sequence numbers should be... sequential.  The checksum
238		 * verifier for the next block should be bp's checksum plus 1.
239		 *
240		 * Also check the log chain linkage and size used.
241		 */
242		cksum.zc_word[ZIL_ZC_SEQ]++;
243
244		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
245			zil_chain_t *zilc = abuf->b_data;
246			char *lr = (char *)(zilc + 1);
247			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
248
249			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
250			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
251				error = SET_ERROR(ECKSUM);
252			} else {
253				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
254				bcopy(lr, dst, len);
255				*end = (char *)dst + len;
256				*nbp = zilc->zc_next_blk;
257			}
258		} else {
259			char *lr = abuf->b_data;
260			uint64_t size = BP_GET_LSIZE(bp);
261			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
262
263			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
264			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
265			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
266				error = SET_ERROR(ECKSUM);
267			} else {
268				ASSERT3U(zilc->zc_nused, <=,
269				    SPA_OLD_MAXBLOCKSIZE);
270				bcopy(lr, dst, zilc->zc_nused);
271				*end = (char *)dst + zilc->zc_nused;
272				*nbp = zilc->zc_next_blk;
273			}
274		}
275
276		arc_buf_destroy(abuf, &abuf);
277	}
278
279	return (error);
280}
281
282/*
283 * Read a TX_WRITE log data block.
284 */
285static int
286zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
287{
288	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
289	const blkptr_t *bp = &lr->lr_blkptr;
290	arc_flags_t aflags = ARC_FLAG_WAIT;
291	arc_buf_t *abuf = NULL;
292	zbookmark_phys_t zb;
293	int error;
294
295	if (BP_IS_HOLE(bp)) {
296		if (wbuf != NULL)
297			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
298		return (0);
299	}
300
301	if (zilog->zl_header->zh_claim_txg == 0)
302		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
303
304	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
305	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
306
307	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
308	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
309
310	if (error == 0) {
311		if (wbuf != NULL)
312			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
313		arc_buf_destroy(abuf, &abuf);
314	}
315
316	return (error);
317}
318
319/*
320 * Parse the intent log, and call parse_func for each valid record within.
321 */
322int
323zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
324    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
325{
326	const zil_header_t *zh = zilog->zl_header;
327	boolean_t claimed = !!zh->zh_claim_txg;
328	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
329	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
330	uint64_t max_blk_seq = 0;
331	uint64_t max_lr_seq = 0;
332	uint64_t blk_count = 0;
333	uint64_t lr_count = 0;
334	blkptr_t blk, next_blk;
335	char *lrbuf, *lrp;
336	int error = 0;
337
338	/*
339	 * Old logs didn't record the maximum zh_claim_lr_seq.
340	 */
341	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
342		claim_lr_seq = UINT64_MAX;
343
344	/*
345	 * Starting at the block pointed to by zh_log we read the log chain.
346	 * For each block in the chain we strongly check that block to
347	 * ensure its validity.  We stop when an invalid block is found.
348	 * For each block pointer in the chain we call parse_blk_func().
349	 * For each record in each valid block we call parse_lr_func().
350	 * If the log has been claimed, stop if we encounter a sequence
351	 * number greater than the highest claimed sequence number.
352	 */
353	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
354	zil_bp_tree_init(zilog);
355
356	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
357		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
358		int reclen;
359		char *end;
360
361		if (blk_seq > claim_blk_seq)
362			break;
363		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
364			break;
365		ASSERT3U(max_blk_seq, <, blk_seq);
366		max_blk_seq = blk_seq;
367		blk_count++;
368
369		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
370			break;
371
372		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
373		if (error != 0)
374			break;
375
376		for (lrp = lrbuf; lrp < end; lrp += reclen) {
377			lr_t *lr = (lr_t *)lrp;
378			reclen = lr->lrc_reclen;
379			ASSERT3U(reclen, >=, sizeof (lr_t));
380			if (lr->lrc_seq > claim_lr_seq)
381				goto done;
382			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
383				goto done;
384			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
385			max_lr_seq = lr->lrc_seq;
386			lr_count++;
387		}
388	}
389done:
390	zilog->zl_parse_error = error;
391	zilog->zl_parse_blk_seq = max_blk_seq;
392	zilog->zl_parse_lr_seq = max_lr_seq;
393	zilog->zl_parse_blk_count = blk_count;
394	zilog->zl_parse_lr_count = lr_count;
395
396	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
397	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
398
399	zil_bp_tree_fini(zilog);
400	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
401
402	return (error);
403}
404
405static int
406zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
407{
408	/*
409	 * Claim log block if not already committed and not already claimed.
410	 * If tx == NULL, just verify that the block is claimable.
411	 */
412	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
413	    zil_bp_tree_add(zilog, bp) != 0)
414		return (0);
415
416	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
417	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
418	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
419}
420
421static int
422zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
423{
424	lr_write_t *lr = (lr_write_t *)lrc;
425	int error;
426
427	if (lrc->lrc_txtype != TX_WRITE)
428		return (0);
429
430	/*
431	 * If the block is not readable, don't claim it.  This can happen
432	 * in normal operation when a log block is written to disk before
433	 * some of the dmu_sync() blocks it points to.  In this case, the
434	 * transaction cannot have been committed to anyone (we would have
435	 * waited for all writes to be stable first), so it is semantically
436	 * correct to declare this the end of the log.
437	 */
438	if (lr->lr_blkptr.blk_birth >= first_txg &&
439	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
440		return (error);
441	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
442}
443
444/* ARGSUSED */
445static int
446zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
447{
448	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
449
450	return (0);
451}
452
453static int
454zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
455{
456	lr_write_t *lr = (lr_write_t *)lrc;
457	blkptr_t *bp = &lr->lr_blkptr;
458
459	/*
460	 * If we previously claimed it, we need to free it.
461	 */
462	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
463	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
464	    !BP_IS_HOLE(bp))
465		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
466
467	return (0);
468}
469
470static int
471zil_lwb_vdev_compare(const void *x1, const void *x2)
472{
473	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
474	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
475
476	if (v1 < v2)
477		return (-1);
478	if (v1 > v2)
479		return (1);
480
481	return (0);
482}
483
484static lwb_t *
485zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
486{
487	lwb_t *lwb;
488
489	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
490	lwb->lwb_zilog = zilog;
491	lwb->lwb_blk = *bp;
492	lwb->lwb_slog = slog;
493	lwb->lwb_state = LWB_STATE_CLOSED;
494	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
495	lwb->lwb_max_txg = txg;
496	lwb->lwb_write_zio = NULL;
497	lwb->lwb_root_zio = NULL;
498	lwb->lwb_tx = NULL;
499	lwb->lwb_issued_timestamp = 0;
500	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
501		lwb->lwb_nused = sizeof (zil_chain_t);
502		lwb->lwb_sz = BP_GET_LSIZE(bp);
503	} else {
504		lwb->lwb_nused = 0;
505		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
506	}
507
508	mutex_enter(&zilog->zl_lock);
509	list_insert_tail(&zilog->zl_lwb_list, lwb);
510	mutex_exit(&zilog->zl_lock);
511
512	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
513	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
514	ASSERT(list_is_empty(&lwb->lwb_waiters));
515
516	return (lwb);
517}
518
519static void
520zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
521{
522	ASSERT(MUTEX_HELD(&zilog->zl_lock));
523	ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
524	ASSERT(list_is_empty(&lwb->lwb_waiters));
525
526	if (lwb->lwb_state == LWB_STATE_OPENED) {
527		avl_tree_t *t = &lwb->lwb_vdev_tree;
528		void *cookie = NULL;
529		zil_vdev_node_t *zv;
530
531		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
532			kmem_free(zv, sizeof (*zv));
533
534		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
535		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
536
537		zio_cancel(lwb->lwb_root_zio);
538		zio_cancel(lwb->lwb_write_zio);
539
540		lwb->lwb_root_zio = NULL;
541		lwb->lwb_write_zio = NULL;
542	} else {
543		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
544	}
545
546	ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
547	ASSERT3P(lwb->lwb_write_zio, ==, NULL);
548	ASSERT3P(lwb->lwb_root_zio, ==, NULL);
549
550	/*
551	 * Clear the zilog's field to indicate this lwb is no longer
552	 * valid, and prevent use-after-free errors.
553	 */
554	if (zilog->zl_last_lwb_opened == lwb)
555		zilog->zl_last_lwb_opened = NULL;
556
557	kmem_cache_free(zil_lwb_cache, lwb);
558}
559
560/*
561 * Called when we create in-memory log transactions so that we know
562 * to cleanup the itxs at the end of spa_sync().
563 */
564void
565zilog_dirty(zilog_t *zilog, uint64_t txg)
566{
567	dsl_pool_t *dp = zilog->zl_dmu_pool;
568	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
569
570	ASSERT(spa_writeable(zilog->zl_spa));
571
572	if (ds->ds_is_snapshot)
573		panic("dirtying snapshot!");
574
575	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
576		/* up the hold count until we can be written out */
577		dmu_buf_add_ref(ds->ds_dbuf, zilog);
578
579		zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
580	}
581}
582
583/*
584 * Determine if the zil is dirty in the specified txg. Callers wanting to
585 * ensure that the dirty state does not change must hold the itxg_lock for
586 * the specified txg. Holding the lock will ensure that the zil cannot be
587 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
588 * state.
589 */
590boolean_t
591zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
592{
593	dsl_pool_t *dp = zilog->zl_dmu_pool;
594
595	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
596		return (B_TRUE);
597	return (B_FALSE);
598}
599
600/*
601 * Determine if the zil is dirty. The zil is considered dirty if it has
602 * any pending itx records that have not been cleaned by zil_clean().
603 */
604boolean_t
605zilog_is_dirty(zilog_t *zilog)
606{
607	dsl_pool_t *dp = zilog->zl_dmu_pool;
608
609	for (int t = 0; t < TXG_SIZE; t++) {
610		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
611			return (B_TRUE);
612	}
613	return (B_FALSE);
614}
615
616/*
617 * Create an on-disk intent log.
618 */
619static lwb_t *
620zil_create(zilog_t *zilog)
621{
622	const zil_header_t *zh = zilog->zl_header;
623	lwb_t *lwb = NULL;
624	uint64_t txg = 0;
625	dmu_tx_t *tx = NULL;
626	blkptr_t blk;
627	int error = 0;
628	boolean_t slog = FALSE;
629
630	/*
631	 * Wait for any previous destroy to complete.
632	 */
633	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
634
635	ASSERT(zh->zh_claim_txg == 0);
636	ASSERT(zh->zh_replay_seq == 0);
637
638	blk = zh->zh_log;
639
640	/*
641	 * Allocate an initial log block if:
642	 *    - there isn't one already
643	 *    - the existing block is the wrong endianess
644	 */
645	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
646		tx = dmu_tx_create(zilog->zl_os);
647		VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
648		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
649		txg = dmu_tx_get_txg(tx);
650
651		if (!BP_IS_HOLE(&blk)) {
652			zio_free_zil(zilog->zl_spa, txg, &blk);
653			BP_ZERO(&blk);
654		}
655
656		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
657		    ZIL_MIN_BLKSZ, &slog);
658
659		if (error == 0)
660			zil_init_log_chain(zilog, &blk);
661	}
662
663	/*
664	 * Allocate a log write block (lwb) for the first log block.
665	 */
666	if (error == 0)
667		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
668
669	/*
670	 * If we just allocated the first log block, commit our transaction
671	 * and wait for zil_sync() to stuff the block poiner into zh_log.
672	 * (zh is part of the MOS, so we cannot modify it in open context.)
673	 */
674	if (tx != NULL) {
675		dmu_tx_commit(tx);
676		txg_wait_synced(zilog->zl_dmu_pool, txg);
677	}
678
679	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
680
681	return (lwb);
682}
683
684/*
685 * In one tx, free all log blocks and clear the log header. If keep_first
686 * is set, then we're replaying a log with no content. We want to keep the
687 * first block, however, so that the first synchronous transaction doesn't
688 * require a txg_wait_synced() in zil_create(). We don't need to
689 * txg_wait_synced() here either when keep_first is set, because both
690 * zil_create() and zil_destroy() will wait for any in-progress destroys
691 * to complete.
692 */
693void
694zil_destroy(zilog_t *zilog, boolean_t keep_first)
695{
696	const zil_header_t *zh = zilog->zl_header;
697	lwb_t *lwb;
698	dmu_tx_t *tx;
699	uint64_t txg;
700
701	/*
702	 * Wait for any previous destroy to complete.
703	 */
704	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
705
706	zilog->zl_old_header = *zh;		/* debugging aid */
707
708	if (BP_IS_HOLE(&zh->zh_log))
709		return;
710
711	tx = dmu_tx_create(zilog->zl_os);
712	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
713	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
714	txg = dmu_tx_get_txg(tx);
715
716	mutex_enter(&zilog->zl_lock);
717
718	ASSERT3U(zilog->zl_destroy_txg, <, txg);
719	zilog->zl_destroy_txg = txg;
720	zilog->zl_keep_first = keep_first;
721
722	if (!list_is_empty(&zilog->zl_lwb_list)) {
723		ASSERT(zh->zh_claim_txg == 0);
724		VERIFY(!keep_first);
725		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
726			list_remove(&zilog->zl_lwb_list, lwb);
727			if (lwb->lwb_buf != NULL)
728				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
729			zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
730			zil_free_lwb(zilog, lwb);
731		}
732	} else if (!keep_first) {
733		zil_destroy_sync(zilog, tx);
734	}
735	mutex_exit(&zilog->zl_lock);
736
737	dmu_tx_commit(tx);
738}
739
740void
741zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
742{
743	ASSERT(list_is_empty(&zilog->zl_lwb_list));
744	(void) zil_parse(zilog, zil_free_log_block,
745	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
746}
747
748int
749zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
750{
751	dmu_tx_t *tx = txarg;
752	uint64_t first_txg = dmu_tx_get_txg(tx);
753	zilog_t *zilog;
754	zil_header_t *zh;
755	objset_t *os;
756	int error;
757
758	error = dmu_objset_own_obj(dp, ds->ds_object,
759	    DMU_OST_ANY, B_FALSE, FTAG, &os);
760	if (error != 0) {
761		/*
762		 * EBUSY indicates that the objset is inconsistent, in which
763		 * case it can not have a ZIL.
764		 */
765		if (error != EBUSY) {
766			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
767			    (unsigned long long)ds->ds_object, error);
768		}
769		return (0);
770	}
771
772	zilog = dmu_objset_zil(os);
773	zh = zil_header_in_syncing_context(zilog);
774
775	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
776		if (!BP_IS_HOLE(&zh->zh_log))
777			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
778		BP_ZERO(&zh->zh_log);
779		dsl_dataset_dirty(dmu_objset_ds(os), tx);
780		dmu_objset_disown(os, FTAG);
781		return (0);
782	}
783
784	/*
785	 * Claim all log blocks if we haven't already done so, and remember
786	 * the highest claimed sequence number.  This ensures that if we can
787	 * read only part of the log now (e.g. due to a missing device),
788	 * but we can read the entire log later, we will not try to replay
789	 * or destroy beyond the last block we successfully claimed.
790	 */
791	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
792	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
793		(void) zil_parse(zilog, zil_claim_log_block,
794		    zil_claim_log_record, tx, first_txg);
795		zh->zh_claim_txg = first_txg;
796		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
797		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
798		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
799			zh->zh_flags |= ZIL_REPLAY_NEEDED;
800		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
801		dsl_dataset_dirty(dmu_objset_ds(os), tx);
802	}
803
804	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
805	dmu_objset_disown(os, FTAG);
806	return (0);
807}
808
809/*
810 * Check the log by walking the log chain.
811 * Checksum errors are ok as they indicate the end of the chain.
812 * Any other error (no device or read failure) returns an error.
813 */
814/* ARGSUSED */
815int
816zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
817{
818	zilog_t *zilog;
819	objset_t *os;
820	blkptr_t *bp;
821	int error;
822
823	ASSERT(tx == NULL);
824
825	error = dmu_objset_from_ds(ds, &os);
826	if (error != 0) {
827		cmn_err(CE_WARN, "can't open objset %llu, error %d",
828		    (unsigned long long)ds->ds_object, error);
829		return (0);
830	}
831
832	zilog = dmu_objset_zil(os);
833	bp = (blkptr_t *)&zilog->zl_header->zh_log;
834
835	/*
836	 * Check the first block and determine if it's on a log device
837	 * which may have been removed or faulted prior to loading this
838	 * pool.  If so, there's no point in checking the rest of the log
839	 * as its content should have already been synced to the pool.
840	 */
841	if (!BP_IS_HOLE(bp)) {
842		vdev_t *vd;
843		boolean_t valid = B_TRUE;
844
845		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
846		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
847		if (vd->vdev_islog && vdev_is_dead(vd))
848			valid = vdev_log_state_valid(vd);
849		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
850
851		if (!valid)
852			return (0);
853	}
854
855	/*
856	 * Because tx == NULL, zil_claim_log_block() will not actually claim
857	 * any blocks, but just determine whether it is possible to do so.
858	 * In addition to checking the log chain, zil_claim_log_block()
859	 * will invoke zio_claim() with a done func of spa_claim_notify(),
860	 * which will update spa_max_claim_txg.  See spa_load() for details.
861	 */
862	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
863	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
864
865	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
866}
867
868/*
869 * When an itx is "skipped", this function is used to properly mark the
870 * waiter as "done, and signal any thread(s) waiting on it. An itx can
871 * be skipped (and not committed to an lwb) for a variety of reasons,
872 * one of them being that the itx was committed via spa_sync(), prior to
873 * it being committed to an lwb; this can happen if a thread calling
874 * zil_commit() is racing with spa_sync().
875 */
876static void
877zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
878{
879	mutex_enter(&zcw->zcw_lock);
880	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
881	zcw->zcw_done = B_TRUE;
882	cv_broadcast(&zcw->zcw_cv);
883	mutex_exit(&zcw->zcw_lock);
884}
885
886/*
887 * This function is used when the given waiter is to be linked into an
888 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
889 * At this point, the waiter will no longer be referenced by the itx,
890 * and instead, will be referenced by the lwb.
891 */
892static void
893zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
894{
895	mutex_enter(&zcw->zcw_lock);
896	ASSERT(!list_link_active(&zcw->zcw_node));
897	ASSERT3P(zcw->zcw_lwb, ==, NULL);
898	ASSERT3P(lwb, !=, NULL);
899	ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
900	    lwb->lwb_state == LWB_STATE_ISSUED);
901
902	list_insert_tail(&lwb->lwb_waiters, zcw);
903	zcw->zcw_lwb = lwb;
904	mutex_exit(&zcw->zcw_lock);
905}
906
907/*
908 * This function is used when zio_alloc_zil() fails to allocate a ZIL
909 * block, and the given waiter must be linked to the "nolwb waiters"
910 * list inside of zil_process_commit_list().
911 */
912static void
913zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
914{
915	mutex_enter(&zcw->zcw_lock);
916	ASSERT(!list_link_active(&zcw->zcw_node));
917	ASSERT3P(zcw->zcw_lwb, ==, NULL);
918	list_insert_tail(nolwb, zcw);
919	mutex_exit(&zcw->zcw_lock);
920}
921
922void
923zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
924{
925	avl_tree_t *t = &lwb->lwb_vdev_tree;
926	avl_index_t where;
927	zil_vdev_node_t *zv, zvsearch;
928	int ndvas = BP_GET_NDVAS(bp);
929	int i;
930
931	if (zfs_nocacheflush)
932		return;
933
934	mutex_enter(&lwb->lwb_vdev_lock);
935	for (i = 0; i < ndvas; i++) {
936		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
937		if (avl_find(t, &zvsearch, &where) == NULL) {
938			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
939			zv->zv_vdev = zvsearch.zv_vdev;
940			avl_insert(t, zv, where);
941		}
942	}
943	mutex_exit(&lwb->lwb_vdev_lock);
944}
945
946void
947zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
948{
949	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
950}
951
952/*
953 * This function is a called after all VDEVs associated with a given lwb
954 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
955 * as the lwb write completes, if "zfs_nocacheflush" is set.
956 *
957 * The intention is for this function to be called as soon as the
958 * contents of an lwb are considered "stable" on disk, and will survive
959 * any sudden loss of power. At this point, any threads waiting for the
960 * lwb to reach this state are signalled, and the "waiter" structures
961 * are marked "done".
962 */
963static void
964zil_lwb_flush_vdevs_done(zio_t *zio)
965{
966	lwb_t *lwb = zio->io_private;
967	zilog_t *zilog = lwb->lwb_zilog;
968	dmu_tx_t *tx = lwb->lwb_tx;
969	zil_commit_waiter_t *zcw;
970
971	spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
972
973	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
974
975	mutex_enter(&zilog->zl_lock);
976
977	/*
978	 * Ensure the lwb buffer pointer is cleared before releasing the
979	 * txg. If we have had an allocation failure and the txg is
980	 * waiting to sync then we want zil_sync() to remove the lwb so
981	 * that it's not picked up as the next new one in
982	 * zil_process_commit_list(). zil_sync() will only remove the
983	 * lwb if lwb_buf is null.
984	 */
985	lwb->lwb_buf = NULL;
986	lwb->lwb_tx = NULL;
987
988	ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
989	zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
990
991	lwb->lwb_root_zio = NULL;
992	lwb->lwb_state = LWB_STATE_DONE;
993
994	if (zilog->zl_last_lwb_opened == lwb) {
995		/*
996		 * Remember the highest committed log sequence number
997		 * for ztest. We only update this value when all the log
998		 * writes succeeded, because ztest wants to ASSERT that
999		 * it got the whole log chain.
1000		 */
1001		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1002	}
1003
1004	while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1005		mutex_enter(&zcw->zcw_lock);
1006
1007		ASSERT(list_link_active(&zcw->zcw_node));
1008		list_remove(&lwb->lwb_waiters, zcw);
1009
1010		ASSERT3P(zcw->zcw_lwb, ==, lwb);
1011		zcw->zcw_lwb = NULL;
1012
1013		zcw->zcw_zio_error = zio->io_error;
1014
1015		ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1016		zcw->zcw_done = B_TRUE;
1017		cv_broadcast(&zcw->zcw_cv);
1018
1019		mutex_exit(&zcw->zcw_lock);
1020	}
1021
1022	mutex_exit(&zilog->zl_lock);
1023
1024	/*
1025	 * Now that we've written this log block, we have a stable pointer
1026	 * to the next block in the chain, so it's OK to let the txg in
1027	 * which we allocated the next block sync.
1028	 */
1029	dmu_tx_commit(tx);
1030}
1031
1032/*
1033 * This is called when an lwb write completes. This means, this specific
1034 * lwb was written to disk, and all dependent lwb have also been
1035 * written to disk.
1036 *
1037 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1038 * the VDEVs involved in writing out this specific lwb. The lwb will be
1039 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1040 * zio completion callback for the lwb's root zio.
1041 */
1042static void
1043zil_lwb_write_done(zio_t *zio)
1044{
1045	lwb_t *lwb = zio->io_private;
1046	spa_t *spa = zio->io_spa;
1047	zilog_t *zilog = lwb->lwb_zilog;
1048	avl_tree_t *t = &lwb->lwb_vdev_tree;
1049	void *cookie = NULL;
1050	zil_vdev_node_t *zv;
1051
1052	ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1053
1054	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1055	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1056	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1057	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1058	ASSERT(!BP_IS_GANG(zio->io_bp));
1059	ASSERT(!BP_IS_HOLE(zio->io_bp));
1060	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1061
1062	abd_put(zio->io_abd);
1063
1064	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1065
1066	mutex_enter(&zilog->zl_lock);
1067	lwb->lwb_write_zio = NULL;
1068	mutex_exit(&zilog->zl_lock);
1069
1070	if (avl_numnodes(t) == 0)
1071		return;
1072
1073	/*
1074	 * If there was an IO error, we're not going to call zio_flush()
1075	 * on these vdevs, so we simply empty the tree and free the
1076	 * nodes. We avoid calling zio_flush() since there isn't any
1077	 * good reason for doing so, after the lwb block failed to be
1078	 * written out.
1079	 */
1080	if (zio->io_error != 0) {
1081		while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1082			kmem_free(zv, sizeof (*zv));
1083		return;
1084	}
1085
1086	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1087		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1088		if (vd != NULL)
1089			zio_flush(lwb->lwb_root_zio, vd);
1090		kmem_free(zv, sizeof (*zv));
1091	}
1092}
1093
1094/*
1095 * This function's purpose is to "open" an lwb such that it is ready to
1096 * accept new itxs being committed to it. To do this, the lwb's zio
1097 * structures are created, and linked to the lwb. This function is
1098 * idempotent; if the passed in lwb has already been opened, this
1099 * function is essentially a no-op.
1100 */
1101static void
1102zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1103{
1104	zbookmark_phys_t zb;
1105	zio_priority_t prio;
1106
1107	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1108	ASSERT3P(lwb, !=, NULL);
1109	EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1110	EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1111
1112	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1113	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1114	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1115
1116	if (lwb->lwb_root_zio == NULL) {
1117		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1118		    BP_GET_LSIZE(&lwb->lwb_blk));
1119
1120		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1121			prio = ZIO_PRIORITY_SYNC_WRITE;
1122		else
1123			prio = ZIO_PRIORITY_ASYNC_WRITE;
1124
1125		lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1126		    zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1127		ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1128
1129		lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1130		    zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1131		    BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1132		    prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
1133		ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1134
1135		lwb->lwb_state = LWB_STATE_OPENED;
1136
1137		mutex_enter(&zilog->zl_lock);
1138
1139		/*
1140		 * The zilog's "zl_last_lwb_opened" field is used to
1141		 * build the lwb/zio dependency chain, which is used to
1142		 * preserve the ordering of lwb completions that is
1143		 * required by the semantics of the ZIL. Each new lwb
1144		 * zio becomes a parent of the "previous" lwb zio, such
1145		 * that the new lwb's zio cannot complete until the
1146		 * "previous" lwb's zio completes.
1147		 *
1148		 * This is required by the semantics of zil_commit();
1149		 * the commit waiters attached to the lwbs will be woken
1150		 * in the lwb zio's completion callback, so this zio
1151		 * dependency graph ensures the waiters are woken in the
1152		 * correct order (the same order the lwbs were created).
1153		 */
1154		lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1155		if (last_lwb_opened != NULL &&
1156		    last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1157			ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1158			    last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1159			ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1160			zio_add_child(lwb->lwb_root_zio,
1161			    last_lwb_opened->lwb_root_zio);
1162		}
1163		zilog->zl_last_lwb_opened = lwb;
1164
1165		mutex_exit(&zilog->zl_lock);
1166	}
1167
1168	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1169	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1170	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1171}
1172
1173/*
1174 * Define a limited set of intent log block sizes.
1175 *
1176 * These must be a multiple of 4KB. Note only the amount used (again
1177 * aligned to 4KB) actually gets written. However, we can't always just
1178 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1179 */
1180uint64_t zil_block_buckets[] = {
1181    4096,		/* non TX_WRITE */
1182    8192+4096,		/* data base */
1183    32*1024 + 4096, 	/* NFS writes */
1184    UINT64_MAX
1185};
1186
1187/*
1188 * Start a log block write and advance to the next log block.
1189 * Calls are serialized.
1190 */
1191static lwb_t *
1192zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1193{
1194	lwb_t *nlwb = NULL;
1195	zil_chain_t *zilc;
1196	spa_t *spa = zilog->zl_spa;
1197	blkptr_t *bp;
1198	dmu_tx_t *tx;
1199	uint64_t txg;
1200	uint64_t zil_blksz, wsz;
1201	int i, error;
1202	boolean_t slog;
1203
1204	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1205	ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1206	ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1207	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1208
1209	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1210		zilc = (zil_chain_t *)lwb->lwb_buf;
1211		bp = &zilc->zc_next_blk;
1212	} else {
1213		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1214		bp = &zilc->zc_next_blk;
1215	}
1216
1217	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1218
1219	/*
1220	 * Allocate the next block and save its address in this block
1221	 * before writing it in order to establish the log chain.
1222	 * Note that if the allocation of nlwb synced before we wrote
1223	 * the block that points at it (lwb), we'd leak it if we crashed.
1224	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1225	 * We dirty the dataset to ensure that zil_sync() will be called
1226	 * to clean up in the event of allocation failure or I/O failure.
1227	 */
1228
1229	tx = dmu_tx_create(zilog->zl_os);
1230	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
1231	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1232	txg = dmu_tx_get_txg(tx);
1233
1234	lwb->lwb_tx = tx;
1235
1236	/*
1237	 * Log blocks are pre-allocated. Here we select the size of the next
1238	 * block, based on size used in the last block.
1239	 * - first find the smallest bucket that will fit the block from a
1240	 *   limited set of block sizes. This is because it's faster to write
1241	 *   blocks allocated from the same metaslab as they are adjacent or
1242	 *   close.
1243	 * - next find the maximum from the new suggested size and an array of
1244	 *   previous sizes. This lessens a picket fence effect of wrongly
1245	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1246	 *   requests.
1247	 *
1248	 * Note we only write what is used, but we can't just allocate
1249	 * the maximum block size because we can exhaust the available
1250	 * pool log space.
1251	 */
1252	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1253	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1254		continue;
1255	zil_blksz = zil_block_buckets[i];
1256	if (zil_blksz == UINT64_MAX)
1257		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1258	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1259	for (i = 0; i < ZIL_PREV_BLKS; i++)
1260		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1261	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1262
1263	BP_ZERO(bp);
1264
1265	/* pass the old blkptr in order to spread log blocks across devs */
1266	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1267	if (error == 0) {
1268		ASSERT3U(bp->blk_birth, ==, txg);
1269		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1270		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1271
1272		/*
1273		 * Allocate a new log write block (lwb).
1274		 */
1275		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1276	}
1277
1278	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1279		/* For Slim ZIL only write what is used. */
1280		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1281		ASSERT3U(wsz, <=, lwb->lwb_sz);
1282		zio_shrink(lwb->lwb_write_zio, wsz);
1283
1284	} else {
1285		wsz = lwb->lwb_sz;
1286	}
1287
1288	zilc->zc_pad = 0;
1289	zilc->zc_nused = lwb->lwb_nused;
1290	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1291
1292	/*
1293	 * clear unused data for security
1294	 */
1295	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1296
1297	spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1298
1299	zil_lwb_add_block(lwb, &lwb->lwb_blk);
1300	lwb->lwb_issued_timestamp = gethrtime();
1301	lwb->lwb_state = LWB_STATE_ISSUED;
1302
1303	zio_nowait(lwb->lwb_root_zio);
1304	zio_nowait(lwb->lwb_write_zio);
1305
1306	/*
1307	 * If there was an allocation failure then nlwb will be null which
1308	 * forces a txg_wait_synced().
1309	 */
1310	return (nlwb);
1311}
1312
1313static lwb_t *
1314zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1315{
1316	lr_t *lrcb, *lrc;
1317	lr_write_t *lrwb, *lrw;
1318	char *lr_buf;
1319	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1320
1321	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1322	ASSERT3P(lwb, !=, NULL);
1323	ASSERT3P(lwb->lwb_buf, !=, NULL);
1324
1325	zil_lwb_write_open(zilog, lwb);
1326
1327	lrc = &itx->itx_lr;
1328	lrw = (lr_write_t *)lrc;
1329
1330	/*
1331	 * A commit itx doesn't represent any on-disk state; instead
1332	 * it's simply used as a place holder on the commit list, and
1333	 * provides a mechanism for attaching a "commit waiter" onto the
1334	 * correct lwb (such that the waiter can be signalled upon
1335	 * completion of that lwb). Thus, we don't process this itx's
1336	 * log record if it's a commit itx (these itx's don't have log
1337	 * records), and instead link the itx's waiter onto the lwb's
1338	 * list of waiters.
1339	 *
1340	 * For more details, see the comment above zil_commit().
1341	 */
1342	if (lrc->lrc_txtype == TX_COMMIT) {
1343		zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1344		itx->itx_private = NULL;
1345		return (lwb);
1346	}
1347
1348	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1349		dlen = P2ROUNDUP_TYPED(
1350		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1351	} else {
1352		dlen = 0;
1353	}
1354	reclen = lrc->lrc_reclen;
1355	zilog->zl_cur_used += (reclen + dlen);
1356	txg = lrc->lrc_txg;
1357
1358	ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1359
1360cont:
1361	/*
1362	 * If this record won't fit in the current log block, start a new one.
1363	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1364	 */
1365	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1366	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1367	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1368	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1369		lwb = zil_lwb_write_issue(zilog, lwb);
1370		if (lwb == NULL)
1371			return (NULL);
1372		zil_lwb_write_open(zilog, lwb);
1373		ASSERT(LWB_EMPTY(lwb));
1374		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1375		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1376	}
1377
1378	dnow = MIN(dlen, lwb_sp - reclen);
1379	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1380	bcopy(lrc, lr_buf, reclen);
1381	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1382	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1383
1384	/*
1385	 * If it's a write, fetch the data or get its blkptr as appropriate.
1386	 */
1387	if (lrc->lrc_txtype == TX_WRITE) {
1388		if (txg > spa_freeze_txg(zilog->zl_spa))
1389			txg_wait_synced(zilog->zl_dmu_pool, txg);
1390		if (itx->itx_wr_state != WR_COPIED) {
1391			char *dbuf;
1392			int error;
1393
1394			if (itx->itx_wr_state == WR_NEED_COPY) {
1395				dbuf = lr_buf + reclen;
1396				lrcb->lrc_reclen += dnow;
1397				if (lrwb->lr_length > dnow)
1398					lrwb->lr_length = dnow;
1399				lrw->lr_offset += dnow;
1400				lrw->lr_length -= dnow;
1401			} else {
1402				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1403				dbuf = NULL;
1404			}
1405
1406			/*
1407			 * We pass in the "lwb_write_zio" rather than
1408			 * "lwb_root_zio" so that the "lwb_write_zio"
1409			 * becomes the parent of any zio's created by
1410			 * the "zl_get_data" callback. The vdevs are
1411			 * flushed after the "lwb_write_zio" completes,
1412			 * so we want to make sure that completion
1413			 * callback waits for these additional zio's,
1414			 * such that the vdevs used by those zio's will
1415			 * be included in the lwb's vdev tree, and those
1416			 * vdevs will be properly flushed. If we passed
1417			 * in "lwb_root_zio" here, then these additional
1418			 * vdevs may not be flushed; e.g. if these zio's
1419			 * completed after "lwb_write_zio" completed.
1420			 */
1421			error = zilog->zl_get_data(itx->itx_private,
1422			    lrwb, dbuf, lwb, lwb->lwb_write_zio);
1423
1424			if (error == EIO) {
1425				txg_wait_synced(zilog->zl_dmu_pool, txg);
1426				return (lwb);
1427			}
1428			if (error != 0) {
1429				ASSERT(error == ENOENT || error == EEXIST ||
1430				    error == EALREADY);
1431				return (lwb);
1432			}
1433		}
1434	}
1435
1436	/*
1437	 * We're actually making an entry, so update lrc_seq to be the
1438	 * log record sequence number.  Note that this is generally not
1439	 * equal to the itx sequence number because not all transactions
1440	 * are synchronous, and sometimes spa_sync() gets there first.
1441	 */
1442	lrcb->lrc_seq = ++zilog->zl_lr_seq;
1443	lwb->lwb_nused += reclen + dnow;
1444
1445	zil_lwb_add_txg(lwb, txg);
1446
1447	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1448	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1449
1450	dlen -= dnow;
1451	if (dlen > 0) {
1452		zilog->zl_cur_used += reclen;
1453		goto cont;
1454	}
1455
1456	return (lwb);
1457}
1458
1459itx_t *
1460zil_itx_create(uint64_t txtype, size_t lrsize)
1461{
1462	itx_t *itx;
1463
1464	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1465
1466	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1467	itx->itx_lr.lrc_txtype = txtype;
1468	itx->itx_lr.lrc_reclen = lrsize;
1469	itx->itx_lr.lrc_seq = 0;	/* defensive */
1470	itx->itx_sync = B_TRUE;		/* default is synchronous */
1471
1472	return (itx);
1473}
1474
1475void
1476zil_itx_destroy(itx_t *itx)
1477{
1478	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1479}
1480
1481/*
1482 * Free up the sync and async itxs. The itxs_t has already been detached
1483 * so no locks are needed.
1484 */
1485static void
1486zil_itxg_clean(itxs_t *itxs)
1487{
1488	itx_t *itx;
1489	list_t *list;
1490	avl_tree_t *t;
1491	void *cookie;
1492	itx_async_node_t *ian;
1493
1494	list = &itxs->i_sync_list;
1495	while ((itx = list_head(list)) != NULL) {
1496		/*
1497		 * In the general case, commit itxs will not be found
1498		 * here, as they'll be committed to an lwb via
1499		 * zil_lwb_commit(), and free'd in that function. Having
1500		 * said that, it is still possible for commit itxs to be
1501		 * found here, due to the following race:
1502		 *
1503		 *	- a thread calls zil_commit() which assigns the
1504		 *	  commit itx to a per-txg i_sync_list
1505		 *	- zil_itxg_clean() is called (e.g. via spa_sync())
1506		 *	  while the waiter is still on the i_sync_list
1507		 *
1508		 * There's nothing to prevent syncing the txg while the
1509		 * waiter is on the i_sync_list. This normally doesn't
1510		 * happen because spa_sync() is slower than zil_commit(),
1511		 * but if zil_commit() calls txg_wait_synced() (e.g.
1512		 * because zil_create() or zil_commit_writer_stall() is
1513		 * called) we will hit this case.
1514		 */
1515		if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1516			zil_commit_waiter_skip(itx->itx_private);
1517
1518		list_remove(list, itx);
1519		zil_itx_destroy(itx);
1520	}
1521
1522	cookie = NULL;
1523	t = &itxs->i_async_tree;
1524	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1525		list = &ian->ia_list;
1526		while ((itx = list_head(list)) != NULL) {
1527			list_remove(list, itx);
1528			/* commit itxs should never be on the async lists. */
1529			ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1530			zil_itx_destroy(itx);
1531		}
1532		list_destroy(list);
1533		kmem_free(ian, sizeof (itx_async_node_t));
1534	}
1535	avl_destroy(t);
1536
1537	kmem_free(itxs, sizeof (itxs_t));
1538}
1539
1540static int
1541zil_aitx_compare(const void *x1, const void *x2)
1542{
1543	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1544	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1545
1546	if (o1 < o2)
1547		return (-1);
1548	if (o1 > o2)
1549		return (1);
1550
1551	return (0);
1552}
1553
1554/*
1555 * Remove all async itx with the given oid.
1556 */
1557static void
1558zil_remove_async(zilog_t *zilog, uint64_t oid)
1559{
1560	uint64_t otxg, txg;
1561	itx_async_node_t *ian;
1562	avl_tree_t *t;
1563	avl_index_t where;
1564	list_t clean_list;
1565	itx_t *itx;
1566
1567	ASSERT(oid != 0);
1568	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1569
1570	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1571		otxg = ZILTEST_TXG;
1572	else
1573		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1574
1575	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1576		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1577
1578		mutex_enter(&itxg->itxg_lock);
1579		if (itxg->itxg_txg != txg) {
1580			mutex_exit(&itxg->itxg_lock);
1581			continue;
1582		}
1583
1584		/*
1585		 * Locate the object node and append its list.
1586		 */
1587		t = &itxg->itxg_itxs->i_async_tree;
1588		ian = avl_find(t, &oid, &where);
1589		if (ian != NULL)
1590			list_move_tail(&clean_list, &ian->ia_list);
1591		mutex_exit(&itxg->itxg_lock);
1592	}
1593	while ((itx = list_head(&clean_list)) != NULL) {
1594		list_remove(&clean_list, itx);
1595		/* commit itxs should never be on the async lists. */
1596		ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1597		zil_itx_destroy(itx);
1598	}
1599	list_destroy(&clean_list);
1600}
1601
1602void
1603zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1604{
1605	uint64_t txg;
1606	itxg_t *itxg;
1607	itxs_t *itxs, *clean = NULL;
1608
1609	/*
1610	 * Object ids can be re-instantiated in the next txg so
1611	 * remove any async transactions to avoid future leaks.
1612	 * This can happen if a fsync occurs on the re-instantiated
1613	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1614	 * the new file data and flushes a write record for the old object.
1615	 */
1616	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1617		zil_remove_async(zilog, itx->itx_oid);
1618
1619	/*
1620	 * Ensure the data of a renamed file is committed before the rename.
1621	 */
1622	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1623		zil_async_to_sync(zilog, itx->itx_oid);
1624
1625	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1626		txg = ZILTEST_TXG;
1627	else
1628		txg = dmu_tx_get_txg(tx);
1629
1630	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1631	mutex_enter(&itxg->itxg_lock);
1632	itxs = itxg->itxg_itxs;
1633	if (itxg->itxg_txg != txg) {
1634		if (itxs != NULL) {
1635			/*
1636			 * The zil_clean callback hasn't got around to cleaning
1637			 * this itxg. Save the itxs for release below.
1638			 * This should be rare.
1639			 */
1640			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1641			    "txg %llu", itxg->itxg_txg);
1642			clean = itxg->itxg_itxs;
1643		}
1644		itxg->itxg_txg = txg;
1645		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1646
1647		list_create(&itxs->i_sync_list, sizeof (itx_t),
1648		    offsetof(itx_t, itx_node));
1649		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1650		    sizeof (itx_async_node_t),
1651		    offsetof(itx_async_node_t, ia_node));
1652	}
1653	if (itx->itx_sync) {
1654		list_insert_tail(&itxs->i_sync_list, itx);
1655	} else {
1656		avl_tree_t *t = &itxs->i_async_tree;
1657		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1658		itx_async_node_t *ian;
1659		avl_index_t where;
1660
1661		ian = avl_find(t, &foid, &where);
1662		if (ian == NULL) {
1663			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1664			list_create(&ian->ia_list, sizeof (itx_t),
1665			    offsetof(itx_t, itx_node));
1666			ian->ia_foid = foid;
1667			avl_insert(t, ian, where);
1668		}
1669		list_insert_tail(&ian->ia_list, itx);
1670	}
1671
1672	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1673
1674	/*
1675	 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1676	 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1677	 * need to be careful to always dirty the ZIL using the "real"
1678	 * TXG (not itxg_txg) even when the SPA is frozen.
1679	 */
1680	zilog_dirty(zilog, dmu_tx_get_txg(tx));
1681	mutex_exit(&itxg->itxg_lock);
1682
1683	/* Release the old itxs now we've dropped the lock */
1684	if (clean != NULL)
1685		zil_itxg_clean(clean);
1686}
1687
1688/*
1689 * If there are any in-memory intent log transactions which have now been
1690 * synced then start up a taskq to free them. We should only do this after we
1691 * have written out the uberblocks (i.e. txg has been comitted) so that
1692 * don't inadvertently clean out in-memory log records that would be required
1693 * by zil_commit().
1694 */
1695void
1696zil_clean(zilog_t *zilog, uint64_t synced_txg)
1697{
1698	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1699	itxs_t *clean_me;
1700
1701	ASSERT3U(synced_txg, <, ZILTEST_TXG);
1702
1703	mutex_enter(&itxg->itxg_lock);
1704	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1705		mutex_exit(&itxg->itxg_lock);
1706		return;
1707	}
1708	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1709	ASSERT3U(itxg->itxg_txg, !=, 0);
1710	clean_me = itxg->itxg_itxs;
1711	itxg->itxg_itxs = NULL;
1712	itxg->itxg_txg = 0;
1713	mutex_exit(&itxg->itxg_lock);
1714	/*
1715	 * Preferably start a task queue to free up the old itxs but
1716	 * if taskq_dispatch can't allocate resources to do that then
1717	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1718	 * created a bad performance problem.
1719	 */
1720	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1721	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1722	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1723	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1724		zil_itxg_clean(clean_me);
1725}
1726
1727/*
1728 * This function will traverse the queue of itxs that need to be
1729 * committed, and move them onto the ZIL's zl_itx_commit_list.
1730 */
1731static void
1732zil_get_commit_list(zilog_t *zilog)
1733{
1734	uint64_t otxg, txg;
1735	list_t *commit_list = &zilog->zl_itx_commit_list;
1736
1737	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1738
1739	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1740		otxg = ZILTEST_TXG;
1741	else
1742		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1743
1744	/*
1745	 * This is inherently racy, since there is nothing to prevent
1746	 * the last synced txg from changing. That's okay since we'll
1747	 * only commit things in the future.
1748	 */
1749	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1750		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1751
1752		mutex_enter(&itxg->itxg_lock);
1753		if (itxg->itxg_txg != txg) {
1754			mutex_exit(&itxg->itxg_lock);
1755			continue;
1756		}
1757
1758		/*
1759		 * If we're adding itx records to the zl_itx_commit_list,
1760		 * then the zil better be dirty in this "txg". We can assert
1761		 * that here since we're holding the itxg_lock which will
1762		 * prevent spa_sync from cleaning it. Once we add the itxs
1763		 * to the zl_itx_commit_list we must commit it to disk even
1764		 * if it's unnecessary (i.e. the txg was synced).
1765		 */
1766		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1767		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1768		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1769
1770		mutex_exit(&itxg->itxg_lock);
1771	}
1772}
1773
1774/*
1775 * Move the async itxs for a specified object to commit into sync lists.
1776 */
1777void
1778zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1779{
1780	uint64_t otxg, txg;
1781	itx_async_node_t *ian;
1782	avl_tree_t *t;
1783	avl_index_t where;
1784
1785	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1786		otxg = ZILTEST_TXG;
1787	else
1788		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1789
1790	/*
1791	 * This is inherently racy, since there is nothing to prevent
1792	 * the last synced txg from changing.
1793	 */
1794	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1795		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1796
1797		mutex_enter(&itxg->itxg_lock);
1798		if (itxg->itxg_txg != txg) {
1799			mutex_exit(&itxg->itxg_lock);
1800			continue;
1801		}
1802
1803		/*
1804		 * If a foid is specified then find that node and append its
1805		 * list. Otherwise walk the tree appending all the lists
1806		 * to the sync list. We add to the end rather than the
1807		 * beginning to ensure the create has happened.
1808		 */
1809		t = &itxg->itxg_itxs->i_async_tree;
1810		if (foid != 0) {
1811			ian = avl_find(t, &foid, &where);
1812			if (ian != NULL) {
1813				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1814				    &ian->ia_list);
1815			}
1816		} else {
1817			void *cookie = NULL;
1818
1819			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1820				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1821				    &ian->ia_list);
1822				list_destroy(&ian->ia_list);
1823				kmem_free(ian, sizeof (itx_async_node_t));
1824			}
1825		}
1826		mutex_exit(&itxg->itxg_lock);
1827	}
1828}
1829
1830/*
1831 * This function will prune commit itxs that are at the head of the
1832 * commit list (it won't prune past the first non-commit itx), and
1833 * either: a) attach them to the last lwb that's still pending
1834 * completion, or b) skip them altogether.
1835 *
1836 * This is used as a performance optimization to prevent commit itxs
1837 * from generating new lwbs when it's unnecessary to do so.
1838 */
1839static void
1840zil_prune_commit_list(zilog_t *zilog)
1841{
1842	itx_t *itx;
1843
1844	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1845
1846	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1847		lr_t *lrc = &itx->itx_lr;
1848		if (lrc->lrc_txtype != TX_COMMIT)
1849			break;
1850
1851		mutex_enter(&zilog->zl_lock);
1852
1853		lwb_t *last_lwb = zilog->zl_last_lwb_opened;
1854		if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
1855			/*
1856			 * All of the itxs this waiter was waiting on
1857			 * must have already completed (or there were
1858			 * never any itx's for it to wait on), so it's
1859			 * safe to skip this waiter and mark it done.
1860			 */
1861			zil_commit_waiter_skip(itx->itx_private);
1862		} else {
1863			zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
1864			itx->itx_private = NULL;
1865		}
1866
1867		mutex_exit(&zilog->zl_lock);
1868
1869		list_remove(&zilog->zl_itx_commit_list, itx);
1870		zil_itx_destroy(itx);
1871	}
1872
1873	IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1874}
1875
1876static void
1877zil_commit_writer_stall(zilog_t *zilog)
1878{
1879	/*
1880	 * When zio_alloc_zil() fails to allocate the next lwb block on
1881	 * disk, we must call txg_wait_synced() to ensure all of the
1882	 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
1883	 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
1884	 * to zil_process_commit_list()) will have to call zil_create(),
1885	 * and start a new ZIL chain.
1886	 *
1887	 * Since zil_alloc_zil() failed, the lwb that was previously
1888	 * issued does not have a pointer to the "next" lwb on disk.
1889	 * Thus, if another ZIL writer thread was to allocate the "next"
1890	 * on-disk lwb, that block could be leaked in the event of a
1891	 * crash (because the previous lwb on-disk would not point to
1892	 * it).
1893	 *
1894	 * We must hold the zilog's zl_writer_lock while we do this, to
1895	 * ensure no new threads enter zil_process_commit_list() until
1896	 * all lwb's in the zl_lwb_list have been synced and freed
1897	 * (which is achieved via the txg_wait_synced() call).
1898	 */
1899	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1900	txg_wait_synced(zilog->zl_dmu_pool, 0);
1901	ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
1902}
1903
1904/*
1905 * This function will traverse the commit list, creating new lwbs as
1906 * needed, and committing the itxs from the commit list to these newly
1907 * created lwbs. Additionally, as a new lwb is created, the previous
1908 * lwb will be issued to the zio layer to be written to disk.
1909 */
1910static void
1911zil_process_commit_list(zilog_t *zilog)
1912{
1913	spa_t *spa = zilog->zl_spa;
1914	list_t nolwb_waiters;
1915	lwb_t *lwb;
1916	itx_t *itx;
1917
1918	ASSERT(MUTEX_HELD(&zilog->zl_writer_lock));
1919
1920	/*
1921	 * Return if there's nothing to commit before we dirty the fs by
1922	 * calling zil_create().
1923	 */
1924	if (list_head(&zilog->zl_itx_commit_list) == NULL)
1925		return;
1926
1927	list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
1928	    offsetof(zil_commit_waiter_t, zcw_node));
1929
1930	lwb = list_tail(&zilog->zl_lwb_list);
1931	if (lwb == NULL) {
1932		lwb = zil_create(zilog);
1933	} else {
1934		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
1935		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
1936	}
1937
1938	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1939		lr_t *lrc = &itx->itx_lr;
1940		uint64_t txg = lrc->lrc_txg;
1941
1942		ASSERT3U(txg, !=, 0);
1943
1944		if (lrc->lrc_txtype == TX_COMMIT) {
1945			DTRACE_PROBE2(zil__process__commit__itx,
1946			    zilog_t *, zilog, itx_t *, itx);
1947		} else {
1948			DTRACE_PROBE2(zil__process__normal__itx,
1949			    zilog_t *, zilog, itx_t *, itx);
1950		}
1951
1952		/*
1953		 * This is inherently racy and may result in us writing
1954		 * out a log block for a txg that was just synced. This
1955		 * is ok since we'll end cleaning up that log block the
1956		 * next time we call zil_sync().
1957		 */
1958		boolean_t synced = txg <= spa_last_synced_txg(spa);
1959		boolean_t frozen = txg > spa_freeze_txg(spa);
1960
1961		if (!synced || frozen) {
1962			if (lwb != NULL) {
1963				lwb = zil_lwb_commit(zilog, itx, lwb);
1964			} else if (lrc->lrc_txtype == TX_COMMIT) {
1965				ASSERT3P(lwb, ==, NULL);
1966				zil_commit_waiter_link_nolwb(
1967				    itx->itx_private, &nolwb_waiters);
1968			}
1969		} else if (lrc->lrc_txtype == TX_COMMIT) {
1970			ASSERT3B(synced, ==, B_TRUE);
1971			ASSERT3B(frozen, ==, B_FALSE);
1972
1973			/*
1974			 * If this is a commit itx, then there will be a
1975			 * thread that is either: already waiting for
1976			 * it, or soon will be waiting.
1977			 *
1978			 * This itx has already been committed to disk
1979			 * via spa_sync() so we don't bother committing
1980			 * it to an lwb. As a result, we cannot use the
1981			 * lwb zio callback to signal the waiter and
1982			 * mark it as done, so we must do that here.
1983			 */
1984			zil_commit_waiter_skip(itx->itx_private);
1985		}
1986
1987		list_remove(&zilog->zl_itx_commit_list, itx);
1988		zil_itx_destroy(itx);
1989	}
1990
1991	if (lwb == NULL) {
1992		/*
1993		 * This indicates zio_alloc_zil() failed to allocate the
1994		 * "next" lwb on-disk. When this happens, we must stall
1995		 * the ZIL write pipeline; see the comment within
1996		 * zil_commit_writer_stall() for more details.
1997		 */
1998		zil_commit_writer_stall(zilog);
1999
2000		/*
2001		 * Additionally, we have to signal and mark the "nolwb"
2002		 * waiters as "done" here, since without an lwb, we
2003		 * can't do this via zil_lwb_flush_vdevs_done() like
2004		 * normal.
2005		 */
2006		zil_commit_waiter_t *zcw;
2007		while (zcw = list_head(&nolwb_waiters)) {
2008			zil_commit_waiter_skip(zcw);
2009			list_remove(&nolwb_waiters, zcw);
2010		}
2011	} else {
2012		ASSERT(list_is_empty(&nolwb_waiters));
2013		ASSERT3P(lwb, !=, NULL);
2014		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2015		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2016
2017		/*
2018		 * At this point, the ZIL block pointed at by the "lwb"
2019		 * variable is in one of the following states: "closed"
2020		 * or "open".
2021		 *
2022		 * If its "closed", then no itxs have been committed to
2023		 * it, so there's no point in issuing its zio (i.e.
2024		 * it's "empty").
2025		 *
2026		 * If its "open" state, then it contains one or more
2027		 * itxs that eventually need to be committed to stable
2028		 * storage. In this case we intentionally do not issue
2029		 * the lwb's zio to disk yet, and instead rely on one of
2030		 * the following two mechanisms for issuing the zio:
2031		 *
2032		 * 1. Ideally, there will be more ZIL activity occuring
2033		 * on the system, such that this function will be
2034		 * immediately called again (not necessarily by the same
2035		 * thread) and this lwb's zio will be issued via
2036		 * zil_lwb_commit(). This way, the lwb is guaranteed to
2037		 * be "full" when it is issued to disk, and we'll make
2038		 * use of the lwb's size the best we can.
2039		 *
2040		 * 2. If there isn't sufficient ZIL activity occuring on
2041		 * the system, such that this lwb's zio isn't issued via
2042		 * zil_lwb_commit(), zil_commit_waiter() will issue the
2043		 * lwb's zio. If this occurs, the lwb is not guaranteed
2044		 * to be "full" by the time its zio is issued, and means
2045		 * the size of the lwb was "too large" given the amount
2046		 * of ZIL activity occuring on the system at that time.
2047		 *
2048		 * We do this for a couple of reasons:
2049		 *
2050		 * 1. To try and reduce the number of IOPs needed to
2051		 * write the same number of itxs. If an lwb has space
2052		 * available in it's buffer for more itxs, and more itxs
2053		 * will be committed relatively soon (relative to the
2054		 * latency of performing a write), then it's beneficial
2055		 * to wait for these "next" itxs. This way, more itxs
2056		 * can be committed to stable storage with fewer writes.
2057		 *
2058		 * 2. To try and use the largest lwb block size that the
2059		 * incoming rate of itxs can support. Again, this is to
2060		 * try and pack as many itxs into as few lwbs as
2061		 * possible, without significantly impacting the latency
2062		 * of each individual itx.
2063		 */
2064	}
2065}
2066
2067/*
2068 * This function is responsible for ensuring the passed in commit waiter
2069 * (and associated commit itx) is committed to an lwb. If the waiter is
2070 * not already committed to an lwb, all itxs in the zilog's queue of
2071 * itxs will be processed. The assumption is the passed in waiter's
2072 * commit itx will found in the queue just like the other non-commit
2073 * itxs, such that when the entire queue is processed, the waiter will
2074 * have been commited to an lwb.
2075 *
2076 * The lwb associated with the passed in waiter is not guaranteed to
2077 * have been issued by the time this function completes. If the lwb is
2078 * not issued, we rely on future calls to zil_commit_writer() to issue
2079 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2080 */
2081static void
2082zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2083{
2084	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2085	ASSERT(spa_writeable(zilog->zl_spa));
2086	ASSERT0(zilog->zl_suspend);
2087
2088	mutex_enter(&zilog->zl_writer_lock);
2089
2090	if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2091		/*
2092		 * It's possible that, while we were waiting to acquire
2093		 * the "zl_writer_lock", another thread committed this
2094		 * waiter to an lwb. If that occurs, we bail out early,
2095		 * without processing any of the zilog's queue of itxs.
2096		 *
2097		 * On certain workloads and system configurations, the
2098		 * "zl_writer_lock" can become highly contended. In an
2099		 * attempt to reduce this contention, we immediately drop
2100		 * the lock if the waiter has already been processed.
2101		 *
2102		 * We've measured this optimization to reduce CPU spent
2103		 * contending on this lock by up to 5%, using a system
2104		 * with 32 CPUs, low latency storage (~50 usec writes),
2105		 * and 1024 threads performing sync writes.
2106		 */
2107		goto out;
2108	}
2109
2110	zil_get_commit_list(zilog);
2111	zil_prune_commit_list(zilog);
2112	zil_process_commit_list(zilog);
2113
2114out:
2115	mutex_exit(&zilog->zl_writer_lock);
2116}
2117
2118static void
2119zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2120{
2121	ASSERT(!MUTEX_HELD(&zilog->zl_writer_lock));
2122	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2123	ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2124
2125	lwb_t *lwb = zcw->zcw_lwb;
2126	ASSERT3P(lwb, !=, NULL);
2127	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2128
2129	/*
2130	 * If the lwb has already been issued by another thread, we can
2131	 * immediately return since there's no work to be done (the
2132	 * point of this function is to issue the lwb). Additionally, we
2133	 * do this prior to acquiring the zl_writer_lock, to avoid
2134	 * acquiring it when it's not necessary to do so.
2135	 */
2136	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2137	    lwb->lwb_state == LWB_STATE_DONE)
2138		return;
2139
2140	/*
2141	 * In order to call zil_lwb_write_issue() we must hold the
2142	 * zilog's "zl_writer_lock". We can't simply acquire that lock,
2143	 * since we're already holding the commit waiter's "zcw_lock",
2144	 * and those two locks are aquired in the opposite order
2145	 * elsewhere.
2146	 */
2147	mutex_exit(&zcw->zcw_lock);
2148	mutex_enter(&zilog->zl_writer_lock);
2149	mutex_enter(&zcw->zcw_lock);
2150
2151	/*
2152	 * Since we just dropped and re-acquired the commit waiter's
2153	 * lock, we have to re-check to see if the waiter was marked
2154	 * "done" during that process. If the waiter was marked "done",
2155	 * the "lwb" pointer is no longer valid (it can be free'd after
2156	 * the waiter is marked "done"), so without this check we could
2157	 * wind up with a use-after-free error below.
2158	 */
2159	if (zcw->zcw_done)
2160		goto out;
2161
2162	ASSERT3P(lwb, ==, zcw->zcw_lwb);
2163
2164	/*
2165	 * We've already checked this above, but since we hadn't
2166	 * acquired the zilog's zl_writer_lock, we have to perform this
2167	 * check a second time while holding the lock. We can't call
2168	 * zil_lwb_write_issue() if the lwb had already been issued.
2169	 */
2170	if (lwb->lwb_state == LWB_STATE_ISSUED ||
2171	    lwb->lwb_state == LWB_STATE_DONE)
2172		goto out;
2173
2174	ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2175
2176	/*
2177	 * As described in the comments above zil_commit_waiter() and
2178	 * zil_process_commit_list(), we need to issue this lwb's zio
2179	 * since we've reached the commit waiter's timeout and it still
2180	 * hasn't been issued.
2181	 */
2182	lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2183
2184	ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2185
2186	/*
2187	 * Since the lwb's zio hadn't been issued by the time this thread
2188	 * reached its timeout, we reset the zilog's "zl_cur_used" field
2189	 * to influence the zil block size selection algorithm.
2190	 *
2191	 * By having to issue the lwb's zio here, it means the size of the
2192	 * lwb was too large, given the incoming throughput of itxs.  By
2193	 * setting "zl_cur_used" to zero, we communicate this fact to the
2194	 * block size selection algorithm, so it can take this informaiton
2195	 * into account, and potentially select a smaller size for the
2196	 * next lwb block that is allocated.
2197	 */
2198	zilog->zl_cur_used = 0;
2199
2200	if (nlwb == NULL) {
2201		/*
2202		 * When zil_lwb_write_issue() returns NULL, this
2203		 * indicates zio_alloc_zil() failed to allocate the
2204		 * "next" lwb on-disk. When this occurs, the ZIL write
2205		 * pipeline must be stalled; see the comment within the
2206		 * zil_commit_writer_stall() function for more details.
2207		 *
2208		 * We must drop the commit waiter's lock prior to
2209		 * calling zil_commit_writer_stall() or else we can wind
2210		 * up with the following deadlock:
2211		 *
2212		 * - This thread is waiting for the txg to sync while
2213		 *   holding the waiter's lock; txg_wait_synced() is
2214		 *   used within txg_commit_writer_stall().
2215		 *
2216		 * - The txg can't sync because it is waiting for this
2217		 *   lwb's zio callback to call dmu_tx_commit().
2218		 *
2219		 * - The lwb's zio callback can't call dmu_tx_commit()
2220		 *   because it's blocked trying to acquire the waiter's
2221		 *   lock, which occurs prior to calling dmu_tx_commit()
2222		 */
2223		mutex_exit(&zcw->zcw_lock);
2224		zil_commit_writer_stall(zilog);
2225		mutex_enter(&zcw->zcw_lock);
2226	}
2227
2228out:
2229	mutex_exit(&zilog->zl_writer_lock);
2230	ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2231}
2232
2233/*
2234 * This function is responsible for performing the following two tasks:
2235 *
2236 * 1. its primary responsibility is to block until the given "commit
2237 *    waiter" is considered "done".
2238 *
2239 * 2. its secondary responsibility is to issue the zio for the lwb that
2240 *    the given "commit waiter" is waiting on, if this function has
2241 *    waited "long enough" and the lwb is still in the "open" state.
2242 *
2243 * Given a sufficient amount of itxs being generated and written using
2244 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2245 * function. If this does not occur, this secondary responsibility will
2246 * ensure the lwb is issued even if there is not other synchronous
2247 * activity on the system.
2248 *
2249 * For more details, see zil_process_commit_list(); more specifically,
2250 * the comment at the bottom of that function.
2251 */
2252static void
2253zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2254{
2255	ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2256	ASSERT(!MUTEX_HELD(&zilog->zl_writer_lock));
2257	ASSERT(spa_writeable(zilog->zl_spa));
2258	ASSERT0(zilog->zl_suspend);
2259
2260	mutex_enter(&zcw->zcw_lock);
2261
2262	/*
2263	 * The timeout is scaled based on the lwb latency to avoid
2264	 * significantly impacting the latency of each individual itx.
2265	 * For more details, see the comment at the bottom of the
2266	 * zil_process_commit_list() function.
2267	 */
2268	int pct = MAX(zfs_commit_timeout_pct, 1);
2269#if defined(illumos) || !defined(_KERNEL)
2270	hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2271	hrtime_t wakeup = gethrtime() + sleep;
2272#else
2273	sbintime_t sleep = nstosbt((zilog->zl_last_lwb_latency * pct) / 100);
2274	sbintime_t wakeup = getsbinuptime() + sleep;
2275#endif
2276	boolean_t timedout = B_FALSE;
2277
2278	while (!zcw->zcw_done) {
2279		ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2280
2281		lwb_t *lwb = zcw->zcw_lwb;
2282
2283		/*
2284		 * Usually, the waiter will have a non-NULL lwb field here,
2285		 * but it's possible for it to be NULL as a result of
2286		 * zil_commit() racing with spa_sync().
2287		 *
2288		 * When zil_clean() is called, it's possible for the itxg
2289		 * list (which may be cleaned via a taskq) to contain
2290		 * commit itxs. When this occurs, the commit waiters linked
2291		 * off of these commit itxs will not be committed to an
2292		 * lwb.  Additionally, these commit waiters will not be
2293		 * marked done until zil_commit_waiter_skip() is called via
2294		 * zil_itxg_clean().
2295		 *
2296		 * Thus, it's possible for this commit waiter (i.e. the
2297		 * "zcw" variable) to be found in this "in between" state;
2298		 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2299		 * been skipped, so it's "zcw_done" field is still B_FALSE.
2300		 */
2301		IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2302
2303		if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2304			ASSERT3B(timedout, ==, B_FALSE);
2305
2306			/*
2307			 * If the lwb hasn't been issued yet, then we
2308			 * need to wait with a timeout, in case this
2309			 * function needs to issue the lwb after the
2310			 * timeout is reached; responsibility (2) from
2311			 * the comment above this function.
2312			 */
2313#if defined(illumos) || !defined(_KERNEL)
2314			clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2315			    &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2316			    CALLOUT_FLAG_ABSOLUTE);
2317
2318			if (timeleft >= 0 || zcw->zcw_done)
2319				continue;
2320#else
2321			int wait_err = cv_timedwait_sbt(&zcw->zcw_cv,
2322			    &zcw->zcw_lock, wakeup, SBT_1NS, C_ABSOLUTE);
2323			if (wait_err != EWOULDBLOCK || zcw->zcw_done)
2324				continue;
2325#endif
2326
2327			timedout = B_TRUE;
2328			zil_commit_waiter_timeout(zilog, zcw);
2329
2330			if (!zcw->zcw_done) {
2331				/*
2332				 * If the commit waiter has already been
2333				 * marked "done", it's possible for the
2334				 * waiter's lwb structure to have already
2335				 * been freed.  Thus, we can only reliably
2336				 * make these assertions if the waiter
2337				 * isn't done.
2338				 */
2339				ASSERT3P(lwb, ==, zcw->zcw_lwb);
2340				ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2341			}
2342		} else {
2343			/*
2344			 * If the lwb isn't open, then it must have already
2345			 * been issued. In that case, there's no need to
2346			 * use a timeout when waiting for the lwb to
2347			 * complete.
2348			 *
2349			 * Additionally, if the lwb is NULL, the waiter
2350			 * will soon be signalled and marked done via
2351			 * zil_clean() and zil_itxg_clean(), so no timeout
2352			 * is required.
2353			 */
2354
2355			IMPLY(lwb != NULL,
2356			    lwb->lwb_state == LWB_STATE_ISSUED ||
2357			    lwb->lwb_state == LWB_STATE_DONE);
2358			cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2359		}
2360	}
2361
2362	mutex_exit(&zcw->zcw_lock);
2363}
2364
2365static zil_commit_waiter_t *
2366zil_alloc_commit_waiter()
2367{
2368	zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2369
2370	cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2371	mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2372	list_link_init(&zcw->zcw_node);
2373	zcw->zcw_lwb = NULL;
2374	zcw->zcw_done = B_FALSE;
2375	zcw->zcw_zio_error = 0;
2376
2377	return (zcw);
2378}
2379
2380static void
2381zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2382{
2383	ASSERT(!list_link_active(&zcw->zcw_node));
2384	ASSERT3P(zcw->zcw_lwb, ==, NULL);
2385	ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2386	mutex_destroy(&zcw->zcw_lock);
2387	cv_destroy(&zcw->zcw_cv);
2388	kmem_cache_free(zil_zcw_cache, zcw);
2389}
2390
2391/*
2392 * This function is used to create a TX_COMMIT itx and assign it. This
2393 * way, it will be linked into the ZIL's list of synchronous itxs, and
2394 * then later committed to an lwb (or skipped) when
2395 * zil_process_commit_list() is called.
2396 */
2397static void
2398zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2399{
2400	dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2401	VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2402
2403	itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2404	itx->itx_sync = B_TRUE;
2405	itx->itx_private = zcw;
2406
2407	zil_itx_assign(zilog, itx, tx);
2408
2409	dmu_tx_commit(tx);
2410}
2411
2412/*
2413 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2414 *
2415 * When writing ZIL transactions to the on-disk representation of the
2416 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2417 * itxs can be committed to a single lwb. Once a lwb is written and
2418 * committed to stable storage (i.e. the lwb is written, and vdevs have
2419 * been flushed), each itx that was committed to that lwb is also
2420 * considered to be committed to stable storage.
2421 *
2422 * When an itx is committed to an lwb, the log record (lr_t) contained
2423 * by the itx is copied into the lwb's zio buffer, and once this buffer
2424 * is written to disk, it becomes an on-disk ZIL block.
2425 *
2426 * As itxs are generated, they're inserted into the ZIL's queue of
2427 * uncommitted itxs. The semantics of zil_commit() are such that it will
2428 * block until all itxs that were in the queue when it was called, are
2429 * committed to stable storage.
2430 *
2431 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2432 * itxs, for all objects in the dataset, will be committed to stable
2433 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2434 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2435 * that correspond to the foid passed in, will be committed to stable
2436 * storage prior to zil_commit() returning.
2437 *
2438 * Generally speaking, when zil_commit() is called, the consumer doesn't
2439 * actually care about _all_ of the uncommitted itxs. Instead, they're
2440 * simply trying to waiting for a specific itx to be committed to disk,
2441 * but the interface(s) for interacting with the ZIL don't allow such
2442 * fine-grained communication. A better interface would allow a consumer
2443 * to create and assign an itx, and then pass a reference to this itx to
2444 * zil_commit(); such that zil_commit() would return as soon as that
2445 * specific itx was committed to disk (instead of waiting for _all_
2446 * itxs to be committed).
2447 *
2448 * When a thread calls zil_commit() a special "commit itx" will be
2449 * generated, along with a corresponding "waiter" for this commit itx.
2450 * zil_commit() will wait on this waiter's CV, such that when the waiter
2451 * is marked done, and signalled, zil_commit() will return.
2452 *
2453 * This commit itx is inserted into the queue of uncommitted itxs. This
2454 * provides an easy mechanism for determining which itxs were in the
2455 * queue prior to zil_commit() having been called, and which itxs were
2456 * added after zil_commit() was called.
2457 *
2458 * The commit it is special; it doesn't have any on-disk representation.
2459 * When a commit itx is "committed" to an lwb, the waiter associated
2460 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2461 * completes, each waiter on the lwb's list is marked done and signalled
2462 * -- allowing the thread waiting on the waiter to return from zil_commit().
2463 *
2464 * It's important to point out a few critical factors that allow us
2465 * to make use of the commit itxs, commit waiters, per-lwb lists of
2466 * commit waiters, and zio completion callbacks like we're doing:
2467 *
2468 *   1. The list of waiters for each lwb is traversed, and each commit
2469 *      waiter is marked "done" and signalled, in the zio completion
2470 *      callback of the lwb's zio[*].
2471 *
2472 *      * Actually, the waiters are signalled in the zio completion
2473 *        callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2474 *        that are sent to the vdevs upon completion of the lwb zio.
2475 *
2476 *   2. When the itxs are inserted into the ZIL's queue of uncommitted
2477 *      itxs, the order in which they are inserted is preserved[*]; as
2478 *      itxs are added to the queue, they are added to the tail of
2479 *      in-memory linked lists.
2480 *
2481 *      When committing the itxs to lwbs (to be written to disk), they
2482 *      are committed in the same order in which the itxs were added to
2483 *      the uncommitted queue's linked list(s); i.e. the linked list of
2484 *      itxs to commit is traversed from head to tail, and each itx is
2485 *      committed to an lwb in that order.
2486 *
2487 *      * To clarify:
2488 *
2489 *        - the order of "sync" itxs is preserved w.r.t. other
2490 *          "sync" itxs, regardless of the corresponding objects.
2491 *        - the order of "async" itxs is preserved w.r.t. other
2492 *          "async" itxs corresponding to the same object.
2493 *        - the order of "async" itxs is *not* preserved w.r.t. other
2494 *          "async" itxs corresponding to different objects.
2495 *        - the order of "sync" itxs w.r.t. "async" itxs (or vice
2496 *          versa) is *not* preserved, even for itxs that correspond
2497 *          to the same object.
2498 *
2499 *      For more details, see: zil_itx_assign(), zil_async_to_sync(),
2500 *      zil_get_commit_list(), and zil_process_commit_list().
2501 *
2502 *   3. The lwbs represent a linked list of blocks on disk. Thus, any
2503 *      lwb cannot be considered committed to stable storage, until its
2504 *      "previous" lwb is also committed to stable storage. This fact,
2505 *      coupled with the fact described above, means that itxs are
2506 *      committed in (roughly) the order in which they were generated.
2507 *      This is essential because itxs are dependent on prior itxs.
2508 *      Thus, we *must not* deem an itx as being committed to stable
2509 *      storage, until *all* prior itxs have also been committed to
2510 *      stable storage.
2511 *
2512 *      To enforce this ordering of lwb zio's, while still leveraging as
2513 *      much of the underlying storage performance as possible, we rely
2514 *      on two fundamental concepts:
2515 *
2516 *          1. The creation and issuance of lwb zio's is protected by
2517 *             the zilog's "zl_writer_lock", which ensures only a single
2518 *             thread is creating and/or issuing lwb's at a time
2519 *          2. The "previous" lwb is a child of the "current" lwb
2520 *             (leveraging the zio parent-child depenency graph)
2521 *
2522 *      By relying on this parent-child zio relationship, we can have
2523 *      many lwb zio's concurrently issued to the underlying storage,
2524 *      but the order in which they complete will be the same order in
2525 *      which they were created.
2526 */
2527void
2528zil_commit(zilog_t *zilog, uint64_t foid)
2529{
2530	/*
2531	 * We should never attempt to call zil_commit on a snapshot for
2532	 * a couple of reasons:
2533	 *
2534	 * 1. A snapshot may never be modified, thus it cannot have any
2535	 *    in-flight itxs that would have modified the dataset.
2536	 *
2537	 * 2. By design, when zil_commit() is called, a commit itx will
2538	 *    be assigned to this zilog; as a result, the zilog will be
2539	 *    dirtied. We must not dirty the zilog of a snapshot; there's
2540	 *    checks in the code that enforce this invariant, and will
2541	 *    cause a panic if it's not upheld.
2542	 */
2543	ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2544
2545	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2546		return;
2547
2548	if (!spa_writeable(zilog->zl_spa)) {
2549		/*
2550		 * If the SPA is not writable, there should never be any
2551		 * pending itxs waiting to be committed to disk. If that
2552		 * weren't true, we'd skip writing those itxs out, and
2553		 * would break the sematics of zil_commit(); thus, we're
2554		 * verifying that truth before we return to the caller.
2555		 */
2556		ASSERT(list_is_empty(&zilog->zl_lwb_list));
2557		ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2558		for (int i = 0; i < TXG_SIZE; i++)
2559			ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2560		return;
2561	}
2562
2563	/*
2564	 * If the ZIL is suspended, we don't want to dirty it by calling
2565	 * zil_commit_itx_assign() below, nor can we write out
2566	 * lwbs like would be done in zil_commit_write(). Thus, we
2567	 * simply rely on txg_wait_synced() to maintain the necessary
2568	 * semantics, and avoid calling those functions altogether.
2569	 */
2570	if (zilog->zl_suspend > 0) {
2571		txg_wait_synced(zilog->zl_dmu_pool, 0);
2572		return;
2573	}
2574
2575	/*
2576	 * Move the "async" itxs for the specified foid to the "sync"
2577	 * queues, such that they will be later committed (or skipped)
2578	 * to an lwb when zil_process_commit_list() is called.
2579	 *
2580	 * Since these "async" itxs must be committed prior to this
2581	 * call to zil_commit returning, we must perform this operation
2582	 * before we call zil_commit_itx_assign().
2583	 */
2584	zil_async_to_sync(zilog, foid);
2585
2586	/*
2587	 * We allocate a new "waiter" structure which will initially be
2588	 * linked to the commit itx using the itx's "itx_private" field.
2589	 * Since the commit itx doesn't represent any on-disk state,
2590	 * when it's committed to an lwb, rather than copying the its
2591	 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2592	 * added to the lwb's list of waiters. Then, when the lwb is
2593	 * committed to stable storage, each waiter in the lwb's list of
2594	 * waiters will be marked "done", and signalled.
2595	 *
2596	 * We must create the waiter and assign the commit itx prior to
2597	 * calling zil_commit_writer(), or else our specific commit itx
2598	 * is not guaranteed to be committed to an lwb prior to calling
2599	 * zil_commit_waiter().
2600	 */
2601	zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2602	zil_commit_itx_assign(zilog, zcw);
2603
2604	zil_commit_writer(zilog, zcw);
2605	zil_commit_waiter(zilog, zcw);
2606
2607	if (zcw->zcw_zio_error != 0) {
2608		/*
2609		 * If there was an error writing out the ZIL blocks that
2610		 * this thread is waiting on, then we fallback to
2611		 * relying on spa_sync() to write out the data this
2612		 * thread is waiting on. Obviously this has performance
2613		 * implications, but the expectation is for this to be
2614		 * an exceptional case, and shouldn't occur often.
2615		 */
2616		DTRACE_PROBE2(zil__commit__io__error,
2617		    zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2618		txg_wait_synced(zilog->zl_dmu_pool, 0);
2619	}
2620
2621	zil_free_commit_waiter(zcw);
2622}
2623
2624/*
2625 * Called in syncing context to free committed log blocks and update log header.
2626 */
2627void
2628zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2629{
2630	zil_header_t *zh = zil_header_in_syncing_context(zilog);
2631	uint64_t txg = dmu_tx_get_txg(tx);
2632	spa_t *spa = zilog->zl_spa;
2633	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2634	lwb_t *lwb;
2635
2636	/*
2637	 * We don't zero out zl_destroy_txg, so make sure we don't try
2638	 * to destroy it twice.
2639	 */
2640	if (spa_sync_pass(spa) != 1)
2641		return;
2642
2643	mutex_enter(&zilog->zl_lock);
2644
2645	ASSERT(zilog->zl_stop_sync == 0);
2646
2647	if (*replayed_seq != 0) {
2648		ASSERT(zh->zh_replay_seq < *replayed_seq);
2649		zh->zh_replay_seq = *replayed_seq;
2650		*replayed_seq = 0;
2651	}
2652
2653	if (zilog->zl_destroy_txg == txg) {
2654		blkptr_t blk = zh->zh_log;
2655
2656		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2657
2658		bzero(zh, sizeof (zil_header_t));
2659		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2660
2661		if (zilog->zl_keep_first) {
2662			/*
2663			 * If this block was part of log chain that couldn't
2664			 * be claimed because a device was missing during
2665			 * zil_claim(), but that device later returns,
2666			 * then this block could erroneously appear valid.
2667			 * To guard against this, assign a new GUID to the new
2668			 * log chain so it doesn't matter what blk points to.
2669			 */
2670			zil_init_log_chain(zilog, &blk);
2671			zh->zh_log = blk;
2672		}
2673	}
2674
2675	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2676		zh->zh_log = lwb->lwb_blk;
2677		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2678			break;
2679		list_remove(&zilog->zl_lwb_list, lwb);
2680		zio_free(spa, txg, &lwb->lwb_blk);
2681		zil_free_lwb(zilog, lwb);
2682
2683		/*
2684		 * If we don't have anything left in the lwb list then
2685		 * we've had an allocation failure and we need to zero
2686		 * out the zil_header blkptr so that we don't end
2687		 * up freeing the same block twice.
2688		 */
2689		if (list_head(&zilog->zl_lwb_list) == NULL)
2690			BP_ZERO(&zh->zh_log);
2691	}
2692	mutex_exit(&zilog->zl_lock);
2693}
2694
2695/* ARGSUSED */
2696static int
2697zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2698{
2699	lwb_t *lwb = vbuf;
2700	list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2701	    offsetof(zil_commit_waiter_t, zcw_node));
2702	avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2703	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2704	mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2705	return (0);
2706}
2707
2708/* ARGSUSED */
2709static void
2710zil_lwb_dest(void *vbuf, void *unused)
2711{
2712	lwb_t *lwb = vbuf;
2713	mutex_destroy(&lwb->lwb_vdev_lock);
2714	avl_destroy(&lwb->lwb_vdev_tree);
2715	list_destroy(&lwb->lwb_waiters);
2716}
2717
2718void
2719zil_init(void)
2720{
2721	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2722	    sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2723
2724	zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2725	    sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2726}
2727
2728void
2729zil_fini(void)
2730{
2731	kmem_cache_destroy(zil_zcw_cache);
2732	kmem_cache_destroy(zil_lwb_cache);
2733}
2734
2735void
2736zil_set_sync(zilog_t *zilog, uint64_t sync)
2737{
2738	zilog->zl_sync = sync;
2739}
2740
2741void
2742zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2743{
2744	zilog->zl_logbias = logbias;
2745}
2746
2747zilog_t *
2748zil_alloc(objset_t *os, zil_header_t *zh_phys)
2749{
2750	zilog_t *zilog;
2751
2752	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2753
2754	zilog->zl_header = zh_phys;
2755	zilog->zl_os = os;
2756	zilog->zl_spa = dmu_objset_spa(os);
2757	zilog->zl_dmu_pool = dmu_objset_pool(os);
2758	zilog->zl_destroy_txg = TXG_INITIAL - 1;
2759	zilog->zl_logbias = dmu_objset_logbias(os);
2760	zilog->zl_sync = dmu_objset_syncprop(os);
2761	zilog->zl_dirty_max_txg = 0;
2762	zilog->zl_last_lwb_opened = NULL;
2763	zilog->zl_last_lwb_latency = 0;
2764
2765	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
2766	mutex_init(&zilog->zl_writer_lock, NULL, MUTEX_DEFAULT, NULL);
2767
2768	for (int i = 0; i < TXG_SIZE; i++) {
2769		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
2770		    MUTEX_DEFAULT, NULL);
2771	}
2772
2773	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
2774	    offsetof(lwb_t, lwb_node));
2775
2776	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
2777	    offsetof(itx_t, itx_node));
2778
2779	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
2780
2781	return (zilog);
2782}
2783
2784void
2785zil_free(zilog_t *zilog)
2786{
2787	zilog->zl_stop_sync = 1;
2788
2789	ASSERT0(zilog->zl_suspend);
2790	ASSERT0(zilog->zl_suspending);
2791
2792	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2793	list_destroy(&zilog->zl_lwb_list);
2794
2795	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
2796	list_destroy(&zilog->zl_itx_commit_list);
2797
2798	for (int i = 0; i < TXG_SIZE; i++) {
2799		/*
2800		 * It's possible for an itx to be generated that doesn't dirty
2801		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
2802		 * callback to remove the entry. We remove those here.
2803		 *
2804		 * Also free up the ziltest itxs.
2805		 */
2806		if (zilog->zl_itxg[i].itxg_itxs)
2807			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
2808		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
2809	}
2810
2811	mutex_destroy(&zilog->zl_writer_lock);
2812	mutex_destroy(&zilog->zl_lock);
2813
2814	cv_destroy(&zilog->zl_cv_suspend);
2815
2816	kmem_free(zilog, sizeof (zilog_t));
2817}
2818
2819/*
2820 * Open an intent log.
2821 */
2822zilog_t *
2823zil_open(objset_t *os, zil_get_data_t *get_data)
2824{
2825	zilog_t *zilog = dmu_objset_zil(os);
2826
2827	ASSERT3P(zilog->zl_get_data, ==, NULL);
2828	ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2829	ASSERT(list_is_empty(&zilog->zl_lwb_list));
2830
2831	zilog->zl_get_data = get_data;
2832
2833	return (zilog);
2834}
2835
2836/*
2837 * Close an intent log.
2838 */
2839void
2840zil_close(zilog_t *zilog)
2841{
2842	lwb_t *lwb;
2843	uint64_t txg;
2844
2845	if (!dmu_objset_is_snapshot(zilog->zl_os)) {
2846		zil_commit(zilog, 0);
2847	} else {
2848		ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2849		ASSERT0(zilog->zl_dirty_max_txg);
2850		ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
2851	}
2852
2853	mutex_enter(&zilog->zl_lock);
2854	lwb = list_tail(&zilog->zl_lwb_list);
2855	if (lwb == NULL)
2856		txg = zilog->zl_dirty_max_txg;
2857	else
2858		txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
2859	mutex_exit(&zilog->zl_lock);
2860
2861	/*
2862	 * We need to use txg_wait_synced() to wait long enough for the
2863	 * ZIL to be clean, and to wait for all pending lwbs to be
2864	 * written out.
2865	 */
2866	if (txg != 0)
2867		txg_wait_synced(zilog->zl_dmu_pool, txg);
2868
2869	if (zilog_is_dirty(zilog))
2870		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
2871	VERIFY(!zilog_is_dirty(zilog));
2872
2873	zilog->zl_get_data = NULL;
2874
2875	/*
2876	 * We should have only one lwb left on the list; remove it now.
2877	 */
2878	mutex_enter(&zilog->zl_lock);
2879	lwb = list_head(&zilog->zl_lwb_list);
2880	if (lwb != NULL) {
2881		ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
2882		ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2883		list_remove(&zilog->zl_lwb_list, lwb);
2884		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
2885		zil_free_lwb(zilog, lwb);
2886	}
2887	mutex_exit(&zilog->zl_lock);
2888}
2889
2890static char *suspend_tag = "zil suspending";
2891
2892/*
2893 * Suspend an intent log.  While in suspended mode, we still honor
2894 * synchronous semantics, but we rely on txg_wait_synced() to do it.
2895 * On old version pools, we suspend the log briefly when taking a
2896 * snapshot so that it will have an empty intent log.
2897 *
2898 * Long holds are not really intended to be used the way we do here --
2899 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
2900 * could fail.  Therefore we take pains to only put a long hold if it is
2901 * actually necessary.  Fortunately, it will only be necessary if the
2902 * objset is currently mounted (or the ZVOL equivalent).  In that case it
2903 * will already have a long hold, so we are not really making things any worse.
2904 *
2905 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2906 * zvol_state_t), and use their mechanism to prevent their hold from being
2907 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
2908 * very little gain.
2909 *
2910 * if cookiep == NULL, this does both the suspend & resume.
2911 * Otherwise, it returns with the dataset "long held", and the cookie
2912 * should be passed into zil_resume().
2913 */
2914int
2915zil_suspend(const char *osname, void **cookiep)
2916{
2917	objset_t *os;
2918	zilog_t *zilog;
2919	const zil_header_t *zh;
2920	int error;
2921
2922	error = dmu_objset_hold(osname, suspend_tag, &os);
2923	if (error != 0)
2924		return (error);
2925	zilog = dmu_objset_zil(os);
2926
2927	mutex_enter(&zilog->zl_lock);
2928	zh = zilog->zl_header;
2929
2930	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
2931		mutex_exit(&zilog->zl_lock);
2932		dmu_objset_rele(os, suspend_tag);
2933		return (SET_ERROR(EBUSY));
2934	}
2935
2936	/*
2937	 * Don't put a long hold in the cases where we can avoid it.  This
2938	 * is when there is no cookie so we are doing a suspend & resume
2939	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2940	 * for the suspend because it's already suspended, or there's no ZIL.
2941	 */
2942	if (cookiep == NULL && !zilog->zl_suspending &&
2943	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2944		mutex_exit(&zilog->zl_lock);
2945		dmu_objset_rele(os, suspend_tag);
2946		return (0);
2947	}
2948
2949	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2950	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2951
2952	zilog->zl_suspend++;
2953
2954	if (zilog->zl_suspend > 1) {
2955		/*
2956		 * Someone else is already suspending it.
2957		 * Just wait for them to finish.
2958		 */
2959
2960		while (zilog->zl_suspending)
2961			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2962		mutex_exit(&zilog->zl_lock);
2963
2964		if (cookiep == NULL)
2965			zil_resume(os);
2966		else
2967			*cookiep = os;
2968		return (0);
2969	}
2970
2971	/*
2972	 * If there is no pointer to an on-disk block, this ZIL must not
2973	 * be active (e.g. filesystem not mounted), so there's nothing
2974	 * to clean up.
2975	 */
2976	if (BP_IS_HOLE(&zh->zh_log)) {
2977		ASSERT(cookiep != NULL); /* fast path already handled */
2978
2979		*cookiep = os;
2980		mutex_exit(&zilog->zl_lock);
2981		return (0);
2982	}
2983
2984	zilog->zl_suspending = B_TRUE;
2985	mutex_exit(&zilog->zl_lock);
2986
2987	zil_commit(zilog, 0);
2988
2989	zil_destroy(zilog, B_FALSE);
2990
2991	mutex_enter(&zilog->zl_lock);
2992	zilog->zl_suspending = B_FALSE;
2993	cv_broadcast(&zilog->zl_cv_suspend);
2994	mutex_exit(&zilog->zl_lock);
2995
2996	if (cookiep == NULL)
2997		zil_resume(os);
2998	else
2999		*cookiep = os;
3000	return (0);
3001}
3002
3003void
3004zil_resume(void *cookie)
3005{
3006	objset_t *os = cookie;
3007	zilog_t *zilog = dmu_objset_zil(os);
3008
3009	mutex_enter(&zilog->zl_lock);
3010	ASSERT(zilog->zl_suspend != 0);
3011	zilog->zl_suspend--;
3012	mutex_exit(&zilog->zl_lock);
3013	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3014	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3015}
3016
3017typedef struct zil_replay_arg {
3018	zil_replay_func_t **zr_replay;
3019	void		*zr_arg;
3020	boolean_t	zr_byteswap;
3021	char		*zr_lr;
3022} zil_replay_arg_t;
3023
3024static int
3025zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3026{
3027	char name[ZFS_MAX_DATASET_NAME_LEN];
3028
3029	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
3030
3031	dmu_objset_name(zilog->zl_os, name);
3032
3033	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3034	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3035	    (u_longlong_t)lr->lrc_seq,
3036	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3037	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
3038
3039	return (error);
3040}
3041
3042static int
3043zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3044{
3045	zil_replay_arg_t *zr = zra;
3046	const zil_header_t *zh = zilog->zl_header;
3047	uint64_t reclen = lr->lrc_reclen;
3048	uint64_t txtype = lr->lrc_txtype;
3049	int error = 0;
3050
3051	zilog->zl_replaying_seq = lr->lrc_seq;
3052
3053	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
3054		return (0);
3055
3056	if (lr->lrc_txg < claim_txg)		/* already committed */
3057		return (0);
3058
3059	/* Strip case-insensitive bit, still present in log record */
3060	txtype &= ~TX_CI;
3061
3062	if (txtype == 0 || txtype >= TX_MAX_TYPE)
3063		return (zil_replay_error(zilog, lr, EINVAL));
3064
3065	/*
3066	 * If this record type can be logged out of order, the object
3067	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
3068	 */
3069	if (TX_OOO(txtype)) {
3070		error = dmu_object_info(zilog->zl_os,
3071		    ((lr_ooo_t *)lr)->lr_foid, NULL);
3072		if (error == ENOENT || error == EEXIST)
3073			return (0);
3074	}
3075
3076	/*
3077	 * Make a copy of the data so we can revise and extend it.
3078	 */
3079	bcopy(lr, zr->zr_lr, reclen);
3080
3081	/*
3082	 * If this is a TX_WRITE with a blkptr, suck in the data.
3083	 */
3084	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3085		error = zil_read_log_data(zilog, (lr_write_t *)lr,
3086		    zr->zr_lr + reclen);
3087		if (error != 0)
3088			return (zil_replay_error(zilog, lr, error));
3089	}
3090
3091	/*
3092	 * The log block containing this lr may have been byteswapped
3093	 * so that we can easily examine common fields like lrc_txtype.
3094	 * However, the log is a mix of different record types, and only the
3095	 * replay vectors know how to byteswap their records.  Therefore, if
3096	 * the lr was byteswapped, undo it before invoking the replay vector.
3097	 */
3098	if (zr->zr_byteswap)
3099		byteswap_uint64_array(zr->zr_lr, reclen);
3100
3101	/*
3102	 * We must now do two things atomically: replay this log record,
3103	 * and update the log header sequence number to reflect the fact that
3104	 * we did so. At the end of each replay function the sequence number
3105	 * is updated if we are in replay mode.
3106	 */
3107	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3108	if (error != 0) {
3109		/*
3110		 * The DMU's dnode layer doesn't see removes until the txg
3111		 * commits, so a subsequent claim can spuriously fail with
3112		 * EEXIST. So if we receive any error we try syncing out
3113		 * any removes then retry the transaction.  Note that we
3114		 * specify B_FALSE for byteswap now, so we don't do it twice.
3115		 */
3116		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3117		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3118		if (error != 0)
3119			return (zil_replay_error(zilog, lr, error));
3120	}
3121	return (0);
3122}
3123
3124/* ARGSUSED */
3125static int
3126zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3127{
3128	zilog->zl_replay_blks++;
3129
3130	return (0);
3131}
3132
3133/*
3134 * If this dataset has a non-empty intent log, replay it and destroy it.
3135 */
3136void
3137zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3138{
3139	zilog_t *zilog = dmu_objset_zil(os);
3140	const zil_header_t *zh = zilog->zl_header;
3141	zil_replay_arg_t zr;
3142
3143	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3144		zil_destroy(zilog, B_TRUE);
3145		return;
3146	}
3147
3148	zr.zr_replay = replay_func;
3149	zr.zr_arg = arg;
3150	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3151	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3152
3153	/*
3154	 * Wait for in-progress removes to sync before starting replay.
3155	 */
3156	txg_wait_synced(zilog->zl_dmu_pool, 0);
3157
3158	zilog->zl_replay = B_TRUE;
3159	zilog->zl_replay_time = ddi_get_lbolt();
3160	ASSERT(zilog->zl_replay_blks == 0);
3161	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3162	    zh->zh_claim_txg);
3163	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3164
3165	zil_destroy(zilog, B_FALSE);
3166	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3167	zilog->zl_replay = B_FALSE;
3168}
3169
3170boolean_t
3171zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3172{
3173	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3174		return (B_TRUE);
3175
3176	if (zilog->zl_replay) {
3177		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3178		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3179		    zilog->zl_replaying_seq;
3180		return (B_TRUE);
3181	}
3182
3183	return (B_FALSE);
3184}
3185
3186/* ARGSUSED */
3187int
3188zil_vdev_offline(const char *osname, void *arg)
3189{
3190	int error;
3191
3192	error = zil_suspend(osname, NULL);
3193	if (error != 0)
3194		return (SET_ERROR(EEXIST));
3195	return (0);
3196}
3197