zil.c revision 324205
1330449Seadler/*
2124758Semax * CDDL HEADER START
3124758Semax *
4330449Seadler * The contents of this file are subject to the terms of the
5330449Seadler * Common Development and Distribution License (the "License").
6124758Semax * You may not use this file except in compliance with the License.
7124758Semax *
8124758Semax * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9124758Semax * or http://www.opensolaris.org/os/licensing.
10124758Semax * See the License for the specific language governing permissions
11124758Semax * and limitations under the License.
12124758Semax *
13124758Semax * When distributing Covered Code, include this CDDL HEADER in each
14124758Semax * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15124758Semax * If applicable, add the following below this CDDL HEADER, with the
16124758Semax * fields enclosed by brackets "[]" replaced with your own identifying
17124758Semax * information: Portions Copyright [yyyy] [name of copyright owner]
18124758Semax *
19124758Semax * CDDL HEADER END
20124758Semax */
21124758Semax/*
22124758Semax * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23124758Semax * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24124758Semax * Copyright (c) 2014 Integros [integros.com]
25124758Semax */
26124758Semax
27124758Semax/* Portions Copyright 2010 Robert Milkowski */
28124758Semax
29124758Semax#include <sys/zfs_context.h>
30124758Semax#include <sys/spa.h>
31124758Semax#include <sys/dmu.h>
32124758Semax#include <sys/zap.h>
33124758Semax#include <sys/arc.h>
34124758Semax#include <sys/stat.h>
35124758Semax#include <sys/resource.h>
36124758Semax#include <sys/zil.h>
37124758Semax#include <sys/zil_impl.h>
38124758Semax#include <sys/dsl_dataset.h>
39124758Semax#include <sys/vdev_impl.h>
40124758Semax#include <sys/dmu_tx.h>
41124758Semax#include <sys/dsl_pool.h>
42124758Semax#include <sys/abd.h>
43124758Semax
44124758Semax/*
45124758Semax * The zfs intent log (ZIL) saves transaction records of system calls
46124758Semax * that change the file system in memory with enough information
47124758Semax * to be able to replay them. These are stored in memory until
48124758Semax * either the DMU transaction group (txg) commits them to the stable pool
49124758Semax * and they can be discarded, or they are flushed to the stable log
50 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
51 * requirement. In the event of a panic or power fail then those log
52 * records (transactions) are replayed.
53 *
54 * There is one ZIL per file system. Its on-disk (pool) format consists
55 * of 3 parts:
56 *
57 * 	- ZIL header
58 * 	- ZIL blocks
59 * 	- ZIL records
60 *
61 * A log record holds a system call transaction. Log blocks can
62 * hold many log records and the blocks are chained together.
63 * Each ZIL block contains a block pointer (blkptr_t) to the next
64 * ZIL block in the chain. The ZIL header points to the first
65 * block in the chain. Note there is not a fixed place in the pool
66 * to hold blocks. They are dynamically allocated and freed as
67 * needed from the blocks available. Figure X shows the ZIL structure:
68 */
69
70/*
71 * Disable intent logging replay.  This global ZIL switch affects all pools.
72 */
73int zil_replay_disable = 0;
74SYSCTL_DECL(_vfs_zfs);
75SYSCTL_INT(_vfs_zfs, OID_AUTO, zil_replay_disable, CTLFLAG_RWTUN,
76    &zil_replay_disable, 0, "Disable intent logging replay");
77
78/*
79 * Tunable parameter for debugging or performance analysis.  Setting
80 * zfs_nocacheflush will cause corruption on power loss if a volatile
81 * out-of-order write cache is enabled.
82 */
83boolean_t zfs_nocacheflush = B_FALSE;
84SYSCTL_INT(_vfs_zfs, OID_AUTO, cache_flush_disable, CTLFLAG_RDTUN,
85    &zfs_nocacheflush, 0, "Disable cache flush");
86boolean_t zfs_trim_enabled = B_TRUE;
87SYSCTL_DECL(_vfs_zfs_trim);
88SYSCTL_INT(_vfs_zfs_trim, OID_AUTO, enabled, CTLFLAG_RDTUN, &zfs_trim_enabled, 0,
89    "Enable ZFS TRIM");
90
91/*
92 * Limit SLOG write size per commit executed with synchronous priority.
93 * Any writes above that will be executed with lower (asynchronous) priority
94 * to limit potential SLOG device abuse by single active ZIL writer.
95 */
96uint64_t zil_slog_bulk = 768 * 1024;
97SYSCTL_QUAD(_vfs_zfs, OID_AUTO, zil_slog_bulk, CTLFLAG_RWTUN,
98    &zil_slog_bulk, 0, "Maximal SLOG commit size with sync priority");
99
100static kmem_cache_t *zil_lwb_cache;
101
102#define	LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
103    sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
104
105static int
106zil_bp_compare(const void *x1, const void *x2)
107{
108	const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
109	const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
110
111	if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
112		return (-1);
113	if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
114		return (1);
115
116	if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
117		return (-1);
118	if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
119		return (1);
120
121	return (0);
122}
123
124static void
125zil_bp_tree_init(zilog_t *zilog)
126{
127	avl_create(&zilog->zl_bp_tree, zil_bp_compare,
128	    sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
129}
130
131static void
132zil_bp_tree_fini(zilog_t *zilog)
133{
134	avl_tree_t *t = &zilog->zl_bp_tree;
135	zil_bp_node_t *zn;
136	void *cookie = NULL;
137
138	while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
139		kmem_free(zn, sizeof (zil_bp_node_t));
140
141	avl_destroy(t);
142}
143
144int
145zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
146{
147	avl_tree_t *t = &zilog->zl_bp_tree;
148	const dva_t *dva;
149	zil_bp_node_t *zn;
150	avl_index_t where;
151
152	if (BP_IS_EMBEDDED(bp))
153		return (0);
154
155	dva = BP_IDENTITY(bp);
156
157	if (avl_find(t, dva, &where) != NULL)
158		return (SET_ERROR(EEXIST));
159
160	zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
161	zn->zn_dva = *dva;
162	avl_insert(t, zn, where);
163
164	return (0);
165}
166
167static zil_header_t *
168zil_header_in_syncing_context(zilog_t *zilog)
169{
170	return ((zil_header_t *)zilog->zl_header);
171}
172
173static void
174zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
175{
176	zio_cksum_t *zc = &bp->blk_cksum;
177
178	zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
179	zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
180	zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
181	zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
182}
183
184/*
185 * Read a log block and make sure it's valid.
186 */
187static int
188zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
189    char **end)
190{
191	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
192	arc_flags_t aflags = ARC_FLAG_WAIT;
193	arc_buf_t *abuf = NULL;
194	zbookmark_phys_t zb;
195	int error;
196
197	if (zilog->zl_header->zh_claim_txg == 0)
198		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
199
200	if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
201		zio_flags |= ZIO_FLAG_SPECULATIVE;
202
203	SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
204	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
205
206	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
207	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
208
209	if (error == 0) {
210		zio_cksum_t cksum = bp->blk_cksum;
211
212		/*
213		 * Validate the checksummed log block.
214		 *
215		 * Sequence numbers should be... sequential.  The checksum
216		 * verifier for the next block should be bp's checksum plus 1.
217		 *
218		 * Also check the log chain linkage and size used.
219		 */
220		cksum.zc_word[ZIL_ZC_SEQ]++;
221
222		if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
223			zil_chain_t *zilc = abuf->b_data;
224			char *lr = (char *)(zilc + 1);
225			uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
226
227			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
228			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
229				error = SET_ERROR(ECKSUM);
230			} else {
231				ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
232				bcopy(lr, dst, len);
233				*end = (char *)dst + len;
234				*nbp = zilc->zc_next_blk;
235			}
236		} else {
237			char *lr = abuf->b_data;
238			uint64_t size = BP_GET_LSIZE(bp);
239			zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
240
241			if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
242			    sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
243			    (zilc->zc_nused > (size - sizeof (*zilc)))) {
244				error = SET_ERROR(ECKSUM);
245			} else {
246				ASSERT3U(zilc->zc_nused, <=,
247				    SPA_OLD_MAXBLOCKSIZE);
248				bcopy(lr, dst, zilc->zc_nused);
249				*end = (char *)dst + zilc->zc_nused;
250				*nbp = zilc->zc_next_blk;
251			}
252		}
253
254		arc_buf_destroy(abuf, &abuf);
255	}
256
257	return (error);
258}
259
260/*
261 * Read a TX_WRITE log data block.
262 */
263static int
264zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
265{
266	enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
267	const blkptr_t *bp = &lr->lr_blkptr;
268	arc_flags_t aflags = ARC_FLAG_WAIT;
269	arc_buf_t *abuf = NULL;
270	zbookmark_phys_t zb;
271	int error;
272
273	if (BP_IS_HOLE(bp)) {
274		if (wbuf != NULL)
275			bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
276		return (0);
277	}
278
279	if (zilog->zl_header->zh_claim_txg == 0)
280		zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
281
282	SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
283	    ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
284
285	error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
286	    ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
287
288	if (error == 0) {
289		if (wbuf != NULL)
290			bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
291		arc_buf_destroy(abuf, &abuf);
292	}
293
294	return (error);
295}
296
297/*
298 * Parse the intent log, and call parse_func for each valid record within.
299 */
300int
301zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
302    zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
303{
304	const zil_header_t *zh = zilog->zl_header;
305	boolean_t claimed = !!zh->zh_claim_txg;
306	uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
307	uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
308	uint64_t max_blk_seq = 0;
309	uint64_t max_lr_seq = 0;
310	uint64_t blk_count = 0;
311	uint64_t lr_count = 0;
312	blkptr_t blk, next_blk;
313	char *lrbuf, *lrp;
314	int error = 0;
315
316	/*
317	 * Old logs didn't record the maximum zh_claim_lr_seq.
318	 */
319	if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
320		claim_lr_seq = UINT64_MAX;
321
322	/*
323	 * Starting at the block pointed to by zh_log we read the log chain.
324	 * For each block in the chain we strongly check that block to
325	 * ensure its validity.  We stop when an invalid block is found.
326	 * For each block pointer in the chain we call parse_blk_func().
327	 * For each record in each valid block we call parse_lr_func().
328	 * If the log has been claimed, stop if we encounter a sequence
329	 * number greater than the highest claimed sequence number.
330	 */
331	lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
332	zil_bp_tree_init(zilog);
333
334	for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
335		uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
336		int reclen;
337		char *end;
338
339		if (blk_seq > claim_blk_seq)
340			break;
341		if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
342			break;
343		ASSERT3U(max_blk_seq, <, blk_seq);
344		max_blk_seq = blk_seq;
345		blk_count++;
346
347		if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
348			break;
349
350		error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
351		if (error != 0)
352			break;
353
354		for (lrp = lrbuf; lrp < end; lrp += reclen) {
355			lr_t *lr = (lr_t *)lrp;
356			reclen = lr->lrc_reclen;
357			ASSERT3U(reclen, >=, sizeof (lr_t));
358			if (lr->lrc_seq > claim_lr_seq)
359				goto done;
360			if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
361				goto done;
362			ASSERT3U(max_lr_seq, <, lr->lrc_seq);
363			max_lr_seq = lr->lrc_seq;
364			lr_count++;
365		}
366	}
367done:
368	zilog->zl_parse_error = error;
369	zilog->zl_parse_blk_seq = max_blk_seq;
370	zilog->zl_parse_lr_seq = max_lr_seq;
371	zilog->zl_parse_blk_count = blk_count;
372	zilog->zl_parse_lr_count = lr_count;
373
374	ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
375	    (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
376
377	zil_bp_tree_fini(zilog);
378	zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
379
380	return (error);
381}
382
383static int
384zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
385{
386	/*
387	 * Claim log block if not already committed and not already claimed.
388	 * If tx == NULL, just verify that the block is claimable.
389	 */
390	if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
391	    zil_bp_tree_add(zilog, bp) != 0)
392		return (0);
393
394	return (zio_wait(zio_claim(NULL, zilog->zl_spa,
395	    tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
396	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
397}
398
399static int
400zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
401{
402	lr_write_t *lr = (lr_write_t *)lrc;
403	int error;
404
405	if (lrc->lrc_txtype != TX_WRITE)
406		return (0);
407
408	/*
409	 * If the block is not readable, don't claim it.  This can happen
410	 * in normal operation when a log block is written to disk before
411	 * some of the dmu_sync() blocks it points to.  In this case, the
412	 * transaction cannot have been committed to anyone (we would have
413	 * waited for all writes to be stable first), so it is semantically
414	 * correct to declare this the end of the log.
415	 */
416	if (lr->lr_blkptr.blk_birth >= first_txg &&
417	    (error = zil_read_log_data(zilog, lr, NULL)) != 0)
418		return (error);
419	return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
420}
421
422/* ARGSUSED */
423static int
424zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
425{
426	zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
427
428	return (0);
429}
430
431static int
432zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
433{
434	lr_write_t *lr = (lr_write_t *)lrc;
435	blkptr_t *bp = &lr->lr_blkptr;
436
437	/*
438	 * If we previously claimed it, we need to free it.
439	 */
440	if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
441	    bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
442	    !BP_IS_HOLE(bp))
443		zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
444
445	return (0);
446}
447
448static lwb_t *
449zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg)
450{
451	lwb_t *lwb;
452
453	lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
454	lwb->lwb_zilog = zilog;
455	lwb->lwb_blk = *bp;
456	lwb->lwb_slog = slog;
457	lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
458	lwb->lwb_max_txg = txg;
459	lwb->lwb_zio = NULL;
460	lwb->lwb_tx = NULL;
461	if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
462		lwb->lwb_nused = sizeof (zil_chain_t);
463		lwb->lwb_sz = BP_GET_LSIZE(bp);
464	} else {
465		lwb->lwb_nused = 0;
466		lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
467	}
468
469	mutex_enter(&zilog->zl_lock);
470	list_insert_tail(&zilog->zl_lwb_list, lwb);
471	mutex_exit(&zilog->zl_lock);
472
473	return (lwb);
474}
475
476/*
477 * Called when we create in-memory log transactions so that we know
478 * to cleanup the itxs at the end of spa_sync().
479 */
480void
481zilog_dirty(zilog_t *zilog, uint64_t txg)
482{
483	dsl_pool_t *dp = zilog->zl_dmu_pool;
484	dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
485
486	if (ds->ds_is_snapshot)
487		panic("dirtying snapshot!");
488
489	if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
490		/* up the hold count until we can be written out */
491		dmu_buf_add_ref(ds->ds_dbuf, zilog);
492	}
493}
494
495/*
496 * Determine if the zil is dirty in the specified txg. Callers wanting to
497 * ensure that the dirty state does not change must hold the itxg_lock for
498 * the specified txg. Holding the lock will ensure that the zil cannot be
499 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
500 * state.
501 */
502boolean_t
503zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
504{
505	dsl_pool_t *dp = zilog->zl_dmu_pool;
506
507	if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
508		return (B_TRUE);
509	return (B_FALSE);
510}
511
512/*
513 * Determine if the zil is dirty. The zil is considered dirty if it has
514 * any pending itx records that have not been cleaned by zil_clean().
515 */
516boolean_t
517zilog_is_dirty(zilog_t *zilog)
518{
519	dsl_pool_t *dp = zilog->zl_dmu_pool;
520
521	for (int t = 0; t < TXG_SIZE; t++) {
522		if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
523			return (B_TRUE);
524	}
525	return (B_FALSE);
526}
527
528/*
529 * Create an on-disk intent log.
530 */
531static lwb_t *
532zil_create(zilog_t *zilog)
533{
534	const zil_header_t *zh = zilog->zl_header;
535	lwb_t *lwb = NULL;
536	uint64_t txg = 0;
537	dmu_tx_t *tx = NULL;
538	blkptr_t blk;
539	int error = 0;
540	boolean_t slog = FALSE;
541
542	/*
543	 * Wait for any previous destroy to complete.
544	 */
545	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
546
547	ASSERT(zh->zh_claim_txg == 0);
548	ASSERT(zh->zh_replay_seq == 0);
549
550	blk = zh->zh_log;
551
552	/*
553	 * Allocate an initial log block if:
554	 *    - there isn't one already
555	 *    - the existing block is the wrong endianess
556	 */
557	if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
558		tx = dmu_tx_create(zilog->zl_os);
559		VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
560		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
561		txg = dmu_tx_get_txg(tx);
562
563		if (!BP_IS_HOLE(&blk)) {
564			zio_free_zil(zilog->zl_spa, txg, &blk);
565			BP_ZERO(&blk);
566		}
567
568		error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
569		    ZIL_MIN_BLKSZ, &slog);
570
571		if (error == 0)
572			zil_init_log_chain(zilog, &blk);
573	}
574
575	/*
576	 * Allocate a log write buffer (lwb) for the first log block.
577	 */
578	if (error == 0)
579		lwb = zil_alloc_lwb(zilog, &blk, slog, txg);
580
581	/*
582	 * If we just allocated the first log block, commit our transaction
583	 * and wait for zil_sync() to stuff the block poiner into zh_log.
584	 * (zh is part of the MOS, so we cannot modify it in open context.)
585	 */
586	if (tx != NULL) {
587		dmu_tx_commit(tx);
588		txg_wait_synced(zilog->zl_dmu_pool, txg);
589	}
590
591	ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
592
593	return (lwb);
594}
595
596/*
597 * In one tx, free all log blocks and clear the log header.
598 * If keep_first is set, then we're replaying a log with no content.
599 * We want to keep the first block, however, so that the first
600 * synchronous transaction doesn't require a txg_wait_synced()
601 * in zil_create().  We don't need to txg_wait_synced() here either
602 * when keep_first is set, because both zil_create() and zil_destroy()
603 * will wait for any in-progress destroys to complete.
604 */
605void
606zil_destroy(zilog_t *zilog, boolean_t keep_first)
607{
608	const zil_header_t *zh = zilog->zl_header;
609	lwb_t *lwb;
610	dmu_tx_t *tx;
611	uint64_t txg;
612
613	/*
614	 * Wait for any previous destroy to complete.
615	 */
616	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
617
618	zilog->zl_old_header = *zh;		/* debugging aid */
619
620	if (BP_IS_HOLE(&zh->zh_log))
621		return;
622
623	tx = dmu_tx_create(zilog->zl_os);
624	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
625	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
626	txg = dmu_tx_get_txg(tx);
627
628	mutex_enter(&zilog->zl_lock);
629
630	ASSERT3U(zilog->zl_destroy_txg, <, txg);
631	zilog->zl_destroy_txg = txg;
632	zilog->zl_keep_first = keep_first;
633
634	if (!list_is_empty(&zilog->zl_lwb_list)) {
635		ASSERT(zh->zh_claim_txg == 0);
636		VERIFY(!keep_first);
637		while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
638			list_remove(&zilog->zl_lwb_list, lwb);
639			if (lwb->lwb_buf != NULL)
640				zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
641			zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
642			kmem_cache_free(zil_lwb_cache, lwb);
643		}
644	} else if (!keep_first) {
645		zil_destroy_sync(zilog, tx);
646	}
647	mutex_exit(&zilog->zl_lock);
648
649	dmu_tx_commit(tx);
650}
651
652void
653zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
654{
655	ASSERT(list_is_empty(&zilog->zl_lwb_list));
656	(void) zil_parse(zilog, zil_free_log_block,
657	    zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
658}
659
660int
661zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
662{
663	dmu_tx_t *tx = txarg;
664	uint64_t first_txg = dmu_tx_get_txg(tx);
665	zilog_t *zilog;
666	zil_header_t *zh;
667	objset_t *os;
668	int error;
669
670	error = dmu_objset_own_obj(dp, ds->ds_object,
671	    DMU_OST_ANY, B_FALSE, FTAG, &os);
672	if (error != 0) {
673		/*
674		 * EBUSY indicates that the objset is inconsistent, in which
675		 * case it can not have a ZIL.
676		 */
677		if (error != EBUSY) {
678			cmn_err(CE_WARN, "can't open objset for %llu, error %u",
679			    (unsigned long long)ds->ds_object, error);
680		}
681		return (0);
682	}
683
684	zilog = dmu_objset_zil(os);
685	zh = zil_header_in_syncing_context(zilog);
686
687	if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
688		if (!BP_IS_HOLE(&zh->zh_log))
689			zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
690		BP_ZERO(&zh->zh_log);
691		dsl_dataset_dirty(dmu_objset_ds(os), tx);
692		dmu_objset_disown(os, FTAG);
693		return (0);
694	}
695
696	/*
697	 * Claim all log blocks if we haven't already done so, and remember
698	 * the highest claimed sequence number.  This ensures that if we can
699	 * read only part of the log now (e.g. due to a missing device),
700	 * but we can read the entire log later, we will not try to replay
701	 * or destroy beyond the last block we successfully claimed.
702	 */
703	ASSERT3U(zh->zh_claim_txg, <=, first_txg);
704	if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
705		(void) zil_parse(zilog, zil_claim_log_block,
706		    zil_claim_log_record, tx, first_txg);
707		zh->zh_claim_txg = first_txg;
708		zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
709		zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
710		if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
711			zh->zh_flags |= ZIL_REPLAY_NEEDED;
712		zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
713		dsl_dataset_dirty(dmu_objset_ds(os), tx);
714	}
715
716	ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
717	dmu_objset_disown(os, FTAG);
718	return (0);
719}
720
721/*
722 * Check the log by walking the log chain.
723 * Checksum errors are ok as they indicate the end of the chain.
724 * Any other error (no device or read failure) returns an error.
725 */
726/* ARGSUSED */
727int
728zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
729{
730	zilog_t *zilog;
731	objset_t *os;
732	blkptr_t *bp;
733	int error;
734
735	ASSERT(tx == NULL);
736
737	error = dmu_objset_from_ds(ds, &os);
738	if (error != 0) {
739		cmn_err(CE_WARN, "can't open objset %llu, error %d",
740		    (unsigned long long)ds->ds_object, error);
741		return (0);
742	}
743
744	zilog = dmu_objset_zil(os);
745	bp = (blkptr_t *)&zilog->zl_header->zh_log;
746
747	/*
748	 * Check the first block and determine if it's on a log device
749	 * which may have been removed or faulted prior to loading this
750	 * pool.  If so, there's no point in checking the rest of the log
751	 * as its content should have already been synced to the pool.
752	 */
753	if (!BP_IS_HOLE(bp)) {
754		vdev_t *vd;
755		boolean_t valid = B_TRUE;
756
757		spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
758		vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
759		if (vd->vdev_islog && vdev_is_dead(vd))
760			valid = vdev_log_state_valid(vd);
761		spa_config_exit(os->os_spa, SCL_STATE, FTAG);
762
763		if (!valid)
764			return (0);
765	}
766
767	/*
768	 * Because tx == NULL, zil_claim_log_block() will not actually claim
769	 * any blocks, but just determine whether it is possible to do so.
770	 * In addition to checking the log chain, zil_claim_log_block()
771	 * will invoke zio_claim() with a done func of spa_claim_notify(),
772	 * which will update spa_max_claim_txg.  See spa_load() for details.
773	 */
774	error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
775	    zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
776
777	return ((error == ECKSUM || error == ENOENT) ? 0 : error);
778}
779
780static int
781zil_vdev_compare(const void *x1, const void *x2)
782{
783	const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
784	const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
785
786	if (v1 < v2)
787		return (-1);
788	if (v1 > v2)
789		return (1);
790
791	return (0);
792}
793
794void
795zil_add_block(zilog_t *zilog, const blkptr_t *bp)
796{
797	avl_tree_t *t = &zilog->zl_vdev_tree;
798	avl_index_t where;
799	zil_vdev_node_t *zv, zvsearch;
800	int ndvas = BP_GET_NDVAS(bp);
801	int i;
802
803	if (zfs_nocacheflush)
804		return;
805
806	ASSERT(zilog->zl_writer);
807
808	/*
809	 * Even though we're zl_writer, we still need a lock because the
810	 * zl_get_data() callbacks may have dmu_sync() done callbacks
811	 * that will run concurrently.
812	 */
813	mutex_enter(&zilog->zl_vdev_lock);
814	for (i = 0; i < ndvas; i++) {
815		zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
816		if (avl_find(t, &zvsearch, &where) == NULL) {
817			zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
818			zv->zv_vdev = zvsearch.zv_vdev;
819			avl_insert(t, zv, where);
820		}
821	}
822	mutex_exit(&zilog->zl_vdev_lock);
823}
824
825static void
826zil_flush_vdevs(zilog_t *zilog)
827{
828	spa_t *spa = zilog->zl_spa;
829	avl_tree_t *t = &zilog->zl_vdev_tree;
830	void *cookie = NULL;
831	zil_vdev_node_t *zv;
832	zio_t *zio = NULL;
833
834	ASSERT(zilog->zl_writer);
835
836	/*
837	 * We don't need zl_vdev_lock here because we're the zl_writer,
838	 * and all zl_get_data() callbacks are done.
839	 */
840	if (avl_numnodes(t) == 0)
841		return;
842
843	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
844
845	while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
846		vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
847		if (vd != NULL && !vd->vdev_nowritecache) {
848			if (zio == NULL)
849				zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
850			zio_flush(zio, vd);
851		}
852		kmem_free(zv, sizeof (*zv));
853	}
854
855	/*
856	 * Wait for all the flushes to complete.  Not all devices actually
857	 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
858	 */
859	if (zio)
860		(void) zio_wait(zio);
861
862	spa_config_exit(spa, SCL_STATE, FTAG);
863}
864
865/*
866 * Function called when a log block write completes
867 */
868static void
869zil_lwb_write_done(zio_t *zio)
870{
871	lwb_t *lwb = zio->io_private;
872	zilog_t *zilog = lwb->lwb_zilog;
873	dmu_tx_t *tx = lwb->lwb_tx;
874
875	ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
876	ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
877	ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
878	ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
879	ASSERT(!BP_IS_GANG(zio->io_bp));
880	ASSERT(!BP_IS_HOLE(zio->io_bp));
881	ASSERT(BP_GET_FILL(zio->io_bp) == 0);
882
883	/*
884	 * Ensure the lwb buffer pointer is cleared before releasing
885	 * the txg. If we have had an allocation failure and
886	 * the txg is waiting to sync then we want want zil_sync()
887	 * to remove the lwb so that it's not picked up as the next new
888	 * one in zil_commit_writer(). zil_sync() will only remove
889	 * the lwb if lwb_buf is null.
890	 */
891	abd_put(zio->io_abd);
892	zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
893	mutex_enter(&zilog->zl_lock);
894	lwb->lwb_buf = NULL;
895	lwb->lwb_tx = NULL;
896	mutex_exit(&zilog->zl_lock);
897
898	/*
899	 * Now that we've written this log block, we have a stable pointer
900	 * to the next block in the chain, so it's OK to let the txg in
901	 * which we allocated the next block sync.
902	 */
903	dmu_tx_commit(tx);
904}
905
906/*
907 * Initialize the io for a log block.
908 */
909static void
910zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
911{
912	zbookmark_phys_t zb;
913	zio_priority_t prio;
914
915	SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
916	    ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
917	    lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
918
919	if (zilog->zl_root_zio == NULL) {
920		zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
921		    ZIO_FLAG_CANFAIL);
922	}
923	if (lwb->lwb_zio == NULL) {
924		abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
925		    BP_GET_LSIZE(&lwb->lwb_blk));
926		if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
927			prio = ZIO_PRIORITY_SYNC_WRITE;
928		else
929			prio = ZIO_PRIORITY_ASYNC_WRITE;
930		lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
931		    0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk),
932		    zil_lwb_write_done, lwb, prio,
933		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
934	}
935}
936
937/*
938 * Define a limited set of intent log block sizes.
939 *
940 * These must be a multiple of 4KB. Note only the amount used (again
941 * aligned to 4KB) actually gets written. However, we can't always just
942 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
943 */
944uint64_t zil_block_buckets[] = {
945    4096,		/* non TX_WRITE */
946    8192+4096,		/* data base */
947    32*1024 + 4096, 	/* NFS writes */
948    UINT64_MAX
949};
950
951/*
952 * Start a log block write and advance to the next log block.
953 * Calls are serialized.
954 */
955static lwb_t *
956zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb, boolean_t last)
957{
958	lwb_t *nlwb = NULL;
959	zil_chain_t *zilc;
960	spa_t *spa = zilog->zl_spa;
961	blkptr_t *bp;
962	dmu_tx_t *tx;
963	uint64_t txg;
964	uint64_t zil_blksz, wsz;
965	int i, error;
966	boolean_t slog;
967
968	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
969		zilc = (zil_chain_t *)lwb->lwb_buf;
970		bp = &zilc->zc_next_blk;
971	} else {
972		zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
973		bp = &zilc->zc_next_blk;
974	}
975
976	ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
977
978	/*
979	 * Allocate the next block and save its address in this block
980	 * before writing it in order to establish the log chain.
981	 * Note that if the allocation of nlwb synced before we wrote
982	 * the block that points at it (lwb), we'd leak it if we crashed.
983	 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
984	 * We dirty the dataset to ensure that zil_sync() will be called
985	 * to clean up in the event of allocation failure or I/O failure.
986	 */
987	tx = dmu_tx_create(zilog->zl_os);
988	VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
989	dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
990	txg = dmu_tx_get_txg(tx);
991
992	lwb->lwb_tx = tx;
993
994	/*
995	 * Log blocks are pre-allocated. Here we select the size of the next
996	 * block, based on size used in the last block.
997	 * - first find the smallest bucket that will fit the block from a
998	 *   limited set of block sizes. This is because it's faster to write
999	 *   blocks allocated from the same metaslab as they are adjacent or
1000	 *   close.
1001	 * - next find the maximum from the new suggested size and an array of
1002	 *   previous sizes. This lessens a picket fence effect of wrongly
1003	 *   guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1004	 *   requests.
1005	 *
1006	 * Note we only write what is used, but we can't just allocate
1007	 * the maximum block size because we can exhaust the available
1008	 * pool log space.
1009	 */
1010	zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1011	for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1012		continue;
1013	zil_blksz = zil_block_buckets[i];
1014	if (zil_blksz == UINT64_MAX)
1015		zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1016	zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1017	for (i = 0; i < ZIL_PREV_BLKS; i++)
1018		zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1019	zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1020
1021	BP_ZERO(bp);
1022	/* pass the old blkptr in order to spread log blocks across devs */
1023	error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz, &slog);
1024	if (error == 0) {
1025		ASSERT3U(bp->blk_birth, ==, txg);
1026		bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1027		bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1028
1029		/*
1030		 * Allocate a new log write buffer (lwb).
1031		 */
1032		nlwb = zil_alloc_lwb(zilog, bp, slog, txg);
1033
1034		/* Record the block for later vdev flushing */
1035		zil_add_block(zilog, &lwb->lwb_blk);
1036	}
1037
1038	if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1039		/* For Slim ZIL only write what is used. */
1040		wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1041		ASSERT3U(wsz, <=, lwb->lwb_sz);
1042		zio_shrink(lwb->lwb_zio, wsz);
1043
1044	} else {
1045		wsz = lwb->lwb_sz;
1046	}
1047
1048	zilc->zc_pad = 0;
1049	zilc->zc_nused = lwb->lwb_nused;
1050	zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1051
1052	/*
1053	 * clear unused data for security
1054	 */
1055	bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1056
1057	if (last)
1058		lwb->lwb_zio->io_pipeline &= ~ZIO_STAGE_ISSUE_ASYNC;
1059	zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1060
1061	/*
1062	 * If there was an allocation failure then nlwb will be null which
1063	 * forces a txg_wait_synced().
1064	 */
1065	return (nlwb);
1066}
1067
1068static lwb_t *
1069zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1070{
1071	lr_t *lrcb, *lrc;
1072	lr_write_t *lrwb, *lrw;
1073	char *lr_buf;
1074	uint64_t dlen, dnow, lwb_sp, reclen, txg;
1075
1076	if (lwb == NULL)
1077		return (NULL);
1078
1079	ASSERT(lwb->lwb_buf != NULL);
1080
1081	lrc = &itx->itx_lr;		/* Common log record inside itx. */
1082	lrw = (lr_write_t *)lrc;	/* Write log record inside itx. */
1083	if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1084		dlen = P2ROUNDUP_TYPED(
1085		    lrw->lr_length, sizeof (uint64_t), uint64_t);
1086	} else {
1087		dlen = 0;
1088	}
1089	reclen = lrc->lrc_reclen;
1090	zilog->zl_cur_used += (reclen + dlen);
1091	txg = lrc->lrc_txg;
1092
1093	zil_lwb_write_init(zilog, lwb);
1094
1095cont:
1096	/*
1097	 * If this record won't fit in the current log block, start a new one.
1098	 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1099	 */
1100	lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1101	if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1102	    lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1103	    lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1104		lwb = zil_lwb_write_start(zilog, lwb, B_FALSE);
1105		if (lwb == NULL)
1106			return (NULL);
1107		zil_lwb_write_init(zilog, lwb);
1108		ASSERT(LWB_EMPTY(lwb));
1109		lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1110		ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1111	}
1112
1113	dnow = MIN(dlen, lwb_sp - reclen);
1114	lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1115	bcopy(lrc, lr_buf, reclen);
1116	lrcb = (lr_t *)lr_buf;		/* Like lrc, but inside lwb. */
1117	lrwb = (lr_write_t *)lrcb;	/* Like lrw, but inside lwb. */
1118
1119	/*
1120	 * If it's a write, fetch the data or get its blkptr as appropriate.
1121	 */
1122	if (lrc->lrc_txtype == TX_WRITE) {
1123		if (txg > spa_freeze_txg(zilog->zl_spa))
1124			txg_wait_synced(zilog->zl_dmu_pool, txg);
1125		if (itx->itx_wr_state != WR_COPIED) {
1126			char *dbuf;
1127			int error;
1128
1129			if (itx->itx_wr_state == WR_NEED_COPY) {
1130				dbuf = lr_buf + reclen;
1131				lrcb->lrc_reclen += dnow;
1132				if (lrwb->lr_length > dnow)
1133					lrwb->lr_length = dnow;
1134				lrw->lr_offset += dnow;
1135				lrw->lr_length -= dnow;
1136			} else {
1137				ASSERT(itx->itx_wr_state == WR_INDIRECT);
1138				dbuf = NULL;
1139			}
1140			error = zilog->zl_get_data(
1141			    itx->itx_private, lrwb, dbuf, lwb->lwb_zio);
1142			if (error == EIO) {
1143				txg_wait_synced(zilog->zl_dmu_pool, txg);
1144				return (lwb);
1145			}
1146			if (error != 0) {
1147				ASSERT(error == ENOENT || error == EEXIST ||
1148				    error == EALREADY);
1149				return (lwb);
1150			}
1151		}
1152	}
1153
1154	/*
1155	 * We're actually making an entry, so update lrc_seq to be the
1156	 * log record sequence number.  Note that this is generally not
1157	 * equal to the itx sequence number because not all transactions
1158	 * are synchronous, and sometimes spa_sync() gets there first.
1159	 */
1160	lrcb->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1161	lwb->lwb_nused += reclen + dnow;
1162	lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1163	ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1164	ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1165
1166	dlen -= dnow;
1167	if (dlen > 0) {
1168		zilog->zl_cur_used += reclen;
1169		goto cont;
1170	}
1171
1172	return (lwb);
1173}
1174
1175itx_t *
1176zil_itx_create(uint64_t txtype, size_t lrsize)
1177{
1178	itx_t *itx;
1179
1180	lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1181
1182	itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1183	itx->itx_lr.lrc_txtype = txtype;
1184	itx->itx_lr.lrc_reclen = lrsize;
1185	itx->itx_lr.lrc_seq = 0;	/* defensive */
1186	itx->itx_sync = B_TRUE;		/* default is synchronous */
1187
1188	return (itx);
1189}
1190
1191void
1192zil_itx_destroy(itx_t *itx)
1193{
1194	kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1195}
1196
1197/*
1198 * Free up the sync and async itxs. The itxs_t has already been detached
1199 * so no locks are needed.
1200 */
1201static void
1202zil_itxg_clean(itxs_t *itxs)
1203{
1204	itx_t *itx;
1205	list_t *list;
1206	avl_tree_t *t;
1207	void *cookie;
1208	itx_async_node_t *ian;
1209
1210	list = &itxs->i_sync_list;
1211	while ((itx = list_head(list)) != NULL) {
1212		list_remove(list, itx);
1213		kmem_free(itx, offsetof(itx_t, itx_lr) +
1214		    itx->itx_lr.lrc_reclen);
1215	}
1216
1217	cookie = NULL;
1218	t = &itxs->i_async_tree;
1219	while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1220		list = &ian->ia_list;
1221		while ((itx = list_head(list)) != NULL) {
1222			list_remove(list, itx);
1223			kmem_free(itx, offsetof(itx_t, itx_lr) +
1224			    itx->itx_lr.lrc_reclen);
1225		}
1226		list_destroy(list);
1227		kmem_free(ian, sizeof (itx_async_node_t));
1228	}
1229	avl_destroy(t);
1230
1231	kmem_free(itxs, sizeof (itxs_t));
1232}
1233
1234static int
1235zil_aitx_compare(const void *x1, const void *x2)
1236{
1237	const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1238	const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1239
1240	if (o1 < o2)
1241		return (-1);
1242	if (o1 > o2)
1243		return (1);
1244
1245	return (0);
1246}
1247
1248/*
1249 * Remove all async itx with the given oid.
1250 */
1251static void
1252zil_remove_async(zilog_t *zilog, uint64_t oid)
1253{
1254	uint64_t otxg, txg;
1255	itx_async_node_t *ian;
1256	avl_tree_t *t;
1257	avl_index_t where;
1258	list_t clean_list;
1259	itx_t *itx;
1260
1261	ASSERT(oid != 0);
1262	list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1263
1264	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1265		otxg = ZILTEST_TXG;
1266	else
1267		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1268
1269	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1270		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1271
1272		mutex_enter(&itxg->itxg_lock);
1273		if (itxg->itxg_txg != txg) {
1274			mutex_exit(&itxg->itxg_lock);
1275			continue;
1276		}
1277
1278		/*
1279		 * Locate the object node and append its list.
1280		 */
1281		t = &itxg->itxg_itxs->i_async_tree;
1282		ian = avl_find(t, &oid, &where);
1283		if (ian != NULL)
1284			list_move_tail(&clean_list, &ian->ia_list);
1285		mutex_exit(&itxg->itxg_lock);
1286	}
1287	while ((itx = list_head(&clean_list)) != NULL) {
1288		list_remove(&clean_list, itx);
1289		kmem_free(itx, offsetof(itx_t, itx_lr) +
1290		    itx->itx_lr.lrc_reclen);
1291	}
1292	list_destroy(&clean_list);
1293}
1294
1295void
1296zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1297{
1298	uint64_t txg;
1299	itxg_t *itxg;
1300	itxs_t *itxs, *clean = NULL;
1301
1302	/*
1303	 * Object ids can be re-instantiated in the next txg so
1304	 * remove any async transactions to avoid future leaks.
1305	 * This can happen if a fsync occurs on the re-instantiated
1306	 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1307	 * the new file data and flushes a write record for the old object.
1308	 */
1309	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1310		zil_remove_async(zilog, itx->itx_oid);
1311
1312	/*
1313	 * Ensure the data of a renamed file is committed before the rename.
1314	 */
1315	if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1316		zil_async_to_sync(zilog, itx->itx_oid);
1317
1318	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1319		txg = ZILTEST_TXG;
1320	else
1321		txg = dmu_tx_get_txg(tx);
1322
1323	itxg = &zilog->zl_itxg[txg & TXG_MASK];
1324	mutex_enter(&itxg->itxg_lock);
1325	itxs = itxg->itxg_itxs;
1326	if (itxg->itxg_txg != txg) {
1327		if (itxs != NULL) {
1328			/*
1329			 * The zil_clean callback hasn't got around to cleaning
1330			 * this itxg. Save the itxs for release below.
1331			 * This should be rare.
1332			 */
1333			zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1334			    "txg %llu", itxg->itxg_txg);
1335			clean = itxg->itxg_itxs;
1336		}
1337		itxg->itxg_txg = txg;
1338		itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1339
1340		list_create(&itxs->i_sync_list, sizeof (itx_t),
1341		    offsetof(itx_t, itx_node));
1342		avl_create(&itxs->i_async_tree, zil_aitx_compare,
1343		    sizeof (itx_async_node_t),
1344		    offsetof(itx_async_node_t, ia_node));
1345	}
1346	if (itx->itx_sync) {
1347		list_insert_tail(&itxs->i_sync_list, itx);
1348	} else {
1349		avl_tree_t *t = &itxs->i_async_tree;
1350		uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1351		itx_async_node_t *ian;
1352		avl_index_t where;
1353
1354		ian = avl_find(t, &foid, &where);
1355		if (ian == NULL) {
1356			ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1357			list_create(&ian->ia_list, sizeof (itx_t),
1358			    offsetof(itx_t, itx_node));
1359			ian->ia_foid = foid;
1360			avl_insert(t, ian, where);
1361		}
1362		list_insert_tail(&ian->ia_list, itx);
1363	}
1364
1365	itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1366	zilog_dirty(zilog, txg);
1367	mutex_exit(&itxg->itxg_lock);
1368
1369	/* Release the old itxs now we've dropped the lock */
1370	if (clean != NULL)
1371		zil_itxg_clean(clean);
1372}
1373
1374/*
1375 * If there are any in-memory intent log transactions which have now been
1376 * synced then start up a taskq to free them. We should only do this after we
1377 * have written out the uberblocks (i.e. txg has been comitted) so that
1378 * don't inadvertently clean out in-memory log records that would be required
1379 * by zil_commit().
1380 */
1381void
1382zil_clean(zilog_t *zilog, uint64_t synced_txg)
1383{
1384	itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1385	itxs_t *clean_me;
1386
1387	mutex_enter(&itxg->itxg_lock);
1388	if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1389		mutex_exit(&itxg->itxg_lock);
1390		return;
1391	}
1392	ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1393	ASSERT3U(itxg->itxg_txg, !=, 0);
1394	clean_me = itxg->itxg_itxs;
1395	itxg->itxg_itxs = NULL;
1396	itxg->itxg_txg = 0;
1397	mutex_exit(&itxg->itxg_lock);
1398	/*
1399	 * Preferably start a task queue to free up the old itxs but
1400	 * if taskq_dispatch can't allocate resources to do that then
1401	 * free it in-line. This should be rare. Note, using TQ_SLEEP
1402	 * created a bad performance problem.
1403	 */
1404	ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1405	ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1406	if (taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1407	    (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1408		zil_itxg_clean(clean_me);
1409}
1410
1411/*
1412 * Get the list of itxs to commit into zl_itx_commit_list.
1413 */
1414static void
1415zil_get_commit_list(zilog_t *zilog)
1416{
1417	uint64_t otxg, txg;
1418	list_t *commit_list = &zilog->zl_itx_commit_list;
1419
1420	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1421		otxg = ZILTEST_TXG;
1422	else
1423		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1424
1425	/*
1426	 * This is inherently racy, since there is nothing to prevent
1427	 * the last synced txg from changing. That's okay since we'll
1428	 * only commit things in the future.
1429	 */
1430	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1431		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1432
1433		mutex_enter(&itxg->itxg_lock);
1434		if (itxg->itxg_txg != txg) {
1435			mutex_exit(&itxg->itxg_lock);
1436			continue;
1437		}
1438
1439		/*
1440		 * If we're adding itx records to the zl_itx_commit_list,
1441		 * then the zil better be dirty in this "txg". We can assert
1442		 * that here since we're holding the itxg_lock which will
1443		 * prevent spa_sync from cleaning it. Once we add the itxs
1444		 * to the zl_itx_commit_list we must commit it to disk even
1445		 * if it's unnecessary (i.e. the txg was synced).
1446		 */
1447		ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1448		    spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1449		list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1450
1451		mutex_exit(&itxg->itxg_lock);
1452	}
1453}
1454
1455/*
1456 * Move the async itxs for a specified object to commit into sync lists.
1457 */
1458void
1459zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1460{
1461	uint64_t otxg, txg;
1462	itx_async_node_t *ian;
1463	avl_tree_t *t;
1464	avl_index_t where;
1465
1466	if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1467		otxg = ZILTEST_TXG;
1468	else
1469		otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1470
1471	/*
1472	 * This is inherently racy, since there is nothing to prevent
1473	 * the last synced txg from changing.
1474	 */
1475	for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1476		itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1477
1478		mutex_enter(&itxg->itxg_lock);
1479		if (itxg->itxg_txg != txg) {
1480			mutex_exit(&itxg->itxg_lock);
1481			continue;
1482		}
1483
1484		/*
1485		 * If a foid is specified then find that node and append its
1486		 * list. Otherwise walk the tree appending all the lists
1487		 * to the sync list. We add to the end rather than the
1488		 * beginning to ensure the create has happened.
1489		 */
1490		t = &itxg->itxg_itxs->i_async_tree;
1491		if (foid != 0) {
1492			ian = avl_find(t, &foid, &where);
1493			if (ian != NULL) {
1494				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1495				    &ian->ia_list);
1496			}
1497		} else {
1498			void *cookie = NULL;
1499
1500			while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1501				list_move_tail(&itxg->itxg_itxs->i_sync_list,
1502				    &ian->ia_list);
1503				list_destroy(&ian->ia_list);
1504				kmem_free(ian, sizeof (itx_async_node_t));
1505			}
1506		}
1507		mutex_exit(&itxg->itxg_lock);
1508	}
1509}
1510
1511static void
1512zil_commit_writer(zilog_t *zilog)
1513{
1514	uint64_t txg;
1515	itx_t *itx;
1516	lwb_t *lwb;
1517	spa_t *spa = zilog->zl_spa;
1518	int error = 0;
1519
1520	ASSERT(zilog->zl_root_zio == NULL);
1521
1522	mutex_exit(&zilog->zl_lock);
1523
1524	zil_get_commit_list(zilog);
1525
1526	/*
1527	 * Return if there's nothing to commit before we dirty the fs by
1528	 * calling zil_create().
1529	 */
1530	if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1531		mutex_enter(&zilog->zl_lock);
1532		return;
1533	}
1534
1535	if (zilog->zl_suspend) {
1536		lwb = NULL;
1537	} else {
1538		lwb = list_tail(&zilog->zl_lwb_list);
1539		if (lwb == NULL)
1540			lwb = zil_create(zilog);
1541	}
1542
1543	DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1544	while (itx = list_head(&zilog->zl_itx_commit_list)) {
1545		txg = itx->itx_lr.lrc_txg;
1546		ASSERT3U(txg, !=, 0);
1547
1548		/*
1549		 * This is inherently racy and may result in us writing
1550		 * out a log block for a txg that was just synced. This is
1551		 * ok since we'll end cleaning up that log block the next
1552		 * time we call zil_sync().
1553		 */
1554		if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1555			lwb = zil_lwb_commit(zilog, itx, lwb);
1556		list_remove(&zilog->zl_itx_commit_list, itx);
1557		kmem_free(itx, offsetof(itx_t, itx_lr)
1558		    + itx->itx_lr.lrc_reclen);
1559	}
1560
1561	/* write the last block out */
1562	if (lwb != NULL && lwb->lwb_zio != NULL)
1563		lwb = zil_lwb_write_start(zilog, lwb, B_TRUE);
1564
1565	zilog->zl_cur_used = 0;
1566
1567	/*
1568	 * Wait if necessary for the log blocks to be on stable storage.
1569	 */
1570	if (zilog->zl_root_zio) {
1571		error = zio_wait(zilog->zl_root_zio);
1572		zilog->zl_root_zio = NULL;
1573		zil_flush_vdevs(zilog);
1574	}
1575
1576	if (error || lwb == NULL)
1577		txg_wait_synced(zilog->zl_dmu_pool, 0);
1578
1579	mutex_enter(&zilog->zl_lock);
1580
1581	/*
1582	 * Remember the highest committed log sequence number for ztest.
1583	 * We only update this value when all the log writes succeeded,
1584	 * because ztest wants to ASSERT that it got the whole log chain.
1585	 */
1586	if (error == 0 && lwb != NULL)
1587		zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1588}
1589
1590/*
1591 * Commit zfs transactions to stable storage.
1592 * If foid is 0 push out all transactions, otherwise push only those
1593 * for that object or might reference that object.
1594 *
1595 * itxs are committed in batches. In a heavily stressed zil there will be
1596 * a commit writer thread who is writing out a bunch of itxs to the log
1597 * for a set of committing threads (cthreads) in the same batch as the writer.
1598 * Those cthreads are all waiting on the same cv for that batch.
1599 *
1600 * There will also be a different and growing batch of threads that are
1601 * waiting to commit (qthreads). When the committing batch completes
1602 * a transition occurs such that the cthreads exit and the qthreads become
1603 * cthreads. One of the new cthreads becomes the writer thread for the
1604 * batch. Any new threads arriving become new qthreads.
1605 *
1606 * Only 2 condition variables are needed and there's no transition
1607 * between the two cvs needed. They just flip-flop between qthreads
1608 * and cthreads.
1609 *
1610 * Using this scheme we can efficiently wakeup up only those threads
1611 * that have been committed.
1612 */
1613void
1614zil_commit(zilog_t *zilog, uint64_t foid)
1615{
1616	uint64_t mybatch;
1617
1618	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1619		return;
1620
1621	/* move the async itxs for the foid to the sync queues */
1622	zil_async_to_sync(zilog, foid);
1623
1624	mutex_enter(&zilog->zl_lock);
1625	mybatch = zilog->zl_next_batch;
1626	while (zilog->zl_writer) {
1627		cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1628		if (mybatch <= zilog->zl_com_batch) {
1629			mutex_exit(&zilog->zl_lock);
1630			return;
1631		}
1632	}
1633
1634	zilog->zl_next_batch++;
1635	zilog->zl_writer = B_TRUE;
1636	zil_commit_writer(zilog);
1637	zilog->zl_com_batch = mybatch;
1638	zilog->zl_writer = B_FALSE;
1639	mutex_exit(&zilog->zl_lock);
1640
1641	/* wake up one thread to become the next writer */
1642	cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1643
1644	/* wake up all threads waiting for this batch to be committed */
1645	cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1646}
1647
1648/*
1649 * Called in syncing context to free committed log blocks and update log header.
1650 */
1651void
1652zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1653{
1654	zil_header_t *zh = zil_header_in_syncing_context(zilog);
1655	uint64_t txg = dmu_tx_get_txg(tx);
1656	spa_t *spa = zilog->zl_spa;
1657	uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1658	lwb_t *lwb;
1659
1660	/*
1661	 * We don't zero out zl_destroy_txg, so make sure we don't try
1662	 * to destroy it twice.
1663	 */
1664	if (spa_sync_pass(spa) != 1)
1665		return;
1666
1667	mutex_enter(&zilog->zl_lock);
1668
1669	ASSERT(zilog->zl_stop_sync == 0);
1670
1671	if (*replayed_seq != 0) {
1672		ASSERT(zh->zh_replay_seq < *replayed_seq);
1673		zh->zh_replay_seq = *replayed_seq;
1674		*replayed_seq = 0;
1675	}
1676
1677	if (zilog->zl_destroy_txg == txg) {
1678		blkptr_t blk = zh->zh_log;
1679
1680		ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1681
1682		bzero(zh, sizeof (zil_header_t));
1683		bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1684
1685		if (zilog->zl_keep_first) {
1686			/*
1687			 * If this block was part of log chain that couldn't
1688			 * be claimed because a device was missing during
1689			 * zil_claim(), but that device later returns,
1690			 * then this block could erroneously appear valid.
1691			 * To guard against this, assign a new GUID to the new
1692			 * log chain so it doesn't matter what blk points to.
1693			 */
1694			zil_init_log_chain(zilog, &blk);
1695			zh->zh_log = blk;
1696		}
1697	}
1698
1699	while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1700		zh->zh_log = lwb->lwb_blk;
1701		if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1702			break;
1703		list_remove(&zilog->zl_lwb_list, lwb);
1704		zio_free_zil(spa, txg, &lwb->lwb_blk);
1705		kmem_cache_free(zil_lwb_cache, lwb);
1706
1707		/*
1708		 * If we don't have anything left in the lwb list then
1709		 * we've had an allocation failure and we need to zero
1710		 * out the zil_header blkptr so that we don't end
1711		 * up freeing the same block twice.
1712		 */
1713		if (list_head(&zilog->zl_lwb_list) == NULL)
1714			BP_ZERO(&zh->zh_log);
1715	}
1716	mutex_exit(&zilog->zl_lock);
1717}
1718
1719void
1720zil_init(void)
1721{
1722	zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1723	    sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1724}
1725
1726void
1727zil_fini(void)
1728{
1729	kmem_cache_destroy(zil_lwb_cache);
1730}
1731
1732void
1733zil_set_sync(zilog_t *zilog, uint64_t sync)
1734{
1735	zilog->zl_sync = sync;
1736}
1737
1738void
1739zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1740{
1741	zilog->zl_logbias = logbias;
1742}
1743
1744zilog_t *
1745zil_alloc(objset_t *os, zil_header_t *zh_phys)
1746{
1747	zilog_t *zilog;
1748
1749	zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1750
1751	zilog->zl_header = zh_phys;
1752	zilog->zl_os = os;
1753	zilog->zl_spa = dmu_objset_spa(os);
1754	zilog->zl_dmu_pool = dmu_objset_pool(os);
1755	zilog->zl_destroy_txg = TXG_INITIAL - 1;
1756	zilog->zl_logbias = dmu_objset_logbias(os);
1757	zilog->zl_sync = dmu_objset_syncprop(os);
1758	zilog->zl_next_batch = 1;
1759
1760	mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1761
1762	for (int i = 0; i < TXG_SIZE; i++) {
1763		mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1764		    MUTEX_DEFAULT, NULL);
1765	}
1766
1767	list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1768	    offsetof(lwb_t, lwb_node));
1769
1770	list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1771	    offsetof(itx_t, itx_node));
1772
1773	mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1774
1775	avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1776	    sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1777
1778	cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1779	cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1780	cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1781	cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1782
1783	return (zilog);
1784}
1785
1786void
1787zil_free(zilog_t *zilog)
1788{
1789	zilog->zl_stop_sync = 1;
1790
1791	ASSERT0(zilog->zl_suspend);
1792	ASSERT0(zilog->zl_suspending);
1793
1794	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1795	list_destroy(&zilog->zl_lwb_list);
1796
1797	avl_destroy(&zilog->zl_vdev_tree);
1798	mutex_destroy(&zilog->zl_vdev_lock);
1799
1800	ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1801	list_destroy(&zilog->zl_itx_commit_list);
1802
1803	for (int i = 0; i < TXG_SIZE; i++) {
1804		/*
1805		 * It's possible for an itx to be generated that doesn't dirty
1806		 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1807		 * callback to remove the entry. We remove those here.
1808		 *
1809		 * Also free up the ziltest itxs.
1810		 */
1811		if (zilog->zl_itxg[i].itxg_itxs)
1812			zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1813		mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1814	}
1815
1816	mutex_destroy(&zilog->zl_lock);
1817
1818	cv_destroy(&zilog->zl_cv_writer);
1819	cv_destroy(&zilog->zl_cv_suspend);
1820	cv_destroy(&zilog->zl_cv_batch[0]);
1821	cv_destroy(&zilog->zl_cv_batch[1]);
1822
1823	kmem_free(zilog, sizeof (zilog_t));
1824}
1825
1826/*
1827 * Open an intent log.
1828 */
1829zilog_t *
1830zil_open(objset_t *os, zil_get_data_t *get_data)
1831{
1832	zilog_t *zilog = dmu_objset_zil(os);
1833
1834	ASSERT(zilog->zl_get_data == NULL);
1835	ASSERT(list_is_empty(&zilog->zl_lwb_list));
1836
1837	zilog->zl_get_data = get_data;
1838
1839	return (zilog);
1840}
1841
1842/*
1843 * Close an intent log.
1844 */
1845void
1846zil_close(zilog_t *zilog)
1847{
1848	lwb_t *lwb;
1849	uint64_t txg = 0;
1850
1851	zil_commit(zilog, 0); /* commit all itx */
1852
1853	/*
1854	 * The lwb_max_txg for the stubby lwb will reflect the last activity
1855	 * for the zil.  After a txg_wait_synced() on the txg we know all the
1856	 * callbacks have occurred that may clean the zil.  Only then can we
1857	 * destroy the zl_clean_taskq.
1858	 */
1859	mutex_enter(&zilog->zl_lock);
1860	lwb = list_tail(&zilog->zl_lwb_list);
1861	if (lwb != NULL)
1862		txg = lwb->lwb_max_txg;
1863	mutex_exit(&zilog->zl_lock);
1864	if (txg)
1865		txg_wait_synced(zilog->zl_dmu_pool, txg);
1866
1867	if (zilog_is_dirty(zilog))
1868		zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1869	VERIFY(!zilog_is_dirty(zilog));
1870
1871	zilog->zl_get_data = NULL;
1872
1873	/*
1874	 * We should have only one LWB left on the list; remove it now.
1875	 */
1876	mutex_enter(&zilog->zl_lock);
1877	lwb = list_head(&zilog->zl_lwb_list);
1878	if (lwb != NULL) {
1879		ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1880		list_remove(&zilog->zl_lwb_list, lwb);
1881		zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1882		kmem_cache_free(zil_lwb_cache, lwb);
1883	}
1884	mutex_exit(&zilog->zl_lock);
1885}
1886
1887static char *suspend_tag = "zil suspending";
1888
1889/*
1890 * Suspend an intent log.  While in suspended mode, we still honor
1891 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1892 * On old version pools, we suspend the log briefly when taking a
1893 * snapshot so that it will have an empty intent log.
1894 *
1895 * Long holds are not really intended to be used the way we do here --
1896 * held for such a short time.  A concurrent caller of dsl_dataset_long_held()
1897 * could fail.  Therefore we take pains to only put a long hold if it is
1898 * actually necessary.  Fortunately, it will only be necessary if the
1899 * objset is currently mounted (or the ZVOL equivalent).  In that case it
1900 * will already have a long hold, so we are not really making things any worse.
1901 *
1902 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1903 * zvol_state_t), and use their mechanism to prevent their hold from being
1904 * dropped (e.g. VFS_HOLD()).  However, that would be even more pain for
1905 * very little gain.
1906 *
1907 * if cookiep == NULL, this does both the suspend & resume.
1908 * Otherwise, it returns with the dataset "long held", and the cookie
1909 * should be passed into zil_resume().
1910 */
1911int
1912zil_suspend(const char *osname, void **cookiep)
1913{
1914	objset_t *os;
1915	zilog_t *zilog;
1916	const zil_header_t *zh;
1917	int error;
1918
1919	error = dmu_objset_hold(osname, suspend_tag, &os);
1920	if (error != 0)
1921		return (error);
1922	zilog = dmu_objset_zil(os);
1923
1924	mutex_enter(&zilog->zl_lock);
1925	zh = zilog->zl_header;
1926
1927	if (zh->zh_flags & ZIL_REPLAY_NEEDED) {		/* unplayed log */
1928		mutex_exit(&zilog->zl_lock);
1929		dmu_objset_rele(os, suspend_tag);
1930		return (SET_ERROR(EBUSY));
1931	}
1932
1933	/*
1934	 * Don't put a long hold in the cases where we can avoid it.  This
1935	 * is when there is no cookie so we are doing a suspend & resume
1936	 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1937	 * for the suspend because it's already suspended, or there's no ZIL.
1938	 */
1939	if (cookiep == NULL && !zilog->zl_suspending &&
1940	    (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
1941		mutex_exit(&zilog->zl_lock);
1942		dmu_objset_rele(os, suspend_tag);
1943		return (0);
1944	}
1945
1946	dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
1947	dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
1948
1949	zilog->zl_suspend++;
1950
1951	if (zilog->zl_suspend > 1) {
1952		/*
1953		 * Someone else is already suspending it.
1954		 * Just wait for them to finish.
1955		 */
1956
1957		while (zilog->zl_suspending)
1958			cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1959		mutex_exit(&zilog->zl_lock);
1960
1961		if (cookiep == NULL)
1962			zil_resume(os);
1963		else
1964			*cookiep = os;
1965		return (0);
1966	}
1967
1968	/*
1969	 * If there is no pointer to an on-disk block, this ZIL must not
1970	 * be active (e.g. filesystem not mounted), so there's nothing
1971	 * to clean up.
1972	 */
1973	if (BP_IS_HOLE(&zh->zh_log)) {
1974		ASSERT(cookiep != NULL); /* fast path already handled */
1975
1976		*cookiep = os;
1977		mutex_exit(&zilog->zl_lock);
1978		return (0);
1979	}
1980
1981	zilog->zl_suspending = B_TRUE;
1982	mutex_exit(&zilog->zl_lock);
1983
1984	zil_commit(zilog, 0);
1985
1986	zil_destroy(zilog, B_FALSE);
1987
1988	mutex_enter(&zilog->zl_lock);
1989	zilog->zl_suspending = B_FALSE;
1990	cv_broadcast(&zilog->zl_cv_suspend);
1991	mutex_exit(&zilog->zl_lock);
1992
1993	if (cookiep == NULL)
1994		zil_resume(os);
1995	else
1996		*cookiep = os;
1997	return (0);
1998}
1999
2000void
2001zil_resume(void *cookie)
2002{
2003	objset_t *os = cookie;
2004	zilog_t *zilog = dmu_objset_zil(os);
2005
2006	mutex_enter(&zilog->zl_lock);
2007	ASSERT(zilog->zl_suspend != 0);
2008	zilog->zl_suspend--;
2009	mutex_exit(&zilog->zl_lock);
2010	dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2011	dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2012}
2013
2014typedef struct zil_replay_arg {
2015	zil_replay_func_t **zr_replay;
2016	void		*zr_arg;
2017	boolean_t	zr_byteswap;
2018	char		*zr_lr;
2019} zil_replay_arg_t;
2020
2021static int
2022zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2023{
2024	char name[ZFS_MAX_DATASET_NAME_LEN];
2025
2026	zilog->zl_replaying_seq--;	/* didn't actually replay this one */
2027
2028	dmu_objset_name(zilog->zl_os, name);
2029
2030	cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2031	    "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2032	    (u_longlong_t)lr->lrc_seq,
2033	    (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2034	    (lr->lrc_txtype & TX_CI) ? "CI" : "");
2035
2036	return (error);
2037}
2038
2039static int
2040zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2041{
2042	zil_replay_arg_t *zr = zra;
2043	const zil_header_t *zh = zilog->zl_header;
2044	uint64_t reclen = lr->lrc_reclen;
2045	uint64_t txtype = lr->lrc_txtype;
2046	int error = 0;
2047
2048	zilog->zl_replaying_seq = lr->lrc_seq;
2049
2050	if (lr->lrc_seq <= zh->zh_replay_seq)	/* already replayed */
2051		return (0);
2052
2053	if (lr->lrc_txg < claim_txg)		/* already committed */
2054		return (0);
2055
2056	/* Strip case-insensitive bit, still present in log record */
2057	txtype &= ~TX_CI;
2058
2059	if (txtype == 0 || txtype >= TX_MAX_TYPE)
2060		return (zil_replay_error(zilog, lr, EINVAL));
2061
2062	/*
2063	 * If this record type can be logged out of order, the object
2064	 * (lr_foid) may no longer exist.  That's legitimate, not an error.
2065	 */
2066	if (TX_OOO(txtype)) {
2067		error = dmu_object_info(zilog->zl_os,
2068		    ((lr_ooo_t *)lr)->lr_foid, NULL);
2069		if (error == ENOENT || error == EEXIST)
2070			return (0);
2071	}
2072
2073	/*
2074	 * Make a copy of the data so we can revise and extend it.
2075	 */
2076	bcopy(lr, zr->zr_lr, reclen);
2077
2078	/*
2079	 * If this is a TX_WRITE with a blkptr, suck in the data.
2080	 */
2081	if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2082		error = zil_read_log_data(zilog, (lr_write_t *)lr,
2083		    zr->zr_lr + reclen);
2084		if (error != 0)
2085			return (zil_replay_error(zilog, lr, error));
2086	}
2087
2088	/*
2089	 * The log block containing this lr may have been byteswapped
2090	 * so that we can easily examine common fields like lrc_txtype.
2091	 * However, the log is a mix of different record types, and only the
2092	 * replay vectors know how to byteswap their records.  Therefore, if
2093	 * the lr was byteswapped, undo it before invoking the replay vector.
2094	 */
2095	if (zr->zr_byteswap)
2096		byteswap_uint64_array(zr->zr_lr, reclen);
2097
2098	/*
2099	 * We must now do two things atomically: replay this log record,
2100	 * and update the log header sequence number to reflect the fact that
2101	 * we did so. At the end of each replay function the sequence number
2102	 * is updated if we are in replay mode.
2103	 */
2104	error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2105	if (error != 0) {
2106		/*
2107		 * The DMU's dnode layer doesn't see removes until the txg
2108		 * commits, so a subsequent claim can spuriously fail with
2109		 * EEXIST. So if we receive any error we try syncing out
2110		 * any removes then retry the transaction.  Note that we
2111		 * specify B_FALSE for byteswap now, so we don't do it twice.
2112		 */
2113		txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2114		error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2115		if (error != 0)
2116			return (zil_replay_error(zilog, lr, error));
2117	}
2118	return (0);
2119}
2120
2121/* ARGSUSED */
2122static int
2123zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2124{
2125	zilog->zl_replay_blks++;
2126
2127	return (0);
2128}
2129
2130/*
2131 * If this dataset has a non-empty intent log, replay it and destroy it.
2132 */
2133void
2134zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
2135{
2136	zilog_t *zilog = dmu_objset_zil(os);
2137	const zil_header_t *zh = zilog->zl_header;
2138	zil_replay_arg_t zr;
2139
2140	if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2141		zil_destroy(zilog, B_TRUE);
2142		return;
2143	}
2144
2145	zr.zr_replay = replay_func;
2146	zr.zr_arg = arg;
2147	zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2148	zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2149
2150	/*
2151	 * Wait for in-progress removes to sync before starting replay.
2152	 */
2153	txg_wait_synced(zilog->zl_dmu_pool, 0);
2154
2155	zilog->zl_replay = B_TRUE;
2156	zilog->zl_replay_time = ddi_get_lbolt();
2157	ASSERT(zilog->zl_replay_blks == 0);
2158	(void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2159	    zh->zh_claim_txg);
2160	kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2161
2162	zil_destroy(zilog, B_FALSE);
2163	txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2164	zilog->zl_replay = B_FALSE;
2165}
2166
2167boolean_t
2168zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2169{
2170	if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2171		return (B_TRUE);
2172
2173	if (zilog->zl_replay) {
2174		dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2175		zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2176		    zilog->zl_replaying_seq;
2177		return (B_TRUE);
2178	}
2179
2180	return (B_FALSE);
2181}
2182
2183/* ARGSUSED */
2184int
2185zil_vdev_offline(const char *osname, void *arg)
2186{
2187	int error;
2188
2189	error = zil_suspend(osname, NULL);
2190	if (error != 0)
2191		return (SET_ERROR(EEXIST));
2192	return (0);
2193}
2194