1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source.  A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
17 * Copyright (c) 2016, 2017 by Delphix. All rights reserved.
18 */
19
20/*
21 * ZFS Channel Programs (ZCP)
22 *
23 * The ZCP interface allows various ZFS commands and operations ZFS
24 * administrative operations (e.g. creating and destroying snapshots, typically
25 * performed via an ioctl to /dev/zfs by the zfs(1M) command and
26 * libzfs/libzfs_core) to be run * programmatically as a Lua script.  A ZCP
27 * script is run as a dsl_sync_task and fully executed during one transaction
28 * group sync.  This ensures that no other changes can be written concurrently
29 * with a running Lua script.  Combining multiple calls to the exposed ZFS
30 * functions into one script gives a number of benefits:
31 *
32 * 1. Atomicity.  For some compound or iterative operations, it's useful to be
33 * able to guarantee that the state of a pool has not changed between calls to
34 * ZFS.
35 *
36 * 2. Performance.  If a large number of changes need to be made (e.g. deleting
37 * many filesystems), there can be a significant performance penalty as a
38 * result of the need to wait for a transaction group sync to pass for every
39 * single operation.  When expressed as a single ZCP script, all these changes
40 * can be performed at once in one txg sync.
41 *
42 * A modified version of the Lua 5.2 interpreter is used to run channel program
43 * scripts. The Lua 5.2 manual can be found at:
44 *
45 *      http://www.lua.org/manual/5.2/
46 *
47 * If being run by a user (via an ioctl syscall), executing a ZCP script
48 * requires root privileges in the global zone.
49 *
50 * Scripts are passed to zcp_eval() as a string, then run in a synctask by
51 * zcp_eval_sync().  Arguments can be passed into the Lua script as an nvlist,
52 * which will be converted to a Lua table.  Similarly, values returned from
53 * a ZCP script will be converted to an nvlist.  See zcp_lua_to_nvlist_impl()
54 * for details on exact allowed types and conversion.
55 *
56 * ZFS functionality is exposed to a ZCP script as a library of function calls.
57 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
58 * iterators and synctasks, respectively.  Each of these submodules resides in
59 * its own source file, with a zcp_*_info structure describing each library
60 * call in the submodule.
61 *
62 * Error handling in ZCP scripts is handled by a number of different methods
63 * based on severity:
64 *
65 * 1. Memory and time limits are in place to prevent a channel program from
66 * consuming excessive system or running forever.  If one of these limits is
67 * hit, the channel program will be stopped immediately and return from
68 * zcp_eval() with an error code. No attempt will be made to roll back or undo
69 * any changes made by the channel program before the error occured.
70 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
71 * limit of 0, disabling the time limit.
72 *
73 * 2. Internal Lua errors can occur as a result of a syntax error, calling a
74 * library function with incorrect arguments, invoking the error() function,
75 * failing an assert(), or other runtime errors.  In these cases the channel
76 * program will stop executing and return from zcp_eval() with an error code.
77 * In place of a return value, an error message will also be returned in the
78 * 'result' nvlist containing information about the error. No attempt will be
79 * made to roll back or undo any changes made by the channel program before the
80 * error occured.
81 *
82 * 3. If an error occurs inside a ZFS library call which returns an error code,
83 * the error is returned to the Lua script to be handled as desired.
84 *
85 * In the first two cases, Lua's error-throwing mechanism is used, which
86 * longjumps out of the script execution with luaL_error() and returns with the
87 * error.
88 *
89 * See zfs-program(1M) for more information on high level usage.
90 */
91
92#include "lua.h"
93#include "lualib.h"
94#include "lauxlib.h"
95
96#include <sys/dsl_prop.h>
97#include <sys/dsl_synctask.h>
98#include <sys/dsl_dataset.h>
99#include <sys/zcp.h>
100#include <sys/zcp_iter.h>
101#include <sys/zcp_prop.h>
102#include <sys/zcp_global.h>
103#ifdef illumos
104#include <util/sscanf.h>
105#endif
106
107#ifdef __FreeBSD__
108#define	ECHRNG	EDOM
109#define	ETIME	ETIMEDOUT
110#endif
111
112#define	ZCP_NVLIST_MAX_DEPTH 20
113
114uint64_t zfs_lua_check_instrlimit_interval = 100;
115uint64_t zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
116uint64_t zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
117
118/*
119 * Forward declarations for mutually recursive functions
120 */
121static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
122static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
123    int);
124
125typedef struct zcp_alloc_arg {
126	boolean_t	aa_must_succeed;
127	int64_t		aa_alloc_remaining;
128	int64_t		aa_alloc_limit;
129} zcp_alloc_arg_t;
130
131typedef struct zcp_eval_arg {
132	lua_State	*ea_state;
133	zcp_alloc_arg_t	*ea_allocargs;
134	cred_t		*ea_cred;
135	nvlist_t	*ea_outnvl;
136	int		ea_result;
137	uint64_t	ea_instrlimit;
138} zcp_eval_arg_t;
139
140/*
141 * The outer-most error callback handler for use with lua_pcall(). On
142 * error Lua will call this callback with a single argument that
143 * represents the error value. In most cases this will be a string
144 * containing an error message, but channel programs can use Lua's
145 * error() function to return arbitrary objects as errors. This callback
146 * returns (on the Lua stack) the original error object along with a traceback.
147 *
148 * Fatal Lua errors can occur while resources are held, so we also call any
149 * registered cleanup function here.
150 */
151static int
152zcp_error_handler(lua_State *state)
153{
154	const char *msg;
155
156	zcp_cleanup(state);
157
158	VERIFY3U(1, ==, lua_gettop(state));
159	msg = lua_tostring(state, 1);
160	luaL_traceback(state, state, msg, 1);
161	return (1);
162}
163
164int
165zcp_argerror(lua_State *state, int narg, const char *msg, ...)
166{
167	va_list alist;
168
169	va_start(alist, msg);
170	const char *buf = lua_pushvfstring(state, msg, alist);
171	va_end(alist);
172
173	return (luaL_argerror(state, narg, buf));
174}
175
176/*
177 * Install a new cleanup function, which will be invoked with the given
178 * opaque argument if a fatal error causes the Lua interpreter to longjump out
179 * of a function call.
180 *
181 * If an error occurs, the cleanup function will be invoked exactly once and
182 * then unreigstered.
183 *
184 * Returns the registered cleanup handler so the caller can deregister it
185 * if no error occurs.
186 */
187zcp_cleanup_handler_t *
188zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
189{
190	zcp_run_info_t *ri = zcp_run_info(state);
191
192	zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
193	zch->zch_cleanup_func = cleanfunc;
194	zch->zch_cleanup_arg = cleanarg;
195	list_insert_head(&ri->zri_cleanup_handlers, zch);
196
197	return (zch);
198}
199
200void
201zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
202{
203	zcp_run_info_t *ri = zcp_run_info(state);
204	list_remove(&ri->zri_cleanup_handlers, zch);
205	kmem_free(zch, sizeof (*zch));
206}
207
208/*
209 * Execute the currently registered cleanup handlers then free them and
210 * destroy the handler list.
211 */
212void
213zcp_cleanup(lua_State *state)
214{
215	zcp_run_info_t *ri = zcp_run_info(state);
216
217	for (zcp_cleanup_handler_t *zch =
218	    list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
219	    zch = list_remove_head(&ri->zri_cleanup_handlers)) {
220		zch->zch_cleanup_func(zch->zch_cleanup_arg);
221		kmem_free(zch, sizeof (*zch));
222	}
223}
224
225/*
226 * Convert the lua table at the given index on the Lua stack to an nvlist
227 * and return it.
228 *
229 * If the table can not be converted for any reason, NULL is returned and
230 * an error message is pushed onto the Lua stack.
231 */
232static nvlist_t *
233zcp_table_to_nvlist(lua_State *state, int index, int depth)
234{
235	nvlist_t *nvl;
236	/*
237	 * Converting a Lua table to an nvlist with key uniqueness checking is
238	 * O(n^2) in the number of keys in the nvlist, which can take a long
239	 * time when we return a large table from a channel program.
240	 * Furthermore, Lua's table interface *almost* guarantees unique keys
241	 * on its own (details below). Therefore, we don't use fnvlist_alloc()
242	 * here to avoid the built-in uniqueness checking.
243	 *
244	 * The *almost* is because it's possible to have key collisions between
245	 * e.g. the string "1" and the number 1, or the string "true" and the
246	 * boolean true, so we explicitly check that when we're looking at a
247	 * key which is an integer / boolean or a string that can be parsed as
248	 * one of those types. In the worst case this could still devolve into
249	 * O(n^2), so we only start doing these checks on boolean/integer keys
250	 * once we've seen a string key which fits this weird usage pattern.
251	 *
252	 * Ultimately, we still want callers to know that the keys in this
253	 * nvlist are unique, so before we return this we set the nvlist's
254	 * flags to reflect that.
255	 */
256	VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
257
258	/*
259	 * Push an empty stack slot where lua_next() will store each
260	 * table key.
261	 */
262	lua_pushnil(state);
263	boolean_t saw_str_could_collide = B_FALSE;
264	while (lua_next(state, index) != 0) {
265		/*
266		 * The next key-value pair from the table at index is
267		 * now on the stack, with the key at stack slot -2 and
268		 * the value at slot -1.
269		 */
270		int err = 0;
271		char buf[32];
272		const char *key = NULL;
273		boolean_t key_could_collide = B_FALSE;
274
275		switch (lua_type(state, -2)) {
276		case LUA_TSTRING:
277			key = lua_tostring(state, -2);
278
279			/* check if this could collide with a number or bool */
280			long long tmp;
281			int parselen;
282			if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
283			    parselen == strlen(key)) ||
284			    strcmp(key, "true") == 0 ||
285			    strcmp(key, "false") == 0) {
286				key_could_collide = B_TRUE;
287				saw_str_could_collide = B_TRUE;
288			}
289			break;
290		case LUA_TBOOLEAN:
291			key = (lua_toboolean(state, -2) == B_TRUE ?
292			    "true" : "false");
293			if (saw_str_could_collide) {
294				key_could_collide = B_TRUE;
295			}
296			break;
297		case LUA_TNUMBER:
298			VERIFY3U(sizeof (buf), >,
299			    snprintf(buf, sizeof (buf), "%lld",
300			    (longlong_t)lua_tonumber(state, -2)));
301			key = buf;
302			if (saw_str_could_collide) {
303				key_could_collide = B_TRUE;
304			}
305			break;
306		default:
307			fnvlist_free(nvl);
308			(void) lua_pushfstring(state, "Invalid key "
309			    "type '%s' in table",
310			    lua_typename(state, lua_type(state, -2)));
311			return (NULL);
312		}
313		/*
314		 * Check for type-mismatched key collisions, and throw an error.
315		 */
316		if (key_could_collide && nvlist_exists(nvl, key)) {
317			fnvlist_free(nvl);
318			(void) lua_pushfstring(state, "Collision of "
319			    "key '%s' in table", key);
320			return (NULL);
321		}
322		/*
323		 * Recursively convert the table value and insert into
324		 * the new nvlist with the parsed key.  To prevent
325		 * stack overflow on circular or heavily nested tables,
326		 * we track the current nvlist depth.
327		 */
328		if (depth >= ZCP_NVLIST_MAX_DEPTH) {
329			fnvlist_free(nvl);
330			(void) lua_pushfstring(state, "Maximum table "
331			    "depth (%d) exceeded for table",
332			    ZCP_NVLIST_MAX_DEPTH);
333			return (NULL);
334		}
335		err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
336		    depth + 1);
337		if (err != 0) {
338			fnvlist_free(nvl);
339			/*
340			 * Error message has been pushed to the lua
341			 * stack by the recursive call.
342			 */
343			return (NULL);
344		}
345		/*
346		 * Pop the value pushed by lua_next().
347		 */
348		lua_pop(state, 1);
349	}
350
351	/*
352	 * Mark the nvlist as having unique keys. This is a little ugly, but we
353	 * ensured above that there are no duplicate keys in the nvlist.
354	 */
355	nvl->nvl_nvflag |= NV_UNIQUE_NAME;
356
357	return (nvl);
358}
359
360/*
361 * Convert a value from the given index into the lua stack to an nvpair, adding
362 * it to an nvlist with the given key.
363 *
364 * Values are converted as follows:
365 *
366 *   string -> string
367 *   number -> int64
368 *   boolean -> boolean
369 *   nil -> boolean (no value)
370 *
371 * Lua tables are converted to nvlists and then inserted. The table's keys
372 * are converted to strings then used as keys in the nvlist to store each table
373 * element.  Keys are converted as follows:
374 *
375 *   string -> no change
376 *   number -> "%lld"
377 *   boolean -> "true" | "false"
378 *   nil -> error
379 *
380 * In the case of a key collision, an error is thrown.
381 *
382 * If an error is encountered, a nonzero error code is returned, and an error
383 * string will be pushed onto the Lua stack.
384 */
385static int
386zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
387    const char *key, int depth)
388{
389	/*
390	 * Verify that we have enough remaining space in the lua stack to parse
391	 * a key-value pair and push an error.
392	 */
393	if (!lua_checkstack(state, 3)) {
394		(void) lua_pushstring(state, "Lua stack overflow");
395		return (1);
396	}
397
398	index = lua_absindex(state, index);
399
400	switch (lua_type(state, index)) {
401	case LUA_TNIL:
402		fnvlist_add_boolean(nvl, key);
403		break;
404	case LUA_TBOOLEAN:
405		fnvlist_add_boolean_value(nvl, key,
406		    lua_toboolean(state, index));
407		break;
408	case LUA_TNUMBER:
409		fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
410		break;
411	case LUA_TSTRING:
412		fnvlist_add_string(nvl, key, lua_tostring(state, index));
413		break;
414	case LUA_TTABLE: {
415		nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
416		if (value_nvl == NULL)
417			return (EINVAL);
418
419		fnvlist_add_nvlist(nvl, key, value_nvl);
420		fnvlist_free(value_nvl);
421		break;
422	}
423	default:
424		(void) lua_pushfstring(state,
425		    "Invalid value type '%s' for key '%s'",
426		    lua_typename(state, lua_type(state, index)), key);
427		return (EINVAL);
428	}
429
430	return (0);
431}
432
433/*
434 * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
435 */
436static void
437zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
438{
439	/*
440	 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
441	 * stack before returning with a nonzero error code. If an error is
442	 * returned, throw a fatal lua error with the given string.
443	 */
444	if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
445		(void) lua_error(state);
446}
447
448static int
449zcp_lua_to_nvlist_helper(lua_State *state)
450{
451	nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
452	const char *key = (const char *)lua_touserdata(state, 1);
453	zcp_lua_to_nvlist(state, 3, nv, key);
454	return (0);
455}
456
457static void
458zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
459    const char *key, zcp_eval_arg_t *evalargs)
460{
461	int err;
462	VERIFY3U(1, ==, lua_gettop(state));
463	lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
464	lua_pushlightuserdata(state, (char *)key);
465	lua_pushlightuserdata(state, nvl);
466	lua_pushvalue(state, 1);
467	lua_remove(state, 1);
468	err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
469	if (err != 0) {
470		zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
471		evalargs->ea_result = SET_ERROR(ECHRNG);
472	}
473}
474
475/*
476 * Push a Lua table representing nvl onto the stack.  If it can't be
477 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
478 * be specified as NULL, in which case no error string will be output.
479 *
480 * Most nvlists are converted as simple key->value Lua tables, but we make
481 * an exception for the case where all nvlist entries are BOOLEANs (a string
482 * key without a value). In Lua, a table key pointing to a value of Nil
483 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
484 * entry can't be directly converted to a Lua table entry. Nvlists of entirely
485 * BOOLEAN entries are frequently used to pass around lists of datasets, so for
486 * convenience we check for this case, and convert it to a simple Lua array of
487 * strings.
488 */
489int
490zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
491    char *errbuf, int errbuf_len)
492{
493	nvpair_t *pair;
494	lua_newtable(state);
495	boolean_t has_values = B_FALSE;
496	/*
497	 * If the list doesn't have any values, just convert it to a string
498	 * array.
499	 */
500	for (pair = nvlist_next_nvpair(nvl, NULL);
501	    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
502		if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
503			has_values = B_TRUE;
504			break;
505		}
506	}
507	if (!has_values) {
508		int i = 1;
509		for (pair = nvlist_next_nvpair(nvl, NULL);
510		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
511			(void) lua_pushinteger(state, i);
512			(void) lua_pushstring(state, nvpair_name(pair));
513			(void) lua_settable(state, -3);
514			i++;
515		}
516	} else {
517		for (pair = nvlist_next_nvpair(nvl, NULL);
518		    pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
519			int err = zcp_nvpair_value_to_lua(state, pair,
520			    errbuf, errbuf_len);
521			if (err != 0) {
522				lua_pop(state, 1);
523				return (err);
524			}
525			(void) lua_setfield(state, -2, nvpair_name(pair));
526		}
527	}
528	return (0);
529}
530
531/*
532 * Push a Lua object representing the value of "pair" onto the stack.
533 *
534 * Only understands boolean_value, string, int64, nvlist,
535 * string_array, and int64_array type values.  For other
536 * types, returns EINVAL, fills in errbuf, and pushes nothing.
537 */
538static int
539zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
540    char *errbuf, int errbuf_len)
541{
542	int err = 0;
543
544	if (pair == NULL) {
545		lua_pushnil(state);
546		return (0);
547	}
548
549	switch (nvpair_type(pair)) {
550	case DATA_TYPE_BOOLEAN_VALUE:
551		(void) lua_pushboolean(state,
552		    fnvpair_value_boolean_value(pair));
553		break;
554	case DATA_TYPE_STRING:
555		(void) lua_pushstring(state, fnvpair_value_string(pair));
556		break;
557	case DATA_TYPE_INT64:
558		(void) lua_pushinteger(state, fnvpair_value_int64(pair));
559		break;
560	case DATA_TYPE_NVLIST:
561		err = zcp_nvlist_to_lua(state,
562		    fnvpair_value_nvlist(pair), errbuf, errbuf_len);
563		break;
564	case DATA_TYPE_STRING_ARRAY: {
565		char **strarr;
566		uint_t nelem;
567		(void) nvpair_value_string_array(pair, &strarr, &nelem);
568		lua_newtable(state);
569		for (int i = 0; i < nelem; i++) {
570			(void) lua_pushinteger(state, i + 1);
571			(void) lua_pushstring(state, strarr[i]);
572			(void) lua_settable(state, -3);
573		}
574		break;
575	}
576	case DATA_TYPE_UINT64_ARRAY: {
577		uint64_t *intarr;
578		uint_t nelem;
579		(void) nvpair_value_uint64_array(pair, &intarr, &nelem);
580		lua_newtable(state);
581		for (int i = 0; i < nelem; i++) {
582			(void) lua_pushinteger(state, i + 1);
583			(void) lua_pushinteger(state, intarr[i]);
584			(void) lua_settable(state, -3);
585		}
586		break;
587	}
588	case DATA_TYPE_INT64_ARRAY: {
589		int64_t *intarr;
590		uint_t nelem;
591		(void) nvpair_value_int64_array(pair, &intarr, &nelem);
592		lua_newtable(state);
593		for (int i = 0; i < nelem; i++) {
594			(void) lua_pushinteger(state, i + 1);
595			(void) lua_pushinteger(state, intarr[i]);
596			(void) lua_settable(state, -3);
597		}
598		break;
599	}
600	default: {
601		if (errbuf != NULL) {
602			(void) snprintf(errbuf, errbuf_len,
603			    "Unhandled nvpair type %d for key '%s'",
604			    nvpair_type(pair), nvpair_name(pair));
605		}
606		return (EINVAL);
607	}
608	}
609	return (err);
610}
611
612int
613zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
614    int error)
615{
616	if (error == ENOENT) {
617		(void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
618		return (0); /* not reached; zcp_argerror will longjmp */
619	} else if (error == EXDEV) {
620		(void) zcp_argerror(state, 1,
621		    "dataset '%s' is not in the target pool '%s'",
622		    dsname, spa_name(dp->dp_spa));
623		return (0); /* not reached; zcp_argerror will longjmp */
624	} else if (error == EIO) {
625		(void) luaL_error(state,
626		    "I/O error while accessing dataset '%s'", dsname);
627		return (0); /* not reached; luaL_error will longjmp */
628	} else if (error != 0) {
629		(void) luaL_error(state,
630		    "unexpected error %d while accessing dataset '%s'",
631		    error, dsname);
632		return (0); /* not reached; luaL_error will longjmp */
633	}
634	return (0);
635}
636
637/*
638 * Note: will longjmp (via lua_error()) on error.
639 * Assumes that the dsname is argument #1 (for error reporting purposes).
640 */
641dsl_dataset_t *
642zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
643    void *tag)
644{
645	dsl_dataset_t *ds;
646	int error = dsl_dataset_hold(dp, dsname, tag, &ds);
647	(void) zcp_dataset_hold_error(state, dp, dsname, error);
648	return (ds);
649}
650
651static int zcp_debug(lua_State *);
652static zcp_lib_info_t zcp_debug_info = {
653	.name = "debug",
654	.func = zcp_debug,
655	.pargs = {
656	    { .za_name = "debug string", .za_lua_type = LUA_TSTRING},
657	    {NULL, 0}
658	},
659	.kwargs = {
660	    {NULL, 0}
661	}
662};
663
664static int
665zcp_debug(lua_State *state)
666{
667	const char *dbgstring;
668	zcp_run_info_t *ri = zcp_run_info(state);
669	zcp_lib_info_t *libinfo = &zcp_debug_info;
670
671	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
672
673	dbgstring = lua_tostring(state, 1);
674
675	zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring);
676
677	return (0);
678}
679
680static int zcp_exists(lua_State *);
681static zcp_lib_info_t zcp_exists_info = {
682	.name = "exists",
683	.func = zcp_exists,
684	.pargs = {
685	    { .za_name = "dataset", .za_lua_type = LUA_TSTRING},
686	    {NULL, 0}
687	},
688	.kwargs = {
689	    {NULL, 0}
690	}
691};
692
693static int
694zcp_exists(lua_State *state)
695{
696	zcp_run_info_t *ri = zcp_run_info(state);
697	dsl_pool_t *dp = ri->zri_pool;
698	zcp_lib_info_t *libinfo = &zcp_exists_info;
699
700	zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
701
702	const char *dsname = lua_tostring(state, 1);
703
704	dsl_dataset_t *ds;
705	int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
706	if (error == 0) {
707		dsl_dataset_rele(ds, FTAG);
708		lua_pushboolean(state, B_TRUE);
709	} else if (error == ENOENT) {
710		lua_pushboolean(state, B_FALSE);
711	} else if (error == EXDEV) {
712		return (luaL_error(state, "dataset '%s' is not in the "
713		    "target pool", dsname));
714	} else if (error == EIO) {
715		return (luaL_error(state, "I/O error opening dataset '%s'",
716		    dsname));
717	} else if (error != 0) {
718		return (luaL_error(state, "unexpected error %d", error));
719	}
720
721	return (1);
722}
723
724/*
725 * Allocate/realloc/free a buffer for the lua interpreter.
726 *
727 * When nsize is 0, behaves as free() and returns NULL.
728 *
729 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
730 * at least nsize.
731 *
732 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
733 * Shrinking the buffer size never fails.
734 *
735 * The original allocated buffer size is stored as a uint64 at the beginning of
736 * the buffer to avoid actually reallocating when shrinking a buffer, since lua
737 * requires that this operation never fail.
738 */
739static void *
740zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
741{
742	zcp_alloc_arg_t *allocargs = ud;
743	int flags = (allocargs->aa_must_succeed) ?
744	    KM_SLEEP : (KM_NOSLEEP | KM_NORMALPRI);
745
746	if (nsize == 0) {
747		if (ptr != NULL) {
748			int64_t *allocbuf = (int64_t *)ptr - 1;
749			int64_t allocsize = *allocbuf;
750			ASSERT3S(allocsize, >, 0);
751			ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
752			    allocargs->aa_alloc_limit);
753			allocargs->aa_alloc_remaining += allocsize;
754			kmem_free(allocbuf, allocsize);
755		}
756		return (NULL);
757	} else if (ptr == NULL) {
758		int64_t *allocbuf;
759		int64_t allocsize = nsize + sizeof (int64_t);
760
761		if (!allocargs->aa_must_succeed &&
762		    (allocsize <= 0 ||
763		    allocsize > allocargs->aa_alloc_remaining)) {
764			return (NULL);
765		}
766
767		allocbuf = kmem_alloc(allocsize, flags);
768		if (allocbuf == NULL) {
769			return (NULL);
770		}
771		allocargs->aa_alloc_remaining -= allocsize;
772
773		*allocbuf = allocsize;
774		return (allocbuf + 1);
775	} else if (nsize <= osize) {
776		/*
777		 * If shrinking the buffer, lua requires that the reallocation
778		 * never fail.
779		 */
780		return (ptr);
781	} else {
782		ASSERT3U(nsize, >, osize);
783
784		uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
785		if (luabuf == NULL) {
786			return (NULL);
787		}
788		(void) memcpy(luabuf, ptr, osize);
789		VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
790		return (luabuf);
791	}
792}
793
794/* ARGSUSED */
795static void
796zcp_lua_counthook(lua_State *state, lua_Debug *ar)
797{
798	/*
799	 * If we're called, check how many instructions the channel program has
800	 * executed so far, and compare against the limit.
801	 */
802	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
803	zcp_run_info_t *ri = lua_touserdata(state, -1);
804
805	ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
806	if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
807		ri->zri_timed_out = B_TRUE;
808		(void) lua_pushstring(state,
809		    "Channel program timed out.");
810		(void) lua_error(state);
811	}
812}
813
814static int
815zcp_panic_cb(lua_State *state)
816{
817	panic("unprotected error in call to Lua API (%s)\n",
818	    lua_tostring(state, -1));
819	return (0);
820}
821
822static void
823zcp_eval_impl(dmu_tx_t *tx, boolean_t sync, zcp_eval_arg_t *evalargs)
824{
825	int err;
826	zcp_run_info_t ri;
827	lua_State *state = evalargs->ea_state;
828
829	VERIFY3U(3, ==, lua_gettop(state));
830
831	/*
832	 * Store the zcp_run_info_t struct for this run in the Lua registry.
833	 * Registry entries are not directly accessible by the Lua scripts but
834	 * can be accessed by our callbacks.
835	 */
836	ri.zri_space_used = 0;
837	ri.zri_pool = dmu_tx_pool(tx);
838	ri.zri_cred = evalargs->ea_cred;
839	ri.zri_tx = tx;
840	ri.zri_timed_out = B_FALSE;
841	ri.zri_sync = sync;
842	list_create(&ri.zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
843	    offsetof(zcp_cleanup_handler_t, zch_node));
844	ri.zri_curinstrs = 0;
845	ri.zri_maxinstrs = evalargs->ea_instrlimit;
846
847	lua_pushlightuserdata(state, &ri);
848	lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
849	VERIFY3U(3, ==, lua_gettop(state));
850
851	/*
852	 * Tell the Lua interpreter to call our handler every count
853	 * instructions. Channel programs that execute too many instructions
854	 * should die with ETIMEDOUT.
855	 */
856	(void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
857	    zfs_lua_check_instrlimit_interval);
858
859	/*
860	 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
861	 * off control to the channel program. Channel programs that use too
862	 * much memory should die with ENOSPC.
863	 */
864	evalargs->ea_allocargs->aa_must_succeed = B_FALSE;
865
866	/*
867	 * Call the Lua function that open-context passed us. This pops the
868	 * function and its input from the stack and pushes any return
869	 * or error values.
870	 */
871	err = lua_pcall(state, 1, LUA_MULTRET, 1);
872
873	/*
874	 * Let Lua use KM_SLEEP while we interpret the return values.
875	 */
876	evalargs->ea_allocargs->aa_must_succeed = B_TRUE;
877
878	/*
879	 * Remove the error handler callback from the stack. At this point,
880	 * there shouldn't be any cleanup handler registered in the handler
881	 * list (zri_cleanup_handlers), regardless of whether it ran or not.
882	 */
883	list_destroy(&ri.zri_cleanup_handlers);
884	lua_remove(state, 1);
885
886	switch (err) {
887	case LUA_OK: {
888		/*
889		 * Lua supports returning multiple values in a single return
890		 * statement.  Return values will have been pushed onto the
891		 * stack:
892		 * 1: Return value 1
893		 * 2: Return value 2
894		 * 3: etc...
895		 * To simplify the process of retrieving a return value from a
896		 * channel program, we disallow returning more than one value
897		 * to ZFS from the Lua script, yielding a singleton return
898		 * nvlist of the form { "return": Return value 1 }.
899		 */
900		int return_count = lua_gettop(state);
901
902		if (return_count == 1) {
903			evalargs->ea_result = 0;
904			zcp_convert_return_values(state, evalargs->ea_outnvl,
905			    ZCP_RET_RETURN, evalargs);
906		} else if (return_count > 1) {
907			evalargs->ea_result = SET_ERROR(ECHRNG);
908			lua_settop(state, 0);
909			(void) lua_pushfstring(state, "Multiple return "
910			    "values not supported");
911			zcp_convert_return_values(state, evalargs->ea_outnvl,
912			    ZCP_RET_ERROR, evalargs);
913		}
914		break;
915	}
916	case LUA_ERRRUN:
917	case LUA_ERRGCMM: {
918		/*
919		 * The channel program encountered a fatal error within the
920		 * script, such as failing an assertion, or calling a function
921		 * with incompatible arguments. The error value and the
922		 * traceback generated by zcp_error_handler() should be on the
923		 * stack.
924		 */
925		VERIFY3U(1, ==, lua_gettop(state));
926		if (ri.zri_timed_out) {
927			evalargs->ea_result = SET_ERROR(ETIME);
928		} else {
929			evalargs->ea_result = SET_ERROR(ECHRNG);
930		}
931
932		zcp_convert_return_values(state, evalargs->ea_outnvl,
933		    ZCP_RET_ERROR, evalargs);
934		break;
935	}
936	case LUA_ERRERR: {
937		/*
938		 * The channel program encountered a fatal error within the
939		 * script, and we encountered another error while trying to
940		 * compute the traceback in zcp_error_handler(). We can only
941		 * return the error message.
942		 */
943		VERIFY3U(1, ==, lua_gettop(state));
944		if (ri.zri_timed_out) {
945			evalargs->ea_result = SET_ERROR(ETIME);
946		} else {
947			evalargs->ea_result = SET_ERROR(ECHRNG);
948		}
949
950		zcp_convert_return_values(state, evalargs->ea_outnvl,
951		    ZCP_RET_ERROR, evalargs);
952		break;
953	}
954	case LUA_ERRMEM:
955		/*
956		 * Lua ran out of memory while running the channel program.
957		 * There's not much we can do.
958		 */
959		evalargs->ea_result = SET_ERROR(ENOSPC);
960		break;
961	default:
962		VERIFY0(err);
963	}
964}
965
966static void
967zcp_pool_error(zcp_eval_arg_t *evalargs, const char *poolname)
968{
969	evalargs->ea_result = SET_ERROR(ECHRNG);
970	lua_settop(evalargs->ea_state, 0);
971	(void) lua_pushfstring(evalargs->ea_state, "Could not open pool: %s",
972	    poolname);
973	zcp_convert_return_values(evalargs->ea_state, evalargs->ea_outnvl,
974	    ZCP_RET_ERROR, evalargs);
975
976}
977
978static void
979zcp_eval_sync(void *arg, dmu_tx_t *tx)
980{
981	zcp_eval_arg_t *evalargs = arg;
982
983	/*
984	 * Open context should have setup the stack to contain:
985	 * 1: Error handler callback
986	 * 2: Script to run (converted to a Lua function)
987	 * 3: nvlist input to function (converted to Lua table or nil)
988	 */
989	VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
990
991	zcp_eval_impl(tx, B_TRUE, evalargs);
992}
993
994static void
995zcp_eval_open(zcp_eval_arg_t *evalargs, const char *poolname)
996{
997
998	int error;
999	dsl_pool_t *dp;
1000	dmu_tx_t *tx;
1001
1002	/*
1003	 * See comment from the same assertion in zcp_eval_sync().
1004	 */
1005	VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
1006
1007	error = dsl_pool_hold(poolname, FTAG, &dp);
1008	if (error != 0) {
1009		zcp_pool_error(evalargs, poolname);
1010		return;
1011	}
1012
1013	/*
1014	 * As we are running in open-context, we have no transaction associated
1015	 * with the channel program. At the same time, functions from the
1016	 * zfs.check submodule need to be associated with a transaction as
1017	 * they are basically dry-runs of their counterparts in the zfs.sync
1018	 * submodule. These functions should be able to run in open-context.
1019	 * Therefore we create a new transaction that we later abort once
1020	 * the channel program has been evaluated.
1021	 */
1022	tx = dmu_tx_create_dd(dp->dp_mos_dir);
1023
1024	zcp_eval_impl(tx, B_FALSE, evalargs);
1025
1026	dmu_tx_abort(tx);
1027
1028	dsl_pool_rele(dp, FTAG);
1029}
1030
1031int
1032zcp_eval(const char *poolname, const char *program, boolean_t sync,
1033    uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
1034{
1035	int err;
1036	lua_State *state;
1037	zcp_eval_arg_t evalargs;
1038
1039	if (instrlimit > zfs_lua_max_instrlimit)
1040		return (SET_ERROR(EINVAL));
1041	if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
1042		return (SET_ERROR(EINVAL));
1043
1044	zcp_alloc_arg_t allocargs = {
1045		.aa_must_succeed = B_TRUE,
1046		.aa_alloc_remaining = (int64_t)memlimit,
1047		.aa_alloc_limit = (int64_t)memlimit,
1048	};
1049
1050	/*
1051	 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
1052	 * This should never fail.
1053	 */
1054	state = lua_newstate(zcp_lua_alloc, &allocargs);
1055	VERIFY(state != NULL);
1056	(void) lua_atpanic(state, zcp_panic_cb);
1057
1058	/*
1059	 * Load core Lua libraries we want access to.
1060	 */
1061	VERIFY3U(1, ==, luaopen_base(state));
1062	lua_pop(state, 1);
1063	VERIFY3U(1, ==, luaopen_coroutine(state));
1064	lua_setglobal(state, LUA_COLIBNAME);
1065	VERIFY0(lua_gettop(state));
1066	VERIFY3U(1, ==, luaopen_string(state));
1067	lua_setglobal(state, LUA_STRLIBNAME);
1068	VERIFY0(lua_gettop(state));
1069	VERIFY3U(1, ==, luaopen_table(state));
1070	lua_setglobal(state, LUA_TABLIBNAME);
1071	VERIFY0(lua_gettop(state));
1072
1073	/*
1074	 * Load globally visible variables such as errno aliases.
1075	 */
1076	zcp_load_globals(state);
1077	VERIFY0(lua_gettop(state));
1078
1079	/*
1080	 * Load ZFS-specific modules.
1081	 */
1082	lua_newtable(state);
1083	VERIFY3U(1, ==, zcp_load_list_lib(state));
1084	lua_setfield(state, -2, "list");
1085	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1086	lua_setfield(state, -2, "check");
1087	VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1088	lua_setfield(state, -2, "sync");
1089	VERIFY3U(1, ==, zcp_load_get_lib(state));
1090	lua_pushcclosure(state, zcp_debug_info.func, 0);
1091	lua_setfield(state, -2, zcp_debug_info.name);
1092	lua_pushcclosure(state, zcp_exists_info.func, 0);
1093	lua_setfield(state, -2, zcp_exists_info.name);
1094	lua_setglobal(state, "zfs");
1095	VERIFY0(lua_gettop(state));
1096
1097	/*
1098	 * Push the error-callback that calculates Lua stack traces on
1099	 * unexpected failures.
1100	 */
1101	lua_pushcfunction(state, zcp_error_handler);
1102	VERIFY3U(1, ==, lua_gettop(state));
1103
1104	/*
1105	 * Load the actual script as a function onto the stack as text ("t").
1106	 * The only valid error condition is a syntax error in the script.
1107	 * ERRMEM should not be possible because our allocator is using
1108	 * KM_SLEEP.  ERRGCMM should not be possible because we have not added
1109	 * any objects with __gc metamethods to the interpreter that could
1110	 * fail.
1111	 */
1112	err = luaL_loadbufferx(state, program, strlen(program),
1113	    "channel program", "t");
1114	if (err == LUA_ERRSYNTAX) {
1115		fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1116		    lua_tostring(state, -1));
1117		lua_close(state);
1118		return (SET_ERROR(EINVAL));
1119	}
1120	VERIFY0(err);
1121	VERIFY3U(2, ==, lua_gettop(state));
1122
1123	/*
1124	 * Convert the input nvlist to a Lua object and put it on top of the
1125	 * stack.
1126	 */
1127	char errmsg[128];
1128	err = zcp_nvpair_value_to_lua(state, nvarg,
1129	    errmsg, sizeof (errmsg));
1130	if (err != 0) {
1131		fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1132		lua_close(state);
1133		return (SET_ERROR(EINVAL));
1134	}
1135	VERIFY3U(3, ==, lua_gettop(state));
1136
1137	evalargs.ea_state = state;
1138	evalargs.ea_allocargs = &allocargs;
1139	evalargs.ea_instrlimit = instrlimit;
1140	evalargs.ea_cred = CRED();
1141	evalargs.ea_outnvl = outnvl;
1142	evalargs.ea_result = 0;
1143
1144	if (sync) {
1145		err = dsl_sync_task(poolname, NULL,
1146		    zcp_eval_sync, &evalargs, 0, ZFS_SPACE_CHECK_ZCP_EVAL);
1147		if (err != 0)
1148			zcp_pool_error(&evalargs, poolname);
1149	} else {
1150		zcp_eval_open(&evalargs, poolname);
1151	}
1152	lua_close(state);
1153
1154	return (evalargs.ea_result);
1155}
1156
1157/*
1158 * Retrieve metadata about the currently running channel program.
1159 */
1160zcp_run_info_t *
1161zcp_run_info(lua_State *state)
1162{
1163	zcp_run_info_t *ri;
1164
1165	lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1166	ri = lua_touserdata(state, -1);
1167	lua_pop(state, 1);
1168	return (ri);
1169}
1170
1171/*
1172 * Argument Parsing
1173 * ================
1174 *
1175 * The Lua language allows methods to be called with any number
1176 * of arguments of any type. When calling back into ZFS we need to sanitize
1177 * arguments from channel programs to make sure unexpected arguments or
1178 * arguments of the wrong type result in clear error messages. To do this
1179 * in a uniform way all callbacks from channel programs should use the
1180 * zcp_parse_args() function to interpret inputs.
1181 *
1182 * Positional vs Keyword Arguments
1183 * ===============================
1184 *
1185 * Every callback function takes a fixed set of required positional arguments
1186 * and optional keyword arguments. For example, the destroy function takes
1187 * a single positional string argument (the name of the dataset to destroy)
1188 * and an optional "defer" keyword boolean argument. When calling lua functions
1189 * with parentheses, only positional arguments can be used:
1190 *
1191 *     zfs.sync.snapshot("rpool@snap")
1192 *
1193 * To use keyword arguments functions should be called with a single argument
1194 * that is a lua table containing mappings of integer -> positional arguments
1195 * and string -> keyword arguments:
1196 *
1197 *     zfs.sync.snapshot({1="rpool@snap", defer=true})
1198 *
1199 * The lua language allows curly braces to be used in place of parenthesis as
1200 * syntactic sugar for this calling convention:
1201 *
1202 *     zfs.sync.snapshot{"rpool@snap", defer=true}
1203 */
1204
1205/*
1206 * Throw an error and print the given arguments.  If there are too many
1207 * arguments to fit in the output buffer, only the error format string is
1208 * output.
1209 */
1210static void
1211zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1212    const zcp_arg_t *kwargs, const char *fmt, ...)
1213{
1214	int i;
1215	char errmsg[512];
1216	size_t len = sizeof (errmsg);
1217	size_t msglen = 0;
1218	va_list argp;
1219
1220	va_start(argp, fmt);
1221	VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1222	va_end(argp);
1223
1224	/*
1225	 * Calculate the total length of the final string, including extra
1226	 * formatting characters. If the argument dump would be too large,
1227	 * only print the error string.
1228	 */
1229	msglen = strlen(errmsg);
1230	msglen += strlen(fname) + 4; /* : + {} + null terminator */
1231	for (i = 0; pargs[i].za_name != NULL; i++) {
1232		msglen += strlen(pargs[i].za_name);
1233		msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1234		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1235			msglen += 5; /* < + ( + )> + , */
1236		else
1237			msglen += 4; /* < + ( + )> */
1238	}
1239	for (i = 0; kwargs[i].za_name != NULL; i++) {
1240		msglen += strlen(kwargs[i].za_name);
1241		msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1242		if (kwargs[i + 1].za_name != NULL)
1243			msglen += 4; /* =( + ) + , */
1244		else
1245			msglen += 3; /* =( + ) */
1246	}
1247
1248	if (msglen >= len)
1249		(void) luaL_error(state, errmsg);
1250
1251	VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1252	VERIFY3U(len, >, strlcat(errmsg, fname, len));
1253	VERIFY3U(len, >, strlcat(errmsg, "{", len));
1254	for (i = 0; pargs[i].za_name != NULL; i++) {
1255		VERIFY3U(len, >, strlcat(errmsg, "<", len));
1256		VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1257		VERIFY3U(len, >, strlcat(errmsg, "(", len));
1258		VERIFY3U(len, >, strlcat(errmsg,
1259		    lua_typename(state, pargs[i].za_lua_type), len));
1260		VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1261		if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1262			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1263		}
1264	}
1265	for (i = 0; kwargs[i].za_name != NULL; i++) {
1266		VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1267		VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1268		VERIFY3U(len, >, strlcat(errmsg,
1269		    lua_typename(state, kwargs[i].za_lua_type), len));
1270		VERIFY3U(len, >, strlcat(errmsg, ")", len));
1271		if (kwargs[i + 1].za_name != NULL) {
1272			VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1273		}
1274	}
1275	VERIFY3U(len, >, strlcat(errmsg, "}", len));
1276
1277	(void) luaL_error(state, errmsg);
1278	panic("unreachable code");
1279}
1280
1281static void
1282zcp_parse_table_args(lua_State *state, const char *fname,
1283    const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1284{
1285	int i;
1286	int type;
1287
1288	for (i = 0; pargs[i].za_name != NULL; i++) {
1289		/*
1290		 * Check the table for this positional argument, leaving it
1291		 * on the top of the stack once we finish validating it.
1292		 */
1293		lua_pushinteger(state, i + 1);
1294		lua_gettable(state, 1);
1295
1296		type = lua_type(state, -1);
1297		if (type == LUA_TNIL) {
1298			zcp_args_error(state, fname, pargs, kwargs,
1299			    "too few arguments");
1300			panic("unreachable code");
1301		} else if (type != pargs[i].za_lua_type) {
1302			zcp_args_error(state, fname, pargs, kwargs,
1303			    "arg %d wrong type (is '%s', expected '%s')",
1304			    i + 1, lua_typename(state, type),
1305			    lua_typename(state, pargs[i].za_lua_type));
1306			panic("unreachable code");
1307		}
1308
1309		/*
1310		 * Remove the positional argument from the table.
1311		 */
1312		lua_pushinteger(state, i + 1);
1313		lua_pushnil(state);
1314		lua_settable(state, 1);
1315	}
1316
1317	for (i = 0; kwargs[i].za_name != NULL; i++) {
1318		/*
1319		 * Check the table for this keyword argument, which may be
1320		 * nil if it was omitted. Leave the value on the top of
1321		 * the stack after validating it.
1322		 */
1323		lua_getfield(state, 1, kwargs[i].za_name);
1324
1325		type = lua_type(state, -1);
1326		if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1327			zcp_args_error(state, fname, pargs, kwargs,
1328			    "kwarg '%s' wrong type (is '%s', expected '%s')",
1329			    kwargs[i].za_name, lua_typename(state, type),
1330			    lua_typename(state, kwargs[i].za_lua_type));
1331			panic("unreachable code");
1332		}
1333
1334		/*
1335		 * Remove the keyword argument from the table.
1336		 */
1337		lua_pushnil(state);
1338		lua_setfield(state, 1, kwargs[i].za_name);
1339	}
1340
1341	/*
1342	 * Any entries remaining in the table are invalid inputs, print
1343	 * an error message based on what the entry is.
1344	 */
1345	lua_pushnil(state);
1346	if (lua_next(state, 1)) {
1347		if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1348			zcp_args_error(state, fname, pargs, kwargs,
1349			    "too many positional arguments");
1350		} else if (lua_isstring(state, -2)) {
1351			zcp_args_error(state, fname, pargs, kwargs,
1352			    "invalid kwarg '%s'", lua_tostring(state, -2));
1353		} else {
1354			zcp_args_error(state, fname, pargs, kwargs,
1355			    "kwarg keys must be strings");
1356		}
1357		panic("unreachable code");
1358	}
1359
1360	lua_remove(state, 1);
1361}
1362
1363static void
1364zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1365    const zcp_arg_t *kwargs)
1366{
1367	int i;
1368	int type;
1369
1370	for (i = 0; pargs[i].za_name != NULL; i++) {
1371		type = lua_type(state, i + 1);
1372		if (type == LUA_TNONE) {
1373			zcp_args_error(state, fname, pargs, kwargs,
1374			    "too few arguments");
1375			panic("unreachable code");
1376		} else if (type != pargs[i].za_lua_type) {
1377			zcp_args_error(state, fname, pargs, kwargs,
1378			    "arg %d wrong type (is '%s', expected '%s')",
1379			    i + 1, lua_typename(state, type),
1380			    lua_typename(state, pargs[i].za_lua_type));
1381			panic("unreachable code");
1382		}
1383	}
1384	if (lua_gettop(state) != i) {
1385		zcp_args_error(state, fname, pargs, kwargs,
1386		    "too many positional arguments");
1387		panic("unreachable code");
1388	}
1389
1390	for (i = 0; kwargs[i].za_name != NULL; i++) {
1391		lua_pushnil(state);
1392	}
1393}
1394
1395/*
1396 * Checks the current Lua stack against an expected set of positional and
1397 * keyword arguments. If the stack does not match the expected arguments
1398 * aborts the current channel program with a useful error message, otherwise
1399 * it re-arranges the stack so that it contains the positional arguments
1400 * followed by the keyword argument values in declaration order. Any missing
1401 * keyword argument will be represented by a nil value on the stack.
1402 *
1403 * If the stack contains exactly one argument of type LUA_TTABLE the curly
1404 * braces calling convention is assumed, otherwise the stack is parsed for
1405 * positional arguments only.
1406 *
1407 * This function should be used by every function callback. It should be called
1408 * before the callback manipulates the Lua stack as it assumes the stack
1409 * represents the function arguments.
1410 */
1411void
1412zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1413    const zcp_arg_t *kwargs)
1414{
1415	if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1416		zcp_parse_table_args(state, fname, pargs, kwargs);
1417	} else {
1418		zcp_parse_pos_args(state, fname, pargs, kwargs);
1419	}
1420}
1421