vdev_queue.c revision 321610
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/vdev_impl.h>
33#include <sys/spa_impl.h>
34#include <sys/zio.h>
35#include <sys/avl.h>
36#include <sys/dsl_pool.h>
37#include <sys/metaslab_impl.h>
38#include <sys/abd.h>
39
40/*
41 * ZFS I/O Scheduler
42 * ---------------
43 *
44 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
45 * I/O scheduler determines when and in what order those operations are
46 * issued.  The I/O scheduler divides operations into six I/O classes
47 * prioritized in the following order: sync read, sync write, async read,
48 * async write, scrub/resilver and trim.  Each queue defines the minimum and
49 * maximum number of concurrent operations that may be issued to the device.
50 * In addition, the device has an aggregate maximum. Note that the sum of the
51 * per-queue minimums must not exceed the aggregate maximum, and if the
52 * aggregate maximum is equal to or greater than the sum of the per-queue
53 * maximums, the per-queue minimum has no effect.
54 *
55 * For many physical devices, throughput increases with the number of
56 * concurrent operations, but latency typically suffers. Further, physical
57 * devices typically have a limit at which more concurrent operations have no
58 * effect on throughput or can actually cause it to decrease.
59 *
60 * The scheduler selects the next operation to issue by first looking for an
61 * I/O class whose minimum has not been satisfied. Once all are satisfied and
62 * the aggregate maximum has not been hit, the scheduler looks for classes
63 * whose maximum has not been satisfied. Iteration through the I/O classes is
64 * done in the order specified above. No further operations are issued if the
65 * aggregate maximum number of concurrent operations has been hit or if there
66 * are no operations queued for an I/O class that has not hit its maximum.
67 * Every time an I/O is queued or an operation completes, the I/O scheduler
68 * looks for new operations to issue.
69 *
70 * All I/O classes have a fixed maximum number of outstanding operations
71 * except for the async write class. Asynchronous writes represent the data
72 * that is committed to stable storage during the syncing stage for
73 * transaction groups (see txg.c). Transaction groups enter the syncing state
74 * periodically so the number of queued async writes will quickly burst up and
75 * then bleed down to zero. Rather than servicing them as quickly as possible,
76 * the I/O scheduler changes the maximum number of active async write I/Os
77 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
78 * both throughput and latency typically increase with the number of
79 * concurrent operations issued to physical devices, reducing the burstiness
80 * in the number of concurrent operations also stabilizes the response time of
81 * operations from other -- and in particular synchronous -- queues. In broad
82 * strokes, the I/O scheduler will issue more concurrent operations from the
83 * async write queue as there's more dirty data in the pool.
84 *
85 * Async Writes
86 *
87 * The number of concurrent operations issued for the async write I/O class
88 * follows a piece-wise linear function defined by a few adjustable points.
89 *
90 *        |                   o---------| <-- zfs_vdev_async_write_max_active
91 *   ^    |                  /^         |
92 *   |    |                 / |         |
93 * active |                /  |         |
94 *  I/O   |               /   |         |
95 * count  |              /    |         |
96 *        |             /     |         |
97 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
98 *       0|____________^______|_________|
99 *        0%           |      |       100% of zfs_dirty_data_max
100 *                     |      |
101 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
102 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
103 *
104 * Until the amount of dirty data exceeds a minimum percentage of the dirty
105 * data allowed in the pool, the I/O scheduler will limit the number of
106 * concurrent operations to the minimum. As that threshold is crossed, the
107 * number of concurrent operations issued increases linearly to the maximum at
108 * the specified maximum percentage of the dirty data allowed in the pool.
109 *
110 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
111 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
112 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
113 * maximum percentage, this indicates that the rate of incoming data is
114 * greater than the rate that the backend storage can handle. In this case, we
115 * must further throttle incoming writes (see dmu_tx_delay() for details).
116 */
117
118/*
119 * The maximum number of I/Os active to each device.  Ideally, this will be >=
120 * the sum of each queue's max_active.  It must be at least the sum of each
121 * queue's min_active.
122 */
123uint32_t zfs_vdev_max_active = 1000;
124
125/*
126 * Per-queue limits on the number of I/Os active to each device.  If the
127 * sum of the queue's max_active is < zfs_vdev_max_active, then the
128 * min_active comes into play.  We will send min_active from each queue,
129 * and then select from queues in the order defined by zio_priority_t.
130 *
131 * In general, smaller max_active's will lead to lower latency of synchronous
132 * operations.  Larger max_active's may lead to higher overall throughput,
133 * depending on underlying storage.
134 *
135 * The ratio of the queues' max_actives determines the balance of performance
136 * between reads, writes, and scrubs.  E.g., increasing
137 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
138 * more quickly, but reads and writes to have higher latency and lower
139 * throughput.
140 */
141uint32_t zfs_vdev_sync_read_min_active = 10;
142uint32_t zfs_vdev_sync_read_max_active = 10;
143uint32_t zfs_vdev_sync_write_min_active = 10;
144uint32_t zfs_vdev_sync_write_max_active = 10;
145uint32_t zfs_vdev_async_read_min_active = 1;
146uint32_t zfs_vdev_async_read_max_active = 3;
147uint32_t zfs_vdev_async_write_min_active = 1;
148uint32_t zfs_vdev_async_write_max_active = 10;
149uint32_t zfs_vdev_scrub_min_active = 1;
150uint32_t zfs_vdev_scrub_max_active = 2;
151uint32_t zfs_vdev_trim_min_active = 1;
152/*
153 * TRIM max active is large in comparison to the other values due to the fact
154 * that TRIM IOs are coalesced at the device layer. This value is set such
155 * that a typical SSD can process the queued IOs in a single request.
156 */
157uint32_t zfs_vdev_trim_max_active = 64;
158
159
160/*
161 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
162 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
163 * zfs_vdev_async_write_active_max_dirty_percent, use
164 * zfs_vdev_async_write_max_active. The value is linearly interpolated
165 * between min and max.
166 */
167int zfs_vdev_async_write_active_min_dirty_percent = 30;
168int zfs_vdev_async_write_active_max_dirty_percent = 60;
169
170/*
171 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
172 * For read I/Os, we also aggregate across small adjacency gaps; for writes
173 * we include spans of optional I/Os to aid aggregation at the disk even when
174 * they aren't able to help us aggregate at this level.
175 */
176int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
177int zfs_vdev_read_gap_limit = 32 << 10;
178int zfs_vdev_write_gap_limit = 4 << 10;
179
180/*
181 * Define the queue depth percentage for each top-level. This percentage is
182 * used in conjunction with zfs_vdev_async_max_active to determine how many
183 * allocations a specific top-level vdev should handle. Once the queue depth
184 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
185 * then allocator will stop allocating blocks on that top-level device.
186 * The default kernel setting is 1000% which will yield 100 allocations per
187 * device. For userland testing, the default setting is 300% which equates
188 * to 30 allocations per device.
189 */
190#ifdef _KERNEL
191int zfs_vdev_queue_depth_pct = 1000;
192#else
193int zfs_vdev_queue_depth_pct = 300;
194#endif
195
196
197#ifdef __FreeBSD__
198#ifdef _KERNEL
199SYSCTL_DECL(_vfs_zfs_vdev);
200
201static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
202SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
203    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
204    sysctl_zfs_async_write_active_min_dirty_percent, "I",
205    "Percentage of async write dirty data below which "
206    "async_write_min_active is used.");
207
208static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
209SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
210    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
211    sysctl_zfs_async_write_active_max_dirty_percent, "I",
212    "Percentage of async write dirty data above which "
213    "async_write_max_active is used.");
214
215SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
216    &zfs_vdev_max_active, 0,
217    "The maximum number of I/Os of all types active for each device.");
218
219#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
220SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active, CTLFLAG_RWTUN,\
221    &zfs_vdev_ ## name ## _min_active, 0,				\
222    "Initial number of I/O requests of type " #name			\
223    " active for each device");
224
225#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
226SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active, CTLFLAG_RWTUN,\
227    &zfs_vdev_ ## name ## _max_active, 0,				\
228    "Maximum number of I/O requests of type " #name			\
229    " active for each device");
230
231ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
232ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
233ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
234ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
235ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
236ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
237ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
238ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
239ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
240ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
241ZFS_VDEV_QUEUE_KNOB_MIN(trim);
242ZFS_VDEV_QUEUE_KNOB_MAX(trim);
243
244#undef ZFS_VDEV_QUEUE_KNOB
245
246SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
247    &zfs_vdev_aggregation_limit, 0,
248    "I/O requests are aggregated up to this size");
249SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
250    &zfs_vdev_read_gap_limit, 0,
251    "Acceptable gap between two reads being aggregated");
252SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
253    &zfs_vdev_write_gap_limit, 0,
254    "Acceptable gap between two writes being aggregated");
255SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, queue_depth_pct, CTLFLAG_RWTUN,
256    &zfs_vdev_queue_depth_pct, 0,
257    "Queue depth percentage for each top-level");
258
259static int
260sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
261{
262	int val, err;
263
264	val = zfs_vdev_async_write_active_min_dirty_percent;
265	err = sysctl_handle_int(oidp, &val, 0, req);
266	if (err != 0 || req->newptr == NULL)
267		return (err);
268
269	if (val < 0 || val > 100 ||
270	    val >= zfs_vdev_async_write_active_max_dirty_percent)
271		return (EINVAL);
272
273	zfs_vdev_async_write_active_min_dirty_percent = val;
274
275	return (0);
276}
277
278static int
279sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
280{
281	int val, err;
282
283	val = zfs_vdev_async_write_active_max_dirty_percent;
284	err = sysctl_handle_int(oidp, &val, 0, req);
285	if (err != 0 || req->newptr == NULL)
286		return (err);
287
288	if (val < 0 || val > 100 ||
289	    val <= zfs_vdev_async_write_active_min_dirty_percent)
290		return (EINVAL);
291
292	zfs_vdev_async_write_active_max_dirty_percent = val;
293
294	return (0);
295}
296#endif
297#endif
298
299int
300vdev_queue_offset_compare(const void *x1, const void *x2)
301{
302	const zio_t *z1 = x1;
303	const zio_t *z2 = x2;
304
305	if (z1->io_offset < z2->io_offset)
306		return (-1);
307	if (z1->io_offset > z2->io_offset)
308		return (1);
309
310	if (z1 < z2)
311		return (-1);
312	if (z1 > z2)
313		return (1);
314
315	return (0);
316}
317
318static inline avl_tree_t *
319vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
320{
321	return (&vq->vq_class[p].vqc_queued_tree);
322}
323
324static inline avl_tree_t *
325vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
326{
327	if (t == ZIO_TYPE_READ)
328		return (&vq->vq_read_offset_tree);
329	else if (t == ZIO_TYPE_WRITE)
330		return (&vq->vq_write_offset_tree);
331	else
332		return (NULL);
333}
334
335int
336vdev_queue_timestamp_compare(const void *x1, const void *x2)
337{
338	const zio_t *z1 = x1;
339	const zio_t *z2 = x2;
340
341	if (z1->io_timestamp < z2->io_timestamp)
342		return (-1);
343	if (z1->io_timestamp > z2->io_timestamp)
344		return (1);
345
346	if (z1->io_offset < z2->io_offset)
347		return (-1);
348	if (z1->io_offset > z2->io_offset)
349		return (1);
350
351	if (z1 < z2)
352		return (-1);
353	if (z1 > z2)
354		return (1);
355
356	return (0);
357}
358
359void
360vdev_queue_init(vdev_t *vd)
361{
362	vdev_queue_t *vq = &vd->vdev_queue;
363
364	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
365	vq->vq_vdev = vd;
366
367	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
368	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
369	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
370	    vdev_queue_offset_compare, sizeof (zio_t),
371	    offsetof(struct zio, io_offset_node));
372	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
373	    vdev_queue_offset_compare, sizeof (zio_t),
374	    offsetof(struct zio, io_offset_node));
375
376	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
377		int (*compfn) (const void *, const void *);
378
379		/*
380		 * The synchronous i/o queues are dispatched in FIFO rather
381		 * than LBA order.  This provides more consistent latency for
382		 * these i/os.
383		 */
384		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
385			compfn = vdev_queue_timestamp_compare;
386		else
387			compfn = vdev_queue_offset_compare;
388
389		avl_create(vdev_queue_class_tree(vq, p), compfn,
390		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
391	}
392
393	vq->vq_lastoffset = 0;
394}
395
396void
397vdev_queue_fini(vdev_t *vd)
398{
399	vdev_queue_t *vq = &vd->vdev_queue;
400
401	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
402		avl_destroy(vdev_queue_class_tree(vq, p));
403	avl_destroy(&vq->vq_active_tree);
404	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
405	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
406
407	mutex_destroy(&vq->vq_lock);
408}
409
410static void
411vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
412{
413	spa_t *spa = zio->io_spa;
414	avl_tree_t *qtt;
415
416	ASSERT(MUTEX_HELD(&vq->vq_lock));
417	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
418	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
419	qtt = vdev_queue_type_tree(vq, zio->io_type);
420	if (qtt)
421		avl_add(qtt, zio);
422
423#ifdef illumos
424	mutex_enter(&spa->spa_iokstat_lock);
425	spa->spa_queue_stats[zio->io_priority].spa_queued++;
426	if (spa->spa_iokstat != NULL)
427		kstat_waitq_enter(spa->spa_iokstat->ks_data);
428	mutex_exit(&spa->spa_iokstat_lock);
429#endif
430}
431
432static void
433vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
434{
435	spa_t *spa = zio->io_spa;
436	avl_tree_t *qtt;
437
438	ASSERT(MUTEX_HELD(&vq->vq_lock));
439	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
440	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
441	qtt = vdev_queue_type_tree(vq, zio->io_type);
442	if (qtt)
443		avl_remove(qtt, zio);
444
445#ifdef illumos
446	mutex_enter(&spa->spa_iokstat_lock);
447	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
448	spa->spa_queue_stats[zio->io_priority].spa_queued--;
449	if (spa->spa_iokstat != NULL)
450		kstat_waitq_exit(spa->spa_iokstat->ks_data);
451	mutex_exit(&spa->spa_iokstat_lock);
452#endif
453}
454
455static void
456vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
457{
458	spa_t *spa = zio->io_spa;
459	ASSERT(MUTEX_HELD(&vq->vq_lock));
460	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
461	vq->vq_class[zio->io_priority].vqc_active++;
462	avl_add(&vq->vq_active_tree, zio);
463
464#ifdef illumos
465	mutex_enter(&spa->spa_iokstat_lock);
466	spa->spa_queue_stats[zio->io_priority].spa_active++;
467	if (spa->spa_iokstat != NULL)
468		kstat_runq_enter(spa->spa_iokstat->ks_data);
469	mutex_exit(&spa->spa_iokstat_lock);
470#endif
471}
472
473static void
474vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
475{
476	spa_t *spa = zio->io_spa;
477	ASSERT(MUTEX_HELD(&vq->vq_lock));
478	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
479	vq->vq_class[zio->io_priority].vqc_active--;
480	avl_remove(&vq->vq_active_tree, zio);
481
482#ifdef illumos
483	mutex_enter(&spa->spa_iokstat_lock);
484	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
485	spa->spa_queue_stats[zio->io_priority].spa_active--;
486	if (spa->spa_iokstat != NULL) {
487		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
488
489		kstat_runq_exit(spa->spa_iokstat->ks_data);
490		if (zio->io_type == ZIO_TYPE_READ) {
491			ksio->reads++;
492			ksio->nread += zio->io_size;
493		} else if (zio->io_type == ZIO_TYPE_WRITE) {
494			ksio->writes++;
495			ksio->nwritten += zio->io_size;
496		}
497	}
498	mutex_exit(&spa->spa_iokstat_lock);
499#endif
500}
501
502static void
503vdev_queue_agg_io_done(zio_t *aio)
504{
505	if (aio->io_type == ZIO_TYPE_READ) {
506		zio_t *pio;
507		zio_link_t *zl = NULL;
508		while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
509			abd_copy_off(pio->io_abd, aio->io_abd,
510			    0, pio->io_offset - aio->io_offset, pio->io_size);
511		}
512	}
513
514	abd_free(aio->io_abd);
515}
516
517static int
518vdev_queue_class_min_active(zio_priority_t p)
519{
520	switch (p) {
521	case ZIO_PRIORITY_SYNC_READ:
522		return (zfs_vdev_sync_read_min_active);
523	case ZIO_PRIORITY_SYNC_WRITE:
524		return (zfs_vdev_sync_write_min_active);
525	case ZIO_PRIORITY_ASYNC_READ:
526		return (zfs_vdev_async_read_min_active);
527	case ZIO_PRIORITY_ASYNC_WRITE:
528		return (zfs_vdev_async_write_min_active);
529	case ZIO_PRIORITY_SCRUB:
530		return (zfs_vdev_scrub_min_active);
531	case ZIO_PRIORITY_TRIM:
532		return (zfs_vdev_trim_min_active);
533	default:
534		panic("invalid priority %u", p);
535		return (0);
536	}
537}
538
539static __noinline int
540vdev_queue_max_async_writes(spa_t *spa)
541{
542	int writes;
543	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
544	uint64_t min_bytes = zfs_dirty_data_max *
545	    zfs_vdev_async_write_active_min_dirty_percent / 100;
546	uint64_t max_bytes = zfs_dirty_data_max *
547	    zfs_vdev_async_write_active_max_dirty_percent / 100;
548
549	/*
550	 * Sync tasks correspond to interactive user actions. To reduce the
551	 * execution time of those actions we push data out as fast as possible.
552	 */
553	if (spa_has_pending_synctask(spa)) {
554		return (zfs_vdev_async_write_max_active);
555	}
556
557	if (dirty < min_bytes)
558		return (zfs_vdev_async_write_min_active);
559	if (dirty > max_bytes)
560		return (zfs_vdev_async_write_max_active);
561
562	/*
563	 * linear interpolation:
564	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
565	 * move right by min_bytes
566	 * move up by min_writes
567	 */
568	writes = (dirty - min_bytes) *
569	    (zfs_vdev_async_write_max_active -
570	    zfs_vdev_async_write_min_active) /
571	    (max_bytes - min_bytes) +
572	    zfs_vdev_async_write_min_active;
573	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
574	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
575	return (writes);
576}
577
578static int
579vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
580{
581	switch (p) {
582	case ZIO_PRIORITY_SYNC_READ:
583		return (zfs_vdev_sync_read_max_active);
584	case ZIO_PRIORITY_SYNC_WRITE:
585		return (zfs_vdev_sync_write_max_active);
586	case ZIO_PRIORITY_ASYNC_READ:
587		return (zfs_vdev_async_read_max_active);
588	case ZIO_PRIORITY_ASYNC_WRITE:
589		return (vdev_queue_max_async_writes(spa));
590	case ZIO_PRIORITY_SCRUB:
591		return (zfs_vdev_scrub_max_active);
592	case ZIO_PRIORITY_TRIM:
593		return (zfs_vdev_trim_max_active);
594	default:
595		panic("invalid priority %u", p);
596		return (0);
597	}
598}
599
600/*
601 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
602 * there is no eligible class.
603 */
604static zio_priority_t
605vdev_queue_class_to_issue(vdev_queue_t *vq)
606{
607	spa_t *spa = vq->vq_vdev->vdev_spa;
608	zio_priority_t p;
609
610	ASSERT(MUTEX_HELD(&vq->vq_lock));
611
612	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
613		return (ZIO_PRIORITY_NUM_QUEUEABLE);
614
615	/* find a queue that has not reached its minimum # outstanding i/os */
616	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
617		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
618		    vq->vq_class[p].vqc_active <
619		    vdev_queue_class_min_active(p))
620			return (p);
621	}
622
623	/*
624	 * If we haven't found a queue, look for one that hasn't reached its
625	 * maximum # outstanding i/os.
626	 */
627	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
628		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
629		    vq->vq_class[p].vqc_active <
630		    vdev_queue_class_max_active(spa, p))
631			return (p);
632	}
633
634	/* No eligible queued i/os */
635	return (ZIO_PRIORITY_NUM_QUEUEABLE);
636}
637
638/*
639 * Compute the range spanned by two i/os, which is the endpoint of the last
640 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
641 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
642 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
643 */
644#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
645#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
646
647static zio_t *
648vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
649{
650	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
651	uint64_t maxgap = 0;
652	uint64_t size;
653	boolean_t stretch;
654	avl_tree_t *t;
655	enum zio_flag flags;
656
657	ASSERT(MUTEX_HELD(&vq->vq_lock));
658
659	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
660		return (NULL);
661
662	first = last = zio;
663
664	if (zio->io_type == ZIO_TYPE_READ)
665		maxgap = zfs_vdev_read_gap_limit;
666
667	/*
668	 * We can aggregate I/Os that are sufficiently adjacent and of
669	 * the same flavor, as expressed by the AGG_INHERIT flags.
670	 * The latter requirement is necessary so that certain
671	 * attributes of the I/O, such as whether it's a normal I/O
672	 * or a scrub/resilver, can be preserved in the aggregate.
673	 * We can include optional I/Os, but don't allow them
674	 * to begin a range as they add no benefit in that situation.
675	 */
676
677	/*
678	 * We keep track of the last non-optional I/O.
679	 */
680	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
681
682	/*
683	 * Walk backwards through sufficiently contiguous I/Os
684	 * recording the last non-optional I/O.
685	 */
686	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
687	t = vdev_queue_type_tree(vq, zio->io_type);
688	while (t != NULL && (dio = AVL_PREV(t, first)) != NULL &&
689	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
690	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
691	    IO_GAP(dio, first) <= maxgap) {
692		first = dio;
693		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
694			mandatory = first;
695	}
696
697	/*
698	 * Skip any initial optional I/Os.
699	 */
700	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
701		first = AVL_NEXT(t, first);
702		ASSERT(first != NULL);
703	}
704
705	/*
706	 * Walk forward through sufficiently contiguous I/Os.
707	 * The aggregation limit does not apply to optional i/os, so that
708	 * we can issue contiguous writes even if they are larger than the
709	 * aggregation limit.
710	 */
711	while ((dio = AVL_NEXT(t, last)) != NULL &&
712	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
713	    (IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit ||
714	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
715	    IO_GAP(last, dio) <= maxgap) {
716		last = dio;
717		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
718			mandatory = last;
719	}
720
721	/*
722	 * Now that we've established the range of the I/O aggregation
723	 * we must decide what to do with trailing optional I/Os.
724	 * For reads, there's nothing to do. While we are unable to
725	 * aggregate further, it's possible that a trailing optional
726	 * I/O would allow the underlying device to aggregate with
727	 * subsequent I/Os. We must therefore determine if the next
728	 * non-optional I/O is close enough to make aggregation
729	 * worthwhile.
730	 */
731	stretch = B_FALSE;
732	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
733		zio_t *nio = last;
734		while ((dio = AVL_NEXT(t, nio)) != NULL &&
735		    IO_GAP(nio, dio) == 0 &&
736		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
737			nio = dio;
738			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
739				stretch = B_TRUE;
740				break;
741			}
742		}
743	}
744
745	if (stretch) {
746		/*
747		 * We are going to include an optional io in our aggregated
748		 * span, thus closing the write gap.  Only mandatory i/os can
749		 * start aggregated spans, so make sure that the next i/o
750		 * after our span is mandatory.
751		 */
752		dio = AVL_NEXT(t, last);
753		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
754	} else {
755		/* do not include the optional i/o */
756		while (last != mandatory && last != first) {
757			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
758			last = AVL_PREV(t, last);
759			ASSERT(last != NULL);
760		}
761	}
762
763	if (first == last)
764		return (NULL);
765
766	size = IO_SPAN(first, last);
767	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
768
769	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
770	    abd_alloc_for_io(size, B_TRUE), size, first->io_type,
771	    zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
772	    vdev_queue_agg_io_done, NULL);
773	aio->io_timestamp = first->io_timestamp;
774
775	nio = first;
776	do {
777		dio = nio;
778		nio = AVL_NEXT(t, dio);
779		ASSERT3U(dio->io_type, ==, aio->io_type);
780
781		if (dio->io_flags & ZIO_FLAG_NODATA) {
782			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
783			abd_zero_off(aio->io_abd,
784			    dio->io_offset - aio->io_offset, dio->io_size);
785		} else if (dio->io_type == ZIO_TYPE_WRITE) {
786			abd_copy_off(aio->io_abd, dio->io_abd,
787			    dio->io_offset - aio->io_offset, 0, dio->io_size);
788		}
789
790		zio_add_child(dio, aio);
791		vdev_queue_io_remove(vq, dio);
792		zio_vdev_io_bypass(dio);
793		zio_execute(dio);
794	} while (dio != last);
795
796	return (aio);
797}
798
799static zio_t *
800vdev_queue_io_to_issue(vdev_queue_t *vq)
801{
802	zio_t *zio, *aio;
803	zio_priority_t p;
804	avl_index_t idx;
805	avl_tree_t *tree;
806	zio_t search;
807
808again:
809	ASSERT(MUTEX_HELD(&vq->vq_lock));
810
811	p = vdev_queue_class_to_issue(vq);
812
813	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
814		/* No eligible queued i/os */
815		return (NULL);
816	}
817
818	/*
819	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
820	 * the most recently issued i/o in LBA (offset) order.
821	 *
822	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
823	 */
824	tree = vdev_queue_class_tree(vq, p);
825	search.io_timestamp = 0;
826	search.io_offset = vq->vq_last_offset + 1;
827	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
828	zio = avl_nearest(tree, idx, AVL_AFTER);
829	if (zio == NULL)
830		zio = avl_first(tree);
831	ASSERT3U(zio->io_priority, ==, p);
832
833	aio = vdev_queue_aggregate(vq, zio);
834	if (aio != NULL)
835		zio = aio;
836	else
837		vdev_queue_io_remove(vq, zio);
838
839	/*
840	 * If the I/O is or was optional and therefore has no data, we need to
841	 * simply discard it. We need to drop the vdev queue's lock to avoid a
842	 * deadlock that we could encounter since this I/O will complete
843	 * immediately.
844	 */
845	if (zio->io_flags & ZIO_FLAG_NODATA) {
846		mutex_exit(&vq->vq_lock);
847		zio_vdev_io_bypass(zio);
848		zio_execute(zio);
849		mutex_enter(&vq->vq_lock);
850		goto again;
851	}
852
853	vdev_queue_pending_add(vq, zio);
854	vq->vq_last_offset = zio->io_offset;
855
856	return (zio);
857}
858
859zio_t *
860vdev_queue_io(zio_t *zio)
861{
862	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
863	zio_t *nio;
864
865	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
866		return (zio);
867
868	/*
869	 * Children i/os inherent their parent's priority, which might
870	 * not match the child's i/o type.  Fix it up here.
871	 */
872	if (zio->io_type == ZIO_TYPE_READ) {
873		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
874		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
875		    zio->io_priority != ZIO_PRIORITY_SCRUB)
876			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
877	} else if (zio->io_type == ZIO_TYPE_WRITE) {
878		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
879		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
880			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
881	} else {
882		ASSERT(zio->io_type == ZIO_TYPE_FREE);
883		zio->io_priority = ZIO_PRIORITY_TRIM;
884	}
885
886	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
887
888	mutex_enter(&vq->vq_lock);
889	zio->io_timestamp = gethrtime();
890	vdev_queue_io_add(vq, zio);
891	nio = vdev_queue_io_to_issue(vq);
892	mutex_exit(&vq->vq_lock);
893
894	if (nio == NULL)
895		return (NULL);
896
897	if (nio->io_done == vdev_queue_agg_io_done) {
898		zio_nowait(nio);
899		return (NULL);
900	}
901
902	return (nio);
903}
904
905void
906vdev_queue_io_done(zio_t *zio)
907{
908	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
909	zio_t *nio;
910
911	mutex_enter(&vq->vq_lock);
912
913	vdev_queue_pending_remove(vq, zio);
914
915	vq->vq_io_complete_ts = gethrtime();
916
917	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
918		mutex_exit(&vq->vq_lock);
919		if (nio->io_done == vdev_queue_agg_io_done) {
920			zio_nowait(nio);
921		} else {
922			zio_vdev_io_reissue(nio);
923			zio_execute(nio);
924		}
925		mutex_enter(&vq->vq_lock);
926	}
927
928	mutex_exit(&vq->vq_lock);
929}
930
931/*
932 * As these three methods are only used for load calculations we're not concerned
933 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
934 * use here, instead we prefer to keep it lock free for performance.
935 */
936int
937vdev_queue_length(vdev_t *vd)
938{
939	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
940}
941
942uint64_t
943vdev_queue_lastoffset(vdev_t *vd)
944{
945	return (vd->vdev_queue.vq_lastoffset);
946}
947
948void
949vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
950{
951	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
952}
953