1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 */
30
31#include <sys/zfs_context.h>
32#include <sys/vdev_impl.h>
33#include <sys/spa_impl.h>
34#include <sys/zio.h>
35#include <sys/avl.h>
36#include <sys/dsl_pool.h>
37#include <sys/metaslab_impl.h>
38#include <sys/abd.h>
39
40/*
41 * ZFS I/O Scheduler
42 * ---------------
43 *
44 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
45 * I/O scheduler determines when and in what order those operations are
46 * issued.  The I/O scheduler divides operations into six I/O classes
47 * prioritized in the following order: sync read, sync write, async read,
48 * async write, scrub/resilver and trim.  Each queue defines the minimum and
49 * maximum number of concurrent operations that may be issued to the device.
50 * In addition, the device has an aggregate maximum. Note that the sum of the
51 * per-queue minimums must not exceed the aggregate maximum, and if the
52 * aggregate maximum is equal to or greater than the sum of the per-queue
53 * maximums, the per-queue minimum has no effect.
54 *
55 * For many physical devices, throughput increases with the number of
56 * concurrent operations, but latency typically suffers. Further, physical
57 * devices typically have a limit at which more concurrent operations have no
58 * effect on throughput or can actually cause it to decrease.
59 *
60 * The scheduler selects the next operation to issue by first looking for an
61 * I/O class whose minimum has not been satisfied. Once all are satisfied and
62 * the aggregate maximum has not been hit, the scheduler looks for classes
63 * whose maximum has not been satisfied. Iteration through the I/O classes is
64 * done in the order specified above. No further operations are issued if the
65 * aggregate maximum number of concurrent operations has been hit or if there
66 * are no operations queued for an I/O class that has not hit its maximum.
67 * Every time an I/O is queued or an operation completes, the I/O scheduler
68 * looks for new operations to issue.
69 *
70 * All I/O classes have a fixed maximum number of outstanding operations
71 * except for the async write class. Asynchronous writes represent the data
72 * that is committed to stable storage during the syncing stage for
73 * transaction groups (see txg.c). Transaction groups enter the syncing state
74 * periodically so the number of queued async writes will quickly burst up and
75 * then bleed down to zero. Rather than servicing them as quickly as possible,
76 * the I/O scheduler changes the maximum number of active async write I/Os
77 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
78 * both throughput and latency typically increase with the number of
79 * concurrent operations issued to physical devices, reducing the burstiness
80 * in the number of concurrent operations also stabilizes the response time of
81 * operations from other -- and in particular synchronous -- queues. In broad
82 * strokes, the I/O scheduler will issue more concurrent operations from the
83 * async write queue as there's more dirty data in the pool.
84 *
85 * Async Writes
86 *
87 * The number of concurrent operations issued for the async write I/O class
88 * follows a piece-wise linear function defined by a few adjustable points.
89 *
90 *        |                   o---------| <-- zfs_vdev_async_write_max_active
91 *   ^    |                  /^         |
92 *   |    |                 / |         |
93 * active |                /  |         |
94 *  I/O   |               /   |         |
95 * count  |              /    |         |
96 *        |             /     |         |
97 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
98 *       0|____________^______|_________|
99 *        0%           |      |       100% of zfs_dirty_data_max
100 *                     |      |
101 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
102 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
103 *
104 * Until the amount of dirty data exceeds a minimum percentage of the dirty
105 * data allowed in the pool, the I/O scheduler will limit the number of
106 * concurrent operations to the minimum. As that threshold is crossed, the
107 * number of concurrent operations issued increases linearly to the maximum at
108 * the specified maximum percentage of the dirty data allowed in the pool.
109 *
110 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
111 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
112 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
113 * maximum percentage, this indicates that the rate of incoming data is
114 * greater than the rate that the backend storage can handle. In this case, we
115 * must further throttle incoming writes (see dmu_tx_delay() for details).
116 */
117
118/*
119 * The maximum number of I/Os active to each device.  Ideally, this will be >=
120 * the sum of each queue's max_active.  It must be at least the sum of each
121 * queue's min_active.
122 */
123uint32_t zfs_vdev_max_active = 1000;
124
125/*
126 * Per-queue limits on the number of I/Os active to each device.  If the
127 * sum of the queue's max_active is < zfs_vdev_max_active, then the
128 * min_active comes into play.  We will send min_active from each queue,
129 * and then select from queues in the order defined by zio_priority_t.
130 *
131 * In general, smaller max_active's will lead to lower latency of synchronous
132 * operations.  Larger max_active's may lead to higher overall throughput,
133 * depending on underlying storage.
134 *
135 * The ratio of the queues' max_actives determines the balance of performance
136 * between reads, writes, and scrubs.  E.g., increasing
137 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
138 * more quickly, but reads and writes to have higher latency and lower
139 * throughput.
140 */
141uint32_t zfs_vdev_sync_read_min_active = 10;
142uint32_t zfs_vdev_sync_read_max_active = 10;
143uint32_t zfs_vdev_sync_write_min_active = 10;
144uint32_t zfs_vdev_sync_write_max_active = 10;
145uint32_t zfs_vdev_async_read_min_active = 1;
146uint32_t zfs_vdev_async_read_max_active = 3;
147uint32_t zfs_vdev_async_write_min_active = 1;
148uint32_t zfs_vdev_async_write_max_active = 10;
149uint32_t zfs_vdev_scrub_min_active = 1;
150uint32_t zfs_vdev_scrub_max_active = 2;
151uint32_t zfs_vdev_trim_min_active = 1;
152/*
153 * TRIM max active is large in comparison to the other values due to the fact
154 * that TRIM IOs are coalesced at the device layer. This value is set such
155 * that a typical SSD can process the queued IOs in a single request.
156 */
157uint32_t zfs_vdev_trim_max_active = 64;
158uint32_t zfs_vdev_removal_min_active = 1;
159uint32_t zfs_vdev_removal_max_active = 2;
160uint32_t zfs_vdev_initializing_min_active = 1;
161uint32_t zfs_vdev_initializing_max_active = 1;
162
163
164/*
165 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
166 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
167 * zfs_vdev_async_write_active_max_dirty_percent, use
168 * zfs_vdev_async_write_max_active. The value is linearly interpolated
169 * between min and max.
170 */
171int zfs_vdev_async_write_active_min_dirty_percent = 30;
172int zfs_vdev_async_write_active_max_dirty_percent = 60;
173
174/*
175 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
176 * For read I/Os, we also aggregate across small adjacency gaps; for writes
177 * we include spans of optional I/Os to aid aggregation at the disk even when
178 * they aren't able to help us aggregate at this level.
179 */
180int zfs_vdev_aggregation_limit = 1 << 20;
181int zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE;
182int zfs_vdev_read_gap_limit = 32 << 10;
183int zfs_vdev_write_gap_limit = 4 << 10;
184
185/*
186 * Define the queue depth percentage for each top-level. This percentage is
187 * used in conjunction with zfs_vdev_async_max_active to determine how many
188 * allocations a specific top-level vdev should handle. Once the queue depth
189 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
190 * then allocator will stop allocating blocks on that top-level device.
191 * The default kernel setting is 1000% which will yield 100 allocations per
192 * device. For userland testing, the default setting is 300% which equates
193 * to 30 allocations per device.
194 */
195#ifdef _KERNEL
196int zfs_vdev_queue_depth_pct = 1000;
197#else
198int zfs_vdev_queue_depth_pct = 300;
199#endif
200
201/*
202 * When performing allocations for a given metaslab, we want to make sure that
203 * there are enough IOs to aggregate together to improve throughput. We want to
204 * ensure that there are at least 128k worth of IOs that can be aggregated, and
205 * we assume that the average allocation size is 4k, so we need the queue depth
206 * to be 32 per allocator to get good aggregation of sequential writes.
207 */
208int zfs_vdev_def_queue_depth = 32;
209
210#ifdef __FreeBSD__
211#ifdef _KERNEL
212SYSCTL_DECL(_vfs_zfs_vdev);
213
214static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
215SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
216    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
217    sysctl_zfs_async_write_active_min_dirty_percent, "I",
218    "Percentage of async write dirty data below which "
219    "async_write_min_active is used.");
220
221static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
222SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
223    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
224    sysctl_zfs_async_write_active_max_dirty_percent, "I",
225    "Percentage of async write dirty data above which "
226    "async_write_max_active is used.");
227
228SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
229    &zfs_vdev_max_active, 0,
230    "The maximum number of I/Os of all types active for each device.");
231
232#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
233SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active, CTLFLAG_RWTUN,\
234    &zfs_vdev_ ## name ## _min_active, 0,				\
235    "Initial number of I/O requests of type " #name			\
236    " active for each device");
237
238#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
239SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active, CTLFLAG_RWTUN,\
240    &zfs_vdev_ ## name ## _max_active, 0,				\
241    "Maximum number of I/O requests of type " #name			\
242    " active for each device");
243
244ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
245ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
246ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
247ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
248ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
249ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
250ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
251ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
252ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
253ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
254ZFS_VDEV_QUEUE_KNOB_MIN(trim);
255ZFS_VDEV_QUEUE_KNOB_MAX(trim);
256ZFS_VDEV_QUEUE_KNOB_MIN(removal);
257ZFS_VDEV_QUEUE_KNOB_MAX(removal);
258ZFS_VDEV_QUEUE_KNOB_MIN(initializing);
259ZFS_VDEV_QUEUE_KNOB_MAX(initializing);
260
261#undef ZFS_VDEV_QUEUE_KNOB
262
263SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
264    &zfs_vdev_aggregation_limit, 0,
265    "I/O requests are aggregated up to this size");
266SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit_non_rotating, CTLFLAG_RWTUN,
267    &zfs_vdev_aggregation_limit_non_rotating, 0,
268    "I/O requests are aggregated up to this size for non-rotating media");
269SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
270    &zfs_vdev_read_gap_limit, 0,
271    "Acceptable gap between two reads being aggregated");
272SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
273    &zfs_vdev_write_gap_limit, 0,
274    "Acceptable gap between two writes being aggregated");
275SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, queue_depth_pct, CTLFLAG_RWTUN,
276    &zfs_vdev_queue_depth_pct, 0,
277    "Queue depth percentage for each top-level");
278SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, def_queue_depth, CTLFLAG_RWTUN,
279    &zfs_vdev_def_queue_depth, 0,
280    "Default queue depth for each allocator");
281
282static int
283sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
284{
285	int val, err;
286
287	val = zfs_vdev_async_write_active_min_dirty_percent;
288	err = sysctl_handle_int(oidp, &val, 0, req);
289	if (err != 0 || req->newptr == NULL)
290		return (err);
291
292	if (val < 0 || val > 100 ||
293	    val >= zfs_vdev_async_write_active_max_dirty_percent)
294		return (EINVAL);
295
296	zfs_vdev_async_write_active_min_dirty_percent = val;
297
298	return (0);
299}
300
301static int
302sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
303{
304	int val, err;
305
306	val = zfs_vdev_async_write_active_max_dirty_percent;
307	err = sysctl_handle_int(oidp, &val, 0, req);
308	if (err != 0 || req->newptr == NULL)
309		return (err);
310
311	if (val < 0 || val > 100 ||
312	    val <= zfs_vdev_async_write_active_min_dirty_percent)
313		return (EINVAL);
314
315	zfs_vdev_async_write_active_max_dirty_percent = val;
316
317	return (0);
318}
319#endif
320#endif
321
322int
323vdev_queue_offset_compare(const void *x1, const void *x2)
324{
325	const zio_t *z1 = (const zio_t *)x1;
326	const zio_t *z2 = (const zio_t *)x2;
327
328	int cmp = AVL_CMP(z1->io_offset, z2->io_offset);
329
330	if (likely(cmp))
331		return (cmp);
332
333	return (AVL_PCMP(z1, z2));
334}
335
336static inline avl_tree_t *
337vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
338{
339	return (&vq->vq_class[p].vqc_queued_tree);
340}
341
342static inline avl_tree_t *
343vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
344{
345	if (t == ZIO_TYPE_READ)
346		return (&vq->vq_read_offset_tree);
347	else if (t == ZIO_TYPE_WRITE)
348		return (&vq->vq_write_offset_tree);
349	else
350		return (NULL);
351}
352
353int
354vdev_queue_timestamp_compare(const void *x1, const void *x2)
355{
356	const zio_t *z1 = x1;
357	const zio_t *z2 = x2;
358
359	if (z1->io_timestamp < z2->io_timestamp)
360		return (-1);
361	if (z1->io_timestamp > z2->io_timestamp)
362		return (1);
363
364	if (z1->io_offset < z2->io_offset)
365		return (-1);
366	if (z1->io_offset > z2->io_offset)
367		return (1);
368
369	if (z1 < z2)
370		return (-1);
371	if (z1 > z2)
372		return (1);
373
374	return (0);
375}
376
377void
378vdev_queue_init(vdev_t *vd)
379{
380	vdev_queue_t *vq = &vd->vdev_queue;
381
382	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
383	vq->vq_vdev = vd;
384
385	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
386	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
387	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
388	    vdev_queue_offset_compare, sizeof (zio_t),
389	    offsetof(struct zio, io_offset_node));
390	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
391	    vdev_queue_offset_compare, sizeof (zio_t),
392	    offsetof(struct zio, io_offset_node));
393
394	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
395		int (*compfn) (const void *, const void *);
396
397		/*
398		 * The synchronous i/o queues are dispatched in FIFO rather
399		 * than LBA order.  This provides more consistent latency for
400		 * these i/os.
401		 */
402		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
403			compfn = vdev_queue_timestamp_compare;
404		else
405			compfn = vdev_queue_offset_compare;
406
407		avl_create(vdev_queue_class_tree(vq, p), compfn,
408		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
409	}
410
411	vq->vq_lastoffset = 0;
412}
413
414void
415vdev_queue_fini(vdev_t *vd)
416{
417	vdev_queue_t *vq = &vd->vdev_queue;
418
419	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
420		avl_destroy(vdev_queue_class_tree(vq, p));
421	avl_destroy(&vq->vq_active_tree);
422	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
423	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
424
425	mutex_destroy(&vq->vq_lock);
426}
427
428static void
429vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
430{
431	spa_t *spa = zio->io_spa;
432	avl_tree_t *qtt;
433
434	ASSERT(MUTEX_HELD(&vq->vq_lock));
435	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
436	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
437	qtt = vdev_queue_type_tree(vq, zio->io_type);
438	if (qtt)
439		avl_add(qtt, zio);
440
441#ifdef illumos
442	mutex_enter(&spa->spa_iokstat_lock);
443	spa->spa_queue_stats[zio->io_priority].spa_queued++;
444	if (spa->spa_iokstat != NULL)
445		kstat_waitq_enter(spa->spa_iokstat->ks_data);
446	mutex_exit(&spa->spa_iokstat_lock);
447#endif
448}
449
450static void
451vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
452{
453	spa_t *spa = zio->io_spa;
454	avl_tree_t *qtt;
455
456	ASSERT(MUTEX_HELD(&vq->vq_lock));
457	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
458	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
459	qtt = vdev_queue_type_tree(vq, zio->io_type);
460	if (qtt)
461		avl_remove(qtt, zio);
462
463#ifdef illumos
464	mutex_enter(&spa->spa_iokstat_lock);
465	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
466	spa->spa_queue_stats[zio->io_priority].spa_queued--;
467	if (spa->spa_iokstat != NULL)
468		kstat_waitq_exit(spa->spa_iokstat->ks_data);
469	mutex_exit(&spa->spa_iokstat_lock);
470#endif
471}
472
473static void
474vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
475{
476	spa_t *spa = zio->io_spa;
477	ASSERT(MUTEX_HELD(&vq->vq_lock));
478	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
479	vq->vq_class[zio->io_priority].vqc_active++;
480	avl_add(&vq->vq_active_tree, zio);
481
482#ifdef illumos
483	mutex_enter(&spa->spa_iokstat_lock);
484	spa->spa_queue_stats[zio->io_priority].spa_active++;
485	if (spa->spa_iokstat != NULL)
486		kstat_runq_enter(spa->spa_iokstat->ks_data);
487	mutex_exit(&spa->spa_iokstat_lock);
488#endif
489}
490
491static void
492vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
493{
494	spa_t *spa = zio->io_spa;
495	ASSERT(MUTEX_HELD(&vq->vq_lock));
496	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
497	vq->vq_class[zio->io_priority].vqc_active--;
498	avl_remove(&vq->vq_active_tree, zio);
499
500#ifdef illumos
501	mutex_enter(&spa->spa_iokstat_lock);
502	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
503	spa->spa_queue_stats[zio->io_priority].spa_active--;
504	if (spa->spa_iokstat != NULL) {
505		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
506
507		kstat_runq_exit(spa->spa_iokstat->ks_data);
508		if (zio->io_type == ZIO_TYPE_READ) {
509			ksio->reads++;
510			ksio->nread += zio->io_size;
511		} else if (zio->io_type == ZIO_TYPE_WRITE) {
512			ksio->writes++;
513			ksio->nwritten += zio->io_size;
514		}
515	}
516	mutex_exit(&spa->spa_iokstat_lock);
517#endif
518}
519
520static void
521vdev_queue_agg_io_done(zio_t *aio)
522{
523	if (aio->io_type == ZIO_TYPE_READ) {
524		zio_t *pio;
525		zio_link_t *zl = NULL;
526		while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
527			abd_copy_off(pio->io_abd, aio->io_abd,
528			    0, pio->io_offset - aio->io_offset, pio->io_size);
529		}
530	}
531
532	abd_free(aio->io_abd);
533}
534
535static int
536vdev_queue_class_min_active(zio_priority_t p)
537{
538	switch (p) {
539	case ZIO_PRIORITY_SYNC_READ:
540		return (zfs_vdev_sync_read_min_active);
541	case ZIO_PRIORITY_SYNC_WRITE:
542		return (zfs_vdev_sync_write_min_active);
543	case ZIO_PRIORITY_ASYNC_READ:
544		return (zfs_vdev_async_read_min_active);
545	case ZIO_PRIORITY_ASYNC_WRITE:
546		return (zfs_vdev_async_write_min_active);
547	case ZIO_PRIORITY_SCRUB:
548		return (zfs_vdev_scrub_min_active);
549	case ZIO_PRIORITY_TRIM:
550		return (zfs_vdev_trim_min_active);
551	case ZIO_PRIORITY_REMOVAL:
552		return (zfs_vdev_removal_min_active);
553	case ZIO_PRIORITY_INITIALIZING:
554		return (zfs_vdev_initializing_min_active);
555	default:
556		panic("invalid priority %u", p);
557		return (0);
558	}
559}
560
561static __noinline int
562vdev_queue_max_async_writes(spa_t *spa)
563{
564	int writes;
565	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
566	uint64_t min_bytes = zfs_dirty_data_max *
567	    zfs_vdev_async_write_active_min_dirty_percent / 100;
568	uint64_t max_bytes = zfs_dirty_data_max *
569	    zfs_vdev_async_write_active_max_dirty_percent / 100;
570
571	/*
572	 * Sync tasks correspond to interactive user actions. To reduce the
573	 * execution time of those actions we push data out as fast as possible.
574	 */
575	if (spa_has_pending_synctask(spa)) {
576		return (zfs_vdev_async_write_max_active);
577	}
578
579	if (dirty < min_bytes)
580		return (zfs_vdev_async_write_min_active);
581	if (dirty > max_bytes)
582		return (zfs_vdev_async_write_max_active);
583
584	/*
585	 * linear interpolation:
586	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
587	 * move right by min_bytes
588	 * move up by min_writes
589	 */
590	writes = (dirty - min_bytes) *
591	    (zfs_vdev_async_write_max_active -
592	    zfs_vdev_async_write_min_active) /
593	    (max_bytes - min_bytes) +
594	    zfs_vdev_async_write_min_active;
595	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
596	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
597	return (writes);
598}
599
600static int
601vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
602{
603	switch (p) {
604	case ZIO_PRIORITY_SYNC_READ:
605		return (zfs_vdev_sync_read_max_active);
606	case ZIO_PRIORITY_SYNC_WRITE:
607		return (zfs_vdev_sync_write_max_active);
608	case ZIO_PRIORITY_ASYNC_READ:
609		return (zfs_vdev_async_read_max_active);
610	case ZIO_PRIORITY_ASYNC_WRITE:
611		return (vdev_queue_max_async_writes(spa));
612	case ZIO_PRIORITY_SCRUB:
613		return (zfs_vdev_scrub_max_active);
614	case ZIO_PRIORITY_TRIM:
615		return (zfs_vdev_trim_max_active);
616	case ZIO_PRIORITY_REMOVAL:
617		return (zfs_vdev_removal_max_active);
618	case ZIO_PRIORITY_INITIALIZING:
619		return (zfs_vdev_initializing_max_active);
620	default:
621		panic("invalid priority %u", p);
622		return (0);
623	}
624}
625
626/*
627 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
628 * there is no eligible class.
629 */
630static zio_priority_t
631vdev_queue_class_to_issue(vdev_queue_t *vq)
632{
633	spa_t *spa = vq->vq_vdev->vdev_spa;
634	zio_priority_t p;
635
636	ASSERT(MUTEX_HELD(&vq->vq_lock));
637
638	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
639		return (ZIO_PRIORITY_NUM_QUEUEABLE);
640
641	/* find a queue that has not reached its minimum # outstanding i/os */
642	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
643		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
644		    vq->vq_class[p].vqc_active <
645		    vdev_queue_class_min_active(p))
646			return (p);
647	}
648
649	/*
650	 * If we haven't found a queue, look for one that hasn't reached its
651	 * maximum # outstanding i/os.
652	 */
653	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
654		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
655		    vq->vq_class[p].vqc_active <
656		    vdev_queue_class_max_active(spa, p))
657			return (p);
658	}
659
660	/* No eligible queued i/os */
661	return (ZIO_PRIORITY_NUM_QUEUEABLE);
662}
663
664/*
665 * Compute the range spanned by two i/os, which is the endpoint of the last
666 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
667 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
668 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
669 */
670#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
671#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
672
673static zio_t *
674vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
675{
676	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
677	zio_link_t *zl = NULL;
678	uint64_t maxgap = 0;
679	uint64_t size;
680	uint64_t limit;
681	int maxblocksize;
682	boolean_t stretch;
683	avl_tree_t *t;
684	enum zio_flag flags;
685
686	ASSERT(MUTEX_HELD(&vq->vq_lock));
687
688	maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa);
689	if (vq->vq_vdev->vdev_nonrot)
690		limit = zfs_vdev_aggregation_limit_non_rotating;
691	else
692		limit = zfs_vdev_aggregation_limit;
693	limit = MAX(MIN(limit, maxblocksize), 0);
694
695	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
696		return (NULL);
697
698	first = last = zio;
699
700	if (zio->io_type == ZIO_TYPE_READ)
701		maxgap = zfs_vdev_read_gap_limit;
702
703	/*
704	 * We can aggregate I/Os that are sufficiently adjacent and of
705	 * the same flavor, as expressed by the AGG_INHERIT flags.
706	 * The latter requirement is necessary so that certain
707	 * attributes of the I/O, such as whether it's a normal I/O
708	 * or a scrub/resilver, can be preserved in the aggregate.
709	 * We can include optional I/Os, but don't allow them
710	 * to begin a range as they add no benefit in that situation.
711	 */
712
713	/*
714	 * We keep track of the last non-optional I/O.
715	 */
716	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
717
718	/*
719	 * Walk backwards through sufficiently contiguous I/Os
720	 * recording the last non-optional I/O.
721	 */
722	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
723	t = vdev_queue_type_tree(vq, zio->io_type);
724	while (t != NULL && (dio = AVL_PREV(t, first)) != NULL &&
725	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
726	    IO_SPAN(dio, last) <= limit &&
727	    IO_GAP(dio, first) <= maxgap &&
728	    dio->io_type == zio->io_type) {
729		first = dio;
730		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
731			mandatory = first;
732	}
733
734	/*
735	 * Skip any initial optional I/Os.
736	 */
737	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
738		first = AVL_NEXT(t, first);
739		ASSERT(first != NULL);
740	}
741
742	/*
743	 * Walk forward through sufficiently contiguous I/Os.
744	 * The aggregation limit does not apply to optional i/os, so that
745	 * we can issue contiguous writes even if they are larger than the
746	 * aggregation limit.
747	 */
748	while ((dio = AVL_NEXT(t, last)) != NULL &&
749	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
750	    (IO_SPAN(first, dio) <= limit ||
751	    (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
752	    IO_SPAN(first, dio) <= maxblocksize &&
753	    IO_GAP(last, dio) <= maxgap &&
754	    dio->io_type == zio->io_type) {
755		last = dio;
756		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
757			mandatory = last;
758	}
759
760	/*
761	 * Now that we've established the range of the I/O aggregation
762	 * we must decide what to do with trailing optional I/Os.
763	 * For reads, there's nothing to do. While we are unable to
764	 * aggregate further, it's possible that a trailing optional
765	 * I/O would allow the underlying device to aggregate with
766	 * subsequent I/Os. We must therefore determine if the next
767	 * non-optional I/O is close enough to make aggregation
768	 * worthwhile.
769	 */
770	stretch = B_FALSE;
771	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
772		zio_t *nio = last;
773		while ((dio = AVL_NEXT(t, nio)) != NULL &&
774		    IO_GAP(nio, dio) == 0 &&
775		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
776			nio = dio;
777			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
778				stretch = B_TRUE;
779				break;
780			}
781		}
782	}
783
784	if (stretch) {
785		/*
786		 * We are going to include an optional io in our aggregated
787		 * span, thus closing the write gap.  Only mandatory i/os can
788		 * start aggregated spans, so make sure that the next i/o
789		 * after our span is mandatory.
790		 */
791		dio = AVL_NEXT(t, last);
792		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
793	} else {
794		/* do not include the optional i/o */
795		while (last != mandatory && last != first) {
796			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
797			last = AVL_PREV(t, last);
798			ASSERT(last != NULL);
799		}
800	}
801
802	if (first == last)
803		return (NULL);
804
805	size = IO_SPAN(first, last);
806	ASSERT3U(size, <=, maxblocksize);
807
808	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
809	    abd_alloc_for_io(size, B_TRUE), size, first->io_type,
810	    zio->io_priority, flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
811	    vdev_queue_agg_io_done, NULL);
812	aio->io_timestamp = first->io_timestamp;
813
814	nio = first;
815	do {
816		dio = nio;
817		nio = AVL_NEXT(t, dio);
818		ASSERT3U(dio->io_type, ==, aio->io_type);
819
820		if (dio->io_flags & ZIO_FLAG_NODATA) {
821			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
822			abd_zero_off(aio->io_abd,
823			    dio->io_offset - aio->io_offset, dio->io_size);
824		} else if (dio->io_type == ZIO_TYPE_WRITE) {
825			abd_copy_off(aio->io_abd, dio->io_abd,
826			    dio->io_offset - aio->io_offset, 0, dio->io_size);
827		}
828
829		zio_add_child(dio, aio);
830		vdev_queue_io_remove(vq, dio);
831	} while (dio != last);
832
833	/*
834	 * We need to drop the vdev queue's lock to avoid a deadlock that we
835	 * could encounter since this I/O will complete immediately.
836	 */
837	mutex_exit(&vq->vq_lock);
838	while ((dio = zio_walk_parents(aio, &zl)) != NULL) {
839		zio_vdev_io_bypass(dio);
840		zio_execute(dio);
841	}
842	mutex_enter(&vq->vq_lock);
843
844	return (aio);
845}
846
847static zio_t *
848vdev_queue_io_to_issue(vdev_queue_t *vq)
849{
850	zio_t *zio, *aio;
851	zio_priority_t p;
852	avl_index_t idx;
853	avl_tree_t *tree;
854	zio_t search;
855
856again:
857	ASSERT(MUTEX_HELD(&vq->vq_lock));
858
859	p = vdev_queue_class_to_issue(vq);
860
861	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
862		/* No eligible queued i/os */
863		return (NULL);
864	}
865
866	/*
867	 * For LBA-ordered queues (async / scrub / initializing), issue the
868	 * i/o which follows the most recently issued i/o in LBA (offset) order.
869	 *
870	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
871	 */
872	tree = vdev_queue_class_tree(vq, p);
873	search.io_timestamp = 0;
874	search.io_offset = vq->vq_last_offset + 1;
875	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
876	zio = avl_nearest(tree, idx, AVL_AFTER);
877	if (zio == NULL)
878		zio = avl_first(tree);
879	ASSERT3U(zio->io_priority, ==, p);
880
881	aio = vdev_queue_aggregate(vq, zio);
882	if (aio != NULL)
883		zio = aio;
884	else
885		vdev_queue_io_remove(vq, zio);
886
887	/*
888	 * If the I/O is or was optional and therefore has no data, we need to
889	 * simply discard it. We need to drop the vdev queue's lock to avoid a
890	 * deadlock that we could encounter since this I/O will complete
891	 * immediately.
892	 */
893	if (zio->io_flags & ZIO_FLAG_NODATA) {
894		mutex_exit(&vq->vq_lock);
895		zio_vdev_io_bypass(zio);
896		zio_execute(zio);
897		mutex_enter(&vq->vq_lock);
898		goto again;
899	}
900
901	vdev_queue_pending_add(vq, zio);
902	vq->vq_last_offset = zio->io_offset;
903
904	return (zio);
905}
906
907zio_t *
908vdev_queue_io(zio_t *zio)
909{
910	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
911	zio_t *nio;
912
913	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
914		return (zio);
915
916	/*
917	 * Children i/os inherent their parent's priority, which might
918	 * not match the child's i/o type.  Fix it up here.
919	 */
920	if (zio->io_type == ZIO_TYPE_READ) {
921		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
922		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
923		    zio->io_priority != ZIO_PRIORITY_SCRUB &&
924		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
925		    zio->io_priority != ZIO_PRIORITY_INITIALIZING)
926			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
927	} else if (zio->io_type == ZIO_TYPE_WRITE) {
928		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
929		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
930		    zio->io_priority != ZIO_PRIORITY_REMOVAL &&
931		    zio->io_priority != ZIO_PRIORITY_INITIALIZING)
932			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
933	} else {
934		ASSERT(zio->io_type == ZIO_TYPE_FREE);
935		zio->io_priority = ZIO_PRIORITY_TRIM;
936	}
937
938	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
939
940	mutex_enter(&vq->vq_lock);
941	zio->io_timestamp = gethrtime();
942	vdev_queue_io_add(vq, zio);
943	nio = vdev_queue_io_to_issue(vq);
944	mutex_exit(&vq->vq_lock);
945
946	if (nio == NULL)
947		return (NULL);
948
949	if (nio->io_done == vdev_queue_agg_io_done) {
950		zio_nowait(nio);
951		return (NULL);
952	}
953
954	return (nio);
955}
956
957void
958vdev_queue_io_done(zio_t *zio)
959{
960	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
961	zio_t *nio;
962
963	mutex_enter(&vq->vq_lock);
964
965	vdev_queue_pending_remove(vq, zio);
966
967	vq->vq_io_complete_ts = gethrtime();
968
969	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
970		mutex_exit(&vq->vq_lock);
971		if (nio->io_done == vdev_queue_agg_io_done) {
972			zio_nowait(nio);
973		} else {
974			zio_vdev_io_reissue(nio);
975			zio_execute(nio);
976		}
977		mutex_enter(&vq->vq_lock);
978	}
979
980	mutex_exit(&vq->vq_lock);
981}
982
983void
984vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
985{
986	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
987	avl_tree_t *tree;
988
989	/*
990	 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
991	 * code to issue IOs without adding them to the vdev queue. In this
992	 * case, the zio is already going to be issued as quickly as possible
993	 * and so it doesn't need any reprioitization to help.
994	 */
995	if (zio->io_priority == ZIO_PRIORITY_NOW)
996		return;
997
998	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
999	ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
1000
1001	if (zio->io_type == ZIO_TYPE_READ) {
1002		if (priority != ZIO_PRIORITY_SYNC_READ &&
1003		    priority != ZIO_PRIORITY_ASYNC_READ &&
1004		    priority != ZIO_PRIORITY_SCRUB)
1005			priority = ZIO_PRIORITY_ASYNC_READ;
1006	} else {
1007		ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1008		if (priority != ZIO_PRIORITY_SYNC_WRITE &&
1009		    priority != ZIO_PRIORITY_ASYNC_WRITE)
1010			priority = ZIO_PRIORITY_ASYNC_WRITE;
1011	}
1012
1013	mutex_enter(&vq->vq_lock);
1014
1015	/*
1016	 * If the zio is in none of the queues we can simply change
1017	 * the priority. If the zio is waiting to be submitted we must
1018	 * remove it from the queue and re-insert it with the new priority.
1019	 * Otherwise, the zio is currently active and we cannot change its
1020	 * priority.
1021	 */
1022	tree = vdev_queue_class_tree(vq, zio->io_priority);
1023	if (avl_find(tree, zio, NULL) == zio) {
1024		avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
1025		zio->io_priority = priority;
1026		avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
1027	} else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
1028		zio->io_priority = priority;
1029	}
1030
1031	mutex_exit(&vq->vq_lock);
1032}
1033
1034/*
1035 * As these three methods are only used for load calculations we're not concerned
1036 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
1037 * use here, instead we prefer to keep it lock free for performance.
1038 */
1039int
1040vdev_queue_length(vdev_t *vd)
1041{
1042	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
1043}
1044
1045uint64_t
1046vdev_queue_lastoffset(vdev_t *vd)
1047{
1048	return (vd->vdev_queue.vq_lastoffset);
1049}
1050
1051void
1052vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
1053{
1054	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
1055}
1056