vdev_queue.c revision 287337
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25
26/*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30#include <sys/zfs_context.h>
31#include <sys/vdev_impl.h>
32#include <sys/spa_impl.h>
33#include <sys/zio.h>
34#include <sys/avl.h>
35#include <sys/dsl_pool.h>
36
37/*
38 * ZFS I/O Scheduler
39 * ---------------
40 *
41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios.  The
42 * I/O scheduler determines when and in what order those operations are
43 * issued.  The I/O scheduler divides operations into six I/O classes
44 * prioritized in the following order: sync read, sync write, async read,
45 * async write, scrub/resilver and trim.  Each queue defines the minimum and
46 * maximum number of concurrent operations that may be issued to the device.
47 * In addition, the device has an aggregate maximum. Note that the sum of the
48 * per-queue minimums must not exceed the aggregate maximum, and if the
49 * aggregate maximum is equal to or greater than the sum of the per-queue
50 * maximums, the per-queue minimum has no effect.
51 *
52 * For many physical devices, throughput increases with the number of
53 * concurrent operations, but latency typically suffers. Further, physical
54 * devices typically have a limit at which more concurrent operations have no
55 * effect on throughput or can actually cause it to decrease.
56 *
57 * The scheduler selects the next operation to issue by first looking for an
58 * I/O class whose minimum has not been satisfied. Once all are satisfied and
59 * the aggregate maximum has not been hit, the scheduler looks for classes
60 * whose maximum has not been satisfied. Iteration through the I/O classes is
61 * done in the order specified above. No further operations are issued if the
62 * aggregate maximum number of concurrent operations has been hit or if there
63 * are no operations queued for an I/O class that has not hit its maximum.
64 * Every time an I/O is queued or an operation completes, the I/O scheduler
65 * looks for new operations to issue.
66 *
67 * All I/O classes have a fixed maximum number of outstanding operations
68 * except for the async write class. Asynchronous writes represent the data
69 * that is committed to stable storage during the syncing stage for
70 * transaction groups (see txg.c). Transaction groups enter the syncing state
71 * periodically so the number of queued async writes will quickly burst up and
72 * then bleed down to zero. Rather than servicing them as quickly as possible,
73 * the I/O scheduler changes the maximum number of active async write I/Os
74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
75 * both throughput and latency typically increase with the number of
76 * concurrent operations issued to physical devices, reducing the burstiness
77 * in the number of concurrent operations also stabilizes the response time of
78 * operations from other -- and in particular synchronous -- queues. In broad
79 * strokes, the I/O scheduler will issue more concurrent operations from the
80 * async write queue as there's more dirty data in the pool.
81 *
82 * Async Writes
83 *
84 * The number of concurrent operations issued for the async write I/O class
85 * follows a piece-wise linear function defined by a few adjustable points.
86 *
87 *        |                   o---------| <-- zfs_vdev_async_write_max_active
88 *   ^    |                  /^         |
89 *   |    |                 / |         |
90 * active |                /  |         |
91 *  I/O   |               /   |         |
92 * count  |              /    |         |
93 *        |             /     |         |
94 *        |------------o      |         | <-- zfs_vdev_async_write_min_active
95 *       0|____________^______|_________|
96 *        0%           |      |       100% of zfs_dirty_data_max
97 *                     |      |
98 *                     |      `-- zfs_vdev_async_write_active_max_dirty_percent
99 *                     `--------- zfs_vdev_async_write_active_min_dirty_percent
100 *
101 * Until the amount of dirty data exceeds a minimum percentage of the dirty
102 * data allowed in the pool, the I/O scheduler will limit the number of
103 * concurrent operations to the minimum. As that threshold is crossed, the
104 * number of concurrent operations issued increases linearly to the maximum at
105 * the specified maximum percentage of the dirty data allowed in the pool.
106 *
107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
110 * maximum percentage, this indicates that the rate of incoming data is
111 * greater than the rate that the backend storage can handle. In this case, we
112 * must further throttle incoming writes (see dmu_tx_delay() for details).
113 */
114
115/*
116 * The maximum number of I/Os active to each device.  Ideally, this will be >=
117 * the sum of each queue's max_active.  It must be at least the sum of each
118 * queue's min_active.
119 */
120uint32_t zfs_vdev_max_active = 1000;
121
122/*
123 * Per-queue limits on the number of I/Os active to each device.  If the
124 * sum of the queue's max_active is < zfs_vdev_max_active, then the
125 * min_active comes into play.  We will send min_active from each queue,
126 * and then select from queues in the order defined by zio_priority_t.
127 *
128 * In general, smaller max_active's will lead to lower latency of synchronous
129 * operations.  Larger max_active's may lead to higher overall throughput,
130 * depending on underlying storage.
131 *
132 * The ratio of the queues' max_actives determines the balance of performance
133 * between reads, writes, and scrubs.  E.g., increasing
134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
135 * more quickly, but reads and writes to have higher latency and lower
136 * throughput.
137 */
138uint32_t zfs_vdev_sync_read_min_active = 10;
139uint32_t zfs_vdev_sync_read_max_active = 10;
140uint32_t zfs_vdev_sync_write_min_active = 10;
141uint32_t zfs_vdev_sync_write_max_active = 10;
142uint32_t zfs_vdev_async_read_min_active = 1;
143uint32_t zfs_vdev_async_read_max_active = 3;
144uint32_t zfs_vdev_async_write_min_active = 1;
145uint32_t zfs_vdev_async_write_max_active = 10;
146uint32_t zfs_vdev_scrub_min_active = 1;
147uint32_t zfs_vdev_scrub_max_active = 2;
148uint32_t zfs_vdev_trim_min_active = 1;
149/*
150 * TRIM max active is large in comparison to the other values due to the fact
151 * that TRIM IOs are coalesced at the device layer. This value is set such
152 * that a typical SSD can process the queued IOs in a single request.
153 */
154uint32_t zfs_vdev_trim_max_active = 64;
155
156
157/*
158 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
159 * dirty data, use zfs_vdev_async_write_min_active.  When it has more than
160 * zfs_vdev_async_write_active_max_dirty_percent, use
161 * zfs_vdev_async_write_max_active. The value is linearly interpolated
162 * between min and max.
163 */
164int zfs_vdev_async_write_active_min_dirty_percent = 30;
165int zfs_vdev_async_write_active_max_dirty_percent = 60;
166
167/*
168 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
169 * For read I/Os, we also aggregate across small adjacency gaps; for writes
170 * we include spans of optional I/Os to aid aggregation at the disk even when
171 * they aren't able to help us aggregate at this level.
172 */
173int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
174int zfs_vdev_read_gap_limit = 32 << 10;
175int zfs_vdev_write_gap_limit = 4 << 10;
176
177#ifdef __FreeBSD__
178SYSCTL_DECL(_vfs_zfs_vdev);
179
180static int sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS);
181SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_min_dirty_percent,
182    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
183    sysctl_zfs_async_write_active_min_dirty_percent, "I",
184    "Percentage of async write dirty data below which "
185    "async_write_min_active is used.");
186
187static int sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS);
188SYSCTL_PROC(_vfs_zfs_vdev, OID_AUTO, async_write_active_max_dirty_percent,
189    CTLTYPE_UINT | CTLFLAG_MPSAFE | CTLFLAG_RWTUN, 0, sizeof(int),
190    sysctl_zfs_async_write_active_max_dirty_percent, "I",
191    "Percentage of async write dirty data above which "
192    "async_write_max_active is used.");
193
194SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, max_active, CTLFLAG_RWTUN,
195    &zfs_vdev_max_active, 0,
196    "The maximum number of I/Os of all types active for each device.");
197
198#define ZFS_VDEV_QUEUE_KNOB_MIN(name)					\
199SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _min_active, CTLFLAG_RWTUN,\
200    &zfs_vdev_ ## name ## _min_active, 0,				\
201    "Initial number of I/O requests of type " #name			\
202    " active for each device");
203
204#define ZFS_VDEV_QUEUE_KNOB_MAX(name)					\
205SYSCTL_UINT(_vfs_zfs_vdev, OID_AUTO, name ## _max_active, CTLFLAG_RWTUN,\
206    &zfs_vdev_ ## name ## _max_active, 0,				\
207    "Maximum number of I/O requests of type " #name			\
208    " active for each device");
209
210ZFS_VDEV_QUEUE_KNOB_MIN(sync_read);
211ZFS_VDEV_QUEUE_KNOB_MAX(sync_read);
212ZFS_VDEV_QUEUE_KNOB_MIN(sync_write);
213ZFS_VDEV_QUEUE_KNOB_MAX(sync_write);
214ZFS_VDEV_QUEUE_KNOB_MIN(async_read);
215ZFS_VDEV_QUEUE_KNOB_MAX(async_read);
216ZFS_VDEV_QUEUE_KNOB_MIN(async_write);
217ZFS_VDEV_QUEUE_KNOB_MAX(async_write);
218ZFS_VDEV_QUEUE_KNOB_MIN(scrub);
219ZFS_VDEV_QUEUE_KNOB_MAX(scrub);
220ZFS_VDEV_QUEUE_KNOB_MIN(trim);
221ZFS_VDEV_QUEUE_KNOB_MAX(trim);
222
223#undef ZFS_VDEV_QUEUE_KNOB
224
225SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, aggregation_limit, CTLFLAG_RWTUN,
226    &zfs_vdev_aggregation_limit, 0,
227    "I/O requests are aggregated up to this size");
228SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, read_gap_limit, CTLFLAG_RWTUN,
229    &zfs_vdev_read_gap_limit, 0,
230    "Acceptable gap between two reads being aggregated");
231SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, write_gap_limit, CTLFLAG_RWTUN,
232    &zfs_vdev_write_gap_limit, 0,
233    "Acceptable gap between two writes being aggregated");
234
235static int
236sysctl_zfs_async_write_active_min_dirty_percent(SYSCTL_HANDLER_ARGS)
237{
238	int val, err;
239
240	val = zfs_vdev_async_write_active_min_dirty_percent;
241	err = sysctl_handle_int(oidp, &val, 0, req);
242	if (err != 0 || req->newptr == NULL)
243		return (err);
244
245	if (val < 0 || val > 100 ||
246	    val >= zfs_vdev_async_write_active_max_dirty_percent)
247		return (EINVAL);
248
249	zfs_vdev_async_write_active_min_dirty_percent = val;
250
251	return (0);
252}
253
254static int
255sysctl_zfs_async_write_active_max_dirty_percent(SYSCTL_HANDLER_ARGS)
256{
257	int val, err;
258
259	val = zfs_vdev_async_write_active_max_dirty_percent;
260	err = sysctl_handle_int(oidp, &val, 0, req);
261	if (err != 0 || req->newptr == NULL)
262		return (err);
263
264	if (val < 0 || val > 100 ||
265	    val <= zfs_vdev_async_write_active_min_dirty_percent)
266		return (EINVAL);
267
268	zfs_vdev_async_write_active_max_dirty_percent = val;
269
270	return (0);
271}
272#endif
273
274int
275vdev_queue_offset_compare(const void *x1, const void *x2)
276{
277	const zio_t *z1 = x1;
278	const zio_t *z2 = x2;
279
280	if (z1->io_offset < z2->io_offset)
281		return (-1);
282	if (z1->io_offset > z2->io_offset)
283		return (1);
284
285	if (z1 < z2)
286		return (-1);
287	if (z1 > z2)
288		return (1);
289
290	return (0);
291}
292
293static inline avl_tree_t *
294vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
295{
296	return (&vq->vq_class[p].vqc_queued_tree);
297}
298
299static inline avl_tree_t *
300vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
301{
302	if (t == ZIO_TYPE_READ)
303		return (&vq->vq_read_offset_tree);
304	else if (t == ZIO_TYPE_WRITE)
305		return (&vq->vq_write_offset_tree);
306	else
307		return (NULL);
308}
309
310int
311vdev_queue_timestamp_compare(const void *x1, const void *x2)
312{
313	const zio_t *z1 = x1;
314	const zio_t *z2 = x2;
315
316	if (z1->io_timestamp < z2->io_timestamp)
317		return (-1);
318	if (z1->io_timestamp > z2->io_timestamp)
319		return (1);
320
321	if (z1->io_offset < z2->io_offset)
322		return (-1);
323	if (z1->io_offset > z2->io_offset)
324		return (1);
325
326	if (z1 < z2)
327		return (-1);
328	if (z1 > z2)
329		return (1);
330
331	return (0);
332}
333
334void
335vdev_queue_init(vdev_t *vd)
336{
337	vdev_queue_t *vq = &vd->vdev_queue;
338
339	mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
340	vq->vq_vdev = vd;
341
342	avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
343	    sizeof (zio_t), offsetof(struct zio, io_queue_node));
344	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
345	    vdev_queue_offset_compare, sizeof (zio_t),
346	    offsetof(struct zio, io_offset_node));
347	avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
348	    vdev_queue_offset_compare, sizeof (zio_t),
349	    offsetof(struct zio, io_offset_node));
350
351	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
352		int (*compfn) (const void *, const void *);
353
354		/*
355		 * The synchronous i/o queues are dispatched in FIFO rather
356		 * than LBA order.  This provides more consistent latency for
357		 * these i/os.
358		 */
359		if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
360			compfn = vdev_queue_timestamp_compare;
361		else
362			compfn = vdev_queue_offset_compare;
363
364		avl_create(vdev_queue_class_tree(vq, p), compfn,
365		    sizeof (zio_t), offsetof(struct zio, io_queue_node));
366	}
367
368	vq->vq_lastoffset = 0;
369}
370
371void
372vdev_queue_fini(vdev_t *vd)
373{
374	vdev_queue_t *vq = &vd->vdev_queue;
375
376	for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
377		avl_destroy(vdev_queue_class_tree(vq, p));
378	avl_destroy(&vq->vq_active_tree);
379	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
380	avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
381
382	mutex_destroy(&vq->vq_lock);
383}
384
385static void
386vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
387{
388	spa_t *spa = zio->io_spa;
389	avl_tree_t *qtt;
390	ASSERT(MUTEX_HELD(&vq->vq_lock));
391	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
392	avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
393	qtt = vdev_queue_type_tree(vq, zio->io_type);
394	if (qtt)
395		avl_add(qtt, zio);
396
397#ifdef illumos
398	mutex_enter(&spa->spa_iokstat_lock);
399	spa->spa_queue_stats[zio->io_priority].spa_queued++;
400	if (spa->spa_iokstat != NULL)
401		kstat_waitq_enter(spa->spa_iokstat->ks_data);
402	mutex_exit(&spa->spa_iokstat_lock);
403#endif
404}
405
406static void
407vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
408{
409	spa_t *spa = zio->io_spa;
410	avl_tree_t *qtt;
411	ASSERT(MUTEX_HELD(&vq->vq_lock));
412	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
413	avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
414	qtt = vdev_queue_type_tree(vq, zio->io_type);
415	if (qtt)
416		avl_remove(qtt, zio);
417
418#ifdef illumos
419	mutex_enter(&spa->spa_iokstat_lock);
420	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0);
421	spa->spa_queue_stats[zio->io_priority].spa_queued--;
422	if (spa->spa_iokstat != NULL)
423		kstat_waitq_exit(spa->spa_iokstat->ks_data);
424	mutex_exit(&spa->spa_iokstat_lock);
425#endif
426}
427
428static void
429vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
430{
431	spa_t *spa = zio->io_spa;
432	ASSERT(MUTEX_HELD(&vq->vq_lock));
433	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
434	vq->vq_class[zio->io_priority].vqc_active++;
435	avl_add(&vq->vq_active_tree, zio);
436
437#ifdef illumos
438	mutex_enter(&spa->spa_iokstat_lock);
439	spa->spa_queue_stats[zio->io_priority].spa_active++;
440	if (spa->spa_iokstat != NULL)
441		kstat_runq_enter(spa->spa_iokstat->ks_data);
442	mutex_exit(&spa->spa_iokstat_lock);
443#endif
444}
445
446static void
447vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
448{
449	spa_t *spa = zio->io_spa;
450	ASSERT(MUTEX_HELD(&vq->vq_lock));
451	ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
452	vq->vq_class[zio->io_priority].vqc_active--;
453	avl_remove(&vq->vq_active_tree, zio);
454
455#ifdef illumos
456	mutex_enter(&spa->spa_iokstat_lock);
457	ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0);
458	spa->spa_queue_stats[zio->io_priority].spa_active--;
459	if (spa->spa_iokstat != NULL) {
460		kstat_io_t *ksio = spa->spa_iokstat->ks_data;
461
462		kstat_runq_exit(spa->spa_iokstat->ks_data);
463		if (zio->io_type == ZIO_TYPE_READ) {
464			ksio->reads++;
465			ksio->nread += zio->io_size;
466		} else if (zio->io_type == ZIO_TYPE_WRITE) {
467			ksio->writes++;
468			ksio->nwritten += zio->io_size;
469		}
470	}
471	mutex_exit(&spa->spa_iokstat_lock);
472#endif
473}
474
475static void
476vdev_queue_agg_io_done(zio_t *aio)
477{
478	if (aio->io_type == ZIO_TYPE_READ) {
479		zio_t *pio;
480		while ((pio = zio_walk_parents(aio)) != NULL) {
481			bcopy((char *)aio->io_data + (pio->io_offset -
482			    aio->io_offset), pio->io_data, pio->io_size);
483		}
484	}
485
486	zio_buf_free(aio->io_data, aio->io_size);
487}
488
489static int
490vdev_queue_class_min_active(zio_priority_t p)
491{
492	switch (p) {
493	case ZIO_PRIORITY_SYNC_READ:
494		return (zfs_vdev_sync_read_min_active);
495	case ZIO_PRIORITY_SYNC_WRITE:
496		return (zfs_vdev_sync_write_min_active);
497	case ZIO_PRIORITY_ASYNC_READ:
498		return (zfs_vdev_async_read_min_active);
499	case ZIO_PRIORITY_ASYNC_WRITE:
500		return (zfs_vdev_async_write_min_active);
501	case ZIO_PRIORITY_SCRUB:
502		return (zfs_vdev_scrub_min_active);
503	case ZIO_PRIORITY_TRIM:
504		return (zfs_vdev_trim_min_active);
505	default:
506		panic("invalid priority %u", p);
507		return (0);
508	}
509}
510
511static __noinline int
512vdev_queue_max_async_writes(spa_t *spa)
513{
514	int writes;
515	uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
516	uint64_t min_bytes = zfs_dirty_data_max *
517	    zfs_vdev_async_write_active_min_dirty_percent / 100;
518	uint64_t max_bytes = zfs_dirty_data_max *
519	    zfs_vdev_async_write_active_max_dirty_percent / 100;
520
521	/*
522	 * Sync tasks correspond to interactive user actions. To reduce the
523	 * execution time of those actions we push data out as fast as possible.
524	 */
525	if (spa_has_pending_synctask(spa)) {
526		return (zfs_vdev_async_write_max_active);
527	}
528
529	if (dirty < min_bytes)
530		return (zfs_vdev_async_write_min_active);
531	if (dirty > max_bytes)
532		return (zfs_vdev_async_write_max_active);
533
534	/*
535	 * linear interpolation:
536	 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
537	 * move right by min_bytes
538	 * move up by min_writes
539	 */
540	writes = (dirty - min_bytes) *
541	    (zfs_vdev_async_write_max_active -
542	    zfs_vdev_async_write_min_active) /
543	    (max_bytes - min_bytes) +
544	    zfs_vdev_async_write_min_active;
545	ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
546	ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
547	return (writes);
548}
549
550static int
551vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
552{
553	switch (p) {
554	case ZIO_PRIORITY_SYNC_READ:
555		return (zfs_vdev_sync_read_max_active);
556	case ZIO_PRIORITY_SYNC_WRITE:
557		return (zfs_vdev_sync_write_max_active);
558	case ZIO_PRIORITY_ASYNC_READ:
559		return (zfs_vdev_async_read_max_active);
560	case ZIO_PRIORITY_ASYNC_WRITE:
561		return (vdev_queue_max_async_writes(spa));
562	case ZIO_PRIORITY_SCRUB:
563		return (zfs_vdev_scrub_max_active);
564	case ZIO_PRIORITY_TRIM:
565		return (zfs_vdev_trim_max_active);
566	default:
567		panic("invalid priority %u", p);
568		return (0);
569	}
570}
571
572/*
573 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
574 * there is no eligible class.
575 */
576static zio_priority_t
577vdev_queue_class_to_issue(vdev_queue_t *vq)
578{
579	spa_t *spa = vq->vq_vdev->vdev_spa;
580	zio_priority_t p;
581
582	ASSERT(MUTEX_HELD(&vq->vq_lock));
583
584	if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
585		return (ZIO_PRIORITY_NUM_QUEUEABLE);
586
587	/* find a queue that has not reached its minimum # outstanding i/os */
588	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
589		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
590		    vq->vq_class[p].vqc_active <
591		    vdev_queue_class_min_active(p))
592			return (p);
593	}
594
595	/*
596	 * If we haven't found a queue, look for one that hasn't reached its
597	 * maximum # outstanding i/os.
598	 */
599	for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
600		if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
601		    vq->vq_class[p].vqc_active <
602		    vdev_queue_class_max_active(spa, p))
603			return (p);
604	}
605
606	/* No eligible queued i/os */
607	return (ZIO_PRIORITY_NUM_QUEUEABLE);
608}
609
610/*
611 * Compute the range spanned by two i/os, which is the endpoint of the last
612 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
613 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
614 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
615 */
616#define	IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
617#define	IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
618
619static zio_t *
620vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
621{
622	zio_t *first, *last, *aio, *dio, *mandatory, *nio;
623	uint64_t maxgap = 0;
624	uint64_t size;
625	boolean_t stretch;
626	avl_tree_t *t;
627	enum zio_flag flags;
628
629	ASSERT(MUTEX_HELD(&vq->vq_lock));
630
631	if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE)
632		return (NULL);
633
634	first = last = zio;
635
636	if (zio->io_type == ZIO_TYPE_READ)
637		maxgap = zfs_vdev_read_gap_limit;
638
639	/*
640	 * We can aggregate I/Os that are sufficiently adjacent and of
641	 * the same flavor, as expressed by the AGG_INHERIT flags.
642	 * The latter requirement is necessary so that certain
643	 * attributes of the I/O, such as whether it's a normal I/O
644	 * or a scrub/resilver, can be preserved in the aggregate.
645	 * We can include optional I/Os, but don't allow them
646	 * to begin a range as they add no benefit in that situation.
647	 */
648
649	/*
650	 * We keep track of the last non-optional I/O.
651	 */
652	mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
653
654	/*
655	 * Walk backwards through sufficiently contiguous I/Os
656	 * recording the last non-option I/O.
657	 */
658	flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
659	t = vdev_queue_type_tree(vq, zio->io_type);
660	while (t != NULL && (dio = AVL_PREV(t, first)) != NULL &&
661	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
662	    IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit &&
663	    IO_GAP(dio, first) <= maxgap) {
664		first = dio;
665		if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
666			mandatory = first;
667	}
668
669	/*
670	 * Skip any initial optional I/Os.
671	 */
672	while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
673		first = AVL_NEXT(t, first);
674		ASSERT(first != NULL);
675	}
676
677	/*
678	 * Walk forward through sufficiently contiguous I/Os.
679	 */
680	while ((dio = AVL_NEXT(t, last)) != NULL &&
681	    (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
682	    IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit &&
683	    IO_GAP(last, dio) <= maxgap) {
684		last = dio;
685		if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
686			mandatory = last;
687	}
688
689	/*
690	 * Now that we've established the range of the I/O aggregation
691	 * we must decide what to do with trailing optional I/Os.
692	 * For reads, there's nothing to do. While we are unable to
693	 * aggregate further, it's possible that a trailing optional
694	 * I/O would allow the underlying device to aggregate with
695	 * subsequent I/Os. We must therefore determine if the next
696	 * non-optional I/O is close enough to make aggregation
697	 * worthwhile.
698	 */
699	stretch = B_FALSE;
700	if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
701		zio_t *nio = last;
702		while ((dio = AVL_NEXT(t, nio)) != NULL &&
703		    IO_GAP(nio, dio) == 0 &&
704		    IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
705			nio = dio;
706			if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
707				stretch = B_TRUE;
708				break;
709			}
710		}
711	}
712
713	if (stretch) {
714		/* This may be a no-op. */
715		dio = AVL_NEXT(t, last);
716		dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
717	} else {
718		while (last != mandatory && last != first) {
719			ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
720			last = AVL_PREV(t, last);
721			ASSERT(last != NULL);
722		}
723	}
724
725	if (first == last)
726		return (NULL);
727
728	size = IO_SPAN(first, last);
729	ASSERT3U(size, <=, zfs_vdev_aggregation_limit);
730
731	aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
732	    zio_buf_alloc(size), size, first->io_type, zio->io_priority,
733	    flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
734	    vdev_queue_agg_io_done, NULL);
735	aio->io_timestamp = first->io_timestamp;
736
737	nio = first;
738	do {
739		dio = nio;
740		nio = AVL_NEXT(t, dio);
741		ASSERT3U(dio->io_type, ==, aio->io_type);
742
743		if (dio->io_flags & ZIO_FLAG_NODATA) {
744			ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
745			bzero((char *)aio->io_data + (dio->io_offset -
746			    aio->io_offset), dio->io_size);
747		} else if (dio->io_type == ZIO_TYPE_WRITE) {
748			bcopy(dio->io_data, (char *)aio->io_data +
749			    (dio->io_offset - aio->io_offset),
750			    dio->io_size);
751		}
752
753		zio_add_child(dio, aio);
754		vdev_queue_io_remove(vq, dio);
755		zio_vdev_io_bypass(dio);
756		zio_execute(dio);
757	} while (dio != last);
758
759	return (aio);
760}
761
762static zio_t *
763vdev_queue_io_to_issue(vdev_queue_t *vq)
764{
765	zio_t *zio, *aio;
766	zio_priority_t p;
767	avl_index_t idx;
768	avl_tree_t *tree;
769	zio_t search;
770
771again:
772	ASSERT(MUTEX_HELD(&vq->vq_lock));
773
774	p = vdev_queue_class_to_issue(vq);
775
776	if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
777		/* No eligible queued i/os */
778		return (NULL);
779	}
780
781	/*
782	 * For LBA-ordered queues (async / scrub), issue the i/o which follows
783	 * the most recently issued i/o in LBA (offset) order.
784	 *
785	 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
786	 */
787	tree = vdev_queue_class_tree(vq, p);
788	search.io_timestamp = 0;
789	search.io_offset = vq->vq_last_offset + 1;
790	VERIFY3P(avl_find(tree, &search, &idx), ==, NULL);
791	zio = avl_nearest(tree, idx, AVL_AFTER);
792	if (zio == NULL)
793		zio = avl_first(tree);
794	ASSERT3U(zio->io_priority, ==, p);
795
796	aio = vdev_queue_aggregate(vq, zio);
797	if (aio != NULL)
798		zio = aio;
799	else
800		vdev_queue_io_remove(vq, zio);
801
802	/*
803	 * If the I/O is or was optional and therefore has no data, we need to
804	 * simply discard it. We need to drop the vdev queue's lock to avoid a
805	 * deadlock that we could encounter since this I/O will complete
806	 * immediately.
807	 */
808	if (zio->io_flags & ZIO_FLAG_NODATA) {
809		mutex_exit(&vq->vq_lock);
810		zio_vdev_io_bypass(zio);
811		zio_execute(zio);
812		mutex_enter(&vq->vq_lock);
813		goto again;
814	}
815
816	vdev_queue_pending_add(vq, zio);
817	vq->vq_last_offset = zio->io_offset;
818
819	return (zio);
820}
821
822zio_t *
823vdev_queue_io(zio_t *zio)
824{
825	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
826	zio_t *nio;
827
828	if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
829		return (zio);
830
831	/*
832	 * Children i/os inherent their parent's priority, which might
833	 * not match the child's i/o type.  Fix it up here.
834	 */
835	if (zio->io_type == ZIO_TYPE_READ) {
836		if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
837		    zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
838		    zio->io_priority != ZIO_PRIORITY_SCRUB)
839			zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
840	} else if (zio->io_type == ZIO_TYPE_WRITE) {
841		if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
842		    zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
843			zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
844	} else {
845		ASSERT(zio->io_type == ZIO_TYPE_FREE);
846		zio->io_priority = ZIO_PRIORITY_TRIM;
847	}
848
849	zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
850
851	mutex_enter(&vq->vq_lock);
852	zio->io_timestamp = gethrtime();
853	vdev_queue_io_add(vq, zio);
854	nio = vdev_queue_io_to_issue(vq);
855	mutex_exit(&vq->vq_lock);
856
857	if (nio == NULL)
858		return (NULL);
859
860	if (nio->io_done == vdev_queue_agg_io_done) {
861		zio_nowait(nio);
862		return (NULL);
863	}
864
865	return (nio);
866}
867
868void
869vdev_queue_io_done(zio_t *zio)
870{
871	vdev_queue_t *vq = &zio->io_vd->vdev_queue;
872	zio_t *nio;
873
874	if (zio_injection_enabled)
875		delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
876
877	mutex_enter(&vq->vq_lock);
878
879	vdev_queue_pending_remove(vq, zio);
880
881	vq->vq_io_complete_ts = gethrtime();
882
883	while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
884		mutex_exit(&vq->vq_lock);
885		if (nio->io_done == vdev_queue_agg_io_done) {
886			zio_nowait(nio);
887		} else {
888			zio_vdev_io_reissue(nio);
889			zio_execute(nio);
890		}
891		mutex_enter(&vq->vq_lock);
892	}
893
894	mutex_exit(&vq->vq_lock);
895}
896
897/*
898 * As these three methods are only used for load calculations we're not concerned
899 * if we get an incorrect value on 32bit platforms due to lack of vq_lock mutex
900 * use here, instead we prefer to keep it lock free for performance.
901 */
902int
903vdev_queue_length(vdev_t *vd)
904{
905	return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
906}
907
908uint64_t
909vdev_queue_lastoffset(vdev_t *vd)
910{
911	return (vd->vdev_queue.vq_lastoffset);
912}
913
914void
915vdev_queue_register_lastoffset(vdev_t *vd, zio_t *zio)
916{
917	vd->vdev_queue.vq_lastoffset = zio->io_offset + zio->io_size;
918}
919