1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 */
26
27/*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 *	1. Uniquely identify this device as part of a ZFS pool and confirm its
34 *	   identity within the pool.
35 *
36 *	2. Verify that all the devices given in a configuration are present
37 *         within the pool.
38 *
39 *	3. Determine the uberblock for the pool.
40 *
41 *	4. In case of an import operation, determine the configuration of the
42 *         toplevel vdev of which it is a part.
43 *
44 *	5. If an import operation cannot find all the devices in the pool,
45 *         provide enough information to the administrator to determine which
46 *         devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases.  The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point.  To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced.  Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 *              L1          UB          L2
67 *           +------+    +------+    +------+
68 *           |      |    |      |    |      |
69 *           | t10  |    | t10  |    | t10  |
70 *           |      |    |      |    |      |
71 *           +------+    +------+    +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10).  Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 *	1. For each vdev, update 'L1' to the new label
81 *	2. Update the uberblock
82 *	3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group.  If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid.  If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced.  If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool.  This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure.  The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information.  It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated.  When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 *	version		ZFS on-disk version
121 *	name		Pool name
122 *	state		Pool state
123 *	txg		Transaction group in which this label was written
124 *	pool_guid	Unique identifier for this pool
125 *	vdev_tree	An nvlist describing vdev tree.
126 *	features_for_read
127 *			An nvlist of the features necessary for reading the MOS.
128 *
129 * Each leaf device label also contains the following:
130 *
131 *	top_guid	Unique ID for top-level vdev in which this is contained
132 *	guid		Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137#include <sys/zfs_context.h>
138#include <sys/spa.h>
139#include <sys/spa_impl.h>
140#include <sys/dmu.h>
141#include <sys/zap.h>
142#include <sys/vdev.h>
143#include <sys/vdev_impl.h>
144#include <sys/uberblock_impl.h>
145#include <sys/metaslab.h>
146#include <sys/metaslab_impl.h>
147#include <sys/zio.h>
148#include <sys/dsl_scan.h>
149#include <sys/abd.h>
150#include <sys/fs/zfs.h>
151#include <sys/trim_map.h>
152
153static boolean_t vdev_trim_on_init = B_TRUE;
154SYSCTL_DECL(_vfs_zfs_vdev);
155SYSCTL_INT(_vfs_zfs_vdev, OID_AUTO, trim_on_init, CTLFLAG_RWTUN,
156    &vdev_trim_on_init, 0, "Enable/disable full vdev trim on initialisation");
157
158/*
159 * Basic routines to read and write from a vdev label.
160 * Used throughout the rest of this file.
161 */
162uint64_t
163vdev_label_offset(uint64_t psize, int l, uint64_t offset)
164{
165	ASSERT(offset < sizeof (vdev_label_t));
166	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
167
168	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
169	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
170}
171
172/*
173 * Returns back the vdev label associated with the passed in offset.
174 */
175int
176vdev_label_number(uint64_t psize, uint64_t offset)
177{
178	int l;
179
180	if (offset >= psize - VDEV_LABEL_END_SIZE) {
181		offset -= psize - VDEV_LABEL_END_SIZE;
182		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
183	}
184	l = offset / sizeof (vdev_label_t);
185	return (l < VDEV_LABELS ? l : -1);
186}
187
188static void
189vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
190    uint64_t size, zio_done_func_t *done, void *private, int flags)
191{
192	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
193	    SCL_STATE_ALL);
194	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
195
196	zio_nowait(zio_read_phys(zio, vd,
197	    vdev_label_offset(vd->vdev_psize, l, offset),
198	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
199	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
200}
201
202static void
203vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
204    uint64_t size, zio_done_func_t *done, void *private, int flags)
205{
206	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
207	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
208	    (SCL_CONFIG | SCL_STATE) &&
209	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
210	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
211
212	zio_nowait(zio_write_phys(zio, vd,
213	    vdev_label_offset(vd->vdev_psize, l, offset),
214	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
215	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
216}
217
218static void
219root_vdev_actions_getprogress(vdev_t *vd, nvlist_t *nvl)
220{
221	spa_t *spa = vd->vdev_spa;
222
223	if (vd != spa->spa_root_vdev)
224		return;
225
226	/* provide either current or previous scan information */
227	pool_scan_stat_t ps;
228	if (spa_scan_get_stats(spa, &ps) == 0) {
229		fnvlist_add_uint64_array(nvl,
230		    ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
231		    sizeof (pool_scan_stat_t) / sizeof (uint64_t));
232	}
233
234	pool_removal_stat_t prs;
235	if (spa_removal_get_stats(spa, &prs) == 0) {
236		fnvlist_add_uint64_array(nvl,
237		    ZPOOL_CONFIG_REMOVAL_STATS, (uint64_t *)&prs,
238		    sizeof (prs) / sizeof (uint64_t));
239	}
240
241	pool_checkpoint_stat_t pcs;
242	if (spa_checkpoint_get_stats(spa, &pcs) == 0) {
243		fnvlist_add_uint64_array(nvl,
244		    ZPOOL_CONFIG_CHECKPOINT_STATS, (uint64_t *)&pcs,
245		    sizeof (pcs) / sizeof (uint64_t));
246	}
247}
248
249/*
250 * Generate the nvlist representing this vdev's config.
251 */
252nvlist_t *
253vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
254    vdev_config_flag_t flags)
255{
256	nvlist_t *nv = NULL;
257	vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
258
259	nv = fnvlist_alloc();
260
261	fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
262	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
263		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
264	fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
265
266	if (vd->vdev_path != NULL)
267		fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
268
269	if (vd->vdev_devid != NULL)
270		fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
271
272	if (vd->vdev_physpath != NULL)
273		fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
274		    vd->vdev_physpath);
275
276	if (vd->vdev_fru != NULL)
277		fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
278
279	if (vd->vdev_nparity != 0) {
280		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
281		    VDEV_TYPE_RAIDZ) == 0);
282
283		/*
284		 * Make sure someone hasn't managed to sneak a fancy new vdev
285		 * into a crufty old storage pool.
286		 */
287		ASSERT(vd->vdev_nparity == 1 ||
288		    (vd->vdev_nparity <= 2 &&
289		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
290		    (vd->vdev_nparity <= 3 &&
291		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
292
293		/*
294		 * Note that we'll add the nparity tag even on storage pools
295		 * that only support a single parity device -- older software
296		 * will just ignore it.
297		 */
298		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
299	}
300
301	if (vd->vdev_wholedisk != -1ULL)
302		fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
303		    vd->vdev_wholedisk);
304
305	if (vd->vdev_not_present && !(flags & VDEV_CONFIG_MISSING))
306		fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
307
308	if (vd->vdev_isspare)
309		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
310
311	if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
312	    vd == vd->vdev_top) {
313		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
314		    vd->vdev_ms_array);
315		fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
316		    vd->vdev_ms_shift);
317		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
318		fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
319		    vd->vdev_asize);
320		fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
321		if (vd->vdev_removing) {
322			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
323			    vd->vdev_removing);
324		}
325	}
326
327	if (vd->vdev_dtl_sm != NULL) {
328		fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
329		    space_map_object(vd->vdev_dtl_sm));
330	}
331
332	if (vic->vic_mapping_object != 0) {
333		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
334		    vic->vic_mapping_object);
335	}
336
337	if (vic->vic_births_object != 0) {
338		fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
339		    vic->vic_births_object);
340	}
341
342	if (vic->vic_prev_indirect_vdev != UINT64_MAX) {
343		fnvlist_add_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
344		    vic->vic_prev_indirect_vdev);
345	}
346
347	if (vd->vdev_crtxg)
348		fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
349
350	if (flags & VDEV_CONFIG_MOS) {
351		if (vd->vdev_leaf_zap != 0) {
352			ASSERT(vd->vdev_ops->vdev_op_leaf);
353			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
354			    vd->vdev_leaf_zap);
355		}
356
357		if (vd->vdev_top_zap != 0) {
358			ASSERT(vd == vd->vdev_top);
359			fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
360			    vd->vdev_top_zap);
361		}
362	}
363
364	if (getstats) {
365		vdev_stat_t vs;
366
367		vdev_get_stats(vd, &vs);
368		fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
369		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t));
370
371		root_vdev_actions_getprogress(vd, nv);
372
373		/*
374		 * Note: this can be called from open context
375		 * (spa_get_stats()), so we need the rwlock to prevent
376		 * the mapping from being changed by condensing.
377		 */
378		rw_enter(&vd->vdev_indirect_rwlock, RW_READER);
379		if (vd->vdev_indirect_mapping != NULL) {
380			ASSERT(vd->vdev_indirect_births != NULL);
381			vdev_indirect_mapping_t *vim =
382			    vd->vdev_indirect_mapping;
383			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
384			    vdev_indirect_mapping_size(vim));
385		}
386		rw_exit(&vd->vdev_indirect_rwlock);
387		if (vd->vdev_mg != NULL &&
388		    vd->vdev_mg->mg_fragmentation != ZFS_FRAG_INVALID) {
389			/*
390			 * Compute approximately how much memory would be used
391			 * for the indirect mapping if this device were to
392			 * be removed.
393			 *
394			 * Note: If the frag metric is invalid, then not
395			 * enough metaslabs have been converted to have
396			 * histograms.
397			 */
398			uint64_t seg_count = 0;
399			uint64_t to_alloc = vd->vdev_stat.vs_alloc;
400
401			/*
402			 * There are the same number of allocated segments
403			 * as free segments, so we will have at least one
404			 * entry per free segment.  However, small free
405			 * segments (smaller than vdev_removal_max_span)
406			 * will be combined with adjacent allocated segments
407			 * as a single mapping.
408			 */
409			for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
410				if (1ULL << (i + 1) < vdev_removal_max_span) {
411					to_alloc +=
412					    vd->vdev_mg->mg_histogram[i] <<
413					    i + 1;
414				} else {
415					seg_count +=
416					    vd->vdev_mg->mg_histogram[i];
417				}
418			}
419
420			/*
421			 * The maximum length of a mapping is
422			 * zfs_remove_max_segment, so we need at least one entry
423			 * per zfs_remove_max_segment of allocated data.
424			 */
425			seg_count += to_alloc / zfs_remove_max_segment;
426
427			fnvlist_add_uint64(nv, ZPOOL_CONFIG_INDIRECT_SIZE,
428			    seg_count *
429			    sizeof (vdev_indirect_mapping_entry_phys_t));
430		}
431	}
432
433	if (!vd->vdev_ops->vdev_op_leaf) {
434		nvlist_t **child;
435		int c, idx;
436
437		ASSERT(!vd->vdev_ishole);
438
439		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
440		    KM_SLEEP);
441
442		for (c = 0, idx = 0; c < vd->vdev_children; c++) {
443			vdev_t *cvd = vd->vdev_child[c];
444
445			/*
446			 * If we're generating an nvlist of removing
447			 * vdevs then skip over any device which is
448			 * not being removed.
449			 */
450			if ((flags & VDEV_CONFIG_REMOVING) &&
451			    !cvd->vdev_removing)
452				continue;
453
454			child[idx++] = vdev_config_generate(spa, cvd,
455			    getstats, flags);
456		}
457
458		if (idx) {
459			fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
460			    child, idx);
461		}
462
463		for (c = 0; c < idx; c++)
464			nvlist_free(child[c]);
465
466		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
467
468	} else {
469		const char *aux = NULL;
470
471		if (vd->vdev_offline && !vd->vdev_tmpoffline)
472			fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
473		if (vd->vdev_resilver_txg != 0)
474			fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
475			    vd->vdev_resilver_txg);
476		if (vd->vdev_faulted)
477			fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
478		if (vd->vdev_degraded)
479			fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
480		if (vd->vdev_removed)
481			fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
482		if (vd->vdev_unspare)
483			fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
484		if (vd->vdev_ishole)
485			fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
486
487		switch (vd->vdev_stat.vs_aux) {
488		case VDEV_AUX_ERR_EXCEEDED:
489			aux = "err_exceeded";
490			break;
491
492		case VDEV_AUX_EXTERNAL:
493			aux = "external";
494			break;
495		}
496
497		if (aux != NULL)
498			fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
499
500		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
501			fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
502			    vd->vdev_orig_guid);
503		}
504	}
505
506	return (nv);
507}
508
509/*
510 * Generate a view of the top-level vdevs.  If we currently have holes
511 * in the namespace, then generate an array which contains a list of holey
512 * vdevs.  Additionally, add the number of top-level children that currently
513 * exist.
514 */
515void
516vdev_top_config_generate(spa_t *spa, nvlist_t *config)
517{
518	vdev_t *rvd = spa->spa_root_vdev;
519	uint64_t *array;
520	uint_t c, idx;
521
522	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
523
524	for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
525		vdev_t *tvd = rvd->vdev_child[c];
526
527		if (tvd->vdev_ishole) {
528			array[idx++] = c;
529		}
530	}
531
532	if (idx) {
533		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
534		    array, idx) == 0);
535	}
536
537	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
538	    rvd->vdev_children) == 0);
539
540	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
541}
542
543/*
544 * Returns the configuration from the label of the given vdev. For vdevs
545 * which don't have a txg value stored on their label (i.e. spares/cache)
546 * or have not been completely initialized (txg = 0) just return
547 * the configuration from the first valid label we find. Otherwise,
548 * find the most up-to-date label that does not exceed the specified
549 * 'txg' value.
550 */
551nvlist_t *
552vdev_label_read_config(vdev_t *vd, uint64_t txg)
553{
554	spa_t *spa = vd->vdev_spa;
555	nvlist_t *config = NULL;
556	vdev_phys_t *vp;
557	abd_t *vp_abd;
558	zio_t *zio;
559	uint64_t best_txg = 0;
560	uint64_t label_txg = 0;
561	int error = 0;
562	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
563	    ZIO_FLAG_SPECULATIVE;
564
565	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
566
567	if (!vdev_readable(vd))
568		return (NULL);
569
570	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
571	vp = abd_to_buf(vp_abd);
572
573retry:
574	for (int l = 0; l < VDEV_LABELS; l++) {
575		nvlist_t *label = NULL;
576
577		zio = zio_root(spa, NULL, NULL, flags);
578
579		vdev_label_read(zio, vd, l, vp_abd,
580		    offsetof(vdev_label_t, vl_vdev_phys),
581		    sizeof (vdev_phys_t), NULL, NULL, flags);
582
583		if (zio_wait(zio) == 0 &&
584		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
585		    &label, 0) == 0) {
586			/*
587			 * Auxiliary vdevs won't have txg values in their
588			 * labels and newly added vdevs may not have been
589			 * completely initialized so just return the
590			 * configuration from the first valid label we
591			 * encounter.
592			 */
593			error = nvlist_lookup_uint64(label,
594			    ZPOOL_CONFIG_POOL_TXG, &label_txg);
595			if ((error || label_txg == 0) && !config) {
596				config = label;
597				break;
598			} else if (label_txg <= txg && label_txg > best_txg) {
599				best_txg = label_txg;
600				nvlist_free(config);
601				config = fnvlist_dup(label);
602			}
603		}
604
605		if (label != NULL) {
606			nvlist_free(label);
607			label = NULL;
608		}
609	}
610
611	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
612		flags |= ZIO_FLAG_TRYHARD;
613		goto retry;
614	}
615
616	/*
617	 * We found a valid label but it didn't pass txg restrictions.
618	 */
619	if (config == NULL && label_txg != 0) {
620		vdev_dbgmsg(vd, "label discarded as txg is too large "
621		    "(%llu > %llu)", (u_longlong_t)label_txg,
622		    (u_longlong_t)txg);
623	}
624
625	abd_free(vp_abd);
626
627	return (config);
628}
629
630/*
631 * Determine if a device is in use.  The 'spare_guid' parameter will be filled
632 * in with the device guid if this spare is active elsewhere on the system.
633 */
634static boolean_t
635vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
636    uint64_t *spare_guid, uint64_t *l2cache_guid)
637{
638	spa_t *spa = vd->vdev_spa;
639	uint64_t state, pool_guid, device_guid, txg, spare_pool;
640	uint64_t vdtxg = 0;
641	nvlist_t *label;
642
643	if (spare_guid)
644		*spare_guid = 0ULL;
645	if (l2cache_guid)
646		*l2cache_guid = 0ULL;
647
648	/*
649	 * Read the label, if any, and perform some basic sanity checks.
650	 */
651	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
652		return (B_FALSE);
653
654	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
655	    &vdtxg);
656
657	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
658	    &state) != 0 ||
659	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
660	    &device_guid) != 0) {
661		nvlist_free(label);
662		return (B_FALSE);
663	}
664
665	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
666	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
667	    &pool_guid) != 0 ||
668	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
669	    &txg) != 0)) {
670		nvlist_free(label);
671		return (B_FALSE);
672	}
673
674	nvlist_free(label);
675
676	/*
677	 * Check to see if this device indeed belongs to the pool it claims to
678	 * be a part of.  The only way this is allowed is if the device is a hot
679	 * spare (which we check for later on).
680	 */
681	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
682	    !spa_guid_exists(pool_guid, device_guid) &&
683	    !spa_spare_exists(device_guid, NULL, NULL) &&
684	    !spa_l2cache_exists(device_guid, NULL))
685		return (B_FALSE);
686
687	/*
688	 * If the transaction group is zero, then this an initialized (but
689	 * unused) label.  This is only an error if the create transaction
690	 * on-disk is the same as the one we're using now, in which case the
691	 * user has attempted to add the same vdev multiple times in the same
692	 * transaction.
693	 */
694	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
695	    txg == 0 && vdtxg == crtxg)
696		return (B_TRUE);
697
698	/*
699	 * Check to see if this is a spare device.  We do an explicit check for
700	 * spa_has_spare() here because it may be on our pending list of spares
701	 * to add.  We also check if it is an l2cache device.
702	 */
703	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
704	    spa_has_spare(spa, device_guid)) {
705		if (spare_guid)
706			*spare_guid = device_guid;
707
708		switch (reason) {
709		case VDEV_LABEL_CREATE:
710		case VDEV_LABEL_L2CACHE:
711			return (B_TRUE);
712
713		case VDEV_LABEL_REPLACE:
714			return (!spa_has_spare(spa, device_guid) ||
715			    spare_pool != 0ULL);
716
717		case VDEV_LABEL_SPARE:
718			return (spa_has_spare(spa, device_guid));
719		}
720	}
721
722	/*
723	 * Check to see if this is an l2cache device.
724	 */
725	if (spa_l2cache_exists(device_guid, NULL))
726		return (B_TRUE);
727
728	/*
729	 * We can't rely on a pool's state if it's been imported
730	 * read-only.  Instead we look to see if the pools is marked
731	 * read-only in the namespace and set the state to active.
732	 */
733	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
734	    (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
735	    spa_mode(spa) == FREAD)
736		state = POOL_STATE_ACTIVE;
737
738	/*
739	 * If the device is marked ACTIVE, then this device is in use by another
740	 * pool on the system.
741	 */
742	return (state == POOL_STATE_ACTIVE);
743}
744
745/*
746 * Initialize a vdev label.  We check to make sure each leaf device is not in
747 * use, and writable.  We put down an initial label which we will later
748 * overwrite with a complete label.  Note that it's important to do this
749 * sequentially, not in parallel, so that we catch cases of multiple use of the
750 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
751 * itself.
752 */
753int
754vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
755{
756	spa_t *spa = vd->vdev_spa;
757	nvlist_t *label;
758	vdev_phys_t *vp;
759	abd_t *vp_abd;
760	abd_t *pad2;
761	uberblock_t *ub;
762	abd_t *ub_abd;
763	zio_t *zio;
764	char *buf;
765	size_t buflen;
766	int error;
767	uint64_t spare_guid, l2cache_guid;
768	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
769
770	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
771
772	for (int c = 0; c < vd->vdev_children; c++)
773		if ((error = vdev_label_init(vd->vdev_child[c],
774		    crtxg, reason)) != 0)
775			return (error);
776
777	/* Track the creation time for this vdev */
778	vd->vdev_crtxg = crtxg;
779
780	if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
781		return (0);
782
783	/*
784	 * Dead vdevs cannot be initialized.
785	 */
786	if (vdev_is_dead(vd))
787		return (SET_ERROR(EIO));
788
789	/*
790	 * Determine if the vdev is in use.
791	 */
792	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
793	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
794		return (SET_ERROR(EBUSY));
795
796	/*
797	 * If this is a request to add or replace a spare or l2cache device
798	 * that is in use elsewhere on the system, then we must update the
799	 * guid (which was initialized to a random value) to reflect the
800	 * actual GUID (which is shared between multiple pools).
801	 */
802	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
803	    spare_guid != 0ULL) {
804		uint64_t guid_delta = spare_guid - vd->vdev_guid;
805
806		vd->vdev_guid += guid_delta;
807
808		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
809			pvd->vdev_guid_sum += guid_delta;
810
811		/*
812		 * If this is a replacement, then we want to fallthrough to the
813		 * rest of the code.  If we're adding a spare, then it's already
814		 * labeled appropriately and we can just return.
815		 */
816		if (reason == VDEV_LABEL_SPARE)
817			return (0);
818		ASSERT(reason == VDEV_LABEL_REPLACE ||
819		    reason == VDEV_LABEL_SPLIT);
820	}
821
822	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
823	    l2cache_guid != 0ULL) {
824		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
825
826		vd->vdev_guid += guid_delta;
827
828		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
829			pvd->vdev_guid_sum += guid_delta;
830
831		/*
832		 * If this is a replacement, then we want to fallthrough to the
833		 * rest of the code.  If we're adding an l2cache, then it's
834		 * already labeled appropriately and we can just return.
835		 */
836		if (reason == VDEV_LABEL_L2CACHE)
837			return (0);
838		ASSERT(reason == VDEV_LABEL_REPLACE);
839	}
840
841	/*
842	 * TRIM the whole thing, excluding the blank space and boot header
843	 * as specified by ZFS On-Disk Specification (section 1.3), so that
844	 * we start with a clean slate.
845	 * It's just an optimization, so we don't care if it fails.
846	 * Don't TRIM if removing so that we don't interfere with zpool
847	 * disaster recovery.
848	 */
849	if (zfs_trim_enabled && vdev_trim_on_init && !vd->vdev_notrim &&
850	    (reason == VDEV_LABEL_CREATE || reason == VDEV_LABEL_SPARE ||
851	    reason == VDEV_LABEL_L2CACHE))
852		zio_wait(zio_trim(NULL, spa, vd, VDEV_SKIP_SIZE,
853		    vd->vdev_psize - VDEV_SKIP_SIZE));
854
855	/*
856	 * Initialize its label.
857	 */
858	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
859	abd_zero(vp_abd, sizeof (vdev_phys_t));
860	vp = abd_to_buf(vp_abd);
861
862	/*
863	 * Generate a label describing the pool and our top-level vdev.
864	 * We mark it as being from txg 0 to indicate that it's not
865	 * really part of an active pool just yet.  The labels will
866	 * be written again with a meaningful txg by spa_sync().
867	 */
868	if (reason == VDEV_LABEL_SPARE ||
869	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
870		/*
871		 * For inactive hot spares, we generate a special label that
872		 * identifies as a mutually shared hot spare.  We write the
873		 * label if we are adding a hot spare, or if we are removing an
874		 * active hot spare (in which case we want to revert the
875		 * labels).
876		 */
877		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
878
879		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
880		    spa_version(spa)) == 0);
881		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
882		    POOL_STATE_SPARE) == 0);
883		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
884		    vd->vdev_guid) == 0);
885	} else if (reason == VDEV_LABEL_L2CACHE ||
886	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
887		/*
888		 * For level 2 ARC devices, add a special label.
889		 */
890		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
891
892		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
893		    spa_version(spa)) == 0);
894		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
895		    POOL_STATE_L2CACHE) == 0);
896		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
897		    vd->vdev_guid) == 0);
898	} else {
899		uint64_t txg = 0ULL;
900
901		if (reason == VDEV_LABEL_SPLIT)
902			txg = spa->spa_uberblock.ub_txg;
903		label = spa_config_generate(spa, vd, txg, B_FALSE);
904
905		/*
906		 * Add our creation time.  This allows us to detect multiple
907		 * vdev uses as described above, and automatically expires if we
908		 * fail.
909		 */
910		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
911		    crtxg) == 0);
912	}
913
914	buf = vp->vp_nvlist;
915	buflen = sizeof (vp->vp_nvlist);
916
917	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
918	if (error != 0) {
919		nvlist_free(label);
920		abd_free(vp_abd);
921		/* EFAULT means nvlist_pack ran out of room */
922		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
923	}
924
925	/*
926	 * Initialize uberblock template.
927	 */
928	ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
929	abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
930	abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
931	ub = abd_to_buf(ub_abd);
932	ub->ub_txg = 0;
933
934	/* Initialize the 2nd padding area. */
935	pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
936	abd_zero(pad2, VDEV_PAD_SIZE);
937
938	/*
939	 * Write everything in parallel.
940	 */
941retry:
942	zio = zio_root(spa, NULL, NULL, flags);
943
944	for (int l = 0; l < VDEV_LABELS; l++) {
945
946		vdev_label_write(zio, vd, l, vp_abd,
947		    offsetof(vdev_label_t, vl_vdev_phys),
948		    sizeof (vdev_phys_t), NULL, NULL, flags);
949
950		/*
951		 * Skip the 1st padding area.
952		 * Zero out the 2nd padding area where it might have
953		 * left over data from previous filesystem format.
954		 */
955		vdev_label_write(zio, vd, l, pad2,
956		    offsetof(vdev_label_t, vl_pad2),
957		    VDEV_PAD_SIZE, NULL, NULL, flags);
958
959		vdev_label_write(zio, vd, l, ub_abd,
960		    offsetof(vdev_label_t, vl_uberblock),
961		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
962	}
963
964	error = zio_wait(zio);
965
966	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
967		flags |= ZIO_FLAG_TRYHARD;
968		goto retry;
969	}
970
971	nvlist_free(label);
972	abd_free(pad2);
973	abd_free(ub_abd);
974	abd_free(vp_abd);
975
976	/*
977	 * If this vdev hasn't been previously identified as a spare, then we
978	 * mark it as such only if a) we are labeling it as a spare, or b) it
979	 * exists as a spare elsewhere in the system.  Do the same for
980	 * level 2 ARC devices.
981	 */
982	if (error == 0 && !vd->vdev_isspare &&
983	    (reason == VDEV_LABEL_SPARE ||
984	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
985		spa_spare_add(vd);
986
987	if (error == 0 && !vd->vdev_isl2cache &&
988	    (reason == VDEV_LABEL_L2CACHE ||
989	    spa_l2cache_exists(vd->vdev_guid, NULL)))
990		spa_l2cache_add(vd);
991
992	return (error);
993}
994
995int
996vdev_label_write_pad2(vdev_t *vd, const char *buf, size_t size)
997{
998	spa_t *spa = vd->vdev_spa;
999	zio_t *zio;
1000	abd_t *pad2;
1001	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1002	int error;
1003
1004	if (size > VDEV_PAD_SIZE)
1005		return (EINVAL);
1006
1007	if (!vd->vdev_ops->vdev_op_leaf)
1008		return (ENODEV);
1009	if (vdev_is_dead(vd))
1010		return (ENXIO);
1011
1012	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1013
1014	pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
1015	abd_zero(pad2, VDEV_PAD_SIZE);
1016	abd_copy_from_buf(pad2, buf, size);
1017
1018retry:
1019	zio = zio_root(spa, NULL, NULL, flags);
1020	vdev_label_write(zio, vd, 0, pad2,
1021	    offsetof(vdev_label_t, vl_pad2),
1022	    VDEV_PAD_SIZE, NULL, NULL, flags);
1023	error = zio_wait(zio);
1024	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
1025		flags |= ZIO_FLAG_TRYHARD;
1026		goto retry;
1027	}
1028
1029	abd_free(pad2);
1030	return (error);
1031}
1032
1033/*
1034 * ==========================================================================
1035 * uberblock load/sync
1036 * ==========================================================================
1037 */
1038
1039/*
1040 * Consider the following situation: txg is safely synced to disk.  We've
1041 * written the first uberblock for txg + 1, and then we lose power.  When we
1042 * come back up, we fail to see the uberblock for txg + 1 because, say,
1043 * it was on a mirrored device and the replica to which we wrote txg + 1
1044 * is now offline.  If we then make some changes and sync txg + 1, and then
1045 * the missing replica comes back, then for a few seconds we'll have two
1046 * conflicting uberblocks on disk with the same txg.  The solution is simple:
1047 * among uberblocks with equal txg, choose the one with the latest timestamp.
1048 */
1049static int
1050vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1051{
1052	int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1053	if (likely(cmp))
1054		return (cmp);
1055
1056	return (AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp));
1057}
1058
1059struct ubl_cbdata {
1060	uberblock_t	*ubl_ubbest;	/* Best uberblock */
1061	vdev_t		*ubl_vd;	/* vdev associated with the above */
1062};
1063
1064static void
1065vdev_uberblock_load_done(zio_t *zio)
1066{
1067	vdev_t *vd = zio->io_vd;
1068	spa_t *spa = zio->io_spa;
1069	zio_t *rio = zio->io_private;
1070	uberblock_t *ub = abd_to_buf(zio->io_abd);
1071	struct ubl_cbdata *cbp = rio->io_private;
1072
1073	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1074
1075	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1076		mutex_enter(&rio->io_lock);
1077		if (ub->ub_txg <= spa->spa_load_max_txg &&
1078		    vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1079			/*
1080			 * Keep track of the vdev in which this uberblock
1081			 * was found. We will use this information later
1082			 * to obtain the config nvlist associated with
1083			 * this uberblock.
1084			 */
1085			*cbp->ubl_ubbest = *ub;
1086			cbp->ubl_vd = vd;
1087		}
1088		mutex_exit(&rio->io_lock);
1089	}
1090
1091	abd_free(zio->io_abd);
1092}
1093
1094static void
1095vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1096    struct ubl_cbdata *cbp)
1097{
1098	for (int c = 0; c < vd->vdev_children; c++)
1099		vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1100
1101	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1102		for (int l = 0; l < VDEV_LABELS; l++) {
1103			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1104				vdev_label_read(zio, vd, l,
1105				    abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1106				    B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1107				    VDEV_UBERBLOCK_SIZE(vd),
1108				    vdev_uberblock_load_done, zio, flags);
1109			}
1110		}
1111	}
1112}
1113
1114/*
1115 * Reads the 'best' uberblock from disk along with its associated
1116 * configuration. First, we read the uberblock array of each label of each
1117 * vdev, keeping track of the uberblock with the highest txg in each array.
1118 * Then, we read the configuration from the same vdev as the best uberblock.
1119 */
1120void
1121vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1122{
1123	zio_t *zio;
1124	spa_t *spa = rvd->vdev_spa;
1125	struct ubl_cbdata cb;
1126	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1127	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1128
1129	ASSERT(ub);
1130	ASSERT(config);
1131
1132	bzero(ub, sizeof (uberblock_t));
1133	*config = NULL;
1134
1135	cb.ubl_ubbest = ub;
1136	cb.ubl_vd = NULL;
1137
1138	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1139	zio = zio_root(spa, NULL, &cb, flags);
1140	vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1141	(void) zio_wait(zio);
1142
1143	/*
1144	 * It's possible that the best uberblock was discovered on a label
1145	 * that has a configuration which was written in a future txg.
1146	 * Search all labels on this vdev to find the configuration that
1147	 * matches the txg for our uberblock.
1148	 */
1149	if (cb.ubl_vd != NULL) {
1150		vdev_dbgmsg(cb.ubl_vd, "best uberblock found for spa %s. "
1151		    "txg %llu", spa->spa_name, (u_longlong_t)ub->ub_txg);
1152
1153		*config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1154		if (*config == NULL && spa->spa_extreme_rewind) {
1155			vdev_dbgmsg(cb.ubl_vd, "failed to read label config. "
1156			    "Trying again without txg restrictions.");
1157			*config = vdev_label_read_config(cb.ubl_vd, UINT64_MAX);
1158		}
1159		if (*config == NULL) {
1160			vdev_dbgmsg(cb.ubl_vd, "failed to read label config");
1161		}
1162	}
1163	spa_config_exit(spa, SCL_ALL, FTAG);
1164}
1165
1166/*
1167 * On success, increment root zio's count of good writes.
1168 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1169 */
1170static void
1171vdev_uberblock_sync_done(zio_t *zio)
1172{
1173	uint64_t *good_writes = zio->io_private;
1174
1175	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1176		atomic_inc_64(good_writes);
1177}
1178
1179/*
1180 * Write the uberblock to all labels of all leaves of the specified vdev.
1181 */
1182static void
1183vdev_uberblock_sync(zio_t *zio, uint64_t *good_writes,
1184    uberblock_t *ub, vdev_t *vd, int flags)
1185{
1186	for (uint64_t c = 0; c < vd->vdev_children; c++) {
1187		vdev_uberblock_sync(zio, good_writes,
1188		    ub, vd->vdev_child[c], flags);
1189	}
1190
1191	if (!vd->vdev_ops->vdev_op_leaf)
1192		return;
1193
1194	if (!vdev_writeable(vd))
1195		return;
1196
1197	int n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
1198
1199	/* Copy the uberblock_t into the ABD */
1200	abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1201	abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1202	abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1203
1204	for (int l = 0; l < VDEV_LABELS; l++)
1205		vdev_label_write(zio, vd, l, ub_abd,
1206		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1207		    vdev_uberblock_sync_done, good_writes,
1208		    flags | ZIO_FLAG_DONT_PROPAGATE);
1209
1210	abd_free(ub_abd);
1211}
1212
1213/* Sync the uberblocks to all vdevs in svd[] */
1214int
1215vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1216{
1217	spa_t *spa = svd[0]->vdev_spa;
1218	zio_t *zio;
1219	uint64_t good_writes = 0;
1220
1221	zio = zio_root(spa, NULL, NULL, flags);
1222
1223	for (int v = 0; v < svdcount; v++)
1224		vdev_uberblock_sync(zio, &good_writes, ub, svd[v], flags);
1225
1226	(void) zio_wait(zio);
1227
1228	/*
1229	 * Flush the uberblocks to disk.  This ensures that the odd labels
1230	 * are no longer needed (because the new uberblocks and the even
1231	 * labels are safely on disk), so it is safe to overwrite them.
1232	 */
1233	zio = zio_root(spa, NULL, NULL, flags);
1234
1235	for (int v = 0; v < svdcount; v++) {
1236		if (vdev_writeable(svd[v])) {
1237			zio_flush(zio, svd[v]);
1238		}
1239	}
1240
1241	(void) zio_wait(zio);
1242
1243	return (good_writes >= 1 ? 0 : EIO);
1244}
1245
1246/*
1247 * On success, increment the count of good writes for our top-level vdev.
1248 */
1249static void
1250vdev_label_sync_done(zio_t *zio)
1251{
1252	uint64_t *good_writes = zio->io_private;
1253
1254	if (zio->io_error == 0)
1255		atomic_inc_64(good_writes);
1256}
1257
1258/*
1259 * If there weren't enough good writes, indicate failure to the parent.
1260 */
1261static void
1262vdev_label_sync_top_done(zio_t *zio)
1263{
1264	uint64_t *good_writes = zio->io_private;
1265
1266	if (*good_writes == 0)
1267		zio->io_error = SET_ERROR(EIO);
1268
1269	kmem_free(good_writes, sizeof (uint64_t));
1270}
1271
1272/*
1273 * We ignore errors for log and cache devices, simply free the private data.
1274 */
1275static void
1276vdev_label_sync_ignore_done(zio_t *zio)
1277{
1278	kmem_free(zio->io_private, sizeof (uint64_t));
1279}
1280
1281/*
1282 * Write all even or odd labels to all leaves of the specified vdev.
1283 */
1284static void
1285vdev_label_sync(zio_t *zio, uint64_t *good_writes,
1286    vdev_t *vd, int l, uint64_t txg, int flags)
1287{
1288	nvlist_t *label;
1289	vdev_phys_t *vp;
1290	abd_t *vp_abd;
1291	char *buf;
1292	size_t buflen;
1293
1294	for (int c = 0; c < vd->vdev_children; c++) {
1295		vdev_label_sync(zio, good_writes,
1296		    vd->vdev_child[c], l, txg, flags);
1297	}
1298
1299	if (!vd->vdev_ops->vdev_op_leaf)
1300		return;
1301
1302	if (!vdev_writeable(vd))
1303		return;
1304
1305	/*
1306	 * Generate a label describing the top-level config to which we belong.
1307	 */
1308	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1309
1310	vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1311	abd_zero(vp_abd, sizeof (vdev_phys_t));
1312	vp = abd_to_buf(vp_abd);
1313
1314	buf = vp->vp_nvlist;
1315	buflen = sizeof (vp->vp_nvlist);
1316
1317	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1318		for (; l < VDEV_LABELS; l += 2) {
1319			vdev_label_write(zio, vd, l, vp_abd,
1320			    offsetof(vdev_label_t, vl_vdev_phys),
1321			    sizeof (vdev_phys_t),
1322			    vdev_label_sync_done, good_writes,
1323			    flags | ZIO_FLAG_DONT_PROPAGATE);
1324		}
1325	}
1326
1327	abd_free(vp_abd);
1328	nvlist_free(label);
1329}
1330
1331int
1332vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1333{
1334	list_t *dl = &spa->spa_config_dirty_list;
1335	vdev_t *vd;
1336	zio_t *zio;
1337	int error;
1338
1339	/*
1340	 * Write the new labels to disk.
1341	 */
1342	zio = zio_root(spa, NULL, NULL, flags);
1343
1344	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1345		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1346		    KM_SLEEP);
1347
1348		ASSERT(!vd->vdev_ishole);
1349
1350		zio_t *vio = zio_null(zio, spa, NULL,
1351		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1352		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1353		    good_writes, flags);
1354		vdev_label_sync(vio, good_writes, vd, l, txg, flags);
1355		zio_nowait(vio);
1356	}
1357
1358	error = zio_wait(zio);
1359
1360	/*
1361	 * Flush the new labels to disk.
1362	 */
1363	zio = zio_root(spa, NULL, NULL, flags);
1364
1365	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1366		zio_flush(zio, vd);
1367
1368	(void) zio_wait(zio);
1369
1370	return (error);
1371}
1372
1373/*
1374 * Sync the uberblock and any changes to the vdev configuration.
1375 *
1376 * The order of operations is carefully crafted to ensure that
1377 * if the system panics or loses power at any time, the state on disk
1378 * is still transactionally consistent.  The in-line comments below
1379 * describe the failure semantics at each stage.
1380 *
1381 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1382 * at any time, you can just call it again, and it will resume its work.
1383 */
1384int
1385vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1386{
1387	spa_t *spa = svd[0]->vdev_spa;
1388	uberblock_t *ub = &spa->spa_uberblock;
1389	int error = 0;
1390	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1391
1392	ASSERT(svdcount != 0);
1393retry:
1394	/*
1395	 * Normally, we don't want to try too hard to write every label and
1396	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1397	 * sync process to block while we retry.  But if we can't write a
1398	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1399	 * bailing out and declaring the pool faulted.
1400	 */
1401	if (error != 0) {
1402		if ((flags & ZIO_FLAG_TRYHARD) != 0)
1403			return (error);
1404		flags |= ZIO_FLAG_TRYHARD;
1405	}
1406
1407	ASSERT(ub->ub_txg <= txg);
1408
1409	/*
1410	 * If this isn't a resync due to I/O errors,
1411	 * and nothing changed in this transaction group,
1412	 * and the vdev configuration hasn't changed,
1413	 * then there's nothing to do.
1414	 */
1415	if (ub->ub_txg < txg &&
1416	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1417	    list_is_empty(&spa->spa_config_dirty_list))
1418		return (0);
1419
1420	if (txg > spa_freeze_txg(spa))
1421		return (0);
1422
1423	ASSERT(txg <= spa->spa_final_txg);
1424
1425	/*
1426	 * Flush the write cache of every disk that's been written to
1427	 * in this transaction group.  This ensures that all blocks
1428	 * written in this txg will be committed to stable storage
1429	 * before any uberblock that references them.
1430	 */
1431	zio_t *zio = zio_root(spa, NULL, NULL, flags);
1432
1433	for (vdev_t *vd =
1434	    txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd != NULL;
1435	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1436		zio_flush(zio, vd);
1437
1438	(void) zio_wait(zio);
1439
1440	/*
1441	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1442	 * system dies in the middle of this process, that's OK: all of the
1443	 * even labels that made it to disk will be newer than any uberblock,
1444	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1445	 * which have not yet been touched, will still be valid.  We flush
1446	 * the new labels to disk to ensure that all even-label updates
1447	 * are committed to stable storage before the uberblock update.
1448	 */
1449	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) {
1450		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1451			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1452			    "for pool '%s' when syncing out the even labels "
1453			    "of dirty vdevs", error, spa_name(spa));
1454		}
1455		goto retry;
1456	}
1457
1458	/*
1459	 * Sync the uberblocks to all vdevs in svd[].
1460	 * If the system dies in the middle of this step, there are two cases
1461	 * to consider, and the on-disk state is consistent either way:
1462	 *
1463	 * (1)	If none of the new uberblocks made it to disk, then the
1464	 *	previous uberblock will be the newest, and the odd labels
1465	 *	(which had not yet been touched) will be valid with respect
1466	 *	to that uberblock.
1467	 *
1468	 * (2)	If one or more new uberblocks made it to disk, then they
1469	 *	will be the newest, and the even labels (which had all
1470	 *	been successfully committed) will be valid with respect
1471	 *	to the new uberblocks.
1472	 */
1473	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) {
1474		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1475			zfs_dbgmsg("vdev_uberblock_sync_list() returned error "
1476			    "%d for pool '%s'", error, spa_name(spa));
1477		}
1478		goto retry;
1479	}
1480
1481	/*
1482	 * Sync out odd labels for every dirty vdev.  If the system dies
1483	 * in the middle of this process, the even labels and the new
1484	 * uberblocks will suffice to open the pool.  The next time
1485	 * the pool is opened, the first thing we'll do -- before any
1486	 * user data is modified -- is mark every vdev dirty so that
1487	 * all labels will be brought up to date.  We flush the new labels
1488	 * to disk to ensure that all odd-label updates are committed to
1489	 * stable storage before the next transaction group begins.
1490	 */
1491	if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) {
1492		if ((flags & ZIO_FLAG_TRYHARD) != 0) {
1493			zfs_dbgmsg("vdev_label_sync_list() returned error %d "
1494			    "for pool '%s' when syncing out the odd labels of "
1495			    "dirty vdevs", error, spa_name(spa));
1496		}
1497		goto retry;;
1498	}
1499
1500	trim_thread_wakeup(spa);
1501
1502	return (0);
1503}
1504