1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
22 * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23 * Use is subject to license terms.
24 */
25/*
26 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
27 */
28
29#include <sys/zfs_context.h>
30#include <sys/spa.h>
31#include <sys/dmu.h>
32#include <sys/dmu_tx.h>
33#include <sys/dnode.h>
34#include <sys/dsl_pool.h>
35#include <sys/zio.h>
36#include <sys/space_map.h>
37#include <sys/refcount.h>
38#include <sys/zfeature.h>
39
40SYSCTL_DECL(_vfs_zfs);
41
42/*
43 * Note on space map block size:
44 *
45 * The data for a given space map can be kept on blocks of any size.
46 * Larger blocks entail fewer I/O operations, but they also cause the
47 * DMU to keep more data in-core, and also to waste more I/O bandwidth
48 * when only a few blocks have changed since the last transaction group.
49 */
50
51/*
52 * Enabled whenever we want to stress test the use of double-word
53 * space map entries.
54 */
55boolean_t zfs_force_some_double_word_sm_entries = B_FALSE;
56
57/*
58 * Override the default indirect block size of 128K, instead using 16K for
59 * spacemaps (2^14 bytes).  This dramatically reduces write inflation since
60 * appending to a spacemap typically has to write one data block (4KB) and one
61 * or two indirect blocks (16K-32K, rather than 128K).
62 */
63int space_map_ibs = 14;
64
65SYSCTL_INT(_vfs_zfs, OID_AUTO, space_map_ibs, CTLFLAG_RWTUN,
66    &space_map_ibs, 0, "Space map indirect block shift");
67
68boolean_t
69sm_entry_is_debug(uint64_t e)
70{
71	return (SM_PREFIX_DECODE(e) == SM_DEBUG_PREFIX);
72}
73
74boolean_t
75sm_entry_is_single_word(uint64_t e)
76{
77	uint8_t prefix = SM_PREFIX_DECODE(e);
78	return (prefix != SM_DEBUG_PREFIX && prefix != SM2_PREFIX);
79}
80
81boolean_t
82sm_entry_is_double_word(uint64_t e)
83{
84	return (SM_PREFIX_DECODE(e) == SM2_PREFIX);
85}
86
87/*
88 * Iterate through the space map, invoking the callback on each (non-debug)
89 * space map entry.
90 */
91int
92space_map_iterate(space_map_t *sm, sm_cb_t callback, void *arg)
93{
94	uint64_t sm_len = space_map_length(sm);
95	ASSERT3U(sm->sm_blksz, !=, 0);
96
97	dmu_prefetch(sm->sm_os, space_map_object(sm), 0, 0, sm_len,
98	    ZIO_PRIORITY_SYNC_READ);
99
100	uint64_t blksz = sm->sm_blksz;
101	int error = 0;
102	for (uint64_t block_base = 0; block_base < sm_len && error == 0;
103	    block_base += blksz) {
104		dmu_buf_t *db;
105		error = dmu_buf_hold(sm->sm_os, space_map_object(sm),
106		    block_base, FTAG, &db, DMU_READ_PREFETCH);
107		if (error != 0)
108			return (error);
109
110		uint64_t *block_start = db->db_data;
111		uint64_t block_length = MIN(sm_len - block_base, blksz);
112		uint64_t *block_end = block_start +
113		    (block_length / sizeof (uint64_t));
114
115		VERIFY0(P2PHASE(block_length, sizeof (uint64_t)));
116		VERIFY3U(block_length, !=, 0);
117		ASSERT3U(blksz, ==, db->db_size);
118
119		for (uint64_t *block_cursor = block_start;
120		    block_cursor < block_end && error == 0; block_cursor++) {
121			uint64_t e = *block_cursor;
122
123			if (sm_entry_is_debug(e)) /* Skip debug entries */
124				continue;
125
126			uint64_t raw_offset, raw_run, vdev_id;
127			maptype_t type;
128			if (sm_entry_is_single_word(e)) {
129				type = SM_TYPE_DECODE(e);
130				vdev_id = SM_NO_VDEVID;
131				raw_offset = SM_OFFSET_DECODE(e);
132				raw_run = SM_RUN_DECODE(e);
133			} else {
134				/* it is a two-word entry */
135				ASSERT(sm_entry_is_double_word(e));
136				raw_run = SM2_RUN_DECODE(e);
137				vdev_id = SM2_VDEV_DECODE(e);
138
139				/* move on to the second word */
140				block_cursor++;
141				e = *block_cursor;
142				VERIFY3P(block_cursor, <=, block_end);
143
144				type = SM2_TYPE_DECODE(e);
145				raw_offset = SM2_OFFSET_DECODE(e);
146			}
147
148			uint64_t entry_offset = (raw_offset << sm->sm_shift) +
149			    sm->sm_start;
150			uint64_t entry_run = raw_run << sm->sm_shift;
151
152			VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
153			VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
154			ASSERT3U(entry_offset, >=, sm->sm_start);
155			ASSERT3U(entry_offset, <, sm->sm_start + sm->sm_size);
156			ASSERT3U(entry_run, <=, sm->sm_size);
157			ASSERT3U(entry_offset + entry_run, <=,
158			    sm->sm_start + sm->sm_size);
159
160			space_map_entry_t sme = {
161			    .sme_type = type,
162			    .sme_vdev = vdev_id,
163			    .sme_offset = entry_offset,
164			    .sme_run = entry_run
165			};
166			error = callback(&sme, arg);
167		}
168		dmu_buf_rele(db, FTAG);
169	}
170	return (error);
171}
172
173/*
174 * Reads the entries from the last block of the space map into
175 * buf in reverse order. Populates nwords with number of words
176 * in the last block.
177 *
178 * Refer to block comment within space_map_incremental_destroy()
179 * to understand why this function is needed.
180 */
181static int
182space_map_reversed_last_block_entries(space_map_t *sm, uint64_t *buf,
183    uint64_t bufsz, uint64_t *nwords)
184{
185	int error = 0;
186	dmu_buf_t *db;
187
188	/*
189	 * Find the offset of the last word in the space map and use
190	 * that to read the last block of the space map with
191	 * dmu_buf_hold().
192	 */
193	uint64_t last_word_offset =
194	    sm->sm_phys->smp_objsize - sizeof (uint64_t);
195	error = dmu_buf_hold(sm->sm_os, space_map_object(sm), last_word_offset,
196	    FTAG, &db, DMU_READ_NO_PREFETCH);
197	if (error != 0)
198		return (error);
199
200	ASSERT3U(sm->sm_object, ==, db->db_object);
201	ASSERT3U(sm->sm_blksz, ==, db->db_size);
202	ASSERT3U(bufsz, >=, db->db_size);
203	ASSERT(nwords != NULL);
204
205	uint64_t *words = db->db_data;
206	*nwords =
207	    (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t);
208
209	ASSERT3U(*nwords, <=, bufsz / sizeof (uint64_t));
210
211	uint64_t n = *nwords;
212	uint64_t j = n - 1;
213	for (uint64_t i = 0; i < n; i++) {
214		uint64_t entry = words[i];
215		if (sm_entry_is_double_word(entry)) {
216			/*
217			 * Since we are populating the buffer backwards
218			 * we have to be extra careful and add the two
219			 * words of the double-word entry in the right
220			 * order.
221			 */
222			ASSERT3U(j, >, 0);
223			buf[j - 1] = entry;
224
225			i++;
226			ASSERT3U(i, <, n);
227			entry = words[i];
228			buf[j] = entry;
229			j -= 2;
230		} else {
231			ASSERT(sm_entry_is_debug(entry) ||
232			    sm_entry_is_single_word(entry));
233			buf[j] = entry;
234			j--;
235		}
236	}
237
238	/*
239	 * Assert that we wrote backwards all the
240	 * way to the beginning of the buffer.
241	 */
242	ASSERT3S(j, ==, -1);
243
244	dmu_buf_rele(db, FTAG);
245	return (error);
246}
247
248/*
249 * Note: This function performs destructive actions - specifically
250 * it deletes entries from the end of the space map. Thus, callers
251 * should ensure that they are holding the appropriate locks for
252 * the space map that they provide.
253 */
254int
255space_map_incremental_destroy(space_map_t *sm, sm_cb_t callback, void *arg,
256    dmu_tx_t *tx)
257{
258	uint64_t bufsz = MAX(sm->sm_blksz, SPA_MINBLOCKSIZE);
259	uint64_t *buf = zio_buf_alloc(bufsz);
260
261	dmu_buf_will_dirty(sm->sm_dbuf, tx);
262
263	/*
264	 * Ideally we would want to iterate from the beginning of the
265	 * space map to the end in incremental steps. The issue with this
266	 * approach is that we don't have any field on-disk that points
267	 * us where to start between each step. We could try zeroing out
268	 * entries that we've destroyed, but this doesn't work either as
269	 * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
270	 *
271	 * As a result, we destroy its entries incrementally starting from
272	 * the end after applying the callback to each of them.
273	 *
274	 * The problem with this approach is that we cannot literally
275	 * iterate through the words in the space map backwards as we
276	 * can't distinguish two-word space map entries from their second
277	 * word. Thus we do the following:
278	 *
279	 * 1] We get all the entries from the last block of the space map
280	 *    and put them into a buffer in reverse order. This way the
281	 *    last entry comes first in the buffer, the second to last is
282	 *    second, etc.
283	 * 2] We iterate through the entries in the buffer and we apply
284	 *    the callback to each one. As we move from entry to entry we
285	 *    we decrease the size of the space map, deleting effectively
286	 *    each entry.
287	 * 3] If there are no more entries in the space map or the callback
288	 *    returns a value other than 0, we stop iterating over the
289	 *    space map. If there are entries remaining and the callback
290	 *    returned 0, we go back to step [1].
291	 */
292	int error = 0;
293	while (space_map_length(sm) > 0 && error == 0) {
294		uint64_t nwords = 0;
295		error = space_map_reversed_last_block_entries(sm, buf, bufsz,
296		    &nwords);
297		if (error != 0)
298			break;
299
300		ASSERT3U(nwords, <=, bufsz / sizeof (uint64_t));
301
302		for (uint64_t i = 0; i < nwords; i++) {
303			uint64_t e = buf[i];
304
305			if (sm_entry_is_debug(e)) {
306				sm->sm_phys->smp_objsize -= sizeof (uint64_t);
307				space_map_update(sm);
308				continue;
309			}
310
311			int words = 1;
312			uint64_t raw_offset, raw_run, vdev_id;
313			maptype_t type;
314			if (sm_entry_is_single_word(e)) {
315				type = SM_TYPE_DECODE(e);
316				vdev_id = SM_NO_VDEVID;
317				raw_offset = SM_OFFSET_DECODE(e);
318				raw_run = SM_RUN_DECODE(e);
319			} else {
320				ASSERT(sm_entry_is_double_word(e));
321				words = 2;
322
323				raw_run = SM2_RUN_DECODE(e);
324				vdev_id = SM2_VDEV_DECODE(e);
325
326				/* move to the second word */
327				i++;
328				e = buf[i];
329
330				ASSERT3P(i, <=, nwords);
331
332				type = SM2_TYPE_DECODE(e);
333				raw_offset = SM2_OFFSET_DECODE(e);
334			}
335
336			uint64_t entry_offset =
337			    (raw_offset << sm->sm_shift) + sm->sm_start;
338			uint64_t entry_run = raw_run << sm->sm_shift;
339
340			VERIFY0(P2PHASE(entry_offset, 1ULL << sm->sm_shift));
341			VERIFY0(P2PHASE(entry_run, 1ULL << sm->sm_shift));
342			VERIFY3U(entry_offset, >=, sm->sm_start);
343			VERIFY3U(entry_offset, <, sm->sm_start + sm->sm_size);
344			VERIFY3U(entry_run, <=, sm->sm_size);
345			VERIFY3U(entry_offset + entry_run, <=,
346			    sm->sm_start + sm->sm_size);
347
348			space_map_entry_t sme = {
349			    .sme_type = type,
350			    .sme_vdev = vdev_id,
351			    .sme_offset = entry_offset,
352			    .sme_run = entry_run
353			};
354			error = callback(&sme, arg);
355			if (error != 0)
356				break;
357
358			if (type == SM_ALLOC)
359				sm->sm_phys->smp_alloc -= entry_run;
360			else
361				sm->sm_phys->smp_alloc += entry_run;
362			sm->sm_phys->smp_objsize -= words * sizeof (uint64_t);
363			space_map_update(sm);
364		}
365	}
366
367	if (space_map_length(sm) == 0) {
368		ASSERT0(error);
369		ASSERT0(sm->sm_phys->smp_objsize);
370		ASSERT0(sm->sm_alloc);
371	}
372
373	zio_buf_free(buf, bufsz);
374	return (error);
375}
376
377typedef struct space_map_load_arg {
378	space_map_t	*smla_sm;
379	range_tree_t	*smla_rt;
380	maptype_t	smla_type;
381} space_map_load_arg_t;
382
383static int
384space_map_load_callback(space_map_entry_t *sme, void *arg)
385{
386	space_map_load_arg_t *smla = arg;
387	if (sme->sme_type == smla->smla_type) {
388		VERIFY3U(range_tree_space(smla->smla_rt) + sme->sme_run, <=,
389		    smla->smla_sm->sm_size);
390		range_tree_add(smla->smla_rt, sme->sme_offset, sme->sme_run);
391	} else {
392		range_tree_remove(smla->smla_rt, sme->sme_offset, sme->sme_run);
393	}
394
395	return (0);
396}
397
398/*
399 * Load the space map disk into the specified range tree. Segments of maptype
400 * are added to the range tree, other segment types are removed.
401 */
402int
403space_map_load(space_map_t *sm, range_tree_t *rt, maptype_t maptype)
404{
405	uint64_t space;
406	int err;
407	space_map_load_arg_t smla;
408
409	VERIFY0(range_tree_space(rt));
410	space = space_map_allocated(sm);
411
412	if (maptype == SM_FREE) {
413		range_tree_add(rt, sm->sm_start, sm->sm_size);
414		space = sm->sm_size - space;
415	}
416
417	smla.smla_rt = rt;
418	smla.smla_sm = sm;
419	smla.smla_type = maptype;
420	err = space_map_iterate(sm, space_map_load_callback, &smla);
421
422	if (err == 0) {
423		VERIFY3U(range_tree_space(rt), ==, space);
424	} else {
425		range_tree_vacate(rt, NULL, NULL);
426	}
427
428	return (err);
429}
430
431void
432space_map_histogram_clear(space_map_t *sm)
433{
434	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
435		return;
436
437	bzero(sm->sm_phys->smp_histogram, sizeof (sm->sm_phys->smp_histogram));
438}
439
440boolean_t
441space_map_histogram_verify(space_map_t *sm, range_tree_t *rt)
442{
443	/*
444	 * Verify that the in-core range tree does not have any
445	 * ranges smaller than our sm_shift size.
446	 */
447	for (int i = 0; i < sm->sm_shift; i++) {
448		if (rt->rt_histogram[i] != 0)
449			return (B_FALSE);
450	}
451	return (B_TRUE);
452}
453
454void
455space_map_histogram_add(space_map_t *sm, range_tree_t *rt, dmu_tx_t *tx)
456{
457	int idx = 0;
458
459	ASSERT(dmu_tx_is_syncing(tx));
460	VERIFY3U(space_map_object(sm), !=, 0);
461
462	if (sm->sm_dbuf->db_size != sizeof (space_map_phys_t))
463		return;
464
465	dmu_buf_will_dirty(sm->sm_dbuf, tx);
466
467	ASSERT(space_map_histogram_verify(sm, rt));
468	/*
469	 * Transfer the content of the range tree histogram to the space
470	 * map histogram. The space map histogram contains 32 buckets ranging
471	 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
472	 * however, can represent ranges from 2^0 to 2^63. Since the space
473	 * map only cares about allocatable blocks (minimum of sm_shift) we
474	 * can safely ignore all ranges in the range tree smaller than sm_shift.
475	 */
476	for (int i = sm->sm_shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
477
478		/*
479		 * Since the largest histogram bucket in the space map is
480		 * 2^(32+sm_shift-1), we need to normalize the values in
481		 * the range tree for any bucket larger than that size. For
482		 * example given an sm_shift of 9, ranges larger than 2^40
483		 * would get normalized as if they were 1TB ranges. Assume
484		 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
485		 * the calculation below would normalize this to 5 * 2^4 (16).
486		 */
487		ASSERT3U(i, >=, idx + sm->sm_shift);
488		sm->sm_phys->smp_histogram[idx] +=
489		    rt->rt_histogram[i] << (i - idx - sm->sm_shift);
490
491		/*
492		 * Increment the space map's index as long as we haven't
493		 * reached the maximum bucket size. Accumulate all ranges
494		 * larger than the max bucket size into the last bucket.
495		 */
496		if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
497			ASSERT3U(idx + sm->sm_shift, ==, i);
498			idx++;
499			ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
500		}
501	}
502}
503
504static void
505space_map_write_intro_debug(space_map_t *sm, maptype_t maptype, dmu_tx_t *tx)
506{
507	dmu_buf_will_dirty(sm->sm_dbuf, tx);
508
509	uint64_t dentry = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
510	    SM_DEBUG_ACTION_ENCODE(maptype) |
511	    SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx->tx_pool->dp_spa)) |
512	    SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx));
513
514	dmu_write(sm->sm_os, space_map_object(sm), sm->sm_phys->smp_objsize,
515	    sizeof (dentry), &dentry, tx);
516
517	sm->sm_phys->smp_objsize += sizeof (dentry);
518}
519
520/*
521 * Writes one or more entries given a segment.
522 *
523 * Note: The function may release the dbuf from the pointer initially
524 * passed to it, and return a different dbuf. Also, the space map's
525 * dbuf must be dirty for the changes in sm_phys to take effect.
526 */
527static void
528space_map_write_seg(space_map_t *sm, range_seg_t *rs, maptype_t maptype,
529    uint64_t vdev_id, uint8_t words, dmu_buf_t **dbp, void *tag, dmu_tx_t *tx)
530{
531	ASSERT3U(words, !=, 0);
532	ASSERT3U(words, <=, 2);
533
534	/* ensure the vdev_id can be represented by the space map */
535	ASSERT3U(vdev_id, <=, SM_NO_VDEVID);
536
537	/*
538	 * if this is a single word entry, ensure that no vdev was
539	 * specified.
540	 */
541	IMPLY(words == 1, vdev_id == SM_NO_VDEVID);
542
543	dmu_buf_t *db = *dbp;
544	ASSERT3U(db->db_size, ==, sm->sm_blksz);
545
546	uint64_t *block_base = db->db_data;
547	uint64_t *block_end = block_base + (sm->sm_blksz / sizeof (uint64_t));
548	uint64_t *block_cursor = block_base +
549	    (sm->sm_phys->smp_objsize - db->db_offset) / sizeof (uint64_t);
550
551	ASSERT3P(block_cursor, <=, block_end);
552
553	uint64_t size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
554	uint64_t start = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
555	uint64_t run_max = (words == 2) ? SM2_RUN_MAX : SM_RUN_MAX;
556
557	ASSERT3U(rs->rs_start, >=, sm->sm_start);
558	ASSERT3U(rs->rs_start, <, sm->sm_start + sm->sm_size);
559	ASSERT3U(rs->rs_end - rs->rs_start, <=, sm->sm_size);
560	ASSERT3U(rs->rs_end, <=, sm->sm_start + sm->sm_size);
561
562	while (size != 0) {
563		ASSERT3P(block_cursor, <=, block_end);
564
565		/*
566		 * If we are at the end of this block, flush it and start
567		 * writing again from the beginning.
568		 */
569		if (block_cursor == block_end) {
570			dmu_buf_rele(db, tag);
571
572			uint64_t next_word_offset = sm->sm_phys->smp_objsize;
573			VERIFY0(dmu_buf_hold(sm->sm_os,
574			    space_map_object(sm), next_word_offset,
575			    tag, &db, DMU_READ_PREFETCH));
576			dmu_buf_will_dirty(db, tx);
577
578			/* update caller's dbuf */
579			*dbp = db;
580
581			ASSERT3U(db->db_size, ==, sm->sm_blksz);
582
583			block_base = db->db_data;
584			block_cursor = block_base;
585			block_end = block_base +
586			    (db->db_size / sizeof (uint64_t));
587		}
588
589		/*
590		 * If we are writing a two-word entry and we only have one
591		 * word left on this block, just pad it with an empty debug
592		 * entry and write the two-word entry in the next block.
593		 */
594		uint64_t *next_entry = block_cursor + 1;
595		if (next_entry == block_end && words > 1) {
596			ASSERT3U(words, ==, 2);
597			*block_cursor = SM_PREFIX_ENCODE(SM_DEBUG_PREFIX) |
598			    SM_DEBUG_ACTION_ENCODE(0) |
599			    SM_DEBUG_SYNCPASS_ENCODE(0) |
600			    SM_DEBUG_TXG_ENCODE(0);
601			block_cursor++;
602			sm->sm_phys->smp_objsize += sizeof (uint64_t);
603			ASSERT3P(block_cursor, ==, block_end);
604			continue;
605		}
606
607		uint64_t run_len = MIN(size, run_max);
608		switch (words) {
609		case 1:
610			*block_cursor = SM_OFFSET_ENCODE(start) |
611			    SM_TYPE_ENCODE(maptype) |
612			    SM_RUN_ENCODE(run_len);
613			block_cursor++;
614			break;
615		case 2:
616			/* write the first word of the entry */
617			*block_cursor = SM_PREFIX_ENCODE(SM2_PREFIX) |
618			    SM2_RUN_ENCODE(run_len) |
619			    SM2_VDEV_ENCODE(vdev_id);
620			block_cursor++;
621
622			/* move on to the second word of the entry */
623			ASSERT3P(block_cursor, <, block_end);
624			*block_cursor = SM2_TYPE_ENCODE(maptype) |
625			    SM2_OFFSET_ENCODE(start);
626			block_cursor++;
627			break;
628		default:
629			panic("%d-word space map entries are not supported",
630			    words);
631			break;
632		}
633		sm->sm_phys->smp_objsize += words * sizeof (uint64_t);
634
635		start += run_len;
636		size -= run_len;
637	}
638	ASSERT0(size);
639
640}
641
642/*
643 * Note: The space map's dbuf must be dirty for the changes in sm_phys to
644 * take effect.
645 */
646static void
647space_map_write_impl(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
648    uint64_t vdev_id, dmu_tx_t *tx)
649{
650	spa_t *spa = tx->tx_pool->dp_spa;
651	dmu_buf_t *db;
652
653	space_map_write_intro_debug(sm, maptype, tx);
654
655#ifdef DEBUG
656	/*
657	 * We do this right after we write the intro debug entry
658	 * because the estimate does not take it into account.
659	 */
660	uint64_t initial_objsize = sm->sm_phys->smp_objsize;
661	uint64_t estimated_growth =
662	    space_map_estimate_optimal_size(sm, rt, SM_NO_VDEVID);
663	uint64_t estimated_final_objsize = initial_objsize + estimated_growth;
664#endif
665
666	/*
667	 * Find the offset right after the last word in the space map
668	 * and use that to get a hold of the last block, so we can
669	 * start appending to it.
670	 */
671	uint64_t next_word_offset = sm->sm_phys->smp_objsize;
672	VERIFY0(dmu_buf_hold(sm->sm_os, space_map_object(sm),
673	    next_word_offset, FTAG, &db, DMU_READ_PREFETCH));
674	ASSERT3U(db->db_size, ==, sm->sm_blksz);
675
676	dmu_buf_will_dirty(db, tx);
677
678	avl_tree_t *t = &rt->rt_root;
679	for (range_seg_t *rs = avl_first(t); rs != NULL; rs = AVL_NEXT(t, rs)) {
680		uint64_t offset = (rs->rs_start - sm->sm_start) >> sm->sm_shift;
681		uint64_t length = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
682		uint8_t words = 1;
683
684		/*
685		 * We only write two-word entries when both of the following
686		 * are true:
687		 *
688		 * [1] The feature is enabled.
689		 * [2] The offset or run is too big for a single-word entry,
690		 *	or the vdev_id is set (meaning not equal to
691		 *	SM_NO_VDEVID).
692		 *
693		 * Note that for purposes of testing we've added the case that
694		 * we write two-word entries occasionally when the feature is
695		 * enabled and zfs_force_some_double_word_sm_entries has been
696		 * set.
697		 */
698		if (spa_feature_is_active(spa, SPA_FEATURE_SPACEMAP_V2) &&
699		    (offset >= (1ULL << SM_OFFSET_BITS) ||
700		    length > SM_RUN_MAX ||
701		    vdev_id != SM_NO_VDEVID ||
702		    (zfs_force_some_double_word_sm_entries &&
703		    spa_get_random(100) == 0)))
704			words = 2;
705
706		space_map_write_seg(sm, rs, maptype, vdev_id, words,
707		    &db, FTAG, tx);
708	}
709
710	dmu_buf_rele(db, FTAG);
711
712#ifdef DEBUG
713	/*
714	 * We expect our estimation to be based on the worst case
715	 * scenario [see comment in space_map_estimate_optimal_size()].
716	 * Therefore we expect the actual objsize to be equal or less
717	 * than whatever we estimated it to be.
718	 */
719	ASSERT3U(estimated_final_objsize, >=, sm->sm_phys->smp_objsize);
720#endif
721}
722
723/*
724 * Note: This function manipulates the state of the given space map but
725 * does not hold any locks implicitly. Thus the caller is responsible
726 * for synchronizing writes to the space map.
727 */
728void
729space_map_write(space_map_t *sm, range_tree_t *rt, maptype_t maptype,
730    uint64_t vdev_id, dmu_tx_t *tx)
731{
732	objset_t *os = sm->sm_os;
733
734	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
735	VERIFY3U(space_map_object(sm), !=, 0);
736
737	dmu_buf_will_dirty(sm->sm_dbuf, tx);
738
739	/*
740	 * This field is no longer necessary since the in-core space map
741	 * now contains the object number but is maintained for backwards
742	 * compatibility.
743	 */
744	sm->sm_phys->smp_object = sm->sm_object;
745
746	if (range_tree_is_empty(rt)) {
747		VERIFY3U(sm->sm_object, ==, sm->sm_phys->smp_object);
748		return;
749	}
750
751	if (maptype == SM_ALLOC)
752		sm->sm_phys->smp_alloc += range_tree_space(rt);
753	else
754		sm->sm_phys->smp_alloc -= range_tree_space(rt);
755
756	uint64_t nodes = avl_numnodes(&rt->rt_root);
757	uint64_t rt_space = range_tree_space(rt);
758
759	space_map_write_impl(sm, rt, maptype, vdev_id, tx);
760
761	/*
762	 * Ensure that the space_map's accounting wasn't changed
763	 * while we were in the middle of writing it out.
764	 */
765	VERIFY3U(nodes, ==, avl_numnodes(&rt->rt_root));
766	VERIFY3U(range_tree_space(rt), ==, rt_space);
767}
768
769static int
770space_map_open_impl(space_map_t *sm)
771{
772	int error;
773	u_longlong_t blocks;
774
775	error = dmu_bonus_hold(sm->sm_os, sm->sm_object, sm, &sm->sm_dbuf);
776	if (error)
777		return (error);
778
779	dmu_object_size_from_db(sm->sm_dbuf, &sm->sm_blksz, &blocks);
780	sm->sm_phys = sm->sm_dbuf->db_data;
781	return (0);
782}
783
784int
785space_map_open(space_map_t **smp, objset_t *os, uint64_t object,
786    uint64_t start, uint64_t size, uint8_t shift)
787{
788	space_map_t *sm;
789	int error;
790
791	ASSERT(*smp == NULL);
792	ASSERT(os != NULL);
793	ASSERT(object != 0);
794
795	sm = kmem_zalloc(sizeof (space_map_t), KM_SLEEP);
796
797	sm->sm_start = start;
798	sm->sm_size = size;
799	sm->sm_shift = shift;
800	sm->sm_os = os;
801	sm->sm_object = object;
802
803	error = space_map_open_impl(sm);
804	if (error != 0) {
805		space_map_close(sm);
806		return (error);
807	}
808	*smp = sm;
809
810	return (0);
811}
812
813void
814space_map_close(space_map_t *sm)
815{
816	if (sm == NULL)
817		return;
818
819	if (sm->sm_dbuf != NULL)
820		dmu_buf_rele(sm->sm_dbuf, sm);
821	sm->sm_dbuf = NULL;
822	sm->sm_phys = NULL;
823
824	kmem_free(sm, sizeof (*sm));
825}
826
827void
828space_map_truncate(space_map_t *sm, int blocksize, dmu_tx_t *tx)
829{
830	objset_t *os = sm->sm_os;
831	spa_t *spa = dmu_objset_spa(os);
832	dmu_object_info_t doi;
833
834	ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
835	ASSERT(dmu_tx_is_syncing(tx));
836	VERIFY3U(dmu_tx_get_txg(tx), <=, spa_final_dirty_txg(spa));
837
838	dmu_object_info_from_db(sm->sm_dbuf, &doi);
839
840	/*
841	 * If the space map has the wrong bonus size (because
842	 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
843	 * the wrong block size (because space_map_blksz has changed),
844	 * free and re-allocate its object with the updated sizes.
845	 *
846	 * Otherwise, just truncate the current object.
847	 */
848	if ((spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
849	    doi.doi_bonus_size != sizeof (space_map_phys_t)) ||
850	    doi.doi_data_block_size != blocksize ||
851	    doi.doi_metadata_block_size != 1 << space_map_ibs) {
852		zfs_dbgmsg("txg %llu, spa %s, sm %p, reallocating "
853		    "object[%llu]: old bonus %u, old blocksz %u",
854		    dmu_tx_get_txg(tx), spa_name(spa), sm, sm->sm_object,
855		    doi.doi_bonus_size, doi.doi_data_block_size);
856
857		space_map_free(sm, tx);
858		dmu_buf_rele(sm->sm_dbuf, sm);
859
860		sm->sm_object = space_map_alloc(sm->sm_os, blocksize, tx);
861		VERIFY0(space_map_open_impl(sm));
862	} else {
863		VERIFY0(dmu_free_range(os, space_map_object(sm), 0, -1ULL, tx));
864
865		/*
866		 * If the spacemap is reallocated, its histogram
867		 * will be reset.  Do the same in the common case so that
868		 * bugs related to the uncommon case do not go unnoticed.
869		 */
870		bzero(sm->sm_phys->smp_histogram,
871		    sizeof (sm->sm_phys->smp_histogram));
872	}
873
874	dmu_buf_will_dirty(sm->sm_dbuf, tx);
875	sm->sm_phys->smp_objsize = 0;
876	sm->sm_phys->smp_alloc = 0;
877}
878
879/*
880 * Update the in-core space_map allocation and length values.
881 */
882void
883space_map_update(space_map_t *sm)
884{
885	if (sm == NULL)
886		return;
887
888	sm->sm_alloc = sm->sm_phys->smp_alloc;
889	sm->sm_length = sm->sm_phys->smp_objsize;
890}
891
892uint64_t
893space_map_alloc(objset_t *os, int blocksize, dmu_tx_t *tx)
894{
895	spa_t *spa = dmu_objset_spa(os);
896	uint64_t object;
897	int bonuslen;
898
899	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
900		spa_feature_incr(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
901		bonuslen = sizeof (space_map_phys_t);
902		ASSERT3U(bonuslen, <=, dmu_bonus_max());
903	} else {
904		bonuslen = SPACE_MAP_SIZE_V0;
905	}
906
907	object = dmu_object_alloc_ibs(os, DMU_OT_SPACE_MAP, blocksize,
908	    space_map_ibs, DMU_OT_SPACE_MAP_HEADER, bonuslen, tx);
909
910	return (object);
911}
912
913void
914space_map_free_obj(objset_t *os, uint64_t smobj, dmu_tx_t *tx)
915{
916	spa_t *spa = dmu_objset_spa(os);
917	if (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM)) {
918		dmu_object_info_t doi;
919
920		VERIFY0(dmu_object_info(os, smobj, &doi));
921		if (doi.doi_bonus_size != SPACE_MAP_SIZE_V0) {
922			spa_feature_decr(spa,
923			    SPA_FEATURE_SPACEMAP_HISTOGRAM, tx);
924		}
925	}
926
927	VERIFY0(dmu_object_free(os, smobj, tx));
928}
929
930void
931space_map_free(space_map_t *sm, dmu_tx_t *tx)
932{
933	if (sm == NULL)
934		return;
935
936	space_map_free_obj(sm->sm_os, space_map_object(sm), tx);
937	sm->sm_object = 0;
938}
939
940/*
941 * Given a range tree, it makes a worst-case estimate of how much
942 * space would the tree's segments take if they were written to
943 * the given space map.
944 */
945uint64_t
946space_map_estimate_optimal_size(space_map_t *sm, range_tree_t *rt,
947    uint64_t vdev_id)
948{
949	spa_t *spa = dmu_objset_spa(sm->sm_os);
950	uint64_t shift = sm->sm_shift;
951	uint64_t *histogram = rt->rt_histogram;
952	uint64_t entries_for_seg = 0;
953
954	/*
955	 * In order to get a quick estimate of the optimal size that this
956	 * range tree would have on-disk as a space map, we iterate through
957	 * its histogram buckets instead of iterating through its nodes.
958	 *
959	 * Note that this is a highest-bound/worst-case estimate for the
960	 * following reasons:
961	 *
962	 * 1] We assume that we always add a debug padding for each block
963	 *    we write and we also assume that we start at the last word
964	 *    of a block attempting to write a two-word entry.
965	 * 2] Rounding up errors due to the way segments are distributed
966	 *    in the buckets of the range tree's histogram.
967	 * 3] The activation of zfs_force_some_double_word_sm_entries
968	 *    (tunable) when testing.
969	 *
970	 * = Math and Rounding Errors =
971	 *
972	 * rt_histogram[i] bucket of a range tree represents the number
973	 * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
974	 * that, we want to divide the buckets into groups: Buckets that
975	 * can be represented using a single-word entry, ones that can
976	 * be represented with a double-word entry, and ones that can
977	 * only be represented with multiple two-word entries.
978	 *
979	 * [Note that if the new encoding feature is not enabled there
980	 * are only two groups: single-word entry buckets and multiple
981	 * single-word entry buckets. The information below assumes
982	 * two-word entries enabled, but it can easily applied when
983	 * the feature is not enabled]
984	 *
985	 * To find the highest bucket that can be represented with a
986	 * single-word entry we look at the maximum run that such entry
987	 * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
988	 * the run of a space map entry is shifted by sm_shift, thus we
989	 * add it to the exponent]. This way, excluding the value of the
990	 * maximum run that can be represented by a single-word entry,
991	 * all runs that are smaller exist in buckets 0 to
992	 * SM_RUN_BITS + shift - 1.
993	 *
994	 * To find the highest bucket that can be represented with a
995	 * double-word entry, we follow the same approach. Finally, any
996	 * bucket higher than that are represented with multiple two-word
997	 * entries. To be more specific, if the highest bucket whose
998	 * segments can be represented with a single two-word entry is X,
999	 * then bucket X+1 will need 2 two-word entries for each of its
1000	 * segments, X+2 will need 4, X+3 will need 8, ...etc.
1001	 *
1002	 * With all of the above we make our estimation based on bucket
1003	 * groups. There is a rounding error though. As we mentioned in
1004	 * the example with the one-word entry, the maximum run that can
1005	 * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
1006	 * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
1007	 * that length fall into the next bucket (and bucket group) where
1008	 * we start counting two-word entries and this is one more reason
1009	 * why the estimated size may end up being bigger than the actual
1010	 * size written.
1011	 */
1012	uint64_t size = 0;
1013	uint64_t idx = 0;
1014
1015	if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) ||
1016	    (vdev_id == SM_NO_VDEVID && sm->sm_size < SM_OFFSET_MAX)) {
1017
1018		/*
1019		 * If we are trying to force some double word entries just
1020		 * assume the worst-case of every single word entry being
1021		 * written as a double word entry.
1022		 */
1023		uint64_t entry_size =
1024		    (spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2) &&
1025		    zfs_force_some_double_word_sm_entries) ?
1026		    (2 * sizeof (uint64_t)) : sizeof (uint64_t);
1027
1028		uint64_t single_entry_max_bucket = SM_RUN_BITS + shift - 1;
1029		for (; idx <= single_entry_max_bucket; idx++)
1030			size += histogram[idx] * entry_size;
1031
1032		if (!spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2)) {
1033			for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1034				ASSERT3U(idx, >=, single_entry_max_bucket);
1035				entries_for_seg =
1036				    1ULL << (idx - single_entry_max_bucket);
1037				size += histogram[idx] *
1038				    entries_for_seg * entry_size;
1039			}
1040			return (size);
1041		}
1042	}
1043
1044	ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_V2));
1045
1046	uint64_t double_entry_max_bucket = SM2_RUN_BITS + shift - 1;
1047	for (; idx <= double_entry_max_bucket; idx++)
1048		size += histogram[idx] * 2 * sizeof (uint64_t);
1049
1050	for (; idx < RANGE_TREE_HISTOGRAM_SIZE; idx++) {
1051		ASSERT3U(idx, >=, double_entry_max_bucket);
1052		entries_for_seg = 1ULL << (idx - double_entry_max_bucket);
1053		size += histogram[idx] *
1054		    entries_for_seg * 2 * sizeof (uint64_t);
1055	}
1056
1057	/*
1058	 * Assume the worst case where we start with the padding at the end
1059	 * of the current block and we add an extra padding entry at the end
1060	 * of all subsequent blocks.
1061	 */
1062	size += ((size / sm->sm_blksz) + 1) * sizeof (uint64_t);
1063
1064	return (size);
1065}
1066
1067uint64_t
1068space_map_object(space_map_t *sm)
1069{
1070	return (sm != NULL ? sm->sm_object : 0);
1071}
1072
1073/*
1074 * Returns the already synced, on-disk allocated space.
1075 */
1076uint64_t
1077space_map_allocated(space_map_t *sm)
1078{
1079	return (sm != NULL ? sm->sm_alloc : 0);
1080}
1081
1082/*
1083 * Returns the already synced, on-disk length;
1084 */
1085uint64_t
1086space_map_length(space_map_t *sm)
1087{
1088	return (sm != NULL ? sm->sm_length : 0);
1089}
1090
1091/*
1092 * Returns the allocated space that is currently syncing.
1093 */
1094int64_t
1095space_map_alloc_delta(space_map_t *sm)
1096{
1097	if (sm == NULL)
1098		return (0);
1099	ASSERT(sm->sm_dbuf != NULL);
1100	return (sm->sm_phys->smp_alloc - space_map_allocated(sm));
1101}
1102