spa.c revision 339105
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright 2017 Joyent, Inc.
32 * Copyright (c) 2017 Datto Inc.
33 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34 */
35
36/*
37 * SPA: Storage Pool Allocator
38 *
39 * This file contains all the routines used when modifying on-disk SPA state.
40 * This includes opening, importing, destroying, exporting a pool, and syncing a
41 * pool.
42 */
43
44#include <sys/zfs_context.h>
45#include <sys/fm/fs/zfs.h>
46#include <sys/spa_impl.h>
47#include <sys/zio.h>
48#include <sys/zio_checksum.h>
49#include <sys/dmu.h>
50#include <sys/dmu_tx.h>
51#include <sys/zap.h>
52#include <sys/zil.h>
53#include <sys/ddt.h>
54#include <sys/vdev_impl.h>
55#include <sys/vdev_removal.h>
56#include <sys/vdev_indirect_mapping.h>
57#include <sys/vdev_indirect_births.h>
58#include <sys/metaslab.h>
59#include <sys/metaslab_impl.h>
60#include <sys/uberblock_impl.h>
61#include <sys/txg.h>
62#include <sys/avl.h>
63#include <sys/bpobj.h>
64#include <sys/dmu_traverse.h>
65#include <sys/dmu_objset.h>
66#include <sys/unique.h>
67#include <sys/dsl_pool.h>
68#include <sys/dsl_dataset.h>
69#include <sys/dsl_dir.h>
70#include <sys/dsl_prop.h>
71#include <sys/dsl_synctask.h>
72#include <sys/fs/zfs.h>
73#include <sys/arc.h>
74#include <sys/callb.h>
75#include <sys/spa_boot.h>
76#include <sys/zfs_ioctl.h>
77#include <sys/dsl_scan.h>
78#include <sys/dmu_send.h>
79#include <sys/dsl_destroy.h>
80#include <sys/dsl_userhold.h>
81#include <sys/zfeature.h>
82#include <sys/zvol.h>
83#include <sys/trim_map.h>
84#include <sys/abd.h>
85
86#ifdef	_KERNEL
87#include <sys/callb.h>
88#include <sys/cpupart.h>
89#include <sys/zone.h>
90#endif	/* _KERNEL */
91
92#include "zfs_prop.h"
93#include "zfs_comutil.h"
94
95/* Check hostid on import? */
96static int check_hostid = 1;
97
98/*
99 * The interval, in seconds, at which failed configuration cache file writes
100 * should be retried.
101 */
102int zfs_ccw_retry_interval = 300;
103
104SYSCTL_DECL(_vfs_zfs);
105SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
106    "Check hostid on import?");
107TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
108SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
109    &zfs_ccw_retry_interval, 0,
110    "Configuration cache file write, retry after failure, interval (seconds)");
111
112typedef enum zti_modes {
113	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
114	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
115	ZTI_MODE_NULL,			/* don't create a taskq */
116	ZTI_NMODES
117} zti_modes_t;
118
119#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
120#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
121#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
122
123#define	ZTI_N(n)	ZTI_P(n, 1)
124#define	ZTI_ONE		ZTI_N(1)
125
126typedef struct zio_taskq_info {
127	zti_modes_t zti_mode;
128	uint_t zti_value;
129	uint_t zti_count;
130} zio_taskq_info_t;
131
132static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
133	"issue", "issue_high", "intr", "intr_high"
134};
135
136/*
137 * This table defines the taskq settings for each ZFS I/O type. When
138 * initializing a pool, we use this table to create an appropriately sized
139 * taskq. Some operations are low volume and therefore have a small, static
140 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
141 * macros. Other operations process a large amount of data; the ZTI_BATCH
142 * macro causes us to create a taskq oriented for throughput. Some operations
143 * are so high frequency and short-lived that the taskq itself can become a a
144 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
145 * additional degree of parallelism specified by the number of threads per-
146 * taskq and the number of taskqs; when dispatching an event in this case, the
147 * particular taskq is chosen at random.
148 *
149 * The different taskq priorities are to handle the different contexts (issue
150 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151 * need to be handled with minimum delay.
152 */
153const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
157	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
158	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161};
162
163static void spa_sync_version(void *arg, dmu_tx_t *tx);
164static void spa_sync_props(void *arg, dmu_tx_t *tx);
165static boolean_t spa_has_active_shared_spare(spa_t *spa);
166static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
167static void spa_vdev_resilver_done(spa_t *spa);
168
169uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
170#ifdef PSRSET_BIND
171id_t		zio_taskq_psrset_bind = PS_NONE;
172#endif
173#ifdef SYSDC
174boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
175uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
176#endif
177
178boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
179extern int	zfs_sync_pass_deferred_free;
180
181/*
182 * Report any spa_load_verify errors found, but do not fail spa_load.
183 * This is used by zdb to analyze non-idle pools.
184 */
185boolean_t	spa_load_verify_dryrun = B_FALSE;
186
187/*
188 * This (illegal) pool name is used when temporarily importing a spa_t in order
189 * to get the vdev stats associated with the imported devices.
190 */
191#define	TRYIMPORT_NAME	"$import"
192
193/*
194 * For debugging purposes: print out vdev tree during pool import.
195 */
196int	spa_load_print_vdev_tree = B_FALSE;
197
198/*
199 * A non-zero value for zfs_max_missing_tvds means that we allow importing
200 * pools with missing top-level vdevs. This is strictly intended for advanced
201 * pool recovery cases since missing data is almost inevitable. Pools with
202 * missing devices can only be imported read-only for safety reasons, and their
203 * fail-mode will be automatically set to "continue".
204 *
205 * With 1 missing vdev we should be able to import the pool and mount all
206 * datasets. User data that was not modified after the missing device has been
207 * added should be recoverable. This means that snapshots created prior to the
208 * addition of that device should be completely intact.
209 *
210 * With 2 missing vdevs, some datasets may fail to mount since there are
211 * dataset statistics that are stored as regular metadata. Some data might be
212 * recoverable if those vdevs were added recently.
213 *
214 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
215 * may be missing entirely. Chances of data recovery are very low. Note that
216 * there are also risks of performing an inadvertent rewind as we might be
217 * missing all the vdevs with the latest uberblocks.
218 */
219uint64_t	zfs_max_missing_tvds = 0;
220
221/*
222 * The parameters below are similar to zfs_max_missing_tvds but are only
223 * intended for a preliminary open of the pool with an untrusted config which
224 * might be incomplete or out-dated.
225 *
226 * We are more tolerant for pools opened from a cachefile since we could have
227 * an out-dated cachefile where a device removal was not registered.
228 * We could have set the limit arbitrarily high but in the case where devices
229 * are really missing we would want to return the proper error codes; we chose
230 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
231 * and we get a chance to retrieve the trusted config.
232 */
233uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
234
235/*
236 * In the case where config was assembled by scanning device paths (/dev/dsks
237 * by default) we are less tolerant since all the existing devices should have
238 * been detected and we want spa_load to return the right error codes.
239 */
240uint64_t	zfs_max_missing_tvds_scan = 0;
241
242
243SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_print_vdev_tree, CTLFLAG_RWTUN,
244    &spa_load_print_vdev_tree, 0,
245    "print out vdev tree during pool import");
246SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds, CTLFLAG_RWTUN,
247    &zfs_max_missing_tvds, 0,
248    "allow importing pools with missing top-level vdevs");
249SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_cachefile, CTLFLAG_RWTUN,
250    &zfs_max_missing_tvds_cachefile, 0,
251    "allow importing pools with missing top-level vdevs in cache file");
252SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_scan, CTLFLAG_RWTUN,
253    &zfs_max_missing_tvds_scan, 0,
254    "allow importing pools with missing top-level vdevs during scan");
255
256/*
257 * Debugging aid that pauses spa_sync() towards the end.
258 */
259boolean_t	zfs_pause_spa_sync = B_FALSE;
260
261/*
262 * ==========================================================================
263 * SPA properties routines
264 * ==========================================================================
265 */
266
267/*
268 * Add a (source=src, propname=propval) list to an nvlist.
269 */
270static void
271spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
272    uint64_t intval, zprop_source_t src)
273{
274	const char *propname = zpool_prop_to_name(prop);
275	nvlist_t *propval;
276
277	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
278	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
279
280	if (strval != NULL)
281		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
282	else
283		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
284
285	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
286	nvlist_free(propval);
287}
288
289/*
290 * Get property values from the spa configuration.
291 */
292static void
293spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
294{
295	vdev_t *rvd = spa->spa_root_vdev;
296	dsl_pool_t *pool = spa->spa_dsl_pool;
297	uint64_t size, alloc, cap, version;
298	zprop_source_t src = ZPROP_SRC_NONE;
299	spa_config_dirent_t *dp;
300	metaslab_class_t *mc = spa_normal_class(spa);
301
302	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
303
304	if (rvd != NULL) {
305		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
306		size = metaslab_class_get_space(spa_normal_class(spa));
307		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
308		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
309		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
310		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
311		    size - alloc, src);
312		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
313		    spa->spa_checkpoint_info.sci_dspace, src);
314
315		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
316		    metaslab_class_fragmentation(mc), src);
317		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
318		    metaslab_class_expandable_space(mc), src);
319		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
320		    (spa_mode(spa) == FREAD), src);
321
322		cap = (size == 0) ? 0 : (alloc * 100 / size);
323		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
324
325		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
326		    ddt_get_pool_dedup_ratio(spa), src);
327
328		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
329		    rvd->vdev_state, src);
330
331		version = spa_version(spa);
332		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
333			src = ZPROP_SRC_DEFAULT;
334		else
335			src = ZPROP_SRC_LOCAL;
336		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
337	}
338
339	if (pool != NULL) {
340		/*
341		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
342		 * when opening pools before this version freedir will be NULL.
343		 */
344		if (pool->dp_free_dir != NULL) {
345			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
346			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
347			    src);
348		} else {
349			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
350			    NULL, 0, src);
351		}
352
353		if (pool->dp_leak_dir != NULL) {
354			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
355			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
356			    src);
357		} else {
358			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
359			    NULL, 0, src);
360		}
361	}
362
363	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
364
365	if (spa->spa_comment != NULL) {
366		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
367		    0, ZPROP_SRC_LOCAL);
368	}
369
370	if (spa->spa_root != NULL)
371		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
372		    0, ZPROP_SRC_LOCAL);
373
374	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
375		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
376		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
377	} else {
378		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
379		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
380	}
381
382	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
383		if (dp->scd_path == NULL) {
384			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
385			    "none", 0, ZPROP_SRC_LOCAL);
386		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
387			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
388			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
389		}
390	}
391}
392
393/*
394 * Get zpool property values.
395 */
396int
397spa_prop_get(spa_t *spa, nvlist_t **nvp)
398{
399	objset_t *mos = spa->spa_meta_objset;
400	zap_cursor_t zc;
401	zap_attribute_t za;
402	int err;
403
404	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
405
406	mutex_enter(&spa->spa_props_lock);
407
408	/*
409	 * Get properties from the spa config.
410	 */
411	spa_prop_get_config(spa, nvp);
412
413	/* If no pool property object, no more prop to get. */
414	if (mos == NULL || spa->spa_pool_props_object == 0) {
415		mutex_exit(&spa->spa_props_lock);
416		return (0);
417	}
418
419	/*
420	 * Get properties from the MOS pool property object.
421	 */
422	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
423	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
424	    zap_cursor_advance(&zc)) {
425		uint64_t intval = 0;
426		char *strval = NULL;
427		zprop_source_t src = ZPROP_SRC_DEFAULT;
428		zpool_prop_t prop;
429
430		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
431			continue;
432
433		switch (za.za_integer_length) {
434		case 8:
435			/* integer property */
436			if (za.za_first_integer !=
437			    zpool_prop_default_numeric(prop))
438				src = ZPROP_SRC_LOCAL;
439
440			if (prop == ZPOOL_PROP_BOOTFS) {
441				dsl_pool_t *dp;
442				dsl_dataset_t *ds = NULL;
443
444				dp = spa_get_dsl(spa);
445				dsl_pool_config_enter(dp, FTAG);
446				if (err = dsl_dataset_hold_obj(dp,
447				    za.za_first_integer, FTAG, &ds)) {
448					dsl_pool_config_exit(dp, FTAG);
449					break;
450				}
451
452				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
453				    KM_SLEEP);
454				dsl_dataset_name(ds, strval);
455				dsl_dataset_rele(ds, FTAG);
456				dsl_pool_config_exit(dp, FTAG);
457			} else {
458				strval = NULL;
459				intval = za.za_first_integer;
460			}
461
462			spa_prop_add_list(*nvp, prop, strval, intval, src);
463
464			if (strval != NULL)
465				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
466
467			break;
468
469		case 1:
470			/* string property */
471			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
472			err = zap_lookup(mos, spa->spa_pool_props_object,
473			    za.za_name, 1, za.za_num_integers, strval);
474			if (err) {
475				kmem_free(strval, za.za_num_integers);
476				break;
477			}
478			spa_prop_add_list(*nvp, prop, strval, 0, src);
479			kmem_free(strval, za.za_num_integers);
480			break;
481
482		default:
483			break;
484		}
485	}
486	zap_cursor_fini(&zc);
487	mutex_exit(&spa->spa_props_lock);
488out:
489	if (err && err != ENOENT) {
490		nvlist_free(*nvp);
491		*nvp = NULL;
492		return (err);
493	}
494
495	return (0);
496}
497
498/*
499 * Validate the given pool properties nvlist and modify the list
500 * for the property values to be set.
501 */
502static int
503spa_prop_validate(spa_t *spa, nvlist_t *props)
504{
505	nvpair_t *elem;
506	int error = 0, reset_bootfs = 0;
507	uint64_t objnum = 0;
508	boolean_t has_feature = B_FALSE;
509
510	elem = NULL;
511	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
512		uint64_t intval;
513		char *strval, *slash, *check, *fname;
514		const char *propname = nvpair_name(elem);
515		zpool_prop_t prop = zpool_name_to_prop(propname);
516
517		switch (prop) {
518		case ZPOOL_PROP_INVAL:
519			if (!zpool_prop_feature(propname)) {
520				error = SET_ERROR(EINVAL);
521				break;
522			}
523
524			/*
525			 * Sanitize the input.
526			 */
527			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
528				error = SET_ERROR(EINVAL);
529				break;
530			}
531
532			if (nvpair_value_uint64(elem, &intval) != 0) {
533				error = SET_ERROR(EINVAL);
534				break;
535			}
536
537			if (intval != 0) {
538				error = SET_ERROR(EINVAL);
539				break;
540			}
541
542			fname = strchr(propname, '@') + 1;
543			if (zfeature_lookup_name(fname, NULL) != 0) {
544				error = SET_ERROR(EINVAL);
545				break;
546			}
547
548			has_feature = B_TRUE;
549			break;
550
551		case ZPOOL_PROP_VERSION:
552			error = nvpair_value_uint64(elem, &intval);
553			if (!error &&
554			    (intval < spa_version(spa) ||
555			    intval > SPA_VERSION_BEFORE_FEATURES ||
556			    has_feature))
557				error = SET_ERROR(EINVAL);
558			break;
559
560		case ZPOOL_PROP_DELEGATION:
561		case ZPOOL_PROP_AUTOREPLACE:
562		case ZPOOL_PROP_LISTSNAPS:
563		case ZPOOL_PROP_AUTOEXPAND:
564			error = nvpair_value_uint64(elem, &intval);
565			if (!error && intval > 1)
566				error = SET_ERROR(EINVAL);
567			break;
568
569		case ZPOOL_PROP_BOOTFS:
570			/*
571			 * If the pool version is less than SPA_VERSION_BOOTFS,
572			 * or the pool is still being created (version == 0),
573			 * the bootfs property cannot be set.
574			 */
575			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
576				error = SET_ERROR(ENOTSUP);
577				break;
578			}
579
580			/*
581			 * Make sure the vdev config is bootable
582			 */
583			if (!vdev_is_bootable(spa->spa_root_vdev)) {
584				error = SET_ERROR(ENOTSUP);
585				break;
586			}
587
588			reset_bootfs = 1;
589
590			error = nvpair_value_string(elem, &strval);
591
592			if (!error) {
593				objset_t *os;
594				uint64_t propval;
595
596				if (strval == NULL || strval[0] == '\0') {
597					objnum = zpool_prop_default_numeric(
598					    ZPOOL_PROP_BOOTFS);
599					break;
600				}
601
602				if (error = dmu_objset_hold(strval, FTAG, &os))
603					break;
604
605				/*
606				 * Must be ZPL, and its property settings
607				 * must be supported by GRUB (compression
608				 * is not gzip, and large blocks are not used).
609				 */
610
611				if (dmu_objset_type(os) != DMU_OST_ZFS) {
612					error = SET_ERROR(ENOTSUP);
613				} else if ((error =
614				    dsl_prop_get_int_ds(dmu_objset_ds(os),
615				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
616				    &propval)) == 0 &&
617				    !BOOTFS_COMPRESS_VALID(propval)) {
618					error = SET_ERROR(ENOTSUP);
619				} else {
620					objnum = dmu_objset_id(os);
621				}
622				dmu_objset_rele(os, FTAG);
623			}
624			break;
625
626		case ZPOOL_PROP_FAILUREMODE:
627			error = nvpair_value_uint64(elem, &intval);
628			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
629			    intval > ZIO_FAILURE_MODE_PANIC))
630				error = SET_ERROR(EINVAL);
631
632			/*
633			 * This is a special case which only occurs when
634			 * the pool has completely failed. This allows
635			 * the user to change the in-core failmode property
636			 * without syncing it out to disk (I/Os might
637			 * currently be blocked). We do this by returning
638			 * EIO to the caller (spa_prop_set) to trick it
639			 * into thinking we encountered a property validation
640			 * error.
641			 */
642			if (!error && spa_suspended(spa)) {
643				spa->spa_failmode = intval;
644				error = SET_ERROR(EIO);
645			}
646			break;
647
648		case ZPOOL_PROP_CACHEFILE:
649			if ((error = nvpair_value_string(elem, &strval)) != 0)
650				break;
651
652			if (strval[0] == '\0')
653				break;
654
655			if (strcmp(strval, "none") == 0)
656				break;
657
658			if (strval[0] != '/') {
659				error = SET_ERROR(EINVAL);
660				break;
661			}
662
663			slash = strrchr(strval, '/');
664			ASSERT(slash != NULL);
665
666			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
667			    strcmp(slash, "/..") == 0)
668				error = SET_ERROR(EINVAL);
669			break;
670
671		case ZPOOL_PROP_COMMENT:
672			if ((error = nvpair_value_string(elem, &strval)) != 0)
673				break;
674			for (check = strval; *check != '\0'; check++) {
675				/*
676				 * The kernel doesn't have an easy isprint()
677				 * check.  For this kernel check, we merely
678				 * check ASCII apart from DEL.  Fix this if
679				 * there is an easy-to-use kernel isprint().
680				 */
681				if (*check >= 0x7f) {
682					error = SET_ERROR(EINVAL);
683					break;
684				}
685			}
686			if (strlen(strval) > ZPROP_MAX_COMMENT)
687				error = E2BIG;
688			break;
689
690		case ZPOOL_PROP_DEDUPDITTO:
691			if (spa_version(spa) < SPA_VERSION_DEDUP)
692				error = SET_ERROR(ENOTSUP);
693			else
694				error = nvpair_value_uint64(elem, &intval);
695			if (error == 0 &&
696			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
697				error = SET_ERROR(EINVAL);
698			break;
699		}
700
701		if (error)
702			break;
703	}
704
705	if (!error && reset_bootfs) {
706		error = nvlist_remove(props,
707		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
708
709		if (!error) {
710			error = nvlist_add_uint64(props,
711			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
712		}
713	}
714
715	return (error);
716}
717
718void
719spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
720{
721	char *cachefile;
722	spa_config_dirent_t *dp;
723
724	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
725	    &cachefile) != 0)
726		return;
727
728	dp = kmem_alloc(sizeof (spa_config_dirent_t),
729	    KM_SLEEP);
730
731	if (cachefile[0] == '\0')
732		dp->scd_path = spa_strdup(spa_config_path);
733	else if (strcmp(cachefile, "none") == 0)
734		dp->scd_path = NULL;
735	else
736		dp->scd_path = spa_strdup(cachefile);
737
738	list_insert_head(&spa->spa_config_list, dp);
739	if (need_sync)
740		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
741}
742
743int
744spa_prop_set(spa_t *spa, nvlist_t *nvp)
745{
746	int error;
747	nvpair_t *elem = NULL;
748	boolean_t need_sync = B_FALSE;
749
750	if ((error = spa_prop_validate(spa, nvp)) != 0)
751		return (error);
752
753	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
754		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
755
756		if (prop == ZPOOL_PROP_CACHEFILE ||
757		    prop == ZPOOL_PROP_ALTROOT ||
758		    prop == ZPOOL_PROP_READONLY)
759			continue;
760
761		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
762			uint64_t ver;
763
764			if (prop == ZPOOL_PROP_VERSION) {
765				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
766			} else {
767				ASSERT(zpool_prop_feature(nvpair_name(elem)));
768				ver = SPA_VERSION_FEATURES;
769				need_sync = B_TRUE;
770			}
771
772			/* Save time if the version is already set. */
773			if (ver == spa_version(spa))
774				continue;
775
776			/*
777			 * In addition to the pool directory object, we might
778			 * create the pool properties object, the features for
779			 * read object, the features for write object, or the
780			 * feature descriptions object.
781			 */
782			error = dsl_sync_task(spa->spa_name, NULL,
783			    spa_sync_version, &ver,
784			    6, ZFS_SPACE_CHECK_RESERVED);
785			if (error)
786				return (error);
787			continue;
788		}
789
790		need_sync = B_TRUE;
791		break;
792	}
793
794	if (need_sync) {
795		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
796		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
797	}
798
799	return (0);
800}
801
802/*
803 * If the bootfs property value is dsobj, clear it.
804 */
805void
806spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
807{
808	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
809		VERIFY(zap_remove(spa->spa_meta_objset,
810		    spa->spa_pool_props_object,
811		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
812		spa->spa_bootfs = 0;
813	}
814}
815
816/*ARGSUSED*/
817static int
818spa_change_guid_check(void *arg, dmu_tx_t *tx)
819{
820	uint64_t *newguid = arg;
821	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
822	vdev_t *rvd = spa->spa_root_vdev;
823	uint64_t vdev_state;
824
825	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
826		int error = (spa_has_checkpoint(spa)) ?
827		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
828		return (SET_ERROR(error));
829	}
830
831	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
832	vdev_state = rvd->vdev_state;
833	spa_config_exit(spa, SCL_STATE, FTAG);
834
835	if (vdev_state != VDEV_STATE_HEALTHY)
836		return (SET_ERROR(ENXIO));
837
838	ASSERT3U(spa_guid(spa), !=, *newguid);
839
840	return (0);
841}
842
843static void
844spa_change_guid_sync(void *arg, dmu_tx_t *tx)
845{
846	uint64_t *newguid = arg;
847	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
848	uint64_t oldguid;
849	vdev_t *rvd = spa->spa_root_vdev;
850
851	oldguid = spa_guid(spa);
852
853	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
854	rvd->vdev_guid = *newguid;
855	rvd->vdev_guid_sum += (*newguid - oldguid);
856	vdev_config_dirty(rvd);
857	spa_config_exit(spa, SCL_STATE, FTAG);
858
859	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
860	    oldguid, *newguid);
861}
862
863/*
864 * Change the GUID for the pool.  This is done so that we can later
865 * re-import a pool built from a clone of our own vdevs.  We will modify
866 * the root vdev's guid, our own pool guid, and then mark all of our
867 * vdevs dirty.  Note that we must make sure that all our vdevs are
868 * online when we do this, or else any vdevs that weren't present
869 * would be orphaned from our pool.  We are also going to issue a
870 * sysevent to update any watchers.
871 */
872int
873spa_change_guid(spa_t *spa)
874{
875	int error;
876	uint64_t guid;
877
878	mutex_enter(&spa->spa_vdev_top_lock);
879	mutex_enter(&spa_namespace_lock);
880	guid = spa_generate_guid(NULL);
881
882	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
883	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
884
885	if (error == 0) {
886		spa_write_cachefile(spa, B_FALSE, B_TRUE);
887		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
888	}
889
890	mutex_exit(&spa_namespace_lock);
891	mutex_exit(&spa->spa_vdev_top_lock);
892
893	return (error);
894}
895
896/*
897 * ==========================================================================
898 * SPA state manipulation (open/create/destroy/import/export)
899 * ==========================================================================
900 */
901
902static int
903spa_error_entry_compare(const void *a, const void *b)
904{
905	spa_error_entry_t *sa = (spa_error_entry_t *)a;
906	spa_error_entry_t *sb = (spa_error_entry_t *)b;
907	int ret;
908
909	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
910	    sizeof (zbookmark_phys_t));
911
912	if (ret < 0)
913		return (-1);
914	else if (ret > 0)
915		return (1);
916	else
917		return (0);
918}
919
920/*
921 * Utility function which retrieves copies of the current logs and
922 * re-initializes them in the process.
923 */
924void
925spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
926{
927	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
928
929	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
930	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
931
932	avl_create(&spa->spa_errlist_scrub,
933	    spa_error_entry_compare, sizeof (spa_error_entry_t),
934	    offsetof(spa_error_entry_t, se_avl));
935	avl_create(&spa->spa_errlist_last,
936	    spa_error_entry_compare, sizeof (spa_error_entry_t),
937	    offsetof(spa_error_entry_t, se_avl));
938}
939
940static void
941spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
942{
943	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
944	enum zti_modes mode = ztip->zti_mode;
945	uint_t value = ztip->zti_value;
946	uint_t count = ztip->zti_count;
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948	char name[32];
949	uint_t flags = 0;
950	boolean_t batch = B_FALSE;
951
952	if (mode == ZTI_MODE_NULL) {
953		tqs->stqs_count = 0;
954		tqs->stqs_taskq = NULL;
955		return;
956	}
957
958	ASSERT3U(count, >, 0);
959
960	tqs->stqs_count = count;
961	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
962
963	switch (mode) {
964	case ZTI_MODE_FIXED:
965		ASSERT3U(value, >=, 1);
966		value = MAX(value, 1);
967		break;
968
969	case ZTI_MODE_BATCH:
970		batch = B_TRUE;
971		flags |= TASKQ_THREADS_CPU_PCT;
972		value = zio_taskq_batch_pct;
973		break;
974
975	default:
976		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
977		    "spa_activate()",
978		    zio_type_name[t], zio_taskq_types[q], mode, value);
979		break;
980	}
981
982	for (uint_t i = 0; i < count; i++) {
983		taskq_t *tq;
984
985		if (count > 1) {
986			(void) snprintf(name, sizeof (name), "%s_%s_%u",
987			    zio_type_name[t], zio_taskq_types[q], i);
988		} else {
989			(void) snprintf(name, sizeof (name), "%s_%s",
990			    zio_type_name[t], zio_taskq_types[q]);
991		}
992
993#ifdef SYSDC
994		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
995			if (batch)
996				flags |= TASKQ_DC_BATCH;
997
998			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
999			    spa->spa_proc, zio_taskq_basedc, flags);
1000		} else {
1001#endif
1002			pri_t pri = maxclsyspri;
1003			/*
1004			 * The write issue taskq can be extremely CPU
1005			 * intensive.  Run it at slightly lower priority
1006			 * than the other taskqs.
1007			 * FreeBSD notes:
1008			 * - numerically higher priorities are lower priorities;
1009			 * - if priorities divided by four (RQ_PPQ) are equal
1010			 *   then a difference between them is insignificant.
1011			 */
1012			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1013#ifdef illumos
1014				pri--;
1015#else
1016				pri += 4;
1017#endif
1018
1019			tq = taskq_create_proc(name, value, pri, 50,
1020			    INT_MAX, spa->spa_proc, flags);
1021#ifdef SYSDC
1022		}
1023#endif
1024
1025		tqs->stqs_taskq[i] = tq;
1026	}
1027}
1028
1029static void
1030spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1031{
1032	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1033
1034	if (tqs->stqs_taskq == NULL) {
1035		ASSERT0(tqs->stqs_count);
1036		return;
1037	}
1038
1039	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1040		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1041		taskq_destroy(tqs->stqs_taskq[i]);
1042	}
1043
1044	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1045	tqs->stqs_taskq = NULL;
1046}
1047
1048/*
1049 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1050 * Note that a type may have multiple discrete taskqs to avoid lock contention
1051 * on the taskq itself. In that case we choose which taskq at random by using
1052 * the low bits of gethrtime().
1053 */
1054void
1055spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1056    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1057{
1058	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1059	taskq_t *tq;
1060
1061	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1062	ASSERT3U(tqs->stqs_count, !=, 0);
1063
1064	if (tqs->stqs_count == 1) {
1065		tq = tqs->stqs_taskq[0];
1066	} else {
1067#ifdef _KERNEL
1068		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
1069#else
1070		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1071#endif
1072	}
1073
1074	taskq_dispatch_ent(tq, func, arg, flags, ent);
1075}
1076
1077static void
1078spa_create_zio_taskqs(spa_t *spa)
1079{
1080	for (int t = 0; t < ZIO_TYPES; t++) {
1081		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1082			spa_taskqs_init(spa, t, q);
1083		}
1084	}
1085}
1086
1087#ifdef _KERNEL
1088#ifdef SPA_PROCESS
1089static void
1090spa_thread(void *arg)
1091{
1092	callb_cpr_t cprinfo;
1093
1094	spa_t *spa = arg;
1095	user_t *pu = PTOU(curproc);
1096
1097	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1098	    spa->spa_name);
1099
1100	ASSERT(curproc != &p0);
1101	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1102	    "zpool-%s", spa->spa_name);
1103	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1104
1105#ifdef PSRSET_BIND
1106	/* bind this thread to the requested psrset */
1107	if (zio_taskq_psrset_bind != PS_NONE) {
1108		pool_lock();
1109		mutex_enter(&cpu_lock);
1110		mutex_enter(&pidlock);
1111		mutex_enter(&curproc->p_lock);
1112
1113		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1114		    0, NULL, NULL) == 0)  {
1115			curthread->t_bind_pset = zio_taskq_psrset_bind;
1116		} else {
1117			cmn_err(CE_WARN,
1118			    "Couldn't bind process for zfs pool \"%s\" to "
1119			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1120		}
1121
1122		mutex_exit(&curproc->p_lock);
1123		mutex_exit(&pidlock);
1124		mutex_exit(&cpu_lock);
1125		pool_unlock();
1126	}
1127#endif
1128
1129#ifdef SYSDC
1130	if (zio_taskq_sysdc) {
1131		sysdc_thread_enter(curthread, 100, 0);
1132	}
1133#endif
1134
1135	spa->spa_proc = curproc;
1136	spa->spa_did = curthread->t_did;
1137
1138	spa_create_zio_taskqs(spa);
1139
1140	mutex_enter(&spa->spa_proc_lock);
1141	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1142
1143	spa->spa_proc_state = SPA_PROC_ACTIVE;
1144	cv_broadcast(&spa->spa_proc_cv);
1145
1146	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1147	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1148		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1149	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1150
1151	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1152	spa->spa_proc_state = SPA_PROC_GONE;
1153	spa->spa_proc = &p0;
1154	cv_broadcast(&spa->spa_proc_cv);
1155	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1156
1157	mutex_enter(&curproc->p_lock);
1158	lwp_exit();
1159}
1160#endif	/* SPA_PROCESS */
1161#endif
1162
1163/*
1164 * Activate an uninitialized pool.
1165 */
1166static void
1167spa_activate(spa_t *spa, int mode)
1168{
1169	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1170
1171	spa->spa_state = POOL_STATE_ACTIVE;
1172	spa->spa_mode = mode;
1173
1174	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1175	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1176
1177	/* Try to create a covering process */
1178	mutex_enter(&spa->spa_proc_lock);
1179	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1180	ASSERT(spa->spa_proc == &p0);
1181	spa->spa_did = 0;
1182
1183#ifdef SPA_PROCESS
1184	/* Only create a process if we're going to be around a while. */
1185	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1186		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1187		    NULL, 0) == 0) {
1188			spa->spa_proc_state = SPA_PROC_CREATED;
1189			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1190				cv_wait(&spa->spa_proc_cv,
1191				    &spa->spa_proc_lock);
1192			}
1193			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1194			ASSERT(spa->spa_proc != &p0);
1195			ASSERT(spa->spa_did != 0);
1196		} else {
1197#ifdef _KERNEL
1198			cmn_err(CE_WARN,
1199			    "Couldn't create process for zfs pool \"%s\"\n",
1200			    spa->spa_name);
1201#endif
1202		}
1203	}
1204#endif	/* SPA_PROCESS */
1205	mutex_exit(&spa->spa_proc_lock);
1206
1207	/* If we didn't create a process, we need to create our taskqs. */
1208	ASSERT(spa->spa_proc == &p0);
1209	if (spa->spa_proc == &p0) {
1210		spa_create_zio_taskqs(spa);
1211	}
1212
1213	/*
1214	 * Start TRIM thread.
1215	 */
1216	trim_thread_create(spa);
1217
1218	for (size_t i = 0; i < TXG_SIZE; i++)
1219		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1220
1221	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1222	    offsetof(vdev_t, vdev_config_dirty_node));
1223	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1224	    offsetof(objset_t, os_evicting_node));
1225	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1226	    offsetof(vdev_t, vdev_state_dirty_node));
1227
1228	txg_list_create(&spa->spa_vdev_txg_list, spa,
1229	    offsetof(struct vdev, vdev_txg_node));
1230
1231	avl_create(&spa->spa_errlist_scrub,
1232	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1233	    offsetof(spa_error_entry_t, se_avl));
1234	avl_create(&spa->spa_errlist_last,
1235	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1236	    offsetof(spa_error_entry_t, se_avl));
1237}
1238
1239/*
1240 * Opposite of spa_activate().
1241 */
1242static void
1243spa_deactivate(spa_t *spa)
1244{
1245	ASSERT(spa->spa_sync_on == B_FALSE);
1246	ASSERT(spa->spa_dsl_pool == NULL);
1247	ASSERT(spa->spa_root_vdev == NULL);
1248	ASSERT(spa->spa_async_zio_root == NULL);
1249	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1250
1251	/*
1252	 * Stop TRIM thread in case spa_unload() wasn't called directly
1253	 * before spa_deactivate().
1254	 */
1255	trim_thread_destroy(spa);
1256
1257	spa_evicting_os_wait(spa);
1258
1259	txg_list_destroy(&spa->spa_vdev_txg_list);
1260
1261	list_destroy(&spa->spa_config_dirty_list);
1262	list_destroy(&spa->spa_evicting_os_list);
1263	list_destroy(&spa->spa_state_dirty_list);
1264
1265	for (int t = 0; t < ZIO_TYPES; t++) {
1266		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1267			spa_taskqs_fini(spa, t, q);
1268		}
1269	}
1270
1271	for (size_t i = 0; i < TXG_SIZE; i++) {
1272		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1273		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1274		spa->spa_txg_zio[i] = NULL;
1275	}
1276
1277	metaslab_class_destroy(spa->spa_normal_class);
1278	spa->spa_normal_class = NULL;
1279
1280	metaslab_class_destroy(spa->spa_log_class);
1281	spa->spa_log_class = NULL;
1282
1283	/*
1284	 * If this was part of an import or the open otherwise failed, we may
1285	 * still have errors left in the queues.  Empty them just in case.
1286	 */
1287	spa_errlog_drain(spa);
1288
1289	avl_destroy(&spa->spa_errlist_scrub);
1290	avl_destroy(&spa->spa_errlist_last);
1291
1292	spa->spa_state = POOL_STATE_UNINITIALIZED;
1293
1294	mutex_enter(&spa->spa_proc_lock);
1295	if (spa->spa_proc_state != SPA_PROC_NONE) {
1296		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1297		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1298		cv_broadcast(&spa->spa_proc_cv);
1299		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1300			ASSERT(spa->spa_proc != &p0);
1301			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1302		}
1303		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1304		spa->spa_proc_state = SPA_PROC_NONE;
1305	}
1306	ASSERT(spa->spa_proc == &p0);
1307	mutex_exit(&spa->spa_proc_lock);
1308
1309#ifdef SPA_PROCESS
1310	/*
1311	 * We want to make sure spa_thread() has actually exited the ZFS
1312	 * module, so that the module can't be unloaded out from underneath
1313	 * it.
1314	 */
1315	if (spa->spa_did != 0) {
1316		thread_join(spa->spa_did);
1317		spa->spa_did = 0;
1318	}
1319#endif	/* SPA_PROCESS */
1320}
1321
1322/*
1323 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1324 * will create all the necessary vdevs in the appropriate layout, with each vdev
1325 * in the CLOSED state.  This will prep the pool before open/creation/import.
1326 * All vdev validation is done by the vdev_alloc() routine.
1327 */
1328static int
1329spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1330    uint_t id, int atype)
1331{
1332	nvlist_t **child;
1333	uint_t children;
1334	int error;
1335
1336	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1337		return (error);
1338
1339	if ((*vdp)->vdev_ops->vdev_op_leaf)
1340		return (0);
1341
1342	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1343	    &child, &children);
1344
1345	if (error == ENOENT)
1346		return (0);
1347
1348	if (error) {
1349		vdev_free(*vdp);
1350		*vdp = NULL;
1351		return (SET_ERROR(EINVAL));
1352	}
1353
1354	for (int c = 0; c < children; c++) {
1355		vdev_t *vd;
1356		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1357		    atype)) != 0) {
1358			vdev_free(*vdp);
1359			*vdp = NULL;
1360			return (error);
1361		}
1362	}
1363
1364	ASSERT(*vdp != NULL);
1365
1366	return (0);
1367}
1368
1369/*
1370 * Opposite of spa_load().
1371 */
1372static void
1373spa_unload(spa_t *spa)
1374{
1375	int i;
1376
1377	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1378
1379	spa_load_note(spa, "UNLOADING");
1380
1381	/*
1382	 * Stop TRIM thread.
1383	 */
1384	trim_thread_destroy(spa);
1385
1386	/*
1387	 * Stop async tasks.
1388	 */
1389	spa_async_suspend(spa);
1390
1391	/*
1392	 * Stop syncing.
1393	 */
1394	if (spa->spa_sync_on) {
1395		txg_sync_stop(spa->spa_dsl_pool);
1396		spa->spa_sync_on = B_FALSE;
1397	}
1398
1399	/*
1400	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1401	 * to call it earlier, before we wait for async i/o to complete.
1402	 * This ensures that there is no async metaslab prefetching, by
1403	 * calling taskq_wait(mg_taskq).
1404	 */
1405	if (spa->spa_root_vdev != NULL) {
1406		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1407		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1408			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1409		spa_config_exit(spa, SCL_ALL, FTAG);
1410	}
1411
1412	/*
1413	 * Wait for any outstanding async I/O to complete.
1414	 */
1415	if (spa->spa_async_zio_root != NULL) {
1416		for (int i = 0; i < max_ncpus; i++)
1417			(void) zio_wait(spa->spa_async_zio_root[i]);
1418		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1419		spa->spa_async_zio_root = NULL;
1420	}
1421
1422	if (spa->spa_vdev_removal != NULL) {
1423		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1424		spa->spa_vdev_removal = NULL;
1425	}
1426
1427	if (spa->spa_condense_zthr != NULL) {
1428		ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1429		zthr_destroy(spa->spa_condense_zthr);
1430		spa->spa_condense_zthr = NULL;
1431	}
1432
1433	if (spa->spa_checkpoint_discard_zthr != NULL) {
1434		ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1435		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1436		spa->spa_checkpoint_discard_zthr = NULL;
1437	}
1438
1439	spa_condense_fini(spa);
1440
1441	bpobj_close(&spa->spa_deferred_bpobj);
1442
1443	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1444
1445	/*
1446	 * Close all vdevs.
1447	 */
1448	if (spa->spa_root_vdev)
1449		vdev_free(spa->spa_root_vdev);
1450	ASSERT(spa->spa_root_vdev == NULL);
1451
1452	/*
1453	 * Close the dsl pool.
1454	 */
1455	if (spa->spa_dsl_pool) {
1456		dsl_pool_close(spa->spa_dsl_pool);
1457		spa->spa_dsl_pool = NULL;
1458		spa->spa_meta_objset = NULL;
1459	}
1460
1461	ddt_unload(spa);
1462
1463	/*
1464	 * Drop and purge level 2 cache
1465	 */
1466	spa_l2cache_drop(spa);
1467
1468	for (i = 0; i < spa->spa_spares.sav_count; i++)
1469		vdev_free(spa->spa_spares.sav_vdevs[i]);
1470	if (spa->spa_spares.sav_vdevs) {
1471		kmem_free(spa->spa_spares.sav_vdevs,
1472		    spa->spa_spares.sav_count * sizeof (void *));
1473		spa->spa_spares.sav_vdevs = NULL;
1474	}
1475	if (spa->spa_spares.sav_config) {
1476		nvlist_free(spa->spa_spares.sav_config);
1477		spa->spa_spares.sav_config = NULL;
1478	}
1479	spa->spa_spares.sav_count = 0;
1480
1481	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1482		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1483		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1484	}
1485	if (spa->spa_l2cache.sav_vdevs) {
1486		kmem_free(spa->spa_l2cache.sav_vdevs,
1487		    spa->spa_l2cache.sav_count * sizeof (void *));
1488		spa->spa_l2cache.sav_vdevs = NULL;
1489	}
1490	if (spa->spa_l2cache.sav_config) {
1491		nvlist_free(spa->spa_l2cache.sav_config);
1492		spa->spa_l2cache.sav_config = NULL;
1493	}
1494	spa->spa_l2cache.sav_count = 0;
1495
1496	spa->spa_async_suspended = 0;
1497
1498	spa->spa_indirect_vdevs_loaded = B_FALSE;
1499
1500	if (spa->spa_comment != NULL) {
1501		spa_strfree(spa->spa_comment);
1502		spa->spa_comment = NULL;
1503	}
1504
1505	spa_config_exit(spa, SCL_ALL, FTAG);
1506}
1507
1508/*
1509 * Load (or re-load) the current list of vdevs describing the active spares for
1510 * this pool.  When this is called, we have some form of basic information in
1511 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1512 * then re-generate a more complete list including status information.
1513 */
1514void
1515spa_load_spares(spa_t *spa)
1516{
1517	nvlist_t **spares;
1518	uint_t nspares;
1519	int i;
1520	vdev_t *vd, *tvd;
1521
1522#ifndef _KERNEL
1523	/*
1524	 * zdb opens both the current state of the pool and the
1525	 * checkpointed state (if present), with a different spa_t.
1526	 *
1527	 * As spare vdevs are shared among open pools, we skip loading
1528	 * them when we load the checkpointed state of the pool.
1529	 */
1530	if (!spa_writeable(spa))
1531		return;
1532#endif
1533
1534	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1535
1536	/*
1537	 * First, close and free any existing spare vdevs.
1538	 */
1539	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1540		vd = spa->spa_spares.sav_vdevs[i];
1541
1542		/* Undo the call to spa_activate() below */
1543		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1544		    B_FALSE)) != NULL && tvd->vdev_isspare)
1545			spa_spare_remove(tvd);
1546		vdev_close(vd);
1547		vdev_free(vd);
1548	}
1549
1550	if (spa->spa_spares.sav_vdevs)
1551		kmem_free(spa->spa_spares.sav_vdevs,
1552		    spa->spa_spares.sav_count * sizeof (void *));
1553
1554	if (spa->spa_spares.sav_config == NULL)
1555		nspares = 0;
1556	else
1557		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1558		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1559
1560	spa->spa_spares.sav_count = (int)nspares;
1561	spa->spa_spares.sav_vdevs = NULL;
1562
1563	if (nspares == 0)
1564		return;
1565
1566	/*
1567	 * Construct the array of vdevs, opening them to get status in the
1568	 * process.   For each spare, there is potentially two different vdev_t
1569	 * structures associated with it: one in the list of spares (used only
1570	 * for basic validation purposes) and one in the active vdev
1571	 * configuration (if it's spared in).  During this phase we open and
1572	 * validate each vdev on the spare list.  If the vdev also exists in the
1573	 * active configuration, then we also mark this vdev as an active spare.
1574	 */
1575	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1576	    KM_SLEEP);
1577	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1578		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1579		    VDEV_ALLOC_SPARE) == 0);
1580		ASSERT(vd != NULL);
1581
1582		spa->spa_spares.sav_vdevs[i] = vd;
1583
1584		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1585		    B_FALSE)) != NULL) {
1586			if (!tvd->vdev_isspare)
1587				spa_spare_add(tvd);
1588
1589			/*
1590			 * We only mark the spare active if we were successfully
1591			 * able to load the vdev.  Otherwise, importing a pool
1592			 * with a bad active spare would result in strange
1593			 * behavior, because multiple pool would think the spare
1594			 * is actively in use.
1595			 *
1596			 * There is a vulnerability here to an equally bizarre
1597			 * circumstance, where a dead active spare is later
1598			 * brought back to life (onlined or otherwise).  Given
1599			 * the rarity of this scenario, and the extra complexity
1600			 * it adds, we ignore the possibility.
1601			 */
1602			if (!vdev_is_dead(tvd))
1603				spa_spare_activate(tvd);
1604		}
1605
1606		vd->vdev_top = vd;
1607		vd->vdev_aux = &spa->spa_spares;
1608
1609		if (vdev_open(vd) != 0)
1610			continue;
1611
1612		if (vdev_validate_aux(vd) == 0)
1613			spa_spare_add(vd);
1614	}
1615
1616	/*
1617	 * Recompute the stashed list of spares, with status information
1618	 * this time.
1619	 */
1620	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1621	    DATA_TYPE_NVLIST_ARRAY) == 0);
1622
1623	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1624	    KM_SLEEP);
1625	for (i = 0; i < spa->spa_spares.sav_count; i++)
1626		spares[i] = vdev_config_generate(spa,
1627		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1628	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1629	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1630	for (i = 0; i < spa->spa_spares.sav_count; i++)
1631		nvlist_free(spares[i]);
1632	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1633}
1634
1635/*
1636 * Load (or re-load) the current list of vdevs describing the active l2cache for
1637 * this pool.  When this is called, we have some form of basic information in
1638 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1639 * then re-generate a more complete list including status information.
1640 * Devices which are already active have their details maintained, and are
1641 * not re-opened.
1642 */
1643void
1644spa_load_l2cache(spa_t *spa)
1645{
1646	nvlist_t **l2cache;
1647	uint_t nl2cache;
1648	int i, j, oldnvdevs;
1649	uint64_t guid;
1650	vdev_t *vd, **oldvdevs, **newvdevs;
1651	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1652
1653#ifndef _KERNEL
1654	/*
1655	 * zdb opens both the current state of the pool and the
1656	 * checkpointed state (if present), with a different spa_t.
1657	 *
1658	 * As L2 caches are part of the ARC which is shared among open
1659	 * pools, we skip loading them when we load the checkpointed
1660	 * state of the pool.
1661	 */
1662	if (!spa_writeable(spa))
1663		return;
1664#endif
1665
1666	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1667
1668	if (sav->sav_config != NULL) {
1669		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1670		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1671		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1672	} else {
1673		nl2cache = 0;
1674		newvdevs = NULL;
1675	}
1676
1677	oldvdevs = sav->sav_vdevs;
1678	oldnvdevs = sav->sav_count;
1679	sav->sav_vdevs = NULL;
1680	sav->sav_count = 0;
1681
1682	/*
1683	 * Process new nvlist of vdevs.
1684	 */
1685	for (i = 0; i < nl2cache; i++) {
1686		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1687		    &guid) == 0);
1688
1689		newvdevs[i] = NULL;
1690		for (j = 0; j < oldnvdevs; j++) {
1691			vd = oldvdevs[j];
1692			if (vd != NULL && guid == vd->vdev_guid) {
1693				/*
1694				 * Retain previous vdev for add/remove ops.
1695				 */
1696				newvdevs[i] = vd;
1697				oldvdevs[j] = NULL;
1698				break;
1699			}
1700		}
1701
1702		if (newvdevs[i] == NULL) {
1703			/*
1704			 * Create new vdev
1705			 */
1706			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1707			    VDEV_ALLOC_L2CACHE) == 0);
1708			ASSERT(vd != NULL);
1709			newvdevs[i] = vd;
1710
1711			/*
1712			 * Commit this vdev as an l2cache device,
1713			 * even if it fails to open.
1714			 */
1715			spa_l2cache_add(vd);
1716
1717			vd->vdev_top = vd;
1718			vd->vdev_aux = sav;
1719
1720			spa_l2cache_activate(vd);
1721
1722			if (vdev_open(vd) != 0)
1723				continue;
1724
1725			(void) vdev_validate_aux(vd);
1726
1727			if (!vdev_is_dead(vd))
1728				l2arc_add_vdev(spa, vd);
1729		}
1730	}
1731
1732	/*
1733	 * Purge vdevs that were dropped
1734	 */
1735	for (i = 0; i < oldnvdevs; i++) {
1736		uint64_t pool;
1737
1738		vd = oldvdevs[i];
1739		if (vd != NULL) {
1740			ASSERT(vd->vdev_isl2cache);
1741
1742			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1743			    pool != 0ULL && l2arc_vdev_present(vd))
1744				l2arc_remove_vdev(vd);
1745			vdev_clear_stats(vd);
1746			vdev_free(vd);
1747		}
1748	}
1749
1750	if (oldvdevs)
1751		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1752
1753	if (sav->sav_config == NULL)
1754		goto out;
1755
1756	sav->sav_vdevs = newvdevs;
1757	sav->sav_count = (int)nl2cache;
1758
1759	/*
1760	 * Recompute the stashed list of l2cache devices, with status
1761	 * information this time.
1762	 */
1763	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1764	    DATA_TYPE_NVLIST_ARRAY) == 0);
1765
1766	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1767	for (i = 0; i < sav->sav_count; i++)
1768		l2cache[i] = vdev_config_generate(spa,
1769		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1770	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1771	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1772out:
1773	for (i = 0; i < sav->sav_count; i++)
1774		nvlist_free(l2cache[i]);
1775	if (sav->sav_count)
1776		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1777}
1778
1779static int
1780load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1781{
1782	dmu_buf_t *db;
1783	char *packed = NULL;
1784	size_t nvsize = 0;
1785	int error;
1786	*value = NULL;
1787
1788	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1789	if (error != 0)
1790		return (error);
1791
1792	nvsize = *(uint64_t *)db->db_data;
1793	dmu_buf_rele(db, FTAG);
1794
1795	packed = kmem_alloc(nvsize, KM_SLEEP);
1796	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1797	    DMU_READ_PREFETCH);
1798	if (error == 0)
1799		error = nvlist_unpack(packed, nvsize, value, 0);
1800	kmem_free(packed, nvsize);
1801
1802	return (error);
1803}
1804
1805/*
1806 * Concrete top-level vdevs that are not missing and are not logs. At every
1807 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1808 */
1809static uint64_t
1810spa_healthy_core_tvds(spa_t *spa)
1811{
1812	vdev_t *rvd = spa->spa_root_vdev;
1813	uint64_t tvds = 0;
1814
1815	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1816		vdev_t *vd = rvd->vdev_child[i];
1817		if (vd->vdev_islog)
1818			continue;
1819		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1820			tvds++;
1821	}
1822
1823	return (tvds);
1824}
1825
1826/*
1827 * Checks to see if the given vdev could not be opened, in which case we post a
1828 * sysevent to notify the autoreplace code that the device has been removed.
1829 */
1830static void
1831spa_check_removed(vdev_t *vd)
1832{
1833	for (uint64_t c = 0; c < vd->vdev_children; c++)
1834		spa_check_removed(vd->vdev_child[c]);
1835
1836	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1837	    vdev_is_concrete(vd)) {
1838		zfs_post_autoreplace(vd->vdev_spa, vd);
1839		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1840	}
1841}
1842
1843static int
1844spa_check_for_missing_logs(spa_t *spa)
1845{
1846	vdev_t *rvd = spa->spa_root_vdev;
1847
1848	/*
1849	 * If we're doing a normal import, then build up any additional
1850	 * diagnostic information about missing log devices.
1851	 * We'll pass this up to the user for further processing.
1852	 */
1853	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1854		nvlist_t **child, *nv;
1855		uint64_t idx = 0;
1856
1857		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1858		    KM_SLEEP);
1859		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1860
1861		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1862			vdev_t *tvd = rvd->vdev_child[c];
1863
1864			/*
1865			 * We consider a device as missing only if it failed
1866			 * to open (i.e. offline or faulted is not considered
1867			 * as missing).
1868			 */
1869			if (tvd->vdev_islog &&
1870			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1871				child[idx++] = vdev_config_generate(spa, tvd,
1872				    B_FALSE, VDEV_CONFIG_MISSING);
1873			}
1874		}
1875
1876		if (idx > 0) {
1877			fnvlist_add_nvlist_array(nv,
1878			    ZPOOL_CONFIG_CHILDREN, child, idx);
1879			fnvlist_add_nvlist(spa->spa_load_info,
1880			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1881
1882			for (uint64_t i = 0; i < idx; i++)
1883				nvlist_free(child[i]);
1884		}
1885		nvlist_free(nv);
1886		kmem_free(child, rvd->vdev_children * sizeof (char **));
1887
1888		if (idx > 0) {
1889			spa_load_failed(spa, "some log devices are missing");
1890			vdev_dbgmsg_print_tree(rvd, 2);
1891			return (SET_ERROR(ENXIO));
1892		}
1893	} else {
1894		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1895			vdev_t *tvd = rvd->vdev_child[c];
1896
1897			if (tvd->vdev_islog &&
1898			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1899				spa_set_log_state(spa, SPA_LOG_CLEAR);
1900				spa_load_note(spa, "some log devices are "
1901				    "missing, ZIL is dropped.");
1902				vdev_dbgmsg_print_tree(rvd, 2);
1903				break;
1904			}
1905		}
1906	}
1907
1908	return (0);
1909}
1910
1911/*
1912 * Check for missing log devices
1913 */
1914static boolean_t
1915spa_check_logs(spa_t *spa)
1916{
1917	boolean_t rv = B_FALSE;
1918	dsl_pool_t *dp = spa_get_dsl(spa);
1919
1920	switch (spa->spa_log_state) {
1921	case SPA_LOG_MISSING:
1922		/* need to recheck in case slog has been restored */
1923	case SPA_LOG_UNKNOWN:
1924		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1925		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1926		if (rv)
1927			spa_set_log_state(spa, SPA_LOG_MISSING);
1928		break;
1929	}
1930	return (rv);
1931}
1932
1933static boolean_t
1934spa_passivate_log(spa_t *spa)
1935{
1936	vdev_t *rvd = spa->spa_root_vdev;
1937	boolean_t slog_found = B_FALSE;
1938
1939	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1940
1941	if (!spa_has_slogs(spa))
1942		return (B_FALSE);
1943
1944	for (int c = 0; c < rvd->vdev_children; c++) {
1945		vdev_t *tvd = rvd->vdev_child[c];
1946		metaslab_group_t *mg = tvd->vdev_mg;
1947
1948		if (tvd->vdev_islog) {
1949			metaslab_group_passivate(mg);
1950			slog_found = B_TRUE;
1951		}
1952	}
1953
1954	return (slog_found);
1955}
1956
1957static void
1958spa_activate_log(spa_t *spa)
1959{
1960	vdev_t *rvd = spa->spa_root_vdev;
1961
1962	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1963
1964	for (int c = 0; c < rvd->vdev_children; c++) {
1965		vdev_t *tvd = rvd->vdev_child[c];
1966		metaslab_group_t *mg = tvd->vdev_mg;
1967
1968		if (tvd->vdev_islog)
1969			metaslab_group_activate(mg);
1970	}
1971}
1972
1973int
1974spa_reset_logs(spa_t *spa)
1975{
1976	int error;
1977
1978	error = dmu_objset_find(spa_name(spa), zil_reset,
1979	    NULL, DS_FIND_CHILDREN);
1980	if (error == 0) {
1981		/*
1982		 * We successfully offlined the log device, sync out the
1983		 * current txg so that the "stubby" block can be removed
1984		 * by zil_sync().
1985		 */
1986		txg_wait_synced(spa->spa_dsl_pool, 0);
1987	}
1988	return (error);
1989}
1990
1991static void
1992spa_aux_check_removed(spa_aux_vdev_t *sav)
1993{
1994	int i;
1995
1996	for (i = 0; i < sav->sav_count; i++)
1997		spa_check_removed(sav->sav_vdevs[i]);
1998}
1999
2000void
2001spa_claim_notify(zio_t *zio)
2002{
2003	spa_t *spa = zio->io_spa;
2004
2005	if (zio->io_error)
2006		return;
2007
2008	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2009	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2010		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2011	mutex_exit(&spa->spa_props_lock);
2012}
2013
2014typedef struct spa_load_error {
2015	uint64_t	sle_meta_count;
2016	uint64_t	sle_data_count;
2017} spa_load_error_t;
2018
2019static void
2020spa_load_verify_done(zio_t *zio)
2021{
2022	blkptr_t *bp = zio->io_bp;
2023	spa_load_error_t *sle = zio->io_private;
2024	dmu_object_type_t type = BP_GET_TYPE(bp);
2025	int error = zio->io_error;
2026	spa_t *spa = zio->io_spa;
2027
2028	abd_free(zio->io_abd);
2029	if (error) {
2030		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2031		    type != DMU_OT_INTENT_LOG)
2032			atomic_inc_64(&sle->sle_meta_count);
2033		else
2034			atomic_inc_64(&sle->sle_data_count);
2035	}
2036
2037	mutex_enter(&spa->spa_scrub_lock);
2038	spa->spa_load_verify_ios--;
2039	cv_broadcast(&spa->spa_scrub_io_cv);
2040	mutex_exit(&spa->spa_scrub_lock);
2041}
2042
2043/*
2044 * Maximum number of concurrent scrub i/os to create while verifying
2045 * a pool while importing it.
2046 */
2047int spa_load_verify_maxinflight = 10000;
2048boolean_t spa_load_verify_metadata = B_TRUE;
2049boolean_t spa_load_verify_data = B_TRUE;
2050
2051SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
2052    &spa_load_verify_maxinflight, 0,
2053    "Maximum number of concurrent scrub I/Os to create while verifying a "
2054    "pool while importing it");
2055
2056SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
2057    &spa_load_verify_metadata, 0,
2058    "Check metadata on import?");
2059
2060SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
2061    &spa_load_verify_data, 0,
2062    "Check user data on import?");
2063
2064/*ARGSUSED*/
2065static int
2066spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2067    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2068{
2069	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2070		return (0);
2071	/*
2072	 * Note: normally this routine will not be called if
2073	 * spa_load_verify_metadata is not set.  However, it may be useful
2074	 * to manually set the flag after the traversal has begun.
2075	 */
2076	if (!spa_load_verify_metadata)
2077		return (0);
2078	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2079		return (0);
2080
2081	zio_t *rio = arg;
2082	size_t size = BP_GET_PSIZE(bp);
2083
2084	mutex_enter(&spa->spa_scrub_lock);
2085	while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2086		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2087	spa->spa_load_verify_ios++;
2088	mutex_exit(&spa->spa_scrub_lock);
2089
2090	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2091	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2092	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2093	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2094	return (0);
2095}
2096
2097/* ARGSUSED */
2098int
2099verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2100{
2101	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2102		return (SET_ERROR(ENAMETOOLONG));
2103
2104	return (0);
2105}
2106
2107static int
2108spa_load_verify(spa_t *spa)
2109{
2110	zio_t *rio;
2111	spa_load_error_t sle = { 0 };
2112	zpool_load_policy_t policy;
2113	boolean_t verify_ok = B_FALSE;
2114	int error = 0;
2115
2116	zpool_get_load_policy(spa->spa_config, &policy);
2117
2118	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2119		return (0);
2120
2121	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2122	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2123	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2124	    DS_FIND_CHILDREN);
2125	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2126	if (error != 0)
2127		return (error);
2128
2129	rio = zio_root(spa, NULL, &sle,
2130	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2131
2132	if (spa_load_verify_metadata) {
2133		if (spa->spa_extreme_rewind) {
2134			spa_load_note(spa, "performing a complete scan of the "
2135			    "pool since extreme rewind is on. This may take "
2136			    "a very long time.\n  (spa_load_verify_data=%u, "
2137			    "spa_load_verify_metadata=%u)",
2138			    spa_load_verify_data, spa_load_verify_metadata);
2139		}
2140		error = traverse_pool(spa, spa->spa_verify_min_txg,
2141		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2142		    spa_load_verify_cb, rio);
2143	}
2144
2145	(void) zio_wait(rio);
2146
2147	spa->spa_load_meta_errors = sle.sle_meta_count;
2148	spa->spa_load_data_errors = sle.sle_data_count;
2149
2150	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2151		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2152		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2153		    (u_longlong_t)sle.sle_data_count);
2154	}
2155
2156	if (spa_load_verify_dryrun ||
2157	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2158	    sle.sle_data_count <= policy.zlp_maxdata)) {
2159		int64_t loss = 0;
2160
2161		verify_ok = B_TRUE;
2162		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2163		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2164
2165		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2166		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2167		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2168		VERIFY(nvlist_add_int64(spa->spa_load_info,
2169		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2170		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2171		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2172	} else {
2173		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2174	}
2175
2176	if (spa_load_verify_dryrun)
2177		return (0);
2178
2179	if (error) {
2180		if (error != ENXIO && error != EIO)
2181			error = SET_ERROR(EIO);
2182		return (error);
2183	}
2184
2185	return (verify_ok ? 0 : EIO);
2186}
2187
2188/*
2189 * Find a value in the pool props object.
2190 */
2191static void
2192spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2193{
2194	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2195	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2196}
2197
2198/*
2199 * Find a value in the pool directory object.
2200 */
2201static int
2202spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2203{
2204	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2205	    name, sizeof (uint64_t), 1, val);
2206
2207	if (error != 0 && (error != ENOENT || log_enoent)) {
2208		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2209		    "[error=%d]", name, error);
2210	}
2211
2212	return (error);
2213}
2214
2215static int
2216spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2217{
2218	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2219	return (SET_ERROR(err));
2220}
2221
2222static void
2223spa_spawn_aux_threads(spa_t *spa)
2224{
2225	ASSERT(spa_writeable(spa));
2226
2227	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2228
2229	spa_start_indirect_condensing_thread(spa);
2230
2231	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2232	spa->spa_checkpoint_discard_zthr =
2233	    zthr_create(spa_checkpoint_discard_thread_check,
2234	    spa_checkpoint_discard_thread, spa);
2235}
2236
2237/*
2238 * Fix up config after a partly-completed split.  This is done with the
2239 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2240 * pool have that entry in their config, but only the splitting one contains
2241 * a list of all the guids of the vdevs that are being split off.
2242 *
2243 * This function determines what to do with that list: either rejoin
2244 * all the disks to the pool, or complete the splitting process.  To attempt
2245 * the rejoin, each disk that is offlined is marked online again, and
2246 * we do a reopen() call.  If the vdev label for every disk that was
2247 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2248 * then we call vdev_split() on each disk, and complete the split.
2249 *
2250 * Otherwise we leave the config alone, with all the vdevs in place in
2251 * the original pool.
2252 */
2253static void
2254spa_try_repair(spa_t *spa, nvlist_t *config)
2255{
2256	uint_t extracted;
2257	uint64_t *glist;
2258	uint_t i, gcount;
2259	nvlist_t *nvl;
2260	vdev_t **vd;
2261	boolean_t attempt_reopen;
2262
2263	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2264		return;
2265
2266	/* check that the config is complete */
2267	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2268	    &glist, &gcount) != 0)
2269		return;
2270
2271	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2272
2273	/* attempt to online all the vdevs & validate */
2274	attempt_reopen = B_TRUE;
2275	for (i = 0; i < gcount; i++) {
2276		if (glist[i] == 0)	/* vdev is hole */
2277			continue;
2278
2279		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2280		if (vd[i] == NULL) {
2281			/*
2282			 * Don't bother attempting to reopen the disks;
2283			 * just do the split.
2284			 */
2285			attempt_reopen = B_FALSE;
2286		} else {
2287			/* attempt to re-online it */
2288			vd[i]->vdev_offline = B_FALSE;
2289		}
2290	}
2291
2292	if (attempt_reopen) {
2293		vdev_reopen(spa->spa_root_vdev);
2294
2295		/* check each device to see what state it's in */
2296		for (extracted = 0, i = 0; i < gcount; i++) {
2297			if (vd[i] != NULL &&
2298			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2299				break;
2300			++extracted;
2301		}
2302	}
2303
2304	/*
2305	 * If every disk has been moved to the new pool, or if we never
2306	 * even attempted to look at them, then we split them off for
2307	 * good.
2308	 */
2309	if (!attempt_reopen || gcount == extracted) {
2310		for (i = 0; i < gcount; i++)
2311			if (vd[i] != NULL)
2312				vdev_split(vd[i]);
2313		vdev_reopen(spa->spa_root_vdev);
2314	}
2315
2316	kmem_free(vd, gcount * sizeof (vdev_t *));
2317}
2318
2319static int
2320spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2321{
2322	char *ereport = FM_EREPORT_ZFS_POOL;
2323	int error;
2324
2325	spa->spa_load_state = state;
2326
2327	gethrestime(&spa->spa_loaded_ts);
2328	error = spa_load_impl(spa, type, &ereport);
2329
2330	/*
2331	 * Don't count references from objsets that are already closed
2332	 * and are making their way through the eviction process.
2333	 */
2334	spa_evicting_os_wait(spa);
2335	spa->spa_minref = refcount_count(&spa->spa_refcount);
2336	if (error) {
2337		if (error != EEXIST) {
2338			spa->spa_loaded_ts.tv_sec = 0;
2339			spa->spa_loaded_ts.tv_nsec = 0;
2340		}
2341		if (error != EBADF) {
2342			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2343		}
2344	}
2345	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2346	spa->spa_ena = 0;
2347
2348	return (error);
2349}
2350
2351/*
2352 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2353 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2354 * spa's per-vdev ZAP list.
2355 */
2356static uint64_t
2357vdev_count_verify_zaps(vdev_t *vd)
2358{
2359	spa_t *spa = vd->vdev_spa;
2360	uint64_t total = 0;
2361	if (vd->vdev_top_zap != 0) {
2362		total++;
2363		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2364		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2365	}
2366	if (vd->vdev_leaf_zap != 0) {
2367		total++;
2368		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2369		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2370	}
2371
2372	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2373		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2374	}
2375
2376	return (total);
2377}
2378
2379static int
2380spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2381{
2382	uint64_t hostid;
2383	char *hostname;
2384	uint64_t myhostid = 0;
2385
2386	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2387	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2388		hostname = fnvlist_lookup_string(mos_config,
2389		    ZPOOL_CONFIG_HOSTNAME);
2390
2391		myhostid = zone_get_hostid(NULL);
2392
2393		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2394			cmn_err(CE_WARN, "pool '%s' could not be "
2395			    "loaded as it was last accessed by "
2396			    "another system (host: %s hostid: 0x%llx). "
2397			    "See: http://illumos.org/msg/ZFS-8000-EY",
2398			    spa_name(spa), hostname, (u_longlong_t)hostid);
2399			spa_load_failed(spa, "hostid verification failed: pool "
2400			    "last accessed by host: %s (hostid: 0x%llx)",
2401			    hostname, (u_longlong_t)hostid);
2402			return (SET_ERROR(EBADF));
2403		}
2404	}
2405
2406	return (0);
2407}
2408
2409static int
2410spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2411{
2412	int error = 0;
2413	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2414	int parse;
2415	vdev_t *rvd;
2416	uint64_t pool_guid;
2417	char *comment;
2418
2419	/*
2420	 * Versioning wasn't explicitly added to the label until later, so if
2421	 * it's not present treat it as the initial version.
2422	 */
2423	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2424	    &spa->spa_ubsync.ub_version) != 0)
2425		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2426
2427	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2428		spa_load_failed(spa, "invalid config provided: '%s' missing",
2429		    ZPOOL_CONFIG_POOL_GUID);
2430		return (SET_ERROR(EINVAL));
2431	}
2432
2433	/*
2434	 * If we are doing an import, ensure that the pool is not already
2435	 * imported by checking if its pool guid already exists in the
2436	 * spa namespace.
2437	 *
2438	 * The only case that we allow an already imported pool to be
2439	 * imported again, is when the pool is checkpointed and we want to
2440	 * look at its checkpointed state from userland tools like zdb.
2441	 */
2442#ifdef _KERNEL
2443	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2444	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2445	    spa_guid_exists(pool_guid, 0)) {
2446#else
2447	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2448	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2449	    spa_guid_exists(pool_guid, 0) &&
2450	    !spa_importing_readonly_checkpoint(spa)) {
2451#endif
2452		spa_load_failed(spa, "a pool with guid %llu is already open",
2453		    (u_longlong_t)pool_guid);
2454		return (SET_ERROR(EEXIST));
2455	}
2456
2457	spa->spa_config_guid = pool_guid;
2458
2459	nvlist_free(spa->spa_load_info);
2460	spa->spa_load_info = fnvlist_alloc();
2461
2462	ASSERT(spa->spa_comment == NULL);
2463	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2464		spa->spa_comment = spa_strdup(comment);
2465
2466	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2467	    &spa->spa_config_txg);
2468
2469	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2470		spa->spa_config_splitting = fnvlist_dup(nvl);
2471
2472	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2473		spa_load_failed(spa, "invalid config provided: '%s' missing",
2474		    ZPOOL_CONFIG_VDEV_TREE);
2475		return (SET_ERROR(EINVAL));
2476	}
2477
2478	/*
2479	 * Create "The Godfather" zio to hold all async IOs
2480	 */
2481	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2482	    KM_SLEEP);
2483	for (int i = 0; i < max_ncpus; i++) {
2484		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2485		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2486		    ZIO_FLAG_GODFATHER);
2487	}
2488
2489	/*
2490	 * Parse the configuration into a vdev tree.  We explicitly set the
2491	 * value that will be returned by spa_version() since parsing the
2492	 * configuration requires knowing the version number.
2493	 */
2494	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2495	parse = (type == SPA_IMPORT_EXISTING ?
2496	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2497	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2498	spa_config_exit(spa, SCL_ALL, FTAG);
2499
2500	if (error != 0) {
2501		spa_load_failed(spa, "unable to parse config [error=%d]",
2502		    error);
2503		return (error);
2504	}
2505
2506	ASSERT(spa->spa_root_vdev == rvd);
2507	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2508	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2509
2510	if (type != SPA_IMPORT_ASSEMBLE) {
2511		ASSERT(spa_guid(spa) == pool_guid);
2512	}
2513
2514	return (0);
2515}
2516
2517/*
2518 * Recursively open all vdevs in the vdev tree. This function is called twice:
2519 * first with the untrusted config, then with the trusted config.
2520 */
2521static int
2522spa_ld_open_vdevs(spa_t *spa)
2523{
2524	int error = 0;
2525
2526	/*
2527	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2528	 * missing/unopenable for the root vdev to be still considered openable.
2529	 */
2530	if (spa->spa_trust_config) {
2531		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2532	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2533		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2534	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2535		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2536	} else {
2537		spa->spa_missing_tvds_allowed = 0;
2538	}
2539
2540	spa->spa_missing_tvds_allowed =
2541	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2542
2543	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2544	error = vdev_open(spa->spa_root_vdev);
2545	spa_config_exit(spa, SCL_ALL, FTAG);
2546
2547	if (spa->spa_missing_tvds != 0) {
2548		spa_load_note(spa, "vdev tree has %lld missing top-level "
2549		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2550		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2551			/*
2552			 * Although theoretically we could allow users to open
2553			 * incomplete pools in RW mode, we'd need to add a lot
2554			 * of extra logic (e.g. adjust pool space to account
2555			 * for missing vdevs).
2556			 * This limitation also prevents users from accidentally
2557			 * opening the pool in RW mode during data recovery and
2558			 * damaging it further.
2559			 */
2560			spa_load_note(spa, "pools with missing top-level "
2561			    "vdevs can only be opened in read-only mode.");
2562			error = SET_ERROR(ENXIO);
2563		} else {
2564			spa_load_note(spa, "current settings allow for maximum "
2565			    "%lld missing top-level vdevs at this stage.",
2566			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2567		}
2568	}
2569	if (error != 0) {
2570		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2571		    error);
2572	}
2573	if (spa->spa_missing_tvds != 0 || error != 0)
2574		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2575
2576	return (error);
2577}
2578
2579/*
2580 * We need to validate the vdev labels against the configuration that
2581 * we have in hand. This function is called twice: first with an untrusted
2582 * config, then with a trusted config. The validation is more strict when the
2583 * config is trusted.
2584 */
2585static int
2586spa_ld_validate_vdevs(spa_t *spa)
2587{
2588	int error = 0;
2589	vdev_t *rvd = spa->spa_root_vdev;
2590
2591	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2592	error = vdev_validate(rvd);
2593	spa_config_exit(spa, SCL_ALL, FTAG);
2594
2595	if (error != 0) {
2596		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2597		return (error);
2598	}
2599
2600	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2601		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2602		    "some vdevs");
2603		vdev_dbgmsg_print_tree(rvd, 2);
2604		return (SET_ERROR(ENXIO));
2605	}
2606
2607	return (0);
2608}
2609
2610static void
2611spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2612{
2613	spa->spa_state = POOL_STATE_ACTIVE;
2614	spa->spa_ubsync = spa->spa_uberblock;
2615	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2616	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2617	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2618	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2619	spa->spa_claim_max_txg = spa->spa_first_txg;
2620	spa->spa_prev_software_version = ub->ub_software_version;
2621}
2622
2623static int
2624spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2625{
2626	vdev_t *rvd = spa->spa_root_vdev;
2627	nvlist_t *label;
2628	uberblock_t *ub = &spa->spa_uberblock;
2629
2630	/*
2631	 * If we are opening the checkpointed state of the pool by
2632	 * rewinding to it, at this point we will have written the
2633	 * checkpointed uberblock to the vdev labels, so searching
2634	 * the labels will find the right uberblock.  However, if
2635	 * we are opening the checkpointed state read-only, we have
2636	 * not modified the labels. Therefore, we must ignore the
2637	 * labels and continue using the spa_uberblock that was set
2638	 * by spa_ld_checkpoint_rewind.
2639	 *
2640	 * Note that it would be fine to ignore the labels when
2641	 * rewinding (opening writeable) as well. However, if we
2642	 * crash just after writing the labels, we will end up
2643	 * searching the labels. Doing so in the common case means
2644	 * that this code path gets exercised normally, rather than
2645	 * just in the edge case.
2646	 */
2647	if (ub->ub_checkpoint_txg != 0 &&
2648	    spa_importing_readonly_checkpoint(spa)) {
2649		spa_ld_select_uberblock_done(spa, ub);
2650		return (0);
2651	}
2652
2653	/*
2654	 * Find the best uberblock.
2655	 */
2656	vdev_uberblock_load(rvd, ub, &label);
2657
2658	/*
2659	 * If we weren't able to find a single valid uberblock, return failure.
2660	 */
2661	if (ub->ub_txg == 0) {
2662		nvlist_free(label);
2663		spa_load_failed(spa, "no valid uberblock found");
2664		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2665	}
2666
2667	spa_load_note(spa, "using uberblock with txg=%llu",
2668	    (u_longlong_t)ub->ub_txg);
2669
2670	/*
2671	 * If the pool has an unsupported version we can't open it.
2672	 */
2673	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2674		nvlist_free(label);
2675		spa_load_failed(spa, "version %llu is not supported",
2676		    (u_longlong_t)ub->ub_version);
2677		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2678	}
2679
2680	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2681		nvlist_t *features;
2682
2683		/*
2684		 * If we weren't able to find what's necessary for reading the
2685		 * MOS in the label, return failure.
2686		 */
2687		if (label == NULL) {
2688			spa_load_failed(spa, "label config unavailable");
2689			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2690			    ENXIO));
2691		}
2692
2693		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2694		    &features) != 0) {
2695			nvlist_free(label);
2696			spa_load_failed(spa, "invalid label: '%s' missing",
2697			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2698			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2699			    ENXIO));
2700		}
2701
2702		/*
2703		 * Update our in-core representation with the definitive values
2704		 * from the label.
2705		 */
2706		nvlist_free(spa->spa_label_features);
2707		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2708	}
2709
2710	nvlist_free(label);
2711
2712	/*
2713	 * Look through entries in the label nvlist's features_for_read. If
2714	 * there is a feature listed there which we don't understand then we
2715	 * cannot open a pool.
2716	 */
2717	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2718		nvlist_t *unsup_feat;
2719
2720		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2721		    0);
2722
2723		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2724		    NULL); nvp != NULL;
2725		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2726			if (!zfeature_is_supported(nvpair_name(nvp))) {
2727				VERIFY(nvlist_add_string(unsup_feat,
2728				    nvpair_name(nvp), "") == 0);
2729			}
2730		}
2731
2732		if (!nvlist_empty(unsup_feat)) {
2733			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2734			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2735			nvlist_free(unsup_feat);
2736			spa_load_failed(spa, "some features are unsupported");
2737			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2738			    ENOTSUP));
2739		}
2740
2741		nvlist_free(unsup_feat);
2742	}
2743
2744	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2745		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2746		spa_try_repair(spa, spa->spa_config);
2747		spa_config_exit(spa, SCL_ALL, FTAG);
2748		nvlist_free(spa->spa_config_splitting);
2749		spa->spa_config_splitting = NULL;
2750	}
2751
2752	/*
2753	 * Initialize internal SPA structures.
2754	 */
2755	spa_ld_select_uberblock_done(spa, ub);
2756
2757	return (0);
2758}
2759
2760static int
2761spa_ld_open_rootbp(spa_t *spa)
2762{
2763	int error = 0;
2764	vdev_t *rvd = spa->spa_root_vdev;
2765
2766	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2767	if (error != 0) {
2768		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2769		    "[error=%d]", error);
2770		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2771	}
2772	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2773
2774	return (0);
2775}
2776
2777static int
2778spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2779    boolean_t reloading)
2780{
2781	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2782	nvlist_t *nv, *mos_config, *policy;
2783	int error = 0, copy_error;
2784	uint64_t healthy_tvds, healthy_tvds_mos;
2785	uint64_t mos_config_txg;
2786
2787	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2788	    != 0)
2789		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2790
2791	/*
2792	 * If we're assembling a pool from a split, the config provided is
2793	 * already trusted so there is nothing to do.
2794	 */
2795	if (type == SPA_IMPORT_ASSEMBLE)
2796		return (0);
2797
2798	healthy_tvds = spa_healthy_core_tvds(spa);
2799
2800	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2801	    != 0) {
2802		spa_load_failed(spa, "unable to retrieve MOS config");
2803		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2804	}
2805
2806	/*
2807	 * If we are doing an open, pool owner wasn't verified yet, thus do
2808	 * the verification here.
2809	 */
2810	if (spa->spa_load_state == SPA_LOAD_OPEN) {
2811		error = spa_verify_host(spa, mos_config);
2812		if (error != 0) {
2813			nvlist_free(mos_config);
2814			return (error);
2815		}
2816	}
2817
2818	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2819
2820	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2821
2822	/*
2823	 * Build a new vdev tree from the trusted config
2824	 */
2825	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2826
2827	/*
2828	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
2829	 * obtained by scanning /dev/dsk, then it will have the right vdev
2830	 * paths. We update the trusted MOS config with this information.
2831	 * We first try to copy the paths with vdev_copy_path_strict, which
2832	 * succeeds only when both configs have exactly the same vdev tree.
2833	 * If that fails, we fall back to a more flexible method that has a
2834	 * best effort policy.
2835	 */
2836	copy_error = vdev_copy_path_strict(rvd, mrvd);
2837	if (copy_error != 0 || spa_load_print_vdev_tree) {
2838		spa_load_note(spa, "provided vdev tree:");
2839		vdev_dbgmsg_print_tree(rvd, 2);
2840		spa_load_note(spa, "MOS vdev tree:");
2841		vdev_dbgmsg_print_tree(mrvd, 2);
2842	}
2843	if (copy_error != 0) {
2844		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
2845		    "back to vdev_copy_path_relaxed");
2846		vdev_copy_path_relaxed(rvd, mrvd);
2847	}
2848
2849	vdev_close(rvd);
2850	vdev_free(rvd);
2851	spa->spa_root_vdev = mrvd;
2852	rvd = mrvd;
2853	spa_config_exit(spa, SCL_ALL, FTAG);
2854
2855	/*
2856	 * We will use spa_config if we decide to reload the spa or if spa_load
2857	 * fails and we rewind. We must thus regenerate the config using the
2858	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
2859	 * pass settings on how to load the pool and is not stored in the MOS.
2860	 * We copy it over to our new, trusted config.
2861	 */
2862	mos_config_txg = fnvlist_lookup_uint64(mos_config,
2863	    ZPOOL_CONFIG_POOL_TXG);
2864	nvlist_free(mos_config);
2865	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
2866	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
2867	    &policy) == 0)
2868		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
2869	spa_config_set(spa, mos_config);
2870	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
2871
2872	/*
2873	 * Now that we got the config from the MOS, we should be more strict
2874	 * in checking blkptrs and can make assumptions about the consistency
2875	 * of the vdev tree. spa_trust_config must be set to true before opening
2876	 * vdevs in order for them to be writeable.
2877	 */
2878	spa->spa_trust_config = B_TRUE;
2879
2880	/*
2881	 * Open and validate the new vdev tree
2882	 */
2883	error = spa_ld_open_vdevs(spa);
2884	if (error != 0)
2885		return (error);
2886
2887	error = spa_ld_validate_vdevs(spa);
2888	if (error != 0)
2889		return (error);
2890
2891	if (copy_error != 0 || spa_load_print_vdev_tree) {
2892		spa_load_note(spa, "final vdev tree:");
2893		vdev_dbgmsg_print_tree(rvd, 2);
2894	}
2895
2896	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
2897	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
2898		/*
2899		 * Sanity check to make sure that we are indeed loading the
2900		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
2901		 * in the config provided and they happened to be the only ones
2902		 * to have the latest uberblock, we could involuntarily perform
2903		 * an extreme rewind.
2904		 */
2905		healthy_tvds_mos = spa_healthy_core_tvds(spa);
2906		if (healthy_tvds_mos - healthy_tvds >=
2907		    SPA_SYNC_MIN_VDEVS) {
2908			spa_load_note(spa, "config provided misses too many "
2909			    "top-level vdevs compared to MOS (%lld vs %lld). ",
2910			    (u_longlong_t)healthy_tvds,
2911			    (u_longlong_t)healthy_tvds_mos);
2912			spa_load_note(spa, "vdev tree:");
2913			vdev_dbgmsg_print_tree(rvd, 2);
2914			if (reloading) {
2915				spa_load_failed(spa, "config was already "
2916				    "provided from MOS. Aborting.");
2917				return (spa_vdev_err(rvd,
2918				    VDEV_AUX_CORRUPT_DATA, EIO));
2919			}
2920			spa_load_note(spa, "spa must be reloaded using MOS "
2921			    "config");
2922			return (SET_ERROR(EAGAIN));
2923		}
2924	}
2925
2926	error = spa_check_for_missing_logs(spa);
2927	if (error != 0)
2928		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2929
2930	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
2931		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
2932		    "guid sum (%llu != %llu)",
2933		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
2934		    (u_longlong_t)rvd->vdev_guid_sum);
2935		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2936		    ENXIO));
2937	}
2938
2939	return (0);
2940}
2941
2942static int
2943spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2944{
2945	int error = 0;
2946	vdev_t *rvd = spa->spa_root_vdev;
2947
2948	/*
2949	 * Everything that we read before spa_remove_init() must be stored
2950	 * on concreted vdevs.  Therefore we do this as early as possible.
2951	 */
2952	error = spa_remove_init(spa);
2953	if (error != 0) {
2954		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2955		    error);
2956		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2957	}
2958
2959	/*
2960	 * Retrieve information needed to condense indirect vdev mappings.
2961	 */
2962	error = spa_condense_init(spa);
2963	if (error != 0) {
2964		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2965		    error);
2966		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2967	}
2968
2969	return (0);
2970}
2971
2972static int
2973spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2974{
2975	int error = 0;
2976	vdev_t *rvd = spa->spa_root_vdev;
2977
2978	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2979		boolean_t missing_feat_read = B_FALSE;
2980		nvlist_t *unsup_feat, *enabled_feat;
2981
2982		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2983		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2984			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2985		}
2986
2987		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2988		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2989			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2990		}
2991
2992		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2993		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2994			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2995		}
2996
2997		enabled_feat = fnvlist_alloc();
2998		unsup_feat = fnvlist_alloc();
2999
3000		if (!spa_features_check(spa, B_FALSE,
3001		    unsup_feat, enabled_feat))
3002			missing_feat_read = B_TRUE;
3003
3004		if (spa_writeable(spa) ||
3005		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3006			if (!spa_features_check(spa, B_TRUE,
3007			    unsup_feat, enabled_feat)) {
3008				*missing_feat_writep = B_TRUE;
3009			}
3010		}
3011
3012		fnvlist_add_nvlist(spa->spa_load_info,
3013		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3014
3015		if (!nvlist_empty(unsup_feat)) {
3016			fnvlist_add_nvlist(spa->spa_load_info,
3017			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3018		}
3019
3020		fnvlist_free(enabled_feat);
3021		fnvlist_free(unsup_feat);
3022
3023		if (!missing_feat_read) {
3024			fnvlist_add_boolean(spa->spa_load_info,
3025			    ZPOOL_CONFIG_CAN_RDONLY);
3026		}
3027
3028		/*
3029		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3030		 * twofold: to determine whether the pool is available for
3031		 * import in read-write mode and (if it is not) whether the
3032		 * pool is available for import in read-only mode. If the pool
3033		 * is available for import in read-write mode, it is displayed
3034		 * as available in userland; if it is not available for import
3035		 * in read-only mode, it is displayed as unavailable in
3036		 * userland. If the pool is available for import in read-only
3037		 * mode but not read-write mode, it is displayed as unavailable
3038		 * in userland with a special note that the pool is actually
3039		 * available for open in read-only mode.
3040		 *
3041		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3042		 * missing a feature for write, we must first determine whether
3043		 * the pool can be opened read-only before returning to
3044		 * userland in order to know whether to display the
3045		 * abovementioned note.
3046		 */
3047		if (missing_feat_read || (*missing_feat_writep &&
3048		    spa_writeable(spa))) {
3049			spa_load_failed(spa, "pool uses unsupported features");
3050			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3051			    ENOTSUP));
3052		}
3053
3054		/*
3055		 * Load refcounts for ZFS features from disk into an in-memory
3056		 * cache during SPA initialization.
3057		 */
3058		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3059			uint64_t refcount;
3060
3061			error = feature_get_refcount_from_disk(spa,
3062			    &spa_feature_table[i], &refcount);
3063			if (error == 0) {
3064				spa->spa_feat_refcount_cache[i] = refcount;
3065			} else if (error == ENOTSUP) {
3066				spa->spa_feat_refcount_cache[i] =
3067				    SPA_FEATURE_DISABLED;
3068			} else {
3069				spa_load_failed(spa, "error getting refcount "
3070				    "for feature %s [error=%d]",
3071				    spa_feature_table[i].fi_guid, error);
3072				return (spa_vdev_err(rvd,
3073				    VDEV_AUX_CORRUPT_DATA, EIO));
3074			}
3075		}
3076	}
3077
3078	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3079		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3080		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3081			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3082	}
3083
3084	return (0);
3085}
3086
3087static int
3088spa_ld_load_special_directories(spa_t *spa)
3089{
3090	int error = 0;
3091	vdev_t *rvd = spa->spa_root_vdev;
3092
3093	spa->spa_is_initializing = B_TRUE;
3094	error = dsl_pool_open(spa->spa_dsl_pool);
3095	spa->spa_is_initializing = B_FALSE;
3096	if (error != 0) {
3097		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3098		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3099	}
3100
3101	return (0);
3102}
3103
3104static int
3105spa_ld_get_props(spa_t *spa)
3106{
3107	int error = 0;
3108	uint64_t obj;
3109	vdev_t *rvd = spa->spa_root_vdev;
3110
3111	/* Grab the secret checksum salt from the MOS. */
3112	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3113	    DMU_POOL_CHECKSUM_SALT, 1,
3114	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3115	    spa->spa_cksum_salt.zcs_bytes);
3116	if (error == ENOENT) {
3117		/* Generate a new salt for subsequent use */
3118		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3119		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3120	} else if (error != 0) {
3121		spa_load_failed(spa, "unable to retrieve checksum salt from "
3122		    "MOS [error=%d]", error);
3123		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3124	}
3125
3126	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3127		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3128	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3129	if (error != 0) {
3130		spa_load_failed(spa, "error opening deferred-frees bpobj "
3131		    "[error=%d]", error);
3132		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3133	}
3134
3135	/*
3136	 * Load the bit that tells us to use the new accounting function
3137	 * (raid-z deflation).  If we have an older pool, this will not
3138	 * be present.
3139	 */
3140	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3141	if (error != 0 && error != ENOENT)
3142		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3143
3144	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3145	    &spa->spa_creation_version, B_FALSE);
3146	if (error != 0 && error != ENOENT)
3147		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3148
3149	/*
3150	 * Load the persistent error log.  If we have an older pool, this will
3151	 * not be present.
3152	 */
3153	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3154	    B_FALSE);
3155	if (error != 0 && error != ENOENT)
3156		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3157
3158	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3159	    &spa->spa_errlog_scrub, B_FALSE);
3160	if (error != 0 && error != ENOENT)
3161		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3162
3163	/*
3164	 * Load the history object.  If we have an older pool, this
3165	 * will not be present.
3166	 */
3167	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3168	if (error != 0 && error != ENOENT)
3169		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3170
3171	/*
3172	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3173	 * be present; in this case, defer its creation to a later time to
3174	 * avoid dirtying the MOS this early / out of sync context. See
3175	 * spa_sync_config_object.
3176	 */
3177
3178	/* The sentinel is only available in the MOS config. */
3179	nvlist_t *mos_config;
3180	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3181		spa_load_failed(spa, "unable to retrieve MOS config");
3182		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3183	}
3184
3185	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3186	    &spa->spa_all_vdev_zaps, B_FALSE);
3187
3188	if (error == ENOENT) {
3189		VERIFY(!nvlist_exists(mos_config,
3190		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3191		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3192		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3193	} else if (error != 0) {
3194		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3195	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3196		/*
3197		 * An older version of ZFS overwrote the sentinel value, so
3198		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3199		 * destruction to later; see spa_sync_config_object.
3200		 */
3201		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3202		/*
3203		 * We're assuming that no vdevs have had their ZAPs created
3204		 * before this. Better be sure of it.
3205		 */
3206		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3207	}
3208	nvlist_free(mos_config);
3209
3210	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3211
3212	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3213	    B_FALSE);
3214	if (error && error != ENOENT)
3215		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3216
3217	if (error == 0) {
3218		uint64_t autoreplace;
3219
3220		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3221		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3222		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3223		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3224		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3225		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3226		    &spa->spa_dedup_ditto);
3227
3228		spa->spa_autoreplace = (autoreplace != 0);
3229	}
3230
3231	/*
3232	 * If we are importing a pool with missing top-level vdevs,
3233	 * we enforce that the pool doesn't panic or get suspended on
3234	 * error since the likelihood of missing data is extremely high.
3235	 */
3236	if (spa->spa_missing_tvds > 0 &&
3237	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3238	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3239		spa_load_note(spa, "forcing failmode to 'continue' "
3240		    "as some top level vdevs are missing");
3241		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3242	}
3243
3244	return (0);
3245}
3246
3247static int
3248spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3249{
3250	int error = 0;
3251	vdev_t *rvd = spa->spa_root_vdev;
3252
3253	/*
3254	 * If we're assembling the pool from the split-off vdevs of
3255	 * an existing pool, we don't want to attach the spares & cache
3256	 * devices.
3257	 */
3258
3259	/*
3260	 * Load any hot spares for this pool.
3261	 */
3262	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3263	    B_FALSE);
3264	if (error != 0 && error != ENOENT)
3265		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3266	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3267		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3268		if (load_nvlist(spa, spa->spa_spares.sav_object,
3269		    &spa->spa_spares.sav_config) != 0) {
3270			spa_load_failed(spa, "error loading spares nvlist");
3271			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3272		}
3273
3274		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3275		spa_load_spares(spa);
3276		spa_config_exit(spa, SCL_ALL, FTAG);
3277	} else if (error == 0) {
3278		spa->spa_spares.sav_sync = B_TRUE;
3279	}
3280
3281	/*
3282	 * Load any level 2 ARC devices for this pool.
3283	 */
3284	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3285	    &spa->spa_l2cache.sav_object, B_FALSE);
3286	if (error != 0 && error != ENOENT)
3287		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3288	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3289		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3290		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3291		    &spa->spa_l2cache.sav_config) != 0) {
3292			spa_load_failed(spa, "error loading l2cache nvlist");
3293			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3294		}
3295
3296		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3297		spa_load_l2cache(spa);
3298		spa_config_exit(spa, SCL_ALL, FTAG);
3299	} else if (error == 0) {
3300		spa->spa_l2cache.sav_sync = B_TRUE;
3301	}
3302
3303	return (0);
3304}
3305
3306static int
3307spa_ld_load_vdev_metadata(spa_t *spa)
3308{
3309	int error = 0;
3310	vdev_t *rvd = spa->spa_root_vdev;
3311
3312	/*
3313	 * If the 'autoreplace' property is set, then post a resource notifying
3314	 * the ZFS DE that it should not issue any faults for unopenable
3315	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3316	 * unopenable vdevs so that the normal autoreplace handler can take
3317	 * over.
3318	 */
3319	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3320		spa_check_removed(spa->spa_root_vdev);
3321		/*
3322		 * For the import case, this is done in spa_import(), because
3323		 * at this point we're using the spare definitions from
3324		 * the MOS config, not necessarily from the userland config.
3325		 */
3326		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3327			spa_aux_check_removed(&spa->spa_spares);
3328			spa_aux_check_removed(&spa->spa_l2cache);
3329		}
3330	}
3331
3332	/*
3333	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3334	 */
3335	error = vdev_load(rvd);
3336	if (error != 0) {
3337		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3338		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3339	}
3340
3341	/*
3342	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3343	 */
3344	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3345	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3346	spa_config_exit(spa, SCL_ALL, FTAG);
3347
3348	return (0);
3349}
3350
3351static int
3352spa_ld_load_dedup_tables(spa_t *spa)
3353{
3354	int error = 0;
3355	vdev_t *rvd = spa->spa_root_vdev;
3356
3357	error = ddt_load(spa);
3358	if (error != 0) {
3359		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3360		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3361	}
3362
3363	return (0);
3364}
3365
3366static int
3367spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3368{
3369	vdev_t *rvd = spa->spa_root_vdev;
3370
3371	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3372		boolean_t missing = spa_check_logs(spa);
3373		if (missing) {
3374			if (spa->spa_missing_tvds != 0) {
3375				spa_load_note(spa, "spa_check_logs failed "
3376				    "so dropping the logs");
3377			} else {
3378				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3379				spa_load_failed(spa, "spa_check_logs failed");
3380				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3381				    ENXIO));
3382			}
3383		}
3384	}
3385
3386	return (0);
3387}
3388
3389static int
3390spa_ld_verify_pool_data(spa_t *spa)
3391{
3392	int error = 0;
3393	vdev_t *rvd = spa->spa_root_vdev;
3394
3395	/*
3396	 * We've successfully opened the pool, verify that we're ready
3397	 * to start pushing transactions.
3398	 */
3399	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3400		error = spa_load_verify(spa);
3401		if (error != 0) {
3402			spa_load_failed(spa, "spa_load_verify failed "
3403			    "[error=%d]", error);
3404			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3405			    error));
3406		}
3407	}
3408
3409	return (0);
3410}
3411
3412static void
3413spa_ld_claim_log_blocks(spa_t *spa)
3414{
3415	dmu_tx_t *tx;
3416	dsl_pool_t *dp = spa_get_dsl(spa);
3417
3418	/*
3419	 * Claim log blocks that haven't been committed yet.
3420	 * This must all happen in a single txg.
3421	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3422	 * invoked from zil_claim_log_block()'s i/o done callback.
3423	 * Price of rollback is that we abandon the log.
3424	 */
3425	spa->spa_claiming = B_TRUE;
3426
3427	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3428	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3429	    zil_claim, tx, DS_FIND_CHILDREN);
3430	dmu_tx_commit(tx);
3431
3432	spa->spa_claiming = B_FALSE;
3433
3434	spa_set_log_state(spa, SPA_LOG_GOOD);
3435}
3436
3437static void
3438spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3439    boolean_t update_config_cache)
3440{
3441	vdev_t *rvd = spa->spa_root_vdev;
3442	int need_update = B_FALSE;
3443
3444	/*
3445	 * If the config cache is stale, or we have uninitialized
3446	 * metaslabs (see spa_vdev_add()), then update the config.
3447	 *
3448	 * If this is a verbatim import, trust the current
3449	 * in-core spa_config and update the disk labels.
3450	 */
3451	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3452	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3453	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3454	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3455		need_update = B_TRUE;
3456
3457	for (int c = 0; c < rvd->vdev_children; c++)
3458		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3459			need_update = B_TRUE;
3460
3461	/*
3462	 * Update the config cache asychronously in case we're the
3463	 * root pool, in which case the config cache isn't writable yet.
3464	 */
3465	if (need_update)
3466		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3467}
3468
3469static void
3470spa_ld_prepare_for_reload(spa_t *spa)
3471{
3472	int mode = spa->spa_mode;
3473	int async_suspended = spa->spa_async_suspended;
3474
3475	spa_unload(spa);
3476	spa_deactivate(spa);
3477	spa_activate(spa, mode);
3478
3479	/*
3480	 * We save the value of spa_async_suspended as it gets reset to 0 by
3481	 * spa_unload(). We want to restore it back to the original value before
3482	 * returning as we might be calling spa_async_resume() later.
3483	 */
3484	spa->spa_async_suspended = async_suspended;
3485}
3486
3487static int
3488spa_ld_read_checkpoint_txg(spa_t *spa)
3489{
3490	uberblock_t checkpoint;
3491	int error = 0;
3492
3493	ASSERT0(spa->spa_checkpoint_txg);
3494	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3495
3496	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3497	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3498	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3499
3500	if (error == ENOENT)
3501		return (0);
3502
3503	if (error != 0)
3504		return (error);
3505
3506	ASSERT3U(checkpoint.ub_txg, !=, 0);
3507	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3508	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3509	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3510	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3511
3512	return (0);
3513}
3514
3515static int
3516spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3517{
3518	int error = 0;
3519
3520	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3521	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3522
3523	/*
3524	 * Never trust the config that is provided unless we are assembling
3525	 * a pool following a split.
3526	 * This means don't trust blkptrs and the vdev tree in general. This
3527	 * also effectively puts the spa in read-only mode since
3528	 * spa_writeable() checks for spa_trust_config to be true.
3529	 * We will later load a trusted config from the MOS.
3530	 */
3531	if (type != SPA_IMPORT_ASSEMBLE)
3532		spa->spa_trust_config = B_FALSE;
3533
3534	/*
3535	 * Parse the config provided to create a vdev tree.
3536	 */
3537	error = spa_ld_parse_config(spa, type);
3538	if (error != 0)
3539		return (error);
3540
3541	/*
3542	 * Now that we have the vdev tree, try to open each vdev. This involves
3543	 * opening the underlying physical device, retrieving its geometry and
3544	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3545	 * based on the success of those operations. After this we'll be ready
3546	 * to read from the vdevs.
3547	 */
3548	error = spa_ld_open_vdevs(spa);
3549	if (error != 0)
3550		return (error);
3551
3552	/*
3553	 * Read the label of each vdev and make sure that the GUIDs stored
3554	 * there match the GUIDs in the config provided.
3555	 * If we're assembling a new pool that's been split off from an
3556	 * existing pool, the labels haven't yet been updated so we skip
3557	 * validation for now.
3558	 */
3559	if (type != SPA_IMPORT_ASSEMBLE) {
3560		error = spa_ld_validate_vdevs(spa);
3561		if (error != 0)
3562			return (error);
3563	}
3564
3565	/*
3566	 * Read all vdev labels to find the best uberblock (i.e. latest,
3567	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3568	 * get the list of features required to read blkptrs in the MOS from
3569	 * the vdev label with the best uberblock and verify that our version
3570	 * of zfs supports them all.
3571	 */
3572	error = spa_ld_select_uberblock(spa, type);
3573	if (error != 0)
3574		return (error);
3575
3576	/*
3577	 * Pass that uberblock to the dsl_pool layer which will open the root
3578	 * blkptr. This blkptr points to the latest version of the MOS and will
3579	 * allow us to read its contents.
3580	 */
3581	error = spa_ld_open_rootbp(spa);
3582	if (error != 0)
3583		return (error);
3584
3585	return (0);
3586}
3587
3588static int
3589spa_ld_checkpoint_rewind(spa_t *spa)
3590{
3591	uberblock_t checkpoint;
3592	int error = 0;
3593
3594	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3595	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3596
3597	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3598	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3599	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3600
3601	if (error != 0) {
3602		spa_load_failed(spa, "unable to retrieve checkpointed "
3603		    "uberblock from the MOS config [error=%d]", error);
3604
3605		if (error == ENOENT)
3606			error = ZFS_ERR_NO_CHECKPOINT;
3607
3608		return (error);
3609	}
3610
3611	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3612	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3613
3614	/*
3615	 * We need to update the txg and timestamp of the checkpointed
3616	 * uberblock to be higher than the latest one. This ensures that
3617	 * the checkpointed uberblock is selected if we were to close and
3618	 * reopen the pool right after we've written it in the vdev labels.
3619	 * (also see block comment in vdev_uberblock_compare)
3620	 */
3621	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3622	checkpoint.ub_timestamp = gethrestime_sec();
3623
3624	/*
3625	 * Set current uberblock to be the checkpointed uberblock.
3626	 */
3627	spa->spa_uberblock = checkpoint;
3628
3629	/*
3630	 * If we are doing a normal rewind, then the pool is open for
3631	 * writing and we sync the "updated" checkpointed uberblock to
3632	 * disk. Once this is done, we've basically rewound the whole
3633	 * pool and there is no way back.
3634	 *
3635	 * There are cases when we don't want to attempt and sync the
3636	 * checkpointed uberblock to disk because we are opening a
3637	 * pool as read-only. Specifically, verifying the checkpointed
3638	 * state with zdb, and importing the checkpointed state to get
3639	 * a "preview" of its content.
3640	 */
3641	if (spa_writeable(spa)) {
3642		vdev_t *rvd = spa->spa_root_vdev;
3643
3644		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3645		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3646		int svdcount = 0;
3647		int children = rvd->vdev_children;
3648		int c0 = spa_get_random(children);
3649
3650		for (int c = 0; c < children; c++) {
3651			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3652
3653			/* Stop when revisiting the first vdev */
3654			if (c > 0 && svd[0] == vd)
3655				break;
3656
3657			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3658			    !vdev_is_concrete(vd))
3659				continue;
3660
3661			svd[svdcount++] = vd;
3662			if (svdcount == SPA_SYNC_MIN_VDEVS)
3663				break;
3664		}
3665		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3666		if (error == 0)
3667			spa->spa_last_synced_guid = rvd->vdev_guid;
3668		spa_config_exit(spa, SCL_ALL, FTAG);
3669
3670		if (error != 0) {
3671			spa_load_failed(spa, "failed to write checkpointed "
3672			    "uberblock to the vdev labels [error=%d]", error);
3673			return (error);
3674		}
3675	}
3676
3677	return (0);
3678}
3679
3680static int
3681spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3682    boolean_t *update_config_cache)
3683{
3684	int error;
3685
3686	/*
3687	 * Parse the config for pool, open and validate vdevs,
3688	 * select an uberblock, and use that uberblock to open
3689	 * the MOS.
3690	 */
3691	error = spa_ld_mos_init(spa, type);
3692	if (error != 0)
3693		return (error);
3694
3695	/*
3696	 * Retrieve the trusted config stored in the MOS and use it to create
3697	 * a new, exact version of the vdev tree, then reopen all vdevs.
3698	 */
3699	error = spa_ld_trusted_config(spa, type, B_FALSE);
3700	if (error == EAGAIN) {
3701		if (update_config_cache != NULL)
3702			*update_config_cache = B_TRUE;
3703
3704		/*
3705		 * Redo the loading process with the trusted config if it is
3706		 * too different from the untrusted config.
3707		 */
3708		spa_ld_prepare_for_reload(spa);
3709		spa_load_note(spa, "RELOADING");
3710		error = spa_ld_mos_init(spa, type);
3711		if (error != 0)
3712			return (error);
3713
3714		error = spa_ld_trusted_config(spa, type, B_TRUE);
3715		if (error != 0)
3716			return (error);
3717
3718	} else if (error != 0) {
3719		return (error);
3720	}
3721
3722	return (0);
3723}
3724
3725/*
3726 * Load an existing storage pool, using the config provided. This config
3727 * describes which vdevs are part of the pool and is later validated against
3728 * partial configs present in each vdev's label and an entire copy of the
3729 * config stored in the MOS.
3730 */
3731static int
3732spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3733{
3734	int error = 0;
3735	boolean_t missing_feat_write = B_FALSE;
3736	boolean_t checkpoint_rewind =
3737	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3738	boolean_t update_config_cache = B_FALSE;
3739
3740	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3741	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3742
3743	spa_load_note(spa, "LOADING");
3744
3745	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3746	if (error != 0)
3747		return (error);
3748
3749	/*
3750	 * If we are rewinding to the checkpoint then we need to repeat
3751	 * everything we've done so far in this function but this time
3752	 * selecting the checkpointed uberblock and using that to open
3753	 * the MOS.
3754	 */
3755	if (checkpoint_rewind) {
3756		/*
3757		 * If we are rewinding to the checkpoint update config cache
3758		 * anyway.
3759		 */
3760		update_config_cache = B_TRUE;
3761
3762		/*
3763		 * Extract the checkpointed uberblock from the current MOS
3764		 * and use this as the pool's uberblock from now on. If the
3765		 * pool is imported as writeable we also write the checkpoint
3766		 * uberblock to the labels, making the rewind permanent.
3767		 */
3768		error = spa_ld_checkpoint_rewind(spa);
3769		if (error != 0)
3770			return (error);
3771
3772		/*
3773		 * Redo the loading process process again with the
3774		 * checkpointed uberblock.
3775		 */
3776		spa_ld_prepare_for_reload(spa);
3777		spa_load_note(spa, "LOADING checkpointed uberblock");
3778		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3779		if (error != 0)
3780			return (error);
3781	}
3782
3783	/*
3784	 * Retrieve the checkpoint txg if the pool has a checkpoint.
3785	 */
3786	error = spa_ld_read_checkpoint_txg(spa);
3787	if (error != 0)
3788		return (error);
3789
3790	/*
3791	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3792	 * from the pool and their contents were re-mapped to other vdevs. Note
3793	 * that everything that we read before this step must have been
3794	 * rewritten on concrete vdevs after the last device removal was
3795	 * initiated. Otherwise we could be reading from indirect vdevs before
3796	 * we have loaded their mappings.
3797	 */
3798	error = spa_ld_open_indirect_vdev_metadata(spa);
3799	if (error != 0)
3800		return (error);
3801
3802	/*
3803	 * Retrieve the full list of active features from the MOS and check if
3804	 * they are all supported.
3805	 */
3806	error = spa_ld_check_features(spa, &missing_feat_write);
3807	if (error != 0)
3808		return (error);
3809
3810	/*
3811	 * Load several special directories from the MOS needed by the dsl_pool
3812	 * layer.
3813	 */
3814	error = spa_ld_load_special_directories(spa);
3815	if (error != 0)
3816		return (error);
3817
3818	/*
3819	 * Retrieve pool properties from the MOS.
3820	 */
3821	error = spa_ld_get_props(spa);
3822	if (error != 0)
3823		return (error);
3824
3825	/*
3826	 * Retrieve the list of auxiliary devices - cache devices and spares -
3827	 * and open them.
3828	 */
3829	error = spa_ld_open_aux_vdevs(spa, type);
3830	if (error != 0)
3831		return (error);
3832
3833	/*
3834	 * Load the metadata for all vdevs. Also check if unopenable devices
3835	 * should be autoreplaced.
3836	 */
3837	error = spa_ld_load_vdev_metadata(spa);
3838	if (error != 0)
3839		return (error);
3840
3841	error = spa_ld_load_dedup_tables(spa);
3842	if (error != 0)
3843		return (error);
3844
3845	/*
3846	 * Verify the logs now to make sure we don't have any unexpected errors
3847	 * when we claim log blocks later.
3848	 */
3849	error = spa_ld_verify_logs(spa, type, ereport);
3850	if (error != 0)
3851		return (error);
3852
3853	if (missing_feat_write) {
3854		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3855
3856		/*
3857		 * At this point, we know that we can open the pool in
3858		 * read-only mode but not read-write mode. We now have enough
3859		 * information and can return to userland.
3860		 */
3861		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3862		    ENOTSUP));
3863	}
3864
3865	/*
3866	 * Traverse the last txgs to make sure the pool was left off in a safe
3867	 * state. When performing an extreme rewind, we verify the whole pool,
3868	 * which can take a very long time.
3869	 */
3870	error = spa_ld_verify_pool_data(spa);
3871	if (error != 0)
3872		return (error);
3873
3874	/*
3875	 * Calculate the deflated space for the pool. This must be done before
3876	 * we write anything to the pool because we'd need to update the space
3877	 * accounting using the deflated sizes.
3878	 */
3879	spa_update_dspace(spa);
3880
3881	/*
3882	 * We have now retrieved all the information we needed to open the
3883	 * pool. If we are importing the pool in read-write mode, a few
3884	 * additional steps must be performed to finish the import.
3885	 */
3886	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3887	    spa->spa_load_max_txg == UINT64_MAX)) {
3888		uint64_t config_cache_txg = spa->spa_config_txg;
3889
3890		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3891
3892		/*
3893		 * In case of a checkpoint rewind, log the original txg
3894		 * of the checkpointed uberblock.
3895		 */
3896		if (checkpoint_rewind) {
3897			spa_history_log_internal(spa, "checkpoint rewind",
3898			    NULL, "rewound state to txg=%llu",
3899			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
3900		}
3901
3902		/*
3903		 * Traverse the ZIL and claim all blocks.
3904		 */
3905		spa_ld_claim_log_blocks(spa);
3906
3907		/*
3908		 * Kick-off the syncing thread.
3909		 */
3910		spa->spa_sync_on = B_TRUE;
3911		txg_sync_start(spa->spa_dsl_pool);
3912
3913		/*
3914		 * Wait for all claims to sync.  We sync up to the highest
3915		 * claimed log block birth time so that claimed log blocks
3916		 * don't appear to be from the future.  spa_claim_max_txg
3917		 * will have been set for us by ZIL traversal operations
3918		 * performed above.
3919		 */
3920		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3921
3922		/*
3923		 * Check if we need to request an update of the config. On the
3924		 * next sync, we would update the config stored in vdev labels
3925		 * and the cachefile (by default /etc/zfs/zpool.cache).
3926		 */
3927		spa_ld_check_for_config_update(spa, config_cache_txg,
3928		    update_config_cache);
3929
3930		/*
3931		 * Check all DTLs to see if anything needs resilvering.
3932		 */
3933		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3934		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3935			spa_async_request(spa, SPA_ASYNC_RESILVER);
3936
3937		/*
3938		 * Log the fact that we booted up (so that we can detect if
3939		 * we rebooted in the middle of an operation).
3940		 */
3941		spa_history_log_version(spa, "open");
3942
3943		/*
3944		 * Delete any inconsistent datasets.
3945		 */
3946		(void) dmu_objset_find(spa_name(spa),
3947		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3948
3949		/*
3950		 * Clean up any stale temporary dataset userrefs.
3951		 */
3952		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3953
3954		spa_restart_removal(spa);
3955
3956		spa_spawn_aux_threads(spa);
3957	}
3958
3959	spa_load_note(spa, "LOADED");
3960
3961	return (0);
3962}
3963
3964static int
3965spa_load_retry(spa_t *spa, spa_load_state_t state)
3966{
3967	int mode = spa->spa_mode;
3968
3969	spa_unload(spa);
3970	spa_deactivate(spa);
3971
3972	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3973
3974	spa_activate(spa, mode);
3975	spa_async_suspend(spa);
3976
3977	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3978	    (u_longlong_t)spa->spa_load_max_txg);
3979
3980	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3981}
3982
3983/*
3984 * If spa_load() fails this function will try loading prior txg's. If
3985 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3986 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3987 * function will not rewind the pool and will return the same error as
3988 * spa_load().
3989 */
3990static int
3991spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3992    int rewind_flags)
3993{
3994	nvlist_t *loadinfo = NULL;
3995	nvlist_t *config = NULL;
3996	int load_error, rewind_error;
3997	uint64_t safe_rewind_txg;
3998	uint64_t min_txg;
3999
4000	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4001		spa->spa_load_max_txg = spa->spa_load_txg;
4002		spa_set_log_state(spa, SPA_LOG_CLEAR);
4003	} else {
4004		spa->spa_load_max_txg = max_request;
4005		if (max_request != UINT64_MAX)
4006			spa->spa_extreme_rewind = B_TRUE;
4007	}
4008
4009	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4010	if (load_error == 0)
4011		return (0);
4012	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4013		/*
4014		 * When attempting checkpoint-rewind on a pool with no
4015		 * checkpoint, we should not attempt to load uberblocks
4016		 * from previous txgs when spa_load fails.
4017		 */
4018		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4019		return (load_error);
4020	}
4021
4022	if (spa->spa_root_vdev != NULL)
4023		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4024
4025	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4026	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4027
4028	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4029		nvlist_free(config);
4030		return (load_error);
4031	}
4032
4033	if (state == SPA_LOAD_RECOVER) {
4034		/* Price of rolling back is discarding txgs, including log */
4035		spa_set_log_state(spa, SPA_LOG_CLEAR);
4036	} else {
4037		/*
4038		 * If we aren't rolling back save the load info from our first
4039		 * import attempt so that we can restore it after attempting
4040		 * to rewind.
4041		 */
4042		loadinfo = spa->spa_load_info;
4043		spa->spa_load_info = fnvlist_alloc();
4044	}
4045
4046	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4047	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4048	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4049	    TXG_INITIAL : safe_rewind_txg;
4050
4051	/*
4052	 * Continue as long as we're finding errors, we're still within
4053	 * the acceptable rewind range, and we're still finding uberblocks
4054	 */
4055	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4056	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4057		if (spa->spa_load_max_txg < safe_rewind_txg)
4058			spa->spa_extreme_rewind = B_TRUE;
4059		rewind_error = spa_load_retry(spa, state);
4060	}
4061
4062	spa->spa_extreme_rewind = B_FALSE;
4063	spa->spa_load_max_txg = UINT64_MAX;
4064
4065	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4066		spa_config_set(spa, config);
4067	else
4068		nvlist_free(config);
4069
4070	if (state == SPA_LOAD_RECOVER) {
4071		ASSERT3P(loadinfo, ==, NULL);
4072		return (rewind_error);
4073	} else {
4074		/* Store the rewind info as part of the initial load info */
4075		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4076		    spa->spa_load_info);
4077
4078		/* Restore the initial load info */
4079		fnvlist_free(spa->spa_load_info);
4080		spa->spa_load_info = loadinfo;
4081
4082		return (load_error);
4083	}
4084}
4085
4086/*
4087 * Pool Open/Import
4088 *
4089 * The import case is identical to an open except that the configuration is sent
4090 * down from userland, instead of grabbed from the configuration cache.  For the
4091 * case of an open, the pool configuration will exist in the
4092 * POOL_STATE_UNINITIALIZED state.
4093 *
4094 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4095 * the same time open the pool, without having to keep around the spa_t in some
4096 * ambiguous state.
4097 */
4098static int
4099spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4100    nvlist_t **config)
4101{
4102	spa_t *spa;
4103	spa_load_state_t state = SPA_LOAD_OPEN;
4104	int error;
4105	int locked = B_FALSE;
4106	int firstopen = B_FALSE;
4107
4108	*spapp = NULL;
4109
4110	/*
4111	 * As disgusting as this is, we need to support recursive calls to this
4112	 * function because dsl_dir_open() is called during spa_load(), and ends
4113	 * up calling spa_open() again.  The real fix is to figure out how to
4114	 * avoid dsl_dir_open() calling this in the first place.
4115	 */
4116	if (mutex_owner(&spa_namespace_lock) != curthread) {
4117		mutex_enter(&spa_namespace_lock);
4118		locked = B_TRUE;
4119	}
4120
4121	if ((spa = spa_lookup(pool)) == NULL) {
4122		if (locked)
4123			mutex_exit(&spa_namespace_lock);
4124		return (SET_ERROR(ENOENT));
4125	}
4126
4127	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4128		zpool_load_policy_t policy;
4129
4130		firstopen = B_TRUE;
4131
4132		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4133		    &policy);
4134		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4135			state = SPA_LOAD_RECOVER;
4136
4137		spa_activate(spa, spa_mode_global);
4138
4139		if (state != SPA_LOAD_RECOVER)
4140			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4141		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4142
4143		zfs_dbgmsg("spa_open_common: opening %s", pool);
4144		error = spa_load_best(spa, state, policy.zlp_txg,
4145		    policy.zlp_rewind);
4146
4147		if (error == EBADF) {
4148			/*
4149			 * If vdev_validate() returns failure (indicated by
4150			 * EBADF), it indicates that one of the vdevs indicates
4151			 * that the pool has been exported or destroyed.  If
4152			 * this is the case, the config cache is out of sync and
4153			 * we should remove the pool from the namespace.
4154			 */
4155			spa_unload(spa);
4156			spa_deactivate(spa);
4157			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4158			spa_remove(spa);
4159			if (locked)
4160				mutex_exit(&spa_namespace_lock);
4161			return (SET_ERROR(ENOENT));
4162		}
4163
4164		if (error) {
4165			/*
4166			 * We can't open the pool, but we still have useful
4167			 * information: the state of each vdev after the
4168			 * attempted vdev_open().  Return this to the user.
4169			 */
4170			if (config != NULL && spa->spa_config) {
4171				VERIFY(nvlist_dup(spa->spa_config, config,
4172				    KM_SLEEP) == 0);
4173				VERIFY(nvlist_add_nvlist(*config,
4174				    ZPOOL_CONFIG_LOAD_INFO,
4175				    spa->spa_load_info) == 0);
4176			}
4177			spa_unload(spa);
4178			spa_deactivate(spa);
4179			spa->spa_last_open_failed = error;
4180			if (locked)
4181				mutex_exit(&spa_namespace_lock);
4182			*spapp = NULL;
4183			return (error);
4184		}
4185	}
4186
4187	spa_open_ref(spa, tag);
4188
4189	if (config != NULL)
4190		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4191
4192	/*
4193	 * If we've recovered the pool, pass back any information we
4194	 * gathered while doing the load.
4195	 */
4196	if (state == SPA_LOAD_RECOVER) {
4197		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4198		    spa->spa_load_info) == 0);
4199	}
4200
4201	if (locked) {
4202		spa->spa_last_open_failed = 0;
4203		spa->spa_last_ubsync_txg = 0;
4204		spa->spa_load_txg = 0;
4205		mutex_exit(&spa_namespace_lock);
4206#ifdef __FreeBSD__
4207#ifdef _KERNEL
4208		if (firstopen)
4209			zvol_create_minors(spa->spa_name);
4210#endif
4211#endif
4212	}
4213
4214	*spapp = spa;
4215
4216	return (0);
4217}
4218
4219int
4220spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4221    nvlist_t **config)
4222{
4223	return (spa_open_common(name, spapp, tag, policy, config));
4224}
4225
4226int
4227spa_open(const char *name, spa_t **spapp, void *tag)
4228{
4229	return (spa_open_common(name, spapp, tag, NULL, NULL));
4230}
4231
4232/*
4233 * Lookup the given spa_t, incrementing the inject count in the process,
4234 * preventing it from being exported or destroyed.
4235 */
4236spa_t *
4237spa_inject_addref(char *name)
4238{
4239	spa_t *spa;
4240
4241	mutex_enter(&spa_namespace_lock);
4242	if ((spa = spa_lookup(name)) == NULL) {
4243		mutex_exit(&spa_namespace_lock);
4244		return (NULL);
4245	}
4246	spa->spa_inject_ref++;
4247	mutex_exit(&spa_namespace_lock);
4248
4249	return (spa);
4250}
4251
4252void
4253spa_inject_delref(spa_t *spa)
4254{
4255	mutex_enter(&spa_namespace_lock);
4256	spa->spa_inject_ref--;
4257	mutex_exit(&spa_namespace_lock);
4258}
4259
4260/*
4261 * Add spares device information to the nvlist.
4262 */
4263static void
4264spa_add_spares(spa_t *spa, nvlist_t *config)
4265{
4266	nvlist_t **spares;
4267	uint_t i, nspares;
4268	nvlist_t *nvroot;
4269	uint64_t guid;
4270	vdev_stat_t *vs;
4271	uint_t vsc;
4272	uint64_t pool;
4273
4274	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4275
4276	if (spa->spa_spares.sav_count == 0)
4277		return;
4278
4279	VERIFY(nvlist_lookup_nvlist(config,
4280	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4281	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4282	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4283	if (nspares != 0) {
4284		VERIFY(nvlist_add_nvlist_array(nvroot,
4285		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4286		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4287		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4288
4289		/*
4290		 * Go through and find any spares which have since been
4291		 * repurposed as an active spare.  If this is the case, update
4292		 * their status appropriately.
4293		 */
4294		for (i = 0; i < nspares; i++) {
4295			VERIFY(nvlist_lookup_uint64(spares[i],
4296			    ZPOOL_CONFIG_GUID, &guid) == 0);
4297			if (spa_spare_exists(guid, &pool, NULL) &&
4298			    pool != 0ULL) {
4299				VERIFY(nvlist_lookup_uint64_array(
4300				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4301				    (uint64_t **)&vs, &vsc) == 0);
4302				vs->vs_state = VDEV_STATE_CANT_OPEN;
4303				vs->vs_aux = VDEV_AUX_SPARED;
4304			}
4305		}
4306	}
4307}
4308
4309/*
4310 * Add l2cache device information to the nvlist, including vdev stats.
4311 */
4312static void
4313spa_add_l2cache(spa_t *spa, nvlist_t *config)
4314{
4315	nvlist_t **l2cache;
4316	uint_t i, j, nl2cache;
4317	nvlist_t *nvroot;
4318	uint64_t guid;
4319	vdev_t *vd;
4320	vdev_stat_t *vs;
4321	uint_t vsc;
4322
4323	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4324
4325	if (spa->spa_l2cache.sav_count == 0)
4326		return;
4327
4328	VERIFY(nvlist_lookup_nvlist(config,
4329	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4330	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4331	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4332	if (nl2cache != 0) {
4333		VERIFY(nvlist_add_nvlist_array(nvroot,
4334		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4335		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4336		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4337
4338		/*
4339		 * Update level 2 cache device stats.
4340		 */
4341
4342		for (i = 0; i < nl2cache; i++) {
4343			VERIFY(nvlist_lookup_uint64(l2cache[i],
4344			    ZPOOL_CONFIG_GUID, &guid) == 0);
4345
4346			vd = NULL;
4347			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4348				if (guid ==
4349				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4350					vd = spa->spa_l2cache.sav_vdevs[j];
4351					break;
4352				}
4353			}
4354			ASSERT(vd != NULL);
4355
4356			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4357			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4358			    == 0);
4359			vdev_get_stats(vd, vs);
4360		}
4361	}
4362}
4363
4364static void
4365spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4366{
4367	nvlist_t *features;
4368	zap_cursor_t zc;
4369	zap_attribute_t za;
4370
4371	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4372	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4373
4374	/* We may be unable to read features if pool is suspended. */
4375	if (spa_suspended(spa))
4376		goto out;
4377
4378	if (spa->spa_feat_for_read_obj != 0) {
4379		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4380		    spa->spa_feat_for_read_obj);
4381		    zap_cursor_retrieve(&zc, &za) == 0;
4382		    zap_cursor_advance(&zc)) {
4383			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4384			    za.za_num_integers == 1);
4385			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4386			    za.za_first_integer));
4387		}
4388		zap_cursor_fini(&zc);
4389	}
4390
4391	if (spa->spa_feat_for_write_obj != 0) {
4392		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4393		    spa->spa_feat_for_write_obj);
4394		    zap_cursor_retrieve(&zc, &za) == 0;
4395		    zap_cursor_advance(&zc)) {
4396			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4397			    za.za_num_integers == 1);
4398			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4399			    za.za_first_integer));
4400		}
4401		zap_cursor_fini(&zc);
4402	}
4403
4404out:
4405	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4406	    features) == 0);
4407	nvlist_free(features);
4408}
4409
4410int
4411spa_get_stats(const char *name, nvlist_t **config,
4412    char *altroot, size_t buflen)
4413{
4414	int error;
4415	spa_t *spa;
4416
4417	*config = NULL;
4418	error = spa_open_common(name, &spa, FTAG, NULL, config);
4419
4420	if (spa != NULL) {
4421		/*
4422		 * This still leaves a window of inconsistency where the spares
4423		 * or l2cache devices could change and the config would be
4424		 * self-inconsistent.
4425		 */
4426		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4427
4428		if (*config != NULL) {
4429			uint64_t loadtimes[2];
4430
4431			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4432			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4433			VERIFY(nvlist_add_uint64_array(*config,
4434			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4435
4436			VERIFY(nvlist_add_uint64(*config,
4437			    ZPOOL_CONFIG_ERRCOUNT,
4438			    spa_get_errlog_size(spa)) == 0);
4439
4440			if (spa_suspended(spa))
4441				VERIFY(nvlist_add_uint64(*config,
4442				    ZPOOL_CONFIG_SUSPENDED,
4443				    spa->spa_failmode) == 0);
4444
4445			spa_add_spares(spa, *config);
4446			spa_add_l2cache(spa, *config);
4447			spa_add_feature_stats(spa, *config);
4448		}
4449	}
4450
4451	/*
4452	 * We want to get the alternate root even for faulted pools, so we cheat
4453	 * and call spa_lookup() directly.
4454	 */
4455	if (altroot) {
4456		if (spa == NULL) {
4457			mutex_enter(&spa_namespace_lock);
4458			spa = spa_lookup(name);
4459			if (spa)
4460				spa_altroot(spa, altroot, buflen);
4461			else
4462				altroot[0] = '\0';
4463			spa = NULL;
4464			mutex_exit(&spa_namespace_lock);
4465		} else {
4466			spa_altroot(spa, altroot, buflen);
4467		}
4468	}
4469
4470	if (spa != NULL) {
4471		spa_config_exit(spa, SCL_CONFIG, FTAG);
4472		spa_close(spa, FTAG);
4473	}
4474
4475	return (error);
4476}
4477
4478/*
4479 * Validate that the auxiliary device array is well formed.  We must have an
4480 * array of nvlists, each which describes a valid leaf vdev.  If this is an
4481 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4482 * specified, as long as they are well-formed.
4483 */
4484static int
4485spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4486    spa_aux_vdev_t *sav, const char *config, uint64_t version,
4487    vdev_labeltype_t label)
4488{
4489	nvlist_t **dev;
4490	uint_t i, ndev;
4491	vdev_t *vd;
4492	int error;
4493
4494	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4495
4496	/*
4497	 * It's acceptable to have no devs specified.
4498	 */
4499	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4500		return (0);
4501
4502	if (ndev == 0)
4503		return (SET_ERROR(EINVAL));
4504
4505	/*
4506	 * Make sure the pool is formatted with a version that supports this
4507	 * device type.
4508	 */
4509	if (spa_version(spa) < version)
4510		return (SET_ERROR(ENOTSUP));
4511
4512	/*
4513	 * Set the pending device list so we correctly handle device in-use
4514	 * checking.
4515	 */
4516	sav->sav_pending = dev;
4517	sav->sav_npending = ndev;
4518
4519	for (i = 0; i < ndev; i++) {
4520		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4521		    mode)) != 0)
4522			goto out;
4523
4524		if (!vd->vdev_ops->vdev_op_leaf) {
4525			vdev_free(vd);
4526			error = SET_ERROR(EINVAL);
4527			goto out;
4528		}
4529
4530		/*
4531		 * The L2ARC currently only supports disk devices in
4532		 * kernel context.  For user-level testing, we allow it.
4533		 */
4534#ifdef _KERNEL
4535		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
4536		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
4537			error = SET_ERROR(ENOTBLK);
4538			vdev_free(vd);
4539			goto out;
4540		}
4541#endif
4542		vd->vdev_top = vd;
4543
4544		if ((error = vdev_open(vd)) == 0 &&
4545		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4546			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4547			    vd->vdev_guid) == 0);
4548		}
4549
4550		vdev_free(vd);
4551
4552		if (error &&
4553		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4554			goto out;
4555		else
4556			error = 0;
4557	}
4558
4559out:
4560	sav->sav_pending = NULL;
4561	sav->sav_npending = 0;
4562	return (error);
4563}
4564
4565static int
4566spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4567{
4568	int error;
4569
4570	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4571
4572	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4573	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4574	    VDEV_LABEL_SPARE)) != 0) {
4575		return (error);
4576	}
4577
4578	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4579	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4580	    VDEV_LABEL_L2CACHE));
4581}
4582
4583static void
4584spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4585    const char *config)
4586{
4587	int i;
4588
4589	if (sav->sav_config != NULL) {
4590		nvlist_t **olddevs;
4591		uint_t oldndevs;
4592		nvlist_t **newdevs;
4593
4594		/*
4595		 * Generate new dev list by concatentating with the
4596		 * current dev list.
4597		 */
4598		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4599		    &olddevs, &oldndevs) == 0);
4600
4601		newdevs = kmem_alloc(sizeof (void *) *
4602		    (ndevs + oldndevs), KM_SLEEP);
4603		for (i = 0; i < oldndevs; i++)
4604			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4605			    KM_SLEEP) == 0);
4606		for (i = 0; i < ndevs; i++)
4607			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4608			    KM_SLEEP) == 0);
4609
4610		VERIFY(nvlist_remove(sav->sav_config, config,
4611		    DATA_TYPE_NVLIST_ARRAY) == 0);
4612
4613		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4614		    config, newdevs, ndevs + oldndevs) == 0);
4615		for (i = 0; i < oldndevs + ndevs; i++)
4616			nvlist_free(newdevs[i]);
4617		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4618	} else {
4619		/*
4620		 * Generate a new dev list.
4621		 */
4622		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4623		    KM_SLEEP) == 0);
4624		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4625		    devs, ndevs) == 0);
4626	}
4627}
4628
4629/*
4630 * Stop and drop level 2 ARC devices
4631 */
4632void
4633spa_l2cache_drop(spa_t *spa)
4634{
4635	vdev_t *vd;
4636	int i;
4637	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4638
4639	for (i = 0; i < sav->sav_count; i++) {
4640		uint64_t pool;
4641
4642		vd = sav->sav_vdevs[i];
4643		ASSERT(vd != NULL);
4644
4645		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4646		    pool != 0ULL && l2arc_vdev_present(vd))
4647			l2arc_remove_vdev(vd);
4648	}
4649}
4650
4651/*
4652 * Pool Creation
4653 */
4654int
4655spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4656    nvlist_t *zplprops)
4657{
4658	spa_t *spa;
4659	char *altroot = NULL;
4660	vdev_t *rvd;
4661	dsl_pool_t *dp;
4662	dmu_tx_t *tx;
4663	int error = 0;
4664	uint64_t txg = TXG_INITIAL;
4665	nvlist_t **spares, **l2cache;
4666	uint_t nspares, nl2cache;
4667	uint64_t version, obj;
4668	boolean_t has_features;
4669	char *poolname;
4670	nvlist_t *nvl;
4671
4672	if (nvlist_lookup_string(props,
4673	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
4674		poolname = (char *)pool;
4675
4676	/*
4677	 * If this pool already exists, return failure.
4678	 */
4679	mutex_enter(&spa_namespace_lock);
4680	if (spa_lookup(poolname) != NULL) {
4681		mutex_exit(&spa_namespace_lock);
4682		return (SET_ERROR(EEXIST));
4683	}
4684
4685	/*
4686	 * Allocate a new spa_t structure.
4687	 */
4688	nvl = fnvlist_alloc();
4689	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4690	(void) nvlist_lookup_string(props,
4691	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4692	spa = spa_add(poolname, nvl, altroot);
4693	fnvlist_free(nvl);
4694	spa_activate(spa, spa_mode_global);
4695
4696	if (props && (error = spa_prop_validate(spa, props))) {
4697		spa_deactivate(spa);
4698		spa_remove(spa);
4699		mutex_exit(&spa_namespace_lock);
4700		return (error);
4701	}
4702
4703	/*
4704	 * Temporary pool names should never be written to disk.
4705	 */
4706	if (poolname != pool)
4707		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4708
4709	has_features = B_FALSE;
4710	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4711	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4712		if (zpool_prop_feature(nvpair_name(elem)))
4713			has_features = B_TRUE;
4714	}
4715
4716	if (has_features || nvlist_lookup_uint64(props,
4717	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4718		version = SPA_VERSION;
4719	}
4720	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4721
4722	spa->spa_first_txg = txg;
4723	spa->spa_uberblock.ub_txg = txg - 1;
4724	spa->spa_uberblock.ub_version = version;
4725	spa->spa_ubsync = spa->spa_uberblock;
4726	spa->spa_load_state = SPA_LOAD_CREATE;
4727	spa->spa_removing_phys.sr_state = DSS_NONE;
4728	spa->spa_removing_phys.sr_removing_vdev = -1;
4729	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4730	spa->spa_indirect_vdevs_loaded = B_TRUE;
4731
4732	/*
4733	 * Create "The Godfather" zio to hold all async IOs
4734	 */
4735	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4736	    KM_SLEEP);
4737	for (int i = 0; i < max_ncpus; i++) {
4738		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4739		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4740		    ZIO_FLAG_GODFATHER);
4741	}
4742
4743	/*
4744	 * Create the root vdev.
4745	 */
4746	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4747
4748	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4749
4750	ASSERT(error != 0 || rvd != NULL);
4751	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4752
4753	if (error == 0 && !zfs_allocatable_devs(nvroot))
4754		error = SET_ERROR(EINVAL);
4755
4756	if (error == 0 &&
4757	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4758	    (error = spa_validate_aux(spa, nvroot, txg,
4759	    VDEV_ALLOC_ADD)) == 0) {
4760		for (int c = 0; c < rvd->vdev_children; c++) {
4761			vdev_ashift_optimize(rvd->vdev_child[c]);
4762			vdev_metaslab_set_size(rvd->vdev_child[c]);
4763			vdev_expand(rvd->vdev_child[c], txg);
4764		}
4765	}
4766
4767	spa_config_exit(spa, SCL_ALL, FTAG);
4768
4769	if (error != 0) {
4770		spa_unload(spa);
4771		spa_deactivate(spa);
4772		spa_remove(spa);
4773		mutex_exit(&spa_namespace_lock);
4774		return (error);
4775	}
4776
4777	/*
4778	 * Get the list of spares, if specified.
4779	 */
4780	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4781	    &spares, &nspares) == 0) {
4782		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4783		    KM_SLEEP) == 0);
4784		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4785		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4786		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4787		spa_load_spares(spa);
4788		spa_config_exit(spa, SCL_ALL, FTAG);
4789		spa->spa_spares.sav_sync = B_TRUE;
4790	}
4791
4792	/*
4793	 * Get the list of level 2 cache devices, if specified.
4794	 */
4795	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4796	    &l2cache, &nl2cache) == 0) {
4797		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4798		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4799		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4800		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4801		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4802		spa_load_l2cache(spa);
4803		spa_config_exit(spa, SCL_ALL, FTAG);
4804		spa->spa_l2cache.sav_sync = B_TRUE;
4805	}
4806
4807	spa->spa_is_initializing = B_TRUE;
4808	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4809	spa->spa_meta_objset = dp->dp_meta_objset;
4810	spa->spa_is_initializing = B_FALSE;
4811
4812	/*
4813	 * Create DDTs (dedup tables).
4814	 */
4815	ddt_create(spa);
4816
4817	spa_update_dspace(spa);
4818
4819	tx = dmu_tx_create_assigned(dp, txg);
4820
4821	/*
4822	 * Create the pool config object.
4823	 */
4824	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4825	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4826	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4827
4828	if (zap_add(spa->spa_meta_objset,
4829	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4830	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4831		cmn_err(CE_PANIC, "failed to add pool config");
4832	}
4833
4834	if (spa_version(spa) >= SPA_VERSION_FEATURES)
4835		spa_feature_create_zap_objects(spa, tx);
4836
4837	if (zap_add(spa->spa_meta_objset,
4838	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4839	    sizeof (uint64_t), 1, &version, tx) != 0) {
4840		cmn_err(CE_PANIC, "failed to add pool version");
4841	}
4842
4843	/* Newly created pools with the right version are always deflated. */
4844	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4845		spa->spa_deflate = TRUE;
4846		if (zap_add(spa->spa_meta_objset,
4847		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4848		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4849			cmn_err(CE_PANIC, "failed to add deflate");
4850		}
4851	}
4852
4853	/*
4854	 * Create the deferred-free bpobj.  Turn off compression
4855	 * because sync-to-convergence takes longer if the blocksize
4856	 * keeps changing.
4857	 */
4858	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4859	dmu_object_set_compress(spa->spa_meta_objset, obj,
4860	    ZIO_COMPRESS_OFF, tx);
4861	if (zap_add(spa->spa_meta_objset,
4862	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4863	    sizeof (uint64_t), 1, &obj, tx) != 0) {
4864		cmn_err(CE_PANIC, "failed to add bpobj");
4865	}
4866	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4867	    spa->spa_meta_objset, obj));
4868
4869	/*
4870	 * Create the pool's history object.
4871	 */
4872	if (version >= SPA_VERSION_ZPOOL_HISTORY)
4873		spa_history_create_obj(spa, tx);
4874
4875	/*
4876	 * Generate some random noise for salted checksums to operate on.
4877	 */
4878	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4879	    sizeof (spa->spa_cksum_salt.zcs_bytes));
4880
4881	/*
4882	 * Set pool properties.
4883	 */
4884	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4885	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4886	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4887	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4888
4889	if (props != NULL) {
4890		spa_configfile_set(spa, props, B_FALSE);
4891		spa_sync_props(props, tx);
4892	}
4893
4894	dmu_tx_commit(tx);
4895
4896	spa->spa_sync_on = B_TRUE;
4897	txg_sync_start(spa->spa_dsl_pool);
4898
4899	/*
4900	 * We explicitly wait for the first transaction to complete so that our
4901	 * bean counters are appropriately updated.
4902	 */
4903	txg_wait_synced(spa->spa_dsl_pool, txg);
4904
4905	spa_spawn_aux_threads(spa);
4906
4907	spa_write_cachefile(spa, B_FALSE, B_TRUE);
4908	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4909
4910	spa_history_log_version(spa, "create");
4911
4912	/*
4913	 * Don't count references from objsets that are already closed
4914	 * and are making their way through the eviction process.
4915	 */
4916	spa_evicting_os_wait(spa);
4917	spa->spa_minref = refcount_count(&spa->spa_refcount);
4918	spa->spa_load_state = SPA_LOAD_NONE;
4919
4920	mutex_exit(&spa_namespace_lock);
4921
4922	return (0);
4923}
4924
4925#ifdef _KERNEL
4926#ifdef illumos
4927/*
4928 * Get the root pool information from the root disk, then import the root pool
4929 * during the system boot up time.
4930 */
4931extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4932
4933static nvlist_t *
4934spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4935{
4936	nvlist_t *config;
4937	nvlist_t *nvtop, *nvroot;
4938	uint64_t pgid;
4939
4940	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4941		return (NULL);
4942
4943	/*
4944	 * Add this top-level vdev to the child array.
4945	 */
4946	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4947	    &nvtop) == 0);
4948	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4949	    &pgid) == 0);
4950	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4951
4952	/*
4953	 * Put this pool's top-level vdevs into a root vdev.
4954	 */
4955	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4956	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4957	    VDEV_TYPE_ROOT) == 0);
4958	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4959	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4960	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4961	    &nvtop, 1) == 0);
4962
4963	/*
4964	 * Replace the existing vdev_tree with the new root vdev in
4965	 * this pool's configuration (remove the old, add the new).
4966	 */
4967	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4968	nvlist_free(nvroot);
4969	return (config);
4970}
4971
4972/*
4973 * Walk the vdev tree and see if we can find a device with "better"
4974 * configuration. A configuration is "better" if the label on that
4975 * device has a more recent txg.
4976 */
4977static void
4978spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4979{
4980	for (int c = 0; c < vd->vdev_children; c++)
4981		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4982
4983	if (vd->vdev_ops->vdev_op_leaf) {
4984		nvlist_t *label;
4985		uint64_t label_txg;
4986
4987		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4988		    &label) != 0)
4989			return;
4990
4991		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4992		    &label_txg) == 0);
4993
4994		/*
4995		 * Do we have a better boot device?
4996		 */
4997		if (label_txg > *txg) {
4998			*txg = label_txg;
4999			*avd = vd;
5000		}
5001		nvlist_free(label);
5002	}
5003}
5004
5005/*
5006 * Import a root pool.
5007 *
5008 * For x86. devpath_list will consist of devid and/or physpath name of
5009 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5010 * The GRUB "findroot" command will return the vdev we should boot.
5011 *
5012 * For Sparc, devpath_list consists the physpath name of the booting device
5013 * no matter the rootpool is a single device pool or a mirrored pool.
5014 * e.g.
5015 *	"/pci@1f,0/ide@d/disk@0,0:a"
5016 */
5017int
5018spa_import_rootpool(char *devpath, char *devid)
5019{
5020	spa_t *spa;
5021	vdev_t *rvd, *bvd, *avd = NULL;
5022	nvlist_t *config, *nvtop;
5023	uint64_t guid, txg;
5024	char *pname;
5025	int error;
5026
5027	/*
5028	 * Read the label from the boot device and generate a configuration.
5029	 */
5030	config = spa_generate_rootconf(devpath, devid, &guid);
5031#if defined(_OBP) && defined(_KERNEL)
5032	if (config == NULL) {
5033		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5034			/* iscsi boot */
5035			get_iscsi_bootpath_phy(devpath);
5036			config = spa_generate_rootconf(devpath, devid, &guid);
5037		}
5038	}
5039#endif
5040	if (config == NULL) {
5041		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5042		    devpath);
5043		return (SET_ERROR(EIO));
5044	}
5045
5046	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5047	    &pname) == 0);
5048	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5049
5050	mutex_enter(&spa_namespace_lock);
5051	if ((spa = spa_lookup(pname)) != NULL) {
5052		/*
5053		 * Remove the existing root pool from the namespace so that we
5054		 * can replace it with the correct config we just read in.
5055		 */
5056		spa_remove(spa);
5057	}
5058
5059	spa = spa_add(pname, config, NULL);
5060	spa->spa_is_root = B_TRUE;
5061	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5062	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5063	    &spa->spa_ubsync.ub_version) != 0)
5064		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5065
5066	/*
5067	 * Build up a vdev tree based on the boot device's label config.
5068	 */
5069	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5070	    &nvtop) == 0);
5071	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5072	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5073	    VDEV_ALLOC_ROOTPOOL);
5074	spa_config_exit(spa, SCL_ALL, FTAG);
5075	if (error) {
5076		mutex_exit(&spa_namespace_lock);
5077		nvlist_free(config);
5078		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5079		    pname);
5080		return (error);
5081	}
5082
5083	/*
5084	 * Get the boot vdev.
5085	 */
5086	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5087		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5088		    (u_longlong_t)guid);
5089		error = SET_ERROR(ENOENT);
5090		goto out;
5091	}
5092
5093	/*
5094	 * Determine if there is a better boot device.
5095	 */
5096	avd = bvd;
5097	spa_alt_rootvdev(rvd, &avd, &txg);
5098	if (avd != bvd) {
5099		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5100		    "try booting from '%s'", avd->vdev_path);
5101		error = SET_ERROR(EINVAL);
5102		goto out;
5103	}
5104
5105	/*
5106	 * If the boot device is part of a spare vdev then ensure that
5107	 * we're booting off the active spare.
5108	 */
5109	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5110	    !bvd->vdev_isspare) {
5111		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5112		    "try booting from '%s'",
5113		    bvd->vdev_parent->
5114		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5115		error = SET_ERROR(EINVAL);
5116		goto out;
5117	}
5118
5119	error = 0;
5120out:
5121	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5122	vdev_free(rvd);
5123	spa_config_exit(spa, SCL_ALL, FTAG);
5124	mutex_exit(&spa_namespace_lock);
5125
5126	nvlist_free(config);
5127	return (error);
5128}
5129
5130#else	/* !illumos */
5131
5132extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
5133    uint64_t *count);
5134
5135static nvlist_t *
5136spa_generate_rootconf(const char *name)
5137{
5138	nvlist_t **configs, **tops;
5139	nvlist_t *config;
5140	nvlist_t *best_cfg, *nvtop, *nvroot;
5141	uint64_t *holes;
5142	uint64_t best_txg;
5143	uint64_t nchildren;
5144	uint64_t pgid;
5145	uint64_t count;
5146	uint64_t i;
5147	uint_t   nholes;
5148
5149	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
5150		return (NULL);
5151
5152	ASSERT3U(count, !=, 0);
5153	best_txg = 0;
5154	for (i = 0; i < count; i++) {
5155		uint64_t txg;
5156
5157		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
5158		    &txg) == 0);
5159		if (txg > best_txg) {
5160			best_txg = txg;
5161			best_cfg = configs[i];
5162		}
5163	}
5164
5165	nchildren = 1;
5166	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
5167	holes = NULL;
5168	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
5169	    &holes, &nholes);
5170
5171	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
5172	for (i = 0; i < nchildren; i++) {
5173		if (i >= count)
5174			break;
5175		if (configs[i] == NULL)
5176			continue;
5177		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
5178		    &nvtop) == 0);
5179		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
5180	}
5181	for (i = 0; holes != NULL && i < nholes; i++) {
5182		if (i >= nchildren)
5183			continue;
5184		if (tops[holes[i]] != NULL)
5185			continue;
5186		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
5187		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
5188		    VDEV_TYPE_HOLE) == 0);
5189		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
5190		    holes[i]) == 0);
5191		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
5192		    0) == 0);
5193	}
5194	for (i = 0; i < nchildren; i++) {
5195		if (tops[i] != NULL)
5196			continue;
5197		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
5198		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
5199		    VDEV_TYPE_MISSING) == 0);
5200		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
5201		    i) == 0);
5202		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
5203		    0) == 0);
5204	}
5205
5206	/*
5207	 * Create pool config based on the best vdev config.
5208	 */
5209	nvlist_dup(best_cfg, &config, KM_SLEEP);
5210
5211	/*
5212	 * Put this pool's top-level vdevs into a root vdev.
5213	 */
5214	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5215	    &pgid) == 0);
5216	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5217	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5218	    VDEV_TYPE_ROOT) == 0);
5219	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5220	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5221	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5222	    tops, nchildren) == 0);
5223
5224	/*
5225	 * Replace the existing vdev_tree with the new root vdev in
5226	 * this pool's configuration (remove the old, add the new).
5227	 */
5228	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5229
5230	/*
5231	 * Drop vdev config elements that should not be present at pool level.
5232	 */
5233	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
5234	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
5235
5236	for (i = 0; i < count; i++)
5237		nvlist_free(configs[i]);
5238	kmem_free(configs, count * sizeof(void *));
5239	for (i = 0; i < nchildren; i++)
5240		nvlist_free(tops[i]);
5241	kmem_free(tops, nchildren * sizeof(void *));
5242	nvlist_free(nvroot);
5243	return (config);
5244}
5245
5246int
5247spa_import_rootpool(const char *name)
5248{
5249	spa_t *spa;
5250	vdev_t *rvd, *bvd, *avd = NULL;
5251	nvlist_t *config, *nvtop;
5252	uint64_t txg;
5253	char *pname;
5254	int error;
5255
5256	/*
5257	 * Read the label from the boot device and generate a configuration.
5258	 */
5259	config = spa_generate_rootconf(name);
5260
5261	mutex_enter(&spa_namespace_lock);
5262	if (config != NULL) {
5263		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5264		    &pname) == 0 && strcmp(name, pname) == 0);
5265		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
5266		    == 0);
5267
5268		if ((spa = spa_lookup(pname)) != NULL) {
5269			/*
5270			 * The pool could already be imported,
5271			 * e.g., after reboot -r.
5272			 */
5273			if (spa->spa_state == POOL_STATE_ACTIVE) {
5274				mutex_exit(&spa_namespace_lock);
5275				nvlist_free(config);
5276				return (0);
5277			}
5278
5279			/*
5280			 * Remove the existing root pool from the namespace so
5281			 * that we can replace it with the correct config
5282			 * we just read in.
5283			 */
5284			spa_remove(spa);
5285		}
5286		spa = spa_add(pname, config, NULL);
5287
5288		/*
5289		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
5290		 * via spa_version().
5291		 */
5292		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5293		    &spa->spa_ubsync.ub_version) != 0)
5294			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5295	} else if ((spa = spa_lookup(name)) == NULL) {
5296		mutex_exit(&spa_namespace_lock);
5297		nvlist_free(config);
5298		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
5299		    name);
5300		return (EIO);
5301	} else {
5302		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
5303	}
5304	spa->spa_is_root = B_TRUE;
5305	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5306
5307	/*
5308	 * Build up a vdev tree based on the boot device's label config.
5309	 */
5310	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5311	    &nvtop) == 0);
5312	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5313	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5314	    VDEV_ALLOC_ROOTPOOL);
5315	spa_config_exit(spa, SCL_ALL, FTAG);
5316	if (error) {
5317		mutex_exit(&spa_namespace_lock);
5318		nvlist_free(config);
5319		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5320		    pname);
5321		return (error);
5322	}
5323
5324	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5325	vdev_free(rvd);
5326	spa_config_exit(spa, SCL_ALL, FTAG);
5327	mutex_exit(&spa_namespace_lock);
5328
5329	nvlist_free(config);
5330	return (0);
5331}
5332
5333#endif	/* illumos */
5334#endif	/* _KERNEL */
5335
5336/*
5337 * Import a non-root pool into the system.
5338 */
5339int
5340spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5341{
5342	spa_t *spa;
5343	char *altroot = NULL;
5344	spa_load_state_t state = SPA_LOAD_IMPORT;
5345	zpool_load_policy_t policy;
5346	uint64_t mode = spa_mode_global;
5347	uint64_t readonly = B_FALSE;
5348	int error;
5349	nvlist_t *nvroot;
5350	nvlist_t **spares, **l2cache;
5351	uint_t nspares, nl2cache;
5352
5353	/*
5354	 * If a pool with this name exists, return failure.
5355	 */
5356	mutex_enter(&spa_namespace_lock);
5357	if (spa_lookup(pool) != NULL) {
5358		mutex_exit(&spa_namespace_lock);
5359		return (SET_ERROR(EEXIST));
5360	}
5361
5362	/*
5363	 * Create and initialize the spa structure.
5364	 */
5365	(void) nvlist_lookup_string(props,
5366	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5367	(void) nvlist_lookup_uint64(props,
5368	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5369	if (readonly)
5370		mode = FREAD;
5371	spa = spa_add(pool, config, altroot);
5372	spa->spa_import_flags = flags;
5373
5374	/*
5375	 * Verbatim import - Take a pool and insert it into the namespace
5376	 * as if it had been loaded at boot.
5377	 */
5378	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5379		if (props != NULL)
5380			spa_configfile_set(spa, props, B_FALSE);
5381
5382		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5383		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5384		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5385		mutex_exit(&spa_namespace_lock);
5386		return (0);
5387	}
5388
5389	spa_activate(spa, mode);
5390
5391	/*
5392	 * Don't start async tasks until we know everything is healthy.
5393	 */
5394	spa_async_suspend(spa);
5395
5396	zpool_get_load_policy(config, &policy);
5397	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5398		state = SPA_LOAD_RECOVER;
5399
5400	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5401
5402	if (state != SPA_LOAD_RECOVER) {
5403		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5404		zfs_dbgmsg("spa_import: importing %s", pool);
5405	} else {
5406		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5407		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5408	}
5409	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5410
5411	/*
5412	 * Propagate anything learned while loading the pool and pass it
5413	 * back to caller (i.e. rewind info, missing devices, etc).
5414	 */
5415	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5416	    spa->spa_load_info) == 0);
5417
5418	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5419	/*
5420	 * Toss any existing sparelist, as it doesn't have any validity
5421	 * anymore, and conflicts with spa_has_spare().
5422	 */
5423	if (spa->spa_spares.sav_config) {
5424		nvlist_free(spa->spa_spares.sav_config);
5425		spa->spa_spares.sav_config = NULL;
5426		spa_load_spares(spa);
5427	}
5428	if (spa->spa_l2cache.sav_config) {
5429		nvlist_free(spa->spa_l2cache.sav_config);
5430		spa->spa_l2cache.sav_config = NULL;
5431		spa_load_l2cache(spa);
5432	}
5433
5434	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5435	    &nvroot) == 0);
5436	if (error == 0)
5437		error = spa_validate_aux(spa, nvroot, -1ULL,
5438		    VDEV_ALLOC_SPARE);
5439	if (error == 0)
5440		error = spa_validate_aux(spa, nvroot, -1ULL,
5441		    VDEV_ALLOC_L2CACHE);
5442	spa_config_exit(spa, SCL_ALL, FTAG);
5443
5444	if (props != NULL)
5445		spa_configfile_set(spa, props, B_FALSE);
5446
5447	if (error != 0 || (props && spa_writeable(spa) &&
5448	    (error = spa_prop_set(spa, props)))) {
5449		spa_unload(spa);
5450		spa_deactivate(spa);
5451		spa_remove(spa);
5452		mutex_exit(&spa_namespace_lock);
5453		return (error);
5454	}
5455
5456	spa_async_resume(spa);
5457
5458	/*
5459	 * Override any spares and level 2 cache devices as specified by
5460	 * the user, as these may have correct device names/devids, etc.
5461	 */
5462	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5463	    &spares, &nspares) == 0) {
5464		if (spa->spa_spares.sav_config)
5465			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5466			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5467		else
5468			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5469			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5470		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5471		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5472		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5473		spa_load_spares(spa);
5474		spa_config_exit(spa, SCL_ALL, FTAG);
5475		spa->spa_spares.sav_sync = B_TRUE;
5476	}
5477	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5478	    &l2cache, &nl2cache) == 0) {
5479		if (spa->spa_l2cache.sav_config)
5480			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5481			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5482		else
5483			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5484			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5485		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5486		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5487		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5488		spa_load_l2cache(spa);
5489		spa_config_exit(spa, SCL_ALL, FTAG);
5490		spa->spa_l2cache.sav_sync = B_TRUE;
5491	}
5492
5493	/*
5494	 * Check for any removed devices.
5495	 */
5496	if (spa->spa_autoreplace) {
5497		spa_aux_check_removed(&spa->spa_spares);
5498		spa_aux_check_removed(&spa->spa_l2cache);
5499	}
5500
5501	if (spa_writeable(spa)) {
5502		/*
5503		 * Update the config cache to include the newly-imported pool.
5504		 */
5505		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5506	}
5507
5508	/*
5509	 * It's possible that the pool was expanded while it was exported.
5510	 * We kick off an async task to handle this for us.
5511	 */
5512	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5513
5514	spa_history_log_version(spa, "import");
5515
5516	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5517
5518	mutex_exit(&spa_namespace_lock);
5519
5520#ifdef __FreeBSD__
5521#ifdef _KERNEL
5522	zvol_create_minors(pool);
5523#endif
5524#endif
5525	return (0);
5526}
5527
5528nvlist_t *
5529spa_tryimport(nvlist_t *tryconfig)
5530{
5531	nvlist_t *config = NULL;
5532	char *poolname, *cachefile;
5533	spa_t *spa;
5534	uint64_t state;
5535	int error;
5536	zpool_load_policy_t policy;
5537
5538	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5539		return (NULL);
5540
5541	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5542		return (NULL);
5543
5544	/*
5545	 * Create and initialize the spa structure.
5546	 */
5547	mutex_enter(&spa_namespace_lock);
5548	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5549	spa_activate(spa, FREAD);
5550
5551	/*
5552	 * Rewind pool if a max txg was provided.
5553	 */
5554	zpool_get_load_policy(spa->spa_config, &policy);
5555	if (policy.zlp_txg != UINT64_MAX) {
5556		spa->spa_load_max_txg = policy.zlp_txg;
5557		spa->spa_extreme_rewind = B_TRUE;
5558		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5559		    poolname, (longlong_t)policy.zlp_txg);
5560	} else {
5561		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5562	}
5563
5564	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5565	    == 0) {
5566		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5567		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5568	} else {
5569		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5570	}
5571
5572	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5573
5574	/*
5575	 * If 'tryconfig' was at least parsable, return the current config.
5576	 */
5577	if (spa->spa_root_vdev != NULL) {
5578		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5579		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5580		    poolname) == 0);
5581		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5582		    state) == 0);
5583		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5584		    spa->spa_uberblock.ub_timestamp) == 0);
5585		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5586		    spa->spa_load_info) == 0);
5587
5588		/*
5589		 * If the bootfs property exists on this pool then we
5590		 * copy it out so that external consumers can tell which
5591		 * pools are bootable.
5592		 */
5593		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5594			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5595
5596			/*
5597			 * We have to play games with the name since the
5598			 * pool was opened as TRYIMPORT_NAME.
5599			 */
5600			if (dsl_dsobj_to_dsname(spa_name(spa),
5601			    spa->spa_bootfs, tmpname) == 0) {
5602				char *cp;
5603				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5604
5605				cp = strchr(tmpname, '/');
5606				if (cp == NULL) {
5607					(void) strlcpy(dsname, tmpname,
5608					    MAXPATHLEN);
5609				} else {
5610					(void) snprintf(dsname, MAXPATHLEN,
5611					    "%s/%s", poolname, ++cp);
5612				}
5613				VERIFY(nvlist_add_string(config,
5614				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5615				kmem_free(dsname, MAXPATHLEN);
5616			}
5617			kmem_free(tmpname, MAXPATHLEN);
5618		}
5619
5620		/*
5621		 * Add the list of hot spares and level 2 cache devices.
5622		 */
5623		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5624		spa_add_spares(spa, config);
5625		spa_add_l2cache(spa, config);
5626		spa_config_exit(spa, SCL_CONFIG, FTAG);
5627	}
5628
5629	spa_unload(spa);
5630	spa_deactivate(spa);
5631	spa_remove(spa);
5632	mutex_exit(&spa_namespace_lock);
5633
5634	return (config);
5635}
5636
5637/*
5638 * Pool export/destroy
5639 *
5640 * The act of destroying or exporting a pool is very simple.  We make sure there
5641 * is no more pending I/O and any references to the pool are gone.  Then, we
5642 * update the pool state and sync all the labels to disk, removing the
5643 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5644 * we don't sync the labels or remove the configuration cache.
5645 */
5646static int
5647spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5648    boolean_t force, boolean_t hardforce)
5649{
5650	spa_t *spa;
5651
5652	if (oldconfig)
5653		*oldconfig = NULL;
5654
5655	if (!(spa_mode_global & FWRITE))
5656		return (SET_ERROR(EROFS));
5657
5658	mutex_enter(&spa_namespace_lock);
5659	if ((spa = spa_lookup(pool)) == NULL) {
5660		mutex_exit(&spa_namespace_lock);
5661		return (SET_ERROR(ENOENT));
5662	}
5663
5664	/*
5665	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5666	 * reacquire the namespace lock, and see if we can export.
5667	 */
5668	spa_open_ref(spa, FTAG);
5669	mutex_exit(&spa_namespace_lock);
5670	spa_async_suspend(spa);
5671	mutex_enter(&spa_namespace_lock);
5672	spa_close(spa, FTAG);
5673
5674	/*
5675	 * The pool will be in core if it's openable,
5676	 * in which case we can modify its state.
5677	 */
5678	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5679		/*
5680		 * Objsets may be open only because they're dirty, so we
5681		 * have to force it to sync before checking spa_refcnt.
5682		 */
5683		txg_wait_synced(spa->spa_dsl_pool, 0);
5684		spa_evicting_os_wait(spa);
5685
5686		/*
5687		 * A pool cannot be exported or destroyed if there are active
5688		 * references.  If we are resetting a pool, allow references by
5689		 * fault injection handlers.
5690		 */
5691		if (!spa_refcount_zero(spa) ||
5692		    (spa->spa_inject_ref != 0 &&
5693		    new_state != POOL_STATE_UNINITIALIZED)) {
5694			spa_async_resume(spa);
5695			mutex_exit(&spa_namespace_lock);
5696			return (SET_ERROR(EBUSY));
5697		}
5698
5699		/*
5700		 * A pool cannot be exported if it has an active shared spare.
5701		 * This is to prevent other pools stealing the active spare
5702		 * from an exported pool. At user's own will, such pool can
5703		 * be forcedly exported.
5704		 */
5705		if (!force && new_state == POOL_STATE_EXPORTED &&
5706		    spa_has_active_shared_spare(spa)) {
5707			spa_async_resume(spa);
5708			mutex_exit(&spa_namespace_lock);
5709			return (SET_ERROR(EXDEV));
5710		}
5711
5712		/*
5713		 * We want this to be reflected on every label,
5714		 * so mark them all dirty.  spa_unload() will do the
5715		 * final sync that pushes these changes out.
5716		 */
5717		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5718			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5719			spa->spa_state = new_state;
5720			spa->spa_final_txg = spa_last_synced_txg(spa) +
5721			    TXG_DEFER_SIZE + 1;
5722			vdev_config_dirty(spa->spa_root_vdev);
5723			spa_config_exit(spa, SCL_ALL, FTAG);
5724		}
5725	}
5726
5727	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5728
5729	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5730		spa_unload(spa);
5731		spa_deactivate(spa);
5732	}
5733
5734	if (oldconfig && spa->spa_config)
5735		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5736
5737	if (new_state != POOL_STATE_UNINITIALIZED) {
5738		if (!hardforce)
5739			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5740		spa_remove(spa);
5741	}
5742	mutex_exit(&spa_namespace_lock);
5743
5744	return (0);
5745}
5746
5747/*
5748 * Destroy a storage pool.
5749 */
5750int
5751spa_destroy(char *pool)
5752{
5753	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5754	    B_FALSE, B_FALSE));
5755}
5756
5757/*
5758 * Export a storage pool.
5759 */
5760int
5761spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5762    boolean_t hardforce)
5763{
5764	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5765	    force, hardforce));
5766}
5767
5768/*
5769 * Similar to spa_export(), this unloads the spa_t without actually removing it
5770 * from the namespace in any way.
5771 */
5772int
5773spa_reset(char *pool)
5774{
5775	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5776	    B_FALSE, B_FALSE));
5777}
5778
5779/*
5780 * ==========================================================================
5781 * Device manipulation
5782 * ==========================================================================
5783 */
5784
5785/*
5786 * Add a device to a storage pool.
5787 */
5788int
5789spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5790{
5791	uint64_t txg, id;
5792	int error;
5793	vdev_t *rvd = spa->spa_root_vdev;
5794	vdev_t *vd, *tvd;
5795	nvlist_t **spares, **l2cache;
5796	uint_t nspares, nl2cache;
5797
5798	ASSERT(spa_writeable(spa));
5799
5800	txg = spa_vdev_enter(spa);
5801
5802	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5803	    VDEV_ALLOC_ADD)) != 0)
5804		return (spa_vdev_exit(spa, NULL, txg, error));
5805
5806	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
5807
5808	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5809	    &nspares) != 0)
5810		nspares = 0;
5811
5812	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5813	    &nl2cache) != 0)
5814		nl2cache = 0;
5815
5816	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5817		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5818
5819	if (vd->vdev_children != 0 &&
5820	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5821		return (spa_vdev_exit(spa, vd, txg, error));
5822
5823	/*
5824	 * We must validate the spares and l2cache devices after checking the
5825	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5826	 */
5827	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5828		return (spa_vdev_exit(spa, vd, txg, error));
5829
5830	/*
5831	 * If we are in the middle of a device removal, we can only add
5832	 * devices which match the existing devices in the pool.
5833	 * If we are in the middle of a removal, or have some indirect
5834	 * vdevs, we can not add raidz toplevels.
5835	 */
5836	if (spa->spa_vdev_removal != NULL ||
5837	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5838		for (int c = 0; c < vd->vdev_children; c++) {
5839			tvd = vd->vdev_child[c];
5840			if (spa->spa_vdev_removal != NULL &&
5841			    tvd->vdev_ashift !=
5842			    spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
5843				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5844			}
5845			/* Fail if top level vdev is raidz */
5846			if (tvd->vdev_ops == &vdev_raidz_ops) {
5847				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5848			}
5849			/*
5850			 * Need the top level mirror to be
5851			 * a mirror of leaf vdevs only
5852			 */
5853			if (tvd->vdev_ops == &vdev_mirror_ops) {
5854				for (uint64_t cid = 0;
5855				    cid < tvd->vdev_children; cid++) {
5856					vdev_t *cvd = tvd->vdev_child[cid];
5857					if (!cvd->vdev_ops->vdev_op_leaf) {
5858						return (spa_vdev_exit(spa, vd,
5859						    txg, EINVAL));
5860					}
5861				}
5862			}
5863		}
5864	}
5865
5866	for (int c = 0; c < vd->vdev_children; c++) {
5867
5868		/*
5869		 * Set the vdev id to the first hole, if one exists.
5870		 */
5871		for (id = 0; id < rvd->vdev_children; id++) {
5872			if (rvd->vdev_child[id]->vdev_ishole) {
5873				vdev_free(rvd->vdev_child[id]);
5874				break;
5875			}
5876		}
5877		tvd = vd->vdev_child[c];
5878		vdev_remove_child(vd, tvd);
5879		tvd->vdev_id = id;
5880		vdev_add_child(rvd, tvd);
5881		vdev_config_dirty(tvd);
5882	}
5883
5884	if (nspares != 0) {
5885		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5886		    ZPOOL_CONFIG_SPARES);
5887		spa_load_spares(spa);
5888		spa->spa_spares.sav_sync = B_TRUE;
5889	}
5890
5891	if (nl2cache != 0) {
5892		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5893		    ZPOOL_CONFIG_L2CACHE);
5894		spa_load_l2cache(spa);
5895		spa->spa_l2cache.sav_sync = B_TRUE;
5896	}
5897
5898	/*
5899	 * We have to be careful when adding new vdevs to an existing pool.
5900	 * If other threads start allocating from these vdevs before we
5901	 * sync the config cache, and we lose power, then upon reboot we may
5902	 * fail to open the pool because there are DVAs that the config cache
5903	 * can't translate.  Therefore, we first add the vdevs without
5904	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5905	 * and then let spa_config_update() initialize the new metaslabs.
5906	 *
5907	 * spa_load() checks for added-but-not-initialized vdevs, so that
5908	 * if we lose power at any point in this sequence, the remaining
5909	 * steps will be completed the next time we load the pool.
5910	 */
5911	(void) spa_vdev_exit(spa, vd, txg, 0);
5912
5913	mutex_enter(&spa_namespace_lock);
5914	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5915	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5916	mutex_exit(&spa_namespace_lock);
5917
5918	return (0);
5919}
5920
5921/*
5922 * Attach a device to a mirror.  The arguments are the path to any device
5923 * in the mirror, and the nvroot for the new device.  If the path specifies
5924 * a device that is not mirrored, we automatically insert the mirror vdev.
5925 *
5926 * If 'replacing' is specified, the new device is intended to replace the
5927 * existing device; in this case the two devices are made into their own
5928 * mirror using the 'replacing' vdev, which is functionally identical to
5929 * the mirror vdev (it actually reuses all the same ops) but has a few
5930 * extra rules: you can't attach to it after it's been created, and upon
5931 * completion of resilvering, the first disk (the one being replaced)
5932 * is automatically detached.
5933 */
5934int
5935spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5936{
5937	uint64_t txg, dtl_max_txg;
5938	vdev_t *rvd = spa->spa_root_vdev;
5939	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5940	vdev_ops_t *pvops;
5941	char *oldvdpath, *newvdpath;
5942	int newvd_isspare;
5943	int error;
5944
5945	ASSERT(spa_writeable(spa));
5946
5947	txg = spa_vdev_enter(spa);
5948
5949	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5950
5951	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5952	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5953		error = (spa_has_checkpoint(spa)) ?
5954		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5955		return (spa_vdev_exit(spa, NULL, txg, error));
5956	}
5957
5958	if (spa->spa_vdev_removal != NULL ||
5959	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5960		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5961	}
5962
5963	if (oldvd == NULL)
5964		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5965
5966	if (!oldvd->vdev_ops->vdev_op_leaf)
5967		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5968
5969	pvd = oldvd->vdev_parent;
5970
5971	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5972	    VDEV_ALLOC_ATTACH)) != 0)
5973		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5974
5975	if (newrootvd->vdev_children != 1)
5976		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5977
5978	newvd = newrootvd->vdev_child[0];
5979
5980	if (!newvd->vdev_ops->vdev_op_leaf)
5981		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5982
5983	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5984		return (spa_vdev_exit(spa, newrootvd, txg, error));
5985
5986	/*
5987	 * Spares can't replace logs
5988	 */
5989	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5990		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5991
5992	if (!replacing) {
5993		/*
5994		 * For attach, the only allowable parent is a mirror or the root
5995		 * vdev.
5996		 */
5997		if (pvd->vdev_ops != &vdev_mirror_ops &&
5998		    pvd->vdev_ops != &vdev_root_ops)
5999			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6000
6001		pvops = &vdev_mirror_ops;
6002	} else {
6003		/*
6004		 * Active hot spares can only be replaced by inactive hot
6005		 * spares.
6006		 */
6007		if (pvd->vdev_ops == &vdev_spare_ops &&
6008		    oldvd->vdev_isspare &&
6009		    !spa_has_spare(spa, newvd->vdev_guid))
6010			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6011
6012		/*
6013		 * If the source is a hot spare, and the parent isn't already a
6014		 * spare, then we want to create a new hot spare.  Otherwise, we
6015		 * want to create a replacing vdev.  The user is not allowed to
6016		 * attach to a spared vdev child unless the 'isspare' state is
6017		 * the same (spare replaces spare, non-spare replaces
6018		 * non-spare).
6019		 */
6020		if (pvd->vdev_ops == &vdev_replacing_ops &&
6021		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6022			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6023		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6024		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6025			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6026		}
6027
6028		if (newvd->vdev_isspare)
6029			pvops = &vdev_spare_ops;
6030		else
6031			pvops = &vdev_replacing_ops;
6032	}
6033
6034	/*
6035	 * Make sure the new device is big enough.
6036	 */
6037	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6038		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6039
6040	/*
6041	 * The new device cannot have a higher alignment requirement
6042	 * than the top-level vdev.
6043	 */
6044	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6045		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6046
6047	/*
6048	 * If this is an in-place replacement, update oldvd's path and devid
6049	 * to make it distinguishable from newvd, and unopenable from now on.
6050	 */
6051	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6052		spa_strfree(oldvd->vdev_path);
6053		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6054		    KM_SLEEP);
6055		(void) sprintf(oldvd->vdev_path, "%s/%s",
6056		    newvd->vdev_path, "old");
6057		if (oldvd->vdev_devid != NULL) {
6058			spa_strfree(oldvd->vdev_devid);
6059			oldvd->vdev_devid = NULL;
6060		}
6061	}
6062
6063	/* mark the device being resilvered */
6064	newvd->vdev_resilver_txg = txg;
6065
6066	/*
6067	 * If the parent is not a mirror, or if we're replacing, insert the new
6068	 * mirror/replacing/spare vdev above oldvd.
6069	 */
6070	if (pvd->vdev_ops != pvops)
6071		pvd = vdev_add_parent(oldvd, pvops);
6072
6073	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6074	ASSERT(pvd->vdev_ops == pvops);
6075	ASSERT(oldvd->vdev_parent == pvd);
6076
6077	/*
6078	 * Extract the new device from its root and add it to pvd.
6079	 */
6080	vdev_remove_child(newrootvd, newvd);
6081	newvd->vdev_id = pvd->vdev_children;
6082	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6083	vdev_add_child(pvd, newvd);
6084
6085	tvd = newvd->vdev_top;
6086	ASSERT(pvd->vdev_top == tvd);
6087	ASSERT(tvd->vdev_parent == rvd);
6088
6089	vdev_config_dirty(tvd);
6090
6091	/*
6092	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6093	 * for any dmu_sync-ed blocks.  It will propagate upward when
6094	 * spa_vdev_exit() calls vdev_dtl_reassess().
6095	 */
6096	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6097
6098	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6099	    dtl_max_txg - TXG_INITIAL);
6100
6101	if (newvd->vdev_isspare) {
6102		spa_spare_activate(newvd);
6103		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6104	}
6105
6106	oldvdpath = spa_strdup(oldvd->vdev_path);
6107	newvdpath = spa_strdup(newvd->vdev_path);
6108	newvd_isspare = newvd->vdev_isspare;
6109
6110	/*
6111	 * Mark newvd's DTL dirty in this txg.
6112	 */
6113	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6114
6115	/*
6116	 * Schedule the resilver to restart in the future. We do this to
6117	 * ensure that dmu_sync-ed blocks have been stitched into the
6118	 * respective datasets.
6119	 */
6120	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
6121
6122	if (spa->spa_bootfs)
6123		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6124
6125	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6126
6127	/*
6128	 * Commit the config
6129	 */
6130	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6131
6132	spa_history_log_internal(spa, "vdev attach", NULL,
6133	    "%s vdev=%s %s vdev=%s",
6134	    replacing && newvd_isspare ? "spare in" :
6135	    replacing ? "replace" : "attach", newvdpath,
6136	    replacing ? "for" : "to", oldvdpath);
6137
6138	spa_strfree(oldvdpath);
6139	spa_strfree(newvdpath);
6140
6141	return (0);
6142}
6143
6144/*
6145 * Detach a device from a mirror or replacing vdev.
6146 *
6147 * If 'replace_done' is specified, only detach if the parent
6148 * is a replacing vdev.
6149 */
6150int
6151spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6152{
6153	uint64_t txg;
6154	int error;
6155	vdev_t *rvd = spa->spa_root_vdev;
6156	vdev_t *vd, *pvd, *cvd, *tvd;
6157	boolean_t unspare = B_FALSE;
6158	uint64_t unspare_guid = 0;
6159	char *vdpath;
6160
6161	ASSERT(spa_writeable(spa));
6162
6163	txg = spa_vdev_enter(spa);
6164
6165	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6166
6167	/*
6168	 * Besides being called directly from the userland through the
6169	 * ioctl interface, spa_vdev_detach() can be potentially called
6170	 * at the end of spa_vdev_resilver_done().
6171	 *
6172	 * In the regular case, when we have a checkpoint this shouldn't
6173	 * happen as we never empty the DTLs of a vdev during the scrub
6174	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6175	 * should never get here when we have a checkpoint.
6176	 *
6177	 * That said, even in a case when we checkpoint the pool exactly
6178	 * as spa_vdev_resilver_done() calls this function everything
6179	 * should be fine as the resilver will return right away.
6180	 */
6181	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6182	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6183		error = (spa_has_checkpoint(spa)) ?
6184		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6185		return (spa_vdev_exit(spa, NULL, txg, error));
6186	}
6187
6188	if (vd == NULL)
6189		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6190
6191	if (!vd->vdev_ops->vdev_op_leaf)
6192		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6193
6194	pvd = vd->vdev_parent;
6195
6196	/*
6197	 * If the parent/child relationship is not as expected, don't do it.
6198	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6199	 * vdev that's replacing B with C.  The user's intent in replacing
6200	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6201	 * the replace by detaching C, the expected behavior is to end up
6202	 * M(A,B).  But suppose that right after deciding to detach C,
6203	 * the replacement of B completes.  We would have M(A,C), and then
6204	 * ask to detach C, which would leave us with just A -- not what
6205	 * the user wanted.  To prevent this, we make sure that the
6206	 * parent/child relationship hasn't changed -- in this example,
6207	 * that C's parent is still the replacing vdev R.
6208	 */
6209	if (pvd->vdev_guid != pguid && pguid != 0)
6210		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6211
6212	/*
6213	 * Only 'replacing' or 'spare' vdevs can be replaced.
6214	 */
6215	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6216	    pvd->vdev_ops != &vdev_spare_ops)
6217		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6218
6219	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6220	    spa_version(spa) >= SPA_VERSION_SPARES);
6221
6222	/*
6223	 * Only mirror, replacing, and spare vdevs support detach.
6224	 */
6225	if (pvd->vdev_ops != &vdev_replacing_ops &&
6226	    pvd->vdev_ops != &vdev_mirror_ops &&
6227	    pvd->vdev_ops != &vdev_spare_ops)
6228		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6229
6230	/*
6231	 * If this device has the only valid copy of some data,
6232	 * we cannot safely detach it.
6233	 */
6234	if (vdev_dtl_required(vd))
6235		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6236
6237	ASSERT(pvd->vdev_children >= 2);
6238
6239	/*
6240	 * If we are detaching the second disk from a replacing vdev, then
6241	 * check to see if we changed the original vdev's path to have "/old"
6242	 * at the end in spa_vdev_attach().  If so, undo that change now.
6243	 */
6244	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6245	    vd->vdev_path != NULL) {
6246		size_t len = strlen(vd->vdev_path);
6247
6248		for (int c = 0; c < pvd->vdev_children; c++) {
6249			cvd = pvd->vdev_child[c];
6250
6251			if (cvd == vd || cvd->vdev_path == NULL)
6252				continue;
6253
6254			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6255			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6256				spa_strfree(cvd->vdev_path);
6257				cvd->vdev_path = spa_strdup(vd->vdev_path);
6258				break;
6259			}
6260		}
6261	}
6262
6263	/*
6264	 * If we are detaching the original disk from a spare, then it implies
6265	 * that the spare should become a real disk, and be removed from the
6266	 * active spare list for the pool.
6267	 */
6268	if (pvd->vdev_ops == &vdev_spare_ops &&
6269	    vd->vdev_id == 0 &&
6270	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6271		unspare = B_TRUE;
6272
6273	/*
6274	 * Erase the disk labels so the disk can be used for other things.
6275	 * This must be done after all other error cases are handled,
6276	 * but before we disembowel vd (so we can still do I/O to it).
6277	 * But if we can't do it, don't treat the error as fatal --
6278	 * it may be that the unwritability of the disk is the reason
6279	 * it's being detached!
6280	 */
6281	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6282
6283	/*
6284	 * Remove vd from its parent and compact the parent's children.
6285	 */
6286	vdev_remove_child(pvd, vd);
6287	vdev_compact_children(pvd);
6288
6289	/*
6290	 * Remember one of the remaining children so we can get tvd below.
6291	 */
6292	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6293
6294	/*
6295	 * If we need to remove the remaining child from the list of hot spares,
6296	 * do it now, marking the vdev as no longer a spare in the process.
6297	 * We must do this before vdev_remove_parent(), because that can
6298	 * change the GUID if it creates a new toplevel GUID.  For a similar
6299	 * reason, we must remove the spare now, in the same txg as the detach;
6300	 * otherwise someone could attach a new sibling, change the GUID, and
6301	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6302	 */
6303	if (unspare) {
6304		ASSERT(cvd->vdev_isspare);
6305		spa_spare_remove(cvd);
6306		unspare_guid = cvd->vdev_guid;
6307		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6308		cvd->vdev_unspare = B_TRUE;
6309	}
6310
6311	/*
6312	 * If the parent mirror/replacing vdev only has one child,
6313	 * the parent is no longer needed.  Remove it from the tree.
6314	 */
6315	if (pvd->vdev_children == 1) {
6316		if (pvd->vdev_ops == &vdev_spare_ops)
6317			cvd->vdev_unspare = B_FALSE;
6318		vdev_remove_parent(cvd);
6319	}
6320
6321
6322	/*
6323	 * We don't set tvd until now because the parent we just removed
6324	 * may have been the previous top-level vdev.
6325	 */
6326	tvd = cvd->vdev_top;
6327	ASSERT(tvd->vdev_parent == rvd);
6328
6329	/*
6330	 * Reevaluate the parent vdev state.
6331	 */
6332	vdev_propagate_state(cvd);
6333
6334	/*
6335	 * If the 'autoexpand' property is set on the pool then automatically
6336	 * try to expand the size of the pool. For example if the device we
6337	 * just detached was smaller than the others, it may be possible to
6338	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6339	 * first so that we can obtain the updated sizes of the leaf vdevs.
6340	 */
6341	if (spa->spa_autoexpand) {
6342		vdev_reopen(tvd);
6343		vdev_expand(tvd, txg);
6344	}
6345
6346	vdev_config_dirty(tvd);
6347
6348	/*
6349	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6350	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6351	 * But first make sure we're not on any *other* txg's DTL list, to
6352	 * prevent vd from being accessed after it's freed.
6353	 */
6354	vdpath = spa_strdup(vd->vdev_path);
6355	for (int t = 0; t < TXG_SIZE; t++)
6356		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6357	vd->vdev_detached = B_TRUE;
6358	vdev_dirty(tvd, VDD_DTL, vd, txg);
6359
6360	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6361
6362	/* hang on to the spa before we release the lock */
6363	spa_open_ref(spa, FTAG);
6364
6365	error = spa_vdev_exit(spa, vd, txg, 0);
6366
6367	spa_history_log_internal(spa, "detach", NULL,
6368	    "vdev=%s", vdpath);
6369	spa_strfree(vdpath);
6370
6371	/*
6372	 * If this was the removal of the original device in a hot spare vdev,
6373	 * then we want to go through and remove the device from the hot spare
6374	 * list of every other pool.
6375	 */
6376	if (unspare) {
6377		spa_t *altspa = NULL;
6378
6379		mutex_enter(&spa_namespace_lock);
6380		while ((altspa = spa_next(altspa)) != NULL) {
6381			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6382			    altspa == spa)
6383				continue;
6384
6385			spa_open_ref(altspa, FTAG);
6386			mutex_exit(&spa_namespace_lock);
6387			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6388			mutex_enter(&spa_namespace_lock);
6389			spa_close(altspa, FTAG);
6390		}
6391		mutex_exit(&spa_namespace_lock);
6392
6393		/* search the rest of the vdevs for spares to remove */
6394		spa_vdev_resilver_done(spa);
6395	}
6396
6397	/* all done with the spa; OK to release */
6398	mutex_enter(&spa_namespace_lock);
6399	spa_close(spa, FTAG);
6400	mutex_exit(&spa_namespace_lock);
6401
6402	return (error);
6403}
6404
6405/*
6406 * Split a set of devices from their mirrors, and create a new pool from them.
6407 */
6408int
6409spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6410    nvlist_t *props, boolean_t exp)
6411{
6412	int error = 0;
6413	uint64_t txg, *glist;
6414	spa_t *newspa;
6415	uint_t c, children, lastlog;
6416	nvlist_t **child, *nvl, *tmp;
6417	dmu_tx_t *tx;
6418	char *altroot = NULL;
6419	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6420	boolean_t activate_slog;
6421
6422	ASSERT(spa_writeable(spa));
6423
6424	txg = spa_vdev_enter(spa);
6425
6426	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6427	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6428		error = (spa_has_checkpoint(spa)) ?
6429		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6430		return (spa_vdev_exit(spa, NULL, txg, error));
6431	}
6432
6433	/* clear the log and flush everything up to now */
6434	activate_slog = spa_passivate_log(spa);
6435	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6436	error = spa_reset_logs(spa);
6437	txg = spa_vdev_config_enter(spa);
6438
6439	if (activate_slog)
6440		spa_activate_log(spa);
6441
6442	if (error != 0)
6443		return (spa_vdev_exit(spa, NULL, txg, error));
6444
6445	/* check new spa name before going any further */
6446	if (spa_lookup(newname) != NULL)
6447		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6448
6449	/*
6450	 * scan through all the children to ensure they're all mirrors
6451	 */
6452	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6453	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6454	    &children) != 0)
6455		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6456
6457	/* first, check to ensure we've got the right child count */
6458	rvd = spa->spa_root_vdev;
6459	lastlog = 0;
6460	for (c = 0; c < rvd->vdev_children; c++) {
6461		vdev_t *vd = rvd->vdev_child[c];
6462
6463		/* don't count the holes & logs as children */
6464		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6465			if (lastlog == 0)
6466				lastlog = c;
6467			continue;
6468		}
6469
6470		lastlog = 0;
6471	}
6472	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6473		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6474
6475	/* next, ensure no spare or cache devices are part of the split */
6476	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6477	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6478		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6479
6480	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6481	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6482
6483	/* then, loop over each vdev and validate it */
6484	for (c = 0; c < children; c++) {
6485		uint64_t is_hole = 0;
6486
6487		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6488		    &is_hole);
6489
6490		if (is_hole != 0) {
6491			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6492			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6493				continue;
6494			} else {
6495				error = SET_ERROR(EINVAL);
6496				break;
6497			}
6498		}
6499
6500		/* which disk is going to be split? */
6501		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6502		    &glist[c]) != 0) {
6503			error = SET_ERROR(EINVAL);
6504			break;
6505		}
6506
6507		/* look it up in the spa */
6508		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6509		if (vml[c] == NULL) {
6510			error = SET_ERROR(ENODEV);
6511			break;
6512		}
6513
6514		/* make sure there's nothing stopping the split */
6515		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6516		    vml[c]->vdev_islog ||
6517		    !vdev_is_concrete(vml[c]) ||
6518		    vml[c]->vdev_isspare ||
6519		    vml[c]->vdev_isl2cache ||
6520		    !vdev_writeable(vml[c]) ||
6521		    vml[c]->vdev_children != 0 ||
6522		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6523		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6524			error = SET_ERROR(EINVAL);
6525			break;
6526		}
6527
6528		if (vdev_dtl_required(vml[c])) {
6529			error = SET_ERROR(EBUSY);
6530			break;
6531		}
6532
6533		/* we need certain info from the top level */
6534		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6535		    vml[c]->vdev_top->vdev_ms_array) == 0);
6536		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6537		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6538		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6539		    vml[c]->vdev_top->vdev_asize) == 0);
6540		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6541		    vml[c]->vdev_top->vdev_ashift) == 0);
6542
6543		/* transfer per-vdev ZAPs */
6544		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6545		VERIFY0(nvlist_add_uint64(child[c],
6546		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6547
6548		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6549		VERIFY0(nvlist_add_uint64(child[c],
6550		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
6551		    vml[c]->vdev_parent->vdev_top_zap));
6552	}
6553
6554	if (error != 0) {
6555		kmem_free(vml, children * sizeof (vdev_t *));
6556		kmem_free(glist, children * sizeof (uint64_t));
6557		return (spa_vdev_exit(spa, NULL, txg, error));
6558	}
6559
6560	/* stop writers from using the disks */
6561	for (c = 0; c < children; c++) {
6562		if (vml[c] != NULL)
6563			vml[c]->vdev_offline = B_TRUE;
6564	}
6565	vdev_reopen(spa->spa_root_vdev);
6566
6567	/*
6568	 * Temporarily record the splitting vdevs in the spa config.  This
6569	 * will disappear once the config is regenerated.
6570	 */
6571	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6572	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6573	    glist, children) == 0);
6574	kmem_free(glist, children * sizeof (uint64_t));
6575
6576	mutex_enter(&spa->spa_props_lock);
6577	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6578	    nvl) == 0);
6579	mutex_exit(&spa->spa_props_lock);
6580	spa->spa_config_splitting = nvl;
6581	vdev_config_dirty(spa->spa_root_vdev);
6582
6583	/* configure and create the new pool */
6584	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6585	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6586	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6587	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6588	    spa_version(spa)) == 0);
6589	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6590	    spa->spa_config_txg) == 0);
6591	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6592	    spa_generate_guid(NULL)) == 0);
6593	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6594	(void) nvlist_lookup_string(props,
6595	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6596
6597	/* add the new pool to the namespace */
6598	newspa = spa_add(newname, config, altroot);
6599	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6600	newspa->spa_config_txg = spa->spa_config_txg;
6601	spa_set_log_state(newspa, SPA_LOG_CLEAR);
6602
6603	/* release the spa config lock, retaining the namespace lock */
6604	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6605
6606	if (zio_injection_enabled)
6607		zio_handle_panic_injection(spa, FTAG, 1);
6608
6609	spa_activate(newspa, spa_mode_global);
6610	spa_async_suspend(newspa);
6611
6612#ifndef illumos
6613	/* mark that we are creating new spa by splitting */
6614	newspa->spa_splitting_newspa = B_TRUE;
6615#endif
6616	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6617
6618	/* create the new pool from the disks of the original pool */
6619	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6620#ifndef illumos
6621	newspa->spa_splitting_newspa = B_FALSE;
6622#endif
6623	if (error)
6624		goto out;
6625
6626	/* if that worked, generate a real config for the new pool */
6627	if (newspa->spa_root_vdev != NULL) {
6628		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6629		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6630		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6631		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6632		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6633		    B_TRUE));
6634	}
6635
6636	/* set the props */
6637	if (props != NULL) {
6638		spa_configfile_set(newspa, props, B_FALSE);
6639		error = spa_prop_set(newspa, props);
6640		if (error)
6641			goto out;
6642	}
6643
6644	/* flush everything */
6645	txg = spa_vdev_config_enter(newspa);
6646	vdev_config_dirty(newspa->spa_root_vdev);
6647	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6648
6649	if (zio_injection_enabled)
6650		zio_handle_panic_injection(spa, FTAG, 2);
6651
6652	spa_async_resume(newspa);
6653
6654	/* finally, update the original pool's config */
6655	txg = spa_vdev_config_enter(spa);
6656	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6657	error = dmu_tx_assign(tx, TXG_WAIT);
6658	if (error != 0)
6659		dmu_tx_abort(tx);
6660	for (c = 0; c < children; c++) {
6661		if (vml[c] != NULL) {
6662			vdev_split(vml[c]);
6663			if (error == 0)
6664				spa_history_log_internal(spa, "detach", tx,
6665				    "vdev=%s", vml[c]->vdev_path);
6666
6667			vdev_free(vml[c]);
6668		}
6669	}
6670	spa->spa_avz_action = AVZ_ACTION_REBUILD;
6671	vdev_config_dirty(spa->spa_root_vdev);
6672	spa->spa_config_splitting = NULL;
6673	nvlist_free(nvl);
6674	if (error == 0)
6675		dmu_tx_commit(tx);
6676	(void) spa_vdev_exit(spa, NULL, txg, 0);
6677
6678	if (zio_injection_enabled)
6679		zio_handle_panic_injection(spa, FTAG, 3);
6680
6681	/* split is complete; log a history record */
6682	spa_history_log_internal(newspa, "split", NULL,
6683	    "from pool %s", spa_name(spa));
6684
6685	kmem_free(vml, children * sizeof (vdev_t *));
6686
6687	/* if we're not going to mount the filesystems in userland, export */
6688	if (exp)
6689		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6690		    B_FALSE, B_FALSE);
6691
6692	return (error);
6693
6694out:
6695	spa_unload(newspa);
6696	spa_deactivate(newspa);
6697	spa_remove(newspa);
6698
6699	txg = spa_vdev_config_enter(spa);
6700
6701	/* re-online all offlined disks */
6702	for (c = 0; c < children; c++) {
6703		if (vml[c] != NULL)
6704			vml[c]->vdev_offline = B_FALSE;
6705	}
6706	vdev_reopen(spa->spa_root_vdev);
6707
6708	nvlist_free(spa->spa_config_splitting);
6709	spa->spa_config_splitting = NULL;
6710	(void) spa_vdev_exit(spa, NULL, txg, error);
6711
6712	kmem_free(vml, children * sizeof (vdev_t *));
6713	return (error);
6714}
6715
6716/*
6717 * Find any device that's done replacing, or a vdev marked 'unspare' that's
6718 * currently spared, so we can detach it.
6719 */
6720static vdev_t *
6721spa_vdev_resilver_done_hunt(vdev_t *vd)
6722{
6723	vdev_t *newvd, *oldvd;
6724
6725	for (int c = 0; c < vd->vdev_children; c++) {
6726		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6727		if (oldvd != NULL)
6728			return (oldvd);
6729	}
6730
6731	/*
6732	 * Check for a completed replacement.  We always consider the first
6733	 * vdev in the list to be the oldest vdev, and the last one to be
6734	 * the newest (see spa_vdev_attach() for how that works).  In
6735	 * the case where the newest vdev is faulted, we will not automatically
6736	 * remove it after a resilver completes.  This is OK as it will require
6737	 * user intervention to determine which disk the admin wishes to keep.
6738	 */
6739	if (vd->vdev_ops == &vdev_replacing_ops) {
6740		ASSERT(vd->vdev_children > 1);
6741
6742		newvd = vd->vdev_child[vd->vdev_children - 1];
6743		oldvd = vd->vdev_child[0];
6744
6745		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6746		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6747		    !vdev_dtl_required(oldvd))
6748			return (oldvd);
6749	}
6750
6751	/*
6752	 * Check for a completed resilver with the 'unspare' flag set.
6753	 */
6754	if (vd->vdev_ops == &vdev_spare_ops) {
6755		vdev_t *first = vd->vdev_child[0];
6756		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6757
6758		if (last->vdev_unspare) {
6759			oldvd = first;
6760			newvd = last;
6761		} else if (first->vdev_unspare) {
6762			oldvd = last;
6763			newvd = first;
6764		} else {
6765			oldvd = NULL;
6766		}
6767
6768		if (oldvd != NULL &&
6769		    vdev_dtl_empty(newvd, DTL_MISSING) &&
6770		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6771		    !vdev_dtl_required(oldvd))
6772			return (oldvd);
6773
6774		/*
6775		 * If there are more than two spares attached to a disk,
6776		 * and those spares are not required, then we want to
6777		 * attempt to free them up now so that they can be used
6778		 * by other pools.  Once we're back down to a single
6779		 * disk+spare, we stop removing them.
6780		 */
6781		if (vd->vdev_children > 2) {
6782			newvd = vd->vdev_child[1];
6783
6784			if (newvd->vdev_isspare && last->vdev_isspare &&
6785			    vdev_dtl_empty(last, DTL_MISSING) &&
6786			    vdev_dtl_empty(last, DTL_OUTAGE) &&
6787			    !vdev_dtl_required(newvd))
6788				return (newvd);
6789		}
6790	}
6791
6792	return (NULL);
6793}
6794
6795static void
6796spa_vdev_resilver_done(spa_t *spa)
6797{
6798	vdev_t *vd, *pvd, *ppvd;
6799	uint64_t guid, sguid, pguid, ppguid;
6800
6801	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6802
6803	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6804		pvd = vd->vdev_parent;
6805		ppvd = pvd->vdev_parent;
6806		guid = vd->vdev_guid;
6807		pguid = pvd->vdev_guid;
6808		ppguid = ppvd->vdev_guid;
6809		sguid = 0;
6810		/*
6811		 * If we have just finished replacing a hot spared device, then
6812		 * we need to detach the parent's first child (the original hot
6813		 * spare) as well.
6814		 */
6815		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6816		    ppvd->vdev_children == 2) {
6817			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6818			sguid = ppvd->vdev_child[1]->vdev_guid;
6819		}
6820		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6821
6822		spa_config_exit(spa, SCL_ALL, FTAG);
6823		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6824			return;
6825		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6826			return;
6827		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6828	}
6829
6830	spa_config_exit(spa, SCL_ALL, FTAG);
6831}
6832
6833/*
6834 * Update the stored path or FRU for this vdev.
6835 */
6836int
6837spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6838    boolean_t ispath)
6839{
6840	vdev_t *vd;
6841	boolean_t sync = B_FALSE;
6842
6843	ASSERT(spa_writeable(spa));
6844
6845	spa_vdev_state_enter(spa, SCL_ALL);
6846
6847	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6848		return (spa_vdev_state_exit(spa, NULL, ENOENT));
6849
6850	if (!vd->vdev_ops->vdev_op_leaf)
6851		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6852
6853	if (ispath) {
6854		if (strcmp(value, vd->vdev_path) != 0) {
6855			spa_strfree(vd->vdev_path);
6856			vd->vdev_path = spa_strdup(value);
6857			sync = B_TRUE;
6858		}
6859	} else {
6860		if (vd->vdev_fru == NULL) {
6861			vd->vdev_fru = spa_strdup(value);
6862			sync = B_TRUE;
6863		} else if (strcmp(value, vd->vdev_fru) != 0) {
6864			spa_strfree(vd->vdev_fru);
6865			vd->vdev_fru = spa_strdup(value);
6866			sync = B_TRUE;
6867		}
6868	}
6869
6870	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6871}
6872
6873int
6874spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6875{
6876	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6877}
6878
6879int
6880spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6881{
6882	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6883}
6884
6885/*
6886 * ==========================================================================
6887 * SPA Scanning
6888 * ==========================================================================
6889 */
6890int
6891spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6892{
6893	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6894
6895	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6896		return (SET_ERROR(EBUSY));
6897
6898	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6899}
6900
6901int
6902spa_scan_stop(spa_t *spa)
6903{
6904	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6905	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6906		return (SET_ERROR(EBUSY));
6907	return (dsl_scan_cancel(spa->spa_dsl_pool));
6908}
6909
6910int
6911spa_scan(spa_t *spa, pool_scan_func_t func)
6912{
6913	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6914
6915	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6916		return (SET_ERROR(ENOTSUP));
6917
6918	/*
6919	 * If a resilver was requested, but there is no DTL on a
6920	 * writeable leaf device, we have nothing to do.
6921	 */
6922	if (func == POOL_SCAN_RESILVER &&
6923	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6924		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6925		return (0);
6926	}
6927
6928	return (dsl_scan(spa->spa_dsl_pool, func));
6929}
6930
6931/*
6932 * ==========================================================================
6933 * SPA async task processing
6934 * ==========================================================================
6935 */
6936
6937static void
6938spa_async_remove(spa_t *spa, vdev_t *vd)
6939{
6940	if (vd->vdev_remove_wanted) {
6941		vd->vdev_remove_wanted = B_FALSE;
6942		vd->vdev_delayed_close = B_FALSE;
6943		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6944
6945		/*
6946		 * We want to clear the stats, but we don't want to do a full
6947		 * vdev_clear() as that will cause us to throw away
6948		 * degraded/faulted state as well as attempt to reopen the
6949		 * device, all of which is a waste.
6950		 */
6951		vd->vdev_stat.vs_read_errors = 0;
6952		vd->vdev_stat.vs_write_errors = 0;
6953		vd->vdev_stat.vs_checksum_errors = 0;
6954
6955		vdev_state_dirty(vd->vdev_top);
6956		/* Tell userspace that the vdev is gone. */
6957		zfs_post_remove(spa, vd);
6958	}
6959
6960	for (int c = 0; c < vd->vdev_children; c++)
6961		spa_async_remove(spa, vd->vdev_child[c]);
6962}
6963
6964static void
6965spa_async_probe(spa_t *spa, vdev_t *vd)
6966{
6967	if (vd->vdev_probe_wanted) {
6968		vd->vdev_probe_wanted = B_FALSE;
6969		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6970	}
6971
6972	for (int c = 0; c < vd->vdev_children; c++)
6973		spa_async_probe(spa, vd->vdev_child[c]);
6974}
6975
6976static void
6977spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6978{
6979	sysevent_id_t eid;
6980	nvlist_t *attr;
6981	char *physpath;
6982
6983	if (!spa->spa_autoexpand)
6984		return;
6985
6986	for (int c = 0; c < vd->vdev_children; c++) {
6987		vdev_t *cvd = vd->vdev_child[c];
6988		spa_async_autoexpand(spa, cvd);
6989	}
6990
6991	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6992		return;
6993
6994	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6995	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6996
6997	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6998	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6999
7000	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7001	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
7002
7003	nvlist_free(attr);
7004	kmem_free(physpath, MAXPATHLEN);
7005}
7006
7007static void
7008spa_async_thread(void *arg)
7009{
7010	spa_t *spa = (spa_t *)arg;
7011	int tasks;
7012
7013	ASSERT(spa->spa_sync_on);
7014
7015	mutex_enter(&spa->spa_async_lock);
7016	tasks = spa->spa_async_tasks;
7017	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
7018	mutex_exit(&spa->spa_async_lock);
7019
7020	/*
7021	 * See if the config needs to be updated.
7022	 */
7023	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7024		uint64_t old_space, new_space;
7025
7026		mutex_enter(&spa_namespace_lock);
7027		old_space = metaslab_class_get_space(spa_normal_class(spa));
7028		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7029		new_space = metaslab_class_get_space(spa_normal_class(spa));
7030		mutex_exit(&spa_namespace_lock);
7031
7032		/*
7033		 * If the pool grew as a result of the config update,
7034		 * then log an internal history event.
7035		 */
7036		if (new_space != old_space) {
7037			spa_history_log_internal(spa, "vdev online", NULL,
7038			    "pool '%s' size: %llu(+%llu)",
7039			    spa_name(spa), new_space, new_space - old_space);
7040		}
7041	}
7042
7043	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7044		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7045		spa_async_autoexpand(spa, spa->spa_root_vdev);
7046		spa_config_exit(spa, SCL_CONFIG, FTAG);
7047	}
7048
7049	/*
7050	 * See if any devices need to be probed.
7051	 */
7052	if (tasks & SPA_ASYNC_PROBE) {
7053		spa_vdev_state_enter(spa, SCL_NONE);
7054		spa_async_probe(spa, spa->spa_root_vdev);
7055		(void) spa_vdev_state_exit(spa, NULL, 0);
7056	}
7057
7058	/*
7059	 * If any devices are done replacing, detach them.
7060	 */
7061	if (tasks & SPA_ASYNC_RESILVER_DONE)
7062		spa_vdev_resilver_done(spa);
7063
7064	/*
7065	 * Kick off a resilver.
7066	 */
7067	if (tasks & SPA_ASYNC_RESILVER)
7068		dsl_resilver_restart(spa->spa_dsl_pool, 0);
7069
7070	/*
7071	 * Let the world know that we're done.
7072	 */
7073	mutex_enter(&spa->spa_async_lock);
7074	spa->spa_async_thread = NULL;
7075	cv_broadcast(&spa->spa_async_cv);
7076	mutex_exit(&spa->spa_async_lock);
7077	thread_exit();
7078}
7079
7080static void
7081spa_async_thread_vd(void *arg)
7082{
7083	spa_t *spa = arg;
7084	int tasks;
7085
7086	mutex_enter(&spa->spa_async_lock);
7087	tasks = spa->spa_async_tasks;
7088retry:
7089	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
7090	mutex_exit(&spa->spa_async_lock);
7091
7092	/*
7093	 * See if any devices need to be marked REMOVED.
7094	 */
7095	if (tasks & SPA_ASYNC_REMOVE) {
7096		spa_vdev_state_enter(spa, SCL_NONE);
7097		spa_async_remove(spa, spa->spa_root_vdev);
7098		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7099			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7100		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7101			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7102		(void) spa_vdev_state_exit(spa, NULL, 0);
7103	}
7104
7105	/*
7106	 * Let the world know that we're done.
7107	 */
7108	mutex_enter(&spa->spa_async_lock);
7109	tasks = spa->spa_async_tasks;
7110	if ((tasks & SPA_ASYNC_REMOVE) != 0)
7111		goto retry;
7112	spa->spa_async_thread_vd = NULL;
7113	cv_broadcast(&spa->spa_async_cv);
7114	mutex_exit(&spa->spa_async_lock);
7115	thread_exit();
7116}
7117
7118void
7119spa_async_suspend(spa_t *spa)
7120{
7121	mutex_enter(&spa->spa_async_lock);
7122	spa->spa_async_suspended++;
7123	while (spa->spa_async_thread != NULL ||
7124	    spa->spa_async_thread_vd != NULL)
7125		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7126	mutex_exit(&spa->spa_async_lock);
7127
7128	spa_vdev_remove_suspend(spa);
7129
7130	zthr_t *condense_thread = spa->spa_condense_zthr;
7131	if (condense_thread != NULL && zthr_isrunning(condense_thread))
7132		VERIFY0(zthr_cancel(condense_thread));
7133
7134	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7135	if (discard_thread != NULL && zthr_isrunning(discard_thread))
7136		VERIFY0(zthr_cancel(discard_thread));
7137}
7138
7139void
7140spa_async_resume(spa_t *spa)
7141{
7142	mutex_enter(&spa->spa_async_lock);
7143	ASSERT(spa->spa_async_suspended != 0);
7144	spa->spa_async_suspended--;
7145	mutex_exit(&spa->spa_async_lock);
7146	spa_restart_removal(spa);
7147
7148	zthr_t *condense_thread = spa->spa_condense_zthr;
7149	if (condense_thread != NULL && !zthr_isrunning(condense_thread))
7150		zthr_resume(condense_thread);
7151
7152	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7153	if (discard_thread != NULL && !zthr_isrunning(discard_thread))
7154		zthr_resume(discard_thread);
7155}
7156
7157static boolean_t
7158spa_async_tasks_pending(spa_t *spa)
7159{
7160	uint_t non_config_tasks;
7161	uint_t config_task;
7162	boolean_t config_task_suspended;
7163
7164	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
7165	    SPA_ASYNC_REMOVE);
7166	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7167	if (spa->spa_ccw_fail_time == 0) {
7168		config_task_suspended = B_FALSE;
7169	} else {
7170		config_task_suspended =
7171		    (gethrtime() - spa->spa_ccw_fail_time) <
7172		    (zfs_ccw_retry_interval * NANOSEC);
7173	}
7174
7175	return (non_config_tasks || (config_task && !config_task_suspended));
7176}
7177
7178static void
7179spa_async_dispatch(spa_t *spa)
7180{
7181	mutex_enter(&spa->spa_async_lock);
7182	if (spa_async_tasks_pending(spa) &&
7183	    !spa->spa_async_suspended &&
7184	    spa->spa_async_thread == NULL &&
7185	    rootdir != NULL)
7186		spa->spa_async_thread = thread_create(NULL, 0,
7187		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7188	mutex_exit(&spa->spa_async_lock);
7189}
7190
7191static void
7192spa_async_dispatch_vd(spa_t *spa)
7193{
7194	mutex_enter(&spa->spa_async_lock);
7195	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
7196	    !spa->spa_async_suspended &&
7197	    spa->spa_async_thread_vd == NULL &&
7198	    rootdir != NULL)
7199		spa->spa_async_thread_vd = thread_create(NULL, 0,
7200		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
7201	mutex_exit(&spa->spa_async_lock);
7202}
7203
7204void
7205spa_async_request(spa_t *spa, int task)
7206{
7207	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7208	mutex_enter(&spa->spa_async_lock);
7209	spa->spa_async_tasks |= task;
7210	mutex_exit(&spa->spa_async_lock);
7211	spa_async_dispatch_vd(spa);
7212}
7213
7214/*
7215 * ==========================================================================
7216 * SPA syncing routines
7217 * ==========================================================================
7218 */
7219
7220static int
7221bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7222{
7223	bpobj_t *bpo = arg;
7224	bpobj_enqueue(bpo, bp, tx);
7225	return (0);
7226}
7227
7228static int
7229spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7230{
7231	zio_t *zio = arg;
7232
7233	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7234	    BP_GET_PSIZE(bp), zio->io_flags));
7235	return (0);
7236}
7237
7238/*
7239 * Note: this simple function is not inlined to make it easier to dtrace the
7240 * amount of time spent syncing frees.
7241 */
7242static void
7243spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7244{
7245	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7246	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7247	VERIFY(zio_wait(zio) == 0);
7248}
7249
7250/*
7251 * Note: this simple function is not inlined to make it easier to dtrace the
7252 * amount of time spent syncing deferred frees.
7253 */
7254static void
7255spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7256{
7257	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7258	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7259	    spa_free_sync_cb, zio, tx), ==, 0);
7260	VERIFY0(zio_wait(zio));
7261}
7262
7263
7264static void
7265spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7266{
7267	char *packed = NULL;
7268	size_t bufsize;
7269	size_t nvsize = 0;
7270	dmu_buf_t *db;
7271
7272	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7273
7274	/*
7275	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7276	 * information.  This avoids the dmu_buf_will_dirty() path and
7277	 * saves us a pre-read to get data we don't actually care about.
7278	 */
7279	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7280	packed = kmem_alloc(bufsize, KM_SLEEP);
7281
7282	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7283	    KM_SLEEP) == 0);
7284	bzero(packed + nvsize, bufsize - nvsize);
7285
7286	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7287
7288	kmem_free(packed, bufsize);
7289
7290	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7291	dmu_buf_will_dirty(db, tx);
7292	*(uint64_t *)db->db_data = nvsize;
7293	dmu_buf_rele(db, FTAG);
7294}
7295
7296static void
7297spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7298    const char *config, const char *entry)
7299{
7300	nvlist_t *nvroot;
7301	nvlist_t **list;
7302	int i;
7303
7304	if (!sav->sav_sync)
7305		return;
7306
7307	/*
7308	 * Update the MOS nvlist describing the list of available devices.
7309	 * spa_validate_aux() will have already made sure this nvlist is
7310	 * valid and the vdevs are labeled appropriately.
7311	 */
7312	if (sav->sav_object == 0) {
7313		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7314		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7315		    sizeof (uint64_t), tx);
7316		VERIFY(zap_update(spa->spa_meta_objset,
7317		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7318		    &sav->sav_object, tx) == 0);
7319	}
7320
7321	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7322	if (sav->sav_count == 0) {
7323		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7324	} else {
7325		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7326		for (i = 0; i < sav->sav_count; i++)
7327			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7328			    B_FALSE, VDEV_CONFIG_L2CACHE);
7329		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7330		    sav->sav_count) == 0);
7331		for (i = 0; i < sav->sav_count; i++)
7332			nvlist_free(list[i]);
7333		kmem_free(list, sav->sav_count * sizeof (void *));
7334	}
7335
7336	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7337	nvlist_free(nvroot);
7338
7339	sav->sav_sync = B_FALSE;
7340}
7341
7342/*
7343 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7344 * The all-vdev ZAP must be empty.
7345 */
7346static void
7347spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7348{
7349	spa_t *spa = vd->vdev_spa;
7350	if (vd->vdev_top_zap != 0) {
7351		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7352		    vd->vdev_top_zap, tx));
7353	}
7354	if (vd->vdev_leaf_zap != 0) {
7355		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7356		    vd->vdev_leaf_zap, tx));
7357	}
7358	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7359		spa_avz_build(vd->vdev_child[i], avz, tx);
7360	}
7361}
7362
7363static void
7364spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7365{
7366	nvlist_t *config;
7367
7368	/*
7369	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7370	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7371	 * Similarly, if the pool is being assembled (e.g. after a split), we
7372	 * need to rebuild the AVZ although the config may not be dirty.
7373	 */
7374	if (list_is_empty(&spa->spa_config_dirty_list) &&
7375	    spa->spa_avz_action == AVZ_ACTION_NONE)
7376		return;
7377
7378	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7379
7380	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7381	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7382	    spa->spa_all_vdev_zaps != 0);
7383
7384	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7385		/* Make and build the new AVZ */
7386		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7387		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7388		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7389
7390		/* Diff old AVZ with new one */
7391		zap_cursor_t zc;
7392		zap_attribute_t za;
7393
7394		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7395		    spa->spa_all_vdev_zaps);
7396		    zap_cursor_retrieve(&zc, &za) == 0;
7397		    zap_cursor_advance(&zc)) {
7398			uint64_t vdzap = za.za_first_integer;
7399			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7400			    vdzap) == ENOENT) {
7401				/*
7402				 * ZAP is listed in old AVZ but not in new one;
7403				 * destroy it
7404				 */
7405				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7406				    tx));
7407			}
7408		}
7409
7410		zap_cursor_fini(&zc);
7411
7412		/* Destroy the old AVZ */
7413		VERIFY0(zap_destroy(spa->spa_meta_objset,
7414		    spa->spa_all_vdev_zaps, tx));
7415
7416		/* Replace the old AVZ in the dir obj with the new one */
7417		VERIFY0(zap_update(spa->spa_meta_objset,
7418		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7419		    sizeof (new_avz), 1, &new_avz, tx));
7420
7421		spa->spa_all_vdev_zaps = new_avz;
7422	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7423		zap_cursor_t zc;
7424		zap_attribute_t za;
7425
7426		/* Walk through the AVZ and destroy all listed ZAPs */
7427		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7428		    spa->spa_all_vdev_zaps);
7429		    zap_cursor_retrieve(&zc, &za) == 0;
7430		    zap_cursor_advance(&zc)) {
7431			uint64_t zap = za.za_first_integer;
7432			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7433		}
7434
7435		zap_cursor_fini(&zc);
7436
7437		/* Destroy and unlink the AVZ itself */
7438		VERIFY0(zap_destroy(spa->spa_meta_objset,
7439		    spa->spa_all_vdev_zaps, tx));
7440		VERIFY0(zap_remove(spa->spa_meta_objset,
7441		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7442		spa->spa_all_vdev_zaps = 0;
7443	}
7444
7445	if (spa->spa_all_vdev_zaps == 0) {
7446		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7447		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7448		    DMU_POOL_VDEV_ZAP_MAP, tx);
7449	}
7450	spa->spa_avz_action = AVZ_ACTION_NONE;
7451
7452	/* Create ZAPs for vdevs that don't have them. */
7453	vdev_construct_zaps(spa->spa_root_vdev, tx);
7454
7455	config = spa_config_generate(spa, spa->spa_root_vdev,
7456	    dmu_tx_get_txg(tx), B_FALSE);
7457
7458	/*
7459	 * If we're upgrading the spa version then make sure that
7460	 * the config object gets updated with the correct version.
7461	 */
7462	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7463		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7464		    spa->spa_uberblock.ub_version);
7465
7466	spa_config_exit(spa, SCL_STATE, FTAG);
7467
7468	nvlist_free(spa->spa_config_syncing);
7469	spa->spa_config_syncing = config;
7470
7471	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7472}
7473
7474static void
7475spa_sync_version(void *arg, dmu_tx_t *tx)
7476{
7477	uint64_t *versionp = arg;
7478	uint64_t version = *versionp;
7479	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7480
7481	/*
7482	 * Setting the version is special cased when first creating the pool.
7483	 */
7484	ASSERT(tx->tx_txg != TXG_INITIAL);
7485
7486	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7487	ASSERT(version >= spa_version(spa));
7488
7489	spa->spa_uberblock.ub_version = version;
7490	vdev_config_dirty(spa->spa_root_vdev);
7491	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7492}
7493
7494/*
7495 * Set zpool properties.
7496 */
7497static void
7498spa_sync_props(void *arg, dmu_tx_t *tx)
7499{
7500	nvlist_t *nvp = arg;
7501	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7502	objset_t *mos = spa->spa_meta_objset;
7503	nvpair_t *elem = NULL;
7504
7505	mutex_enter(&spa->spa_props_lock);
7506
7507	while ((elem = nvlist_next_nvpair(nvp, elem))) {
7508		uint64_t intval;
7509		char *strval, *fname;
7510		zpool_prop_t prop;
7511		const char *propname;
7512		zprop_type_t proptype;
7513		spa_feature_t fid;
7514
7515		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7516		case ZPOOL_PROP_INVAL:
7517			/*
7518			 * We checked this earlier in spa_prop_validate().
7519			 */
7520			ASSERT(zpool_prop_feature(nvpair_name(elem)));
7521
7522			fname = strchr(nvpair_name(elem), '@') + 1;
7523			VERIFY0(zfeature_lookup_name(fname, &fid));
7524
7525			spa_feature_enable(spa, fid, tx);
7526			spa_history_log_internal(spa, "set", tx,
7527			    "%s=enabled", nvpair_name(elem));
7528			break;
7529
7530		case ZPOOL_PROP_VERSION:
7531			intval = fnvpair_value_uint64(elem);
7532			/*
7533			 * The version is synced seperatly before other
7534			 * properties and should be correct by now.
7535			 */
7536			ASSERT3U(spa_version(spa), >=, intval);
7537			break;
7538
7539		case ZPOOL_PROP_ALTROOT:
7540			/*
7541			 * 'altroot' is a non-persistent property. It should
7542			 * have been set temporarily at creation or import time.
7543			 */
7544			ASSERT(spa->spa_root != NULL);
7545			break;
7546
7547		case ZPOOL_PROP_READONLY:
7548		case ZPOOL_PROP_CACHEFILE:
7549			/*
7550			 * 'readonly' and 'cachefile' are also non-persisitent
7551			 * properties.
7552			 */
7553			break;
7554		case ZPOOL_PROP_COMMENT:
7555			strval = fnvpair_value_string(elem);
7556			if (spa->spa_comment != NULL)
7557				spa_strfree(spa->spa_comment);
7558			spa->spa_comment = spa_strdup(strval);
7559			/*
7560			 * We need to dirty the configuration on all the vdevs
7561			 * so that their labels get updated.  It's unnecessary
7562			 * to do this for pool creation since the vdev's
7563			 * configuratoin has already been dirtied.
7564			 */
7565			if (tx->tx_txg != TXG_INITIAL)
7566				vdev_config_dirty(spa->spa_root_vdev);
7567			spa_history_log_internal(spa, "set", tx,
7568			    "%s=%s", nvpair_name(elem), strval);
7569			break;
7570		default:
7571			/*
7572			 * Set pool property values in the poolprops mos object.
7573			 */
7574			if (spa->spa_pool_props_object == 0) {
7575				spa->spa_pool_props_object =
7576				    zap_create_link(mos, DMU_OT_POOL_PROPS,
7577				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7578				    tx);
7579			}
7580
7581			/* normalize the property name */
7582			propname = zpool_prop_to_name(prop);
7583			proptype = zpool_prop_get_type(prop);
7584
7585			if (nvpair_type(elem) == DATA_TYPE_STRING) {
7586				ASSERT(proptype == PROP_TYPE_STRING);
7587				strval = fnvpair_value_string(elem);
7588				VERIFY0(zap_update(mos,
7589				    spa->spa_pool_props_object, propname,
7590				    1, strlen(strval) + 1, strval, tx));
7591				spa_history_log_internal(spa, "set", tx,
7592				    "%s=%s", nvpair_name(elem), strval);
7593			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7594				intval = fnvpair_value_uint64(elem);
7595
7596				if (proptype == PROP_TYPE_INDEX) {
7597					const char *unused;
7598					VERIFY0(zpool_prop_index_to_string(
7599					    prop, intval, &unused));
7600				}
7601				VERIFY0(zap_update(mos,
7602				    spa->spa_pool_props_object, propname,
7603				    8, 1, &intval, tx));
7604				spa_history_log_internal(spa, "set", tx,
7605				    "%s=%lld", nvpair_name(elem), intval);
7606			} else {
7607				ASSERT(0); /* not allowed */
7608			}
7609
7610			switch (prop) {
7611			case ZPOOL_PROP_DELEGATION:
7612				spa->spa_delegation = intval;
7613				break;
7614			case ZPOOL_PROP_BOOTFS:
7615				spa->spa_bootfs = intval;
7616				break;
7617			case ZPOOL_PROP_FAILUREMODE:
7618				spa->spa_failmode = intval;
7619				break;
7620			case ZPOOL_PROP_AUTOEXPAND:
7621				spa->spa_autoexpand = intval;
7622				if (tx->tx_txg != TXG_INITIAL)
7623					spa_async_request(spa,
7624					    SPA_ASYNC_AUTOEXPAND);
7625				break;
7626			case ZPOOL_PROP_DEDUPDITTO:
7627				spa->spa_dedup_ditto = intval;
7628				break;
7629			default:
7630				break;
7631			}
7632		}
7633
7634	}
7635
7636	mutex_exit(&spa->spa_props_lock);
7637}
7638
7639/*
7640 * Perform one-time upgrade on-disk changes.  spa_version() does not
7641 * reflect the new version this txg, so there must be no changes this
7642 * txg to anything that the upgrade code depends on after it executes.
7643 * Therefore this must be called after dsl_pool_sync() does the sync
7644 * tasks.
7645 */
7646static void
7647spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7648{
7649	dsl_pool_t *dp = spa->spa_dsl_pool;
7650
7651	ASSERT(spa->spa_sync_pass == 1);
7652
7653	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7654
7655	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7656	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7657		dsl_pool_create_origin(dp, tx);
7658
7659		/* Keeping the origin open increases spa_minref */
7660		spa->spa_minref += 3;
7661	}
7662
7663	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7664	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7665		dsl_pool_upgrade_clones(dp, tx);
7666	}
7667
7668	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7669	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7670		dsl_pool_upgrade_dir_clones(dp, tx);
7671
7672		/* Keeping the freedir open increases spa_minref */
7673		spa->spa_minref += 3;
7674	}
7675
7676	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7677	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7678		spa_feature_create_zap_objects(spa, tx);
7679	}
7680
7681	/*
7682	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7683	 * when possibility to use lz4 compression for metadata was added
7684	 * Old pools that have this feature enabled must be upgraded to have
7685	 * this feature active
7686	 */
7687	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7688		boolean_t lz4_en = spa_feature_is_enabled(spa,
7689		    SPA_FEATURE_LZ4_COMPRESS);
7690		boolean_t lz4_ac = spa_feature_is_active(spa,
7691		    SPA_FEATURE_LZ4_COMPRESS);
7692
7693		if (lz4_en && !lz4_ac)
7694			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7695	}
7696
7697	/*
7698	 * If we haven't written the salt, do so now.  Note that the
7699	 * feature may not be activated yet, but that's fine since
7700	 * the presence of this ZAP entry is backwards compatible.
7701	 */
7702	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7703	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7704		VERIFY0(zap_add(spa->spa_meta_objset,
7705		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7706		    sizeof (spa->spa_cksum_salt.zcs_bytes),
7707		    spa->spa_cksum_salt.zcs_bytes, tx));
7708	}
7709
7710	rrw_exit(&dp->dp_config_rwlock, FTAG);
7711}
7712
7713static void
7714vdev_indirect_state_sync_verify(vdev_t *vd)
7715{
7716	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7717	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7718
7719	if (vd->vdev_ops == &vdev_indirect_ops) {
7720		ASSERT(vim != NULL);
7721		ASSERT(vib != NULL);
7722	}
7723
7724	if (vdev_obsolete_sm_object(vd) != 0) {
7725		ASSERT(vd->vdev_obsolete_sm != NULL);
7726		ASSERT(vd->vdev_removing ||
7727		    vd->vdev_ops == &vdev_indirect_ops);
7728		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7729		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7730
7731		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7732		    space_map_object(vd->vdev_obsolete_sm));
7733		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7734		    space_map_allocated(vd->vdev_obsolete_sm));
7735	}
7736	ASSERT(vd->vdev_obsolete_segments != NULL);
7737
7738	/*
7739	 * Since frees / remaps to an indirect vdev can only
7740	 * happen in syncing context, the obsolete segments
7741	 * tree must be empty when we start syncing.
7742	 */
7743	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7744}
7745
7746/*
7747 * Sync the specified transaction group.  New blocks may be dirtied as
7748 * part of the process, so we iterate until it converges.
7749 */
7750void
7751spa_sync(spa_t *spa, uint64_t txg)
7752{
7753	dsl_pool_t *dp = spa->spa_dsl_pool;
7754	objset_t *mos = spa->spa_meta_objset;
7755	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7756	vdev_t *rvd = spa->spa_root_vdev;
7757	vdev_t *vd;
7758	dmu_tx_t *tx;
7759	int error;
7760	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7761	    zfs_vdev_queue_depth_pct / 100;
7762
7763	VERIFY(spa_writeable(spa));
7764
7765	/*
7766	 * Wait for i/os issued in open context that need to complete
7767	 * before this txg syncs.
7768	 */
7769	VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
7770	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
7771
7772	/*
7773	 * Lock out configuration changes.
7774	 */
7775	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7776
7777	spa->spa_syncing_txg = txg;
7778	spa->spa_sync_pass = 0;
7779
7780	for (int i = 0; i < spa->spa_alloc_count; i++) {
7781		mutex_enter(&spa->spa_alloc_locks[i]);
7782		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7783		mutex_exit(&spa->spa_alloc_locks[i]);
7784	}
7785
7786	/*
7787	 * If there are any pending vdev state changes, convert them
7788	 * into config changes that go out with this transaction group.
7789	 */
7790	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7791	while (list_head(&spa->spa_state_dirty_list) != NULL) {
7792		/*
7793		 * We need the write lock here because, for aux vdevs,
7794		 * calling vdev_config_dirty() modifies sav_config.
7795		 * This is ugly and will become unnecessary when we
7796		 * eliminate the aux vdev wart by integrating all vdevs
7797		 * into the root vdev tree.
7798		 */
7799		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7800		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7801		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7802			vdev_state_clean(vd);
7803			vdev_config_dirty(vd);
7804		}
7805		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7806		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7807	}
7808	spa_config_exit(spa, SCL_STATE, FTAG);
7809
7810	tx = dmu_tx_create_assigned(dp, txg);
7811
7812	spa->spa_sync_starttime = gethrtime();
7813#ifdef illumos
7814	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7815	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
7816#else	/* !illumos */
7817#ifdef _KERNEL
7818	callout_schedule(&spa->spa_deadman_cycid,
7819	    hz * spa->spa_deadman_synctime / NANOSEC);
7820#endif
7821#endif	/* illumos */
7822
7823	/*
7824	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7825	 * set spa_deflate if we have no raid-z vdevs.
7826	 */
7827	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7828	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7829		int i;
7830
7831		for (i = 0; i < rvd->vdev_children; i++) {
7832			vd = rvd->vdev_child[i];
7833			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7834				break;
7835		}
7836		if (i == rvd->vdev_children) {
7837			spa->spa_deflate = TRUE;
7838			VERIFY(0 == zap_add(spa->spa_meta_objset,
7839			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7840			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7841		}
7842	}
7843
7844	/*
7845	 * Set the top-level vdev's max queue depth. Evaluate each
7846	 * top-level's async write queue depth in case it changed.
7847	 * The max queue depth will not change in the middle of syncing
7848	 * out this txg.
7849	 */
7850	uint64_t slots_per_allocator = 0;
7851	for (int c = 0; c < rvd->vdev_children; c++) {
7852		vdev_t *tvd = rvd->vdev_child[c];
7853		metaslab_group_t *mg = tvd->vdev_mg;
7854
7855		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7856		    !metaslab_group_initialized(mg))
7857			continue;
7858
7859		/*
7860		 * It is safe to do a lock-free check here because only async
7861		 * allocations look at mg_max_alloc_queue_depth, and async
7862		 * allocations all happen from spa_sync().
7863		 */
7864		for (int i = 0; i < spa->spa_alloc_count; i++)
7865			ASSERT0(refcount_count(&(mg->mg_alloc_queue_depth[i])));
7866		mg->mg_max_alloc_queue_depth = max_queue_depth;
7867
7868		for (int i = 0; i < spa->spa_alloc_count; i++) {
7869			mg->mg_cur_max_alloc_queue_depth[i] =
7870			    zfs_vdev_def_queue_depth;
7871		}
7872		slots_per_allocator += zfs_vdev_def_queue_depth;
7873	}
7874	metaslab_class_t *mc = spa_normal_class(spa);
7875	for (int i = 0; i < spa->spa_alloc_count; i++) {
7876		ASSERT0(refcount_count(&mc->mc_alloc_slots[i]));
7877		mc->mc_alloc_max_slots[i] = slots_per_allocator;
7878	}
7879	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7880
7881	for (int c = 0; c < rvd->vdev_children; c++) {
7882		vdev_t *vd = rvd->vdev_child[c];
7883		vdev_indirect_state_sync_verify(vd);
7884
7885		if (vdev_indirect_should_condense(vd)) {
7886			spa_condense_indirect_start_sync(vd, tx);
7887			break;
7888		}
7889	}
7890
7891	/*
7892	 * Iterate to convergence.
7893	 */
7894	do {
7895		int pass = ++spa->spa_sync_pass;
7896
7897		spa_sync_config_object(spa, tx);
7898		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7899		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7900		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7901		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7902		spa_errlog_sync(spa, txg);
7903		dsl_pool_sync(dp, txg);
7904
7905		if (pass < zfs_sync_pass_deferred_free) {
7906			spa_sync_frees(spa, free_bpl, tx);
7907		} else {
7908			/*
7909			 * We can not defer frees in pass 1, because
7910			 * we sync the deferred frees later in pass 1.
7911			 */
7912			ASSERT3U(pass, >, 1);
7913			bplist_iterate(free_bpl, bpobj_enqueue_cb,
7914			    &spa->spa_deferred_bpobj, tx);
7915		}
7916
7917		ddt_sync(spa, txg);
7918		dsl_scan_sync(dp, tx);
7919
7920		if (spa->spa_vdev_removal != NULL)
7921			svr_sync(spa, tx);
7922
7923		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7924		    != NULL)
7925			vdev_sync(vd, txg);
7926
7927		if (pass == 1) {
7928			spa_sync_upgrades(spa, tx);
7929			ASSERT3U(txg, >=,
7930			    spa->spa_uberblock.ub_rootbp.blk_birth);
7931			/*
7932			 * Note: We need to check if the MOS is dirty
7933			 * because we could have marked the MOS dirty
7934			 * without updating the uberblock (e.g. if we
7935			 * have sync tasks but no dirty user data).  We
7936			 * need to check the uberblock's rootbp because
7937			 * it is updated if we have synced out dirty
7938			 * data (though in this case the MOS will most
7939			 * likely also be dirty due to second order
7940			 * effects, we don't want to rely on that here).
7941			 */
7942			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7943			    !dmu_objset_is_dirty(mos, txg)) {
7944				/*
7945				 * Nothing changed on the first pass,
7946				 * therefore this TXG is a no-op.  Avoid
7947				 * syncing deferred frees, so that we
7948				 * can keep this TXG as a no-op.
7949				 */
7950				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7951				    txg));
7952				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7953				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7954				ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
7955				    txg));
7956				break;
7957			}
7958			spa_sync_deferred_frees(spa, tx);
7959		}
7960
7961	} while (dmu_objset_is_dirty(mos, txg));
7962
7963	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7964		/*
7965		 * Make sure that the number of ZAPs for all the vdevs matches
7966		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7967		 * called if the config is dirty; otherwise there may be
7968		 * outstanding AVZ operations that weren't completed in
7969		 * spa_sync_config_object.
7970		 */
7971		uint64_t all_vdev_zap_entry_count;
7972		ASSERT0(zap_count(spa->spa_meta_objset,
7973		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7974		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7975		    all_vdev_zap_entry_count);
7976	}
7977
7978	if (spa->spa_vdev_removal != NULL) {
7979		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7980	}
7981
7982	/*
7983	 * Rewrite the vdev configuration (which includes the uberblock)
7984	 * to commit the transaction group.
7985	 *
7986	 * If there are no dirty vdevs, we sync the uberblock to a few
7987	 * random top-level vdevs that are known to be visible in the
7988	 * config cache (see spa_vdev_add() for a complete description).
7989	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7990	 */
7991	for (;;) {
7992		/*
7993		 * We hold SCL_STATE to prevent vdev open/close/etc.
7994		 * while we're attempting to write the vdev labels.
7995		 */
7996		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7997
7998		if (list_is_empty(&spa->spa_config_dirty_list)) {
7999			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8000			int svdcount = 0;
8001			int children = rvd->vdev_children;
8002			int c0 = spa_get_random(children);
8003
8004			for (int c = 0; c < children; c++) {
8005				vd = rvd->vdev_child[(c0 + c) % children];
8006
8007				/* Stop when revisiting the first vdev */
8008				if (c > 0 && svd[0] == vd)
8009					break;
8010
8011				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
8012				    !vdev_is_concrete(vd))
8013					continue;
8014
8015				svd[svdcount++] = vd;
8016				if (svdcount == SPA_SYNC_MIN_VDEVS)
8017					break;
8018			}
8019			error = vdev_config_sync(svd, svdcount, txg);
8020		} else {
8021			error = vdev_config_sync(rvd->vdev_child,
8022			    rvd->vdev_children, txg);
8023		}
8024
8025		if (error == 0)
8026			spa->spa_last_synced_guid = rvd->vdev_guid;
8027
8028		spa_config_exit(spa, SCL_STATE, FTAG);
8029
8030		if (error == 0)
8031			break;
8032		zio_suspend(spa, NULL);
8033		zio_resume_wait(spa);
8034	}
8035	dmu_tx_commit(tx);
8036
8037#ifdef illumos
8038	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8039#else	/* !illumos */
8040#ifdef _KERNEL
8041	callout_drain(&spa->spa_deadman_cycid);
8042#endif
8043#endif	/* illumos */
8044
8045	/*
8046	 * Clear the dirty config list.
8047	 */
8048	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8049		vdev_config_clean(vd);
8050
8051	/*
8052	 * Now that the new config has synced transactionally,
8053	 * let it become visible to the config cache.
8054	 */
8055	if (spa->spa_config_syncing != NULL) {
8056		spa_config_set(spa, spa->spa_config_syncing);
8057		spa->spa_config_txg = txg;
8058		spa->spa_config_syncing = NULL;
8059	}
8060
8061	dsl_pool_sync_done(dp, txg);
8062
8063	for (int i = 0; i < spa->spa_alloc_count; i++) {
8064		mutex_enter(&spa->spa_alloc_locks[i]);
8065		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8066		mutex_exit(&spa->spa_alloc_locks[i]);
8067	}
8068
8069	/*
8070	 * Update usable space statistics.
8071	 */
8072	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8073		vdev_sync_done(vd, txg);
8074
8075	spa_update_dspace(spa);
8076
8077	/*
8078	 * It had better be the case that we didn't dirty anything
8079	 * since vdev_config_sync().
8080	 */
8081	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8082	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8083	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8084
8085	while (zfs_pause_spa_sync)
8086		delay(1);
8087
8088	spa->spa_sync_pass = 0;
8089
8090	/*
8091	 * Update the last synced uberblock here. We want to do this at
8092	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8093	 * will be guaranteed that all the processing associated with
8094	 * that txg has been completed.
8095	 */
8096	spa->spa_ubsync = spa->spa_uberblock;
8097	spa_config_exit(spa, SCL_CONFIG, FTAG);
8098
8099	spa_handle_ignored_writes(spa);
8100
8101	/*
8102	 * If any async tasks have been requested, kick them off.
8103	 */
8104	spa_async_dispatch(spa);
8105	spa_async_dispatch_vd(spa);
8106}
8107
8108/*
8109 * Sync all pools.  We don't want to hold the namespace lock across these
8110 * operations, so we take a reference on the spa_t and drop the lock during the
8111 * sync.
8112 */
8113void
8114spa_sync_allpools(void)
8115{
8116	spa_t *spa = NULL;
8117	mutex_enter(&spa_namespace_lock);
8118	while ((spa = spa_next(spa)) != NULL) {
8119		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8120		    !spa_writeable(spa) || spa_suspended(spa))
8121			continue;
8122		spa_open_ref(spa, FTAG);
8123		mutex_exit(&spa_namespace_lock);
8124		txg_wait_synced(spa_get_dsl(spa), 0);
8125		mutex_enter(&spa_namespace_lock);
8126		spa_close(spa, FTAG);
8127	}
8128	mutex_exit(&spa_namespace_lock);
8129}
8130
8131/*
8132 * ==========================================================================
8133 * Miscellaneous routines
8134 * ==========================================================================
8135 */
8136
8137/*
8138 * Remove all pools in the system.
8139 */
8140void
8141spa_evict_all(void)
8142{
8143	spa_t *spa;
8144
8145	/*
8146	 * Remove all cached state.  All pools should be closed now,
8147	 * so every spa in the AVL tree should be unreferenced.
8148	 */
8149	mutex_enter(&spa_namespace_lock);
8150	while ((spa = spa_next(NULL)) != NULL) {
8151		/*
8152		 * Stop async tasks.  The async thread may need to detach
8153		 * a device that's been replaced, which requires grabbing
8154		 * spa_namespace_lock, so we must drop it here.
8155		 */
8156		spa_open_ref(spa, FTAG);
8157		mutex_exit(&spa_namespace_lock);
8158		spa_async_suspend(spa);
8159		mutex_enter(&spa_namespace_lock);
8160		spa_close(spa, FTAG);
8161
8162		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8163			spa_unload(spa);
8164			spa_deactivate(spa);
8165		}
8166		spa_remove(spa);
8167	}
8168	mutex_exit(&spa_namespace_lock);
8169}
8170
8171vdev_t *
8172spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8173{
8174	vdev_t *vd;
8175	int i;
8176
8177	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8178		return (vd);
8179
8180	if (aux) {
8181		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8182			vd = spa->spa_l2cache.sav_vdevs[i];
8183			if (vd->vdev_guid == guid)
8184				return (vd);
8185		}
8186
8187		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8188			vd = spa->spa_spares.sav_vdevs[i];
8189			if (vd->vdev_guid == guid)
8190				return (vd);
8191		}
8192	}
8193
8194	return (NULL);
8195}
8196
8197void
8198spa_upgrade(spa_t *spa, uint64_t version)
8199{
8200	ASSERT(spa_writeable(spa));
8201
8202	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8203
8204	/*
8205	 * This should only be called for a non-faulted pool, and since a
8206	 * future version would result in an unopenable pool, this shouldn't be
8207	 * possible.
8208	 */
8209	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8210	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8211
8212	spa->spa_uberblock.ub_version = version;
8213	vdev_config_dirty(spa->spa_root_vdev);
8214
8215	spa_config_exit(spa, SCL_ALL, FTAG);
8216
8217	txg_wait_synced(spa_get_dsl(spa), 0);
8218}
8219
8220boolean_t
8221spa_has_spare(spa_t *spa, uint64_t guid)
8222{
8223	int i;
8224	uint64_t spareguid;
8225	spa_aux_vdev_t *sav = &spa->spa_spares;
8226
8227	for (i = 0; i < sav->sav_count; i++)
8228		if (sav->sav_vdevs[i]->vdev_guid == guid)
8229			return (B_TRUE);
8230
8231	for (i = 0; i < sav->sav_npending; i++) {
8232		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8233		    &spareguid) == 0 && spareguid == guid)
8234			return (B_TRUE);
8235	}
8236
8237	return (B_FALSE);
8238}
8239
8240/*
8241 * Check if a pool has an active shared spare device.
8242 * Note: reference count of an active spare is 2, as a spare and as a replace
8243 */
8244static boolean_t
8245spa_has_active_shared_spare(spa_t *spa)
8246{
8247	int i, refcnt;
8248	uint64_t pool;
8249	spa_aux_vdev_t *sav = &spa->spa_spares;
8250
8251	for (i = 0; i < sav->sav_count; i++) {
8252		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8253		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8254		    refcnt > 2)
8255			return (B_TRUE);
8256	}
8257
8258	return (B_FALSE);
8259}
8260
8261sysevent_t *
8262spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8263{
8264	sysevent_t		*ev = NULL;
8265#ifdef _KERNEL
8266	sysevent_attr_list_t	*attr = NULL;
8267	sysevent_value_t	value;
8268
8269	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8270	    SE_SLEEP);
8271	ASSERT(ev != NULL);
8272
8273	value.value_type = SE_DATA_TYPE_STRING;
8274	value.value.sv_string = spa_name(spa);
8275	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8276		goto done;
8277
8278	value.value_type = SE_DATA_TYPE_UINT64;
8279	value.value.sv_uint64 = spa_guid(spa);
8280	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8281		goto done;
8282
8283	if (vd) {
8284		value.value_type = SE_DATA_TYPE_UINT64;
8285		value.value.sv_uint64 = vd->vdev_guid;
8286		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8287		    SE_SLEEP) != 0)
8288			goto done;
8289
8290		if (vd->vdev_path) {
8291			value.value_type = SE_DATA_TYPE_STRING;
8292			value.value.sv_string = vd->vdev_path;
8293			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8294			    &value, SE_SLEEP) != 0)
8295				goto done;
8296		}
8297	}
8298
8299	if (hist_nvl != NULL) {
8300		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8301	}
8302
8303	if (sysevent_attach_attributes(ev, attr) != 0)
8304		goto done;
8305	attr = NULL;
8306
8307done:
8308	if (attr)
8309		sysevent_free_attr(attr);
8310
8311#endif
8312	return (ev);
8313}
8314
8315void
8316spa_event_post(sysevent_t *ev)
8317{
8318#ifdef _KERNEL
8319	sysevent_id_t		eid;
8320
8321	(void) log_sysevent(ev, SE_SLEEP, &eid);
8322	sysevent_free(ev);
8323#endif
8324}
8325
8326void
8327spa_event_discard(sysevent_t *ev)
8328{
8329#ifdef _KERNEL
8330	sysevent_free(ev);
8331#endif
8332}
8333
8334/*
8335 * Post a sysevent corresponding to the given event.  The 'name' must be one of
8336 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8337 * filled in from the spa and (optionally) the vdev and history nvl.  This
8338 * doesn't do anything in the userland libzpool, as we don't want consumers to
8339 * misinterpret ztest or zdb as real changes.
8340 */
8341void
8342spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8343{
8344	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8345}
8346