1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017 Datto Inc.
33 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34 */
35
36/*
37 * SPA: Storage Pool Allocator
38 *
39 * This file contains all the routines used when modifying on-disk SPA state.
40 * This includes opening, importing, destroying, exporting a pool, and syncing a
41 * pool.
42 */
43
44#include <sys/zfs_context.h>
45#include <sys/fm/fs/zfs.h>
46#include <sys/spa_impl.h>
47#include <sys/zio.h>
48#include <sys/zio_checksum.h>
49#include <sys/dmu.h>
50#include <sys/dmu_tx.h>
51#include <sys/zap.h>
52#include <sys/zil.h>
53#include <sys/ddt.h>
54#include <sys/vdev_impl.h>
55#include <sys/vdev_removal.h>
56#include <sys/vdev_indirect_mapping.h>
57#include <sys/vdev_indirect_births.h>
58#include <sys/vdev_initialize.h>
59#include <sys/metaslab.h>
60#include <sys/metaslab_impl.h>
61#include <sys/uberblock_impl.h>
62#include <sys/txg.h>
63#include <sys/avl.h>
64#include <sys/bpobj.h>
65#include <sys/dmu_traverse.h>
66#include <sys/dmu_objset.h>
67#include <sys/unique.h>
68#include <sys/dsl_pool.h>
69#include <sys/dsl_dataset.h>
70#include <sys/dsl_dir.h>
71#include <sys/dsl_prop.h>
72#include <sys/dsl_synctask.h>
73#include <sys/fs/zfs.h>
74#include <sys/arc.h>
75#include <sys/callb.h>
76#include <sys/spa_boot.h>
77#include <sys/zfs_ioctl.h>
78#include <sys/dsl_scan.h>
79#include <sys/dmu_send.h>
80#include <sys/dsl_destroy.h>
81#include <sys/dsl_userhold.h>
82#include <sys/zfeature.h>
83#include <sys/zvol.h>
84#include <sys/trim_map.h>
85#include <sys/abd.h>
86
87#ifdef	_KERNEL
88#include <sys/callb.h>
89#include <sys/cpupart.h>
90#include <sys/zone.h>
91#endif	/* _KERNEL */
92
93#include "zfs_prop.h"
94#include "zfs_comutil.h"
95
96/* Check hostid on import? */
97static int check_hostid = 1;
98
99/*
100 * The interval, in seconds, at which failed configuration cache file writes
101 * should be retried.
102 */
103int zfs_ccw_retry_interval = 300;
104
105SYSCTL_DECL(_vfs_zfs);
106SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
107    "Check hostid on import?");
108TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
109SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
110    &zfs_ccw_retry_interval, 0,
111    "Configuration cache file write, retry after failure, interval (seconds)");
112
113typedef enum zti_modes {
114	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
115	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
116	ZTI_MODE_NULL,			/* don't create a taskq */
117	ZTI_NMODES
118} zti_modes_t;
119
120#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
121#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
122#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
123
124#define	ZTI_N(n)	ZTI_P(n, 1)
125#define	ZTI_ONE		ZTI_N(1)
126
127typedef struct zio_taskq_info {
128	zti_modes_t zti_mode;
129	uint_t zti_value;
130	uint_t zti_count;
131} zio_taskq_info_t;
132
133static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
134	"issue", "issue_high", "intr", "intr_high"
135};
136
137/*
138 * This table defines the taskq settings for each ZFS I/O type. When
139 * initializing a pool, we use this table to create an appropriately sized
140 * taskq. Some operations are low volume and therefore have a small, static
141 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
142 * macros. Other operations process a large amount of data; the ZTI_BATCH
143 * macro causes us to create a taskq oriented for throughput. Some operations
144 * are so high frequency and short-lived that the taskq itself can become a a
145 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
146 * additional degree of parallelism specified by the number of threads per-
147 * taskq and the number of taskqs; when dispatching an event in this case, the
148 * particular taskq is chosen at random.
149 *
150 * The different taskq priorities are to handle the different contexts (issue
151 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
152 * need to be handled with minimum delay.
153 */
154const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
155	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
156	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
157	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
158	{ ZTI_BATCH,	ZTI_N(5),	ZTI_P(12, 8),	ZTI_N(5) }, /* WRITE */
159	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
160	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
161	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
162};
163
164static void spa_sync_version(void *arg, dmu_tx_t *tx);
165static void spa_sync_props(void *arg, dmu_tx_t *tx);
166static boolean_t spa_has_active_shared_spare(spa_t *spa);
167static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
168static void spa_vdev_resilver_done(spa_t *spa);
169
170uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
171#ifdef PSRSET_BIND
172id_t		zio_taskq_psrset_bind = PS_NONE;
173#endif
174#ifdef SYSDC
175boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
176uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
177#endif
178
179boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
180extern int	zfs_sync_pass_deferred_free;
181
182/*
183 * Report any spa_load_verify errors found, but do not fail spa_load.
184 * This is used by zdb to analyze non-idle pools.
185 */
186boolean_t	spa_load_verify_dryrun = B_FALSE;
187
188/*
189 * This (illegal) pool name is used when temporarily importing a spa_t in order
190 * to get the vdev stats associated with the imported devices.
191 */
192#define	TRYIMPORT_NAME	"$import"
193
194/*
195 * For debugging purposes: print out vdev tree during pool import.
196 */
197int	spa_load_print_vdev_tree = B_FALSE;
198
199/*
200 * A non-zero value for zfs_max_missing_tvds means that we allow importing
201 * pools with missing top-level vdevs. This is strictly intended for advanced
202 * pool recovery cases since missing data is almost inevitable. Pools with
203 * missing devices can only be imported read-only for safety reasons, and their
204 * fail-mode will be automatically set to "continue".
205 *
206 * With 1 missing vdev we should be able to import the pool and mount all
207 * datasets. User data that was not modified after the missing device has been
208 * added should be recoverable. This means that snapshots created prior to the
209 * addition of that device should be completely intact.
210 *
211 * With 2 missing vdevs, some datasets may fail to mount since there are
212 * dataset statistics that are stored as regular metadata. Some data might be
213 * recoverable if those vdevs were added recently.
214 *
215 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
216 * may be missing entirely. Chances of data recovery are very low. Note that
217 * there are also risks of performing an inadvertent rewind as we might be
218 * missing all the vdevs with the latest uberblocks.
219 */
220uint64_t	zfs_max_missing_tvds = 0;
221
222/*
223 * The parameters below are similar to zfs_max_missing_tvds but are only
224 * intended for a preliminary open of the pool with an untrusted config which
225 * might be incomplete or out-dated.
226 *
227 * We are more tolerant for pools opened from a cachefile since we could have
228 * an out-dated cachefile where a device removal was not registered.
229 * We could have set the limit arbitrarily high but in the case where devices
230 * are really missing we would want to return the proper error codes; we chose
231 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
232 * and we get a chance to retrieve the trusted config.
233 */
234uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
235
236/*
237 * In the case where config was assembled by scanning device paths (/dev/dsks
238 * by default) we are less tolerant since all the existing devices should have
239 * been detected and we want spa_load to return the right error codes.
240 */
241uint64_t	zfs_max_missing_tvds_scan = 0;
242
243
244SYSCTL_DECL(_vfs_zfs_zio);
245SYSCTL_INT(_vfs_zfs_zio, OID_AUTO, taskq_batch_pct, CTLFLAG_RDTUN,
246    &zio_taskq_batch_pct, 0,
247    "Percentage of CPUs to run an IO worker thread");
248SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_print_vdev_tree, CTLFLAG_RWTUN,
249    &spa_load_print_vdev_tree, 0,
250    "print out vdev tree during pool import");
251SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds, CTLFLAG_RWTUN,
252    &zfs_max_missing_tvds, 0,
253    "allow importing pools with missing top-level vdevs");
254SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_cachefile, CTLFLAG_RWTUN,
255    &zfs_max_missing_tvds_cachefile, 0,
256    "allow importing pools with missing top-level vdevs in cache file");
257SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_scan, CTLFLAG_RWTUN,
258    &zfs_max_missing_tvds_scan, 0,
259    "allow importing pools with missing top-level vdevs during scan");
260
261/*
262 * Debugging aid that pauses spa_sync() towards the end.
263 */
264boolean_t	zfs_pause_spa_sync = B_FALSE;
265
266/*
267 * ==========================================================================
268 * SPA properties routines
269 * ==========================================================================
270 */
271
272/*
273 * Add a (source=src, propname=propval) list to an nvlist.
274 */
275static void
276spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
277    uint64_t intval, zprop_source_t src)
278{
279	const char *propname = zpool_prop_to_name(prop);
280	nvlist_t *propval;
281
282	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
283	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
284
285	if (strval != NULL)
286		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
287	else
288		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
289
290	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
291	nvlist_free(propval);
292}
293
294/*
295 * Get property values from the spa configuration.
296 */
297static void
298spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
299{
300	vdev_t *rvd = spa->spa_root_vdev;
301	dsl_pool_t *pool = spa->spa_dsl_pool;
302	uint64_t size, alloc, cap, version;
303	zprop_source_t src = ZPROP_SRC_NONE;
304	spa_config_dirent_t *dp;
305	metaslab_class_t *mc = spa_normal_class(spa);
306
307	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
308
309	if (rvd != NULL) {
310		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
311		size = metaslab_class_get_space(spa_normal_class(spa));
312		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
313		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
314		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
315		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
316		    size - alloc, src);
317		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
318		    spa->spa_checkpoint_info.sci_dspace, src);
319
320		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
321		    metaslab_class_fragmentation(mc), src);
322		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
323		    metaslab_class_expandable_space(mc), src);
324		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
325		    (spa_mode(spa) == FREAD), src);
326
327		cap = (size == 0) ? 0 : (alloc * 100 / size);
328		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
329
330		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
331		    ddt_get_pool_dedup_ratio(spa), src);
332
333		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
334		    rvd->vdev_state, src);
335
336		version = spa_version(spa);
337		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
338			src = ZPROP_SRC_DEFAULT;
339		else
340			src = ZPROP_SRC_LOCAL;
341		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
342	}
343
344	if (pool != NULL) {
345		/*
346		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
347		 * when opening pools before this version freedir will be NULL.
348		 */
349		if (pool->dp_free_dir != NULL) {
350			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
351			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
352			    src);
353		} else {
354			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
355			    NULL, 0, src);
356		}
357
358		if (pool->dp_leak_dir != NULL) {
359			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
360			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
361			    src);
362		} else {
363			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
364			    NULL, 0, src);
365		}
366	}
367
368	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
369
370	if (spa->spa_comment != NULL) {
371		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
372		    0, ZPROP_SRC_LOCAL);
373	}
374
375	if (spa->spa_root != NULL)
376		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
377		    0, ZPROP_SRC_LOCAL);
378
379	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
380		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
381		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
382	} else {
383		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
384		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
385	}
386
387	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
388		if (dp->scd_path == NULL) {
389			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
390			    "none", 0, ZPROP_SRC_LOCAL);
391		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
392			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
393			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
394		}
395	}
396}
397
398/*
399 * Get zpool property values.
400 */
401int
402spa_prop_get(spa_t *spa, nvlist_t **nvp)
403{
404	objset_t *mos = spa->spa_meta_objset;
405	zap_cursor_t zc;
406	zap_attribute_t za;
407	int err;
408
409	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
410
411	mutex_enter(&spa->spa_props_lock);
412
413	/*
414	 * Get properties from the spa config.
415	 */
416	spa_prop_get_config(spa, nvp);
417
418	/* If no pool property object, no more prop to get. */
419	if (mos == NULL || spa->spa_pool_props_object == 0) {
420		mutex_exit(&spa->spa_props_lock);
421		return (0);
422	}
423
424	/*
425	 * Get properties from the MOS pool property object.
426	 */
427	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
428	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
429	    zap_cursor_advance(&zc)) {
430		uint64_t intval = 0;
431		char *strval = NULL;
432		zprop_source_t src = ZPROP_SRC_DEFAULT;
433		zpool_prop_t prop;
434
435		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
436			continue;
437
438		switch (za.za_integer_length) {
439		case 8:
440			/* integer property */
441			if (za.za_first_integer !=
442			    zpool_prop_default_numeric(prop))
443				src = ZPROP_SRC_LOCAL;
444
445			if (prop == ZPOOL_PROP_BOOTFS) {
446				dsl_pool_t *dp;
447				dsl_dataset_t *ds = NULL;
448
449				dp = spa_get_dsl(spa);
450				dsl_pool_config_enter(dp, FTAG);
451				err = dsl_dataset_hold_obj(dp,
452				    za.za_first_integer, FTAG, &ds);
453				if (err != 0) {
454					dsl_pool_config_exit(dp, FTAG);
455					break;
456				}
457
458				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
459				    KM_SLEEP);
460				dsl_dataset_name(ds, strval);
461				dsl_dataset_rele(ds, FTAG);
462				dsl_pool_config_exit(dp, FTAG);
463			} else {
464				strval = NULL;
465				intval = za.za_first_integer;
466			}
467
468			spa_prop_add_list(*nvp, prop, strval, intval, src);
469
470			if (strval != NULL)
471				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
472
473			break;
474
475		case 1:
476			/* string property */
477			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
478			err = zap_lookup(mos, spa->spa_pool_props_object,
479			    za.za_name, 1, za.za_num_integers, strval);
480			if (err) {
481				kmem_free(strval, za.za_num_integers);
482				break;
483			}
484			spa_prop_add_list(*nvp, prop, strval, 0, src);
485			kmem_free(strval, za.za_num_integers);
486			break;
487
488		default:
489			break;
490		}
491	}
492	zap_cursor_fini(&zc);
493	mutex_exit(&spa->spa_props_lock);
494out:
495	if (err && err != ENOENT) {
496		nvlist_free(*nvp);
497		*nvp = NULL;
498		return (err);
499	}
500
501	return (0);
502}
503
504/*
505 * Validate the given pool properties nvlist and modify the list
506 * for the property values to be set.
507 */
508static int
509spa_prop_validate(spa_t *spa, nvlist_t *props)
510{
511	nvpair_t *elem;
512	int error = 0, reset_bootfs = 0;
513	uint64_t objnum = 0;
514	boolean_t has_feature = B_FALSE;
515
516	elem = NULL;
517	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
518		uint64_t intval;
519		char *strval, *slash, *check, *fname;
520		const char *propname = nvpair_name(elem);
521		zpool_prop_t prop = zpool_name_to_prop(propname);
522
523		switch (prop) {
524		case ZPOOL_PROP_INVAL:
525			if (!zpool_prop_feature(propname)) {
526				error = SET_ERROR(EINVAL);
527				break;
528			}
529
530			/*
531			 * Sanitize the input.
532			 */
533			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
534				error = SET_ERROR(EINVAL);
535				break;
536			}
537
538			if (nvpair_value_uint64(elem, &intval) != 0) {
539				error = SET_ERROR(EINVAL);
540				break;
541			}
542
543			if (intval != 0) {
544				error = SET_ERROR(EINVAL);
545				break;
546			}
547
548			fname = strchr(propname, '@') + 1;
549			if (zfeature_lookup_name(fname, NULL) != 0) {
550				error = SET_ERROR(EINVAL);
551				break;
552			}
553
554			has_feature = B_TRUE;
555			break;
556
557		case ZPOOL_PROP_VERSION:
558			error = nvpair_value_uint64(elem, &intval);
559			if (!error &&
560			    (intval < spa_version(spa) ||
561			    intval > SPA_VERSION_BEFORE_FEATURES ||
562			    has_feature))
563				error = SET_ERROR(EINVAL);
564			break;
565
566		case ZPOOL_PROP_DELEGATION:
567		case ZPOOL_PROP_AUTOREPLACE:
568		case ZPOOL_PROP_LISTSNAPS:
569		case ZPOOL_PROP_AUTOEXPAND:
570			error = nvpair_value_uint64(elem, &intval);
571			if (!error && intval > 1)
572				error = SET_ERROR(EINVAL);
573			break;
574
575		case ZPOOL_PROP_BOOTFS:
576			/*
577			 * If the pool version is less than SPA_VERSION_BOOTFS,
578			 * or the pool is still being created (version == 0),
579			 * the bootfs property cannot be set.
580			 */
581			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
582				error = SET_ERROR(ENOTSUP);
583				break;
584			}
585
586			/*
587			 * Make sure the vdev config is bootable
588			 */
589			if (!vdev_is_bootable(spa->spa_root_vdev)) {
590				error = SET_ERROR(ENOTSUP);
591				break;
592			}
593
594			reset_bootfs = 1;
595
596			error = nvpair_value_string(elem, &strval);
597
598			if (!error) {
599				objset_t *os;
600				uint64_t propval;
601
602				if (strval == NULL || strval[0] == '\0') {
603					objnum = zpool_prop_default_numeric(
604					    ZPOOL_PROP_BOOTFS);
605					break;
606				}
607
608				error = dmu_objset_hold(strval, FTAG, &os);
609				if (error != 0)
610					break;
611
612				/*
613				 * Must be ZPL, and its property settings
614				 * must be supported by GRUB (compression
615				 * is not gzip, and large blocks are not used).
616				 */
617
618				if (dmu_objset_type(os) != DMU_OST_ZFS) {
619					error = SET_ERROR(ENOTSUP);
620				} else if ((error =
621				    dsl_prop_get_int_ds(dmu_objset_ds(os),
622				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
623				    &propval)) == 0 &&
624				    !BOOTFS_COMPRESS_VALID(propval)) {
625					error = SET_ERROR(ENOTSUP);
626				} else {
627					objnum = dmu_objset_id(os);
628				}
629				dmu_objset_rele(os, FTAG);
630			}
631			break;
632
633		case ZPOOL_PROP_FAILUREMODE:
634			error = nvpair_value_uint64(elem, &intval);
635			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
636			    intval > ZIO_FAILURE_MODE_PANIC))
637				error = SET_ERROR(EINVAL);
638
639			/*
640			 * This is a special case which only occurs when
641			 * the pool has completely failed. This allows
642			 * the user to change the in-core failmode property
643			 * without syncing it out to disk (I/Os might
644			 * currently be blocked). We do this by returning
645			 * EIO to the caller (spa_prop_set) to trick it
646			 * into thinking we encountered a property validation
647			 * error.
648			 */
649			if (!error && spa_suspended(spa)) {
650				spa->spa_failmode = intval;
651				error = SET_ERROR(EIO);
652			}
653			break;
654
655		case ZPOOL_PROP_CACHEFILE:
656			if ((error = nvpair_value_string(elem, &strval)) != 0)
657				break;
658
659			if (strval[0] == '\0')
660				break;
661
662			if (strcmp(strval, "none") == 0)
663				break;
664
665			if (strval[0] != '/') {
666				error = SET_ERROR(EINVAL);
667				break;
668			}
669
670			slash = strrchr(strval, '/');
671			ASSERT(slash != NULL);
672
673			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
674			    strcmp(slash, "/..") == 0)
675				error = SET_ERROR(EINVAL);
676			break;
677
678		case ZPOOL_PROP_COMMENT:
679			if ((error = nvpair_value_string(elem, &strval)) != 0)
680				break;
681			for (check = strval; *check != '\0'; check++) {
682				/*
683				 * The kernel doesn't have an easy isprint()
684				 * check.  For this kernel check, we merely
685				 * check ASCII apart from DEL.  Fix this if
686				 * there is an easy-to-use kernel isprint().
687				 */
688				if (*check >= 0x7f) {
689					error = SET_ERROR(EINVAL);
690					break;
691				}
692			}
693			if (strlen(strval) > ZPROP_MAX_COMMENT)
694				error = E2BIG;
695			break;
696
697		case ZPOOL_PROP_DEDUPDITTO:
698			if (spa_version(spa) < SPA_VERSION_DEDUP)
699				error = SET_ERROR(ENOTSUP);
700			else
701				error = nvpair_value_uint64(elem, &intval);
702			if (error == 0 &&
703			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
704				error = SET_ERROR(EINVAL);
705			break;
706		}
707
708		if (error)
709			break;
710	}
711
712	if (!error && reset_bootfs) {
713		error = nvlist_remove(props,
714		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
715
716		if (!error) {
717			error = nvlist_add_uint64(props,
718			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
719		}
720	}
721
722	return (error);
723}
724
725void
726spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
727{
728	char *cachefile;
729	spa_config_dirent_t *dp;
730
731	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
732	    &cachefile) != 0)
733		return;
734
735	dp = kmem_alloc(sizeof (spa_config_dirent_t),
736	    KM_SLEEP);
737
738	if (cachefile[0] == '\0')
739		dp->scd_path = spa_strdup(spa_config_path);
740	else if (strcmp(cachefile, "none") == 0)
741		dp->scd_path = NULL;
742	else
743		dp->scd_path = spa_strdup(cachefile);
744
745	list_insert_head(&spa->spa_config_list, dp);
746	if (need_sync)
747		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
748}
749
750int
751spa_prop_set(spa_t *spa, nvlist_t *nvp)
752{
753	int error;
754	nvpair_t *elem = NULL;
755	boolean_t need_sync = B_FALSE;
756
757	if ((error = spa_prop_validate(spa, nvp)) != 0)
758		return (error);
759
760	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
761		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
762
763		if (prop == ZPOOL_PROP_CACHEFILE ||
764		    prop == ZPOOL_PROP_ALTROOT ||
765		    prop == ZPOOL_PROP_READONLY)
766			continue;
767
768		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
769			uint64_t ver;
770
771			if (prop == ZPOOL_PROP_VERSION) {
772				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
773			} else {
774				ASSERT(zpool_prop_feature(nvpair_name(elem)));
775				ver = SPA_VERSION_FEATURES;
776				need_sync = B_TRUE;
777			}
778
779			/* Save time if the version is already set. */
780			if (ver == spa_version(spa))
781				continue;
782
783			/*
784			 * In addition to the pool directory object, we might
785			 * create the pool properties object, the features for
786			 * read object, the features for write object, or the
787			 * feature descriptions object.
788			 */
789			error = dsl_sync_task(spa->spa_name, NULL,
790			    spa_sync_version, &ver,
791			    6, ZFS_SPACE_CHECK_RESERVED);
792			if (error)
793				return (error);
794			continue;
795		}
796
797		need_sync = B_TRUE;
798		break;
799	}
800
801	if (need_sync) {
802		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
803		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
804	}
805
806	return (0);
807}
808
809/*
810 * If the bootfs property value is dsobj, clear it.
811 */
812void
813spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
814{
815	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
816		VERIFY(zap_remove(spa->spa_meta_objset,
817		    spa->spa_pool_props_object,
818		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
819		spa->spa_bootfs = 0;
820	}
821}
822
823/*ARGSUSED*/
824static int
825spa_change_guid_check(void *arg, dmu_tx_t *tx)
826{
827	uint64_t *newguid = arg;
828	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
829	vdev_t *rvd = spa->spa_root_vdev;
830	uint64_t vdev_state;
831
832	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
833		int error = (spa_has_checkpoint(spa)) ?
834		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
835		return (SET_ERROR(error));
836	}
837
838	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
839	vdev_state = rvd->vdev_state;
840	spa_config_exit(spa, SCL_STATE, FTAG);
841
842	if (vdev_state != VDEV_STATE_HEALTHY)
843		return (SET_ERROR(ENXIO));
844
845	ASSERT3U(spa_guid(spa), !=, *newguid);
846
847	return (0);
848}
849
850static void
851spa_change_guid_sync(void *arg, dmu_tx_t *tx)
852{
853	uint64_t *newguid = arg;
854	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
855	uint64_t oldguid;
856	vdev_t *rvd = spa->spa_root_vdev;
857
858	oldguid = spa_guid(spa);
859
860	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
861	rvd->vdev_guid = *newguid;
862	rvd->vdev_guid_sum += (*newguid - oldguid);
863	vdev_config_dirty(rvd);
864	spa_config_exit(spa, SCL_STATE, FTAG);
865
866	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
867	    oldguid, *newguid);
868}
869
870/*
871 * Change the GUID for the pool.  This is done so that we can later
872 * re-import a pool built from a clone of our own vdevs.  We will modify
873 * the root vdev's guid, our own pool guid, and then mark all of our
874 * vdevs dirty.  Note that we must make sure that all our vdevs are
875 * online when we do this, or else any vdevs that weren't present
876 * would be orphaned from our pool.  We are also going to issue a
877 * sysevent to update any watchers.
878 */
879int
880spa_change_guid(spa_t *spa)
881{
882	int error;
883	uint64_t guid;
884
885	mutex_enter(&spa->spa_vdev_top_lock);
886	mutex_enter(&spa_namespace_lock);
887	guid = spa_generate_guid(NULL);
888
889	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
890	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
891
892	if (error == 0) {
893		spa_write_cachefile(spa, B_FALSE, B_TRUE);
894		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
895	}
896
897	mutex_exit(&spa_namespace_lock);
898	mutex_exit(&spa->spa_vdev_top_lock);
899
900	return (error);
901}
902
903/*
904 * ==========================================================================
905 * SPA state manipulation (open/create/destroy/import/export)
906 * ==========================================================================
907 */
908
909static int
910spa_error_entry_compare(const void *a, const void *b)
911{
912	const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
913	const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
914	int ret;
915
916	ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
917	    sizeof (zbookmark_phys_t));
918
919	return (AVL_ISIGN(ret));
920}
921
922/*
923 * Utility function which retrieves copies of the current logs and
924 * re-initializes them in the process.
925 */
926void
927spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
928{
929	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
930
931	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
932	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
933
934	avl_create(&spa->spa_errlist_scrub,
935	    spa_error_entry_compare, sizeof (spa_error_entry_t),
936	    offsetof(spa_error_entry_t, se_avl));
937	avl_create(&spa->spa_errlist_last,
938	    spa_error_entry_compare, sizeof (spa_error_entry_t),
939	    offsetof(spa_error_entry_t, se_avl));
940}
941
942static void
943spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
944{
945	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
946	enum zti_modes mode = ztip->zti_mode;
947	uint_t value = ztip->zti_value;
948	uint_t count = ztip->zti_count;
949	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
950	char name[32];
951	uint_t flags = 0;
952	boolean_t batch = B_FALSE;
953
954	if (mode == ZTI_MODE_NULL) {
955		tqs->stqs_count = 0;
956		tqs->stqs_taskq = NULL;
957		return;
958	}
959
960	ASSERT3U(count, >, 0);
961
962	tqs->stqs_count = count;
963	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
964
965	switch (mode) {
966	case ZTI_MODE_FIXED:
967		ASSERT3U(value, >=, 1);
968		value = MAX(value, 1);
969		break;
970
971	case ZTI_MODE_BATCH:
972		batch = B_TRUE;
973		flags |= TASKQ_THREADS_CPU_PCT;
974		value = zio_taskq_batch_pct;
975		break;
976
977	default:
978		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
979		    "spa_activate()",
980		    zio_type_name[t], zio_taskq_types[q], mode, value);
981		break;
982	}
983
984	for (uint_t i = 0; i < count; i++) {
985		taskq_t *tq;
986
987		if (count > 1) {
988			(void) snprintf(name, sizeof (name), "%s_%s_%u",
989			    zio_type_name[t], zio_taskq_types[q], i);
990		} else {
991			(void) snprintf(name, sizeof (name), "%s_%s",
992			    zio_type_name[t], zio_taskq_types[q]);
993		}
994
995#ifdef SYSDC
996		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
997			if (batch)
998				flags |= TASKQ_DC_BATCH;
999
1000			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1001			    spa->spa_proc, zio_taskq_basedc, flags);
1002		} else {
1003#endif
1004			pri_t pri = maxclsyspri;
1005			/*
1006			 * The write issue taskq can be extremely CPU
1007			 * intensive.  Run it at slightly lower priority
1008			 * than the other taskqs.
1009			 * FreeBSD notes:
1010			 * - numerically higher priorities are lower priorities;
1011			 * - if priorities divided by four (RQ_PPQ) are equal
1012			 *   then a difference between them is insignificant.
1013			 */
1014			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1015#ifdef illumos
1016				pri--;
1017#else
1018				pri += 4;
1019#endif
1020
1021			tq = taskq_create_proc(name, value, pri, 50,
1022			    INT_MAX, spa->spa_proc, flags);
1023#ifdef SYSDC
1024		}
1025#endif
1026
1027		tqs->stqs_taskq[i] = tq;
1028	}
1029}
1030
1031static void
1032spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1033{
1034	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1035
1036	if (tqs->stqs_taskq == NULL) {
1037		ASSERT0(tqs->stqs_count);
1038		return;
1039	}
1040
1041	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1042		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1043		taskq_destroy(tqs->stqs_taskq[i]);
1044	}
1045
1046	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1047	tqs->stqs_taskq = NULL;
1048}
1049
1050/*
1051 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1052 * Note that a type may have multiple discrete taskqs to avoid lock contention
1053 * on the taskq itself. In that case we choose which taskq at random by using
1054 * the low bits of gethrtime().
1055 */
1056void
1057spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1058    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1059{
1060	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1061	taskq_t *tq;
1062
1063	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1064	ASSERT3U(tqs->stqs_count, !=, 0);
1065
1066	if (tqs->stqs_count == 1) {
1067		tq = tqs->stqs_taskq[0];
1068	} else {
1069#ifdef _KERNEL
1070		tq = tqs->stqs_taskq[(u_int)(sbinuptime() + curcpu) %
1071		    tqs->stqs_count];
1072#else
1073		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1074#endif
1075	}
1076
1077	taskq_dispatch_ent(tq, func, arg, flags, ent);
1078}
1079
1080static void
1081spa_create_zio_taskqs(spa_t *spa)
1082{
1083	for (int t = 0; t < ZIO_TYPES; t++) {
1084		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1085			spa_taskqs_init(spa, t, q);
1086		}
1087	}
1088}
1089
1090#ifdef _KERNEL
1091#ifdef SPA_PROCESS
1092static void
1093spa_thread(void *arg)
1094{
1095	callb_cpr_t cprinfo;
1096
1097	spa_t *spa = arg;
1098	user_t *pu = PTOU(curproc);
1099
1100	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1101	    spa->spa_name);
1102
1103	ASSERT(curproc != &p0);
1104	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1105	    "zpool-%s", spa->spa_name);
1106	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1107
1108#ifdef PSRSET_BIND
1109	/* bind this thread to the requested psrset */
1110	if (zio_taskq_psrset_bind != PS_NONE) {
1111		pool_lock();
1112		mutex_enter(&cpu_lock);
1113		mutex_enter(&pidlock);
1114		mutex_enter(&curproc->p_lock);
1115
1116		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1117		    0, NULL, NULL) == 0)  {
1118			curthread->t_bind_pset = zio_taskq_psrset_bind;
1119		} else {
1120			cmn_err(CE_WARN,
1121			    "Couldn't bind process for zfs pool \"%s\" to "
1122			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1123		}
1124
1125		mutex_exit(&curproc->p_lock);
1126		mutex_exit(&pidlock);
1127		mutex_exit(&cpu_lock);
1128		pool_unlock();
1129	}
1130#endif
1131
1132#ifdef SYSDC
1133	if (zio_taskq_sysdc) {
1134		sysdc_thread_enter(curthread, 100, 0);
1135	}
1136#endif
1137
1138	spa->spa_proc = curproc;
1139	spa->spa_did = curthread->t_did;
1140
1141	spa_create_zio_taskqs(spa);
1142
1143	mutex_enter(&spa->spa_proc_lock);
1144	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1145
1146	spa->spa_proc_state = SPA_PROC_ACTIVE;
1147	cv_broadcast(&spa->spa_proc_cv);
1148
1149	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1150	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1151		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1152	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1153
1154	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1155	spa->spa_proc_state = SPA_PROC_GONE;
1156	spa->spa_proc = &p0;
1157	cv_broadcast(&spa->spa_proc_cv);
1158	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1159
1160	mutex_enter(&curproc->p_lock);
1161	lwp_exit();
1162}
1163#endif	/* SPA_PROCESS */
1164#endif
1165
1166/*
1167 * Activate an uninitialized pool.
1168 */
1169static void
1170spa_activate(spa_t *spa, int mode)
1171{
1172	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1173
1174	spa->spa_state = POOL_STATE_ACTIVE;
1175	spa->spa_mode = mode;
1176
1177	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1178	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1179
1180	/* Try to create a covering process */
1181	mutex_enter(&spa->spa_proc_lock);
1182	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1183	ASSERT(spa->spa_proc == &p0);
1184	spa->spa_did = 0;
1185
1186#ifdef SPA_PROCESS
1187	/* Only create a process if we're going to be around a while. */
1188	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1189		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1190		    NULL, 0) == 0) {
1191			spa->spa_proc_state = SPA_PROC_CREATED;
1192			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1193				cv_wait(&spa->spa_proc_cv,
1194				    &spa->spa_proc_lock);
1195			}
1196			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1197			ASSERT(spa->spa_proc != &p0);
1198			ASSERT(spa->spa_did != 0);
1199		} else {
1200#ifdef _KERNEL
1201			cmn_err(CE_WARN,
1202			    "Couldn't create process for zfs pool \"%s\"\n",
1203			    spa->spa_name);
1204#endif
1205		}
1206	}
1207#endif	/* SPA_PROCESS */
1208	mutex_exit(&spa->spa_proc_lock);
1209
1210	/* If we didn't create a process, we need to create our taskqs. */
1211	ASSERT(spa->spa_proc == &p0);
1212	if (spa->spa_proc == &p0) {
1213		spa_create_zio_taskqs(spa);
1214	}
1215
1216	/*
1217	 * Start TRIM thread.
1218	 */
1219	trim_thread_create(spa);
1220
1221	for (size_t i = 0; i < TXG_SIZE; i++) {
1222		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1223		    ZIO_FLAG_CANFAIL);
1224	}
1225
1226	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1227	    offsetof(vdev_t, vdev_config_dirty_node));
1228	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1229	    offsetof(objset_t, os_evicting_node));
1230	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1231	    offsetof(vdev_t, vdev_state_dirty_node));
1232
1233	txg_list_create(&spa->spa_vdev_txg_list, spa,
1234	    offsetof(struct vdev, vdev_txg_node));
1235
1236	avl_create(&spa->spa_errlist_scrub,
1237	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1238	    offsetof(spa_error_entry_t, se_avl));
1239	avl_create(&spa->spa_errlist_last,
1240	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1241	    offsetof(spa_error_entry_t, se_avl));
1242}
1243
1244/*
1245 * Opposite of spa_activate().
1246 */
1247static void
1248spa_deactivate(spa_t *spa)
1249{
1250	ASSERT(spa->spa_sync_on == B_FALSE);
1251	ASSERT(spa->spa_dsl_pool == NULL);
1252	ASSERT(spa->spa_root_vdev == NULL);
1253	ASSERT(spa->spa_async_zio_root == NULL);
1254	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1255
1256	/*
1257	 * Stop TRIM thread in case spa_unload() wasn't called directly
1258	 * before spa_deactivate().
1259	 */
1260	trim_thread_destroy(spa);
1261
1262	spa_evicting_os_wait(spa);
1263
1264	txg_list_destroy(&spa->spa_vdev_txg_list);
1265
1266	list_destroy(&spa->spa_config_dirty_list);
1267	list_destroy(&spa->spa_evicting_os_list);
1268	list_destroy(&spa->spa_state_dirty_list);
1269
1270	for (int t = 0; t < ZIO_TYPES; t++) {
1271		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1272			spa_taskqs_fini(spa, t, q);
1273		}
1274	}
1275
1276	for (size_t i = 0; i < TXG_SIZE; i++) {
1277		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1278		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1279		spa->spa_txg_zio[i] = NULL;
1280	}
1281
1282	metaslab_class_destroy(spa->spa_normal_class);
1283	spa->spa_normal_class = NULL;
1284
1285	metaslab_class_destroy(spa->spa_log_class);
1286	spa->spa_log_class = NULL;
1287
1288	/*
1289	 * If this was part of an import or the open otherwise failed, we may
1290	 * still have errors left in the queues.  Empty them just in case.
1291	 */
1292	spa_errlog_drain(spa);
1293
1294	avl_destroy(&spa->spa_errlist_scrub);
1295	avl_destroy(&spa->spa_errlist_last);
1296
1297	spa->spa_state = POOL_STATE_UNINITIALIZED;
1298
1299	mutex_enter(&spa->spa_proc_lock);
1300	if (spa->spa_proc_state != SPA_PROC_NONE) {
1301		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1302		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1303		cv_broadcast(&spa->spa_proc_cv);
1304		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1305			ASSERT(spa->spa_proc != &p0);
1306			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1307		}
1308		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1309		spa->spa_proc_state = SPA_PROC_NONE;
1310	}
1311	ASSERT(spa->spa_proc == &p0);
1312	mutex_exit(&spa->spa_proc_lock);
1313
1314#ifdef SPA_PROCESS
1315	/*
1316	 * We want to make sure spa_thread() has actually exited the ZFS
1317	 * module, so that the module can't be unloaded out from underneath
1318	 * it.
1319	 */
1320	if (spa->spa_did != 0) {
1321		thread_join(spa->spa_did);
1322		spa->spa_did = 0;
1323	}
1324#endif	/* SPA_PROCESS */
1325}
1326
1327/*
1328 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1329 * will create all the necessary vdevs in the appropriate layout, with each vdev
1330 * in the CLOSED state.  This will prep the pool before open/creation/import.
1331 * All vdev validation is done by the vdev_alloc() routine.
1332 */
1333static int
1334spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1335    uint_t id, int atype)
1336{
1337	nvlist_t **child;
1338	uint_t children;
1339	int error;
1340
1341	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1342		return (error);
1343
1344	if ((*vdp)->vdev_ops->vdev_op_leaf)
1345		return (0);
1346
1347	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1348	    &child, &children);
1349
1350	if (error == ENOENT)
1351		return (0);
1352
1353	if (error) {
1354		vdev_free(*vdp);
1355		*vdp = NULL;
1356		return (SET_ERROR(EINVAL));
1357	}
1358
1359	for (int c = 0; c < children; c++) {
1360		vdev_t *vd;
1361		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1362		    atype)) != 0) {
1363			vdev_free(*vdp);
1364			*vdp = NULL;
1365			return (error);
1366		}
1367	}
1368
1369	ASSERT(*vdp != NULL);
1370
1371	return (0);
1372}
1373
1374/*
1375 * Opposite of spa_load().
1376 */
1377static void
1378spa_unload(spa_t *spa)
1379{
1380	int i;
1381
1382	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1383
1384	spa_load_note(spa, "UNLOADING");
1385
1386	/*
1387	 * Stop TRIM thread.
1388	 */
1389	trim_thread_destroy(spa);
1390
1391	/*
1392	 * Stop async tasks.
1393	 */
1394	spa_async_suspend(spa);
1395
1396	if (spa->spa_root_vdev) {
1397		vdev_initialize_stop_all(spa->spa_root_vdev,
1398		    VDEV_INITIALIZE_ACTIVE);
1399	}
1400
1401	/*
1402	 * Stop syncing.
1403	 */
1404	if (spa->spa_sync_on) {
1405		txg_sync_stop(spa->spa_dsl_pool);
1406		spa->spa_sync_on = B_FALSE;
1407	}
1408
1409	/*
1410	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1411	 * to call it earlier, before we wait for async i/o to complete.
1412	 * This ensures that there is no async metaslab prefetching, by
1413	 * calling taskq_wait(mg_taskq).
1414	 */
1415	if (spa->spa_root_vdev != NULL) {
1416		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1417		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1418			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1419		spa_config_exit(spa, SCL_ALL, spa);
1420	}
1421
1422	/*
1423	 * Wait for any outstanding async I/O to complete.
1424	 */
1425	if (spa->spa_async_zio_root != NULL) {
1426		for (int i = 0; i < max_ncpus; i++)
1427			(void) zio_wait(spa->spa_async_zio_root[i]);
1428		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1429		spa->spa_async_zio_root = NULL;
1430	}
1431
1432	if (spa->spa_vdev_removal != NULL) {
1433		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1434		spa->spa_vdev_removal = NULL;
1435	}
1436
1437	if (spa->spa_condense_zthr != NULL) {
1438		ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1439		zthr_destroy(spa->spa_condense_zthr);
1440		spa->spa_condense_zthr = NULL;
1441	}
1442
1443	if (spa->spa_checkpoint_discard_zthr != NULL) {
1444		ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1445		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1446		spa->spa_checkpoint_discard_zthr = NULL;
1447	}
1448
1449	spa_condense_fini(spa);
1450
1451	bpobj_close(&spa->spa_deferred_bpobj);
1452
1453	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1454
1455	/*
1456	 * Close all vdevs.
1457	 */
1458	if (spa->spa_root_vdev)
1459		vdev_free(spa->spa_root_vdev);
1460	ASSERT(spa->spa_root_vdev == NULL);
1461
1462	/*
1463	 * Close the dsl pool.
1464	 */
1465	if (spa->spa_dsl_pool) {
1466		dsl_pool_close(spa->spa_dsl_pool);
1467		spa->spa_dsl_pool = NULL;
1468		spa->spa_meta_objset = NULL;
1469	}
1470
1471	ddt_unload(spa);
1472
1473	/*
1474	 * Drop and purge level 2 cache
1475	 */
1476	spa_l2cache_drop(spa);
1477
1478	for (i = 0; i < spa->spa_spares.sav_count; i++)
1479		vdev_free(spa->spa_spares.sav_vdevs[i]);
1480	if (spa->spa_spares.sav_vdevs) {
1481		kmem_free(spa->spa_spares.sav_vdevs,
1482		    spa->spa_spares.sav_count * sizeof (void *));
1483		spa->spa_spares.sav_vdevs = NULL;
1484	}
1485	if (spa->spa_spares.sav_config) {
1486		nvlist_free(spa->spa_spares.sav_config);
1487		spa->spa_spares.sav_config = NULL;
1488	}
1489	spa->spa_spares.sav_count = 0;
1490
1491	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1492		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1493		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1494	}
1495	if (spa->spa_l2cache.sav_vdevs) {
1496		kmem_free(spa->spa_l2cache.sav_vdevs,
1497		    spa->spa_l2cache.sav_count * sizeof (void *));
1498		spa->spa_l2cache.sav_vdevs = NULL;
1499	}
1500	if (spa->spa_l2cache.sav_config) {
1501		nvlist_free(spa->spa_l2cache.sav_config);
1502		spa->spa_l2cache.sav_config = NULL;
1503	}
1504	spa->spa_l2cache.sav_count = 0;
1505
1506	spa->spa_async_suspended = 0;
1507
1508	spa->spa_indirect_vdevs_loaded = B_FALSE;
1509
1510	if (spa->spa_comment != NULL) {
1511		spa_strfree(spa->spa_comment);
1512		spa->spa_comment = NULL;
1513	}
1514
1515	spa_config_exit(spa, SCL_ALL, spa);
1516}
1517
1518/*
1519 * Load (or re-load) the current list of vdevs describing the active spares for
1520 * this pool.  When this is called, we have some form of basic information in
1521 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1522 * then re-generate a more complete list including status information.
1523 */
1524void
1525spa_load_spares(spa_t *spa)
1526{
1527	nvlist_t **spares;
1528	uint_t nspares;
1529	int i;
1530	vdev_t *vd, *tvd;
1531
1532#ifndef _KERNEL
1533	/*
1534	 * zdb opens both the current state of the pool and the
1535	 * checkpointed state (if present), with a different spa_t.
1536	 *
1537	 * As spare vdevs are shared among open pools, we skip loading
1538	 * them when we load the checkpointed state of the pool.
1539	 */
1540	if (!spa_writeable(spa))
1541		return;
1542#endif
1543
1544	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1545
1546	/*
1547	 * First, close and free any existing spare vdevs.
1548	 */
1549	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1550		vd = spa->spa_spares.sav_vdevs[i];
1551
1552		/* Undo the call to spa_activate() below */
1553		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1554		    B_FALSE)) != NULL && tvd->vdev_isspare)
1555			spa_spare_remove(tvd);
1556		vdev_close(vd);
1557		vdev_free(vd);
1558	}
1559
1560	if (spa->spa_spares.sav_vdevs)
1561		kmem_free(spa->spa_spares.sav_vdevs,
1562		    spa->spa_spares.sav_count * sizeof (void *));
1563
1564	if (spa->spa_spares.sav_config == NULL)
1565		nspares = 0;
1566	else
1567		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1568		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1569
1570	spa->spa_spares.sav_count = (int)nspares;
1571	spa->spa_spares.sav_vdevs = NULL;
1572
1573	if (nspares == 0)
1574		return;
1575
1576	/*
1577	 * Construct the array of vdevs, opening them to get status in the
1578	 * process.   For each spare, there is potentially two different vdev_t
1579	 * structures associated with it: one in the list of spares (used only
1580	 * for basic validation purposes) and one in the active vdev
1581	 * configuration (if it's spared in).  During this phase we open and
1582	 * validate each vdev on the spare list.  If the vdev also exists in the
1583	 * active configuration, then we also mark this vdev as an active spare.
1584	 */
1585	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1586	    KM_SLEEP);
1587	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1588		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1589		    VDEV_ALLOC_SPARE) == 0);
1590		ASSERT(vd != NULL);
1591
1592		spa->spa_spares.sav_vdevs[i] = vd;
1593
1594		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1595		    B_FALSE)) != NULL) {
1596			if (!tvd->vdev_isspare)
1597				spa_spare_add(tvd);
1598
1599			/*
1600			 * We only mark the spare active if we were successfully
1601			 * able to load the vdev.  Otherwise, importing a pool
1602			 * with a bad active spare would result in strange
1603			 * behavior, because multiple pool would think the spare
1604			 * is actively in use.
1605			 *
1606			 * There is a vulnerability here to an equally bizarre
1607			 * circumstance, where a dead active spare is later
1608			 * brought back to life (onlined or otherwise).  Given
1609			 * the rarity of this scenario, and the extra complexity
1610			 * it adds, we ignore the possibility.
1611			 */
1612			if (!vdev_is_dead(tvd))
1613				spa_spare_activate(tvd);
1614		}
1615
1616		vd->vdev_top = vd;
1617		vd->vdev_aux = &spa->spa_spares;
1618
1619		if (vdev_open(vd) != 0)
1620			continue;
1621
1622		if (vdev_validate_aux(vd) == 0)
1623			spa_spare_add(vd);
1624	}
1625
1626	/*
1627	 * Recompute the stashed list of spares, with status information
1628	 * this time.
1629	 */
1630	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1631	    DATA_TYPE_NVLIST_ARRAY) == 0);
1632
1633	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1634	    KM_SLEEP);
1635	for (i = 0; i < spa->spa_spares.sav_count; i++)
1636		spares[i] = vdev_config_generate(spa,
1637		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1638	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1639	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1640	for (i = 0; i < spa->spa_spares.sav_count; i++)
1641		nvlist_free(spares[i]);
1642	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1643}
1644
1645/*
1646 * Load (or re-load) the current list of vdevs describing the active l2cache for
1647 * this pool.  When this is called, we have some form of basic information in
1648 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1649 * then re-generate a more complete list including status information.
1650 * Devices which are already active have their details maintained, and are
1651 * not re-opened.
1652 */
1653void
1654spa_load_l2cache(spa_t *spa)
1655{
1656	nvlist_t **l2cache;
1657	uint_t nl2cache;
1658	int i, j, oldnvdevs;
1659	uint64_t guid;
1660	vdev_t *vd, **oldvdevs, **newvdevs;
1661	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1662
1663#ifndef _KERNEL
1664	/*
1665	 * zdb opens both the current state of the pool and the
1666	 * checkpointed state (if present), with a different spa_t.
1667	 *
1668	 * As L2 caches are part of the ARC which is shared among open
1669	 * pools, we skip loading them when we load the checkpointed
1670	 * state of the pool.
1671	 */
1672	if (!spa_writeable(spa))
1673		return;
1674#endif
1675
1676	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1677
1678	if (sav->sav_config != NULL) {
1679		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1680		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1681		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1682	} else {
1683		nl2cache = 0;
1684		newvdevs = NULL;
1685	}
1686
1687	oldvdevs = sav->sav_vdevs;
1688	oldnvdevs = sav->sav_count;
1689	sav->sav_vdevs = NULL;
1690	sav->sav_count = 0;
1691
1692	/*
1693	 * Process new nvlist of vdevs.
1694	 */
1695	for (i = 0; i < nl2cache; i++) {
1696		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1697		    &guid) == 0);
1698
1699		newvdevs[i] = NULL;
1700		for (j = 0; j < oldnvdevs; j++) {
1701			vd = oldvdevs[j];
1702			if (vd != NULL && guid == vd->vdev_guid) {
1703				/*
1704				 * Retain previous vdev for add/remove ops.
1705				 */
1706				newvdevs[i] = vd;
1707				oldvdevs[j] = NULL;
1708				break;
1709			}
1710		}
1711
1712		if (newvdevs[i] == NULL) {
1713			/*
1714			 * Create new vdev
1715			 */
1716			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1717			    VDEV_ALLOC_L2CACHE) == 0);
1718			ASSERT(vd != NULL);
1719			newvdevs[i] = vd;
1720
1721			/*
1722			 * Commit this vdev as an l2cache device,
1723			 * even if it fails to open.
1724			 */
1725			spa_l2cache_add(vd);
1726
1727			vd->vdev_top = vd;
1728			vd->vdev_aux = sav;
1729
1730			spa_l2cache_activate(vd);
1731
1732			if (vdev_open(vd) != 0)
1733				continue;
1734
1735			(void) vdev_validate_aux(vd);
1736
1737			if (!vdev_is_dead(vd))
1738				l2arc_add_vdev(spa, vd);
1739		}
1740	}
1741
1742	/*
1743	 * Purge vdevs that were dropped
1744	 */
1745	for (i = 0; i < oldnvdevs; i++) {
1746		uint64_t pool;
1747
1748		vd = oldvdevs[i];
1749		if (vd != NULL) {
1750			ASSERT(vd->vdev_isl2cache);
1751
1752			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1753			    pool != 0ULL && l2arc_vdev_present(vd))
1754				l2arc_remove_vdev(vd);
1755			vdev_clear_stats(vd);
1756			vdev_free(vd);
1757		}
1758	}
1759
1760	if (oldvdevs)
1761		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1762
1763	if (sav->sav_config == NULL)
1764		goto out;
1765
1766	sav->sav_vdevs = newvdevs;
1767	sav->sav_count = (int)nl2cache;
1768
1769	/*
1770	 * Recompute the stashed list of l2cache devices, with status
1771	 * information this time.
1772	 */
1773	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1774	    DATA_TYPE_NVLIST_ARRAY) == 0);
1775
1776	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1777	for (i = 0; i < sav->sav_count; i++)
1778		l2cache[i] = vdev_config_generate(spa,
1779		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1780	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1781	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1782out:
1783	for (i = 0; i < sav->sav_count; i++)
1784		nvlist_free(l2cache[i]);
1785	if (sav->sav_count)
1786		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1787}
1788
1789static int
1790load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1791{
1792	dmu_buf_t *db;
1793	char *packed = NULL;
1794	size_t nvsize = 0;
1795	int error;
1796	*value = NULL;
1797
1798	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1799	if (error != 0)
1800		return (error);
1801
1802	nvsize = *(uint64_t *)db->db_data;
1803	dmu_buf_rele(db, FTAG);
1804
1805	packed = kmem_alloc(nvsize, KM_SLEEP);
1806	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1807	    DMU_READ_PREFETCH);
1808	if (error == 0)
1809		error = nvlist_unpack(packed, nvsize, value, 0);
1810	kmem_free(packed, nvsize);
1811
1812	return (error);
1813}
1814
1815/*
1816 * Concrete top-level vdevs that are not missing and are not logs. At every
1817 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1818 */
1819static uint64_t
1820spa_healthy_core_tvds(spa_t *spa)
1821{
1822	vdev_t *rvd = spa->spa_root_vdev;
1823	uint64_t tvds = 0;
1824
1825	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1826		vdev_t *vd = rvd->vdev_child[i];
1827		if (vd->vdev_islog)
1828			continue;
1829		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1830			tvds++;
1831	}
1832
1833	return (tvds);
1834}
1835
1836/*
1837 * Checks to see if the given vdev could not be opened, in which case we post a
1838 * sysevent to notify the autoreplace code that the device has been removed.
1839 */
1840static void
1841spa_check_removed(vdev_t *vd)
1842{
1843	for (uint64_t c = 0; c < vd->vdev_children; c++)
1844		spa_check_removed(vd->vdev_child[c]);
1845
1846	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1847	    vdev_is_concrete(vd)) {
1848		zfs_post_autoreplace(vd->vdev_spa, vd);
1849		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1850	}
1851}
1852
1853static int
1854spa_check_for_missing_logs(spa_t *spa)
1855{
1856	vdev_t *rvd = spa->spa_root_vdev;
1857
1858	/*
1859	 * If we're doing a normal import, then build up any additional
1860	 * diagnostic information about missing log devices.
1861	 * We'll pass this up to the user for further processing.
1862	 */
1863	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1864		nvlist_t **child, *nv;
1865		uint64_t idx = 0;
1866
1867		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1868		    KM_SLEEP);
1869		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1870
1871		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1872			vdev_t *tvd = rvd->vdev_child[c];
1873
1874			/*
1875			 * We consider a device as missing only if it failed
1876			 * to open (i.e. offline or faulted is not considered
1877			 * as missing).
1878			 */
1879			if (tvd->vdev_islog &&
1880			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1881				child[idx++] = vdev_config_generate(spa, tvd,
1882				    B_FALSE, VDEV_CONFIG_MISSING);
1883			}
1884		}
1885
1886		if (idx > 0) {
1887			fnvlist_add_nvlist_array(nv,
1888			    ZPOOL_CONFIG_CHILDREN, child, idx);
1889			fnvlist_add_nvlist(spa->spa_load_info,
1890			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1891
1892			for (uint64_t i = 0; i < idx; i++)
1893				nvlist_free(child[i]);
1894		}
1895		nvlist_free(nv);
1896		kmem_free(child, rvd->vdev_children * sizeof (char **));
1897
1898		if (idx > 0) {
1899			spa_load_failed(spa, "some log devices are missing");
1900			vdev_dbgmsg_print_tree(rvd, 2);
1901			return (SET_ERROR(ENXIO));
1902		}
1903	} else {
1904		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1905			vdev_t *tvd = rvd->vdev_child[c];
1906
1907			if (tvd->vdev_islog &&
1908			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1909				spa_set_log_state(spa, SPA_LOG_CLEAR);
1910				spa_load_note(spa, "some log devices are "
1911				    "missing, ZIL is dropped.");
1912				vdev_dbgmsg_print_tree(rvd, 2);
1913				break;
1914			}
1915		}
1916	}
1917
1918	return (0);
1919}
1920
1921/*
1922 * Check for missing log devices
1923 */
1924static boolean_t
1925spa_check_logs(spa_t *spa)
1926{
1927	boolean_t rv = B_FALSE;
1928	dsl_pool_t *dp = spa_get_dsl(spa);
1929
1930	switch (spa->spa_log_state) {
1931	case SPA_LOG_MISSING:
1932		/* need to recheck in case slog has been restored */
1933	case SPA_LOG_UNKNOWN:
1934		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1935		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1936		if (rv)
1937			spa_set_log_state(spa, SPA_LOG_MISSING);
1938		break;
1939	}
1940	return (rv);
1941}
1942
1943static boolean_t
1944spa_passivate_log(spa_t *spa)
1945{
1946	vdev_t *rvd = spa->spa_root_vdev;
1947	boolean_t slog_found = B_FALSE;
1948
1949	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1950
1951	if (!spa_has_slogs(spa))
1952		return (B_FALSE);
1953
1954	for (int c = 0; c < rvd->vdev_children; c++) {
1955		vdev_t *tvd = rvd->vdev_child[c];
1956		metaslab_group_t *mg = tvd->vdev_mg;
1957
1958		if (tvd->vdev_islog) {
1959			metaslab_group_passivate(mg);
1960			slog_found = B_TRUE;
1961		}
1962	}
1963
1964	return (slog_found);
1965}
1966
1967static void
1968spa_activate_log(spa_t *spa)
1969{
1970	vdev_t *rvd = spa->spa_root_vdev;
1971
1972	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1973
1974	for (int c = 0; c < rvd->vdev_children; c++) {
1975		vdev_t *tvd = rvd->vdev_child[c];
1976		metaslab_group_t *mg = tvd->vdev_mg;
1977
1978		if (tvd->vdev_islog)
1979			metaslab_group_activate(mg);
1980	}
1981}
1982
1983int
1984spa_reset_logs(spa_t *spa)
1985{
1986	int error;
1987
1988	error = dmu_objset_find(spa_name(spa), zil_reset,
1989	    NULL, DS_FIND_CHILDREN);
1990	if (error == 0) {
1991		/*
1992		 * We successfully offlined the log device, sync out the
1993		 * current txg so that the "stubby" block can be removed
1994		 * by zil_sync().
1995		 */
1996		txg_wait_synced(spa->spa_dsl_pool, 0);
1997	}
1998	return (error);
1999}
2000
2001static void
2002spa_aux_check_removed(spa_aux_vdev_t *sav)
2003{
2004	int i;
2005
2006	for (i = 0; i < sav->sav_count; i++)
2007		spa_check_removed(sav->sav_vdevs[i]);
2008}
2009
2010void
2011spa_claim_notify(zio_t *zio)
2012{
2013	spa_t *spa = zio->io_spa;
2014
2015	if (zio->io_error)
2016		return;
2017
2018	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2019	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2020		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2021	mutex_exit(&spa->spa_props_lock);
2022}
2023
2024typedef struct spa_load_error {
2025	uint64_t	sle_meta_count;
2026	uint64_t	sle_data_count;
2027} spa_load_error_t;
2028
2029static void
2030spa_load_verify_done(zio_t *zio)
2031{
2032	blkptr_t *bp = zio->io_bp;
2033	spa_load_error_t *sle = zio->io_private;
2034	dmu_object_type_t type = BP_GET_TYPE(bp);
2035	int error = zio->io_error;
2036	spa_t *spa = zio->io_spa;
2037
2038	abd_free(zio->io_abd);
2039	if (error) {
2040		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2041		    type != DMU_OT_INTENT_LOG)
2042			atomic_inc_64(&sle->sle_meta_count);
2043		else
2044			atomic_inc_64(&sle->sle_data_count);
2045	}
2046
2047	mutex_enter(&spa->spa_scrub_lock);
2048	spa->spa_load_verify_ios--;
2049	cv_broadcast(&spa->spa_scrub_io_cv);
2050	mutex_exit(&spa->spa_scrub_lock);
2051}
2052
2053/*
2054 * Maximum number of concurrent scrub i/os to create while verifying
2055 * a pool while importing it.
2056 */
2057int spa_load_verify_maxinflight = 10000;
2058boolean_t spa_load_verify_metadata = B_TRUE;
2059boolean_t spa_load_verify_data = B_TRUE;
2060
2061SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
2062    &spa_load_verify_maxinflight, 0,
2063    "Maximum number of concurrent scrub I/Os to create while verifying a "
2064    "pool while importing it");
2065
2066SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
2067    &spa_load_verify_metadata, 0,
2068    "Check metadata on import?");
2069
2070SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
2071    &spa_load_verify_data, 0,
2072    "Check user data on import?");
2073
2074/*ARGSUSED*/
2075static int
2076spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2077    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2078{
2079	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2080		return (0);
2081	/*
2082	 * Note: normally this routine will not be called if
2083	 * spa_load_verify_metadata is not set.  However, it may be useful
2084	 * to manually set the flag after the traversal has begun.
2085	 */
2086	if (!spa_load_verify_metadata)
2087		return (0);
2088	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2089		return (0);
2090
2091	zio_t *rio = arg;
2092	size_t size = BP_GET_PSIZE(bp);
2093
2094	mutex_enter(&spa->spa_scrub_lock);
2095	while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2096		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2097	spa->spa_load_verify_ios++;
2098	mutex_exit(&spa->spa_scrub_lock);
2099
2100	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2101	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2102	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2103	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2104	return (0);
2105}
2106
2107/* ARGSUSED */
2108int
2109verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2110{
2111	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2112		return (SET_ERROR(ENAMETOOLONG));
2113
2114	return (0);
2115}
2116
2117static int
2118spa_load_verify(spa_t *spa)
2119{
2120	zio_t *rio;
2121	spa_load_error_t sle = { 0 };
2122	zpool_load_policy_t policy;
2123	boolean_t verify_ok = B_FALSE;
2124	int error = 0;
2125
2126	zpool_get_load_policy(spa->spa_config, &policy);
2127
2128	if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2129		return (0);
2130
2131	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2132	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2133	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2134	    DS_FIND_CHILDREN);
2135	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2136	if (error != 0)
2137		return (error);
2138
2139	rio = zio_root(spa, NULL, &sle,
2140	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2141
2142	if (spa_load_verify_metadata) {
2143		if (spa->spa_extreme_rewind) {
2144			spa_load_note(spa, "performing a complete scan of the "
2145			    "pool since extreme rewind is on. This may take "
2146			    "a very long time.\n  (spa_load_verify_data=%u, "
2147			    "spa_load_verify_metadata=%u)",
2148			    spa_load_verify_data, spa_load_verify_metadata);
2149		}
2150		error = traverse_pool(spa, spa->spa_verify_min_txg,
2151		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2152		    spa_load_verify_cb, rio);
2153	}
2154
2155	(void) zio_wait(rio);
2156
2157	spa->spa_load_meta_errors = sle.sle_meta_count;
2158	spa->spa_load_data_errors = sle.sle_data_count;
2159
2160	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2161		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2162		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2163		    (u_longlong_t)sle.sle_data_count);
2164	}
2165
2166	if (spa_load_verify_dryrun ||
2167	    (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2168	    sle.sle_data_count <= policy.zlp_maxdata)) {
2169		int64_t loss = 0;
2170
2171		verify_ok = B_TRUE;
2172		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2173		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2174
2175		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2176		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2177		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2178		VERIFY(nvlist_add_int64(spa->spa_load_info,
2179		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2180		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2181		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2182	} else {
2183		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2184	}
2185
2186	if (spa_load_verify_dryrun)
2187		return (0);
2188
2189	if (error) {
2190		if (error != ENXIO && error != EIO)
2191			error = SET_ERROR(EIO);
2192		return (error);
2193	}
2194
2195	return (verify_ok ? 0 : EIO);
2196}
2197
2198/*
2199 * Find a value in the pool props object.
2200 */
2201static void
2202spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2203{
2204	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2205	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2206}
2207
2208/*
2209 * Find a value in the pool directory object.
2210 */
2211static int
2212spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2213{
2214	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2215	    name, sizeof (uint64_t), 1, val);
2216
2217	if (error != 0 && (error != ENOENT || log_enoent)) {
2218		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2219		    "[error=%d]", name, error);
2220	}
2221
2222	return (error);
2223}
2224
2225static int
2226spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2227{
2228	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2229	return (SET_ERROR(err));
2230}
2231
2232static void
2233spa_spawn_aux_threads(spa_t *spa)
2234{
2235	ASSERT(spa_writeable(spa));
2236
2237	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2238
2239	spa_start_indirect_condensing_thread(spa);
2240
2241	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2242	spa->spa_checkpoint_discard_zthr =
2243	    zthr_create(spa_checkpoint_discard_thread_check,
2244	    spa_checkpoint_discard_thread, spa);
2245}
2246
2247/*
2248 * Fix up config after a partly-completed split.  This is done with the
2249 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2250 * pool have that entry in their config, but only the splitting one contains
2251 * a list of all the guids of the vdevs that are being split off.
2252 *
2253 * This function determines what to do with that list: either rejoin
2254 * all the disks to the pool, or complete the splitting process.  To attempt
2255 * the rejoin, each disk that is offlined is marked online again, and
2256 * we do a reopen() call.  If the vdev label for every disk that was
2257 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2258 * then we call vdev_split() on each disk, and complete the split.
2259 *
2260 * Otherwise we leave the config alone, with all the vdevs in place in
2261 * the original pool.
2262 */
2263static void
2264spa_try_repair(spa_t *spa, nvlist_t *config)
2265{
2266	uint_t extracted;
2267	uint64_t *glist;
2268	uint_t i, gcount;
2269	nvlist_t *nvl;
2270	vdev_t **vd;
2271	boolean_t attempt_reopen;
2272
2273	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2274		return;
2275
2276	/* check that the config is complete */
2277	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2278	    &glist, &gcount) != 0)
2279		return;
2280
2281	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2282
2283	/* attempt to online all the vdevs & validate */
2284	attempt_reopen = B_TRUE;
2285	for (i = 0; i < gcount; i++) {
2286		if (glist[i] == 0)	/* vdev is hole */
2287			continue;
2288
2289		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2290		if (vd[i] == NULL) {
2291			/*
2292			 * Don't bother attempting to reopen the disks;
2293			 * just do the split.
2294			 */
2295			attempt_reopen = B_FALSE;
2296		} else {
2297			/* attempt to re-online it */
2298			vd[i]->vdev_offline = B_FALSE;
2299		}
2300	}
2301
2302	if (attempt_reopen) {
2303		vdev_reopen(spa->spa_root_vdev);
2304
2305		/* check each device to see what state it's in */
2306		for (extracted = 0, i = 0; i < gcount; i++) {
2307			if (vd[i] != NULL &&
2308			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2309				break;
2310			++extracted;
2311		}
2312	}
2313
2314	/*
2315	 * If every disk has been moved to the new pool, or if we never
2316	 * even attempted to look at them, then we split them off for
2317	 * good.
2318	 */
2319	if (!attempt_reopen || gcount == extracted) {
2320		for (i = 0; i < gcount; i++)
2321			if (vd[i] != NULL)
2322				vdev_split(vd[i]);
2323		vdev_reopen(spa->spa_root_vdev);
2324	}
2325
2326	kmem_free(vd, gcount * sizeof (vdev_t *));
2327}
2328
2329static int
2330spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2331{
2332	char *ereport = FM_EREPORT_ZFS_POOL;
2333	int error;
2334
2335	spa->spa_load_state = state;
2336
2337	gethrestime(&spa->spa_loaded_ts);
2338	error = spa_load_impl(spa, type, &ereport);
2339
2340	/*
2341	 * Don't count references from objsets that are already closed
2342	 * and are making their way through the eviction process.
2343	 */
2344	spa_evicting_os_wait(spa);
2345	spa->spa_minref = refcount_count(&spa->spa_refcount);
2346	if (error) {
2347		if (error != EEXIST) {
2348			spa->spa_loaded_ts.tv_sec = 0;
2349			spa->spa_loaded_ts.tv_nsec = 0;
2350		}
2351		if (error != EBADF) {
2352			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2353		}
2354	}
2355	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2356	spa->spa_ena = 0;
2357
2358	return (error);
2359}
2360
2361/*
2362 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2363 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2364 * spa's per-vdev ZAP list.
2365 */
2366static uint64_t
2367vdev_count_verify_zaps(vdev_t *vd)
2368{
2369	spa_t *spa = vd->vdev_spa;
2370	uint64_t total = 0;
2371	if (vd->vdev_top_zap != 0) {
2372		total++;
2373		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2374		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2375	}
2376	if (vd->vdev_leaf_zap != 0) {
2377		total++;
2378		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2379		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2380	}
2381
2382	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2383		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2384	}
2385
2386	return (total);
2387}
2388
2389static int
2390spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2391{
2392	uint64_t hostid;
2393	char *hostname;
2394	uint64_t myhostid = 0;
2395
2396	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2397	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2398		hostname = fnvlist_lookup_string(mos_config,
2399		    ZPOOL_CONFIG_HOSTNAME);
2400
2401		myhostid = zone_get_hostid(NULL);
2402
2403		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2404			cmn_err(CE_WARN, "pool '%s' could not be "
2405			    "loaded as it was last accessed by "
2406			    "another system (host: %s hostid: 0x%llx). "
2407			    "See: http://illumos.org/msg/ZFS-8000-EY",
2408			    spa_name(spa), hostname, (u_longlong_t)hostid);
2409			spa_load_failed(spa, "hostid verification failed: pool "
2410			    "last accessed by host: %s (hostid: 0x%llx)",
2411			    hostname, (u_longlong_t)hostid);
2412			return (SET_ERROR(EBADF));
2413		}
2414	}
2415
2416	return (0);
2417}
2418
2419static int
2420spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2421{
2422	int error = 0;
2423	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2424	int parse;
2425	vdev_t *rvd;
2426	uint64_t pool_guid;
2427	char *comment;
2428
2429	/*
2430	 * Versioning wasn't explicitly added to the label until later, so if
2431	 * it's not present treat it as the initial version.
2432	 */
2433	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2434	    &spa->spa_ubsync.ub_version) != 0)
2435		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2436
2437	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2438		spa_load_failed(spa, "invalid config provided: '%s' missing",
2439		    ZPOOL_CONFIG_POOL_GUID);
2440		return (SET_ERROR(EINVAL));
2441	}
2442
2443	/*
2444	 * If we are doing an import, ensure that the pool is not already
2445	 * imported by checking if its pool guid already exists in the
2446	 * spa namespace.
2447	 *
2448	 * The only case that we allow an already imported pool to be
2449	 * imported again, is when the pool is checkpointed and we want to
2450	 * look at its checkpointed state from userland tools like zdb.
2451	 */
2452#ifdef _KERNEL
2453	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2454	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2455	    spa_guid_exists(pool_guid, 0)) {
2456#else
2457	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2458	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2459	    spa_guid_exists(pool_guid, 0) &&
2460	    !spa_importing_readonly_checkpoint(spa)) {
2461#endif
2462		spa_load_failed(spa, "a pool with guid %llu is already open",
2463		    (u_longlong_t)pool_guid);
2464		return (SET_ERROR(EEXIST));
2465	}
2466
2467	spa->spa_config_guid = pool_guid;
2468
2469	nvlist_free(spa->spa_load_info);
2470	spa->spa_load_info = fnvlist_alloc();
2471
2472	ASSERT(spa->spa_comment == NULL);
2473	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2474		spa->spa_comment = spa_strdup(comment);
2475
2476	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2477	    &spa->spa_config_txg);
2478
2479	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2480		spa->spa_config_splitting = fnvlist_dup(nvl);
2481
2482	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2483		spa_load_failed(spa, "invalid config provided: '%s' missing",
2484		    ZPOOL_CONFIG_VDEV_TREE);
2485		return (SET_ERROR(EINVAL));
2486	}
2487
2488	/*
2489	 * Create "The Godfather" zio to hold all async IOs
2490	 */
2491	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2492	    KM_SLEEP);
2493	for (int i = 0; i < max_ncpus; i++) {
2494		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2495		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2496		    ZIO_FLAG_GODFATHER);
2497	}
2498
2499	/*
2500	 * Parse the configuration into a vdev tree.  We explicitly set the
2501	 * value that will be returned by spa_version() since parsing the
2502	 * configuration requires knowing the version number.
2503	 */
2504	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2505	parse = (type == SPA_IMPORT_EXISTING ?
2506	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2507	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2508	spa_config_exit(spa, SCL_ALL, FTAG);
2509
2510	if (error != 0) {
2511		spa_load_failed(spa, "unable to parse config [error=%d]",
2512		    error);
2513		return (error);
2514	}
2515
2516	ASSERT(spa->spa_root_vdev == rvd);
2517	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2518	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2519
2520	if (type != SPA_IMPORT_ASSEMBLE) {
2521		ASSERT(spa_guid(spa) == pool_guid);
2522	}
2523
2524	return (0);
2525}
2526
2527/*
2528 * Recursively open all vdevs in the vdev tree. This function is called twice:
2529 * first with the untrusted config, then with the trusted config.
2530 */
2531static int
2532spa_ld_open_vdevs(spa_t *spa)
2533{
2534	int error = 0;
2535
2536	/*
2537	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2538	 * missing/unopenable for the root vdev to be still considered openable.
2539	 */
2540	if (spa->spa_trust_config) {
2541		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2542	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2543		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2544	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2545		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2546	} else {
2547		spa->spa_missing_tvds_allowed = 0;
2548	}
2549
2550	spa->spa_missing_tvds_allowed =
2551	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2552
2553	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2554	error = vdev_open(spa->spa_root_vdev);
2555	spa_config_exit(spa, SCL_ALL, FTAG);
2556
2557	if (spa->spa_missing_tvds != 0) {
2558		spa_load_note(spa, "vdev tree has %lld missing top-level "
2559		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2560		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2561			/*
2562			 * Although theoretically we could allow users to open
2563			 * incomplete pools in RW mode, we'd need to add a lot
2564			 * of extra logic (e.g. adjust pool space to account
2565			 * for missing vdevs).
2566			 * This limitation also prevents users from accidentally
2567			 * opening the pool in RW mode during data recovery and
2568			 * damaging it further.
2569			 */
2570			spa_load_note(spa, "pools with missing top-level "
2571			    "vdevs can only be opened in read-only mode.");
2572			error = SET_ERROR(ENXIO);
2573		} else {
2574			spa_load_note(spa, "current settings allow for maximum "
2575			    "%lld missing top-level vdevs at this stage.",
2576			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2577		}
2578	}
2579	if (error != 0) {
2580		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2581		    error);
2582	}
2583	if (spa->spa_missing_tvds != 0 || error != 0)
2584		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2585
2586	return (error);
2587}
2588
2589/*
2590 * We need to validate the vdev labels against the configuration that
2591 * we have in hand. This function is called twice: first with an untrusted
2592 * config, then with a trusted config. The validation is more strict when the
2593 * config is trusted.
2594 */
2595static int
2596spa_ld_validate_vdevs(spa_t *spa)
2597{
2598	int error = 0;
2599	vdev_t *rvd = spa->spa_root_vdev;
2600
2601	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2602	error = vdev_validate(rvd);
2603	spa_config_exit(spa, SCL_ALL, FTAG);
2604
2605	if (error != 0) {
2606		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2607		return (error);
2608	}
2609
2610	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2611		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2612		    "some vdevs");
2613		vdev_dbgmsg_print_tree(rvd, 2);
2614		return (SET_ERROR(ENXIO));
2615	}
2616
2617	return (0);
2618}
2619
2620static void
2621spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2622{
2623	spa->spa_state = POOL_STATE_ACTIVE;
2624	spa->spa_ubsync = spa->spa_uberblock;
2625	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2626	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2627	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2628	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2629	spa->spa_claim_max_txg = spa->spa_first_txg;
2630	spa->spa_prev_software_version = ub->ub_software_version;
2631}
2632
2633static int
2634spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2635{
2636	vdev_t *rvd = spa->spa_root_vdev;
2637	nvlist_t *label;
2638	uberblock_t *ub = &spa->spa_uberblock;
2639
2640	/*
2641	 * If we are opening the checkpointed state of the pool by
2642	 * rewinding to it, at this point we will have written the
2643	 * checkpointed uberblock to the vdev labels, so searching
2644	 * the labels will find the right uberblock.  However, if
2645	 * we are opening the checkpointed state read-only, we have
2646	 * not modified the labels. Therefore, we must ignore the
2647	 * labels and continue using the spa_uberblock that was set
2648	 * by spa_ld_checkpoint_rewind.
2649	 *
2650	 * Note that it would be fine to ignore the labels when
2651	 * rewinding (opening writeable) as well. However, if we
2652	 * crash just after writing the labels, we will end up
2653	 * searching the labels. Doing so in the common case means
2654	 * that this code path gets exercised normally, rather than
2655	 * just in the edge case.
2656	 */
2657	if (ub->ub_checkpoint_txg != 0 &&
2658	    spa_importing_readonly_checkpoint(spa)) {
2659		spa_ld_select_uberblock_done(spa, ub);
2660		return (0);
2661	}
2662
2663	/*
2664	 * Find the best uberblock.
2665	 */
2666	vdev_uberblock_load(rvd, ub, &label);
2667
2668	/*
2669	 * If we weren't able to find a single valid uberblock, return failure.
2670	 */
2671	if (ub->ub_txg == 0) {
2672		nvlist_free(label);
2673		spa_load_failed(spa, "no valid uberblock found");
2674		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2675	}
2676
2677	spa_load_note(spa, "using uberblock with txg=%llu",
2678	    (u_longlong_t)ub->ub_txg);
2679
2680	/*
2681	 * If the pool has an unsupported version we can't open it.
2682	 */
2683	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2684		nvlist_free(label);
2685		spa_load_failed(spa, "version %llu is not supported",
2686		    (u_longlong_t)ub->ub_version);
2687		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2688	}
2689
2690	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2691		nvlist_t *features;
2692
2693		/*
2694		 * If we weren't able to find what's necessary for reading the
2695		 * MOS in the label, return failure.
2696		 */
2697		if (label == NULL) {
2698			spa_load_failed(spa, "label config unavailable");
2699			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2700			    ENXIO));
2701		}
2702
2703		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2704		    &features) != 0) {
2705			nvlist_free(label);
2706			spa_load_failed(spa, "invalid label: '%s' missing",
2707			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2708			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2709			    ENXIO));
2710		}
2711
2712		/*
2713		 * Update our in-core representation with the definitive values
2714		 * from the label.
2715		 */
2716		nvlist_free(spa->spa_label_features);
2717		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2718	}
2719
2720	nvlist_free(label);
2721
2722	/*
2723	 * Look through entries in the label nvlist's features_for_read. If
2724	 * there is a feature listed there which we don't understand then we
2725	 * cannot open a pool.
2726	 */
2727	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2728		nvlist_t *unsup_feat;
2729
2730		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2731		    0);
2732
2733		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2734		    NULL); nvp != NULL;
2735		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2736			if (!zfeature_is_supported(nvpair_name(nvp))) {
2737				VERIFY(nvlist_add_string(unsup_feat,
2738				    nvpair_name(nvp), "") == 0);
2739			}
2740		}
2741
2742		if (!nvlist_empty(unsup_feat)) {
2743			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2744			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2745			nvlist_free(unsup_feat);
2746			spa_load_failed(spa, "some features are unsupported");
2747			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2748			    ENOTSUP));
2749		}
2750
2751		nvlist_free(unsup_feat);
2752	}
2753
2754	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2755		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2756		spa_try_repair(spa, spa->spa_config);
2757		spa_config_exit(spa, SCL_ALL, FTAG);
2758		nvlist_free(spa->spa_config_splitting);
2759		spa->spa_config_splitting = NULL;
2760	}
2761
2762	/*
2763	 * Initialize internal SPA structures.
2764	 */
2765	spa_ld_select_uberblock_done(spa, ub);
2766
2767	return (0);
2768}
2769
2770static int
2771spa_ld_open_rootbp(spa_t *spa)
2772{
2773	int error = 0;
2774	vdev_t *rvd = spa->spa_root_vdev;
2775
2776	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2777	if (error != 0) {
2778		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2779		    "[error=%d]", error);
2780		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2781	}
2782	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2783
2784	return (0);
2785}
2786
2787static int
2788spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2789    boolean_t reloading)
2790{
2791	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2792	nvlist_t *nv, *mos_config, *policy;
2793	int error = 0, copy_error;
2794	uint64_t healthy_tvds, healthy_tvds_mos;
2795	uint64_t mos_config_txg;
2796
2797	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2798	    != 0)
2799		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2800
2801	/*
2802	 * If we're assembling a pool from a split, the config provided is
2803	 * already trusted so there is nothing to do.
2804	 */
2805	if (type == SPA_IMPORT_ASSEMBLE)
2806		return (0);
2807
2808	healthy_tvds = spa_healthy_core_tvds(spa);
2809
2810	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2811	    != 0) {
2812		spa_load_failed(spa, "unable to retrieve MOS config");
2813		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2814	}
2815
2816	/*
2817	 * If we are doing an open, pool owner wasn't verified yet, thus do
2818	 * the verification here.
2819	 */
2820	if (spa->spa_load_state == SPA_LOAD_OPEN) {
2821		error = spa_verify_host(spa, mos_config);
2822		if (error != 0) {
2823			nvlist_free(mos_config);
2824			return (error);
2825		}
2826	}
2827
2828	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2829
2830	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2831
2832	/*
2833	 * Build a new vdev tree from the trusted config
2834	 */
2835	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2836
2837	/*
2838	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
2839	 * obtained by scanning /dev/dsk, then it will have the right vdev
2840	 * paths. We update the trusted MOS config with this information.
2841	 * We first try to copy the paths with vdev_copy_path_strict, which
2842	 * succeeds only when both configs have exactly the same vdev tree.
2843	 * If that fails, we fall back to a more flexible method that has a
2844	 * best effort policy.
2845	 */
2846	copy_error = vdev_copy_path_strict(rvd, mrvd);
2847	if (copy_error != 0 || spa_load_print_vdev_tree) {
2848		spa_load_note(spa, "provided vdev tree:");
2849		vdev_dbgmsg_print_tree(rvd, 2);
2850		spa_load_note(spa, "MOS vdev tree:");
2851		vdev_dbgmsg_print_tree(mrvd, 2);
2852	}
2853	if (copy_error != 0) {
2854		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
2855		    "back to vdev_copy_path_relaxed");
2856		vdev_copy_path_relaxed(rvd, mrvd);
2857	}
2858
2859	vdev_close(rvd);
2860	vdev_free(rvd);
2861	spa->spa_root_vdev = mrvd;
2862	rvd = mrvd;
2863	spa_config_exit(spa, SCL_ALL, FTAG);
2864
2865	/*
2866	 * We will use spa_config if we decide to reload the spa or if spa_load
2867	 * fails and we rewind. We must thus regenerate the config using the
2868	 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
2869	 * pass settings on how to load the pool and is not stored in the MOS.
2870	 * We copy it over to our new, trusted config.
2871	 */
2872	mos_config_txg = fnvlist_lookup_uint64(mos_config,
2873	    ZPOOL_CONFIG_POOL_TXG);
2874	nvlist_free(mos_config);
2875	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
2876	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
2877	    &policy) == 0)
2878		fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
2879	spa_config_set(spa, mos_config);
2880	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
2881
2882	/*
2883	 * Now that we got the config from the MOS, we should be more strict
2884	 * in checking blkptrs and can make assumptions about the consistency
2885	 * of the vdev tree. spa_trust_config must be set to true before opening
2886	 * vdevs in order for them to be writeable.
2887	 */
2888	spa->spa_trust_config = B_TRUE;
2889
2890	/*
2891	 * Open and validate the new vdev tree
2892	 */
2893	error = spa_ld_open_vdevs(spa);
2894	if (error != 0)
2895		return (error);
2896
2897	error = spa_ld_validate_vdevs(spa);
2898	if (error != 0)
2899		return (error);
2900
2901	if (copy_error != 0 || spa_load_print_vdev_tree) {
2902		spa_load_note(spa, "final vdev tree:");
2903		vdev_dbgmsg_print_tree(rvd, 2);
2904	}
2905
2906	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
2907	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
2908		/*
2909		 * Sanity check to make sure that we are indeed loading the
2910		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
2911		 * in the config provided and they happened to be the only ones
2912		 * to have the latest uberblock, we could involuntarily perform
2913		 * an extreme rewind.
2914		 */
2915		healthy_tvds_mos = spa_healthy_core_tvds(spa);
2916		if (healthy_tvds_mos - healthy_tvds >=
2917		    SPA_SYNC_MIN_VDEVS) {
2918			spa_load_note(spa, "config provided misses too many "
2919			    "top-level vdevs compared to MOS (%lld vs %lld). ",
2920			    (u_longlong_t)healthy_tvds,
2921			    (u_longlong_t)healthy_tvds_mos);
2922			spa_load_note(spa, "vdev tree:");
2923			vdev_dbgmsg_print_tree(rvd, 2);
2924			if (reloading) {
2925				spa_load_failed(spa, "config was already "
2926				    "provided from MOS. Aborting.");
2927				return (spa_vdev_err(rvd,
2928				    VDEV_AUX_CORRUPT_DATA, EIO));
2929			}
2930			spa_load_note(spa, "spa must be reloaded using MOS "
2931			    "config");
2932			return (SET_ERROR(EAGAIN));
2933		}
2934	}
2935
2936	error = spa_check_for_missing_logs(spa);
2937	if (error != 0)
2938		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2939
2940	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
2941		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
2942		    "guid sum (%llu != %llu)",
2943		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
2944		    (u_longlong_t)rvd->vdev_guid_sum);
2945		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2946		    ENXIO));
2947	}
2948
2949	return (0);
2950}
2951
2952static int
2953spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2954{
2955	int error = 0;
2956	vdev_t *rvd = spa->spa_root_vdev;
2957
2958	/*
2959	 * Everything that we read before spa_remove_init() must be stored
2960	 * on concreted vdevs.  Therefore we do this as early as possible.
2961	 */
2962	error = spa_remove_init(spa);
2963	if (error != 0) {
2964		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2965		    error);
2966		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2967	}
2968
2969	/*
2970	 * Retrieve information needed to condense indirect vdev mappings.
2971	 */
2972	error = spa_condense_init(spa);
2973	if (error != 0) {
2974		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2975		    error);
2976		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2977	}
2978
2979	return (0);
2980}
2981
2982static int
2983spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2984{
2985	int error = 0;
2986	vdev_t *rvd = spa->spa_root_vdev;
2987
2988	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2989		boolean_t missing_feat_read = B_FALSE;
2990		nvlist_t *unsup_feat, *enabled_feat;
2991
2992		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2993		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2994			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2995		}
2996
2997		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2998		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2999			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3000		}
3001
3002		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3003		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3004			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3005		}
3006
3007		enabled_feat = fnvlist_alloc();
3008		unsup_feat = fnvlist_alloc();
3009
3010		if (!spa_features_check(spa, B_FALSE,
3011		    unsup_feat, enabled_feat))
3012			missing_feat_read = B_TRUE;
3013
3014		if (spa_writeable(spa) ||
3015		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3016			if (!spa_features_check(spa, B_TRUE,
3017			    unsup_feat, enabled_feat)) {
3018				*missing_feat_writep = B_TRUE;
3019			}
3020		}
3021
3022		fnvlist_add_nvlist(spa->spa_load_info,
3023		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3024
3025		if (!nvlist_empty(unsup_feat)) {
3026			fnvlist_add_nvlist(spa->spa_load_info,
3027			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3028		}
3029
3030		fnvlist_free(enabled_feat);
3031		fnvlist_free(unsup_feat);
3032
3033		if (!missing_feat_read) {
3034			fnvlist_add_boolean(spa->spa_load_info,
3035			    ZPOOL_CONFIG_CAN_RDONLY);
3036		}
3037
3038		/*
3039		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3040		 * twofold: to determine whether the pool is available for
3041		 * import in read-write mode and (if it is not) whether the
3042		 * pool is available for import in read-only mode. If the pool
3043		 * is available for import in read-write mode, it is displayed
3044		 * as available in userland; if it is not available for import
3045		 * in read-only mode, it is displayed as unavailable in
3046		 * userland. If the pool is available for import in read-only
3047		 * mode but not read-write mode, it is displayed as unavailable
3048		 * in userland with a special note that the pool is actually
3049		 * available for open in read-only mode.
3050		 *
3051		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3052		 * missing a feature for write, we must first determine whether
3053		 * the pool can be opened read-only before returning to
3054		 * userland in order to know whether to display the
3055		 * abovementioned note.
3056		 */
3057		if (missing_feat_read || (*missing_feat_writep &&
3058		    spa_writeable(spa))) {
3059			spa_load_failed(spa, "pool uses unsupported features");
3060			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3061			    ENOTSUP));
3062		}
3063
3064		/*
3065		 * Load refcounts for ZFS features from disk into an in-memory
3066		 * cache during SPA initialization.
3067		 */
3068		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3069			uint64_t refcount;
3070
3071			error = feature_get_refcount_from_disk(spa,
3072			    &spa_feature_table[i], &refcount);
3073			if (error == 0) {
3074				spa->spa_feat_refcount_cache[i] = refcount;
3075			} else if (error == ENOTSUP) {
3076				spa->spa_feat_refcount_cache[i] =
3077				    SPA_FEATURE_DISABLED;
3078			} else {
3079				spa_load_failed(spa, "error getting refcount "
3080				    "for feature %s [error=%d]",
3081				    spa_feature_table[i].fi_guid, error);
3082				return (spa_vdev_err(rvd,
3083				    VDEV_AUX_CORRUPT_DATA, EIO));
3084			}
3085		}
3086	}
3087
3088	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3089		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3090		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3091			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3092	}
3093
3094	return (0);
3095}
3096
3097static int
3098spa_ld_load_special_directories(spa_t *spa)
3099{
3100	int error = 0;
3101	vdev_t *rvd = spa->spa_root_vdev;
3102
3103	spa->spa_is_initializing = B_TRUE;
3104	error = dsl_pool_open(spa->spa_dsl_pool);
3105	spa->spa_is_initializing = B_FALSE;
3106	if (error != 0) {
3107		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3108		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3109	}
3110
3111	return (0);
3112}
3113
3114static int
3115spa_ld_get_props(spa_t *spa)
3116{
3117	int error = 0;
3118	uint64_t obj;
3119	vdev_t *rvd = spa->spa_root_vdev;
3120
3121	/* Grab the secret checksum salt from the MOS. */
3122	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3123	    DMU_POOL_CHECKSUM_SALT, 1,
3124	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3125	    spa->spa_cksum_salt.zcs_bytes);
3126	if (error == ENOENT) {
3127		/* Generate a new salt for subsequent use */
3128		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3129		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3130	} else if (error != 0) {
3131		spa_load_failed(spa, "unable to retrieve checksum salt from "
3132		    "MOS [error=%d]", error);
3133		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3134	}
3135
3136	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3137		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3138	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3139	if (error != 0) {
3140		spa_load_failed(spa, "error opening deferred-frees bpobj "
3141		    "[error=%d]", error);
3142		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3143	}
3144
3145	/*
3146	 * Load the bit that tells us to use the new accounting function
3147	 * (raid-z deflation).  If we have an older pool, this will not
3148	 * be present.
3149	 */
3150	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3151	if (error != 0 && error != ENOENT)
3152		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3153
3154	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3155	    &spa->spa_creation_version, B_FALSE);
3156	if (error != 0 && error != ENOENT)
3157		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3158
3159	/*
3160	 * Load the persistent error log.  If we have an older pool, this will
3161	 * not be present.
3162	 */
3163	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3164	    B_FALSE);
3165	if (error != 0 && error != ENOENT)
3166		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3167
3168	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3169	    &spa->spa_errlog_scrub, B_FALSE);
3170	if (error != 0 && error != ENOENT)
3171		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3172
3173	/*
3174	 * Load the history object.  If we have an older pool, this
3175	 * will not be present.
3176	 */
3177	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3178	if (error != 0 && error != ENOENT)
3179		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3180
3181	/*
3182	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3183	 * be present; in this case, defer its creation to a later time to
3184	 * avoid dirtying the MOS this early / out of sync context. See
3185	 * spa_sync_config_object.
3186	 */
3187
3188	/* The sentinel is only available in the MOS config. */
3189	nvlist_t *mos_config;
3190	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3191		spa_load_failed(spa, "unable to retrieve MOS config");
3192		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3193	}
3194
3195	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3196	    &spa->spa_all_vdev_zaps, B_FALSE);
3197
3198	if (error == ENOENT) {
3199		VERIFY(!nvlist_exists(mos_config,
3200		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3201		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3202		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3203	} else if (error != 0) {
3204		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3205	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3206		/*
3207		 * An older version of ZFS overwrote the sentinel value, so
3208		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3209		 * destruction to later; see spa_sync_config_object.
3210		 */
3211		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3212		/*
3213		 * We're assuming that no vdevs have had their ZAPs created
3214		 * before this. Better be sure of it.
3215		 */
3216		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3217	}
3218	nvlist_free(mos_config);
3219
3220	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3221
3222	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3223	    B_FALSE);
3224	if (error && error != ENOENT)
3225		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3226
3227	if (error == 0) {
3228		uint64_t autoreplace;
3229
3230		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3231		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3232		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3233		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3234		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3235		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3236		    &spa->spa_dedup_ditto);
3237
3238		spa->spa_autoreplace = (autoreplace != 0);
3239	}
3240
3241	/*
3242	 * If we are importing a pool with missing top-level vdevs,
3243	 * we enforce that the pool doesn't panic or get suspended on
3244	 * error since the likelihood of missing data is extremely high.
3245	 */
3246	if (spa->spa_missing_tvds > 0 &&
3247	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3248	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3249		spa_load_note(spa, "forcing failmode to 'continue' "
3250		    "as some top level vdevs are missing");
3251		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3252	}
3253
3254	return (0);
3255}
3256
3257static int
3258spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3259{
3260	int error = 0;
3261	vdev_t *rvd = spa->spa_root_vdev;
3262
3263	/*
3264	 * If we're assembling the pool from the split-off vdevs of
3265	 * an existing pool, we don't want to attach the spares & cache
3266	 * devices.
3267	 */
3268
3269	/*
3270	 * Load any hot spares for this pool.
3271	 */
3272	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3273	    B_FALSE);
3274	if (error != 0 && error != ENOENT)
3275		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3276	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3277		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3278		if (load_nvlist(spa, spa->spa_spares.sav_object,
3279		    &spa->spa_spares.sav_config) != 0) {
3280			spa_load_failed(spa, "error loading spares nvlist");
3281			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3282		}
3283
3284		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3285		spa_load_spares(spa);
3286		spa_config_exit(spa, SCL_ALL, FTAG);
3287	} else if (error == 0) {
3288		spa->spa_spares.sav_sync = B_TRUE;
3289	}
3290
3291	/*
3292	 * Load any level 2 ARC devices for this pool.
3293	 */
3294	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3295	    &spa->spa_l2cache.sav_object, B_FALSE);
3296	if (error != 0 && error != ENOENT)
3297		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3298	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3299		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3300		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3301		    &spa->spa_l2cache.sav_config) != 0) {
3302			spa_load_failed(spa, "error loading l2cache nvlist");
3303			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3304		}
3305
3306		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3307		spa_load_l2cache(spa);
3308		spa_config_exit(spa, SCL_ALL, FTAG);
3309	} else if (error == 0) {
3310		spa->spa_l2cache.sav_sync = B_TRUE;
3311	}
3312
3313	return (0);
3314}
3315
3316static int
3317spa_ld_load_vdev_metadata(spa_t *spa)
3318{
3319	int error = 0;
3320	vdev_t *rvd = spa->spa_root_vdev;
3321
3322	/*
3323	 * If the 'autoreplace' property is set, then post a resource notifying
3324	 * the ZFS DE that it should not issue any faults for unopenable
3325	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3326	 * unopenable vdevs so that the normal autoreplace handler can take
3327	 * over.
3328	 */
3329	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3330		spa_check_removed(spa->spa_root_vdev);
3331		/*
3332		 * For the import case, this is done in spa_import(), because
3333		 * at this point we're using the spare definitions from
3334		 * the MOS config, not necessarily from the userland config.
3335		 */
3336		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3337			spa_aux_check_removed(&spa->spa_spares);
3338			spa_aux_check_removed(&spa->spa_l2cache);
3339		}
3340	}
3341
3342	/*
3343	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3344	 */
3345	error = vdev_load(rvd);
3346	if (error != 0) {
3347		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3348		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3349	}
3350
3351	/*
3352	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3353	 */
3354	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3355	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3356	spa_config_exit(spa, SCL_ALL, FTAG);
3357
3358	return (0);
3359}
3360
3361static int
3362spa_ld_load_dedup_tables(spa_t *spa)
3363{
3364	int error = 0;
3365	vdev_t *rvd = spa->spa_root_vdev;
3366
3367	error = ddt_load(spa);
3368	if (error != 0) {
3369		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3370		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3371	}
3372
3373	return (0);
3374}
3375
3376static int
3377spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3378{
3379	vdev_t *rvd = spa->spa_root_vdev;
3380
3381	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3382		boolean_t missing = spa_check_logs(spa);
3383		if (missing) {
3384			if (spa->spa_missing_tvds != 0) {
3385				spa_load_note(spa, "spa_check_logs failed "
3386				    "so dropping the logs");
3387			} else {
3388				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3389				spa_load_failed(spa, "spa_check_logs failed");
3390				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3391				    ENXIO));
3392			}
3393		}
3394	}
3395
3396	return (0);
3397}
3398
3399static int
3400spa_ld_verify_pool_data(spa_t *spa)
3401{
3402	int error = 0;
3403	vdev_t *rvd = spa->spa_root_vdev;
3404
3405	/*
3406	 * We've successfully opened the pool, verify that we're ready
3407	 * to start pushing transactions.
3408	 */
3409	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3410		error = spa_load_verify(spa);
3411		if (error != 0) {
3412			spa_load_failed(spa, "spa_load_verify failed "
3413			    "[error=%d]", error);
3414			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3415			    error));
3416		}
3417	}
3418
3419	return (0);
3420}
3421
3422static void
3423spa_ld_claim_log_blocks(spa_t *spa)
3424{
3425	dmu_tx_t *tx;
3426	dsl_pool_t *dp = spa_get_dsl(spa);
3427
3428	/*
3429	 * Claim log blocks that haven't been committed yet.
3430	 * This must all happen in a single txg.
3431	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3432	 * invoked from zil_claim_log_block()'s i/o done callback.
3433	 * Price of rollback is that we abandon the log.
3434	 */
3435	spa->spa_claiming = B_TRUE;
3436
3437	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3438	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3439	    zil_claim, tx, DS_FIND_CHILDREN);
3440	dmu_tx_commit(tx);
3441
3442	spa->spa_claiming = B_FALSE;
3443
3444	spa_set_log_state(spa, SPA_LOG_GOOD);
3445}
3446
3447static void
3448spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3449    boolean_t update_config_cache)
3450{
3451	vdev_t *rvd = spa->spa_root_vdev;
3452	int need_update = B_FALSE;
3453
3454	/*
3455	 * If the config cache is stale, or we have uninitialized
3456	 * metaslabs (see spa_vdev_add()), then update the config.
3457	 *
3458	 * If this is a verbatim import, trust the current
3459	 * in-core spa_config and update the disk labels.
3460	 */
3461	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3462	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3463	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3464	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3465		need_update = B_TRUE;
3466
3467	for (int c = 0; c < rvd->vdev_children; c++)
3468		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3469			need_update = B_TRUE;
3470
3471	/*
3472	 * Update the config cache asychronously in case we're the
3473	 * root pool, in which case the config cache isn't writable yet.
3474	 */
3475	if (need_update)
3476		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3477}
3478
3479static void
3480spa_ld_prepare_for_reload(spa_t *spa)
3481{
3482	int mode = spa->spa_mode;
3483	int async_suspended = spa->spa_async_suspended;
3484
3485	spa_unload(spa);
3486	spa_deactivate(spa);
3487	spa_activate(spa, mode);
3488
3489	/*
3490	 * We save the value of spa_async_suspended as it gets reset to 0 by
3491	 * spa_unload(). We want to restore it back to the original value before
3492	 * returning as we might be calling spa_async_resume() later.
3493	 */
3494	spa->spa_async_suspended = async_suspended;
3495}
3496
3497static int
3498spa_ld_read_checkpoint_txg(spa_t *spa)
3499{
3500	uberblock_t checkpoint;
3501	int error = 0;
3502
3503	ASSERT0(spa->spa_checkpoint_txg);
3504	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3505
3506	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3507	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3508	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3509
3510	if (error == ENOENT)
3511		return (0);
3512
3513	if (error != 0)
3514		return (error);
3515
3516	ASSERT3U(checkpoint.ub_txg, !=, 0);
3517	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3518	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3519	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3520	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3521
3522	return (0);
3523}
3524
3525static int
3526spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3527{
3528	int error = 0;
3529
3530	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3531	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3532
3533	/*
3534	 * Never trust the config that is provided unless we are assembling
3535	 * a pool following a split.
3536	 * This means don't trust blkptrs and the vdev tree in general. This
3537	 * also effectively puts the spa in read-only mode since
3538	 * spa_writeable() checks for spa_trust_config to be true.
3539	 * We will later load a trusted config from the MOS.
3540	 */
3541	if (type != SPA_IMPORT_ASSEMBLE)
3542		spa->spa_trust_config = B_FALSE;
3543
3544	/*
3545	 * Parse the config provided to create a vdev tree.
3546	 */
3547	error = spa_ld_parse_config(spa, type);
3548	if (error != 0)
3549		return (error);
3550
3551	/*
3552	 * Now that we have the vdev tree, try to open each vdev. This involves
3553	 * opening the underlying physical device, retrieving its geometry and
3554	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3555	 * based on the success of those operations. After this we'll be ready
3556	 * to read from the vdevs.
3557	 */
3558	error = spa_ld_open_vdevs(spa);
3559	if (error != 0)
3560		return (error);
3561
3562	/*
3563	 * Read the label of each vdev and make sure that the GUIDs stored
3564	 * there match the GUIDs in the config provided.
3565	 * If we're assembling a new pool that's been split off from an
3566	 * existing pool, the labels haven't yet been updated so we skip
3567	 * validation for now.
3568	 */
3569	if (type != SPA_IMPORT_ASSEMBLE) {
3570		error = spa_ld_validate_vdevs(spa);
3571		if (error != 0)
3572			return (error);
3573	}
3574
3575	/*
3576	 * Read all vdev labels to find the best uberblock (i.e. latest,
3577	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3578	 * get the list of features required to read blkptrs in the MOS from
3579	 * the vdev label with the best uberblock and verify that our version
3580	 * of zfs supports them all.
3581	 */
3582	error = spa_ld_select_uberblock(spa, type);
3583	if (error != 0)
3584		return (error);
3585
3586	/*
3587	 * Pass that uberblock to the dsl_pool layer which will open the root
3588	 * blkptr. This blkptr points to the latest version of the MOS and will
3589	 * allow us to read its contents.
3590	 */
3591	error = spa_ld_open_rootbp(spa);
3592	if (error != 0)
3593		return (error);
3594
3595	return (0);
3596}
3597
3598static int
3599spa_ld_checkpoint_rewind(spa_t *spa)
3600{
3601	uberblock_t checkpoint;
3602	int error = 0;
3603
3604	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3605	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3606
3607	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3608	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3609	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3610
3611	if (error != 0) {
3612		spa_load_failed(spa, "unable to retrieve checkpointed "
3613		    "uberblock from the MOS config [error=%d]", error);
3614
3615		if (error == ENOENT)
3616			error = ZFS_ERR_NO_CHECKPOINT;
3617
3618		return (error);
3619	}
3620
3621	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3622	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3623
3624	/*
3625	 * We need to update the txg and timestamp of the checkpointed
3626	 * uberblock to be higher than the latest one. This ensures that
3627	 * the checkpointed uberblock is selected if we were to close and
3628	 * reopen the pool right after we've written it in the vdev labels.
3629	 * (also see block comment in vdev_uberblock_compare)
3630	 */
3631	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3632	checkpoint.ub_timestamp = gethrestime_sec();
3633
3634	/*
3635	 * Set current uberblock to be the checkpointed uberblock.
3636	 */
3637	spa->spa_uberblock = checkpoint;
3638
3639	/*
3640	 * If we are doing a normal rewind, then the pool is open for
3641	 * writing and we sync the "updated" checkpointed uberblock to
3642	 * disk. Once this is done, we've basically rewound the whole
3643	 * pool and there is no way back.
3644	 *
3645	 * There are cases when we don't want to attempt and sync the
3646	 * checkpointed uberblock to disk because we are opening a
3647	 * pool as read-only. Specifically, verifying the checkpointed
3648	 * state with zdb, and importing the checkpointed state to get
3649	 * a "preview" of its content.
3650	 */
3651	if (spa_writeable(spa)) {
3652		vdev_t *rvd = spa->spa_root_vdev;
3653
3654		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3655		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3656		int svdcount = 0;
3657		int children = rvd->vdev_children;
3658		int c0 = spa_get_random(children);
3659
3660		for (int c = 0; c < children; c++) {
3661			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3662
3663			/* Stop when revisiting the first vdev */
3664			if (c > 0 && svd[0] == vd)
3665				break;
3666
3667			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3668			    !vdev_is_concrete(vd))
3669				continue;
3670
3671			svd[svdcount++] = vd;
3672			if (svdcount == SPA_SYNC_MIN_VDEVS)
3673				break;
3674		}
3675		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3676		if (error == 0)
3677			spa->spa_last_synced_guid = rvd->vdev_guid;
3678		spa_config_exit(spa, SCL_ALL, FTAG);
3679
3680		if (error != 0) {
3681			spa_load_failed(spa, "failed to write checkpointed "
3682			    "uberblock to the vdev labels [error=%d]", error);
3683			return (error);
3684		}
3685	}
3686
3687	return (0);
3688}
3689
3690static int
3691spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3692    boolean_t *update_config_cache)
3693{
3694	int error;
3695
3696	/*
3697	 * Parse the config for pool, open and validate vdevs,
3698	 * select an uberblock, and use that uberblock to open
3699	 * the MOS.
3700	 */
3701	error = spa_ld_mos_init(spa, type);
3702	if (error != 0)
3703		return (error);
3704
3705	/*
3706	 * Retrieve the trusted config stored in the MOS and use it to create
3707	 * a new, exact version of the vdev tree, then reopen all vdevs.
3708	 */
3709	error = spa_ld_trusted_config(spa, type, B_FALSE);
3710	if (error == EAGAIN) {
3711		if (update_config_cache != NULL)
3712			*update_config_cache = B_TRUE;
3713
3714		/*
3715		 * Redo the loading process with the trusted config if it is
3716		 * too different from the untrusted config.
3717		 */
3718		spa_ld_prepare_for_reload(spa);
3719		spa_load_note(spa, "RELOADING");
3720		error = spa_ld_mos_init(spa, type);
3721		if (error != 0)
3722			return (error);
3723
3724		error = spa_ld_trusted_config(spa, type, B_TRUE);
3725		if (error != 0)
3726			return (error);
3727
3728	} else if (error != 0) {
3729		return (error);
3730	}
3731
3732	return (0);
3733}
3734
3735/*
3736 * Load an existing storage pool, using the config provided. This config
3737 * describes which vdevs are part of the pool and is later validated against
3738 * partial configs present in each vdev's label and an entire copy of the
3739 * config stored in the MOS.
3740 */
3741static int
3742spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3743{
3744	int error = 0;
3745	boolean_t missing_feat_write = B_FALSE;
3746	boolean_t checkpoint_rewind =
3747	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3748	boolean_t update_config_cache = B_FALSE;
3749
3750	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3751	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3752
3753	spa_load_note(spa, "LOADING");
3754
3755	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3756	if (error != 0)
3757		return (error);
3758
3759	/*
3760	 * If we are rewinding to the checkpoint then we need to repeat
3761	 * everything we've done so far in this function but this time
3762	 * selecting the checkpointed uberblock and using that to open
3763	 * the MOS.
3764	 */
3765	if (checkpoint_rewind) {
3766		/*
3767		 * If we are rewinding to the checkpoint update config cache
3768		 * anyway.
3769		 */
3770		update_config_cache = B_TRUE;
3771
3772		/*
3773		 * Extract the checkpointed uberblock from the current MOS
3774		 * and use this as the pool's uberblock from now on. If the
3775		 * pool is imported as writeable we also write the checkpoint
3776		 * uberblock to the labels, making the rewind permanent.
3777		 */
3778		error = spa_ld_checkpoint_rewind(spa);
3779		if (error != 0)
3780			return (error);
3781
3782		/*
3783		 * Redo the loading process process again with the
3784		 * checkpointed uberblock.
3785		 */
3786		spa_ld_prepare_for_reload(spa);
3787		spa_load_note(spa, "LOADING checkpointed uberblock");
3788		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3789		if (error != 0)
3790			return (error);
3791	}
3792
3793	/*
3794	 * Retrieve the checkpoint txg if the pool has a checkpoint.
3795	 */
3796	error = spa_ld_read_checkpoint_txg(spa);
3797	if (error != 0)
3798		return (error);
3799
3800	/*
3801	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3802	 * from the pool and their contents were re-mapped to other vdevs. Note
3803	 * that everything that we read before this step must have been
3804	 * rewritten on concrete vdevs after the last device removal was
3805	 * initiated. Otherwise we could be reading from indirect vdevs before
3806	 * we have loaded their mappings.
3807	 */
3808	error = spa_ld_open_indirect_vdev_metadata(spa);
3809	if (error != 0)
3810		return (error);
3811
3812	/*
3813	 * Retrieve the full list of active features from the MOS and check if
3814	 * they are all supported.
3815	 */
3816	error = spa_ld_check_features(spa, &missing_feat_write);
3817	if (error != 0)
3818		return (error);
3819
3820	/*
3821	 * Load several special directories from the MOS needed by the dsl_pool
3822	 * layer.
3823	 */
3824	error = spa_ld_load_special_directories(spa);
3825	if (error != 0)
3826		return (error);
3827
3828	/*
3829	 * Retrieve pool properties from the MOS.
3830	 */
3831	error = spa_ld_get_props(spa);
3832	if (error != 0)
3833		return (error);
3834
3835	/*
3836	 * Retrieve the list of auxiliary devices - cache devices and spares -
3837	 * and open them.
3838	 */
3839	error = spa_ld_open_aux_vdevs(spa, type);
3840	if (error != 0)
3841		return (error);
3842
3843	/*
3844	 * Load the metadata for all vdevs. Also check if unopenable devices
3845	 * should be autoreplaced.
3846	 */
3847	error = spa_ld_load_vdev_metadata(spa);
3848	if (error != 0)
3849		return (error);
3850
3851	error = spa_ld_load_dedup_tables(spa);
3852	if (error != 0)
3853		return (error);
3854
3855	/*
3856	 * Verify the logs now to make sure we don't have any unexpected errors
3857	 * when we claim log blocks later.
3858	 */
3859	error = spa_ld_verify_logs(spa, type, ereport);
3860	if (error != 0)
3861		return (error);
3862
3863	if (missing_feat_write) {
3864		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3865
3866		/*
3867		 * At this point, we know that we can open the pool in
3868		 * read-only mode but not read-write mode. We now have enough
3869		 * information and can return to userland.
3870		 */
3871		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3872		    ENOTSUP));
3873	}
3874
3875	/*
3876	 * Traverse the last txgs to make sure the pool was left off in a safe
3877	 * state. When performing an extreme rewind, we verify the whole pool,
3878	 * which can take a very long time.
3879	 */
3880	error = spa_ld_verify_pool_data(spa);
3881	if (error != 0)
3882		return (error);
3883
3884	/*
3885	 * Calculate the deflated space for the pool. This must be done before
3886	 * we write anything to the pool because we'd need to update the space
3887	 * accounting using the deflated sizes.
3888	 */
3889	spa_update_dspace(spa);
3890
3891	/*
3892	 * We have now retrieved all the information we needed to open the
3893	 * pool. If we are importing the pool in read-write mode, a few
3894	 * additional steps must be performed to finish the import.
3895	 */
3896	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3897	    spa->spa_load_max_txg == UINT64_MAX)) {
3898		uint64_t config_cache_txg = spa->spa_config_txg;
3899
3900		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3901
3902		/*
3903		 * In case of a checkpoint rewind, log the original txg
3904		 * of the checkpointed uberblock.
3905		 */
3906		if (checkpoint_rewind) {
3907			spa_history_log_internal(spa, "checkpoint rewind",
3908			    NULL, "rewound state to txg=%llu",
3909			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
3910		}
3911
3912		/*
3913		 * Traverse the ZIL and claim all blocks.
3914		 */
3915		spa_ld_claim_log_blocks(spa);
3916
3917		/*
3918		 * Kick-off the syncing thread.
3919		 */
3920		spa->spa_sync_on = B_TRUE;
3921		txg_sync_start(spa->spa_dsl_pool);
3922
3923		/*
3924		 * Wait for all claims to sync.  We sync up to the highest
3925		 * claimed log block birth time so that claimed log blocks
3926		 * don't appear to be from the future.  spa_claim_max_txg
3927		 * will have been set for us by ZIL traversal operations
3928		 * performed above.
3929		 */
3930		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3931
3932		/*
3933		 * Check if we need to request an update of the config. On the
3934		 * next sync, we would update the config stored in vdev labels
3935		 * and the cachefile (by default /etc/zfs/zpool.cache).
3936		 */
3937		spa_ld_check_for_config_update(spa, config_cache_txg,
3938		    update_config_cache);
3939
3940		/*
3941		 * Check all DTLs to see if anything needs resilvering.
3942		 */
3943		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3944		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3945			spa_async_request(spa, SPA_ASYNC_RESILVER);
3946
3947		/*
3948		 * Log the fact that we booted up (so that we can detect if
3949		 * we rebooted in the middle of an operation).
3950		 */
3951		spa_history_log_version(spa, "open");
3952
3953		/*
3954		 * Delete any inconsistent datasets.
3955		 */
3956		(void) dmu_objset_find(spa_name(spa),
3957		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3958
3959		/*
3960		 * Clean up any stale temporary dataset userrefs.
3961		 */
3962		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3963
3964		spa_restart_removal(spa);
3965
3966		spa_spawn_aux_threads(spa);
3967
3968		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3969		vdev_initialize_restart(spa->spa_root_vdev);
3970		spa_config_exit(spa, SCL_CONFIG, FTAG);
3971	}
3972
3973	spa_load_note(spa, "LOADED");
3974
3975	return (0);
3976}
3977
3978static int
3979spa_load_retry(spa_t *spa, spa_load_state_t state)
3980{
3981	int mode = spa->spa_mode;
3982
3983	spa_unload(spa);
3984	spa_deactivate(spa);
3985
3986	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3987
3988	spa_activate(spa, mode);
3989	spa_async_suspend(spa);
3990
3991	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3992	    (u_longlong_t)spa->spa_load_max_txg);
3993
3994	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3995}
3996
3997/*
3998 * If spa_load() fails this function will try loading prior txg's. If
3999 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4000 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4001 * function will not rewind the pool and will return the same error as
4002 * spa_load().
4003 */
4004static int
4005spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4006    int rewind_flags)
4007{
4008	nvlist_t *loadinfo = NULL;
4009	nvlist_t *config = NULL;
4010	int load_error, rewind_error;
4011	uint64_t safe_rewind_txg;
4012	uint64_t min_txg;
4013
4014	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4015		spa->spa_load_max_txg = spa->spa_load_txg;
4016		spa_set_log_state(spa, SPA_LOG_CLEAR);
4017	} else {
4018		spa->spa_load_max_txg = max_request;
4019		if (max_request != UINT64_MAX)
4020			spa->spa_extreme_rewind = B_TRUE;
4021	}
4022
4023	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4024	if (load_error == 0)
4025		return (0);
4026	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4027		/*
4028		 * When attempting checkpoint-rewind on a pool with no
4029		 * checkpoint, we should not attempt to load uberblocks
4030		 * from previous txgs when spa_load fails.
4031		 */
4032		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4033		return (load_error);
4034	}
4035
4036	if (spa->spa_root_vdev != NULL)
4037		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4038
4039	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4040	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4041
4042	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4043		nvlist_free(config);
4044		return (load_error);
4045	}
4046
4047	if (state == SPA_LOAD_RECOVER) {
4048		/* Price of rolling back is discarding txgs, including log */
4049		spa_set_log_state(spa, SPA_LOG_CLEAR);
4050	} else {
4051		/*
4052		 * If we aren't rolling back save the load info from our first
4053		 * import attempt so that we can restore it after attempting
4054		 * to rewind.
4055		 */
4056		loadinfo = spa->spa_load_info;
4057		spa->spa_load_info = fnvlist_alloc();
4058	}
4059
4060	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4061	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4062	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4063	    TXG_INITIAL : safe_rewind_txg;
4064
4065	/*
4066	 * Continue as long as we're finding errors, we're still within
4067	 * the acceptable rewind range, and we're still finding uberblocks
4068	 */
4069	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4070	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4071		if (spa->spa_load_max_txg < safe_rewind_txg)
4072			spa->spa_extreme_rewind = B_TRUE;
4073		rewind_error = spa_load_retry(spa, state);
4074	}
4075
4076	spa->spa_extreme_rewind = B_FALSE;
4077	spa->spa_load_max_txg = UINT64_MAX;
4078
4079	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4080		spa_config_set(spa, config);
4081	else
4082		nvlist_free(config);
4083
4084	if (state == SPA_LOAD_RECOVER) {
4085		ASSERT3P(loadinfo, ==, NULL);
4086		return (rewind_error);
4087	} else {
4088		/* Store the rewind info as part of the initial load info */
4089		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4090		    spa->spa_load_info);
4091
4092		/* Restore the initial load info */
4093		fnvlist_free(spa->spa_load_info);
4094		spa->spa_load_info = loadinfo;
4095
4096		return (load_error);
4097	}
4098}
4099
4100/*
4101 * Pool Open/Import
4102 *
4103 * The import case is identical to an open except that the configuration is sent
4104 * down from userland, instead of grabbed from the configuration cache.  For the
4105 * case of an open, the pool configuration will exist in the
4106 * POOL_STATE_UNINITIALIZED state.
4107 *
4108 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4109 * the same time open the pool, without having to keep around the spa_t in some
4110 * ambiguous state.
4111 */
4112static int
4113spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4114    nvlist_t **config)
4115{
4116	spa_t *spa;
4117	spa_load_state_t state = SPA_LOAD_OPEN;
4118	int error;
4119	int locked = B_FALSE;
4120	int firstopen = B_FALSE;
4121
4122	*spapp = NULL;
4123
4124	/*
4125	 * As disgusting as this is, we need to support recursive calls to this
4126	 * function because dsl_dir_open() is called during spa_load(), and ends
4127	 * up calling spa_open() again.  The real fix is to figure out how to
4128	 * avoid dsl_dir_open() calling this in the first place.
4129	 */
4130	if (mutex_owner(&spa_namespace_lock) != curthread) {
4131		mutex_enter(&spa_namespace_lock);
4132		locked = B_TRUE;
4133	}
4134
4135	if ((spa = spa_lookup(pool)) == NULL) {
4136		if (locked)
4137			mutex_exit(&spa_namespace_lock);
4138		return (SET_ERROR(ENOENT));
4139	}
4140
4141	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4142		zpool_load_policy_t policy;
4143
4144		firstopen = B_TRUE;
4145
4146		zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4147		    &policy);
4148		if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4149			state = SPA_LOAD_RECOVER;
4150
4151		spa_activate(spa, spa_mode_global);
4152
4153		if (state != SPA_LOAD_RECOVER)
4154			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4155		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4156
4157		zfs_dbgmsg("spa_open_common: opening %s", pool);
4158		error = spa_load_best(spa, state, policy.zlp_txg,
4159		    policy.zlp_rewind);
4160
4161		if (error == EBADF) {
4162			/*
4163			 * If vdev_validate() returns failure (indicated by
4164			 * EBADF), it indicates that one of the vdevs indicates
4165			 * that the pool has been exported or destroyed.  If
4166			 * this is the case, the config cache is out of sync and
4167			 * we should remove the pool from the namespace.
4168			 */
4169			spa_unload(spa);
4170			spa_deactivate(spa);
4171			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4172			spa_remove(spa);
4173			if (locked)
4174				mutex_exit(&spa_namespace_lock);
4175			return (SET_ERROR(ENOENT));
4176		}
4177
4178		if (error) {
4179			/*
4180			 * We can't open the pool, but we still have useful
4181			 * information: the state of each vdev after the
4182			 * attempted vdev_open().  Return this to the user.
4183			 */
4184			if (config != NULL && spa->spa_config) {
4185				VERIFY(nvlist_dup(spa->spa_config, config,
4186				    KM_SLEEP) == 0);
4187				VERIFY(nvlist_add_nvlist(*config,
4188				    ZPOOL_CONFIG_LOAD_INFO,
4189				    spa->spa_load_info) == 0);
4190			}
4191			spa_unload(spa);
4192			spa_deactivate(spa);
4193			spa->spa_last_open_failed = error;
4194			if (locked)
4195				mutex_exit(&spa_namespace_lock);
4196			*spapp = NULL;
4197			return (error);
4198		}
4199	}
4200
4201	spa_open_ref(spa, tag);
4202
4203	if (config != NULL)
4204		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4205
4206	/*
4207	 * If we've recovered the pool, pass back any information we
4208	 * gathered while doing the load.
4209	 */
4210	if (state == SPA_LOAD_RECOVER) {
4211		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4212		    spa->spa_load_info) == 0);
4213	}
4214
4215	if (locked) {
4216		spa->spa_last_open_failed = 0;
4217		spa->spa_last_ubsync_txg = 0;
4218		spa->spa_load_txg = 0;
4219		mutex_exit(&spa_namespace_lock);
4220#ifdef __FreeBSD__
4221#ifdef _KERNEL
4222		if (firstopen)
4223			zvol_create_minors(spa->spa_name);
4224#endif
4225#endif
4226	}
4227
4228	*spapp = spa;
4229
4230	return (0);
4231}
4232
4233int
4234spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4235    nvlist_t **config)
4236{
4237	return (spa_open_common(name, spapp, tag, policy, config));
4238}
4239
4240int
4241spa_open(const char *name, spa_t **spapp, void *tag)
4242{
4243	return (spa_open_common(name, spapp, tag, NULL, NULL));
4244}
4245
4246/*
4247 * Lookup the given spa_t, incrementing the inject count in the process,
4248 * preventing it from being exported or destroyed.
4249 */
4250spa_t *
4251spa_inject_addref(char *name)
4252{
4253	spa_t *spa;
4254
4255	mutex_enter(&spa_namespace_lock);
4256	if ((spa = spa_lookup(name)) == NULL) {
4257		mutex_exit(&spa_namespace_lock);
4258		return (NULL);
4259	}
4260	spa->spa_inject_ref++;
4261	mutex_exit(&spa_namespace_lock);
4262
4263	return (spa);
4264}
4265
4266void
4267spa_inject_delref(spa_t *spa)
4268{
4269	mutex_enter(&spa_namespace_lock);
4270	spa->spa_inject_ref--;
4271	mutex_exit(&spa_namespace_lock);
4272}
4273
4274/*
4275 * Add spares device information to the nvlist.
4276 */
4277static void
4278spa_add_spares(spa_t *spa, nvlist_t *config)
4279{
4280	nvlist_t **spares;
4281	uint_t i, nspares;
4282	nvlist_t *nvroot;
4283	uint64_t guid;
4284	vdev_stat_t *vs;
4285	uint_t vsc;
4286	uint64_t pool;
4287
4288	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4289
4290	if (spa->spa_spares.sav_count == 0)
4291		return;
4292
4293	VERIFY(nvlist_lookup_nvlist(config,
4294	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4295	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4296	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4297	if (nspares != 0) {
4298		VERIFY(nvlist_add_nvlist_array(nvroot,
4299		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4300		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4301		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4302
4303		/*
4304		 * Go through and find any spares which have since been
4305		 * repurposed as an active spare.  If this is the case, update
4306		 * their status appropriately.
4307		 */
4308		for (i = 0; i < nspares; i++) {
4309			VERIFY(nvlist_lookup_uint64(spares[i],
4310			    ZPOOL_CONFIG_GUID, &guid) == 0);
4311			if (spa_spare_exists(guid, &pool, NULL) &&
4312			    pool != 0ULL) {
4313				VERIFY(nvlist_lookup_uint64_array(
4314				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4315				    (uint64_t **)&vs, &vsc) == 0);
4316				vs->vs_state = VDEV_STATE_CANT_OPEN;
4317				vs->vs_aux = VDEV_AUX_SPARED;
4318			}
4319		}
4320	}
4321}
4322
4323/*
4324 * Add l2cache device information to the nvlist, including vdev stats.
4325 */
4326static void
4327spa_add_l2cache(spa_t *spa, nvlist_t *config)
4328{
4329	nvlist_t **l2cache;
4330	uint_t i, j, nl2cache;
4331	nvlist_t *nvroot;
4332	uint64_t guid;
4333	vdev_t *vd;
4334	vdev_stat_t *vs;
4335	uint_t vsc;
4336
4337	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4338
4339	if (spa->spa_l2cache.sav_count == 0)
4340		return;
4341
4342	VERIFY(nvlist_lookup_nvlist(config,
4343	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4344	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4345	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4346	if (nl2cache != 0) {
4347		VERIFY(nvlist_add_nvlist_array(nvroot,
4348		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4349		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4350		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4351
4352		/*
4353		 * Update level 2 cache device stats.
4354		 */
4355
4356		for (i = 0; i < nl2cache; i++) {
4357			VERIFY(nvlist_lookup_uint64(l2cache[i],
4358			    ZPOOL_CONFIG_GUID, &guid) == 0);
4359
4360			vd = NULL;
4361			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4362				if (guid ==
4363				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4364					vd = spa->spa_l2cache.sav_vdevs[j];
4365					break;
4366				}
4367			}
4368			ASSERT(vd != NULL);
4369
4370			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4371			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4372			    == 0);
4373			vdev_get_stats(vd, vs);
4374		}
4375	}
4376}
4377
4378static void
4379spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
4380{
4381	zap_cursor_t zc;
4382	zap_attribute_t za;
4383
4384	/* We may be unable to read features if pool is suspended. */
4385	if (spa_suspended(spa))
4386		return;
4387
4388	if (spa->spa_feat_for_read_obj != 0) {
4389		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4390		    spa->spa_feat_for_read_obj);
4391		    zap_cursor_retrieve(&zc, &za) == 0;
4392		    zap_cursor_advance(&zc)) {
4393			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4394			    za.za_num_integers == 1);
4395			VERIFY0(nvlist_add_uint64(features, za.za_name,
4396			    za.za_first_integer));
4397		}
4398		zap_cursor_fini(&zc);
4399	}
4400
4401	if (spa->spa_feat_for_write_obj != 0) {
4402		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4403		    spa->spa_feat_for_write_obj);
4404		    zap_cursor_retrieve(&zc, &za) == 0;
4405		    zap_cursor_advance(&zc)) {
4406			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4407			    za.za_num_integers == 1);
4408			VERIFY0(nvlist_add_uint64(features, za.za_name,
4409			    za.za_first_integer));
4410		}
4411		zap_cursor_fini(&zc);
4412	}
4413}
4414
4415static void
4416spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
4417{
4418	int i;
4419
4420	for (i = 0; i < SPA_FEATURES; i++) {
4421		zfeature_info_t feature = spa_feature_table[i];
4422		uint64_t refcount;
4423
4424		if (feature_get_refcount(spa, &feature, &refcount) != 0)
4425			continue;
4426
4427		VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
4428	}
4429}
4430
4431/*
4432 * Store a list of pool features and their reference counts in the
4433 * config.
4434 *
4435 * The first time this is called on a spa, allocate a new nvlist, fetch
4436 * the pool features and reference counts from disk, then save the list
4437 * in the spa. In subsequent calls on the same spa use the saved nvlist
4438 * and refresh its values from the cached reference counts.  This
4439 * ensures we don't block here on I/O on a suspended pool so 'zpool
4440 * clear' can resume the pool.
4441 */
4442static void
4443spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4444{
4445	nvlist_t *features;
4446
4447	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4448
4449	mutex_enter(&spa->spa_feat_stats_lock);
4450	features = spa->spa_feat_stats;
4451
4452	if (features != NULL) {
4453		spa_feature_stats_from_cache(spa, features);
4454	} else {
4455		VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
4456		spa->spa_feat_stats = features;
4457		spa_feature_stats_from_disk(spa, features);
4458	}
4459
4460	VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4461	    features));
4462
4463	mutex_exit(&spa->spa_feat_stats_lock);
4464}
4465
4466int
4467spa_get_stats(const char *name, nvlist_t **config,
4468    char *altroot, size_t buflen)
4469{
4470	int error;
4471	spa_t *spa;
4472
4473	*config = NULL;
4474	error = spa_open_common(name, &spa, FTAG, NULL, config);
4475
4476	if (spa != NULL) {
4477		/*
4478		 * This still leaves a window of inconsistency where the spares
4479		 * or l2cache devices could change and the config would be
4480		 * self-inconsistent.
4481		 */
4482		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4483
4484		if (*config != NULL) {
4485			uint64_t loadtimes[2];
4486
4487			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4488			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4489			VERIFY(nvlist_add_uint64_array(*config,
4490			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4491
4492			VERIFY(nvlist_add_uint64(*config,
4493			    ZPOOL_CONFIG_ERRCOUNT,
4494			    spa_get_errlog_size(spa)) == 0);
4495
4496			if (spa_suspended(spa))
4497				VERIFY(nvlist_add_uint64(*config,
4498				    ZPOOL_CONFIG_SUSPENDED,
4499				    spa->spa_failmode) == 0);
4500
4501			spa_add_spares(spa, *config);
4502			spa_add_l2cache(spa, *config);
4503			spa_add_feature_stats(spa, *config);
4504		}
4505	}
4506
4507	/*
4508	 * We want to get the alternate root even for faulted pools, so we cheat
4509	 * and call spa_lookup() directly.
4510	 */
4511	if (altroot) {
4512		if (spa == NULL) {
4513			mutex_enter(&spa_namespace_lock);
4514			spa = spa_lookup(name);
4515			if (spa)
4516				spa_altroot(spa, altroot, buflen);
4517			else
4518				altroot[0] = '\0';
4519			spa = NULL;
4520			mutex_exit(&spa_namespace_lock);
4521		} else {
4522			spa_altroot(spa, altroot, buflen);
4523		}
4524	}
4525
4526	if (spa != NULL) {
4527		spa_config_exit(spa, SCL_CONFIG, FTAG);
4528		spa_close(spa, FTAG);
4529	}
4530
4531	return (error);
4532}
4533
4534/*
4535 * Validate that the auxiliary device array is well formed.  We must have an
4536 * array of nvlists, each which describes a valid leaf vdev.  If this is an
4537 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4538 * specified, as long as they are well-formed.
4539 */
4540static int
4541spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4542    spa_aux_vdev_t *sav, const char *config, uint64_t version,
4543    vdev_labeltype_t label)
4544{
4545	nvlist_t **dev;
4546	uint_t i, ndev;
4547	vdev_t *vd;
4548	int error;
4549
4550	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4551
4552	/*
4553	 * It's acceptable to have no devs specified.
4554	 */
4555	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4556		return (0);
4557
4558	if (ndev == 0)
4559		return (SET_ERROR(EINVAL));
4560
4561	/*
4562	 * Make sure the pool is formatted with a version that supports this
4563	 * device type.
4564	 */
4565	if (spa_version(spa) < version)
4566		return (SET_ERROR(ENOTSUP));
4567
4568	/*
4569	 * Set the pending device list so we correctly handle device in-use
4570	 * checking.
4571	 */
4572	sav->sav_pending = dev;
4573	sav->sav_npending = ndev;
4574
4575	for (i = 0; i < ndev; i++) {
4576		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4577		    mode)) != 0)
4578			goto out;
4579
4580		if (!vd->vdev_ops->vdev_op_leaf) {
4581			vdev_free(vd);
4582			error = SET_ERROR(EINVAL);
4583			goto out;
4584		}
4585
4586		/*
4587		 * The L2ARC currently only supports disk devices in
4588		 * kernel context.  For user-level testing, we allow it.
4589		 */
4590#ifdef _KERNEL
4591		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
4592		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
4593			error = SET_ERROR(ENOTBLK);
4594			vdev_free(vd);
4595			goto out;
4596		}
4597#endif
4598		vd->vdev_top = vd;
4599
4600		if ((error = vdev_open(vd)) == 0 &&
4601		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4602			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4603			    vd->vdev_guid) == 0);
4604		}
4605
4606		vdev_free(vd);
4607
4608		if (error &&
4609		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4610			goto out;
4611		else
4612			error = 0;
4613	}
4614
4615out:
4616	sav->sav_pending = NULL;
4617	sav->sav_npending = 0;
4618	return (error);
4619}
4620
4621static int
4622spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4623{
4624	int error;
4625
4626	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4627
4628	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4629	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4630	    VDEV_LABEL_SPARE)) != 0) {
4631		return (error);
4632	}
4633
4634	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4635	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4636	    VDEV_LABEL_L2CACHE));
4637}
4638
4639static void
4640spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4641    const char *config)
4642{
4643	int i;
4644
4645	if (sav->sav_config != NULL) {
4646		nvlist_t **olddevs;
4647		uint_t oldndevs;
4648		nvlist_t **newdevs;
4649
4650		/*
4651		 * Generate new dev list by concatentating with the
4652		 * current dev list.
4653		 */
4654		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4655		    &olddevs, &oldndevs) == 0);
4656
4657		newdevs = kmem_alloc(sizeof (void *) *
4658		    (ndevs + oldndevs), KM_SLEEP);
4659		for (i = 0; i < oldndevs; i++)
4660			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4661			    KM_SLEEP) == 0);
4662		for (i = 0; i < ndevs; i++)
4663			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4664			    KM_SLEEP) == 0);
4665
4666		VERIFY(nvlist_remove(sav->sav_config, config,
4667		    DATA_TYPE_NVLIST_ARRAY) == 0);
4668
4669		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4670		    config, newdevs, ndevs + oldndevs) == 0);
4671		for (i = 0; i < oldndevs + ndevs; i++)
4672			nvlist_free(newdevs[i]);
4673		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4674	} else {
4675		/*
4676		 * Generate a new dev list.
4677		 */
4678		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4679		    KM_SLEEP) == 0);
4680		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4681		    devs, ndevs) == 0);
4682	}
4683}
4684
4685/*
4686 * Stop and drop level 2 ARC devices
4687 */
4688void
4689spa_l2cache_drop(spa_t *spa)
4690{
4691	vdev_t *vd;
4692	int i;
4693	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4694
4695	for (i = 0; i < sav->sav_count; i++) {
4696		uint64_t pool;
4697
4698		vd = sav->sav_vdevs[i];
4699		ASSERT(vd != NULL);
4700
4701		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4702		    pool != 0ULL && l2arc_vdev_present(vd))
4703			l2arc_remove_vdev(vd);
4704	}
4705}
4706
4707/*
4708 * Pool Creation
4709 */
4710int
4711spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4712    nvlist_t *zplprops)
4713{
4714	spa_t *spa;
4715	char *altroot = NULL;
4716	vdev_t *rvd;
4717	dsl_pool_t *dp;
4718	dmu_tx_t *tx;
4719	int error = 0;
4720	uint64_t txg = TXG_INITIAL;
4721	nvlist_t **spares, **l2cache;
4722	uint_t nspares, nl2cache;
4723	uint64_t version, obj;
4724	boolean_t has_features;
4725	char *poolname;
4726	nvlist_t *nvl;
4727
4728	if (nvlist_lookup_string(props,
4729	    zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
4730		poolname = (char *)pool;
4731
4732	/*
4733	 * If this pool already exists, return failure.
4734	 */
4735	mutex_enter(&spa_namespace_lock);
4736	if (spa_lookup(poolname) != NULL) {
4737		mutex_exit(&spa_namespace_lock);
4738		return (SET_ERROR(EEXIST));
4739	}
4740
4741	/*
4742	 * Allocate a new spa_t structure.
4743	 */
4744	nvl = fnvlist_alloc();
4745	fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4746	(void) nvlist_lookup_string(props,
4747	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4748	spa = spa_add(poolname, nvl, altroot);
4749	fnvlist_free(nvl);
4750	spa_activate(spa, spa_mode_global);
4751
4752	if (props && (error = spa_prop_validate(spa, props))) {
4753		spa_deactivate(spa);
4754		spa_remove(spa);
4755		mutex_exit(&spa_namespace_lock);
4756		return (error);
4757	}
4758
4759	/*
4760	 * Temporary pool names should never be written to disk.
4761	 */
4762	if (poolname != pool)
4763		spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4764
4765	has_features = B_FALSE;
4766	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4767	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4768		if (zpool_prop_feature(nvpair_name(elem)))
4769			has_features = B_TRUE;
4770	}
4771
4772	if (has_features || nvlist_lookup_uint64(props,
4773	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4774		version = SPA_VERSION;
4775	}
4776	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4777
4778	spa->spa_first_txg = txg;
4779	spa->spa_uberblock.ub_txg = txg - 1;
4780	spa->spa_uberblock.ub_version = version;
4781	spa->spa_ubsync = spa->spa_uberblock;
4782	spa->spa_load_state = SPA_LOAD_CREATE;
4783	spa->spa_removing_phys.sr_state = DSS_NONE;
4784	spa->spa_removing_phys.sr_removing_vdev = -1;
4785	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4786	spa->spa_indirect_vdevs_loaded = B_TRUE;
4787
4788	/*
4789	 * Create "The Godfather" zio to hold all async IOs
4790	 */
4791	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4792	    KM_SLEEP);
4793	for (int i = 0; i < max_ncpus; i++) {
4794		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4795		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4796		    ZIO_FLAG_GODFATHER);
4797	}
4798
4799	/*
4800	 * Create the root vdev.
4801	 */
4802	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4803
4804	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4805
4806	ASSERT(error != 0 || rvd != NULL);
4807	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4808
4809	if (error == 0 && !zfs_allocatable_devs(nvroot))
4810		error = SET_ERROR(EINVAL);
4811
4812	if (error == 0 &&
4813	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4814	    (error = spa_validate_aux(spa, nvroot, txg,
4815	    VDEV_ALLOC_ADD)) == 0) {
4816		for (int c = 0; c < rvd->vdev_children; c++) {
4817			vdev_ashift_optimize(rvd->vdev_child[c]);
4818			vdev_metaslab_set_size(rvd->vdev_child[c]);
4819			vdev_expand(rvd->vdev_child[c], txg);
4820		}
4821	}
4822
4823	spa_config_exit(spa, SCL_ALL, FTAG);
4824
4825	if (error != 0) {
4826		spa_unload(spa);
4827		spa_deactivate(spa);
4828		spa_remove(spa);
4829		mutex_exit(&spa_namespace_lock);
4830		return (error);
4831	}
4832
4833	/*
4834	 * Get the list of spares, if specified.
4835	 */
4836	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4837	    &spares, &nspares) == 0) {
4838		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4839		    KM_SLEEP) == 0);
4840		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4841		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4842		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4843		spa_load_spares(spa);
4844		spa_config_exit(spa, SCL_ALL, FTAG);
4845		spa->spa_spares.sav_sync = B_TRUE;
4846	}
4847
4848	/*
4849	 * Get the list of level 2 cache devices, if specified.
4850	 */
4851	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4852	    &l2cache, &nl2cache) == 0) {
4853		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4854		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4855		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4856		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4857		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4858		spa_load_l2cache(spa);
4859		spa_config_exit(spa, SCL_ALL, FTAG);
4860		spa->spa_l2cache.sav_sync = B_TRUE;
4861	}
4862
4863	spa->spa_is_initializing = B_TRUE;
4864	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4865	spa->spa_meta_objset = dp->dp_meta_objset;
4866	spa->spa_is_initializing = B_FALSE;
4867
4868	/*
4869	 * Create DDTs (dedup tables).
4870	 */
4871	ddt_create(spa);
4872
4873	spa_update_dspace(spa);
4874
4875	tx = dmu_tx_create_assigned(dp, txg);
4876
4877	/*
4878	 * Create the pool config object.
4879	 */
4880	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4881	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4882	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4883
4884	if (zap_add(spa->spa_meta_objset,
4885	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4886	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4887		cmn_err(CE_PANIC, "failed to add pool config");
4888	}
4889
4890	if (spa_version(spa) >= SPA_VERSION_FEATURES)
4891		spa_feature_create_zap_objects(spa, tx);
4892
4893	if (zap_add(spa->spa_meta_objset,
4894	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4895	    sizeof (uint64_t), 1, &version, tx) != 0) {
4896		cmn_err(CE_PANIC, "failed to add pool version");
4897	}
4898
4899	/* Newly created pools with the right version are always deflated. */
4900	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4901		spa->spa_deflate = TRUE;
4902		if (zap_add(spa->spa_meta_objset,
4903		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4904		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4905			cmn_err(CE_PANIC, "failed to add deflate");
4906		}
4907	}
4908
4909	/*
4910	 * Create the deferred-free bpobj.  Turn off compression
4911	 * because sync-to-convergence takes longer if the blocksize
4912	 * keeps changing.
4913	 */
4914	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4915	dmu_object_set_compress(spa->spa_meta_objset, obj,
4916	    ZIO_COMPRESS_OFF, tx);
4917	if (zap_add(spa->spa_meta_objset,
4918	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4919	    sizeof (uint64_t), 1, &obj, tx) != 0) {
4920		cmn_err(CE_PANIC, "failed to add bpobj");
4921	}
4922	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4923	    spa->spa_meta_objset, obj));
4924
4925	/*
4926	 * Create the pool's history object.
4927	 */
4928	if (version >= SPA_VERSION_ZPOOL_HISTORY)
4929		spa_history_create_obj(spa, tx);
4930
4931	/*
4932	 * Generate some random noise for salted checksums to operate on.
4933	 */
4934	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4935	    sizeof (spa->spa_cksum_salt.zcs_bytes));
4936
4937	/*
4938	 * Set pool properties.
4939	 */
4940	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4941	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4942	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4943	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4944
4945	if (props != NULL) {
4946		spa_configfile_set(spa, props, B_FALSE);
4947		spa_sync_props(props, tx);
4948	}
4949
4950	dmu_tx_commit(tx);
4951
4952	spa->spa_sync_on = B_TRUE;
4953	txg_sync_start(spa->spa_dsl_pool);
4954
4955	/*
4956	 * We explicitly wait for the first transaction to complete so that our
4957	 * bean counters are appropriately updated.
4958	 */
4959	txg_wait_synced(spa->spa_dsl_pool, txg);
4960
4961	spa_spawn_aux_threads(spa);
4962
4963	spa_write_cachefile(spa, B_FALSE, B_TRUE);
4964	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4965
4966	spa_history_log_version(spa, "create");
4967
4968	/*
4969	 * Don't count references from objsets that are already closed
4970	 * and are making their way through the eviction process.
4971	 */
4972	spa_evicting_os_wait(spa);
4973	spa->spa_minref = refcount_count(&spa->spa_refcount);
4974	spa->spa_load_state = SPA_LOAD_NONE;
4975
4976	mutex_exit(&spa_namespace_lock);
4977
4978	return (0);
4979}
4980
4981#ifdef _KERNEL
4982#ifdef illumos
4983/*
4984 * Get the root pool information from the root disk, then import the root pool
4985 * during the system boot up time.
4986 */
4987extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4988
4989static nvlist_t *
4990spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4991{
4992	nvlist_t *config;
4993	nvlist_t *nvtop, *nvroot;
4994	uint64_t pgid;
4995
4996	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4997		return (NULL);
4998
4999	/*
5000	 * Add this top-level vdev to the child array.
5001	 */
5002	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5003	    &nvtop) == 0);
5004	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5005	    &pgid) == 0);
5006	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
5007
5008	/*
5009	 * Put this pool's top-level vdevs into a root vdev.
5010	 */
5011	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5012	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5013	    VDEV_TYPE_ROOT) == 0);
5014	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5015	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5016	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5017	    &nvtop, 1) == 0);
5018
5019	/*
5020	 * Replace the existing vdev_tree with the new root vdev in
5021	 * this pool's configuration (remove the old, add the new).
5022	 */
5023	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5024	nvlist_free(nvroot);
5025	return (config);
5026}
5027
5028/*
5029 * Walk the vdev tree and see if we can find a device with "better"
5030 * configuration. A configuration is "better" if the label on that
5031 * device has a more recent txg.
5032 */
5033static void
5034spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
5035{
5036	for (int c = 0; c < vd->vdev_children; c++)
5037		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
5038
5039	if (vd->vdev_ops->vdev_op_leaf) {
5040		nvlist_t *label;
5041		uint64_t label_txg;
5042
5043		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
5044		    &label) != 0)
5045			return;
5046
5047		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
5048		    &label_txg) == 0);
5049
5050		/*
5051		 * Do we have a better boot device?
5052		 */
5053		if (label_txg > *txg) {
5054			*txg = label_txg;
5055			*avd = vd;
5056		}
5057		nvlist_free(label);
5058	}
5059}
5060
5061/*
5062 * Import a root pool.
5063 *
5064 * For x86. devpath_list will consist of devid and/or physpath name of
5065 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
5066 * The GRUB "findroot" command will return the vdev we should boot.
5067 *
5068 * For Sparc, devpath_list consists the physpath name of the booting device
5069 * no matter the rootpool is a single device pool or a mirrored pool.
5070 * e.g.
5071 *	"/pci@1f,0/ide@d/disk@0,0:a"
5072 */
5073int
5074spa_import_rootpool(char *devpath, char *devid)
5075{
5076	spa_t *spa;
5077	vdev_t *rvd, *bvd, *avd = NULL;
5078	nvlist_t *config, *nvtop;
5079	uint64_t guid, txg;
5080	char *pname;
5081	int error;
5082
5083	/*
5084	 * Read the label from the boot device and generate a configuration.
5085	 */
5086	config = spa_generate_rootconf(devpath, devid, &guid);
5087#if defined(_OBP) && defined(_KERNEL)
5088	if (config == NULL) {
5089		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5090			/* iscsi boot */
5091			get_iscsi_bootpath_phy(devpath);
5092			config = spa_generate_rootconf(devpath, devid, &guid);
5093		}
5094	}
5095#endif
5096	if (config == NULL) {
5097		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5098		    devpath);
5099		return (SET_ERROR(EIO));
5100	}
5101
5102	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5103	    &pname) == 0);
5104	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5105
5106	mutex_enter(&spa_namespace_lock);
5107	if ((spa = spa_lookup(pname)) != NULL) {
5108		/*
5109		 * Remove the existing root pool from the namespace so that we
5110		 * can replace it with the correct config we just read in.
5111		 */
5112		spa_remove(spa);
5113	}
5114
5115	spa = spa_add(pname, config, NULL);
5116	spa->spa_is_root = B_TRUE;
5117	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5118	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5119	    &spa->spa_ubsync.ub_version) != 0)
5120		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5121
5122	/*
5123	 * Build up a vdev tree based on the boot device's label config.
5124	 */
5125	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5126	    &nvtop) == 0);
5127	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5128	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5129	    VDEV_ALLOC_ROOTPOOL);
5130	spa_config_exit(spa, SCL_ALL, FTAG);
5131	if (error) {
5132		mutex_exit(&spa_namespace_lock);
5133		nvlist_free(config);
5134		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5135		    pname);
5136		return (error);
5137	}
5138
5139	/*
5140	 * Get the boot vdev.
5141	 */
5142	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5143		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5144		    (u_longlong_t)guid);
5145		error = SET_ERROR(ENOENT);
5146		goto out;
5147	}
5148
5149	/*
5150	 * Determine if there is a better boot device.
5151	 */
5152	avd = bvd;
5153	spa_alt_rootvdev(rvd, &avd, &txg);
5154	if (avd != bvd) {
5155		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5156		    "try booting from '%s'", avd->vdev_path);
5157		error = SET_ERROR(EINVAL);
5158		goto out;
5159	}
5160
5161	/*
5162	 * If the boot device is part of a spare vdev then ensure that
5163	 * we're booting off the active spare.
5164	 */
5165	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5166	    !bvd->vdev_isspare) {
5167		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5168		    "try booting from '%s'",
5169		    bvd->vdev_parent->
5170		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5171		error = SET_ERROR(EINVAL);
5172		goto out;
5173	}
5174
5175	error = 0;
5176out:
5177	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5178	vdev_free(rvd);
5179	spa_config_exit(spa, SCL_ALL, FTAG);
5180	mutex_exit(&spa_namespace_lock);
5181
5182	nvlist_free(config);
5183	return (error);
5184}
5185
5186#else	/* !illumos */
5187
5188extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
5189    uint64_t *count);
5190
5191static nvlist_t *
5192spa_generate_rootconf(const char *name)
5193{
5194	nvlist_t **configs, **tops;
5195	nvlist_t *config;
5196	nvlist_t *best_cfg, *nvtop, *nvroot;
5197	uint64_t *holes;
5198	uint64_t best_txg;
5199	uint64_t nchildren;
5200	uint64_t pgid;
5201	uint64_t count;
5202	uint64_t i;
5203	uint_t   nholes;
5204
5205	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
5206		return (NULL);
5207
5208	ASSERT3U(count, !=, 0);
5209	best_txg = 0;
5210	for (i = 0; i < count; i++) {
5211		uint64_t txg;
5212
5213		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
5214		    &txg) == 0);
5215		if (txg > best_txg) {
5216			best_txg = txg;
5217			best_cfg = configs[i];
5218		}
5219	}
5220
5221	nchildren = 1;
5222	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
5223	holes = NULL;
5224	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
5225	    &holes, &nholes);
5226
5227	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
5228	for (i = 0; i < nchildren; i++) {
5229		if (i >= count)
5230			break;
5231		if (configs[i] == NULL)
5232			continue;
5233		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
5234		    &nvtop) == 0);
5235		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
5236	}
5237	for (i = 0; holes != NULL && i < nholes; i++) {
5238		if (i >= nchildren)
5239			continue;
5240		if (tops[holes[i]] != NULL)
5241			continue;
5242		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
5243		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
5244		    VDEV_TYPE_HOLE) == 0);
5245		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
5246		    holes[i]) == 0);
5247		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
5248		    0) == 0);
5249	}
5250	for (i = 0; i < nchildren; i++) {
5251		if (tops[i] != NULL)
5252			continue;
5253		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
5254		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
5255		    VDEV_TYPE_MISSING) == 0);
5256		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
5257		    i) == 0);
5258		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
5259		    0) == 0);
5260	}
5261
5262	/*
5263	 * Create pool config based on the best vdev config.
5264	 */
5265	nvlist_dup(best_cfg, &config, KM_SLEEP);
5266
5267	/*
5268	 * Put this pool's top-level vdevs into a root vdev.
5269	 */
5270	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5271	    &pgid) == 0);
5272	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5273	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5274	    VDEV_TYPE_ROOT) == 0);
5275	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5276	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5277	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5278	    tops, nchildren) == 0);
5279
5280	/*
5281	 * Replace the existing vdev_tree with the new root vdev in
5282	 * this pool's configuration (remove the old, add the new).
5283	 */
5284	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5285
5286	/*
5287	 * Drop vdev config elements that should not be present at pool level.
5288	 */
5289	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
5290	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
5291
5292	for (i = 0; i < count; i++)
5293		nvlist_free(configs[i]);
5294	kmem_free(configs, count * sizeof(void *));
5295	for (i = 0; i < nchildren; i++)
5296		nvlist_free(tops[i]);
5297	kmem_free(tops, nchildren * sizeof(void *));
5298	nvlist_free(nvroot);
5299	return (config);
5300}
5301
5302int
5303spa_import_rootpool(const char *name)
5304{
5305	spa_t *spa;
5306	vdev_t *rvd, *bvd, *avd = NULL;
5307	nvlist_t *config, *nvtop;
5308	uint64_t txg;
5309	char *pname;
5310	int error;
5311
5312	/*
5313	 * Read the label from the boot device and generate a configuration.
5314	 */
5315	config = spa_generate_rootconf(name);
5316
5317	mutex_enter(&spa_namespace_lock);
5318	if (config != NULL) {
5319		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5320		    &pname) == 0 && strcmp(name, pname) == 0);
5321		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
5322		    == 0);
5323
5324		if ((spa = spa_lookup(pname)) != NULL) {
5325			/*
5326			 * The pool could already be imported,
5327			 * e.g., after reboot -r.
5328			 */
5329			if (spa->spa_state == POOL_STATE_ACTIVE) {
5330				mutex_exit(&spa_namespace_lock);
5331				nvlist_free(config);
5332				return (0);
5333			}
5334
5335			/*
5336			 * Remove the existing root pool from the namespace so
5337			 * that we can replace it with the correct config
5338			 * we just read in.
5339			 */
5340			spa_remove(spa);
5341		}
5342		spa = spa_add(pname, config, NULL);
5343
5344		/*
5345		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
5346		 * via spa_version().
5347		 */
5348		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5349		    &spa->spa_ubsync.ub_version) != 0)
5350			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5351	} else if ((spa = spa_lookup(name)) == NULL) {
5352		mutex_exit(&spa_namespace_lock);
5353		nvlist_free(config);
5354		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
5355		    name);
5356		return (EIO);
5357	} else {
5358		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
5359	}
5360	spa->spa_is_root = B_TRUE;
5361	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5362
5363	/*
5364	 * Build up a vdev tree based on the boot device's label config.
5365	 */
5366	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5367	    &nvtop) == 0);
5368	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5369	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5370	    VDEV_ALLOC_ROOTPOOL);
5371	spa_config_exit(spa, SCL_ALL, FTAG);
5372	if (error) {
5373		mutex_exit(&spa_namespace_lock);
5374		nvlist_free(config);
5375		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5376		    pname);
5377		return (error);
5378	}
5379
5380	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5381	vdev_free(rvd);
5382	spa_config_exit(spa, SCL_ALL, FTAG);
5383	mutex_exit(&spa_namespace_lock);
5384
5385	nvlist_free(config);
5386	return (0);
5387}
5388
5389#endif	/* illumos */
5390#endif	/* _KERNEL */
5391
5392/*
5393 * Import a non-root pool into the system.
5394 */
5395int
5396spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5397{
5398	spa_t *spa;
5399	char *altroot = NULL;
5400	spa_load_state_t state = SPA_LOAD_IMPORT;
5401	zpool_load_policy_t policy;
5402	uint64_t mode = spa_mode_global;
5403	uint64_t readonly = B_FALSE;
5404	int error;
5405	nvlist_t *nvroot;
5406	nvlist_t **spares, **l2cache;
5407	uint_t nspares, nl2cache;
5408
5409	/*
5410	 * If a pool with this name exists, return failure.
5411	 */
5412	mutex_enter(&spa_namespace_lock);
5413	if (spa_lookup(pool) != NULL) {
5414		mutex_exit(&spa_namespace_lock);
5415		return (SET_ERROR(EEXIST));
5416	}
5417
5418	/*
5419	 * Create and initialize the spa structure.
5420	 */
5421	(void) nvlist_lookup_string(props,
5422	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5423	(void) nvlist_lookup_uint64(props,
5424	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5425	if (readonly)
5426		mode = FREAD;
5427	spa = spa_add(pool, config, altroot);
5428	spa->spa_import_flags = flags;
5429
5430	/*
5431	 * Verbatim import - Take a pool and insert it into the namespace
5432	 * as if it had been loaded at boot.
5433	 */
5434	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5435		if (props != NULL)
5436			spa_configfile_set(spa, props, B_FALSE);
5437
5438		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5439		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5440		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5441		mutex_exit(&spa_namespace_lock);
5442		return (0);
5443	}
5444
5445	spa_activate(spa, mode);
5446
5447	/*
5448	 * Don't start async tasks until we know everything is healthy.
5449	 */
5450	spa_async_suspend(spa);
5451
5452	zpool_get_load_policy(config, &policy);
5453	if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5454		state = SPA_LOAD_RECOVER;
5455
5456	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5457
5458	if (state != SPA_LOAD_RECOVER) {
5459		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5460		zfs_dbgmsg("spa_import: importing %s", pool);
5461	} else {
5462		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5463		    "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5464	}
5465	error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5466
5467	/*
5468	 * Propagate anything learned while loading the pool and pass it
5469	 * back to caller (i.e. rewind info, missing devices, etc).
5470	 */
5471	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5472	    spa->spa_load_info) == 0);
5473
5474	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5475	/*
5476	 * Toss any existing sparelist, as it doesn't have any validity
5477	 * anymore, and conflicts with spa_has_spare().
5478	 */
5479	if (spa->spa_spares.sav_config) {
5480		nvlist_free(spa->spa_spares.sav_config);
5481		spa->spa_spares.sav_config = NULL;
5482		spa_load_spares(spa);
5483	}
5484	if (spa->spa_l2cache.sav_config) {
5485		nvlist_free(spa->spa_l2cache.sav_config);
5486		spa->spa_l2cache.sav_config = NULL;
5487		spa_load_l2cache(spa);
5488	}
5489
5490	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5491	    &nvroot) == 0);
5492	if (error == 0)
5493		error = spa_validate_aux(spa, nvroot, -1ULL,
5494		    VDEV_ALLOC_SPARE);
5495	if (error == 0)
5496		error = spa_validate_aux(spa, nvroot, -1ULL,
5497		    VDEV_ALLOC_L2CACHE);
5498	spa_config_exit(spa, SCL_ALL, FTAG);
5499
5500	if (props != NULL)
5501		spa_configfile_set(spa, props, B_FALSE);
5502
5503	if (error != 0 || (props && spa_writeable(spa) &&
5504	    (error = spa_prop_set(spa, props)))) {
5505		spa_unload(spa);
5506		spa_deactivate(spa);
5507		spa_remove(spa);
5508		mutex_exit(&spa_namespace_lock);
5509		return (error);
5510	}
5511
5512	spa_async_resume(spa);
5513
5514	/*
5515	 * Override any spares and level 2 cache devices as specified by
5516	 * the user, as these may have correct device names/devids, etc.
5517	 */
5518	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5519	    &spares, &nspares) == 0) {
5520		if (spa->spa_spares.sav_config)
5521			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5522			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5523		else
5524			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5525			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5526		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5527		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5528		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5529		spa_load_spares(spa);
5530		spa_config_exit(spa, SCL_ALL, FTAG);
5531		spa->spa_spares.sav_sync = B_TRUE;
5532	}
5533	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5534	    &l2cache, &nl2cache) == 0) {
5535		if (spa->spa_l2cache.sav_config)
5536			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5537			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5538		else
5539			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5540			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5541		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5542		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5543		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5544		spa_load_l2cache(spa);
5545		spa_config_exit(spa, SCL_ALL, FTAG);
5546		spa->spa_l2cache.sav_sync = B_TRUE;
5547	}
5548
5549	/*
5550	 * Check for any removed devices.
5551	 */
5552	if (spa->spa_autoreplace) {
5553		spa_aux_check_removed(&spa->spa_spares);
5554		spa_aux_check_removed(&spa->spa_l2cache);
5555	}
5556
5557	if (spa_writeable(spa)) {
5558		/*
5559		 * Update the config cache to include the newly-imported pool.
5560		 */
5561		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5562	}
5563
5564	/*
5565	 * It's possible that the pool was expanded while it was exported.
5566	 * We kick off an async task to handle this for us.
5567	 */
5568	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5569
5570	spa_history_log_version(spa, "import");
5571
5572	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5573
5574	mutex_exit(&spa_namespace_lock);
5575
5576#ifdef __FreeBSD__
5577#ifdef _KERNEL
5578	zvol_create_minors(pool);
5579#endif
5580#endif
5581	return (0);
5582}
5583
5584nvlist_t *
5585spa_tryimport(nvlist_t *tryconfig)
5586{
5587	nvlist_t *config = NULL;
5588	char *poolname, *cachefile;
5589	spa_t *spa;
5590	uint64_t state;
5591	int error;
5592	zpool_load_policy_t policy;
5593
5594	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5595		return (NULL);
5596
5597	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5598		return (NULL);
5599
5600	/*
5601	 * Create and initialize the spa structure.
5602	 */
5603	mutex_enter(&spa_namespace_lock);
5604	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5605	spa_activate(spa, FREAD);
5606
5607	/*
5608	 * Rewind pool if a max txg was provided.
5609	 */
5610	zpool_get_load_policy(spa->spa_config, &policy);
5611	if (policy.zlp_txg != UINT64_MAX) {
5612		spa->spa_load_max_txg = policy.zlp_txg;
5613		spa->spa_extreme_rewind = B_TRUE;
5614		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5615		    poolname, (longlong_t)policy.zlp_txg);
5616	} else {
5617		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5618	}
5619
5620	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5621	    == 0) {
5622		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5623		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5624	} else {
5625		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5626	}
5627
5628	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5629
5630	/*
5631	 * If 'tryconfig' was at least parsable, return the current config.
5632	 */
5633	if (spa->spa_root_vdev != NULL) {
5634		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5635		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5636		    poolname) == 0);
5637		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5638		    state) == 0);
5639		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5640		    spa->spa_uberblock.ub_timestamp) == 0);
5641		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5642		    spa->spa_load_info) == 0);
5643
5644		/*
5645		 * If the bootfs property exists on this pool then we
5646		 * copy it out so that external consumers can tell which
5647		 * pools are bootable.
5648		 */
5649		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5650			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5651
5652			/*
5653			 * We have to play games with the name since the
5654			 * pool was opened as TRYIMPORT_NAME.
5655			 */
5656			if (dsl_dsobj_to_dsname(spa_name(spa),
5657			    spa->spa_bootfs, tmpname) == 0) {
5658				char *cp;
5659				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5660
5661				cp = strchr(tmpname, '/');
5662				if (cp == NULL) {
5663					(void) strlcpy(dsname, tmpname,
5664					    MAXPATHLEN);
5665				} else {
5666					(void) snprintf(dsname, MAXPATHLEN,
5667					    "%s/%s", poolname, ++cp);
5668				}
5669				VERIFY(nvlist_add_string(config,
5670				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5671				kmem_free(dsname, MAXPATHLEN);
5672			}
5673			kmem_free(tmpname, MAXPATHLEN);
5674		}
5675
5676		/*
5677		 * Add the list of hot spares and level 2 cache devices.
5678		 */
5679		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5680		spa_add_spares(spa, config);
5681		spa_add_l2cache(spa, config);
5682		spa_config_exit(spa, SCL_CONFIG, FTAG);
5683	}
5684
5685	spa_unload(spa);
5686	spa_deactivate(spa);
5687	spa_remove(spa);
5688	mutex_exit(&spa_namespace_lock);
5689
5690	return (config);
5691}
5692
5693/*
5694 * Pool export/destroy
5695 *
5696 * The act of destroying or exporting a pool is very simple.  We make sure there
5697 * is no more pending I/O and any references to the pool are gone.  Then, we
5698 * update the pool state and sync all the labels to disk, removing the
5699 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5700 * we don't sync the labels or remove the configuration cache.
5701 */
5702static int
5703spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5704    boolean_t force, boolean_t hardforce)
5705{
5706	spa_t *spa;
5707
5708	if (oldconfig)
5709		*oldconfig = NULL;
5710
5711	if (!(spa_mode_global & FWRITE))
5712		return (SET_ERROR(EROFS));
5713
5714	mutex_enter(&spa_namespace_lock);
5715	if ((spa = spa_lookup(pool)) == NULL) {
5716		mutex_exit(&spa_namespace_lock);
5717		return (SET_ERROR(ENOENT));
5718	}
5719
5720	/*
5721	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5722	 * reacquire the namespace lock, and see if we can export.
5723	 */
5724	spa_open_ref(spa, FTAG);
5725	mutex_exit(&spa_namespace_lock);
5726	spa_async_suspend(spa);
5727	mutex_enter(&spa_namespace_lock);
5728	spa_close(spa, FTAG);
5729
5730	/*
5731	 * The pool will be in core if it's openable,
5732	 * in which case we can modify its state.
5733	 */
5734	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5735
5736		/*
5737		 * Objsets may be open only because they're dirty, so we
5738		 * have to force it to sync before checking spa_refcnt.
5739		 */
5740		txg_wait_synced(spa->spa_dsl_pool, 0);
5741		spa_evicting_os_wait(spa);
5742
5743		/*
5744		 * A pool cannot be exported or destroyed if there are active
5745		 * references.  If we are resetting a pool, allow references by
5746		 * fault injection handlers.
5747		 */
5748		if (!spa_refcount_zero(spa) ||
5749		    (spa->spa_inject_ref != 0 &&
5750		    new_state != POOL_STATE_UNINITIALIZED)) {
5751			spa_async_resume(spa);
5752			mutex_exit(&spa_namespace_lock);
5753			return (SET_ERROR(EBUSY));
5754		}
5755
5756		/*
5757		 * A pool cannot be exported if it has an active shared spare.
5758		 * This is to prevent other pools stealing the active spare
5759		 * from an exported pool. At user's own will, such pool can
5760		 * be forcedly exported.
5761		 */
5762		if (!force && new_state == POOL_STATE_EXPORTED &&
5763		    spa_has_active_shared_spare(spa)) {
5764			spa_async_resume(spa);
5765			mutex_exit(&spa_namespace_lock);
5766			return (SET_ERROR(EXDEV));
5767		}
5768
5769		/*
5770		 * We're about to export or destroy this pool. Make sure
5771		 * we stop all initializtion activity here before we
5772		 * set the spa_final_txg. This will ensure that all
5773		 * dirty data resulting from the initialization is
5774		 * committed to disk before we unload the pool.
5775		 */
5776		if (spa->spa_root_vdev != NULL) {
5777			vdev_initialize_stop_all(spa->spa_root_vdev,
5778			    VDEV_INITIALIZE_ACTIVE);
5779		}
5780
5781		/*
5782		 * We want this to be reflected on every label,
5783		 * so mark them all dirty.  spa_unload() will do the
5784		 * final sync that pushes these changes out.
5785		 */
5786		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5787			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5788			spa->spa_state = new_state;
5789			spa->spa_final_txg = spa_last_synced_txg(spa) +
5790			    TXG_DEFER_SIZE + 1;
5791			vdev_config_dirty(spa->spa_root_vdev);
5792			spa_config_exit(spa, SCL_ALL, FTAG);
5793		}
5794	}
5795
5796	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5797
5798	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5799		spa_unload(spa);
5800		spa_deactivate(spa);
5801	}
5802
5803	if (oldconfig && spa->spa_config)
5804		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5805
5806	if (new_state != POOL_STATE_UNINITIALIZED) {
5807		if (!hardforce)
5808			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5809		spa_remove(spa);
5810	}
5811	mutex_exit(&spa_namespace_lock);
5812
5813	return (0);
5814}
5815
5816/*
5817 * Destroy a storage pool.
5818 */
5819int
5820spa_destroy(char *pool)
5821{
5822	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5823	    B_FALSE, B_FALSE));
5824}
5825
5826/*
5827 * Export a storage pool.
5828 */
5829int
5830spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5831    boolean_t hardforce)
5832{
5833	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5834	    force, hardforce));
5835}
5836
5837/*
5838 * Similar to spa_export(), this unloads the spa_t without actually removing it
5839 * from the namespace in any way.
5840 */
5841int
5842spa_reset(char *pool)
5843{
5844	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5845	    B_FALSE, B_FALSE));
5846}
5847
5848/*
5849 * ==========================================================================
5850 * Device manipulation
5851 * ==========================================================================
5852 */
5853
5854/*
5855 * Add a device to a storage pool.
5856 */
5857int
5858spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5859{
5860	uint64_t txg, id;
5861	int error;
5862	vdev_t *rvd = spa->spa_root_vdev;
5863	vdev_t *vd, *tvd;
5864	nvlist_t **spares, **l2cache;
5865	uint_t nspares, nl2cache;
5866
5867	ASSERT(spa_writeable(spa));
5868
5869	txg = spa_vdev_enter(spa);
5870
5871	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5872	    VDEV_ALLOC_ADD)) != 0)
5873		return (spa_vdev_exit(spa, NULL, txg, error));
5874
5875	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
5876
5877	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5878	    &nspares) != 0)
5879		nspares = 0;
5880
5881	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5882	    &nl2cache) != 0)
5883		nl2cache = 0;
5884
5885	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5886		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5887
5888	if (vd->vdev_children != 0 &&
5889	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5890		return (spa_vdev_exit(spa, vd, txg, error));
5891
5892	/*
5893	 * We must validate the spares and l2cache devices after checking the
5894	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5895	 */
5896	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5897		return (spa_vdev_exit(spa, vd, txg, error));
5898
5899	/*
5900	 * If we are in the middle of a device removal, we can only add
5901	 * devices which match the existing devices in the pool.
5902	 * If we are in the middle of a removal, or have some indirect
5903	 * vdevs, we can not add raidz toplevels.
5904	 */
5905	if (spa->spa_vdev_removal != NULL ||
5906	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5907		for (int c = 0; c < vd->vdev_children; c++) {
5908			tvd = vd->vdev_child[c];
5909			if (spa->spa_vdev_removal != NULL &&
5910			    tvd->vdev_ashift != spa->spa_max_ashift) {
5911				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5912			}
5913			/* Fail if top level vdev is raidz */
5914			if (tvd->vdev_ops == &vdev_raidz_ops) {
5915				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5916			}
5917			/*
5918			 * Need the top level mirror to be
5919			 * a mirror of leaf vdevs only
5920			 */
5921			if (tvd->vdev_ops == &vdev_mirror_ops) {
5922				for (uint64_t cid = 0;
5923				    cid < tvd->vdev_children; cid++) {
5924					vdev_t *cvd = tvd->vdev_child[cid];
5925					if (!cvd->vdev_ops->vdev_op_leaf) {
5926						return (spa_vdev_exit(spa, vd,
5927						    txg, EINVAL));
5928					}
5929				}
5930			}
5931		}
5932	}
5933
5934	for (int c = 0; c < vd->vdev_children; c++) {
5935
5936		/*
5937		 * Set the vdev id to the first hole, if one exists.
5938		 */
5939		for (id = 0; id < rvd->vdev_children; id++) {
5940			if (rvd->vdev_child[id]->vdev_ishole) {
5941				vdev_free(rvd->vdev_child[id]);
5942				break;
5943			}
5944		}
5945		tvd = vd->vdev_child[c];
5946		vdev_remove_child(vd, tvd);
5947		tvd->vdev_id = id;
5948		vdev_add_child(rvd, tvd);
5949		vdev_config_dirty(tvd);
5950	}
5951
5952	if (nspares != 0) {
5953		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5954		    ZPOOL_CONFIG_SPARES);
5955		spa_load_spares(spa);
5956		spa->spa_spares.sav_sync = B_TRUE;
5957	}
5958
5959	if (nl2cache != 0) {
5960		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5961		    ZPOOL_CONFIG_L2CACHE);
5962		spa_load_l2cache(spa);
5963		spa->spa_l2cache.sav_sync = B_TRUE;
5964	}
5965
5966	/*
5967	 * We have to be careful when adding new vdevs to an existing pool.
5968	 * If other threads start allocating from these vdevs before we
5969	 * sync the config cache, and we lose power, then upon reboot we may
5970	 * fail to open the pool because there are DVAs that the config cache
5971	 * can't translate.  Therefore, we first add the vdevs without
5972	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5973	 * and then let spa_config_update() initialize the new metaslabs.
5974	 *
5975	 * spa_load() checks for added-but-not-initialized vdevs, so that
5976	 * if we lose power at any point in this sequence, the remaining
5977	 * steps will be completed the next time we load the pool.
5978	 */
5979	(void) spa_vdev_exit(spa, vd, txg, 0);
5980
5981	mutex_enter(&spa_namespace_lock);
5982	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5983	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5984	mutex_exit(&spa_namespace_lock);
5985
5986	return (0);
5987}
5988
5989/*
5990 * Attach a device to a mirror.  The arguments are the path to any device
5991 * in the mirror, and the nvroot for the new device.  If the path specifies
5992 * a device that is not mirrored, we automatically insert the mirror vdev.
5993 *
5994 * If 'replacing' is specified, the new device is intended to replace the
5995 * existing device; in this case the two devices are made into their own
5996 * mirror using the 'replacing' vdev, which is functionally identical to
5997 * the mirror vdev (it actually reuses all the same ops) but has a few
5998 * extra rules: you can't attach to it after it's been created, and upon
5999 * completion of resilvering, the first disk (the one being replaced)
6000 * is automatically detached.
6001 */
6002int
6003spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
6004{
6005	uint64_t txg, dtl_max_txg;
6006	vdev_t *rvd = spa->spa_root_vdev;
6007	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6008	vdev_ops_t *pvops;
6009	char *oldvdpath, *newvdpath;
6010	int newvd_isspare;
6011	int error;
6012
6013	ASSERT(spa_writeable(spa));
6014
6015	txg = spa_vdev_enter(spa);
6016
6017	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6018
6019	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6020	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6021		error = (spa_has_checkpoint(spa)) ?
6022		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6023		return (spa_vdev_exit(spa, NULL, txg, error));
6024	}
6025
6026	if (spa->spa_vdev_removal != NULL)
6027		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6028
6029	if (oldvd == NULL)
6030		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6031
6032	if (!oldvd->vdev_ops->vdev_op_leaf)
6033		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6034
6035	pvd = oldvd->vdev_parent;
6036
6037	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
6038	    VDEV_ALLOC_ATTACH)) != 0)
6039		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6040
6041	if (newrootvd->vdev_children != 1)
6042		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6043
6044	newvd = newrootvd->vdev_child[0];
6045
6046	if (!newvd->vdev_ops->vdev_op_leaf)
6047		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
6048
6049	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
6050		return (spa_vdev_exit(spa, newrootvd, txg, error));
6051
6052	/*
6053	 * Spares can't replace logs
6054	 */
6055	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
6056		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6057
6058	if (!replacing) {
6059		/*
6060		 * For attach, the only allowable parent is a mirror or the root
6061		 * vdev.
6062		 */
6063		if (pvd->vdev_ops != &vdev_mirror_ops &&
6064		    pvd->vdev_ops != &vdev_root_ops)
6065			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6066
6067		pvops = &vdev_mirror_ops;
6068	} else {
6069		/*
6070		 * Active hot spares can only be replaced by inactive hot
6071		 * spares.
6072		 */
6073		if (pvd->vdev_ops == &vdev_spare_ops &&
6074		    oldvd->vdev_isspare &&
6075		    !spa_has_spare(spa, newvd->vdev_guid))
6076			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6077
6078		/*
6079		 * If the source is a hot spare, and the parent isn't already a
6080		 * spare, then we want to create a new hot spare.  Otherwise, we
6081		 * want to create a replacing vdev.  The user is not allowed to
6082		 * attach to a spared vdev child unless the 'isspare' state is
6083		 * the same (spare replaces spare, non-spare replaces
6084		 * non-spare).
6085		 */
6086		if (pvd->vdev_ops == &vdev_replacing_ops &&
6087		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6088			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6089		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6090		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6091			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6092		}
6093
6094		if (newvd->vdev_isspare)
6095			pvops = &vdev_spare_ops;
6096		else
6097			pvops = &vdev_replacing_ops;
6098	}
6099
6100	/*
6101	 * Make sure the new device is big enough.
6102	 */
6103	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6104		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6105
6106	/*
6107	 * The new device cannot have a higher alignment requirement
6108	 * than the top-level vdev.
6109	 */
6110	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6111		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6112
6113	/*
6114	 * If this is an in-place replacement, update oldvd's path and devid
6115	 * to make it distinguishable from newvd, and unopenable from now on.
6116	 */
6117	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6118		spa_strfree(oldvd->vdev_path);
6119		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6120		    KM_SLEEP);
6121		(void) sprintf(oldvd->vdev_path, "%s/%s",
6122		    newvd->vdev_path, "old");
6123		if (oldvd->vdev_devid != NULL) {
6124			spa_strfree(oldvd->vdev_devid);
6125			oldvd->vdev_devid = NULL;
6126		}
6127	}
6128
6129	/* mark the device being resilvered */
6130	newvd->vdev_resilver_txg = txg;
6131
6132	/*
6133	 * If the parent is not a mirror, or if we're replacing, insert the new
6134	 * mirror/replacing/spare vdev above oldvd.
6135	 */
6136	if (pvd->vdev_ops != pvops)
6137		pvd = vdev_add_parent(oldvd, pvops);
6138
6139	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6140	ASSERT(pvd->vdev_ops == pvops);
6141	ASSERT(oldvd->vdev_parent == pvd);
6142
6143	/*
6144	 * Extract the new device from its root and add it to pvd.
6145	 */
6146	vdev_remove_child(newrootvd, newvd);
6147	newvd->vdev_id = pvd->vdev_children;
6148	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6149	vdev_add_child(pvd, newvd);
6150
6151	tvd = newvd->vdev_top;
6152	ASSERT(pvd->vdev_top == tvd);
6153	ASSERT(tvd->vdev_parent == rvd);
6154
6155	vdev_config_dirty(tvd);
6156
6157	/*
6158	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6159	 * for any dmu_sync-ed blocks.  It will propagate upward when
6160	 * spa_vdev_exit() calls vdev_dtl_reassess().
6161	 */
6162	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6163
6164	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6165	    dtl_max_txg - TXG_INITIAL);
6166
6167	if (newvd->vdev_isspare) {
6168		spa_spare_activate(newvd);
6169		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6170	}
6171
6172	oldvdpath = spa_strdup(oldvd->vdev_path);
6173	newvdpath = spa_strdup(newvd->vdev_path);
6174	newvd_isspare = newvd->vdev_isspare;
6175
6176	/*
6177	 * Mark newvd's DTL dirty in this txg.
6178	 */
6179	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6180
6181	/*
6182	 * Schedule the resilver to restart in the future. We do this to
6183	 * ensure that dmu_sync-ed blocks have been stitched into the
6184	 * respective datasets.
6185	 */
6186	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
6187
6188	if (spa->spa_bootfs)
6189		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6190
6191	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6192
6193	/*
6194	 * Commit the config
6195	 */
6196	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6197
6198	spa_history_log_internal(spa, "vdev attach", NULL,
6199	    "%s vdev=%s %s vdev=%s",
6200	    replacing && newvd_isspare ? "spare in" :
6201	    replacing ? "replace" : "attach", newvdpath,
6202	    replacing ? "for" : "to", oldvdpath);
6203
6204	spa_strfree(oldvdpath);
6205	spa_strfree(newvdpath);
6206
6207	return (0);
6208}
6209
6210/*
6211 * Detach a device from a mirror or replacing vdev.
6212 *
6213 * If 'replace_done' is specified, only detach if the parent
6214 * is a replacing vdev.
6215 */
6216int
6217spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6218{
6219	uint64_t txg;
6220	int error;
6221	vdev_t *rvd = spa->spa_root_vdev;
6222	vdev_t *vd, *pvd, *cvd, *tvd;
6223	boolean_t unspare = B_FALSE;
6224	uint64_t unspare_guid = 0;
6225	char *vdpath;
6226
6227	ASSERT(spa_writeable(spa));
6228
6229	txg = spa_vdev_enter(spa);
6230
6231	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6232
6233	/*
6234	 * Besides being called directly from the userland through the
6235	 * ioctl interface, spa_vdev_detach() can be potentially called
6236	 * at the end of spa_vdev_resilver_done().
6237	 *
6238	 * In the regular case, when we have a checkpoint this shouldn't
6239	 * happen as we never empty the DTLs of a vdev during the scrub
6240	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6241	 * should never get here when we have a checkpoint.
6242	 *
6243	 * That said, even in a case when we checkpoint the pool exactly
6244	 * as spa_vdev_resilver_done() calls this function everything
6245	 * should be fine as the resilver will return right away.
6246	 */
6247	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6248	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6249		error = (spa_has_checkpoint(spa)) ?
6250		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6251		return (spa_vdev_exit(spa, NULL, txg, error));
6252	}
6253
6254	if (vd == NULL)
6255		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6256
6257	if (!vd->vdev_ops->vdev_op_leaf)
6258		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6259
6260	pvd = vd->vdev_parent;
6261
6262	/*
6263	 * If the parent/child relationship is not as expected, don't do it.
6264	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6265	 * vdev that's replacing B with C.  The user's intent in replacing
6266	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6267	 * the replace by detaching C, the expected behavior is to end up
6268	 * M(A,B).  But suppose that right after deciding to detach C,
6269	 * the replacement of B completes.  We would have M(A,C), and then
6270	 * ask to detach C, which would leave us with just A -- not what
6271	 * the user wanted.  To prevent this, we make sure that the
6272	 * parent/child relationship hasn't changed -- in this example,
6273	 * that C's parent is still the replacing vdev R.
6274	 */
6275	if (pvd->vdev_guid != pguid && pguid != 0)
6276		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6277
6278	/*
6279	 * Only 'replacing' or 'spare' vdevs can be replaced.
6280	 */
6281	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6282	    pvd->vdev_ops != &vdev_spare_ops)
6283		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6284
6285	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6286	    spa_version(spa) >= SPA_VERSION_SPARES);
6287
6288	/*
6289	 * Only mirror, replacing, and spare vdevs support detach.
6290	 */
6291	if (pvd->vdev_ops != &vdev_replacing_ops &&
6292	    pvd->vdev_ops != &vdev_mirror_ops &&
6293	    pvd->vdev_ops != &vdev_spare_ops)
6294		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6295
6296	/*
6297	 * If this device has the only valid copy of some data,
6298	 * we cannot safely detach it.
6299	 */
6300	if (vdev_dtl_required(vd))
6301		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6302
6303	ASSERT(pvd->vdev_children >= 2);
6304
6305	/*
6306	 * If we are detaching the second disk from a replacing vdev, then
6307	 * check to see if we changed the original vdev's path to have "/old"
6308	 * at the end in spa_vdev_attach().  If so, undo that change now.
6309	 */
6310	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6311	    vd->vdev_path != NULL) {
6312		size_t len = strlen(vd->vdev_path);
6313
6314		for (int c = 0; c < pvd->vdev_children; c++) {
6315			cvd = pvd->vdev_child[c];
6316
6317			if (cvd == vd || cvd->vdev_path == NULL)
6318				continue;
6319
6320			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6321			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6322				spa_strfree(cvd->vdev_path);
6323				cvd->vdev_path = spa_strdup(vd->vdev_path);
6324				break;
6325			}
6326		}
6327	}
6328
6329	/*
6330	 * If we are detaching the original disk from a spare, then it implies
6331	 * that the spare should become a real disk, and be removed from the
6332	 * active spare list for the pool.
6333	 */
6334	if (pvd->vdev_ops == &vdev_spare_ops &&
6335	    vd->vdev_id == 0 &&
6336	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6337		unspare = B_TRUE;
6338
6339	/*
6340	 * Erase the disk labels so the disk can be used for other things.
6341	 * This must be done after all other error cases are handled,
6342	 * but before we disembowel vd (so we can still do I/O to it).
6343	 * But if we can't do it, don't treat the error as fatal --
6344	 * it may be that the unwritability of the disk is the reason
6345	 * it's being detached!
6346	 */
6347	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6348
6349	/*
6350	 * Remove vd from its parent and compact the parent's children.
6351	 */
6352	vdev_remove_child(pvd, vd);
6353	vdev_compact_children(pvd);
6354
6355	/*
6356	 * Remember one of the remaining children so we can get tvd below.
6357	 */
6358	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6359
6360	/*
6361	 * If we need to remove the remaining child from the list of hot spares,
6362	 * do it now, marking the vdev as no longer a spare in the process.
6363	 * We must do this before vdev_remove_parent(), because that can
6364	 * change the GUID if it creates a new toplevel GUID.  For a similar
6365	 * reason, we must remove the spare now, in the same txg as the detach;
6366	 * otherwise someone could attach a new sibling, change the GUID, and
6367	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6368	 */
6369	if (unspare) {
6370		ASSERT(cvd->vdev_isspare);
6371		spa_spare_remove(cvd);
6372		unspare_guid = cvd->vdev_guid;
6373		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6374		cvd->vdev_unspare = B_TRUE;
6375	}
6376
6377	/*
6378	 * If the parent mirror/replacing vdev only has one child,
6379	 * the parent is no longer needed.  Remove it from the tree.
6380	 */
6381	if (pvd->vdev_children == 1) {
6382		if (pvd->vdev_ops == &vdev_spare_ops)
6383			cvd->vdev_unspare = B_FALSE;
6384		vdev_remove_parent(cvd);
6385	}
6386
6387
6388	/*
6389	 * We don't set tvd until now because the parent we just removed
6390	 * may have been the previous top-level vdev.
6391	 */
6392	tvd = cvd->vdev_top;
6393	ASSERT(tvd->vdev_parent == rvd);
6394
6395	/*
6396	 * Reevaluate the parent vdev state.
6397	 */
6398	vdev_propagate_state(cvd);
6399
6400	/*
6401	 * If the 'autoexpand' property is set on the pool then automatically
6402	 * try to expand the size of the pool. For example if the device we
6403	 * just detached was smaller than the others, it may be possible to
6404	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6405	 * first so that we can obtain the updated sizes of the leaf vdevs.
6406	 */
6407	if (spa->spa_autoexpand) {
6408		vdev_reopen(tvd);
6409		vdev_expand(tvd, txg);
6410	}
6411
6412	vdev_config_dirty(tvd);
6413
6414	/*
6415	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6416	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6417	 * But first make sure we're not on any *other* txg's DTL list, to
6418	 * prevent vd from being accessed after it's freed.
6419	 */
6420	vdpath = spa_strdup(vd->vdev_path);
6421	for (int t = 0; t < TXG_SIZE; t++)
6422		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6423	vd->vdev_detached = B_TRUE;
6424	vdev_dirty(tvd, VDD_DTL, vd, txg);
6425
6426	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6427
6428	/* hang on to the spa before we release the lock */
6429	spa_open_ref(spa, FTAG);
6430
6431	error = spa_vdev_exit(spa, vd, txg, 0);
6432
6433	spa_history_log_internal(spa, "detach", NULL,
6434	    "vdev=%s", vdpath);
6435	spa_strfree(vdpath);
6436
6437	/*
6438	 * If this was the removal of the original device in a hot spare vdev,
6439	 * then we want to go through and remove the device from the hot spare
6440	 * list of every other pool.
6441	 */
6442	if (unspare) {
6443		spa_t *altspa = NULL;
6444
6445		mutex_enter(&spa_namespace_lock);
6446		while ((altspa = spa_next(altspa)) != NULL) {
6447			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6448			    altspa == spa)
6449				continue;
6450
6451			spa_open_ref(altspa, FTAG);
6452			mutex_exit(&spa_namespace_lock);
6453			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6454			mutex_enter(&spa_namespace_lock);
6455			spa_close(altspa, FTAG);
6456		}
6457		mutex_exit(&spa_namespace_lock);
6458
6459		/* search the rest of the vdevs for spares to remove */
6460		spa_vdev_resilver_done(spa);
6461	}
6462
6463	/* all done with the spa; OK to release */
6464	mutex_enter(&spa_namespace_lock);
6465	spa_close(spa, FTAG);
6466	mutex_exit(&spa_namespace_lock);
6467
6468	return (error);
6469}
6470
6471int
6472spa_vdev_initialize(spa_t *spa, uint64_t guid, uint64_t cmd_type)
6473{
6474	/*
6475	 * We hold the namespace lock through the whole function
6476	 * to prevent any changes to the pool while we're starting or
6477	 * stopping initialization. The config and state locks are held so that
6478	 * we can properly assess the vdev state before we commit to
6479	 * the initializing operation.
6480	 */
6481	mutex_enter(&spa_namespace_lock);
6482	spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6483
6484	/* Look up vdev and ensure it's a leaf. */
6485	vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6486	if (vd == NULL || vd->vdev_detached) {
6487		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6488		mutex_exit(&spa_namespace_lock);
6489		return (SET_ERROR(ENODEV));
6490	} else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6491		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6492		mutex_exit(&spa_namespace_lock);
6493		return (SET_ERROR(EINVAL));
6494	} else if (!vdev_writeable(vd)) {
6495		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6496		mutex_exit(&spa_namespace_lock);
6497		return (SET_ERROR(EROFS));
6498	}
6499	mutex_enter(&vd->vdev_initialize_lock);
6500	spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6501
6502	/*
6503	 * When we activate an initialize action we check to see
6504	 * if the vdev_initialize_thread is NULL. We do this instead
6505	 * of using the vdev_initialize_state since there might be
6506	 * a previous initialization process which has completed but
6507	 * the thread is not exited.
6508	 */
6509	if (cmd_type == POOL_INITIALIZE_DO &&
6510	    (vd->vdev_initialize_thread != NULL ||
6511	    vd->vdev_top->vdev_removing)) {
6512		mutex_exit(&vd->vdev_initialize_lock);
6513		mutex_exit(&spa_namespace_lock);
6514		return (SET_ERROR(EBUSY));
6515	} else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6516	    (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6517	    vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6518		mutex_exit(&vd->vdev_initialize_lock);
6519		mutex_exit(&spa_namespace_lock);
6520		return (SET_ERROR(ESRCH));
6521	} else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6522	    vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6523		mutex_exit(&vd->vdev_initialize_lock);
6524		mutex_exit(&spa_namespace_lock);
6525		return (SET_ERROR(ESRCH));
6526	}
6527
6528	switch (cmd_type) {
6529	case POOL_INITIALIZE_DO:
6530		vdev_initialize(vd);
6531		break;
6532	case POOL_INITIALIZE_CANCEL:
6533		vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED);
6534		break;
6535	case POOL_INITIALIZE_SUSPEND:
6536		vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED);
6537		break;
6538	default:
6539		panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6540	}
6541	mutex_exit(&vd->vdev_initialize_lock);
6542
6543	/* Sync out the initializing state */
6544	txg_wait_synced(spa->spa_dsl_pool, 0);
6545	mutex_exit(&spa_namespace_lock);
6546
6547	return (0);
6548}
6549
6550
6551/*
6552 * Split a set of devices from their mirrors, and create a new pool from them.
6553 */
6554int
6555spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6556    nvlist_t *props, boolean_t exp)
6557{
6558	int error = 0;
6559	uint64_t txg, *glist;
6560	spa_t *newspa;
6561	uint_t c, children, lastlog;
6562	nvlist_t **child, *nvl, *tmp;
6563	dmu_tx_t *tx;
6564	char *altroot = NULL;
6565	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6566	boolean_t activate_slog;
6567
6568	ASSERT(spa_writeable(spa));
6569
6570	txg = spa_vdev_enter(spa);
6571
6572	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6573	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6574		error = (spa_has_checkpoint(spa)) ?
6575		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6576		return (spa_vdev_exit(spa, NULL, txg, error));
6577	}
6578
6579	/* clear the log and flush everything up to now */
6580	activate_slog = spa_passivate_log(spa);
6581	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6582	error = spa_reset_logs(spa);
6583	txg = spa_vdev_config_enter(spa);
6584
6585	if (activate_slog)
6586		spa_activate_log(spa);
6587
6588	if (error != 0)
6589		return (spa_vdev_exit(spa, NULL, txg, error));
6590
6591	/* check new spa name before going any further */
6592	if (spa_lookup(newname) != NULL)
6593		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6594
6595	/*
6596	 * scan through all the children to ensure they're all mirrors
6597	 */
6598	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6599	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6600	    &children) != 0)
6601		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6602
6603	/* first, check to ensure we've got the right child count */
6604	rvd = spa->spa_root_vdev;
6605	lastlog = 0;
6606	for (c = 0; c < rvd->vdev_children; c++) {
6607		vdev_t *vd = rvd->vdev_child[c];
6608
6609		/* don't count the holes & logs as children */
6610		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6611			if (lastlog == 0)
6612				lastlog = c;
6613			continue;
6614		}
6615
6616		lastlog = 0;
6617	}
6618	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6619		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6620
6621	/* next, ensure no spare or cache devices are part of the split */
6622	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6623	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6624		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6625
6626	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6627	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6628
6629	/* then, loop over each vdev and validate it */
6630	for (c = 0; c < children; c++) {
6631		uint64_t is_hole = 0;
6632
6633		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6634		    &is_hole);
6635
6636		if (is_hole != 0) {
6637			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6638			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6639				continue;
6640			} else {
6641				error = SET_ERROR(EINVAL);
6642				break;
6643			}
6644		}
6645
6646		/* which disk is going to be split? */
6647		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6648		    &glist[c]) != 0) {
6649			error = SET_ERROR(EINVAL);
6650			break;
6651		}
6652
6653		/* look it up in the spa */
6654		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6655		if (vml[c] == NULL) {
6656			error = SET_ERROR(ENODEV);
6657			break;
6658		}
6659
6660		/* make sure there's nothing stopping the split */
6661		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6662		    vml[c]->vdev_islog ||
6663		    !vdev_is_concrete(vml[c]) ||
6664		    vml[c]->vdev_isspare ||
6665		    vml[c]->vdev_isl2cache ||
6666		    !vdev_writeable(vml[c]) ||
6667		    vml[c]->vdev_children != 0 ||
6668		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6669		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6670			error = SET_ERROR(EINVAL);
6671			break;
6672		}
6673
6674		if (vdev_dtl_required(vml[c])) {
6675			error = SET_ERROR(EBUSY);
6676			break;
6677		}
6678
6679		/* we need certain info from the top level */
6680		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6681		    vml[c]->vdev_top->vdev_ms_array) == 0);
6682		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6683		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6684		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6685		    vml[c]->vdev_top->vdev_asize) == 0);
6686		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6687		    vml[c]->vdev_top->vdev_ashift) == 0);
6688
6689		/* transfer per-vdev ZAPs */
6690		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6691		VERIFY0(nvlist_add_uint64(child[c],
6692		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6693
6694		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6695		VERIFY0(nvlist_add_uint64(child[c],
6696		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
6697		    vml[c]->vdev_parent->vdev_top_zap));
6698	}
6699
6700	if (error != 0) {
6701		kmem_free(vml, children * sizeof (vdev_t *));
6702		kmem_free(glist, children * sizeof (uint64_t));
6703		return (spa_vdev_exit(spa, NULL, txg, error));
6704	}
6705
6706	/* stop writers from using the disks */
6707	for (c = 0; c < children; c++) {
6708		if (vml[c] != NULL)
6709			vml[c]->vdev_offline = B_TRUE;
6710	}
6711	vdev_reopen(spa->spa_root_vdev);
6712
6713	/*
6714	 * Temporarily record the splitting vdevs in the spa config.  This
6715	 * will disappear once the config is regenerated.
6716	 */
6717	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6718	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6719	    glist, children) == 0);
6720	kmem_free(glist, children * sizeof (uint64_t));
6721
6722	mutex_enter(&spa->spa_props_lock);
6723	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6724	    nvl) == 0);
6725	mutex_exit(&spa->spa_props_lock);
6726	spa->spa_config_splitting = nvl;
6727	vdev_config_dirty(spa->spa_root_vdev);
6728
6729	/* configure and create the new pool */
6730	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6731	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6732	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6733	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6734	    spa_version(spa)) == 0);
6735	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6736	    spa->spa_config_txg) == 0);
6737	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6738	    spa_generate_guid(NULL)) == 0);
6739	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6740	(void) nvlist_lookup_string(props,
6741	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6742
6743	/* add the new pool to the namespace */
6744	newspa = spa_add(newname, config, altroot);
6745	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6746	newspa->spa_config_txg = spa->spa_config_txg;
6747	spa_set_log_state(newspa, SPA_LOG_CLEAR);
6748
6749	/* release the spa config lock, retaining the namespace lock */
6750	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6751
6752	if (zio_injection_enabled)
6753		zio_handle_panic_injection(spa, FTAG, 1);
6754
6755	spa_activate(newspa, spa_mode_global);
6756	spa_async_suspend(newspa);
6757
6758	for (c = 0; c < children; c++) {
6759		if (vml[c] != NULL) {
6760			/*
6761			 * Temporarily stop the initializing activity. We set
6762			 * the state to ACTIVE so that we know to resume
6763			 * the initializing once the split has completed.
6764			 */
6765			mutex_enter(&vml[c]->vdev_initialize_lock);
6766			vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE);
6767			mutex_exit(&vml[c]->vdev_initialize_lock);
6768		}
6769	}
6770
6771#ifndef illumos
6772	/* mark that we are creating new spa by splitting */
6773	newspa->spa_splitting_newspa = B_TRUE;
6774#endif
6775	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6776
6777	/* create the new pool from the disks of the original pool */
6778	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6779#ifndef illumos
6780	newspa->spa_splitting_newspa = B_FALSE;
6781#endif
6782	if (error)
6783		goto out;
6784
6785	/* if that worked, generate a real config for the new pool */
6786	if (newspa->spa_root_vdev != NULL) {
6787		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6788		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6789		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6790		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6791		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6792		    B_TRUE));
6793	}
6794
6795	/* set the props */
6796	if (props != NULL) {
6797		spa_configfile_set(newspa, props, B_FALSE);
6798		error = spa_prop_set(newspa, props);
6799		if (error)
6800			goto out;
6801	}
6802
6803	/* flush everything */
6804	txg = spa_vdev_config_enter(newspa);
6805	vdev_config_dirty(newspa->spa_root_vdev);
6806	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6807
6808	if (zio_injection_enabled)
6809		zio_handle_panic_injection(spa, FTAG, 2);
6810
6811	spa_async_resume(newspa);
6812
6813	/* finally, update the original pool's config */
6814	txg = spa_vdev_config_enter(spa);
6815	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6816	error = dmu_tx_assign(tx, TXG_WAIT);
6817	if (error != 0)
6818		dmu_tx_abort(tx);
6819	for (c = 0; c < children; c++) {
6820		if (vml[c] != NULL) {
6821			vdev_split(vml[c]);
6822			if (error == 0)
6823				spa_history_log_internal(spa, "detach", tx,
6824				    "vdev=%s", vml[c]->vdev_path);
6825
6826			vdev_free(vml[c]);
6827		}
6828	}
6829	spa->spa_avz_action = AVZ_ACTION_REBUILD;
6830	vdev_config_dirty(spa->spa_root_vdev);
6831	spa->spa_config_splitting = NULL;
6832	nvlist_free(nvl);
6833	if (error == 0)
6834		dmu_tx_commit(tx);
6835	(void) spa_vdev_exit(spa, NULL, txg, 0);
6836
6837	if (zio_injection_enabled)
6838		zio_handle_panic_injection(spa, FTAG, 3);
6839
6840	/* split is complete; log a history record */
6841	spa_history_log_internal(newspa, "split", NULL,
6842	    "from pool %s", spa_name(spa));
6843
6844	kmem_free(vml, children * sizeof (vdev_t *));
6845
6846	/* if we're not going to mount the filesystems in userland, export */
6847	if (exp)
6848		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6849		    B_FALSE, B_FALSE);
6850
6851	return (error);
6852
6853out:
6854	spa_unload(newspa);
6855	spa_deactivate(newspa);
6856	spa_remove(newspa);
6857
6858	txg = spa_vdev_config_enter(spa);
6859
6860	/* re-online all offlined disks */
6861	for (c = 0; c < children; c++) {
6862		if (vml[c] != NULL)
6863			vml[c]->vdev_offline = B_FALSE;
6864	}
6865
6866	/* restart initializing disks as necessary */
6867	spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
6868
6869	vdev_reopen(spa->spa_root_vdev);
6870
6871	nvlist_free(spa->spa_config_splitting);
6872	spa->spa_config_splitting = NULL;
6873	(void) spa_vdev_exit(spa, NULL, txg, error);
6874
6875	kmem_free(vml, children * sizeof (vdev_t *));
6876	return (error);
6877}
6878
6879/*
6880 * Find any device that's done replacing, or a vdev marked 'unspare' that's
6881 * currently spared, so we can detach it.
6882 */
6883static vdev_t *
6884spa_vdev_resilver_done_hunt(vdev_t *vd)
6885{
6886	vdev_t *newvd, *oldvd;
6887
6888	for (int c = 0; c < vd->vdev_children; c++) {
6889		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6890		if (oldvd != NULL)
6891			return (oldvd);
6892	}
6893
6894	/*
6895	 * Check for a completed replacement.  We always consider the first
6896	 * vdev in the list to be the oldest vdev, and the last one to be
6897	 * the newest (see spa_vdev_attach() for how that works).  In
6898	 * the case where the newest vdev is faulted, we will not automatically
6899	 * remove it after a resilver completes.  This is OK as it will require
6900	 * user intervention to determine which disk the admin wishes to keep.
6901	 */
6902	if (vd->vdev_ops == &vdev_replacing_ops) {
6903		ASSERT(vd->vdev_children > 1);
6904
6905		newvd = vd->vdev_child[vd->vdev_children - 1];
6906		oldvd = vd->vdev_child[0];
6907
6908		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6909		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6910		    !vdev_dtl_required(oldvd))
6911			return (oldvd);
6912	}
6913
6914	/*
6915	 * Check for a completed resilver with the 'unspare' flag set.
6916	 * Also potentially update faulted state.
6917	 */
6918	if (vd->vdev_ops == &vdev_spare_ops) {
6919		vdev_t *first = vd->vdev_child[0];
6920		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6921
6922		if (last->vdev_unspare) {
6923			oldvd = first;
6924			newvd = last;
6925		} else if (first->vdev_unspare) {
6926			oldvd = last;
6927			newvd = first;
6928		} else {
6929			oldvd = NULL;
6930		}
6931
6932		if (oldvd != NULL &&
6933		    vdev_dtl_empty(newvd, DTL_MISSING) &&
6934		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6935		    !vdev_dtl_required(oldvd))
6936			return (oldvd);
6937
6938		vdev_propagate_state(vd);
6939
6940		/*
6941		 * If there are more than two spares attached to a disk,
6942		 * and those spares are not required, then we want to
6943		 * attempt to free them up now so that they can be used
6944		 * by other pools.  Once we're back down to a single
6945		 * disk+spare, we stop removing them.
6946		 */
6947		if (vd->vdev_children > 2) {
6948			newvd = vd->vdev_child[1];
6949
6950			if (newvd->vdev_isspare && last->vdev_isspare &&
6951			    vdev_dtl_empty(last, DTL_MISSING) &&
6952			    vdev_dtl_empty(last, DTL_OUTAGE) &&
6953			    !vdev_dtl_required(newvd))
6954				return (newvd);
6955		}
6956	}
6957
6958	return (NULL);
6959}
6960
6961static void
6962spa_vdev_resilver_done(spa_t *spa)
6963{
6964	vdev_t *vd, *pvd, *ppvd;
6965	uint64_t guid, sguid, pguid, ppguid;
6966
6967	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6968
6969	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6970		pvd = vd->vdev_parent;
6971		ppvd = pvd->vdev_parent;
6972		guid = vd->vdev_guid;
6973		pguid = pvd->vdev_guid;
6974		ppguid = ppvd->vdev_guid;
6975		sguid = 0;
6976		/*
6977		 * If we have just finished replacing a hot spared device, then
6978		 * we need to detach the parent's first child (the original hot
6979		 * spare) as well.
6980		 */
6981		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6982		    ppvd->vdev_children == 2) {
6983			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6984			sguid = ppvd->vdev_child[1]->vdev_guid;
6985		}
6986		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6987
6988		spa_config_exit(spa, SCL_ALL, FTAG);
6989		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6990			return;
6991		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6992			return;
6993		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6994	}
6995
6996	spa_config_exit(spa, SCL_ALL, FTAG);
6997}
6998
6999/*
7000 * Update the stored path or FRU for this vdev.
7001 */
7002int
7003spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
7004    boolean_t ispath)
7005{
7006	vdev_t *vd;
7007	boolean_t sync = B_FALSE;
7008
7009	ASSERT(spa_writeable(spa));
7010
7011	spa_vdev_state_enter(spa, SCL_ALL);
7012
7013	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
7014		return (spa_vdev_state_exit(spa, NULL, ENOENT));
7015
7016	if (!vd->vdev_ops->vdev_op_leaf)
7017		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
7018
7019	if (ispath) {
7020		if (strcmp(value, vd->vdev_path) != 0) {
7021			spa_strfree(vd->vdev_path);
7022			vd->vdev_path = spa_strdup(value);
7023			sync = B_TRUE;
7024		}
7025	} else {
7026		if (vd->vdev_fru == NULL) {
7027			vd->vdev_fru = spa_strdup(value);
7028			sync = B_TRUE;
7029		} else if (strcmp(value, vd->vdev_fru) != 0) {
7030			spa_strfree(vd->vdev_fru);
7031			vd->vdev_fru = spa_strdup(value);
7032			sync = B_TRUE;
7033		}
7034	}
7035
7036	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
7037}
7038
7039int
7040spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
7041{
7042	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
7043}
7044
7045int
7046spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
7047{
7048	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
7049}
7050
7051/*
7052 * ==========================================================================
7053 * SPA Scanning
7054 * ==========================================================================
7055 */
7056int
7057spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7058{
7059	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7060
7061	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7062		return (SET_ERROR(EBUSY));
7063
7064	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7065}
7066
7067int
7068spa_scan_stop(spa_t *spa)
7069{
7070	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7071	if (dsl_scan_resilvering(spa->spa_dsl_pool))
7072		return (SET_ERROR(EBUSY));
7073	return (dsl_scan_cancel(spa->spa_dsl_pool));
7074}
7075
7076int
7077spa_scan(spa_t *spa, pool_scan_func_t func)
7078{
7079	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7080
7081	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7082		return (SET_ERROR(ENOTSUP));
7083
7084	/*
7085	 * If a resilver was requested, but there is no DTL on a
7086	 * writeable leaf device, we have nothing to do.
7087	 */
7088	if (func == POOL_SCAN_RESILVER &&
7089	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7090		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7091		return (0);
7092	}
7093
7094	return (dsl_scan(spa->spa_dsl_pool, func));
7095}
7096
7097/*
7098 * ==========================================================================
7099 * SPA async task processing
7100 * ==========================================================================
7101 */
7102
7103static void
7104spa_async_remove(spa_t *spa, vdev_t *vd)
7105{
7106	if (vd->vdev_remove_wanted) {
7107		vd->vdev_remove_wanted = B_FALSE;
7108		vd->vdev_delayed_close = B_FALSE;
7109		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7110
7111		/*
7112		 * We want to clear the stats, but we don't want to do a full
7113		 * vdev_clear() as that will cause us to throw away
7114		 * degraded/faulted state as well as attempt to reopen the
7115		 * device, all of which is a waste.
7116		 */
7117		vd->vdev_stat.vs_read_errors = 0;
7118		vd->vdev_stat.vs_write_errors = 0;
7119		vd->vdev_stat.vs_checksum_errors = 0;
7120
7121		vdev_state_dirty(vd->vdev_top);
7122		/* Tell userspace that the vdev is gone. */
7123		zfs_post_remove(spa, vd);
7124	}
7125
7126	for (int c = 0; c < vd->vdev_children; c++)
7127		spa_async_remove(spa, vd->vdev_child[c]);
7128}
7129
7130static void
7131spa_async_probe(spa_t *spa, vdev_t *vd)
7132{
7133	if (vd->vdev_probe_wanted) {
7134		vd->vdev_probe_wanted = B_FALSE;
7135		vdev_reopen(vd);	/* vdev_open() does the actual probe */
7136	}
7137
7138	for (int c = 0; c < vd->vdev_children; c++)
7139		spa_async_probe(spa, vd->vdev_child[c]);
7140}
7141
7142static void
7143spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7144{
7145	sysevent_id_t eid;
7146	nvlist_t *attr;
7147	char *physpath;
7148
7149	if (!spa->spa_autoexpand)
7150		return;
7151
7152	for (int c = 0; c < vd->vdev_children; c++) {
7153		vdev_t *cvd = vd->vdev_child[c];
7154		spa_async_autoexpand(spa, cvd);
7155	}
7156
7157	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7158		return;
7159
7160	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
7161	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
7162
7163	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7164	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
7165
7166	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
7167	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
7168
7169	nvlist_free(attr);
7170	kmem_free(physpath, MAXPATHLEN);
7171}
7172
7173static void
7174spa_async_thread(void *arg)
7175{
7176	spa_t *spa = (spa_t *)arg;
7177	int tasks;
7178
7179	ASSERT(spa->spa_sync_on);
7180
7181	mutex_enter(&spa->spa_async_lock);
7182	tasks = spa->spa_async_tasks;
7183	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
7184	mutex_exit(&spa->spa_async_lock);
7185
7186	/*
7187	 * See if the config needs to be updated.
7188	 */
7189	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7190		uint64_t old_space, new_space;
7191
7192		mutex_enter(&spa_namespace_lock);
7193		old_space = metaslab_class_get_space(spa_normal_class(spa));
7194		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7195		new_space = metaslab_class_get_space(spa_normal_class(spa));
7196		mutex_exit(&spa_namespace_lock);
7197
7198		/*
7199		 * If the pool grew as a result of the config update,
7200		 * then log an internal history event.
7201		 */
7202		if (new_space != old_space) {
7203			spa_history_log_internal(spa, "vdev online", NULL,
7204			    "pool '%s' size: %llu(+%llu)",
7205			    spa_name(spa), new_space, new_space - old_space);
7206		}
7207	}
7208
7209	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7210		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7211		spa_async_autoexpand(spa, spa->spa_root_vdev);
7212		spa_config_exit(spa, SCL_CONFIG, FTAG);
7213	}
7214
7215	/*
7216	 * See if any devices need to be probed.
7217	 */
7218	if (tasks & SPA_ASYNC_PROBE) {
7219		spa_vdev_state_enter(spa, SCL_NONE);
7220		spa_async_probe(spa, spa->spa_root_vdev);
7221		(void) spa_vdev_state_exit(spa, NULL, 0);
7222	}
7223
7224	/*
7225	 * If any devices are done replacing, detach them.
7226	 */
7227	if (tasks & SPA_ASYNC_RESILVER_DONE)
7228		spa_vdev_resilver_done(spa);
7229
7230	/*
7231	 * Kick off a resilver.
7232	 */
7233	if (tasks & SPA_ASYNC_RESILVER)
7234		dsl_resilver_restart(spa->spa_dsl_pool, 0);
7235
7236	if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7237		mutex_enter(&spa_namespace_lock);
7238		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7239		vdev_initialize_restart(spa->spa_root_vdev);
7240		spa_config_exit(spa, SCL_CONFIG, FTAG);
7241		mutex_exit(&spa_namespace_lock);
7242	}
7243
7244	/*
7245	 * Let the world know that we're done.
7246	 */
7247	mutex_enter(&spa->spa_async_lock);
7248	spa->spa_async_thread = NULL;
7249	cv_broadcast(&spa->spa_async_cv);
7250	mutex_exit(&spa->spa_async_lock);
7251	thread_exit();
7252}
7253
7254static void
7255spa_async_thread_vd(void *arg)
7256{
7257	spa_t *spa = arg;
7258	int tasks;
7259
7260	mutex_enter(&spa->spa_async_lock);
7261	tasks = spa->spa_async_tasks;
7262retry:
7263	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
7264	mutex_exit(&spa->spa_async_lock);
7265
7266	/*
7267	 * See if any devices need to be marked REMOVED.
7268	 */
7269	if (tasks & SPA_ASYNC_REMOVE) {
7270		spa_vdev_state_enter(spa, SCL_NONE);
7271		spa_async_remove(spa, spa->spa_root_vdev);
7272		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7273			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7274		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7275			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7276		(void) spa_vdev_state_exit(spa, NULL, 0);
7277	}
7278
7279	/*
7280	 * Let the world know that we're done.
7281	 */
7282	mutex_enter(&spa->spa_async_lock);
7283	tasks = spa->spa_async_tasks;
7284	if ((tasks & SPA_ASYNC_REMOVE) != 0)
7285		goto retry;
7286	spa->spa_async_thread_vd = NULL;
7287	cv_broadcast(&spa->spa_async_cv);
7288	mutex_exit(&spa->spa_async_lock);
7289	thread_exit();
7290}
7291
7292void
7293spa_async_suspend(spa_t *spa)
7294{
7295	mutex_enter(&spa->spa_async_lock);
7296	spa->spa_async_suspended++;
7297	while (spa->spa_async_thread != NULL ||
7298	    spa->spa_async_thread_vd != NULL)
7299		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7300	mutex_exit(&spa->spa_async_lock);
7301
7302	spa_vdev_remove_suspend(spa);
7303
7304	zthr_t *condense_thread = spa->spa_condense_zthr;
7305	if (condense_thread != NULL && zthr_isrunning(condense_thread))
7306		VERIFY0(zthr_cancel(condense_thread));
7307
7308	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7309	if (discard_thread != NULL && zthr_isrunning(discard_thread))
7310		VERIFY0(zthr_cancel(discard_thread));
7311}
7312
7313void
7314spa_async_resume(spa_t *spa)
7315{
7316	mutex_enter(&spa->spa_async_lock);
7317	ASSERT(spa->spa_async_suspended != 0);
7318	spa->spa_async_suspended--;
7319	mutex_exit(&spa->spa_async_lock);
7320	spa_restart_removal(spa);
7321
7322	zthr_t *condense_thread = spa->spa_condense_zthr;
7323	if (condense_thread != NULL && !zthr_isrunning(condense_thread))
7324		zthr_resume(condense_thread);
7325
7326	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7327	if (discard_thread != NULL && !zthr_isrunning(discard_thread))
7328		zthr_resume(discard_thread);
7329}
7330
7331static boolean_t
7332spa_async_tasks_pending(spa_t *spa)
7333{
7334	uint_t non_config_tasks;
7335	uint_t config_task;
7336	boolean_t config_task_suspended;
7337
7338	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
7339	    SPA_ASYNC_REMOVE);
7340	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7341	if (spa->spa_ccw_fail_time == 0) {
7342		config_task_suspended = B_FALSE;
7343	} else {
7344		config_task_suspended =
7345		    (gethrtime() - spa->spa_ccw_fail_time) <
7346		    (zfs_ccw_retry_interval * NANOSEC);
7347	}
7348
7349	return (non_config_tasks || (config_task && !config_task_suspended));
7350}
7351
7352static void
7353spa_async_dispatch(spa_t *spa)
7354{
7355	mutex_enter(&spa->spa_async_lock);
7356	if (spa_async_tasks_pending(spa) &&
7357	    !spa->spa_async_suspended &&
7358	    spa->spa_async_thread == NULL &&
7359	    rootdir != NULL)
7360		spa->spa_async_thread = thread_create(NULL, 0,
7361		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7362	mutex_exit(&spa->spa_async_lock);
7363}
7364
7365static void
7366spa_async_dispatch_vd(spa_t *spa)
7367{
7368	mutex_enter(&spa->spa_async_lock);
7369	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
7370	    !spa->spa_async_suspended &&
7371	    spa->spa_async_thread_vd == NULL &&
7372	    rootdir != NULL)
7373		spa->spa_async_thread_vd = thread_create(NULL, 0,
7374		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
7375	mutex_exit(&spa->spa_async_lock);
7376}
7377
7378void
7379spa_async_request(spa_t *spa, int task)
7380{
7381	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7382	mutex_enter(&spa->spa_async_lock);
7383	spa->spa_async_tasks |= task;
7384	mutex_exit(&spa->spa_async_lock);
7385	spa_async_dispatch_vd(spa);
7386}
7387
7388/*
7389 * ==========================================================================
7390 * SPA syncing routines
7391 * ==========================================================================
7392 */
7393
7394static int
7395bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7396{
7397	bpobj_t *bpo = arg;
7398	bpobj_enqueue(bpo, bp, tx);
7399	return (0);
7400}
7401
7402static int
7403spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7404{
7405	zio_t *zio = arg;
7406
7407	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7408	    BP_GET_PSIZE(bp), zio->io_flags));
7409	return (0);
7410}
7411
7412/*
7413 * Note: this simple function is not inlined to make it easier to dtrace the
7414 * amount of time spent syncing frees.
7415 */
7416static void
7417spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7418{
7419	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7420	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7421	VERIFY(zio_wait(zio) == 0);
7422}
7423
7424/*
7425 * Note: this simple function is not inlined to make it easier to dtrace the
7426 * amount of time spent syncing deferred frees.
7427 */
7428static void
7429spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7430{
7431	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7432	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7433	    spa_free_sync_cb, zio, tx), ==, 0);
7434	VERIFY0(zio_wait(zio));
7435}
7436
7437
7438static void
7439spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7440{
7441	char *packed = NULL;
7442	size_t bufsize;
7443	size_t nvsize = 0;
7444	dmu_buf_t *db;
7445
7446	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7447
7448	/*
7449	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7450	 * information.  This avoids the dmu_buf_will_dirty() path and
7451	 * saves us a pre-read to get data we don't actually care about.
7452	 */
7453	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7454	packed = kmem_alloc(bufsize, KM_SLEEP);
7455
7456	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7457	    KM_SLEEP) == 0);
7458	bzero(packed + nvsize, bufsize - nvsize);
7459
7460	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7461
7462	kmem_free(packed, bufsize);
7463
7464	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7465	dmu_buf_will_dirty(db, tx);
7466	*(uint64_t *)db->db_data = nvsize;
7467	dmu_buf_rele(db, FTAG);
7468}
7469
7470static void
7471spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7472    const char *config, const char *entry)
7473{
7474	nvlist_t *nvroot;
7475	nvlist_t **list;
7476	int i;
7477
7478	if (!sav->sav_sync)
7479		return;
7480
7481	/*
7482	 * Update the MOS nvlist describing the list of available devices.
7483	 * spa_validate_aux() will have already made sure this nvlist is
7484	 * valid and the vdevs are labeled appropriately.
7485	 */
7486	if (sav->sav_object == 0) {
7487		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7488		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7489		    sizeof (uint64_t), tx);
7490		VERIFY(zap_update(spa->spa_meta_objset,
7491		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7492		    &sav->sav_object, tx) == 0);
7493	}
7494
7495	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7496	if (sav->sav_count == 0) {
7497		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7498	} else {
7499		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7500		for (i = 0; i < sav->sav_count; i++)
7501			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7502			    B_FALSE, VDEV_CONFIG_L2CACHE);
7503		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7504		    sav->sav_count) == 0);
7505		for (i = 0; i < sav->sav_count; i++)
7506			nvlist_free(list[i]);
7507		kmem_free(list, sav->sav_count * sizeof (void *));
7508	}
7509
7510	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7511	nvlist_free(nvroot);
7512
7513	sav->sav_sync = B_FALSE;
7514}
7515
7516/*
7517 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7518 * The all-vdev ZAP must be empty.
7519 */
7520static void
7521spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7522{
7523	spa_t *spa = vd->vdev_spa;
7524	if (vd->vdev_top_zap != 0) {
7525		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7526		    vd->vdev_top_zap, tx));
7527	}
7528	if (vd->vdev_leaf_zap != 0) {
7529		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7530		    vd->vdev_leaf_zap, tx));
7531	}
7532	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7533		spa_avz_build(vd->vdev_child[i], avz, tx);
7534	}
7535}
7536
7537static void
7538spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7539{
7540	nvlist_t *config;
7541
7542	/*
7543	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7544	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7545	 * Similarly, if the pool is being assembled (e.g. after a split), we
7546	 * need to rebuild the AVZ although the config may not be dirty.
7547	 */
7548	if (list_is_empty(&spa->spa_config_dirty_list) &&
7549	    spa->spa_avz_action == AVZ_ACTION_NONE)
7550		return;
7551
7552	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7553
7554	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7555	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7556	    spa->spa_all_vdev_zaps != 0);
7557
7558	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7559		/* Make and build the new AVZ */
7560		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7561		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7562		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7563
7564		/* Diff old AVZ with new one */
7565		zap_cursor_t zc;
7566		zap_attribute_t za;
7567
7568		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7569		    spa->spa_all_vdev_zaps);
7570		    zap_cursor_retrieve(&zc, &za) == 0;
7571		    zap_cursor_advance(&zc)) {
7572			uint64_t vdzap = za.za_first_integer;
7573			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7574			    vdzap) == ENOENT) {
7575				/*
7576				 * ZAP is listed in old AVZ but not in new one;
7577				 * destroy it
7578				 */
7579				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7580				    tx));
7581			}
7582		}
7583
7584		zap_cursor_fini(&zc);
7585
7586		/* Destroy the old AVZ */
7587		VERIFY0(zap_destroy(spa->spa_meta_objset,
7588		    spa->spa_all_vdev_zaps, tx));
7589
7590		/* Replace the old AVZ in the dir obj with the new one */
7591		VERIFY0(zap_update(spa->spa_meta_objset,
7592		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7593		    sizeof (new_avz), 1, &new_avz, tx));
7594
7595		spa->spa_all_vdev_zaps = new_avz;
7596	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7597		zap_cursor_t zc;
7598		zap_attribute_t za;
7599
7600		/* Walk through the AVZ and destroy all listed ZAPs */
7601		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7602		    spa->spa_all_vdev_zaps);
7603		    zap_cursor_retrieve(&zc, &za) == 0;
7604		    zap_cursor_advance(&zc)) {
7605			uint64_t zap = za.za_first_integer;
7606			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7607		}
7608
7609		zap_cursor_fini(&zc);
7610
7611		/* Destroy and unlink the AVZ itself */
7612		VERIFY0(zap_destroy(spa->spa_meta_objset,
7613		    spa->spa_all_vdev_zaps, tx));
7614		VERIFY0(zap_remove(spa->spa_meta_objset,
7615		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7616		spa->spa_all_vdev_zaps = 0;
7617	}
7618
7619	if (spa->spa_all_vdev_zaps == 0) {
7620		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7621		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7622		    DMU_POOL_VDEV_ZAP_MAP, tx);
7623	}
7624	spa->spa_avz_action = AVZ_ACTION_NONE;
7625
7626	/* Create ZAPs for vdevs that don't have them. */
7627	vdev_construct_zaps(spa->spa_root_vdev, tx);
7628
7629	config = spa_config_generate(spa, spa->spa_root_vdev,
7630	    dmu_tx_get_txg(tx), B_FALSE);
7631
7632	/*
7633	 * If we're upgrading the spa version then make sure that
7634	 * the config object gets updated with the correct version.
7635	 */
7636	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7637		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7638		    spa->spa_uberblock.ub_version);
7639
7640	spa_config_exit(spa, SCL_STATE, FTAG);
7641
7642	nvlist_free(spa->spa_config_syncing);
7643	spa->spa_config_syncing = config;
7644
7645	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7646}
7647
7648static void
7649spa_sync_version(void *arg, dmu_tx_t *tx)
7650{
7651	uint64_t *versionp = arg;
7652	uint64_t version = *versionp;
7653	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7654
7655	/*
7656	 * Setting the version is special cased when first creating the pool.
7657	 */
7658	ASSERT(tx->tx_txg != TXG_INITIAL);
7659
7660	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7661	ASSERT(version >= spa_version(spa));
7662
7663	spa->spa_uberblock.ub_version = version;
7664	vdev_config_dirty(spa->spa_root_vdev);
7665	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7666}
7667
7668/*
7669 * Set zpool properties.
7670 */
7671static void
7672spa_sync_props(void *arg, dmu_tx_t *tx)
7673{
7674	nvlist_t *nvp = arg;
7675	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7676	objset_t *mos = spa->spa_meta_objset;
7677	nvpair_t *elem = NULL;
7678
7679	mutex_enter(&spa->spa_props_lock);
7680
7681	while ((elem = nvlist_next_nvpair(nvp, elem))) {
7682		uint64_t intval;
7683		char *strval, *fname;
7684		zpool_prop_t prop;
7685		const char *propname;
7686		zprop_type_t proptype;
7687		spa_feature_t fid;
7688
7689		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7690		case ZPOOL_PROP_INVAL:
7691			/*
7692			 * We checked this earlier in spa_prop_validate().
7693			 */
7694			ASSERT(zpool_prop_feature(nvpair_name(elem)));
7695
7696			fname = strchr(nvpair_name(elem), '@') + 1;
7697			VERIFY0(zfeature_lookup_name(fname, &fid));
7698
7699			spa_feature_enable(spa, fid, tx);
7700			spa_history_log_internal(spa, "set", tx,
7701			    "%s=enabled", nvpair_name(elem));
7702			break;
7703
7704		case ZPOOL_PROP_VERSION:
7705			intval = fnvpair_value_uint64(elem);
7706			/*
7707			 * The version is synced seperatly before other
7708			 * properties and should be correct by now.
7709			 */
7710			ASSERT3U(spa_version(spa), >=, intval);
7711			break;
7712
7713		case ZPOOL_PROP_ALTROOT:
7714			/*
7715			 * 'altroot' is a non-persistent property. It should
7716			 * have been set temporarily at creation or import time.
7717			 */
7718			ASSERT(spa->spa_root != NULL);
7719			break;
7720
7721		case ZPOOL_PROP_READONLY:
7722		case ZPOOL_PROP_CACHEFILE:
7723			/*
7724			 * 'readonly' and 'cachefile' are also non-persisitent
7725			 * properties.
7726			 */
7727			break;
7728		case ZPOOL_PROP_COMMENT:
7729			strval = fnvpair_value_string(elem);
7730			if (spa->spa_comment != NULL)
7731				spa_strfree(spa->spa_comment);
7732			spa->spa_comment = spa_strdup(strval);
7733			/*
7734			 * We need to dirty the configuration on all the vdevs
7735			 * so that their labels get updated.  It's unnecessary
7736			 * to do this for pool creation since the vdev's
7737			 * configuratoin has already been dirtied.
7738			 */
7739			if (tx->tx_txg != TXG_INITIAL)
7740				vdev_config_dirty(spa->spa_root_vdev);
7741			spa_history_log_internal(spa, "set", tx,
7742			    "%s=%s", nvpair_name(elem), strval);
7743			break;
7744		default:
7745			/*
7746			 * Set pool property values in the poolprops mos object.
7747			 */
7748			if (spa->spa_pool_props_object == 0) {
7749				spa->spa_pool_props_object =
7750				    zap_create_link(mos, DMU_OT_POOL_PROPS,
7751				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7752				    tx);
7753			}
7754
7755			/* normalize the property name */
7756			propname = zpool_prop_to_name(prop);
7757			proptype = zpool_prop_get_type(prop);
7758
7759			if (nvpair_type(elem) == DATA_TYPE_STRING) {
7760				ASSERT(proptype == PROP_TYPE_STRING);
7761				strval = fnvpair_value_string(elem);
7762				VERIFY0(zap_update(mos,
7763				    spa->spa_pool_props_object, propname,
7764				    1, strlen(strval) + 1, strval, tx));
7765				spa_history_log_internal(spa, "set", tx,
7766				    "%s=%s", nvpair_name(elem), strval);
7767			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7768				intval = fnvpair_value_uint64(elem);
7769
7770				if (proptype == PROP_TYPE_INDEX) {
7771					const char *unused;
7772					VERIFY0(zpool_prop_index_to_string(
7773					    prop, intval, &unused));
7774				}
7775				VERIFY0(zap_update(mos,
7776				    spa->spa_pool_props_object, propname,
7777				    8, 1, &intval, tx));
7778				spa_history_log_internal(spa, "set", tx,
7779				    "%s=%lld", nvpair_name(elem), intval);
7780			} else {
7781				ASSERT(0); /* not allowed */
7782			}
7783
7784			switch (prop) {
7785			case ZPOOL_PROP_DELEGATION:
7786				spa->spa_delegation = intval;
7787				break;
7788			case ZPOOL_PROP_BOOTFS:
7789				spa->spa_bootfs = intval;
7790				break;
7791			case ZPOOL_PROP_FAILUREMODE:
7792				spa->spa_failmode = intval;
7793				break;
7794			case ZPOOL_PROP_AUTOEXPAND:
7795				spa->spa_autoexpand = intval;
7796				if (tx->tx_txg != TXG_INITIAL)
7797					spa_async_request(spa,
7798					    SPA_ASYNC_AUTOEXPAND);
7799				break;
7800			case ZPOOL_PROP_DEDUPDITTO:
7801				spa->spa_dedup_ditto = intval;
7802				break;
7803			default:
7804				break;
7805			}
7806		}
7807
7808	}
7809
7810	mutex_exit(&spa->spa_props_lock);
7811}
7812
7813/*
7814 * Perform one-time upgrade on-disk changes.  spa_version() does not
7815 * reflect the new version this txg, so there must be no changes this
7816 * txg to anything that the upgrade code depends on after it executes.
7817 * Therefore this must be called after dsl_pool_sync() does the sync
7818 * tasks.
7819 */
7820static void
7821spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7822{
7823	dsl_pool_t *dp = spa->spa_dsl_pool;
7824
7825	ASSERT(spa->spa_sync_pass == 1);
7826
7827	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7828
7829	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7830	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7831		dsl_pool_create_origin(dp, tx);
7832
7833		/* Keeping the origin open increases spa_minref */
7834		spa->spa_minref += 3;
7835	}
7836
7837	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7838	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7839		dsl_pool_upgrade_clones(dp, tx);
7840	}
7841
7842	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7843	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7844		dsl_pool_upgrade_dir_clones(dp, tx);
7845
7846		/* Keeping the freedir open increases spa_minref */
7847		spa->spa_minref += 3;
7848	}
7849
7850	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7851	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7852		spa_feature_create_zap_objects(spa, tx);
7853	}
7854
7855	/*
7856	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7857	 * when possibility to use lz4 compression for metadata was added
7858	 * Old pools that have this feature enabled must be upgraded to have
7859	 * this feature active
7860	 */
7861	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7862		boolean_t lz4_en = spa_feature_is_enabled(spa,
7863		    SPA_FEATURE_LZ4_COMPRESS);
7864		boolean_t lz4_ac = spa_feature_is_active(spa,
7865		    SPA_FEATURE_LZ4_COMPRESS);
7866
7867		if (lz4_en && !lz4_ac)
7868			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7869	}
7870
7871	/*
7872	 * If we haven't written the salt, do so now.  Note that the
7873	 * feature may not be activated yet, but that's fine since
7874	 * the presence of this ZAP entry is backwards compatible.
7875	 */
7876	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7877	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7878		VERIFY0(zap_add(spa->spa_meta_objset,
7879		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7880		    sizeof (spa->spa_cksum_salt.zcs_bytes),
7881		    spa->spa_cksum_salt.zcs_bytes, tx));
7882	}
7883
7884	rrw_exit(&dp->dp_config_rwlock, FTAG);
7885}
7886
7887static void
7888vdev_indirect_state_sync_verify(vdev_t *vd)
7889{
7890	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7891	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7892
7893	if (vd->vdev_ops == &vdev_indirect_ops) {
7894		ASSERT(vim != NULL);
7895		ASSERT(vib != NULL);
7896	}
7897
7898	if (vdev_obsolete_sm_object(vd) != 0) {
7899		ASSERT(vd->vdev_obsolete_sm != NULL);
7900		ASSERT(vd->vdev_removing ||
7901		    vd->vdev_ops == &vdev_indirect_ops);
7902		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7903		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7904
7905		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7906		    space_map_object(vd->vdev_obsolete_sm));
7907		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7908		    space_map_allocated(vd->vdev_obsolete_sm));
7909	}
7910	ASSERT(vd->vdev_obsolete_segments != NULL);
7911
7912	/*
7913	 * Since frees / remaps to an indirect vdev can only
7914	 * happen in syncing context, the obsolete segments
7915	 * tree must be empty when we start syncing.
7916	 */
7917	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7918}
7919
7920/*
7921 * Sync the specified transaction group.  New blocks may be dirtied as
7922 * part of the process, so we iterate until it converges.
7923 */
7924void
7925spa_sync(spa_t *spa, uint64_t txg)
7926{
7927	dsl_pool_t *dp = spa->spa_dsl_pool;
7928	objset_t *mos = spa->spa_meta_objset;
7929	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7930	vdev_t *rvd = spa->spa_root_vdev;
7931	vdev_t *vd;
7932	dmu_tx_t *tx;
7933	int error;
7934	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7935	    zfs_vdev_queue_depth_pct / 100;
7936
7937	VERIFY(spa_writeable(spa));
7938
7939	/*
7940	 * Wait for i/os issued in open context that need to complete
7941	 * before this txg syncs.
7942	 */
7943	(void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
7944	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
7945	    ZIO_FLAG_CANFAIL);
7946
7947	/*
7948	 * Lock out configuration changes.
7949	 */
7950	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7951
7952	spa->spa_syncing_txg = txg;
7953	spa->spa_sync_pass = 0;
7954
7955	for (int i = 0; i < spa->spa_alloc_count; i++) {
7956		mutex_enter(&spa->spa_alloc_locks[i]);
7957		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
7958		mutex_exit(&spa->spa_alloc_locks[i]);
7959	}
7960
7961	/*
7962	 * If there are any pending vdev state changes, convert them
7963	 * into config changes that go out with this transaction group.
7964	 */
7965	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7966	while (list_head(&spa->spa_state_dirty_list) != NULL) {
7967		/*
7968		 * We need the write lock here because, for aux vdevs,
7969		 * calling vdev_config_dirty() modifies sav_config.
7970		 * This is ugly and will become unnecessary when we
7971		 * eliminate the aux vdev wart by integrating all vdevs
7972		 * into the root vdev tree.
7973		 */
7974		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7975		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7976		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7977			vdev_state_clean(vd);
7978			vdev_config_dirty(vd);
7979		}
7980		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7981		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7982	}
7983	spa_config_exit(spa, SCL_STATE, FTAG);
7984
7985	tx = dmu_tx_create_assigned(dp, txg);
7986
7987	spa->spa_sync_starttime = gethrtime();
7988#ifdef illumos
7989	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7990	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
7991#else	/* !illumos */
7992#ifdef _KERNEL
7993	callout_schedule(&spa->spa_deadman_cycid,
7994	    hz * spa->spa_deadman_synctime / NANOSEC);
7995#endif
7996#endif	/* illumos */
7997
7998	/*
7999	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8000	 * set spa_deflate if we have no raid-z vdevs.
8001	 */
8002	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8003	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8004		int i;
8005
8006		for (i = 0; i < rvd->vdev_children; i++) {
8007			vd = rvd->vdev_child[i];
8008			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8009				break;
8010		}
8011		if (i == rvd->vdev_children) {
8012			spa->spa_deflate = TRUE;
8013			VERIFY(0 == zap_add(spa->spa_meta_objset,
8014			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8015			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8016		}
8017	}
8018
8019	/*
8020	 * Set the top-level vdev's max queue depth. Evaluate each
8021	 * top-level's async write queue depth in case it changed.
8022	 * The max queue depth will not change in the middle of syncing
8023	 * out this txg.
8024	 */
8025	uint64_t slots_per_allocator = 0;
8026	for (int c = 0; c < rvd->vdev_children; c++) {
8027		vdev_t *tvd = rvd->vdev_child[c];
8028		metaslab_group_t *mg = tvd->vdev_mg;
8029
8030		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
8031		    !metaslab_group_initialized(mg))
8032			continue;
8033
8034		/*
8035		 * It is safe to do a lock-free check here because only async
8036		 * allocations look at mg_max_alloc_queue_depth, and async
8037		 * allocations all happen from spa_sync().
8038		 */
8039		for (int i = 0; i < spa->spa_alloc_count; i++)
8040			ASSERT0(refcount_count(&(mg->mg_alloc_queue_depth[i])));
8041		mg->mg_max_alloc_queue_depth = max_queue_depth;
8042
8043		for (int i = 0; i < spa->spa_alloc_count; i++) {
8044			mg->mg_cur_max_alloc_queue_depth[i] =
8045			    zfs_vdev_def_queue_depth;
8046		}
8047		slots_per_allocator += zfs_vdev_def_queue_depth;
8048	}
8049	metaslab_class_t *mc = spa_normal_class(spa);
8050	for (int i = 0; i < spa->spa_alloc_count; i++) {
8051		ASSERT0(refcount_count(&mc->mc_alloc_slots[i]));
8052		mc->mc_alloc_max_slots[i] = slots_per_allocator;
8053	}
8054	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
8055
8056	for (int c = 0; c < rvd->vdev_children; c++) {
8057		vdev_t *vd = rvd->vdev_child[c];
8058		vdev_indirect_state_sync_verify(vd);
8059
8060		if (vdev_indirect_should_condense(vd)) {
8061			spa_condense_indirect_start_sync(vd, tx);
8062			break;
8063		}
8064	}
8065
8066	/*
8067	 * Iterate to convergence.
8068	 */
8069	do {
8070		int pass = ++spa->spa_sync_pass;
8071
8072		spa_sync_config_object(spa, tx);
8073		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
8074		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
8075		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
8076		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
8077		spa_errlog_sync(spa, txg);
8078		dsl_pool_sync(dp, txg);
8079
8080		if (pass < zfs_sync_pass_deferred_free) {
8081			spa_sync_frees(spa, free_bpl, tx);
8082		} else {
8083			/*
8084			 * We can not defer frees in pass 1, because
8085			 * we sync the deferred frees later in pass 1.
8086			 */
8087			ASSERT3U(pass, >, 1);
8088			bplist_iterate(free_bpl, bpobj_enqueue_cb,
8089			    &spa->spa_deferred_bpobj, tx);
8090		}
8091
8092		ddt_sync(spa, txg);
8093		dsl_scan_sync(dp, tx);
8094
8095		if (spa->spa_vdev_removal != NULL)
8096			svr_sync(spa, tx);
8097
8098		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
8099		    != NULL)
8100			vdev_sync(vd, txg);
8101
8102		if (pass == 1) {
8103			spa_sync_upgrades(spa, tx);
8104			ASSERT3U(txg, >=,
8105			    spa->spa_uberblock.ub_rootbp.blk_birth);
8106			/*
8107			 * Note: We need to check if the MOS is dirty
8108			 * because we could have marked the MOS dirty
8109			 * without updating the uberblock (e.g. if we
8110			 * have sync tasks but no dirty user data).  We
8111			 * need to check the uberblock's rootbp because
8112			 * it is updated if we have synced out dirty
8113			 * data (though in this case the MOS will most
8114			 * likely also be dirty due to second order
8115			 * effects, we don't want to rely on that here).
8116			 */
8117			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
8118			    !dmu_objset_is_dirty(mos, txg)) {
8119				/*
8120				 * Nothing changed on the first pass,
8121				 * therefore this TXG is a no-op.  Avoid
8122				 * syncing deferred frees, so that we
8123				 * can keep this TXG as a no-op.
8124				 */
8125				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
8126				    txg));
8127				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8128				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
8129				ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
8130				    txg));
8131				break;
8132			}
8133			spa_sync_deferred_frees(spa, tx);
8134		}
8135
8136	} while (dmu_objset_is_dirty(mos, txg));
8137
8138	if (!list_is_empty(&spa->spa_config_dirty_list)) {
8139		/*
8140		 * Make sure that the number of ZAPs for all the vdevs matches
8141		 * the number of ZAPs in the per-vdev ZAP list. This only gets
8142		 * called if the config is dirty; otherwise there may be
8143		 * outstanding AVZ operations that weren't completed in
8144		 * spa_sync_config_object.
8145		 */
8146		uint64_t all_vdev_zap_entry_count;
8147		ASSERT0(zap_count(spa->spa_meta_objset,
8148		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8149		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8150		    all_vdev_zap_entry_count);
8151	}
8152
8153	if (spa->spa_vdev_removal != NULL) {
8154		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8155	}
8156
8157	/*
8158	 * Rewrite the vdev configuration (which includes the uberblock)
8159	 * to commit the transaction group.
8160	 *
8161	 * If there are no dirty vdevs, we sync the uberblock to a few
8162	 * random top-level vdevs that are known to be visible in the
8163	 * config cache (see spa_vdev_add() for a complete description).
8164	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
8165	 */
8166	for (;;) {
8167		/*
8168		 * We hold SCL_STATE to prevent vdev open/close/etc.
8169		 * while we're attempting to write the vdev labels.
8170		 */
8171		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8172
8173		if (list_is_empty(&spa->spa_config_dirty_list)) {
8174			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
8175			int svdcount = 0;
8176			int children = rvd->vdev_children;
8177			int c0 = spa_get_random(children);
8178
8179			for (int c = 0; c < children; c++) {
8180				vd = rvd->vdev_child[(c0 + c) % children];
8181
8182				/* Stop when revisiting the first vdev */
8183				if (c > 0 && svd[0] == vd)
8184					break;
8185
8186				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
8187				    !vdev_is_concrete(vd))
8188					continue;
8189
8190				svd[svdcount++] = vd;
8191				if (svdcount == SPA_SYNC_MIN_VDEVS)
8192					break;
8193			}
8194			error = vdev_config_sync(svd, svdcount, txg);
8195		} else {
8196			error = vdev_config_sync(rvd->vdev_child,
8197			    rvd->vdev_children, txg);
8198		}
8199
8200		if (error == 0)
8201			spa->spa_last_synced_guid = rvd->vdev_guid;
8202
8203		spa_config_exit(spa, SCL_STATE, FTAG);
8204
8205		if (error == 0)
8206			break;
8207		zio_suspend(spa, NULL);
8208		zio_resume_wait(spa);
8209	}
8210	dmu_tx_commit(tx);
8211
8212#ifdef illumos
8213	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8214#else	/* !illumos */
8215#ifdef _KERNEL
8216	callout_drain(&spa->spa_deadman_cycid);
8217#endif
8218#endif	/* illumos */
8219
8220	/*
8221	 * Clear the dirty config list.
8222	 */
8223	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8224		vdev_config_clean(vd);
8225
8226	/*
8227	 * Now that the new config has synced transactionally,
8228	 * let it become visible to the config cache.
8229	 */
8230	if (spa->spa_config_syncing != NULL) {
8231		spa_config_set(spa, spa->spa_config_syncing);
8232		spa->spa_config_txg = txg;
8233		spa->spa_config_syncing = NULL;
8234	}
8235
8236	dsl_pool_sync_done(dp, txg);
8237
8238	for (int i = 0; i < spa->spa_alloc_count; i++) {
8239		mutex_enter(&spa->spa_alloc_locks[i]);
8240		VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8241		mutex_exit(&spa->spa_alloc_locks[i]);
8242	}
8243
8244	/*
8245	 * Update usable space statistics.
8246	 */
8247	while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8248	    != NULL)
8249		vdev_sync_done(vd, txg);
8250
8251	spa_update_dspace(spa);
8252
8253	/*
8254	 * It had better be the case that we didn't dirty anything
8255	 * since vdev_config_sync().
8256	 */
8257	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8258	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8259	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8260
8261	while (zfs_pause_spa_sync)
8262		delay(1);
8263
8264	spa->spa_sync_pass = 0;
8265
8266	/*
8267	 * Update the last synced uberblock here. We want to do this at
8268	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8269	 * will be guaranteed that all the processing associated with
8270	 * that txg has been completed.
8271	 */
8272	spa->spa_ubsync = spa->spa_uberblock;
8273	spa_config_exit(spa, SCL_CONFIG, FTAG);
8274
8275	spa_handle_ignored_writes(spa);
8276
8277	/*
8278	 * If any async tasks have been requested, kick them off.
8279	 */
8280	spa_async_dispatch(spa);
8281	spa_async_dispatch_vd(spa);
8282}
8283
8284/*
8285 * Sync all pools.  We don't want to hold the namespace lock across these
8286 * operations, so we take a reference on the spa_t and drop the lock during the
8287 * sync.
8288 */
8289void
8290spa_sync_allpools(void)
8291{
8292	spa_t *spa = NULL;
8293	mutex_enter(&spa_namespace_lock);
8294	while ((spa = spa_next(spa)) != NULL) {
8295		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8296		    !spa_writeable(spa) || spa_suspended(spa))
8297			continue;
8298		spa_open_ref(spa, FTAG);
8299		mutex_exit(&spa_namespace_lock);
8300		txg_wait_synced(spa_get_dsl(spa), 0);
8301		mutex_enter(&spa_namespace_lock);
8302		spa_close(spa, FTAG);
8303	}
8304	mutex_exit(&spa_namespace_lock);
8305}
8306
8307/*
8308 * ==========================================================================
8309 * Miscellaneous routines
8310 * ==========================================================================
8311 */
8312
8313/*
8314 * Remove all pools in the system.
8315 */
8316void
8317spa_evict_all(void)
8318{
8319	spa_t *spa;
8320
8321	/*
8322	 * Remove all cached state.  All pools should be closed now,
8323	 * so every spa in the AVL tree should be unreferenced.
8324	 */
8325	mutex_enter(&spa_namespace_lock);
8326	while ((spa = spa_next(NULL)) != NULL) {
8327		/*
8328		 * Stop async tasks.  The async thread may need to detach
8329		 * a device that's been replaced, which requires grabbing
8330		 * spa_namespace_lock, so we must drop it here.
8331		 */
8332		spa_open_ref(spa, FTAG);
8333		mutex_exit(&spa_namespace_lock);
8334		spa_async_suspend(spa);
8335		mutex_enter(&spa_namespace_lock);
8336		spa_close(spa, FTAG);
8337
8338		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8339			spa_unload(spa);
8340			spa_deactivate(spa);
8341		}
8342		spa_remove(spa);
8343	}
8344	mutex_exit(&spa_namespace_lock);
8345}
8346
8347vdev_t *
8348spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8349{
8350	vdev_t *vd;
8351	int i;
8352
8353	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8354		return (vd);
8355
8356	if (aux) {
8357		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8358			vd = spa->spa_l2cache.sav_vdevs[i];
8359			if (vd->vdev_guid == guid)
8360				return (vd);
8361		}
8362
8363		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8364			vd = spa->spa_spares.sav_vdevs[i];
8365			if (vd->vdev_guid == guid)
8366				return (vd);
8367		}
8368	}
8369
8370	return (NULL);
8371}
8372
8373void
8374spa_upgrade(spa_t *spa, uint64_t version)
8375{
8376	ASSERT(spa_writeable(spa));
8377
8378	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8379
8380	/*
8381	 * This should only be called for a non-faulted pool, and since a
8382	 * future version would result in an unopenable pool, this shouldn't be
8383	 * possible.
8384	 */
8385	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8386	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8387
8388	spa->spa_uberblock.ub_version = version;
8389	vdev_config_dirty(spa->spa_root_vdev);
8390
8391	spa_config_exit(spa, SCL_ALL, FTAG);
8392
8393	txg_wait_synced(spa_get_dsl(spa), 0);
8394}
8395
8396boolean_t
8397spa_has_spare(spa_t *spa, uint64_t guid)
8398{
8399	int i;
8400	uint64_t spareguid;
8401	spa_aux_vdev_t *sav = &spa->spa_spares;
8402
8403	for (i = 0; i < sav->sav_count; i++)
8404		if (sav->sav_vdevs[i]->vdev_guid == guid)
8405			return (B_TRUE);
8406
8407	for (i = 0; i < sav->sav_npending; i++) {
8408		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8409		    &spareguid) == 0 && spareguid == guid)
8410			return (B_TRUE);
8411	}
8412
8413	return (B_FALSE);
8414}
8415
8416/*
8417 * Check if a pool has an active shared spare device.
8418 * Note: reference count of an active spare is 2, as a spare and as a replace
8419 */
8420static boolean_t
8421spa_has_active_shared_spare(spa_t *spa)
8422{
8423	int i, refcnt;
8424	uint64_t pool;
8425	spa_aux_vdev_t *sav = &spa->spa_spares;
8426
8427	for (i = 0; i < sav->sav_count; i++) {
8428		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8429		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8430		    refcnt > 2)
8431			return (B_TRUE);
8432	}
8433
8434	return (B_FALSE);
8435}
8436
8437sysevent_t *
8438spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8439{
8440	sysevent_t		*ev = NULL;
8441#ifdef _KERNEL
8442	sysevent_attr_list_t	*attr = NULL;
8443	sysevent_value_t	value;
8444
8445	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8446	    SE_SLEEP);
8447	ASSERT(ev != NULL);
8448
8449	value.value_type = SE_DATA_TYPE_STRING;
8450	value.value.sv_string = spa_name(spa);
8451	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8452		goto done;
8453
8454	value.value_type = SE_DATA_TYPE_UINT64;
8455	value.value.sv_uint64 = spa_guid(spa);
8456	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8457		goto done;
8458
8459	if (vd) {
8460		value.value_type = SE_DATA_TYPE_UINT64;
8461		value.value.sv_uint64 = vd->vdev_guid;
8462		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8463		    SE_SLEEP) != 0)
8464			goto done;
8465
8466		if (vd->vdev_path) {
8467			value.value_type = SE_DATA_TYPE_STRING;
8468			value.value.sv_string = vd->vdev_path;
8469			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8470			    &value, SE_SLEEP) != 0)
8471				goto done;
8472		}
8473	}
8474
8475	if (hist_nvl != NULL) {
8476		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8477	}
8478
8479	if (sysevent_attach_attributes(ev, attr) != 0)
8480		goto done;
8481	attr = NULL;
8482
8483done:
8484	if (attr)
8485		sysevent_free_attr(attr);
8486
8487#endif
8488	return (ev);
8489}
8490
8491void
8492spa_event_post(sysevent_t *ev)
8493{
8494#ifdef _KERNEL
8495	sysevent_id_t		eid;
8496
8497	(void) log_sysevent(ev, SE_SLEEP, &eid);
8498	sysevent_free(ev);
8499#endif
8500}
8501
8502void
8503spa_event_discard(sysevent_t *ev)
8504{
8505#ifdef _KERNEL
8506	sysevent_free(ev);
8507#endif
8508}
8509
8510/*
8511 * Post a sysevent corresponding to the given event.  The 'name' must be one of
8512 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8513 * filled in from the spa and (optionally) the vdev and history nvl.  This
8514 * doesn't do anything in the userland libzpool, as we don't want consumers to
8515 * misinterpret ztest or zdb as real changes.
8516 */
8517void
8518spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8519{
8520	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8521}
8522