spa.c revision 332547
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright 2017 Joyent, Inc.
32 * Copyright (c) 2017 Datto Inc.
33 * Copyright 2018 OmniOS Community Edition (OmniOSce) Association.
34 */
35
36/*
37 * SPA: Storage Pool Allocator
38 *
39 * This file contains all the routines used when modifying on-disk SPA state.
40 * This includes opening, importing, destroying, exporting a pool, and syncing a
41 * pool.
42 */
43
44#include <sys/zfs_context.h>
45#include <sys/fm/fs/zfs.h>
46#include <sys/spa_impl.h>
47#include <sys/zio.h>
48#include <sys/zio_checksum.h>
49#include <sys/dmu.h>
50#include <sys/dmu_tx.h>
51#include <sys/zap.h>
52#include <sys/zil.h>
53#include <sys/ddt.h>
54#include <sys/vdev_impl.h>
55#include <sys/vdev_removal.h>
56#include <sys/vdev_indirect_mapping.h>
57#include <sys/vdev_indirect_births.h>
58#include <sys/metaslab.h>
59#include <sys/metaslab_impl.h>
60#include <sys/uberblock_impl.h>
61#include <sys/txg.h>
62#include <sys/avl.h>
63#include <sys/bpobj.h>
64#include <sys/dmu_traverse.h>
65#include <sys/dmu_objset.h>
66#include <sys/unique.h>
67#include <sys/dsl_pool.h>
68#include <sys/dsl_dataset.h>
69#include <sys/dsl_dir.h>
70#include <sys/dsl_prop.h>
71#include <sys/dsl_synctask.h>
72#include <sys/fs/zfs.h>
73#include <sys/arc.h>
74#include <sys/callb.h>
75#include <sys/spa_boot.h>
76#include <sys/zfs_ioctl.h>
77#include <sys/dsl_scan.h>
78#include <sys/dmu_send.h>
79#include <sys/dsl_destroy.h>
80#include <sys/dsl_userhold.h>
81#include <sys/zfeature.h>
82#include <sys/zvol.h>
83#include <sys/trim_map.h>
84#include <sys/abd.h>
85
86#ifdef	_KERNEL
87#include <sys/callb.h>
88#include <sys/cpupart.h>
89#include <sys/zone.h>
90#endif	/* _KERNEL */
91
92#include "zfs_prop.h"
93#include "zfs_comutil.h"
94
95/* Check hostid on import? */
96static int check_hostid = 1;
97
98/*
99 * The interval, in seconds, at which failed configuration cache file writes
100 * should be retried.
101 */
102int zfs_ccw_retry_interval = 300;
103
104SYSCTL_DECL(_vfs_zfs);
105SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
106    "Check hostid on import?");
107TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
108SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
109    &zfs_ccw_retry_interval, 0,
110    "Configuration cache file write, retry after failure, interval (seconds)");
111
112typedef enum zti_modes {
113	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
114	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
115	ZTI_MODE_NULL,			/* don't create a taskq */
116	ZTI_NMODES
117} zti_modes_t;
118
119#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
120#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
121#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
122
123#define	ZTI_N(n)	ZTI_P(n, 1)
124#define	ZTI_ONE		ZTI_N(1)
125
126typedef struct zio_taskq_info {
127	zti_modes_t zti_mode;
128	uint_t zti_value;
129	uint_t zti_count;
130} zio_taskq_info_t;
131
132static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
133	"issue", "issue_high", "intr", "intr_high"
134};
135
136/*
137 * This table defines the taskq settings for each ZFS I/O type. When
138 * initializing a pool, we use this table to create an appropriately sized
139 * taskq. Some operations are low volume and therefore have a small, static
140 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
141 * macros. Other operations process a large amount of data; the ZTI_BATCH
142 * macro causes us to create a taskq oriented for throughput. Some operations
143 * are so high frequency and short-lived that the taskq itself can become a a
144 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
145 * additional degree of parallelism specified by the number of threads per-
146 * taskq and the number of taskqs; when dispatching an event in this case, the
147 * particular taskq is chosen at random.
148 *
149 * The different taskq priorities are to handle the different contexts (issue
150 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
151 * need to be handled with minimum delay.
152 */
153const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
154	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
155	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
156	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
157	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
158	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
159	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
160	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
161};
162
163static void spa_sync_version(void *arg, dmu_tx_t *tx);
164static void spa_sync_props(void *arg, dmu_tx_t *tx);
165static boolean_t spa_has_active_shared_spare(spa_t *spa);
166static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
167static void spa_vdev_resilver_done(spa_t *spa);
168
169uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
170#ifdef PSRSET_BIND
171id_t		zio_taskq_psrset_bind = PS_NONE;
172#endif
173#ifdef SYSDC
174boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
175uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
176#endif
177
178boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
179extern int	zfs_sync_pass_deferred_free;
180
181/*
182 * Report any spa_load_verify errors found, but do not fail spa_load.
183 * This is used by zdb to analyze non-idle pools.
184 */
185boolean_t	spa_load_verify_dryrun = B_FALSE;
186
187/*
188 * This (illegal) pool name is used when temporarily importing a spa_t in order
189 * to get the vdev stats associated with the imported devices.
190 */
191#define	TRYIMPORT_NAME	"$import"
192
193/*
194 * For debugging purposes: print out vdev tree during pool import.
195 */
196int	spa_load_print_vdev_tree = B_FALSE;
197
198/*
199 * A non-zero value for zfs_max_missing_tvds means that we allow importing
200 * pools with missing top-level vdevs. This is strictly intended for advanced
201 * pool recovery cases since missing data is almost inevitable. Pools with
202 * missing devices can only be imported read-only for safety reasons, and their
203 * fail-mode will be automatically set to "continue".
204 *
205 * With 1 missing vdev we should be able to import the pool and mount all
206 * datasets. User data that was not modified after the missing device has been
207 * added should be recoverable. This means that snapshots created prior to the
208 * addition of that device should be completely intact.
209 *
210 * With 2 missing vdevs, some datasets may fail to mount since there are
211 * dataset statistics that are stored as regular metadata. Some data might be
212 * recoverable if those vdevs were added recently.
213 *
214 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
215 * may be missing entirely. Chances of data recovery are very low. Note that
216 * there are also risks of performing an inadvertent rewind as we might be
217 * missing all the vdevs with the latest uberblocks.
218 */
219uint64_t	zfs_max_missing_tvds = 0;
220
221/*
222 * The parameters below are similar to zfs_max_missing_tvds but are only
223 * intended for a preliminary open of the pool with an untrusted config which
224 * might be incomplete or out-dated.
225 *
226 * We are more tolerant for pools opened from a cachefile since we could have
227 * an out-dated cachefile where a device removal was not registered.
228 * We could have set the limit arbitrarily high but in the case where devices
229 * are really missing we would want to return the proper error codes; we chose
230 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
231 * and we get a chance to retrieve the trusted config.
232 */
233uint64_t	zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
234
235/*
236 * In the case where config was assembled by scanning device paths (/dev/dsks
237 * by default) we are less tolerant since all the existing devices should have
238 * been detected and we want spa_load to return the right error codes.
239 */
240uint64_t	zfs_max_missing_tvds_scan = 0;
241
242
243SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_print_vdev_tree, CTLFLAG_RWTUN,
244    &spa_load_print_vdev_tree, 0,
245    "print out vdev tree during pool import");
246SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds, CTLFLAG_RWTUN,
247    &zfs_max_missing_tvds, 0,
248    "allow importing pools with missing top-level vdevs");
249SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_cachefile, CTLFLAG_RWTUN,
250    &zfs_max_missing_tvds_cachefile, 0,
251    "allow importing pools with missing top-level vdevs in cache file");
252SYSCTL_UQUAD(_vfs_zfs, OID_AUTO, max_missing_tvds_scan, CTLFLAG_RWTUN,
253    &zfs_max_missing_tvds_scan, 0,
254    "allow importing pools with missing top-level vdevs during scan");
255
256/*
257 * Debugging aid that pauses spa_sync() towards the end.
258 */
259boolean_t	zfs_pause_spa_sync = B_FALSE;
260
261/*
262 * ==========================================================================
263 * SPA properties routines
264 * ==========================================================================
265 */
266
267/*
268 * Add a (source=src, propname=propval) list to an nvlist.
269 */
270static void
271spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
272    uint64_t intval, zprop_source_t src)
273{
274	const char *propname = zpool_prop_to_name(prop);
275	nvlist_t *propval;
276
277	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
278	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
279
280	if (strval != NULL)
281		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
282	else
283		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
284
285	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
286	nvlist_free(propval);
287}
288
289/*
290 * Get property values from the spa configuration.
291 */
292static void
293spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
294{
295	vdev_t *rvd = spa->spa_root_vdev;
296	dsl_pool_t *pool = spa->spa_dsl_pool;
297	uint64_t size, alloc, cap, version;
298	zprop_source_t src = ZPROP_SRC_NONE;
299	spa_config_dirent_t *dp;
300	metaslab_class_t *mc = spa_normal_class(spa);
301
302	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
303
304	if (rvd != NULL) {
305		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
306		size = metaslab_class_get_space(spa_normal_class(spa));
307		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
308		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
309		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
310		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
311		    size - alloc, src);
312		spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
313		    spa->spa_checkpoint_info.sci_dspace, src);
314
315		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
316		    metaslab_class_fragmentation(mc), src);
317		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
318		    metaslab_class_expandable_space(mc), src);
319		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
320		    (spa_mode(spa) == FREAD), src);
321
322		cap = (size == 0) ? 0 : (alloc * 100 / size);
323		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
324
325		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
326		    ddt_get_pool_dedup_ratio(spa), src);
327
328		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
329		    rvd->vdev_state, src);
330
331		version = spa_version(spa);
332		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
333			src = ZPROP_SRC_DEFAULT;
334		else
335			src = ZPROP_SRC_LOCAL;
336		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
337	}
338
339	if (pool != NULL) {
340		/*
341		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
342		 * when opening pools before this version freedir will be NULL.
343		 */
344		if (pool->dp_free_dir != NULL) {
345			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
346			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
347			    src);
348		} else {
349			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
350			    NULL, 0, src);
351		}
352
353		if (pool->dp_leak_dir != NULL) {
354			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
355			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
356			    src);
357		} else {
358			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
359			    NULL, 0, src);
360		}
361	}
362
363	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
364
365	if (spa->spa_comment != NULL) {
366		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
367		    0, ZPROP_SRC_LOCAL);
368	}
369
370	if (spa->spa_root != NULL)
371		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
372		    0, ZPROP_SRC_LOCAL);
373
374	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
375		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
376		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
377	} else {
378		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
379		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
380	}
381
382	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
383		if (dp->scd_path == NULL) {
384			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
385			    "none", 0, ZPROP_SRC_LOCAL);
386		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
387			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
388			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
389		}
390	}
391}
392
393/*
394 * Get zpool property values.
395 */
396int
397spa_prop_get(spa_t *spa, nvlist_t **nvp)
398{
399	objset_t *mos = spa->spa_meta_objset;
400	zap_cursor_t zc;
401	zap_attribute_t za;
402	int err;
403
404	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
405
406	mutex_enter(&spa->spa_props_lock);
407
408	/*
409	 * Get properties from the spa config.
410	 */
411	spa_prop_get_config(spa, nvp);
412
413	/* If no pool property object, no more prop to get. */
414	if (mos == NULL || spa->spa_pool_props_object == 0) {
415		mutex_exit(&spa->spa_props_lock);
416		return (0);
417	}
418
419	/*
420	 * Get properties from the MOS pool property object.
421	 */
422	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
423	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
424	    zap_cursor_advance(&zc)) {
425		uint64_t intval = 0;
426		char *strval = NULL;
427		zprop_source_t src = ZPROP_SRC_DEFAULT;
428		zpool_prop_t prop;
429
430		if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
431			continue;
432
433		switch (za.za_integer_length) {
434		case 8:
435			/* integer property */
436			if (za.za_first_integer !=
437			    zpool_prop_default_numeric(prop))
438				src = ZPROP_SRC_LOCAL;
439
440			if (prop == ZPOOL_PROP_BOOTFS) {
441				dsl_pool_t *dp;
442				dsl_dataset_t *ds = NULL;
443
444				dp = spa_get_dsl(spa);
445				dsl_pool_config_enter(dp, FTAG);
446				if (err = dsl_dataset_hold_obj(dp,
447				    za.za_first_integer, FTAG, &ds)) {
448					dsl_pool_config_exit(dp, FTAG);
449					break;
450				}
451
452				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
453				    KM_SLEEP);
454				dsl_dataset_name(ds, strval);
455				dsl_dataset_rele(ds, FTAG);
456				dsl_pool_config_exit(dp, FTAG);
457			} else {
458				strval = NULL;
459				intval = za.za_first_integer;
460			}
461
462			spa_prop_add_list(*nvp, prop, strval, intval, src);
463
464			if (strval != NULL)
465				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
466
467			break;
468
469		case 1:
470			/* string property */
471			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
472			err = zap_lookup(mos, spa->spa_pool_props_object,
473			    za.za_name, 1, za.za_num_integers, strval);
474			if (err) {
475				kmem_free(strval, za.za_num_integers);
476				break;
477			}
478			spa_prop_add_list(*nvp, prop, strval, 0, src);
479			kmem_free(strval, za.za_num_integers);
480			break;
481
482		default:
483			break;
484		}
485	}
486	zap_cursor_fini(&zc);
487	mutex_exit(&spa->spa_props_lock);
488out:
489	if (err && err != ENOENT) {
490		nvlist_free(*nvp);
491		*nvp = NULL;
492		return (err);
493	}
494
495	return (0);
496}
497
498/*
499 * Validate the given pool properties nvlist and modify the list
500 * for the property values to be set.
501 */
502static int
503spa_prop_validate(spa_t *spa, nvlist_t *props)
504{
505	nvpair_t *elem;
506	int error = 0, reset_bootfs = 0;
507	uint64_t objnum = 0;
508	boolean_t has_feature = B_FALSE;
509
510	elem = NULL;
511	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
512		uint64_t intval;
513		char *strval, *slash, *check, *fname;
514		const char *propname = nvpair_name(elem);
515		zpool_prop_t prop = zpool_name_to_prop(propname);
516
517		switch (prop) {
518		case ZPOOL_PROP_INVAL:
519			if (!zpool_prop_feature(propname)) {
520				error = SET_ERROR(EINVAL);
521				break;
522			}
523
524			/*
525			 * Sanitize the input.
526			 */
527			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
528				error = SET_ERROR(EINVAL);
529				break;
530			}
531
532			if (nvpair_value_uint64(elem, &intval) != 0) {
533				error = SET_ERROR(EINVAL);
534				break;
535			}
536
537			if (intval != 0) {
538				error = SET_ERROR(EINVAL);
539				break;
540			}
541
542			fname = strchr(propname, '@') + 1;
543			if (zfeature_lookup_name(fname, NULL) != 0) {
544				error = SET_ERROR(EINVAL);
545				break;
546			}
547
548			has_feature = B_TRUE;
549			break;
550
551		case ZPOOL_PROP_VERSION:
552			error = nvpair_value_uint64(elem, &intval);
553			if (!error &&
554			    (intval < spa_version(spa) ||
555			    intval > SPA_VERSION_BEFORE_FEATURES ||
556			    has_feature))
557				error = SET_ERROR(EINVAL);
558			break;
559
560		case ZPOOL_PROP_DELEGATION:
561		case ZPOOL_PROP_AUTOREPLACE:
562		case ZPOOL_PROP_LISTSNAPS:
563		case ZPOOL_PROP_AUTOEXPAND:
564			error = nvpair_value_uint64(elem, &intval);
565			if (!error && intval > 1)
566				error = SET_ERROR(EINVAL);
567			break;
568
569		case ZPOOL_PROP_BOOTFS:
570			/*
571			 * If the pool version is less than SPA_VERSION_BOOTFS,
572			 * or the pool is still being created (version == 0),
573			 * the bootfs property cannot be set.
574			 */
575			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
576				error = SET_ERROR(ENOTSUP);
577				break;
578			}
579
580			/*
581			 * Make sure the vdev config is bootable
582			 */
583			if (!vdev_is_bootable(spa->spa_root_vdev)) {
584				error = SET_ERROR(ENOTSUP);
585				break;
586			}
587
588			reset_bootfs = 1;
589
590			error = nvpair_value_string(elem, &strval);
591
592			if (!error) {
593				objset_t *os;
594				uint64_t propval;
595
596				if (strval == NULL || strval[0] == '\0') {
597					objnum = zpool_prop_default_numeric(
598					    ZPOOL_PROP_BOOTFS);
599					break;
600				}
601
602				if (error = dmu_objset_hold(strval, FTAG, &os))
603					break;
604
605				/*
606				 * Must be ZPL, and its property settings
607				 * must be supported by GRUB (compression
608				 * is not gzip, and large blocks are not used).
609				 */
610
611				if (dmu_objset_type(os) != DMU_OST_ZFS) {
612					error = SET_ERROR(ENOTSUP);
613				} else if ((error =
614				    dsl_prop_get_int_ds(dmu_objset_ds(os),
615				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
616				    &propval)) == 0 &&
617				    !BOOTFS_COMPRESS_VALID(propval)) {
618					error = SET_ERROR(ENOTSUP);
619				} else {
620					objnum = dmu_objset_id(os);
621				}
622				dmu_objset_rele(os, FTAG);
623			}
624			break;
625
626		case ZPOOL_PROP_FAILUREMODE:
627			error = nvpair_value_uint64(elem, &intval);
628			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
629			    intval > ZIO_FAILURE_MODE_PANIC))
630				error = SET_ERROR(EINVAL);
631
632			/*
633			 * This is a special case which only occurs when
634			 * the pool has completely failed. This allows
635			 * the user to change the in-core failmode property
636			 * without syncing it out to disk (I/Os might
637			 * currently be blocked). We do this by returning
638			 * EIO to the caller (spa_prop_set) to trick it
639			 * into thinking we encountered a property validation
640			 * error.
641			 */
642			if (!error && spa_suspended(spa)) {
643				spa->spa_failmode = intval;
644				error = SET_ERROR(EIO);
645			}
646			break;
647
648		case ZPOOL_PROP_CACHEFILE:
649			if ((error = nvpair_value_string(elem, &strval)) != 0)
650				break;
651
652			if (strval[0] == '\0')
653				break;
654
655			if (strcmp(strval, "none") == 0)
656				break;
657
658			if (strval[0] != '/') {
659				error = SET_ERROR(EINVAL);
660				break;
661			}
662
663			slash = strrchr(strval, '/');
664			ASSERT(slash != NULL);
665
666			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
667			    strcmp(slash, "/..") == 0)
668				error = SET_ERROR(EINVAL);
669			break;
670
671		case ZPOOL_PROP_COMMENT:
672			if ((error = nvpair_value_string(elem, &strval)) != 0)
673				break;
674			for (check = strval; *check != '\0'; check++) {
675				/*
676				 * The kernel doesn't have an easy isprint()
677				 * check.  For this kernel check, we merely
678				 * check ASCII apart from DEL.  Fix this if
679				 * there is an easy-to-use kernel isprint().
680				 */
681				if (*check >= 0x7f) {
682					error = SET_ERROR(EINVAL);
683					break;
684				}
685			}
686			if (strlen(strval) > ZPROP_MAX_COMMENT)
687				error = E2BIG;
688			break;
689
690		case ZPOOL_PROP_DEDUPDITTO:
691			if (spa_version(spa) < SPA_VERSION_DEDUP)
692				error = SET_ERROR(ENOTSUP);
693			else
694				error = nvpair_value_uint64(elem, &intval);
695			if (error == 0 &&
696			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
697				error = SET_ERROR(EINVAL);
698			break;
699		}
700
701		if (error)
702			break;
703	}
704
705	if (!error && reset_bootfs) {
706		error = nvlist_remove(props,
707		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
708
709		if (!error) {
710			error = nvlist_add_uint64(props,
711			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
712		}
713	}
714
715	return (error);
716}
717
718void
719spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
720{
721	char *cachefile;
722	spa_config_dirent_t *dp;
723
724	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
725	    &cachefile) != 0)
726		return;
727
728	dp = kmem_alloc(sizeof (spa_config_dirent_t),
729	    KM_SLEEP);
730
731	if (cachefile[0] == '\0')
732		dp->scd_path = spa_strdup(spa_config_path);
733	else if (strcmp(cachefile, "none") == 0)
734		dp->scd_path = NULL;
735	else
736		dp->scd_path = spa_strdup(cachefile);
737
738	list_insert_head(&spa->spa_config_list, dp);
739	if (need_sync)
740		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
741}
742
743int
744spa_prop_set(spa_t *spa, nvlist_t *nvp)
745{
746	int error;
747	nvpair_t *elem = NULL;
748	boolean_t need_sync = B_FALSE;
749
750	if ((error = spa_prop_validate(spa, nvp)) != 0)
751		return (error);
752
753	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
754		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
755
756		if (prop == ZPOOL_PROP_CACHEFILE ||
757		    prop == ZPOOL_PROP_ALTROOT ||
758		    prop == ZPOOL_PROP_READONLY)
759			continue;
760
761		if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
762			uint64_t ver;
763
764			if (prop == ZPOOL_PROP_VERSION) {
765				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
766			} else {
767				ASSERT(zpool_prop_feature(nvpair_name(elem)));
768				ver = SPA_VERSION_FEATURES;
769				need_sync = B_TRUE;
770			}
771
772			/* Save time if the version is already set. */
773			if (ver == spa_version(spa))
774				continue;
775
776			/*
777			 * In addition to the pool directory object, we might
778			 * create the pool properties object, the features for
779			 * read object, the features for write object, or the
780			 * feature descriptions object.
781			 */
782			error = dsl_sync_task(spa->spa_name, NULL,
783			    spa_sync_version, &ver,
784			    6, ZFS_SPACE_CHECK_RESERVED);
785			if (error)
786				return (error);
787			continue;
788		}
789
790		need_sync = B_TRUE;
791		break;
792	}
793
794	if (need_sync) {
795		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
796		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
797	}
798
799	return (0);
800}
801
802/*
803 * If the bootfs property value is dsobj, clear it.
804 */
805void
806spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
807{
808	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
809		VERIFY(zap_remove(spa->spa_meta_objset,
810		    spa->spa_pool_props_object,
811		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
812		spa->spa_bootfs = 0;
813	}
814}
815
816/*ARGSUSED*/
817static int
818spa_change_guid_check(void *arg, dmu_tx_t *tx)
819{
820	uint64_t *newguid = arg;
821	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
822	vdev_t *rvd = spa->spa_root_vdev;
823	uint64_t vdev_state;
824
825	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
826		int error = (spa_has_checkpoint(spa)) ?
827		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
828		return (SET_ERROR(error));
829	}
830
831	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
832	vdev_state = rvd->vdev_state;
833	spa_config_exit(spa, SCL_STATE, FTAG);
834
835	if (vdev_state != VDEV_STATE_HEALTHY)
836		return (SET_ERROR(ENXIO));
837
838	ASSERT3U(spa_guid(spa), !=, *newguid);
839
840	return (0);
841}
842
843static void
844spa_change_guid_sync(void *arg, dmu_tx_t *tx)
845{
846	uint64_t *newguid = arg;
847	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
848	uint64_t oldguid;
849	vdev_t *rvd = spa->spa_root_vdev;
850
851	oldguid = spa_guid(spa);
852
853	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
854	rvd->vdev_guid = *newguid;
855	rvd->vdev_guid_sum += (*newguid - oldguid);
856	vdev_config_dirty(rvd);
857	spa_config_exit(spa, SCL_STATE, FTAG);
858
859	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
860	    oldguid, *newguid);
861}
862
863/*
864 * Change the GUID for the pool.  This is done so that we can later
865 * re-import a pool built from a clone of our own vdevs.  We will modify
866 * the root vdev's guid, our own pool guid, and then mark all of our
867 * vdevs dirty.  Note that we must make sure that all our vdevs are
868 * online when we do this, or else any vdevs that weren't present
869 * would be orphaned from our pool.  We are also going to issue a
870 * sysevent to update any watchers.
871 */
872int
873spa_change_guid(spa_t *spa)
874{
875	int error;
876	uint64_t guid;
877
878	mutex_enter(&spa->spa_vdev_top_lock);
879	mutex_enter(&spa_namespace_lock);
880	guid = spa_generate_guid(NULL);
881
882	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
883	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
884
885	if (error == 0) {
886		spa_write_cachefile(spa, B_FALSE, B_TRUE);
887		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
888	}
889
890	mutex_exit(&spa_namespace_lock);
891	mutex_exit(&spa->spa_vdev_top_lock);
892
893	return (error);
894}
895
896/*
897 * ==========================================================================
898 * SPA state manipulation (open/create/destroy/import/export)
899 * ==========================================================================
900 */
901
902static int
903spa_error_entry_compare(const void *a, const void *b)
904{
905	spa_error_entry_t *sa = (spa_error_entry_t *)a;
906	spa_error_entry_t *sb = (spa_error_entry_t *)b;
907	int ret;
908
909	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
910	    sizeof (zbookmark_phys_t));
911
912	if (ret < 0)
913		return (-1);
914	else if (ret > 0)
915		return (1);
916	else
917		return (0);
918}
919
920/*
921 * Utility function which retrieves copies of the current logs and
922 * re-initializes them in the process.
923 */
924void
925spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
926{
927	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
928
929	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
930	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
931
932	avl_create(&spa->spa_errlist_scrub,
933	    spa_error_entry_compare, sizeof (spa_error_entry_t),
934	    offsetof(spa_error_entry_t, se_avl));
935	avl_create(&spa->spa_errlist_last,
936	    spa_error_entry_compare, sizeof (spa_error_entry_t),
937	    offsetof(spa_error_entry_t, se_avl));
938}
939
940static void
941spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
942{
943	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
944	enum zti_modes mode = ztip->zti_mode;
945	uint_t value = ztip->zti_value;
946	uint_t count = ztip->zti_count;
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948	char name[32];
949	uint_t flags = 0;
950	boolean_t batch = B_FALSE;
951
952	if (mode == ZTI_MODE_NULL) {
953		tqs->stqs_count = 0;
954		tqs->stqs_taskq = NULL;
955		return;
956	}
957
958	ASSERT3U(count, >, 0);
959
960	tqs->stqs_count = count;
961	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
962
963	switch (mode) {
964	case ZTI_MODE_FIXED:
965		ASSERT3U(value, >=, 1);
966		value = MAX(value, 1);
967		break;
968
969	case ZTI_MODE_BATCH:
970		batch = B_TRUE;
971		flags |= TASKQ_THREADS_CPU_PCT;
972		value = zio_taskq_batch_pct;
973		break;
974
975	default:
976		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
977		    "spa_activate()",
978		    zio_type_name[t], zio_taskq_types[q], mode, value);
979		break;
980	}
981
982	for (uint_t i = 0; i < count; i++) {
983		taskq_t *tq;
984
985		if (count > 1) {
986			(void) snprintf(name, sizeof (name), "%s_%s_%u",
987			    zio_type_name[t], zio_taskq_types[q], i);
988		} else {
989			(void) snprintf(name, sizeof (name), "%s_%s",
990			    zio_type_name[t], zio_taskq_types[q]);
991		}
992
993#ifdef SYSDC
994		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
995			if (batch)
996				flags |= TASKQ_DC_BATCH;
997
998			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
999			    spa->spa_proc, zio_taskq_basedc, flags);
1000		} else {
1001#endif
1002			pri_t pri = maxclsyspri;
1003			/*
1004			 * The write issue taskq can be extremely CPU
1005			 * intensive.  Run it at slightly lower priority
1006			 * than the other taskqs.
1007			 * FreeBSD notes:
1008			 * - numerically higher priorities are lower priorities;
1009			 * - if priorities divided by four (RQ_PPQ) are equal
1010			 *   then a difference between them is insignificant.
1011			 */
1012			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1013#ifdef illumos
1014				pri--;
1015#else
1016				pri += 4;
1017#endif
1018
1019			tq = taskq_create_proc(name, value, pri, 50,
1020			    INT_MAX, spa->spa_proc, flags);
1021#ifdef SYSDC
1022		}
1023#endif
1024
1025		tqs->stqs_taskq[i] = tq;
1026	}
1027}
1028
1029static void
1030spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1031{
1032	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1033
1034	if (tqs->stqs_taskq == NULL) {
1035		ASSERT0(tqs->stqs_count);
1036		return;
1037	}
1038
1039	for (uint_t i = 0; i < tqs->stqs_count; i++) {
1040		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1041		taskq_destroy(tqs->stqs_taskq[i]);
1042	}
1043
1044	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1045	tqs->stqs_taskq = NULL;
1046}
1047
1048/*
1049 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1050 * Note that a type may have multiple discrete taskqs to avoid lock contention
1051 * on the taskq itself. In that case we choose which taskq at random by using
1052 * the low bits of gethrtime().
1053 */
1054void
1055spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1056    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1057{
1058	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1059	taskq_t *tq;
1060
1061	ASSERT3P(tqs->stqs_taskq, !=, NULL);
1062	ASSERT3U(tqs->stqs_count, !=, 0);
1063
1064	if (tqs->stqs_count == 1) {
1065		tq = tqs->stqs_taskq[0];
1066	} else {
1067#ifdef _KERNEL
1068		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
1069#else
1070		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
1071#endif
1072	}
1073
1074	taskq_dispatch_ent(tq, func, arg, flags, ent);
1075}
1076
1077static void
1078spa_create_zio_taskqs(spa_t *spa)
1079{
1080	for (int t = 0; t < ZIO_TYPES; t++) {
1081		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1082			spa_taskqs_init(spa, t, q);
1083		}
1084	}
1085}
1086
1087#ifdef _KERNEL
1088#ifdef SPA_PROCESS
1089static void
1090spa_thread(void *arg)
1091{
1092	callb_cpr_t cprinfo;
1093
1094	spa_t *spa = arg;
1095	user_t *pu = PTOU(curproc);
1096
1097	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1098	    spa->spa_name);
1099
1100	ASSERT(curproc != &p0);
1101	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1102	    "zpool-%s", spa->spa_name);
1103	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1104
1105#ifdef PSRSET_BIND
1106	/* bind this thread to the requested psrset */
1107	if (zio_taskq_psrset_bind != PS_NONE) {
1108		pool_lock();
1109		mutex_enter(&cpu_lock);
1110		mutex_enter(&pidlock);
1111		mutex_enter(&curproc->p_lock);
1112
1113		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1114		    0, NULL, NULL) == 0)  {
1115			curthread->t_bind_pset = zio_taskq_psrset_bind;
1116		} else {
1117			cmn_err(CE_WARN,
1118			    "Couldn't bind process for zfs pool \"%s\" to "
1119			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1120		}
1121
1122		mutex_exit(&curproc->p_lock);
1123		mutex_exit(&pidlock);
1124		mutex_exit(&cpu_lock);
1125		pool_unlock();
1126	}
1127#endif
1128
1129#ifdef SYSDC
1130	if (zio_taskq_sysdc) {
1131		sysdc_thread_enter(curthread, 100, 0);
1132	}
1133#endif
1134
1135	spa->spa_proc = curproc;
1136	spa->spa_did = curthread->t_did;
1137
1138	spa_create_zio_taskqs(spa);
1139
1140	mutex_enter(&spa->spa_proc_lock);
1141	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1142
1143	spa->spa_proc_state = SPA_PROC_ACTIVE;
1144	cv_broadcast(&spa->spa_proc_cv);
1145
1146	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1147	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1148		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1149	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1150
1151	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1152	spa->spa_proc_state = SPA_PROC_GONE;
1153	spa->spa_proc = &p0;
1154	cv_broadcast(&spa->spa_proc_cv);
1155	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1156
1157	mutex_enter(&curproc->p_lock);
1158	lwp_exit();
1159}
1160#endif	/* SPA_PROCESS */
1161#endif
1162
1163/*
1164 * Activate an uninitialized pool.
1165 */
1166static void
1167spa_activate(spa_t *spa, int mode)
1168{
1169	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1170
1171	spa->spa_state = POOL_STATE_ACTIVE;
1172	spa->spa_mode = mode;
1173
1174	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1175	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1176
1177	/* Try to create a covering process */
1178	mutex_enter(&spa->spa_proc_lock);
1179	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1180	ASSERT(spa->spa_proc == &p0);
1181	spa->spa_did = 0;
1182
1183#ifdef SPA_PROCESS
1184	/* Only create a process if we're going to be around a while. */
1185	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1186		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1187		    NULL, 0) == 0) {
1188			spa->spa_proc_state = SPA_PROC_CREATED;
1189			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1190				cv_wait(&spa->spa_proc_cv,
1191				    &spa->spa_proc_lock);
1192			}
1193			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1194			ASSERT(spa->spa_proc != &p0);
1195			ASSERT(spa->spa_did != 0);
1196		} else {
1197#ifdef _KERNEL
1198			cmn_err(CE_WARN,
1199			    "Couldn't create process for zfs pool \"%s\"\n",
1200			    spa->spa_name);
1201#endif
1202		}
1203	}
1204#endif	/* SPA_PROCESS */
1205	mutex_exit(&spa->spa_proc_lock);
1206
1207	/* If we didn't create a process, we need to create our taskqs. */
1208	ASSERT(spa->spa_proc == &p0);
1209	if (spa->spa_proc == &p0) {
1210		spa_create_zio_taskqs(spa);
1211	}
1212
1213	/*
1214	 * Start TRIM thread.
1215	 */
1216	trim_thread_create(spa);
1217
1218	for (size_t i = 0; i < TXG_SIZE; i++)
1219		spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1220
1221	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1222	    offsetof(vdev_t, vdev_config_dirty_node));
1223	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1224	    offsetof(objset_t, os_evicting_node));
1225	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1226	    offsetof(vdev_t, vdev_state_dirty_node));
1227
1228	txg_list_create(&spa->spa_vdev_txg_list, spa,
1229	    offsetof(struct vdev, vdev_txg_node));
1230
1231	avl_create(&spa->spa_errlist_scrub,
1232	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1233	    offsetof(spa_error_entry_t, se_avl));
1234	avl_create(&spa->spa_errlist_last,
1235	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1236	    offsetof(spa_error_entry_t, se_avl));
1237}
1238
1239/*
1240 * Opposite of spa_activate().
1241 */
1242static void
1243spa_deactivate(spa_t *spa)
1244{
1245	ASSERT(spa->spa_sync_on == B_FALSE);
1246	ASSERT(spa->spa_dsl_pool == NULL);
1247	ASSERT(spa->spa_root_vdev == NULL);
1248	ASSERT(spa->spa_async_zio_root == NULL);
1249	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1250
1251	/*
1252	 * Stop TRIM thread in case spa_unload() wasn't called directly
1253	 * before spa_deactivate().
1254	 */
1255	trim_thread_destroy(spa);
1256
1257	spa_evicting_os_wait(spa);
1258
1259	txg_list_destroy(&spa->spa_vdev_txg_list);
1260
1261	list_destroy(&spa->spa_config_dirty_list);
1262	list_destroy(&spa->spa_evicting_os_list);
1263	list_destroy(&spa->spa_state_dirty_list);
1264
1265	for (int t = 0; t < ZIO_TYPES; t++) {
1266		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1267			spa_taskqs_fini(spa, t, q);
1268		}
1269	}
1270
1271	for (size_t i = 0; i < TXG_SIZE; i++) {
1272		ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1273		VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1274		spa->spa_txg_zio[i] = NULL;
1275	}
1276
1277	metaslab_class_destroy(spa->spa_normal_class);
1278	spa->spa_normal_class = NULL;
1279
1280	metaslab_class_destroy(spa->spa_log_class);
1281	spa->spa_log_class = NULL;
1282
1283	/*
1284	 * If this was part of an import or the open otherwise failed, we may
1285	 * still have errors left in the queues.  Empty them just in case.
1286	 */
1287	spa_errlog_drain(spa);
1288
1289	avl_destroy(&spa->spa_errlist_scrub);
1290	avl_destroy(&spa->spa_errlist_last);
1291
1292	spa->spa_state = POOL_STATE_UNINITIALIZED;
1293
1294	mutex_enter(&spa->spa_proc_lock);
1295	if (spa->spa_proc_state != SPA_PROC_NONE) {
1296		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1297		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1298		cv_broadcast(&spa->spa_proc_cv);
1299		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1300			ASSERT(spa->spa_proc != &p0);
1301			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1302		}
1303		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1304		spa->spa_proc_state = SPA_PROC_NONE;
1305	}
1306	ASSERT(spa->spa_proc == &p0);
1307	mutex_exit(&spa->spa_proc_lock);
1308
1309#ifdef SPA_PROCESS
1310	/*
1311	 * We want to make sure spa_thread() has actually exited the ZFS
1312	 * module, so that the module can't be unloaded out from underneath
1313	 * it.
1314	 */
1315	if (spa->spa_did != 0) {
1316		thread_join(spa->spa_did);
1317		spa->spa_did = 0;
1318	}
1319#endif	/* SPA_PROCESS */
1320}
1321
1322/*
1323 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1324 * will create all the necessary vdevs in the appropriate layout, with each vdev
1325 * in the CLOSED state.  This will prep the pool before open/creation/import.
1326 * All vdev validation is done by the vdev_alloc() routine.
1327 */
1328static int
1329spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1330    uint_t id, int atype)
1331{
1332	nvlist_t **child;
1333	uint_t children;
1334	int error;
1335
1336	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1337		return (error);
1338
1339	if ((*vdp)->vdev_ops->vdev_op_leaf)
1340		return (0);
1341
1342	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1343	    &child, &children);
1344
1345	if (error == ENOENT)
1346		return (0);
1347
1348	if (error) {
1349		vdev_free(*vdp);
1350		*vdp = NULL;
1351		return (SET_ERROR(EINVAL));
1352	}
1353
1354	for (int c = 0; c < children; c++) {
1355		vdev_t *vd;
1356		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1357		    atype)) != 0) {
1358			vdev_free(*vdp);
1359			*vdp = NULL;
1360			return (error);
1361		}
1362	}
1363
1364	ASSERT(*vdp != NULL);
1365
1366	return (0);
1367}
1368
1369/*
1370 * Opposite of spa_load().
1371 */
1372static void
1373spa_unload(spa_t *spa)
1374{
1375	int i;
1376
1377	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1378
1379	spa_load_note(spa, "UNLOADING");
1380
1381	/*
1382	 * Stop TRIM thread.
1383	 */
1384	trim_thread_destroy(spa);
1385
1386	/*
1387	 * Stop async tasks.
1388	 */
1389	spa_async_suspend(spa);
1390
1391	/*
1392	 * Stop syncing.
1393	 */
1394	if (spa->spa_sync_on) {
1395		txg_sync_stop(spa->spa_dsl_pool);
1396		spa->spa_sync_on = B_FALSE;
1397	}
1398
1399	/*
1400	 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1401	 * to call it earlier, before we wait for async i/o to complete.
1402	 * This ensures that there is no async metaslab prefetching, by
1403	 * calling taskq_wait(mg_taskq).
1404	 */
1405	if (spa->spa_root_vdev != NULL) {
1406		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1407		for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1408			vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1409		spa_config_exit(spa, SCL_ALL, FTAG);
1410	}
1411
1412	/*
1413	 * Wait for any outstanding async I/O to complete.
1414	 */
1415	if (spa->spa_async_zio_root != NULL) {
1416		for (int i = 0; i < max_ncpus; i++)
1417			(void) zio_wait(spa->spa_async_zio_root[i]);
1418		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1419		spa->spa_async_zio_root = NULL;
1420	}
1421
1422	if (spa->spa_vdev_removal != NULL) {
1423		spa_vdev_removal_destroy(spa->spa_vdev_removal);
1424		spa->spa_vdev_removal = NULL;
1425	}
1426
1427	if (spa->spa_condense_zthr != NULL) {
1428		ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1429		zthr_destroy(spa->spa_condense_zthr);
1430		spa->spa_condense_zthr = NULL;
1431	}
1432
1433	if (spa->spa_checkpoint_discard_zthr != NULL) {
1434		ASSERT(!zthr_isrunning(spa->spa_checkpoint_discard_zthr));
1435		zthr_destroy(spa->spa_checkpoint_discard_zthr);
1436		spa->spa_checkpoint_discard_zthr = NULL;
1437	}
1438
1439	spa_condense_fini(spa);
1440
1441	bpobj_close(&spa->spa_deferred_bpobj);
1442
1443	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1444
1445	/*
1446	 * Close all vdevs.
1447	 */
1448	if (spa->spa_root_vdev)
1449		vdev_free(spa->spa_root_vdev);
1450	ASSERT(spa->spa_root_vdev == NULL);
1451
1452	/*
1453	 * Close the dsl pool.
1454	 */
1455	if (spa->spa_dsl_pool) {
1456		dsl_pool_close(spa->spa_dsl_pool);
1457		spa->spa_dsl_pool = NULL;
1458		spa->spa_meta_objset = NULL;
1459	}
1460
1461	ddt_unload(spa);
1462
1463	/*
1464	 * Drop and purge level 2 cache
1465	 */
1466	spa_l2cache_drop(spa);
1467
1468	for (i = 0; i < spa->spa_spares.sav_count; i++)
1469		vdev_free(spa->spa_spares.sav_vdevs[i]);
1470	if (spa->spa_spares.sav_vdevs) {
1471		kmem_free(spa->spa_spares.sav_vdevs,
1472		    spa->spa_spares.sav_count * sizeof (void *));
1473		spa->spa_spares.sav_vdevs = NULL;
1474	}
1475	if (spa->spa_spares.sav_config) {
1476		nvlist_free(spa->spa_spares.sav_config);
1477		spa->spa_spares.sav_config = NULL;
1478	}
1479	spa->spa_spares.sav_count = 0;
1480
1481	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1482		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1483		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1484	}
1485	if (spa->spa_l2cache.sav_vdevs) {
1486		kmem_free(spa->spa_l2cache.sav_vdevs,
1487		    spa->spa_l2cache.sav_count * sizeof (void *));
1488		spa->spa_l2cache.sav_vdevs = NULL;
1489	}
1490	if (spa->spa_l2cache.sav_config) {
1491		nvlist_free(spa->spa_l2cache.sav_config);
1492		spa->spa_l2cache.sav_config = NULL;
1493	}
1494	spa->spa_l2cache.sav_count = 0;
1495
1496	spa->spa_async_suspended = 0;
1497
1498	spa->spa_indirect_vdevs_loaded = B_FALSE;
1499
1500	if (spa->spa_comment != NULL) {
1501		spa_strfree(spa->spa_comment);
1502		spa->spa_comment = NULL;
1503	}
1504
1505	spa_config_exit(spa, SCL_ALL, FTAG);
1506}
1507
1508/*
1509 * Load (or re-load) the current list of vdevs describing the active spares for
1510 * this pool.  When this is called, we have some form of basic information in
1511 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1512 * then re-generate a more complete list including status information.
1513 */
1514void
1515spa_load_spares(spa_t *spa)
1516{
1517	nvlist_t **spares;
1518	uint_t nspares;
1519	int i;
1520	vdev_t *vd, *tvd;
1521
1522#ifndef _KERNEL
1523	/*
1524	 * zdb opens both the current state of the pool and the
1525	 * checkpointed state (if present), with a different spa_t.
1526	 *
1527	 * As spare vdevs are shared among open pools, we skip loading
1528	 * them when we load the checkpointed state of the pool.
1529	 */
1530	if (!spa_writeable(spa))
1531		return;
1532#endif
1533
1534	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1535
1536	/*
1537	 * First, close and free any existing spare vdevs.
1538	 */
1539	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1540		vd = spa->spa_spares.sav_vdevs[i];
1541
1542		/* Undo the call to spa_activate() below */
1543		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1544		    B_FALSE)) != NULL && tvd->vdev_isspare)
1545			spa_spare_remove(tvd);
1546		vdev_close(vd);
1547		vdev_free(vd);
1548	}
1549
1550	if (spa->spa_spares.sav_vdevs)
1551		kmem_free(spa->spa_spares.sav_vdevs,
1552		    spa->spa_spares.sav_count * sizeof (void *));
1553
1554	if (spa->spa_spares.sav_config == NULL)
1555		nspares = 0;
1556	else
1557		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1558		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1559
1560	spa->spa_spares.sav_count = (int)nspares;
1561	spa->spa_spares.sav_vdevs = NULL;
1562
1563	if (nspares == 0)
1564		return;
1565
1566	/*
1567	 * Construct the array of vdevs, opening them to get status in the
1568	 * process.   For each spare, there is potentially two different vdev_t
1569	 * structures associated with it: one in the list of spares (used only
1570	 * for basic validation purposes) and one in the active vdev
1571	 * configuration (if it's spared in).  During this phase we open and
1572	 * validate each vdev on the spare list.  If the vdev also exists in the
1573	 * active configuration, then we also mark this vdev as an active spare.
1574	 */
1575	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1576	    KM_SLEEP);
1577	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1578		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1579		    VDEV_ALLOC_SPARE) == 0);
1580		ASSERT(vd != NULL);
1581
1582		spa->spa_spares.sav_vdevs[i] = vd;
1583
1584		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1585		    B_FALSE)) != NULL) {
1586			if (!tvd->vdev_isspare)
1587				spa_spare_add(tvd);
1588
1589			/*
1590			 * We only mark the spare active if we were successfully
1591			 * able to load the vdev.  Otherwise, importing a pool
1592			 * with a bad active spare would result in strange
1593			 * behavior, because multiple pool would think the spare
1594			 * is actively in use.
1595			 *
1596			 * There is a vulnerability here to an equally bizarre
1597			 * circumstance, where a dead active spare is later
1598			 * brought back to life (onlined or otherwise).  Given
1599			 * the rarity of this scenario, and the extra complexity
1600			 * it adds, we ignore the possibility.
1601			 */
1602			if (!vdev_is_dead(tvd))
1603				spa_spare_activate(tvd);
1604		}
1605
1606		vd->vdev_top = vd;
1607		vd->vdev_aux = &spa->spa_spares;
1608
1609		if (vdev_open(vd) != 0)
1610			continue;
1611
1612		if (vdev_validate_aux(vd) == 0)
1613			spa_spare_add(vd);
1614	}
1615
1616	/*
1617	 * Recompute the stashed list of spares, with status information
1618	 * this time.
1619	 */
1620	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1621	    DATA_TYPE_NVLIST_ARRAY) == 0);
1622
1623	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1624	    KM_SLEEP);
1625	for (i = 0; i < spa->spa_spares.sav_count; i++)
1626		spares[i] = vdev_config_generate(spa,
1627		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1628	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1629	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1630	for (i = 0; i < spa->spa_spares.sav_count; i++)
1631		nvlist_free(spares[i]);
1632	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1633}
1634
1635/*
1636 * Load (or re-load) the current list of vdevs describing the active l2cache for
1637 * this pool.  When this is called, we have some form of basic information in
1638 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1639 * then re-generate a more complete list including status information.
1640 * Devices which are already active have their details maintained, and are
1641 * not re-opened.
1642 */
1643void
1644spa_load_l2cache(spa_t *spa)
1645{
1646	nvlist_t **l2cache;
1647	uint_t nl2cache;
1648	int i, j, oldnvdevs;
1649	uint64_t guid;
1650	vdev_t *vd, **oldvdevs, **newvdevs;
1651	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1652
1653#ifndef _KERNEL
1654	/*
1655	 * zdb opens both the current state of the pool and the
1656	 * checkpointed state (if present), with a different spa_t.
1657	 *
1658	 * As L2 caches are part of the ARC which is shared among open
1659	 * pools, we skip loading them when we load the checkpointed
1660	 * state of the pool.
1661	 */
1662	if (!spa_writeable(spa))
1663		return;
1664#endif
1665
1666	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1667
1668	if (sav->sav_config != NULL) {
1669		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1670		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1671		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1672	} else {
1673		nl2cache = 0;
1674		newvdevs = NULL;
1675	}
1676
1677	oldvdevs = sav->sav_vdevs;
1678	oldnvdevs = sav->sav_count;
1679	sav->sav_vdevs = NULL;
1680	sav->sav_count = 0;
1681
1682	/*
1683	 * Process new nvlist of vdevs.
1684	 */
1685	for (i = 0; i < nl2cache; i++) {
1686		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1687		    &guid) == 0);
1688
1689		newvdevs[i] = NULL;
1690		for (j = 0; j < oldnvdevs; j++) {
1691			vd = oldvdevs[j];
1692			if (vd != NULL && guid == vd->vdev_guid) {
1693				/*
1694				 * Retain previous vdev for add/remove ops.
1695				 */
1696				newvdevs[i] = vd;
1697				oldvdevs[j] = NULL;
1698				break;
1699			}
1700		}
1701
1702		if (newvdevs[i] == NULL) {
1703			/*
1704			 * Create new vdev
1705			 */
1706			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1707			    VDEV_ALLOC_L2CACHE) == 0);
1708			ASSERT(vd != NULL);
1709			newvdevs[i] = vd;
1710
1711			/*
1712			 * Commit this vdev as an l2cache device,
1713			 * even if it fails to open.
1714			 */
1715			spa_l2cache_add(vd);
1716
1717			vd->vdev_top = vd;
1718			vd->vdev_aux = sav;
1719
1720			spa_l2cache_activate(vd);
1721
1722			if (vdev_open(vd) != 0)
1723				continue;
1724
1725			(void) vdev_validate_aux(vd);
1726
1727			if (!vdev_is_dead(vd))
1728				l2arc_add_vdev(spa, vd);
1729		}
1730	}
1731
1732	/*
1733	 * Purge vdevs that were dropped
1734	 */
1735	for (i = 0; i < oldnvdevs; i++) {
1736		uint64_t pool;
1737
1738		vd = oldvdevs[i];
1739		if (vd != NULL) {
1740			ASSERT(vd->vdev_isl2cache);
1741
1742			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1743			    pool != 0ULL && l2arc_vdev_present(vd))
1744				l2arc_remove_vdev(vd);
1745			vdev_clear_stats(vd);
1746			vdev_free(vd);
1747		}
1748	}
1749
1750	if (oldvdevs)
1751		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1752
1753	if (sav->sav_config == NULL)
1754		goto out;
1755
1756	sav->sav_vdevs = newvdevs;
1757	sav->sav_count = (int)nl2cache;
1758
1759	/*
1760	 * Recompute the stashed list of l2cache devices, with status
1761	 * information this time.
1762	 */
1763	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1764	    DATA_TYPE_NVLIST_ARRAY) == 0);
1765
1766	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1767	for (i = 0; i < sav->sav_count; i++)
1768		l2cache[i] = vdev_config_generate(spa,
1769		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1770	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1771	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1772out:
1773	for (i = 0; i < sav->sav_count; i++)
1774		nvlist_free(l2cache[i]);
1775	if (sav->sav_count)
1776		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1777}
1778
1779static int
1780load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1781{
1782	dmu_buf_t *db;
1783	char *packed = NULL;
1784	size_t nvsize = 0;
1785	int error;
1786	*value = NULL;
1787
1788	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1789	if (error != 0)
1790		return (error);
1791
1792	nvsize = *(uint64_t *)db->db_data;
1793	dmu_buf_rele(db, FTAG);
1794
1795	packed = kmem_alloc(nvsize, KM_SLEEP);
1796	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1797	    DMU_READ_PREFETCH);
1798	if (error == 0)
1799		error = nvlist_unpack(packed, nvsize, value, 0);
1800	kmem_free(packed, nvsize);
1801
1802	return (error);
1803}
1804
1805/*
1806 * Concrete top-level vdevs that are not missing and are not logs. At every
1807 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1808 */
1809static uint64_t
1810spa_healthy_core_tvds(spa_t *spa)
1811{
1812	vdev_t *rvd = spa->spa_root_vdev;
1813	uint64_t tvds = 0;
1814
1815	for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1816		vdev_t *vd = rvd->vdev_child[i];
1817		if (vd->vdev_islog)
1818			continue;
1819		if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1820			tvds++;
1821	}
1822
1823	return (tvds);
1824}
1825
1826/*
1827 * Checks to see if the given vdev could not be opened, in which case we post a
1828 * sysevent to notify the autoreplace code that the device has been removed.
1829 */
1830static void
1831spa_check_removed(vdev_t *vd)
1832{
1833	for (uint64_t c = 0; c < vd->vdev_children; c++)
1834		spa_check_removed(vd->vdev_child[c]);
1835
1836	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1837	    vdev_is_concrete(vd)) {
1838		zfs_post_autoreplace(vd->vdev_spa, vd);
1839		spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1840	}
1841}
1842
1843static int
1844spa_check_for_missing_logs(spa_t *spa)
1845{
1846	vdev_t *rvd = spa->spa_root_vdev;
1847
1848	/*
1849	 * If we're doing a normal import, then build up any additional
1850	 * diagnostic information about missing log devices.
1851	 * We'll pass this up to the user for further processing.
1852	 */
1853	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1854		nvlist_t **child, *nv;
1855		uint64_t idx = 0;
1856
1857		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1858		    KM_SLEEP);
1859		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1860
1861		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1862			vdev_t *tvd = rvd->vdev_child[c];
1863
1864			/*
1865			 * We consider a device as missing only if it failed
1866			 * to open (i.e. offline or faulted is not considered
1867			 * as missing).
1868			 */
1869			if (tvd->vdev_islog &&
1870			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1871				child[idx++] = vdev_config_generate(spa, tvd,
1872				    B_FALSE, VDEV_CONFIG_MISSING);
1873			}
1874		}
1875
1876		if (idx > 0) {
1877			fnvlist_add_nvlist_array(nv,
1878			    ZPOOL_CONFIG_CHILDREN, child, idx);
1879			fnvlist_add_nvlist(spa->spa_load_info,
1880			    ZPOOL_CONFIG_MISSING_DEVICES, nv);
1881
1882			for (uint64_t i = 0; i < idx; i++)
1883				nvlist_free(child[i]);
1884		}
1885		nvlist_free(nv);
1886		kmem_free(child, rvd->vdev_children * sizeof (char **));
1887
1888		if (idx > 0) {
1889			spa_load_failed(spa, "some log devices are missing");
1890			return (SET_ERROR(ENXIO));
1891		}
1892	} else {
1893		for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1894			vdev_t *tvd = rvd->vdev_child[c];
1895
1896			if (tvd->vdev_islog &&
1897			    tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1898				spa_set_log_state(spa, SPA_LOG_CLEAR);
1899				spa_load_note(spa, "some log devices are "
1900				    "missing, ZIL is dropped.");
1901				break;
1902			}
1903		}
1904	}
1905
1906	return (0);
1907}
1908
1909/*
1910 * Check for missing log devices
1911 */
1912static boolean_t
1913spa_check_logs(spa_t *spa)
1914{
1915	boolean_t rv = B_FALSE;
1916	dsl_pool_t *dp = spa_get_dsl(spa);
1917
1918	switch (spa->spa_log_state) {
1919	case SPA_LOG_MISSING:
1920		/* need to recheck in case slog has been restored */
1921	case SPA_LOG_UNKNOWN:
1922		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1923		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1924		if (rv)
1925			spa_set_log_state(spa, SPA_LOG_MISSING);
1926		break;
1927	}
1928	return (rv);
1929}
1930
1931static boolean_t
1932spa_passivate_log(spa_t *spa)
1933{
1934	vdev_t *rvd = spa->spa_root_vdev;
1935	boolean_t slog_found = B_FALSE;
1936
1937	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1938
1939	if (!spa_has_slogs(spa))
1940		return (B_FALSE);
1941
1942	for (int c = 0; c < rvd->vdev_children; c++) {
1943		vdev_t *tvd = rvd->vdev_child[c];
1944		metaslab_group_t *mg = tvd->vdev_mg;
1945
1946		if (tvd->vdev_islog) {
1947			metaslab_group_passivate(mg);
1948			slog_found = B_TRUE;
1949		}
1950	}
1951
1952	return (slog_found);
1953}
1954
1955static void
1956spa_activate_log(spa_t *spa)
1957{
1958	vdev_t *rvd = spa->spa_root_vdev;
1959
1960	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1961
1962	for (int c = 0; c < rvd->vdev_children; c++) {
1963		vdev_t *tvd = rvd->vdev_child[c];
1964		metaslab_group_t *mg = tvd->vdev_mg;
1965
1966		if (tvd->vdev_islog)
1967			metaslab_group_activate(mg);
1968	}
1969}
1970
1971int
1972spa_reset_logs(spa_t *spa)
1973{
1974	int error;
1975
1976	error = dmu_objset_find(spa_name(spa), zil_reset,
1977	    NULL, DS_FIND_CHILDREN);
1978	if (error == 0) {
1979		/*
1980		 * We successfully offlined the log device, sync out the
1981		 * current txg so that the "stubby" block can be removed
1982		 * by zil_sync().
1983		 */
1984		txg_wait_synced(spa->spa_dsl_pool, 0);
1985	}
1986	return (error);
1987}
1988
1989static void
1990spa_aux_check_removed(spa_aux_vdev_t *sav)
1991{
1992	int i;
1993
1994	for (i = 0; i < sav->sav_count; i++)
1995		spa_check_removed(sav->sav_vdevs[i]);
1996}
1997
1998void
1999spa_claim_notify(zio_t *zio)
2000{
2001	spa_t *spa = zio->io_spa;
2002
2003	if (zio->io_error)
2004		return;
2005
2006	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
2007	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2008		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2009	mutex_exit(&spa->spa_props_lock);
2010}
2011
2012typedef struct spa_load_error {
2013	uint64_t	sle_meta_count;
2014	uint64_t	sle_data_count;
2015} spa_load_error_t;
2016
2017static void
2018spa_load_verify_done(zio_t *zio)
2019{
2020	blkptr_t *bp = zio->io_bp;
2021	spa_load_error_t *sle = zio->io_private;
2022	dmu_object_type_t type = BP_GET_TYPE(bp);
2023	int error = zio->io_error;
2024	spa_t *spa = zio->io_spa;
2025
2026	abd_free(zio->io_abd);
2027	if (error) {
2028		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2029		    type != DMU_OT_INTENT_LOG)
2030			atomic_inc_64(&sle->sle_meta_count);
2031		else
2032			atomic_inc_64(&sle->sle_data_count);
2033	}
2034
2035	mutex_enter(&spa->spa_scrub_lock);
2036	spa->spa_scrub_inflight--;
2037	cv_broadcast(&spa->spa_scrub_io_cv);
2038	mutex_exit(&spa->spa_scrub_lock);
2039}
2040
2041/*
2042 * Maximum number of concurrent scrub i/os to create while verifying
2043 * a pool while importing it.
2044 */
2045int spa_load_verify_maxinflight = 10000;
2046boolean_t spa_load_verify_metadata = B_TRUE;
2047boolean_t spa_load_verify_data = B_TRUE;
2048
2049SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
2050    &spa_load_verify_maxinflight, 0,
2051    "Maximum number of concurrent scrub I/Os to create while verifying a "
2052    "pool while importing it");
2053
2054SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
2055    &spa_load_verify_metadata, 0,
2056    "Check metadata on import?");
2057
2058SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
2059    &spa_load_verify_data, 0,
2060    "Check user data on import?");
2061
2062/*ARGSUSED*/
2063static int
2064spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2065    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2066{
2067	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2068		return (0);
2069	/*
2070	 * Note: normally this routine will not be called if
2071	 * spa_load_verify_metadata is not set.  However, it may be useful
2072	 * to manually set the flag after the traversal has begun.
2073	 */
2074	if (!spa_load_verify_metadata)
2075		return (0);
2076	if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2077		return (0);
2078
2079	zio_t *rio = arg;
2080	size_t size = BP_GET_PSIZE(bp);
2081
2082	mutex_enter(&spa->spa_scrub_lock);
2083	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
2084		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2085	spa->spa_scrub_inflight++;
2086	mutex_exit(&spa->spa_scrub_lock);
2087
2088	zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2089	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2090	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2091	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2092	return (0);
2093}
2094
2095/* ARGSUSED */
2096int
2097verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2098{
2099	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2100		return (SET_ERROR(ENAMETOOLONG));
2101
2102	return (0);
2103}
2104
2105static int
2106spa_load_verify(spa_t *spa)
2107{
2108	zio_t *rio;
2109	spa_load_error_t sle = { 0 };
2110	zpool_rewind_policy_t policy;
2111	boolean_t verify_ok = B_FALSE;
2112	int error = 0;
2113
2114	zpool_get_rewind_policy(spa->spa_config, &policy);
2115
2116	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2117		return (0);
2118
2119	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2120	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2121	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2122	    DS_FIND_CHILDREN);
2123	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2124	if (error != 0)
2125		return (error);
2126
2127	rio = zio_root(spa, NULL, &sle,
2128	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2129
2130	if (spa_load_verify_metadata) {
2131		if (spa->spa_extreme_rewind) {
2132			spa_load_note(spa, "performing a complete scan of the "
2133			    "pool since extreme rewind is on. This may take "
2134			    "a very long time.\n  (spa_load_verify_data=%u, "
2135			    "spa_load_verify_metadata=%u)",
2136			    spa_load_verify_data, spa_load_verify_metadata);
2137		}
2138		error = traverse_pool(spa, spa->spa_verify_min_txg,
2139		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2140		    spa_load_verify_cb, rio);
2141	}
2142
2143	(void) zio_wait(rio);
2144
2145	spa->spa_load_meta_errors = sle.sle_meta_count;
2146	spa->spa_load_data_errors = sle.sle_data_count;
2147
2148	if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2149		spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2150		    "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2151		    (u_longlong_t)sle.sle_data_count);
2152	}
2153
2154	if (spa_load_verify_dryrun ||
2155	    (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2156	    sle.sle_data_count <= policy.zrp_maxdata)) {
2157		int64_t loss = 0;
2158
2159		verify_ok = B_TRUE;
2160		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2161		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2162
2163		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2164		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2165		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2166		VERIFY(nvlist_add_int64(spa->spa_load_info,
2167		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2168		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2169		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2170	} else {
2171		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2172	}
2173
2174	if (spa_load_verify_dryrun)
2175		return (0);
2176
2177	if (error) {
2178		if (error != ENXIO && error != EIO)
2179			error = SET_ERROR(EIO);
2180		return (error);
2181	}
2182
2183	return (verify_ok ? 0 : EIO);
2184}
2185
2186/*
2187 * Find a value in the pool props object.
2188 */
2189static void
2190spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2191{
2192	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2193	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2194}
2195
2196/*
2197 * Find a value in the pool directory object.
2198 */
2199static int
2200spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2201{
2202	int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2203	    name, sizeof (uint64_t), 1, val);
2204
2205	if (error != 0 && (error != ENOENT || log_enoent)) {
2206		spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2207		    "[error=%d]", name, error);
2208	}
2209
2210	return (error);
2211}
2212
2213static int
2214spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2215{
2216	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2217	return (SET_ERROR(err));
2218}
2219
2220static void
2221spa_spawn_aux_threads(spa_t *spa)
2222{
2223	ASSERT(spa_writeable(spa));
2224
2225	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2226
2227	spa_start_indirect_condensing_thread(spa);
2228
2229	ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2230	spa->spa_checkpoint_discard_zthr =
2231	    zthr_create(spa_checkpoint_discard_thread_check,
2232	    spa_checkpoint_discard_thread, spa);
2233}
2234
2235/*
2236 * Fix up config after a partly-completed split.  This is done with the
2237 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2238 * pool have that entry in their config, but only the splitting one contains
2239 * a list of all the guids of the vdevs that are being split off.
2240 *
2241 * This function determines what to do with that list: either rejoin
2242 * all the disks to the pool, or complete the splitting process.  To attempt
2243 * the rejoin, each disk that is offlined is marked online again, and
2244 * we do a reopen() call.  If the vdev label for every disk that was
2245 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2246 * then we call vdev_split() on each disk, and complete the split.
2247 *
2248 * Otherwise we leave the config alone, with all the vdevs in place in
2249 * the original pool.
2250 */
2251static void
2252spa_try_repair(spa_t *spa, nvlist_t *config)
2253{
2254	uint_t extracted;
2255	uint64_t *glist;
2256	uint_t i, gcount;
2257	nvlist_t *nvl;
2258	vdev_t **vd;
2259	boolean_t attempt_reopen;
2260
2261	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2262		return;
2263
2264	/* check that the config is complete */
2265	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2266	    &glist, &gcount) != 0)
2267		return;
2268
2269	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2270
2271	/* attempt to online all the vdevs & validate */
2272	attempt_reopen = B_TRUE;
2273	for (i = 0; i < gcount; i++) {
2274		if (glist[i] == 0)	/* vdev is hole */
2275			continue;
2276
2277		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2278		if (vd[i] == NULL) {
2279			/*
2280			 * Don't bother attempting to reopen the disks;
2281			 * just do the split.
2282			 */
2283			attempt_reopen = B_FALSE;
2284		} else {
2285			/* attempt to re-online it */
2286			vd[i]->vdev_offline = B_FALSE;
2287		}
2288	}
2289
2290	if (attempt_reopen) {
2291		vdev_reopen(spa->spa_root_vdev);
2292
2293		/* check each device to see what state it's in */
2294		for (extracted = 0, i = 0; i < gcount; i++) {
2295			if (vd[i] != NULL &&
2296			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2297				break;
2298			++extracted;
2299		}
2300	}
2301
2302	/*
2303	 * If every disk has been moved to the new pool, or if we never
2304	 * even attempted to look at them, then we split them off for
2305	 * good.
2306	 */
2307	if (!attempt_reopen || gcount == extracted) {
2308		for (i = 0; i < gcount; i++)
2309			if (vd[i] != NULL)
2310				vdev_split(vd[i]);
2311		vdev_reopen(spa->spa_root_vdev);
2312	}
2313
2314	kmem_free(vd, gcount * sizeof (vdev_t *));
2315}
2316
2317static int
2318spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2319{
2320	char *ereport = FM_EREPORT_ZFS_POOL;
2321	int error;
2322
2323	spa->spa_load_state = state;
2324
2325	gethrestime(&spa->spa_loaded_ts);
2326	error = spa_load_impl(spa, type, &ereport);
2327
2328	/*
2329	 * Don't count references from objsets that are already closed
2330	 * and are making their way through the eviction process.
2331	 */
2332	spa_evicting_os_wait(spa);
2333	spa->spa_minref = refcount_count(&spa->spa_refcount);
2334	if (error) {
2335		if (error != EEXIST) {
2336			spa->spa_loaded_ts.tv_sec = 0;
2337			spa->spa_loaded_ts.tv_nsec = 0;
2338		}
2339		if (error != EBADF) {
2340			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2341		}
2342	}
2343	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2344	spa->spa_ena = 0;
2345
2346	return (error);
2347}
2348
2349/*
2350 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2351 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2352 * spa's per-vdev ZAP list.
2353 */
2354static uint64_t
2355vdev_count_verify_zaps(vdev_t *vd)
2356{
2357	spa_t *spa = vd->vdev_spa;
2358	uint64_t total = 0;
2359	if (vd->vdev_top_zap != 0) {
2360		total++;
2361		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2362		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2363	}
2364	if (vd->vdev_leaf_zap != 0) {
2365		total++;
2366		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2367		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2368	}
2369
2370	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2371		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2372	}
2373
2374	return (total);
2375}
2376
2377static int
2378spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2379{
2380	uint64_t hostid;
2381	char *hostname;
2382	uint64_t myhostid = 0;
2383
2384	if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2385	    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2386		hostname = fnvlist_lookup_string(mos_config,
2387		    ZPOOL_CONFIG_HOSTNAME);
2388
2389		myhostid = zone_get_hostid(NULL);
2390
2391		if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2392			cmn_err(CE_WARN, "pool '%s' could not be "
2393			    "loaded as it was last accessed by "
2394			    "another system (host: %s hostid: 0x%llx). "
2395			    "See: http://illumos.org/msg/ZFS-8000-EY",
2396			    spa_name(spa), hostname, (u_longlong_t)hostid);
2397			spa_load_failed(spa, "hostid verification failed: pool "
2398			    "last accessed by host: %s (hostid: 0x%llx)",
2399			    hostname, (u_longlong_t)hostid);
2400			return (SET_ERROR(EBADF));
2401		}
2402	}
2403
2404	return (0);
2405}
2406
2407static int
2408spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2409{
2410	int error = 0;
2411	nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2412	int parse;
2413	vdev_t *rvd;
2414	uint64_t pool_guid;
2415	char *comment;
2416
2417	/*
2418	 * Versioning wasn't explicitly added to the label until later, so if
2419	 * it's not present treat it as the initial version.
2420	 */
2421	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2422	    &spa->spa_ubsync.ub_version) != 0)
2423		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2424
2425	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2426		spa_load_failed(spa, "invalid config provided: '%s' missing",
2427		    ZPOOL_CONFIG_POOL_GUID);
2428		return (SET_ERROR(EINVAL));
2429	}
2430
2431	/*
2432	 * If we are doing an import, ensure that the pool is not already
2433	 * imported by checking if its pool guid already exists in the
2434	 * spa namespace.
2435	 *
2436	 * The only case that we allow an already imported pool to be
2437	 * imported again, is when the pool is checkpointed and we want to
2438	 * look at its checkpointed state from userland tools like zdb.
2439	 */
2440#ifdef _KERNEL
2441	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2442	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2443	    spa_guid_exists(pool_guid, 0)) {
2444#else
2445	if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2446	    spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2447	    spa_guid_exists(pool_guid, 0) &&
2448	    !spa_importing_readonly_checkpoint(spa)) {
2449#endif
2450		spa_load_failed(spa, "a pool with guid %llu is already open",
2451		    (u_longlong_t)pool_guid);
2452		return (SET_ERROR(EEXIST));
2453	}
2454
2455	spa->spa_config_guid = pool_guid;
2456
2457	nvlist_free(spa->spa_load_info);
2458	spa->spa_load_info = fnvlist_alloc();
2459
2460	ASSERT(spa->spa_comment == NULL);
2461	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2462		spa->spa_comment = spa_strdup(comment);
2463
2464	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2465	    &spa->spa_config_txg);
2466
2467	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2468		spa->spa_config_splitting = fnvlist_dup(nvl);
2469
2470	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2471		spa_load_failed(spa, "invalid config provided: '%s' missing",
2472		    ZPOOL_CONFIG_VDEV_TREE);
2473		return (SET_ERROR(EINVAL));
2474	}
2475
2476	/*
2477	 * Create "The Godfather" zio to hold all async IOs
2478	 */
2479	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2480	    KM_SLEEP);
2481	for (int i = 0; i < max_ncpus; i++) {
2482		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2483		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2484		    ZIO_FLAG_GODFATHER);
2485	}
2486
2487	/*
2488	 * Parse the configuration into a vdev tree.  We explicitly set the
2489	 * value that will be returned by spa_version() since parsing the
2490	 * configuration requires knowing the version number.
2491	 */
2492	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2493	parse = (type == SPA_IMPORT_EXISTING ?
2494	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2495	error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2496	spa_config_exit(spa, SCL_ALL, FTAG);
2497
2498	if (error != 0) {
2499		spa_load_failed(spa, "unable to parse config [error=%d]",
2500		    error);
2501		return (error);
2502	}
2503
2504	ASSERT(spa->spa_root_vdev == rvd);
2505	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2506	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2507
2508	if (type != SPA_IMPORT_ASSEMBLE) {
2509		ASSERT(spa_guid(spa) == pool_guid);
2510	}
2511
2512	return (0);
2513}
2514
2515/*
2516 * Recursively open all vdevs in the vdev tree. This function is called twice:
2517 * first with the untrusted config, then with the trusted config.
2518 */
2519static int
2520spa_ld_open_vdevs(spa_t *spa)
2521{
2522	int error = 0;
2523
2524	/*
2525	 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2526	 * missing/unopenable for the root vdev to be still considered openable.
2527	 */
2528	if (spa->spa_trust_config) {
2529		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2530	} else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2531		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2532	} else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2533		spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2534	} else {
2535		spa->spa_missing_tvds_allowed = 0;
2536	}
2537
2538	spa->spa_missing_tvds_allowed =
2539	    MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2540
2541	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2542	error = vdev_open(spa->spa_root_vdev);
2543	spa_config_exit(spa, SCL_ALL, FTAG);
2544
2545	if (spa->spa_missing_tvds != 0) {
2546		spa_load_note(spa, "vdev tree has %lld missing top-level "
2547		    "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2548		if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2549			/*
2550			 * Although theoretically we could allow users to open
2551			 * incomplete pools in RW mode, we'd need to add a lot
2552			 * of extra logic (e.g. adjust pool space to account
2553			 * for missing vdevs).
2554			 * This limitation also prevents users from accidentally
2555			 * opening the pool in RW mode during data recovery and
2556			 * damaging it further.
2557			 */
2558			spa_load_note(spa, "pools with missing top-level "
2559			    "vdevs can only be opened in read-only mode.");
2560			error = SET_ERROR(ENXIO);
2561		} else {
2562			spa_load_note(spa, "current settings allow for maximum "
2563			    "%lld missing top-level vdevs at this stage.",
2564			    (u_longlong_t)spa->spa_missing_tvds_allowed);
2565		}
2566	}
2567	if (error != 0) {
2568		spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2569		    error);
2570	}
2571	if (spa->spa_missing_tvds != 0 || error != 0)
2572		vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2573
2574	return (error);
2575}
2576
2577/*
2578 * We need to validate the vdev labels against the configuration that
2579 * we have in hand. This function is called twice: first with an untrusted
2580 * config, then with a trusted config. The validation is more strict when the
2581 * config is trusted.
2582 */
2583static int
2584spa_ld_validate_vdevs(spa_t *spa)
2585{
2586	int error = 0;
2587	vdev_t *rvd = spa->spa_root_vdev;
2588
2589	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2590	error = vdev_validate(rvd);
2591	spa_config_exit(spa, SCL_ALL, FTAG);
2592
2593	if (error != 0) {
2594		spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2595		return (error);
2596	}
2597
2598	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2599		spa_load_failed(spa, "cannot open vdev tree after invalidating "
2600		    "some vdevs");
2601		vdev_dbgmsg_print_tree(rvd, 2);
2602		return (SET_ERROR(ENXIO));
2603	}
2604
2605	return (0);
2606}
2607
2608static void
2609spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2610{
2611	spa->spa_state = POOL_STATE_ACTIVE;
2612	spa->spa_ubsync = spa->spa_uberblock;
2613	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2614	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2615	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2616	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2617	spa->spa_claim_max_txg = spa->spa_first_txg;
2618	spa->spa_prev_software_version = ub->ub_software_version;
2619}
2620
2621static int
2622spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2623{
2624	vdev_t *rvd = spa->spa_root_vdev;
2625	nvlist_t *label;
2626	uberblock_t *ub = &spa->spa_uberblock;
2627
2628	/*
2629	 * If we are opening the checkpointed state of the pool by
2630	 * rewinding to it, at this point we will have written the
2631	 * checkpointed uberblock to the vdev labels, so searching
2632	 * the labels will find the right uberblock.  However, if
2633	 * we are opening the checkpointed state read-only, we have
2634	 * not modified the labels. Therefore, we must ignore the
2635	 * labels and continue using the spa_uberblock that was set
2636	 * by spa_ld_checkpoint_rewind.
2637	 *
2638	 * Note that it would be fine to ignore the labels when
2639	 * rewinding (opening writeable) as well. However, if we
2640	 * crash just after writing the labels, we will end up
2641	 * searching the labels. Doing so in the common case means
2642	 * that this code path gets exercised normally, rather than
2643	 * just in the edge case.
2644	 */
2645	if (ub->ub_checkpoint_txg != 0 &&
2646	    spa_importing_readonly_checkpoint(spa)) {
2647		spa_ld_select_uberblock_done(spa, ub);
2648		return (0);
2649	}
2650
2651	/*
2652	 * Find the best uberblock.
2653	 */
2654	vdev_uberblock_load(rvd, ub, &label);
2655
2656	/*
2657	 * If we weren't able to find a single valid uberblock, return failure.
2658	 */
2659	if (ub->ub_txg == 0) {
2660		nvlist_free(label);
2661		spa_load_failed(spa, "no valid uberblock found");
2662		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2663	}
2664
2665	spa_load_note(spa, "using uberblock with txg=%llu",
2666	    (u_longlong_t)ub->ub_txg);
2667
2668	/*
2669	 * If the pool has an unsupported version we can't open it.
2670	 */
2671	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2672		nvlist_free(label);
2673		spa_load_failed(spa, "version %llu is not supported",
2674		    (u_longlong_t)ub->ub_version);
2675		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2676	}
2677
2678	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2679		nvlist_t *features;
2680
2681		/*
2682		 * If we weren't able to find what's necessary for reading the
2683		 * MOS in the label, return failure.
2684		 */
2685		if (label == NULL) {
2686			spa_load_failed(spa, "label config unavailable");
2687			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2688			    ENXIO));
2689		}
2690
2691		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2692		    &features) != 0) {
2693			nvlist_free(label);
2694			spa_load_failed(spa, "invalid label: '%s' missing",
2695			    ZPOOL_CONFIG_FEATURES_FOR_READ);
2696			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2697			    ENXIO));
2698		}
2699
2700		/*
2701		 * Update our in-core representation with the definitive values
2702		 * from the label.
2703		 */
2704		nvlist_free(spa->spa_label_features);
2705		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2706	}
2707
2708	nvlist_free(label);
2709
2710	/*
2711	 * Look through entries in the label nvlist's features_for_read. If
2712	 * there is a feature listed there which we don't understand then we
2713	 * cannot open a pool.
2714	 */
2715	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2716		nvlist_t *unsup_feat;
2717
2718		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2719		    0);
2720
2721		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2722		    NULL); nvp != NULL;
2723		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2724			if (!zfeature_is_supported(nvpair_name(nvp))) {
2725				VERIFY(nvlist_add_string(unsup_feat,
2726				    nvpair_name(nvp), "") == 0);
2727			}
2728		}
2729
2730		if (!nvlist_empty(unsup_feat)) {
2731			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2732			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2733			nvlist_free(unsup_feat);
2734			spa_load_failed(spa, "some features are unsupported");
2735			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2736			    ENOTSUP));
2737		}
2738
2739		nvlist_free(unsup_feat);
2740	}
2741
2742	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2743		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2744		spa_try_repair(spa, spa->spa_config);
2745		spa_config_exit(spa, SCL_ALL, FTAG);
2746		nvlist_free(spa->spa_config_splitting);
2747		spa->spa_config_splitting = NULL;
2748	}
2749
2750	/*
2751	 * Initialize internal SPA structures.
2752	 */
2753	spa_ld_select_uberblock_done(spa, ub);
2754
2755	return (0);
2756}
2757
2758static int
2759spa_ld_open_rootbp(spa_t *spa)
2760{
2761	int error = 0;
2762	vdev_t *rvd = spa->spa_root_vdev;
2763
2764	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2765	if (error != 0) {
2766		spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2767		    "[error=%d]", error);
2768		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2769	}
2770	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2771
2772	return (0);
2773}
2774
2775static int
2776spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
2777    boolean_t reloading)
2778{
2779	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2780	nvlist_t *nv, *mos_config, *policy;
2781	int error = 0, copy_error;
2782	uint64_t healthy_tvds, healthy_tvds_mos;
2783	uint64_t mos_config_txg;
2784
2785	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2786	    != 0)
2787		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2788
2789	/*
2790	 * If we're assembling a pool from a split, the config provided is
2791	 * already trusted so there is nothing to do.
2792	 */
2793	if (type == SPA_IMPORT_ASSEMBLE)
2794		return (0);
2795
2796	healthy_tvds = spa_healthy_core_tvds(spa);
2797
2798	if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2799	    != 0) {
2800		spa_load_failed(spa, "unable to retrieve MOS config");
2801		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2802	}
2803
2804	/*
2805	 * If we are doing an open, pool owner wasn't verified yet, thus do
2806	 * the verification here.
2807	 */
2808	if (spa->spa_load_state == SPA_LOAD_OPEN) {
2809		error = spa_verify_host(spa, mos_config);
2810		if (error != 0) {
2811			nvlist_free(mos_config);
2812			return (error);
2813		}
2814	}
2815
2816	nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2817
2818	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2819
2820	/*
2821	 * Build a new vdev tree from the trusted config
2822	 */
2823	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2824
2825	/*
2826	 * Vdev paths in the MOS may be obsolete. If the untrusted config was
2827	 * obtained by scanning /dev/dsk, then it will have the right vdev
2828	 * paths. We update the trusted MOS config with this information.
2829	 * We first try to copy the paths with vdev_copy_path_strict, which
2830	 * succeeds only when both configs have exactly the same vdev tree.
2831	 * If that fails, we fall back to a more flexible method that has a
2832	 * best effort policy.
2833	 */
2834	copy_error = vdev_copy_path_strict(rvd, mrvd);
2835	if (copy_error != 0 || spa_load_print_vdev_tree) {
2836		spa_load_note(spa, "provided vdev tree:");
2837		vdev_dbgmsg_print_tree(rvd, 2);
2838		spa_load_note(spa, "MOS vdev tree:");
2839		vdev_dbgmsg_print_tree(mrvd, 2);
2840	}
2841	if (copy_error != 0) {
2842		spa_load_note(spa, "vdev_copy_path_strict failed, falling "
2843		    "back to vdev_copy_path_relaxed");
2844		vdev_copy_path_relaxed(rvd, mrvd);
2845	}
2846
2847	vdev_close(rvd);
2848	vdev_free(rvd);
2849	spa->spa_root_vdev = mrvd;
2850	rvd = mrvd;
2851	spa_config_exit(spa, SCL_ALL, FTAG);
2852
2853	/*
2854	 * We will use spa_config if we decide to reload the spa or if spa_load
2855	 * fails and we rewind. We must thus regenerate the config using the
2856	 * MOS information with the updated paths. Rewind policy is an import
2857	 * setting and is not in the MOS. We copy it over to our new, trusted
2858	 * config.
2859	 */
2860	mos_config_txg = fnvlist_lookup_uint64(mos_config,
2861	    ZPOOL_CONFIG_POOL_TXG);
2862	nvlist_free(mos_config);
2863	mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
2864	if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_REWIND_POLICY,
2865	    &policy) == 0)
2866		fnvlist_add_nvlist(mos_config, ZPOOL_REWIND_POLICY, policy);
2867	spa_config_set(spa, mos_config);
2868	spa->spa_config_source = SPA_CONFIG_SRC_MOS;
2869
2870	/*
2871	 * Now that we got the config from the MOS, we should be more strict
2872	 * in checking blkptrs and can make assumptions about the consistency
2873	 * of the vdev tree. spa_trust_config must be set to true before opening
2874	 * vdevs in order for them to be writeable.
2875	 */
2876	spa->spa_trust_config = B_TRUE;
2877
2878	/*
2879	 * Open and validate the new vdev tree
2880	 */
2881	error = spa_ld_open_vdevs(spa);
2882	if (error != 0)
2883		return (error);
2884
2885	error = spa_ld_validate_vdevs(spa);
2886	if (error != 0)
2887		return (error);
2888
2889	if (copy_error != 0 || spa_load_print_vdev_tree) {
2890		spa_load_note(spa, "final vdev tree:");
2891		vdev_dbgmsg_print_tree(rvd, 2);
2892	}
2893
2894	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
2895	    !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
2896		/*
2897		 * Sanity check to make sure that we are indeed loading the
2898		 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
2899		 * in the config provided and they happened to be the only ones
2900		 * to have the latest uberblock, we could involuntarily perform
2901		 * an extreme rewind.
2902		 */
2903		healthy_tvds_mos = spa_healthy_core_tvds(spa);
2904		if (healthy_tvds_mos - healthy_tvds >=
2905		    SPA_SYNC_MIN_VDEVS) {
2906			spa_load_note(spa, "config provided misses too many "
2907			    "top-level vdevs compared to MOS (%lld vs %lld). ",
2908			    (u_longlong_t)healthy_tvds,
2909			    (u_longlong_t)healthy_tvds_mos);
2910			spa_load_note(spa, "vdev tree:");
2911			vdev_dbgmsg_print_tree(rvd, 2);
2912			if (reloading) {
2913				spa_load_failed(spa, "config was already "
2914				    "provided from MOS. Aborting.");
2915				return (spa_vdev_err(rvd,
2916				    VDEV_AUX_CORRUPT_DATA, EIO));
2917			}
2918			spa_load_note(spa, "spa must be reloaded using MOS "
2919			    "config");
2920			return (SET_ERROR(EAGAIN));
2921		}
2922	}
2923
2924	error = spa_check_for_missing_logs(spa);
2925	if (error != 0)
2926		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2927
2928	if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
2929		spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
2930		    "guid sum (%llu != %llu)",
2931		    (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
2932		    (u_longlong_t)rvd->vdev_guid_sum);
2933		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2934		    ENXIO));
2935	}
2936
2937	return (0);
2938}
2939
2940static int
2941spa_ld_open_indirect_vdev_metadata(spa_t *spa)
2942{
2943	int error = 0;
2944	vdev_t *rvd = spa->spa_root_vdev;
2945
2946	/*
2947	 * Everything that we read before spa_remove_init() must be stored
2948	 * on concreted vdevs.  Therefore we do this as early as possible.
2949	 */
2950	error = spa_remove_init(spa);
2951	if (error != 0) {
2952		spa_load_failed(spa, "spa_remove_init failed [error=%d]",
2953		    error);
2954		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2955	}
2956
2957	/*
2958	 * Retrieve information needed to condense indirect vdev mappings.
2959	 */
2960	error = spa_condense_init(spa);
2961	if (error != 0) {
2962		spa_load_failed(spa, "spa_condense_init failed [error=%d]",
2963		    error);
2964		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
2965	}
2966
2967	return (0);
2968}
2969
2970static int
2971spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
2972{
2973	int error = 0;
2974	vdev_t *rvd = spa->spa_root_vdev;
2975
2976	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2977		boolean_t missing_feat_read = B_FALSE;
2978		nvlist_t *unsup_feat, *enabled_feat;
2979
2980		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2981		    &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
2982			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2983		}
2984
2985		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2986		    &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
2987			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2988		}
2989
2990		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2991		    &spa->spa_feat_desc_obj, B_TRUE) != 0) {
2992			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2993		}
2994
2995		enabled_feat = fnvlist_alloc();
2996		unsup_feat = fnvlist_alloc();
2997
2998		if (!spa_features_check(spa, B_FALSE,
2999		    unsup_feat, enabled_feat))
3000			missing_feat_read = B_TRUE;
3001
3002		if (spa_writeable(spa) ||
3003		    spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3004			if (!spa_features_check(spa, B_TRUE,
3005			    unsup_feat, enabled_feat)) {
3006				*missing_feat_writep = B_TRUE;
3007			}
3008		}
3009
3010		fnvlist_add_nvlist(spa->spa_load_info,
3011		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3012
3013		if (!nvlist_empty(unsup_feat)) {
3014			fnvlist_add_nvlist(spa->spa_load_info,
3015			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3016		}
3017
3018		fnvlist_free(enabled_feat);
3019		fnvlist_free(unsup_feat);
3020
3021		if (!missing_feat_read) {
3022			fnvlist_add_boolean(spa->spa_load_info,
3023			    ZPOOL_CONFIG_CAN_RDONLY);
3024		}
3025
3026		/*
3027		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3028		 * twofold: to determine whether the pool is available for
3029		 * import in read-write mode and (if it is not) whether the
3030		 * pool is available for import in read-only mode. If the pool
3031		 * is available for import in read-write mode, it is displayed
3032		 * as available in userland; if it is not available for import
3033		 * in read-only mode, it is displayed as unavailable in
3034		 * userland. If the pool is available for import in read-only
3035		 * mode but not read-write mode, it is displayed as unavailable
3036		 * in userland with a special note that the pool is actually
3037		 * available for open in read-only mode.
3038		 *
3039		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3040		 * missing a feature for write, we must first determine whether
3041		 * the pool can be opened read-only before returning to
3042		 * userland in order to know whether to display the
3043		 * abovementioned note.
3044		 */
3045		if (missing_feat_read || (*missing_feat_writep &&
3046		    spa_writeable(spa))) {
3047			spa_load_failed(spa, "pool uses unsupported features");
3048			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3049			    ENOTSUP));
3050		}
3051
3052		/*
3053		 * Load refcounts for ZFS features from disk into an in-memory
3054		 * cache during SPA initialization.
3055		 */
3056		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3057			uint64_t refcount;
3058
3059			error = feature_get_refcount_from_disk(spa,
3060			    &spa_feature_table[i], &refcount);
3061			if (error == 0) {
3062				spa->spa_feat_refcount_cache[i] = refcount;
3063			} else if (error == ENOTSUP) {
3064				spa->spa_feat_refcount_cache[i] =
3065				    SPA_FEATURE_DISABLED;
3066			} else {
3067				spa_load_failed(spa, "error getting refcount "
3068				    "for feature %s [error=%d]",
3069				    spa_feature_table[i].fi_guid, error);
3070				return (spa_vdev_err(rvd,
3071				    VDEV_AUX_CORRUPT_DATA, EIO));
3072			}
3073		}
3074	}
3075
3076	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3077		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3078		    &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3079			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3080	}
3081
3082	return (0);
3083}
3084
3085static int
3086spa_ld_load_special_directories(spa_t *spa)
3087{
3088	int error = 0;
3089	vdev_t *rvd = spa->spa_root_vdev;
3090
3091	spa->spa_is_initializing = B_TRUE;
3092	error = dsl_pool_open(spa->spa_dsl_pool);
3093	spa->spa_is_initializing = B_FALSE;
3094	if (error != 0) {
3095		spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3096		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3097	}
3098
3099	return (0);
3100}
3101
3102static int
3103spa_ld_get_props(spa_t *spa)
3104{
3105	int error = 0;
3106	uint64_t obj;
3107	vdev_t *rvd = spa->spa_root_vdev;
3108
3109	/* Grab the secret checksum salt from the MOS. */
3110	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3111	    DMU_POOL_CHECKSUM_SALT, 1,
3112	    sizeof (spa->spa_cksum_salt.zcs_bytes),
3113	    spa->spa_cksum_salt.zcs_bytes);
3114	if (error == ENOENT) {
3115		/* Generate a new salt for subsequent use */
3116		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3117		    sizeof (spa->spa_cksum_salt.zcs_bytes));
3118	} else if (error != 0) {
3119		spa_load_failed(spa, "unable to retrieve checksum salt from "
3120		    "MOS [error=%d]", error);
3121		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3122	}
3123
3124	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3125		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3126	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3127	if (error != 0) {
3128		spa_load_failed(spa, "error opening deferred-frees bpobj "
3129		    "[error=%d]", error);
3130		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3131	}
3132
3133	/*
3134	 * Load the bit that tells us to use the new accounting function
3135	 * (raid-z deflation).  If we have an older pool, this will not
3136	 * be present.
3137	 */
3138	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3139	if (error != 0 && error != ENOENT)
3140		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3141
3142	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3143	    &spa->spa_creation_version, B_FALSE);
3144	if (error != 0 && error != ENOENT)
3145		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3146
3147	/*
3148	 * Load the persistent error log.  If we have an older pool, this will
3149	 * not be present.
3150	 */
3151	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3152	    B_FALSE);
3153	if (error != 0 && error != ENOENT)
3154		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3155
3156	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3157	    &spa->spa_errlog_scrub, B_FALSE);
3158	if (error != 0 && error != ENOENT)
3159		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3160
3161	/*
3162	 * Load the history object.  If we have an older pool, this
3163	 * will not be present.
3164	 */
3165	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3166	if (error != 0 && error != ENOENT)
3167		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3168
3169	/*
3170	 * Load the per-vdev ZAP map. If we have an older pool, this will not
3171	 * be present; in this case, defer its creation to a later time to
3172	 * avoid dirtying the MOS this early / out of sync context. See
3173	 * spa_sync_config_object.
3174	 */
3175
3176	/* The sentinel is only available in the MOS config. */
3177	nvlist_t *mos_config;
3178	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3179		spa_load_failed(spa, "unable to retrieve MOS config");
3180		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3181	}
3182
3183	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3184	    &spa->spa_all_vdev_zaps, B_FALSE);
3185
3186	if (error == ENOENT) {
3187		VERIFY(!nvlist_exists(mos_config,
3188		    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3189		spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3190		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3191	} else if (error != 0) {
3192		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3193	} else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3194		/*
3195		 * An older version of ZFS overwrote the sentinel value, so
3196		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3197		 * destruction to later; see spa_sync_config_object.
3198		 */
3199		spa->spa_avz_action = AVZ_ACTION_DESTROY;
3200		/*
3201		 * We're assuming that no vdevs have had their ZAPs created
3202		 * before this. Better be sure of it.
3203		 */
3204		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3205	}
3206	nvlist_free(mos_config);
3207
3208	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3209
3210	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3211	    B_FALSE);
3212	if (error && error != ENOENT)
3213		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3214
3215	if (error == 0) {
3216		uint64_t autoreplace;
3217
3218		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3219		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3220		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3221		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3222		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3223		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3224		    &spa->spa_dedup_ditto);
3225
3226		spa->spa_autoreplace = (autoreplace != 0);
3227	}
3228
3229	/*
3230	 * If we are importing a pool with missing top-level vdevs,
3231	 * we enforce that the pool doesn't panic or get suspended on
3232	 * error since the likelihood of missing data is extremely high.
3233	 */
3234	if (spa->spa_missing_tvds > 0 &&
3235	    spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3236	    spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3237		spa_load_note(spa, "forcing failmode to 'continue' "
3238		    "as some top level vdevs are missing");
3239		spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3240	}
3241
3242	return (0);
3243}
3244
3245static int
3246spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3247{
3248	int error = 0;
3249	vdev_t *rvd = spa->spa_root_vdev;
3250
3251	/*
3252	 * If we're assembling the pool from the split-off vdevs of
3253	 * an existing pool, we don't want to attach the spares & cache
3254	 * devices.
3255	 */
3256
3257	/*
3258	 * Load any hot spares for this pool.
3259	 */
3260	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3261	    B_FALSE);
3262	if (error != 0 && error != ENOENT)
3263		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3264	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3265		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3266		if (load_nvlist(spa, spa->spa_spares.sav_object,
3267		    &spa->spa_spares.sav_config) != 0) {
3268			spa_load_failed(spa, "error loading spares nvlist");
3269			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3270		}
3271
3272		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3273		spa_load_spares(spa);
3274		spa_config_exit(spa, SCL_ALL, FTAG);
3275	} else if (error == 0) {
3276		spa->spa_spares.sav_sync = B_TRUE;
3277	}
3278
3279	/*
3280	 * Load any level 2 ARC devices for this pool.
3281	 */
3282	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3283	    &spa->spa_l2cache.sav_object, B_FALSE);
3284	if (error != 0 && error != ENOENT)
3285		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3286	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3287		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3288		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3289		    &spa->spa_l2cache.sav_config) != 0) {
3290			spa_load_failed(spa, "error loading l2cache nvlist");
3291			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3292		}
3293
3294		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3295		spa_load_l2cache(spa);
3296		spa_config_exit(spa, SCL_ALL, FTAG);
3297	} else if (error == 0) {
3298		spa->spa_l2cache.sav_sync = B_TRUE;
3299	}
3300
3301	return (0);
3302}
3303
3304static int
3305spa_ld_load_vdev_metadata(spa_t *spa)
3306{
3307	int error = 0;
3308	vdev_t *rvd = spa->spa_root_vdev;
3309
3310	/*
3311	 * If the 'autoreplace' property is set, then post a resource notifying
3312	 * the ZFS DE that it should not issue any faults for unopenable
3313	 * devices.  We also iterate over the vdevs, and post a sysevent for any
3314	 * unopenable vdevs so that the normal autoreplace handler can take
3315	 * over.
3316	 */
3317	if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3318		spa_check_removed(spa->spa_root_vdev);
3319		/*
3320		 * For the import case, this is done in spa_import(), because
3321		 * at this point we're using the spare definitions from
3322		 * the MOS config, not necessarily from the userland config.
3323		 */
3324		if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3325			spa_aux_check_removed(&spa->spa_spares);
3326			spa_aux_check_removed(&spa->spa_l2cache);
3327		}
3328	}
3329
3330	/*
3331	 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3332	 */
3333	error = vdev_load(rvd);
3334	if (error != 0) {
3335		spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3336		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3337	}
3338
3339	/*
3340	 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3341	 */
3342	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3343	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3344	spa_config_exit(spa, SCL_ALL, FTAG);
3345
3346	return (0);
3347}
3348
3349static int
3350spa_ld_load_dedup_tables(spa_t *spa)
3351{
3352	int error = 0;
3353	vdev_t *rvd = spa->spa_root_vdev;
3354
3355	error = ddt_load(spa);
3356	if (error != 0) {
3357		spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3358		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3359	}
3360
3361	return (0);
3362}
3363
3364static int
3365spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3366{
3367	vdev_t *rvd = spa->spa_root_vdev;
3368
3369	if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3370		boolean_t missing = spa_check_logs(spa);
3371		if (missing) {
3372			if (spa->spa_missing_tvds != 0) {
3373				spa_load_note(spa, "spa_check_logs failed "
3374				    "so dropping the logs");
3375			} else {
3376				*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3377				spa_load_failed(spa, "spa_check_logs failed");
3378				return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3379				    ENXIO));
3380			}
3381		}
3382	}
3383
3384	return (0);
3385}
3386
3387static int
3388spa_ld_verify_pool_data(spa_t *spa)
3389{
3390	int error = 0;
3391	vdev_t *rvd = spa->spa_root_vdev;
3392
3393	/*
3394	 * We've successfully opened the pool, verify that we're ready
3395	 * to start pushing transactions.
3396	 */
3397	if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3398		error = spa_load_verify(spa);
3399		if (error != 0) {
3400			spa_load_failed(spa, "spa_load_verify failed "
3401			    "[error=%d]", error);
3402			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3403			    error));
3404		}
3405	}
3406
3407	return (0);
3408}
3409
3410static void
3411spa_ld_claim_log_blocks(spa_t *spa)
3412{
3413	dmu_tx_t *tx;
3414	dsl_pool_t *dp = spa_get_dsl(spa);
3415
3416	/*
3417	 * Claim log blocks that haven't been committed yet.
3418	 * This must all happen in a single txg.
3419	 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3420	 * invoked from zil_claim_log_block()'s i/o done callback.
3421	 * Price of rollback is that we abandon the log.
3422	 */
3423	spa->spa_claiming = B_TRUE;
3424
3425	tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3426	(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3427	    zil_claim, tx, DS_FIND_CHILDREN);
3428	dmu_tx_commit(tx);
3429
3430	spa->spa_claiming = B_FALSE;
3431
3432	spa_set_log_state(spa, SPA_LOG_GOOD);
3433}
3434
3435static void
3436spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3437    boolean_t update_config_cache)
3438{
3439	vdev_t *rvd = spa->spa_root_vdev;
3440	int need_update = B_FALSE;
3441
3442	/*
3443	 * If the config cache is stale, or we have uninitialized
3444	 * metaslabs (see spa_vdev_add()), then update the config.
3445	 *
3446	 * If this is a verbatim import, trust the current
3447	 * in-core spa_config and update the disk labels.
3448	 */
3449	if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3450	    spa->spa_load_state == SPA_LOAD_IMPORT ||
3451	    spa->spa_load_state == SPA_LOAD_RECOVER ||
3452	    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3453		need_update = B_TRUE;
3454
3455	for (int c = 0; c < rvd->vdev_children; c++)
3456		if (rvd->vdev_child[c]->vdev_ms_array == 0)
3457			need_update = B_TRUE;
3458
3459	/*
3460	 * Update the config cache asychronously in case we're the
3461	 * root pool, in which case the config cache isn't writable yet.
3462	 */
3463	if (need_update)
3464		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3465}
3466
3467static void
3468spa_ld_prepare_for_reload(spa_t *spa)
3469{
3470	int mode = spa->spa_mode;
3471	int async_suspended = spa->spa_async_suspended;
3472
3473	spa_unload(spa);
3474	spa_deactivate(spa);
3475	spa_activate(spa, mode);
3476
3477	/*
3478	 * We save the value of spa_async_suspended as it gets reset to 0 by
3479	 * spa_unload(). We want to restore it back to the original value before
3480	 * returning as we might be calling spa_async_resume() later.
3481	 */
3482	spa->spa_async_suspended = async_suspended;
3483}
3484
3485static int
3486spa_ld_read_checkpoint_txg(spa_t *spa)
3487{
3488	uberblock_t checkpoint;
3489	int error = 0;
3490
3491	ASSERT0(spa->spa_checkpoint_txg);
3492	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3493
3494	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3495	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3496	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3497
3498	if (error == ENOENT)
3499		return (0);
3500
3501	if (error != 0)
3502		return (error);
3503
3504	ASSERT3U(checkpoint.ub_txg, !=, 0);
3505	ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3506	ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3507	spa->spa_checkpoint_txg = checkpoint.ub_txg;
3508	spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3509
3510	return (0);
3511}
3512
3513static int
3514spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3515{
3516	int error = 0;
3517
3518	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3519	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3520
3521	/*
3522	 * Never trust the config that is provided unless we are assembling
3523	 * a pool following a split.
3524	 * This means don't trust blkptrs and the vdev tree in general. This
3525	 * also effectively puts the spa in read-only mode since
3526	 * spa_writeable() checks for spa_trust_config to be true.
3527	 * We will later load a trusted config from the MOS.
3528	 */
3529	if (type != SPA_IMPORT_ASSEMBLE)
3530		spa->spa_trust_config = B_FALSE;
3531
3532	/*
3533	 * Parse the config provided to create a vdev tree.
3534	 */
3535	error = spa_ld_parse_config(spa, type);
3536	if (error != 0)
3537		return (error);
3538
3539	/*
3540	 * Now that we have the vdev tree, try to open each vdev. This involves
3541	 * opening the underlying physical device, retrieving its geometry and
3542	 * probing the vdev with a dummy I/O. The state of each vdev will be set
3543	 * based on the success of those operations. After this we'll be ready
3544	 * to read from the vdevs.
3545	 */
3546	error = spa_ld_open_vdevs(spa);
3547	if (error != 0)
3548		return (error);
3549
3550	/*
3551	 * Read the label of each vdev and make sure that the GUIDs stored
3552	 * there match the GUIDs in the config provided.
3553	 * If we're assembling a new pool that's been split off from an
3554	 * existing pool, the labels haven't yet been updated so we skip
3555	 * validation for now.
3556	 */
3557	if (type != SPA_IMPORT_ASSEMBLE) {
3558		error = spa_ld_validate_vdevs(spa);
3559		if (error != 0)
3560			return (error);
3561	}
3562
3563	/*
3564	 * Read all vdev labels to find the best uberblock (i.e. latest,
3565	 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3566	 * get the list of features required to read blkptrs in the MOS from
3567	 * the vdev label with the best uberblock and verify that our version
3568	 * of zfs supports them all.
3569	 */
3570	error = spa_ld_select_uberblock(spa, type);
3571	if (error != 0)
3572		return (error);
3573
3574	/*
3575	 * Pass that uberblock to the dsl_pool layer which will open the root
3576	 * blkptr. This blkptr points to the latest version of the MOS and will
3577	 * allow us to read its contents.
3578	 */
3579	error = spa_ld_open_rootbp(spa);
3580	if (error != 0)
3581		return (error);
3582
3583	return (0);
3584}
3585
3586static int
3587spa_ld_checkpoint_rewind(spa_t *spa)
3588{
3589	uberblock_t checkpoint;
3590	int error = 0;
3591
3592	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3593	ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3594
3595	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3596	    DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3597	    sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3598
3599	if (error != 0) {
3600		spa_load_failed(spa, "unable to retrieve checkpointed "
3601		    "uberblock from the MOS config [error=%d]", error);
3602
3603		if (error == ENOENT)
3604			error = ZFS_ERR_NO_CHECKPOINT;
3605
3606		return (error);
3607	}
3608
3609	ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3610	ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3611
3612	/*
3613	 * We need to update the txg and timestamp of the checkpointed
3614	 * uberblock to be higher than the latest one. This ensures that
3615	 * the checkpointed uberblock is selected if we were to close and
3616	 * reopen the pool right after we've written it in the vdev labels.
3617	 * (also see block comment in vdev_uberblock_compare)
3618	 */
3619	checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3620	checkpoint.ub_timestamp = gethrestime_sec();
3621
3622	/*
3623	 * Set current uberblock to be the checkpointed uberblock.
3624	 */
3625	spa->spa_uberblock = checkpoint;
3626
3627	/*
3628	 * If we are doing a normal rewind, then the pool is open for
3629	 * writing and we sync the "updated" checkpointed uberblock to
3630	 * disk. Once this is done, we've basically rewound the whole
3631	 * pool and there is no way back.
3632	 *
3633	 * There are cases when we don't want to attempt and sync the
3634	 * checkpointed uberblock to disk because we are opening a
3635	 * pool as read-only. Specifically, verifying the checkpointed
3636	 * state with zdb, and importing the checkpointed state to get
3637	 * a "preview" of its content.
3638	 */
3639	if (spa_writeable(spa)) {
3640		vdev_t *rvd = spa->spa_root_vdev;
3641
3642		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3643		vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3644		int svdcount = 0;
3645		int children = rvd->vdev_children;
3646		int c0 = spa_get_random(children);
3647
3648		for (int c = 0; c < children; c++) {
3649			vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3650
3651			/* Stop when revisiting the first vdev */
3652			if (c > 0 && svd[0] == vd)
3653				break;
3654
3655			if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3656			    !vdev_is_concrete(vd))
3657				continue;
3658
3659			svd[svdcount++] = vd;
3660			if (svdcount == SPA_SYNC_MIN_VDEVS)
3661				break;
3662		}
3663		error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3664		if (error == 0)
3665			spa->spa_last_synced_guid = rvd->vdev_guid;
3666		spa_config_exit(spa, SCL_ALL, FTAG);
3667
3668		if (error != 0) {
3669			spa_load_failed(spa, "failed to write checkpointed "
3670			    "uberblock to the vdev labels [error=%d]", error);
3671			return (error);
3672		}
3673	}
3674
3675	return (0);
3676}
3677
3678static int
3679spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3680    boolean_t *update_config_cache)
3681{
3682	int error;
3683
3684	/*
3685	 * Parse the config for pool, open and validate vdevs,
3686	 * select an uberblock, and use that uberblock to open
3687	 * the MOS.
3688	 */
3689	error = spa_ld_mos_init(spa, type);
3690	if (error != 0)
3691		return (error);
3692
3693	/*
3694	 * Retrieve the trusted config stored in the MOS and use it to create
3695	 * a new, exact version of the vdev tree, then reopen all vdevs.
3696	 */
3697	error = spa_ld_trusted_config(spa, type, B_FALSE);
3698	if (error == EAGAIN) {
3699		if (update_config_cache != NULL)
3700			*update_config_cache = B_TRUE;
3701
3702		/*
3703		 * Redo the loading process with the trusted config if it is
3704		 * too different from the untrusted config.
3705		 */
3706		spa_ld_prepare_for_reload(spa);
3707		spa_load_note(spa, "RELOADING");
3708		error = spa_ld_mos_init(spa, type);
3709		if (error != 0)
3710			return (error);
3711
3712		error = spa_ld_trusted_config(spa, type, B_TRUE);
3713		if (error != 0)
3714			return (error);
3715
3716	} else if (error != 0) {
3717		return (error);
3718	}
3719
3720	return (0);
3721}
3722
3723/*
3724 * Load an existing storage pool, using the config provided. This config
3725 * describes which vdevs are part of the pool and is later validated against
3726 * partial configs present in each vdev's label and an entire copy of the
3727 * config stored in the MOS.
3728 */
3729static int
3730spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
3731{
3732	int error = 0;
3733	boolean_t missing_feat_write = B_FALSE;
3734	boolean_t checkpoint_rewind =
3735	    (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3736	boolean_t update_config_cache = B_FALSE;
3737
3738	ASSERT(MUTEX_HELD(&spa_namespace_lock));
3739	ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3740
3741	spa_load_note(spa, "LOADING");
3742
3743	error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
3744	if (error != 0)
3745		return (error);
3746
3747	/*
3748	 * If we are rewinding to the checkpoint then we need to repeat
3749	 * everything we've done so far in this function but this time
3750	 * selecting the checkpointed uberblock and using that to open
3751	 * the MOS.
3752	 */
3753	if (checkpoint_rewind) {
3754		/*
3755		 * If we are rewinding to the checkpoint update config cache
3756		 * anyway.
3757		 */
3758		update_config_cache = B_TRUE;
3759
3760		/*
3761		 * Extract the checkpointed uberblock from the current MOS
3762		 * and use this as the pool's uberblock from now on. If the
3763		 * pool is imported as writeable we also write the checkpoint
3764		 * uberblock to the labels, making the rewind permanent.
3765		 */
3766		error = spa_ld_checkpoint_rewind(spa);
3767		if (error != 0)
3768			return (error);
3769
3770		/*
3771		 * Redo the loading process process again with the
3772		 * checkpointed uberblock.
3773		 */
3774		spa_ld_prepare_for_reload(spa);
3775		spa_load_note(spa, "LOADING checkpointed uberblock");
3776		error = spa_ld_mos_with_trusted_config(spa, type, NULL);
3777		if (error != 0)
3778			return (error);
3779	}
3780
3781	/*
3782	 * Retrieve the checkpoint txg if the pool has a checkpoint.
3783	 */
3784	error = spa_ld_read_checkpoint_txg(spa);
3785	if (error != 0)
3786		return (error);
3787
3788	/*
3789	 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3790	 * from the pool and their contents were re-mapped to other vdevs. Note
3791	 * that everything that we read before this step must have been
3792	 * rewritten on concrete vdevs after the last device removal was
3793	 * initiated. Otherwise we could be reading from indirect vdevs before
3794	 * we have loaded their mappings.
3795	 */
3796	error = spa_ld_open_indirect_vdev_metadata(spa);
3797	if (error != 0)
3798		return (error);
3799
3800	/*
3801	 * Retrieve the full list of active features from the MOS and check if
3802	 * they are all supported.
3803	 */
3804	error = spa_ld_check_features(spa, &missing_feat_write);
3805	if (error != 0)
3806		return (error);
3807
3808	/*
3809	 * Load several special directories from the MOS needed by the dsl_pool
3810	 * layer.
3811	 */
3812	error = spa_ld_load_special_directories(spa);
3813	if (error != 0)
3814		return (error);
3815
3816	/*
3817	 * Retrieve pool properties from the MOS.
3818	 */
3819	error = spa_ld_get_props(spa);
3820	if (error != 0)
3821		return (error);
3822
3823	/*
3824	 * Retrieve the list of auxiliary devices - cache devices and spares -
3825	 * and open them.
3826	 */
3827	error = spa_ld_open_aux_vdevs(spa, type);
3828	if (error != 0)
3829		return (error);
3830
3831	/*
3832	 * Load the metadata for all vdevs. Also check if unopenable devices
3833	 * should be autoreplaced.
3834	 */
3835	error = spa_ld_load_vdev_metadata(spa);
3836	if (error != 0)
3837		return (error);
3838
3839	error = spa_ld_load_dedup_tables(spa);
3840	if (error != 0)
3841		return (error);
3842
3843	/*
3844	 * Verify the logs now to make sure we don't have any unexpected errors
3845	 * when we claim log blocks later.
3846	 */
3847	error = spa_ld_verify_logs(spa, type, ereport);
3848	if (error != 0)
3849		return (error);
3850
3851	if (missing_feat_write) {
3852		ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3853
3854		/*
3855		 * At this point, we know that we can open the pool in
3856		 * read-only mode but not read-write mode. We now have enough
3857		 * information and can return to userland.
3858		 */
3859		return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3860		    ENOTSUP));
3861	}
3862
3863	/*
3864	 * Traverse the last txgs to make sure the pool was left off in a safe
3865	 * state. When performing an extreme rewind, we verify the whole pool,
3866	 * which can take a very long time.
3867	 */
3868	error = spa_ld_verify_pool_data(spa);
3869	if (error != 0)
3870		return (error);
3871
3872	/*
3873	 * Calculate the deflated space for the pool. This must be done before
3874	 * we write anything to the pool because we'd need to update the space
3875	 * accounting using the deflated sizes.
3876	 */
3877	spa_update_dspace(spa);
3878
3879	/*
3880	 * We have now retrieved all the information we needed to open the
3881	 * pool. If we are importing the pool in read-write mode, a few
3882	 * additional steps must be performed to finish the import.
3883	 */
3884	if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3885	    spa->spa_load_max_txg == UINT64_MAX)) {
3886		uint64_t config_cache_txg = spa->spa_config_txg;
3887
3888		ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3889
3890		/*
3891		 * In case of a checkpoint rewind, log the original txg
3892		 * of the checkpointed uberblock.
3893		 */
3894		if (checkpoint_rewind) {
3895			spa_history_log_internal(spa, "checkpoint rewind",
3896			    NULL, "rewound state to txg=%llu",
3897			    (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
3898		}
3899
3900		/*
3901		 * Traverse the ZIL and claim all blocks.
3902		 */
3903		spa_ld_claim_log_blocks(spa);
3904
3905		/*
3906		 * Kick-off the syncing thread.
3907		 */
3908		spa->spa_sync_on = B_TRUE;
3909		txg_sync_start(spa->spa_dsl_pool);
3910
3911		/*
3912		 * Wait for all claims to sync.  We sync up to the highest
3913		 * claimed log block birth time so that claimed log blocks
3914		 * don't appear to be from the future.  spa_claim_max_txg
3915		 * will have been set for us by ZIL traversal operations
3916		 * performed above.
3917		 */
3918		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3919
3920		/*
3921		 * Check if we need to request an update of the config. On the
3922		 * next sync, we would update the config stored in vdev labels
3923		 * and the cachefile (by default /etc/zfs/zpool.cache).
3924		 */
3925		spa_ld_check_for_config_update(spa, config_cache_txg,
3926		    update_config_cache);
3927
3928		/*
3929		 * Check all DTLs to see if anything needs resilvering.
3930		 */
3931		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3932		    vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3933			spa_async_request(spa, SPA_ASYNC_RESILVER);
3934
3935		/*
3936		 * Log the fact that we booted up (so that we can detect if
3937		 * we rebooted in the middle of an operation).
3938		 */
3939		spa_history_log_version(spa, "open");
3940
3941		/*
3942		 * Delete any inconsistent datasets.
3943		 */
3944		(void) dmu_objset_find(spa_name(spa),
3945		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3946
3947		/*
3948		 * Clean up any stale temporary dataset userrefs.
3949		 */
3950		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3951
3952		spa_restart_removal(spa);
3953
3954		spa_spawn_aux_threads(spa);
3955	}
3956
3957	spa_load_note(spa, "LOADED");
3958
3959	return (0);
3960}
3961
3962static int
3963spa_load_retry(spa_t *spa, spa_load_state_t state)
3964{
3965	int mode = spa->spa_mode;
3966
3967	spa_unload(spa);
3968	spa_deactivate(spa);
3969
3970	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3971
3972	spa_activate(spa, mode);
3973	spa_async_suspend(spa);
3974
3975	spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3976	    (u_longlong_t)spa->spa_load_max_txg);
3977
3978	return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3979}
3980
3981/*
3982 * If spa_load() fails this function will try loading prior txg's. If
3983 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3984 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3985 * function will not rewind the pool and will return the same error as
3986 * spa_load().
3987 */
3988static int
3989spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3990    int rewind_flags)
3991{
3992	nvlist_t *loadinfo = NULL;
3993	nvlist_t *config = NULL;
3994	int load_error, rewind_error;
3995	uint64_t safe_rewind_txg;
3996	uint64_t min_txg;
3997
3998	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3999		spa->spa_load_max_txg = spa->spa_load_txg;
4000		spa_set_log_state(spa, SPA_LOG_CLEAR);
4001	} else {
4002		spa->spa_load_max_txg = max_request;
4003		if (max_request != UINT64_MAX)
4004			spa->spa_extreme_rewind = B_TRUE;
4005	}
4006
4007	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4008	if (load_error == 0)
4009		return (0);
4010	if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4011		/*
4012		 * When attempting checkpoint-rewind on a pool with no
4013		 * checkpoint, we should not attempt to load uberblocks
4014		 * from previous txgs when spa_load fails.
4015		 */
4016		ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4017		return (load_error);
4018	}
4019
4020	if (spa->spa_root_vdev != NULL)
4021		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4022
4023	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4024	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4025
4026	if (rewind_flags & ZPOOL_NEVER_REWIND) {
4027		nvlist_free(config);
4028		return (load_error);
4029	}
4030
4031	if (state == SPA_LOAD_RECOVER) {
4032		/* Price of rolling back is discarding txgs, including log */
4033		spa_set_log_state(spa, SPA_LOG_CLEAR);
4034	} else {
4035		/*
4036		 * If we aren't rolling back save the load info from our first
4037		 * import attempt so that we can restore it after attempting
4038		 * to rewind.
4039		 */
4040		loadinfo = spa->spa_load_info;
4041		spa->spa_load_info = fnvlist_alloc();
4042	}
4043
4044	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4045	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4046	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4047	    TXG_INITIAL : safe_rewind_txg;
4048
4049	/*
4050	 * Continue as long as we're finding errors, we're still within
4051	 * the acceptable rewind range, and we're still finding uberblocks
4052	 */
4053	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4054	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4055		if (spa->spa_load_max_txg < safe_rewind_txg)
4056			spa->spa_extreme_rewind = B_TRUE;
4057		rewind_error = spa_load_retry(spa, state);
4058	}
4059
4060	spa->spa_extreme_rewind = B_FALSE;
4061	spa->spa_load_max_txg = UINT64_MAX;
4062
4063	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4064		spa_config_set(spa, config);
4065	else
4066		nvlist_free(config);
4067
4068	if (state == SPA_LOAD_RECOVER) {
4069		ASSERT3P(loadinfo, ==, NULL);
4070		return (rewind_error);
4071	} else {
4072		/* Store the rewind info as part of the initial load info */
4073		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4074		    spa->spa_load_info);
4075
4076		/* Restore the initial load info */
4077		fnvlist_free(spa->spa_load_info);
4078		spa->spa_load_info = loadinfo;
4079
4080		return (load_error);
4081	}
4082}
4083
4084/*
4085 * Pool Open/Import
4086 *
4087 * The import case is identical to an open except that the configuration is sent
4088 * down from userland, instead of grabbed from the configuration cache.  For the
4089 * case of an open, the pool configuration will exist in the
4090 * POOL_STATE_UNINITIALIZED state.
4091 *
4092 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4093 * the same time open the pool, without having to keep around the spa_t in some
4094 * ambiguous state.
4095 */
4096static int
4097spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4098    nvlist_t **config)
4099{
4100	spa_t *spa;
4101	spa_load_state_t state = SPA_LOAD_OPEN;
4102	int error;
4103	int locked = B_FALSE;
4104	int firstopen = B_FALSE;
4105
4106	*spapp = NULL;
4107
4108	/*
4109	 * As disgusting as this is, we need to support recursive calls to this
4110	 * function because dsl_dir_open() is called during spa_load(), and ends
4111	 * up calling spa_open() again.  The real fix is to figure out how to
4112	 * avoid dsl_dir_open() calling this in the first place.
4113	 */
4114	if (mutex_owner(&spa_namespace_lock) != curthread) {
4115		mutex_enter(&spa_namespace_lock);
4116		locked = B_TRUE;
4117	}
4118
4119	if ((spa = spa_lookup(pool)) == NULL) {
4120		if (locked)
4121			mutex_exit(&spa_namespace_lock);
4122		return (SET_ERROR(ENOENT));
4123	}
4124
4125	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4126		zpool_rewind_policy_t policy;
4127
4128		firstopen = B_TRUE;
4129
4130		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
4131		    &policy);
4132		if (policy.zrp_request & ZPOOL_DO_REWIND)
4133			state = SPA_LOAD_RECOVER;
4134
4135		spa_activate(spa, spa_mode_global);
4136
4137		if (state != SPA_LOAD_RECOVER)
4138			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4139		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4140
4141		zfs_dbgmsg("spa_open_common: opening %s", pool);
4142		error = spa_load_best(spa, state, policy.zrp_txg,
4143		    policy.zrp_request);
4144
4145		if (error == EBADF) {
4146			/*
4147			 * If vdev_validate() returns failure (indicated by
4148			 * EBADF), it indicates that one of the vdevs indicates
4149			 * that the pool has been exported or destroyed.  If
4150			 * this is the case, the config cache is out of sync and
4151			 * we should remove the pool from the namespace.
4152			 */
4153			spa_unload(spa);
4154			spa_deactivate(spa);
4155			spa_write_cachefile(spa, B_TRUE, B_TRUE);
4156			spa_remove(spa);
4157			if (locked)
4158				mutex_exit(&spa_namespace_lock);
4159			return (SET_ERROR(ENOENT));
4160		}
4161
4162		if (error) {
4163			/*
4164			 * We can't open the pool, but we still have useful
4165			 * information: the state of each vdev after the
4166			 * attempted vdev_open().  Return this to the user.
4167			 */
4168			if (config != NULL && spa->spa_config) {
4169				VERIFY(nvlist_dup(spa->spa_config, config,
4170				    KM_SLEEP) == 0);
4171				VERIFY(nvlist_add_nvlist(*config,
4172				    ZPOOL_CONFIG_LOAD_INFO,
4173				    spa->spa_load_info) == 0);
4174			}
4175			spa_unload(spa);
4176			spa_deactivate(spa);
4177			spa->spa_last_open_failed = error;
4178			if (locked)
4179				mutex_exit(&spa_namespace_lock);
4180			*spapp = NULL;
4181			return (error);
4182		}
4183	}
4184
4185	spa_open_ref(spa, tag);
4186
4187	if (config != NULL)
4188		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4189
4190	/*
4191	 * If we've recovered the pool, pass back any information we
4192	 * gathered while doing the load.
4193	 */
4194	if (state == SPA_LOAD_RECOVER) {
4195		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4196		    spa->spa_load_info) == 0);
4197	}
4198
4199	if (locked) {
4200		spa->spa_last_open_failed = 0;
4201		spa->spa_last_ubsync_txg = 0;
4202		spa->spa_load_txg = 0;
4203		mutex_exit(&spa_namespace_lock);
4204#ifdef __FreeBSD__
4205#ifdef _KERNEL
4206		if (firstopen)
4207			zvol_create_minors(spa->spa_name);
4208#endif
4209#endif
4210	}
4211
4212	*spapp = spa;
4213
4214	return (0);
4215}
4216
4217int
4218spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4219    nvlist_t **config)
4220{
4221	return (spa_open_common(name, spapp, tag, policy, config));
4222}
4223
4224int
4225spa_open(const char *name, spa_t **spapp, void *tag)
4226{
4227	return (spa_open_common(name, spapp, tag, NULL, NULL));
4228}
4229
4230/*
4231 * Lookup the given spa_t, incrementing the inject count in the process,
4232 * preventing it from being exported or destroyed.
4233 */
4234spa_t *
4235spa_inject_addref(char *name)
4236{
4237	spa_t *spa;
4238
4239	mutex_enter(&spa_namespace_lock);
4240	if ((spa = spa_lookup(name)) == NULL) {
4241		mutex_exit(&spa_namespace_lock);
4242		return (NULL);
4243	}
4244	spa->spa_inject_ref++;
4245	mutex_exit(&spa_namespace_lock);
4246
4247	return (spa);
4248}
4249
4250void
4251spa_inject_delref(spa_t *spa)
4252{
4253	mutex_enter(&spa_namespace_lock);
4254	spa->spa_inject_ref--;
4255	mutex_exit(&spa_namespace_lock);
4256}
4257
4258/*
4259 * Add spares device information to the nvlist.
4260 */
4261static void
4262spa_add_spares(spa_t *spa, nvlist_t *config)
4263{
4264	nvlist_t **spares;
4265	uint_t i, nspares;
4266	nvlist_t *nvroot;
4267	uint64_t guid;
4268	vdev_stat_t *vs;
4269	uint_t vsc;
4270	uint64_t pool;
4271
4272	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4273
4274	if (spa->spa_spares.sav_count == 0)
4275		return;
4276
4277	VERIFY(nvlist_lookup_nvlist(config,
4278	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4279	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4280	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4281	if (nspares != 0) {
4282		VERIFY(nvlist_add_nvlist_array(nvroot,
4283		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4284		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4285		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4286
4287		/*
4288		 * Go through and find any spares which have since been
4289		 * repurposed as an active spare.  If this is the case, update
4290		 * their status appropriately.
4291		 */
4292		for (i = 0; i < nspares; i++) {
4293			VERIFY(nvlist_lookup_uint64(spares[i],
4294			    ZPOOL_CONFIG_GUID, &guid) == 0);
4295			if (spa_spare_exists(guid, &pool, NULL) &&
4296			    pool != 0ULL) {
4297				VERIFY(nvlist_lookup_uint64_array(
4298				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
4299				    (uint64_t **)&vs, &vsc) == 0);
4300				vs->vs_state = VDEV_STATE_CANT_OPEN;
4301				vs->vs_aux = VDEV_AUX_SPARED;
4302			}
4303		}
4304	}
4305}
4306
4307/*
4308 * Add l2cache device information to the nvlist, including vdev stats.
4309 */
4310static void
4311spa_add_l2cache(spa_t *spa, nvlist_t *config)
4312{
4313	nvlist_t **l2cache;
4314	uint_t i, j, nl2cache;
4315	nvlist_t *nvroot;
4316	uint64_t guid;
4317	vdev_t *vd;
4318	vdev_stat_t *vs;
4319	uint_t vsc;
4320
4321	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4322
4323	if (spa->spa_l2cache.sav_count == 0)
4324		return;
4325
4326	VERIFY(nvlist_lookup_nvlist(config,
4327	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4328	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4329	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4330	if (nl2cache != 0) {
4331		VERIFY(nvlist_add_nvlist_array(nvroot,
4332		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4333		VERIFY(nvlist_lookup_nvlist_array(nvroot,
4334		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4335
4336		/*
4337		 * Update level 2 cache device stats.
4338		 */
4339
4340		for (i = 0; i < nl2cache; i++) {
4341			VERIFY(nvlist_lookup_uint64(l2cache[i],
4342			    ZPOOL_CONFIG_GUID, &guid) == 0);
4343
4344			vd = NULL;
4345			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4346				if (guid ==
4347				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4348					vd = spa->spa_l2cache.sav_vdevs[j];
4349					break;
4350				}
4351			}
4352			ASSERT(vd != NULL);
4353
4354			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4355			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4356			    == 0);
4357			vdev_get_stats(vd, vs);
4358		}
4359	}
4360}
4361
4362static void
4363spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4364{
4365	nvlist_t *features;
4366	zap_cursor_t zc;
4367	zap_attribute_t za;
4368
4369	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4370	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4371
4372	/* We may be unable to read features if pool is suspended. */
4373	if (spa_suspended(spa))
4374		goto out;
4375
4376	if (spa->spa_feat_for_read_obj != 0) {
4377		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4378		    spa->spa_feat_for_read_obj);
4379		    zap_cursor_retrieve(&zc, &za) == 0;
4380		    zap_cursor_advance(&zc)) {
4381			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4382			    za.za_num_integers == 1);
4383			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4384			    za.za_first_integer));
4385		}
4386		zap_cursor_fini(&zc);
4387	}
4388
4389	if (spa->spa_feat_for_write_obj != 0) {
4390		for (zap_cursor_init(&zc, spa->spa_meta_objset,
4391		    spa->spa_feat_for_write_obj);
4392		    zap_cursor_retrieve(&zc, &za) == 0;
4393		    zap_cursor_advance(&zc)) {
4394			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4395			    za.za_num_integers == 1);
4396			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
4397			    za.za_first_integer));
4398		}
4399		zap_cursor_fini(&zc);
4400	}
4401
4402out:
4403	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4404	    features) == 0);
4405	nvlist_free(features);
4406}
4407
4408int
4409spa_get_stats(const char *name, nvlist_t **config,
4410    char *altroot, size_t buflen)
4411{
4412	int error;
4413	spa_t *spa;
4414
4415	*config = NULL;
4416	error = spa_open_common(name, &spa, FTAG, NULL, config);
4417
4418	if (spa != NULL) {
4419		/*
4420		 * This still leaves a window of inconsistency where the spares
4421		 * or l2cache devices could change and the config would be
4422		 * self-inconsistent.
4423		 */
4424		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4425
4426		if (*config != NULL) {
4427			uint64_t loadtimes[2];
4428
4429			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4430			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4431			VERIFY(nvlist_add_uint64_array(*config,
4432			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4433
4434			VERIFY(nvlist_add_uint64(*config,
4435			    ZPOOL_CONFIG_ERRCOUNT,
4436			    spa_get_errlog_size(spa)) == 0);
4437
4438			if (spa_suspended(spa))
4439				VERIFY(nvlist_add_uint64(*config,
4440				    ZPOOL_CONFIG_SUSPENDED,
4441				    spa->spa_failmode) == 0);
4442
4443			spa_add_spares(spa, *config);
4444			spa_add_l2cache(spa, *config);
4445			spa_add_feature_stats(spa, *config);
4446		}
4447	}
4448
4449	/*
4450	 * We want to get the alternate root even for faulted pools, so we cheat
4451	 * and call spa_lookup() directly.
4452	 */
4453	if (altroot) {
4454		if (spa == NULL) {
4455			mutex_enter(&spa_namespace_lock);
4456			spa = spa_lookup(name);
4457			if (spa)
4458				spa_altroot(spa, altroot, buflen);
4459			else
4460				altroot[0] = '\0';
4461			spa = NULL;
4462			mutex_exit(&spa_namespace_lock);
4463		} else {
4464			spa_altroot(spa, altroot, buflen);
4465		}
4466	}
4467
4468	if (spa != NULL) {
4469		spa_config_exit(spa, SCL_CONFIG, FTAG);
4470		spa_close(spa, FTAG);
4471	}
4472
4473	return (error);
4474}
4475
4476/*
4477 * Validate that the auxiliary device array is well formed.  We must have an
4478 * array of nvlists, each which describes a valid leaf vdev.  If this is an
4479 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4480 * specified, as long as they are well-formed.
4481 */
4482static int
4483spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4484    spa_aux_vdev_t *sav, const char *config, uint64_t version,
4485    vdev_labeltype_t label)
4486{
4487	nvlist_t **dev;
4488	uint_t i, ndev;
4489	vdev_t *vd;
4490	int error;
4491
4492	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4493
4494	/*
4495	 * It's acceptable to have no devs specified.
4496	 */
4497	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4498		return (0);
4499
4500	if (ndev == 0)
4501		return (SET_ERROR(EINVAL));
4502
4503	/*
4504	 * Make sure the pool is formatted with a version that supports this
4505	 * device type.
4506	 */
4507	if (spa_version(spa) < version)
4508		return (SET_ERROR(ENOTSUP));
4509
4510	/*
4511	 * Set the pending device list so we correctly handle device in-use
4512	 * checking.
4513	 */
4514	sav->sav_pending = dev;
4515	sav->sav_npending = ndev;
4516
4517	for (i = 0; i < ndev; i++) {
4518		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4519		    mode)) != 0)
4520			goto out;
4521
4522		if (!vd->vdev_ops->vdev_op_leaf) {
4523			vdev_free(vd);
4524			error = SET_ERROR(EINVAL);
4525			goto out;
4526		}
4527
4528		/*
4529		 * The L2ARC currently only supports disk devices in
4530		 * kernel context.  For user-level testing, we allow it.
4531		 */
4532#ifdef _KERNEL
4533		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
4534		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
4535			error = SET_ERROR(ENOTBLK);
4536			vdev_free(vd);
4537			goto out;
4538		}
4539#endif
4540		vd->vdev_top = vd;
4541
4542		if ((error = vdev_open(vd)) == 0 &&
4543		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
4544			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4545			    vd->vdev_guid) == 0);
4546		}
4547
4548		vdev_free(vd);
4549
4550		if (error &&
4551		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4552			goto out;
4553		else
4554			error = 0;
4555	}
4556
4557out:
4558	sav->sav_pending = NULL;
4559	sav->sav_npending = 0;
4560	return (error);
4561}
4562
4563static int
4564spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4565{
4566	int error;
4567
4568	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4569
4570	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4571	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4572	    VDEV_LABEL_SPARE)) != 0) {
4573		return (error);
4574	}
4575
4576	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4577	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4578	    VDEV_LABEL_L2CACHE));
4579}
4580
4581static void
4582spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4583    const char *config)
4584{
4585	int i;
4586
4587	if (sav->sav_config != NULL) {
4588		nvlist_t **olddevs;
4589		uint_t oldndevs;
4590		nvlist_t **newdevs;
4591
4592		/*
4593		 * Generate new dev list by concatentating with the
4594		 * current dev list.
4595		 */
4596		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4597		    &olddevs, &oldndevs) == 0);
4598
4599		newdevs = kmem_alloc(sizeof (void *) *
4600		    (ndevs + oldndevs), KM_SLEEP);
4601		for (i = 0; i < oldndevs; i++)
4602			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4603			    KM_SLEEP) == 0);
4604		for (i = 0; i < ndevs; i++)
4605			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4606			    KM_SLEEP) == 0);
4607
4608		VERIFY(nvlist_remove(sav->sav_config, config,
4609		    DATA_TYPE_NVLIST_ARRAY) == 0);
4610
4611		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4612		    config, newdevs, ndevs + oldndevs) == 0);
4613		for (i = 0; i < oldndevs + ndevs; i++)
4614			nvlist_free(newdevs[i]);
4615		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4616	} else {
4617		/*
4618		 * Generate a new dev list.
4619		 */
4620		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4621		    KM_SLEEP) == 0);
4622		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4623		    devs, ndevs) == 0);
4624	}
4625}
4626
4627/*
4628 * Stop and drop level 2 ARC devices
4629 */
4630void
4631spa_l2cache_drop(spa_t *spa)
4632{
4633	vdev_t *vd;
4634	int i;
4635	spa_aux_vdev_t *sav = &spa->spa_l2cache;
4636
4637	for (i = 0; i < sav->sav_count; i++) {
4638		uint64_t pool;
4639
4640		vd = sav->sav_vdevs[i];
4641		ASSERT(vd != NULL);
4642
4643		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4644		    pool != 0ULL && l2arc_vdev_present(vd))
4645			l2arc_remove_vdev(vd);
4646	}
4647}
4648
4649/*
4650 * Pool Creation
4651 */
4652int
4653spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4654    nvlist_t *zplprops)
4655{
4656	spa_t *spa;
4657	char *altroot = NULL;
4658	vdev_t *rvd;
4659	dsl_pool_t *dp;
4660	dmu_tx_t *tx;
4661	int error = 0;
4662	uint64_t txg = TXG_INITIAL;
4663	nvlist_t **spares, **l2cache;
4664	uint_t nspares, nl2cache;
4665	uint64_t version, obj;
4666	boolean_t has_features;
4667
4668	/*
4669	 * If this pool already exists, return failure.
4670	 */
4671	mutex_enter(&spa_namespace_lock);
4672	if (spa_lookup(pool) != NULL) {
4673		mutex_exit(&spa_namespace_lock);
4674		return (SET_ERROR(EEXIST));
4675	}
4676
4677	/*
4678	 * Allocate a new spa_t structure.
4679	 */
4680	(void) nvlist_lookup_string(props,
4681	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4682	spa = spa_add(pool, NULL, altroot);
4683	spa_activate(spa, spa_mode_global);
4684
4685	if (props && (error = spa_prop_validate(spa, props))) {
4686		spa_deactivate(spa);
4687		spa_remove(spa);
4688		mutex_exit(&spa_namespace_lock);
4689		return (error);
4690	}
4691
4692	has_features = B_FALSE;
4693	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4694	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4695		if (zpool_prop_feature(nvpair_name(elem)))
4696			has_features = B_TRUE;
4697	}
4698
4699	if (has_features || nvlist_lookup_uint64(props,
4700	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4701		version = SPA_VERSION;
4702	}
4703	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4704
4705	spa->spa_first_txg = txg;
4706	spa->spa_uberblock.ub_txg = txg - 1;
4707	spa->spa_uberblock.ub_version = version;
4708	spa->spa_ubsync = spa->spa_uberblock;
4709	spa->spa_load_state = SPA_LOAD_CREATE;
4710	spa->spa_removing_phys.sr_state = DSS_NONE;
4711	spa->spa_removing_phys.sr_removing_vdev = -1;
4712	spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4713
4714	/*
4715	 * Create "The Godfather" zio to hold all async IOs
4716	 */
4717	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4718	    KM_SLEEP);
4719	for (int i = 0; i < max_ncpus; i++) {
4720		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4721		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4722		    ZIO_FLAG_GODFATHER);
4723	}
4724
4725	/*
4726	 * Create the root vdev.
4727	 */
4728	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4729
4730	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4731
4732	ASSERT(error != 0 || rvd != NULL);
4733	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4734
4735	if (error == 0 && !zfs_allocatable_devs(nvroot))
4736		error = SET_ERROR(EINVAL);
4737
4738	if (error == 0 &&
4739	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4740	    (error = spa_validate_aux(spa, nvroot, txg,
4741	    VDEV_ALLOC_ADD)) == 0) {
4742		for (int c = 0; c < rvd->vdev_children; c++) {
4743			vdev_ashift_optimize(rvd->vdev_child[c]);
4744			vdev_metaslab_set_size(rvd->vdev_child[c]);
4745			vdev_expand(rvd->vdev_child[c], txg);
4746		}
4747	}
4748
4749	spa_config_exit(spa, SCL_ALL, FTAG);
4750
4751	if (error != 0) {
4752		spa_unload(spa);
4753		spa_deactivate(spa);
4754		spa_remove(spa);
4755		mutex_exit(&spa_namespace_lock);
4756		return (error);
4757	}
4758
4759	/*
4760	 * Get the list of spares, if specified.
4761	 */
4762	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4763	    &spares, &nspares) == 0) {
4764		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4765		    KM_SLEEP) == 0);
4766		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4767		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4768		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4769		spa_load_spares(spa);
4770		spa_config_exit(spa, SCL_ALL, FTAG);
4771		spa->spa_spares.sav_sync = B_TRUE;
4772	}
4773
4774	/*
4775	 * Get the list of level 2 cache devices, if specified.
4776	 */
4777	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4778	    &l2cache, &nl2cache) == 0) {
4779		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4780		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4781		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4782		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4783		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4784		spa_load_l2cache(spa);
4785		spa_config_exit(spa, SCL_ALL, FTAG);
4786		spa->spa_l2cache.sav_sync = B_TRUE;
4787	}
4788
4789	spa->spa_is_initializing = B_TRUE;
4790	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
4791	spa->spa_meta_objset = dp->dp_meta_objset;
4792	spa->spa_is_initializing = B_FALSE;
4793
4794	/*
4795	 * Create DDTs (dedup tables).
4796	 */
4797	ddt_create(spa);
4798
4799	spa_update_dspace(spa);
4800
4801	tx = dmu_tx_create_assigned(dp, txg);
4802
4803	/*
4804	 * Create the pool config object.
4805	 */
4806	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4807	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4808	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4809
4810	if (zap_add(spa->spa_meta_objset,
4811	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4812	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4813		cmn_err(CE_PANIC, "failed to add pool config");
4814	}
4815
4816	if (spa_version(spa) >= SPA_VERSION_FEATURES)
4817		spa_feature_create_zap_objects(spa, tx);
4818
4819	if (zap_add(spa->spa_meta_objset,
4820	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4821	    sizeof (uint64_t), 1, &version, tx) != 0) {
4822		cmn_err(CE_PANIC, "failed to add pool version");
4823	}
4824
4825	/* Newly created pools with the right version are always deflated. */
4826	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4827		spa->spa_deflate = TRUE;
4828		if (zap_add(spa->spa_meta_objset,
4829		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4830		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4831			cmn_err(CE_PANIC, "failed to add deflate");
4832		}
4833	}
4834
4835	/*
4836	 * Create the deferred-free bpobj.  Turn off compression
4837	 * because sync-to-convergence takes longer if the blocksize
4838	 * keeps changing.
4839	 */
4840	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4841	dmu_object_set_compress(spa->spa_meta_objset, obj,
4842	    ZIO_COMPRESS_OFF, tx);
4843	if (zap_add(spa->spa_meta_objset,
4844	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4845	    sizeof (uint64_t), 1, &obj, tx) != 0) {
4846		cmn_err(CE_PANIC, "failed to add bpobj");
4847	}
4848	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4849	    spa->spa_meta_objset, obj));
4850
4851	/*
4852	 * Create the pool's history object.
4853	 */
4854	if (version >= SPA_VERSION_ZPOOL_HISTORY)
4855		spa_history_create_obj(spa, tx);
4856
4857	/*
4858	 * Generate some random noise for salted checksums to operate on.
4859	 */
4860	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4861	    sizeof (spa->spa_cksum_salt.zcs_bytes));
4862
4863	/*
4864	 * Set pool properties.
4865	 */
4866	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4867	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4868	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4869	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4870
4871	if (props != NULL) {
4872		spa_configfile_set(spa, props, B_FALSE);
4873		spa_sync_props(props, tx);
4874	}
4875
4876	dmu_tx_commit(tx);
4877
4878	spa->spa_sync_on = B_TRUE;
4879	txg_sync_start(spa->spa_dsl_pool);
4880
4881	/*
4882	 * We explicitly wait for the first transaction to complete so that our
4883	 * bean counters are appropriately updated.
4884	 */
4885	txg_wait_synced(spa->spa_dsl_pool, txg);
4886
4887	spa_spawn_aux_threads(spa);
4888
4889	spa_write_cachefile(spa, B_FALSE, B_TRUE);
4890	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4891
4892	spa_history_log_version(spa, "create");
4893
4894	/*
4895	 * Don't count references from objsets that are already closed
4896	 * and are making their way through the eviction process.
4897	 */
4898	spa_evicting_os_wait(spa);
4899	spa->spa_minref = refcount_count(&spa->spa_refcount);
4900	spa->spa_load_state = SPA_LOAD_NONE;
4901
4902	mutex_exit(&spa_namespace_lock);
4903
4904	return (0);
4905}
4906
4907#ifdef _KERNEL
4908#ifdef illumos
4909/*
4910 * Get the root pool information from the root disk, then import the root pool
4911 * during the system boot up time.
4912 */
4913extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
4914
4915static nvlist_t *
4916spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
4917{
4918	nvlist_t *config;
4919	nvlist_t *nvtop, *nvroot;
4920	uint64_t pgid;
4921
4922	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
4923		return (NULL);
4924
4925	/*
4926	 * Add this top-level vdev to the child array.
4927	 */
4928	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4929	    &nvtop) == 0);
4930	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4931	    &pgid) == 0);
4932	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
4933
4934	/*
4935	 * Put this pool's top-level vdevs into a root vdev.
4936	 */
4937	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4938	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4939	    VDEV_TYPE_ROOT) == 0);
4940	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4941	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4942	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4943	    &nvtop, 1) == 0);
4944
4945	/*
4946	 * Replace the existing vdev_tree with the new root vdev in
4947	 * this pool's configuration (remove the old, add the new).
4948	 */
4949	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4950	nvlist_free(nvroot);
4951	return (config);
4952}
4953
4954/*
4955 * Walk the vdev tree and see if we can find a device with "better"
4956 * configuration. A configuration is "better" if the label on that
4957 * device has a more recent txg.
4958 */
4959static void
4960spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
4961{
4962	for (int c = 0; c < vd->vdev_children; c++)
4963		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
4964
4965	if (vd->vdev_ops->vdev_op_leaf) {
4966		nvlist_t *label;
4967		uint64_t label_txg;
4968
4969		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
4970		    &label) != 0)
4971			return;
4972
4973		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
4974		    &label_txg) == 0);
4975
4976		/*
4977		 * Do we have a better boot device?
4978		 */
4979		if (label_txg > *txg) {
4980			*txg = label_txg;
4981			*avd = vd;
4982		}
4983		nvlist_free(label);
4984	}
4985}
4986
4987/*
4988 * Import a root pool.
4989 *
4990 * For x86. devpath_list will consist of devid and/or physpath name of
4991 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4992 * The GRUB "findroot" command will return the vdev we should boot.
4993 *
4994 * For Sparc, devpath_list consists the physpath name of the booting device
4995 * no matter the rootpool is a single device pool or a mirrored pool.
4996 * e.g.
4997 *	"/pci@1f,0/ide@d/disk@0,0:a"
4998 */
4999int
5000spa_import_rootpool(char *devpath, char *devid)
5001{
5002	spa_t *spa;
5003	vdev_t *rvd, *bvd, *avd = NULL;
5004	nvlist_t *config, *nvtop;
5005	uint64_t guid, txg;
5006	char *pname;
5007	int error;
5008
5009	/*
5010	 * Read the label from the boot device and generate a configuration.
5011	 */
5012	config = spa_generate_rootconf(devpath, devid, &guid);
5013#if defined(_OBP) && defined(_KERNEL)
5014	if (config == NULL) {
5015		if (strstr(devpath, "/iscsi/ssd") != NULL) {
5016			/* iscsi boot */
5017			get_iscsi_bootpath_phy(devpath);
5018			config = spa_generate_rootconf(devpath, devid, &guid);
5019		}
5020	}
5021#endif
5022	if (config == NULL) {
5023		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
5024		    devpath);
5025		return (SET_ERROR(EIO));
5026	}
5027
5028	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5029	    &pname) == 0);
5030	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
5031
5032	mutex_enter(&spa_namespace_lock);
5033	if ((spa = spa_lookup(pname)) != NULL) {
5034		/*
5035		 * Remove the existing root pool from the namespace so that we
5036		 * can replace it with the correct config we just read in.
5037		 */
5038		spa_remove(spa);
5039	}
5040
5041	spa = spa_add(pname, config, NULL);
5042	spa->spa_is_root = B_TRUE;
5043	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5044	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5045	    &spa->spa_ubsync.ub_version) != 0)
5046		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5047
5048	/*
5049	 * Build up a vdev tree based on the boot device's label config.
5050	 */
5051	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5052	    &nvtop) == 0);
5053	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5054	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5055	    VDEV_ALLOC_ROOTPOOL);
5056	spa_config_exit(spa, SCL_ALL, FTAG);
5057	if (error) {
5058		mutex_exit(&spa_namespace_lock);
5059		nvlist_free(config);
5060		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5061		    pname);
5062		return (error);
5063	}
5064
5065	/*
5066	 * Get the boot vdev.
5067	 */
5068	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
5069		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
5070		    (u_longlong_t)guid);
5071		error = SET_ERROR(ENOENT);
5072		goto out;
5073	}
5074
5075	/*
5076	 * Determine if there is a better boot device.
5077	 */
5078	avd = bvd;
5079	spa_alt_rootvdev(rvd, &avd, &txg);
5080	if (avd != bvd) {
5081		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
5082		    "try booting from '%s'", avd->vdev_path);
5083		error = SET_ERROR(EINVAL);
5084		goto out;
5085	}
5086
5087	/*
5088	 * If the boot device is part of a spare vdev then ensure that
5089	 * we're booting off the active spare.
5090	 */
5091	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
5092	    !bvd->vdev_isspare) {
5093		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
5094		    "try booting from '%s'",
5095		    bvd->vdev_parent->
5096		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
5097		error = SET_ERROR(EINVAL);
5098		goto out;
5099	}
5100
5101	error = 0;
5102out:
5103	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5104	vdev_free(rvd);
5105	spa_config_exit(spa, SCL_ALL, FTAG);
5106	mutex_exit(&spa_namespace_lock);
5107
5108	nvlist_free(config);
5109	return (error);
5110}
5111
5112#else	/* !illumos */
5113
5114extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
5115    uint64_t *count);
5116
5117static nvlist_t *
5118spa_generate_rootconf(const char *name)
5119{
5120	nvlist_t **configs, **tops;
5121	nvlist_t *config;
5122	nvlist_t *best_cfg, *nvtop, *nvroot;
5123	uint64_t *holes;
5124	uint64_t best_txg;
5125	uint64_t nchildren;
5126	uint64_t pgid;
5127	uint64_t count;
5128	uint64_t i;
5129	uint_t   nholes;
5130
5131	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
5132		return (NULL);
5133
5134	ASSERT3U(count, !=, 0);
5135	best_txg = 0;
5136	for (i = 0; i < count; i++) {
5137		uint64_t txg;
5138
5139		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
5140		    &txg) == 0);
5141		if (txg > best_txg) {
5142			best_txg = txg;
5143			best_cfg = configs[i];
5144		}
5145	}
5146
5147	nchildren = 1;
5148	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
5149	holes = NULL;
5150	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
5151	    &holes, &nholes);
5152
5153	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
5154	for (i = 0; i < nchildren; i++) {
5155		if (i >= count)
5156			break;
5157		if (configs[i] == NULL)
5158			continue;
5159		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
5160		    &nvtop) == 0);
5161		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
5162	}
5163	for (i = 0; holes != NULL && i < nholes; i++) {
5164		if (i >= nchildren)
5165			continue;
5166		if (tops[holes[i]] != NULL)
5167			continue;
5168		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
5169		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
5170		    VDEV_TYPE_HOLE) == 0);
5171		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
5172		    holes[i]) == 0);
5173		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
5174		    0) == 0);
5175	}
5176	for (i = 0; i < nchildren; i++) {
5177		if (tops[i] != NULL)
5178			continue;
5179		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
5180		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
5181		    VDEV_TYPE_MISSING) == 0);
5182		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
5183		    i) == 0);
5184		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
5185		    0) == 0);
5186	}
5187
5188	/*
5189	 * Create pool config based on the best vdev config.
5190	 */
5191	nvlist_dup(best_cfg, &config, KM_SLEEP);
5192
5193	/*
5194	 * Put this pool's top-level vdevs into a root vdev.
5195	 */
5196	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5197	    &pgid) == 0);
5198	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5199	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
5200	    VDEV_TYPE_ROOT) == 0);
5201	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
5202	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
5203	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
5204	    tops, nchildren) == 0);
5205
5206	/*
5207	 * Replace the existing vdev_tree with the new root vdev in
5208	 * this pool's configuration (remove the old, add the new).
5209	 */
5210	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
5211
5212	/*
5213	 * Drop vdev config elements that should not be present at pool level.
5214	 */
5215	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
5216	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
5217
5218	for (i = 0; i < count; i++)
5219		nvlist_free(configs[i]);
5220	kmem_free(configs, count * sizeof(void *));
5221	for (i = 0; i < nchildren; i++)
5222		nvlist_free(tops[i]);
5223	kmem_free(tops, nchildren * sizeof(void *));
5224	nvlist_free(nvroot);
5225	return (config);
5226}
5227
5228int
5229spa_import_rootpool(const char *name)
5230{
5231	spa_t *spa;
5232	vdev_t *rvd, *bvd, *avd = NULL;
5233	nvlist_t *config, *nvtop;
5234	uint64_t txg;
5235	char *pname;
5236	int error;
5237
5238	/*
5239	 * Read the label from the boot device and generate a configuration.
5240	 */
5241	config = spa_generate_rootconf(name);
5242
5243	mutex_enter(&spa_namespace_lock);
5244	if (config != NULL) {
5245		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
5246		    &pname) == 0 && strcmp(name, pname) == 0);
5247		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
5248		    == 0);
5249
5250		if ((spa = spa_lookup(pname)) != NULL) {
5251			/*
5252			 * The pool could already be imported,
5253			 * e.g., after reboot -r.
5254			 */
5255			if (spa->spa_state == POOL_STATE_ACTIVE) {
5256				mutex_exit(&spa_namespace_lock);
5257				nvlist_free(config);
5258				return (0);
5259			}
5260
5261			/*
5262			 * Remove the existing root pool from the namespace so
5263			 * that we can replace it with the correct config
5264			 * we just read in.
5265			 */
5266			spa_remove(spa);
5267		}
5268		spa = spa_add(pname, config, NULL);
5269
5270		/*
5271		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
5272		 * via spa_version().
5273		 */
5274		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
5275		    &spa->spa_ubsync.ub_version) != 0)
5276			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
5277	} else if ((spa = spa_lookup(name)) == NULL) {
5278		mutex_exit(&spa_namespace_lock);
5279		nvlist_free(config);
5280		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
5281		    name);
5282		return (EIO);
5283	} else {
5284		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
5285	}
5286	spa->spa_is_root = B_TRUE;
5287	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
5288
5289	/*
5290	 * Build up a vdev tree based on the boot device's label config.
5291	 */
5292	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5293	    &nvtop) == 0);
5294	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5295	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
5296	    VDEV_ALLOC_ROOTPOOL);
5297	spa_config_exit(spa, SCL_ALL, FTAG);
5298	if (error) {
5299		mutex_exit(&spa_namespace_lock);
5300		nvlist_free(config);
5301		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
5302		    pname);
5303		return (error);
5304	}
5305
5306	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5307	vdev_free(rvd);
5308	spa_config_exit(spa, SCL_ALL, FTAG);
5309	mutex_exit(&spa_namespace_lock);
5310
5311	nvlist_free(config);
5312	return (0);
5313}
5314
5315#endif	/* illumos */
5316#endif	/* _KERNEL */
5317
5318/*
5319 * Import a non-root pool into the system.
5320 */
5321int
5322spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5323{
5324	spa_t *spa;
5325	char *altroot = NULL;
5326	spa_load_state_t state = SPA_LOAD_IMPORT;
5327	zpool_rewind_policy_t policy;
5328	uint64_t mode = spa_mode_global;
5329	uint64_t readonly = B_FALSE;
5330	int error;
5331	nvlist_t *nvroot;
5332	nvlist_t **spares, **l2cache;
5333	uint_t nspares, nl2cache;
5334
5335	/*
5336	 * If a pool with this name exists, return failure.
5337	 */
5338	mutex_enter(&spa_namespace_lock);
5339	if (spa_lookup(pool) != NULL) {
5340		mutex_exit(&spa_namespace_lock);
5341		return (SET_ERROR(EEXIST));
5342	}
5343
5344	/*
5345	 * Create and initialize the spa structure.
5346	 */
5347	(void) nvlist_lookup_string(props,
5348	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5349	(void) nvlist_lookup_uint64(props,
5350	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5351	if (readonly)
5352		mode = FREAD;
5353	spa = spa_add(pool, config, altroot);
5354	spa->spa_import_flags = flags;
5355
5356	/*
5357	 * Verbatim import - Take a pool and insert it into the namespace
5358	 * as if it had been loaded at boot.
5359	 */
5360	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5361		if (props != NULL)
5362			spa_configfile_set(spa, props, B_FALSE);
5363
5364		spa_write_cachefile(spa, B_FALSE, B_TRUE);
5365		spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5366		zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5367		mutex_exit(&spa_namespace_lock);
5368		return (0);
5369	}
5370
5371	spa_activate(spa, mode);
5372
5373	/*
5374	 * Don't start async tasks until we know everything is healthy.
5375	 */
5376	spa_async_suspend(spa);
5377
5378	zpool_get_rewind_policy(config, &policy);
5379	if (policy.zrp_request & ZPOOL_DO_REWIND)
5380		state = SPA_LOAD_RECOVER;
5381
5382	spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5383
5384	if (state != SPA_LOAD_RECOVER) {
5385		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5386		zfs_dbgmsg("spa_import: importing %s", pool);
5387	} else {
5388		zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5389		    "(RECOVERY MODE)", pool, (longlong_t)policy.zrp_txg);
5390	}
5391	error = spa_load_best(spa, state, policy.zrp_txg, policy.zrp_request);
5392
5393	/*
5394	 * Propagate anything learned while loading the pool and pass it
5395	 * back to caller (i.e. rewind info, missing devices, etc).
5396	 */
5397	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5398	    spa->spa_load_info) == 0);
5399
5400	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5401	/*
5402	 * Toss any existing sparelist, as it doesn't have any validity
5403	 * anymore, and conflicts with spa_has_spare().
5404	 */
5405	if (spa->spa_spares.sav_config) {
5406		nvlist_free(spa->spa_spares.sav_config);
5407		spa->spa_spares.sav_config = NULL;
5408		spa_load_spares(spa);
5409	}
5410	if (spa->spa_l2cache.sav_config) {
5411		nvlist_free(spa->spa_l2cache.sav_config);
5412		spa->spa_l2cache.sav_config = NULL;
5413		spa_load_l2cache(spa);
5414	}
5415
5416	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5417	    &nvroot) == 0);
5418	if (error == 0)
5419		error = spa_validate_aux(spa, nvroot, -1ULL,
5420		    VDEV_ALLOC_SPARE);
5421	if (error == 0)
5422		error = spa_validate_aux(spa, nvroot, -1ULL,
5423		    VDEV_ALLOC_L2CACHE);
5424	spa_config_exit(spa, SCL_ALL, FTAG);
5425
5426	if (props != NULL)
5427		spa_configfile_set(spa, props, B_FALSE);
5428
5429	if (error != 0 || (props && spa_writeable(spa) &&
5430	    (error = spa_prop_set(spa, props)))) {
5431		spa_unload(spa);
5432		spa_deactivate(spa);
5433		spa_remove(spa);
5434		mutex_exit(&spa_namespace_lock);
5435		return (error);
5436	}
5437
5438	spa_async_resume(spa);
5439
5440	/*
5441	 * Override any spares and level 2 cache devices as specified by
5442	 * the user, as these may have correct device names/devids, etc.
5443	 */
5444	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5445	    &spares, &nspares) == 0) {
5446		if (spa->spa_spares.sav_config)
5447			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5448			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5449		else
5450			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5451			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5452		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5453		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5454		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5455		spa_load_spares(spa);
5456		spa_config_exit(spa, SCL_ALL, FTAG);
5457		spa->spa_spares.sav_sync = B_TRUE;
5458	}
5459	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5460	    &l2cache, &nl2cache) == 0) {
5461		if (spa->spa_l2cache.sav_config)
5462			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5463			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5464		else
5465			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5466			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5467		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5468		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5469		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5470		spa_load_l2cache(spa);
5471		spa_config_exit(spa, SCL_ALL, FTAG);
5472		spa->spa_l2cache.sav_sync = B_TRUE;
5473	}
5474
5475	/*
5476	 * Check for any removed devices.
5477	 */
5478	if (spa->spa_autoreplace) {
5479		spa_aux_check_removed(&spa->spa_spares);
5480		spa_aux_check_removed(&spa->spa_l2cache);
5481	}
5482
5483	if (spa_writeable(spa)) {
5484		/*
5485		 * Update the config cache to include the newly-imported pool.
5486		 */
5487		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5488	}
5489
5490	/*
5491	 * It's possible that the pool was expanded while it was exported.
5492	 * We kick off an async task to handle this for us.
5493	 */
5494	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5495
5496	spa_history_log_version(spa, "import");
5497
5498	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5499
5500	mutex_exit(&spa_namespace_lock);
5501
5502#ifdef __FreeBSD__
5503#ifdef _KERNEL
5504	zvol_create_minors(pool);
5505#endif
5506#endif
5507	return (0);
5508}
5509
5510nvlist_t *
5511spa_tryimport(nvlist_t *tryconfig)
5512{
5513	nvlist_t *config = NULL;
5514	char *poolname, *cachefile;
5515	spa_t *spa;
5516	uint64_t state;
5517	int error;
5518	zpool_rewind_policy_t policy;
5519
5520	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5521		return (NULL);
5522
5523	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5524		return (NULL);
5525
5526	/*
5527	 * Create and initialize the spa structure.
5528	 */
5529	mutex_enter(&spa_namespace_lock);
5530	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5531	spa_activate(spa, FREAD);
5532
5533	/*
5534	 * Rewind pool if a max txg was provided. Note that even though we
5535	 * retrieve the complete rewind policy, only the rewind txg is relevant
5536	 * for tryimport.
5537	 */
5538	zpool_get_rewind_policy(spa->spa_config, &policy);
5539	if (policy.zrp_txg != UINT64_MAX) {
5540		spa->spa_load_max_txg = policy.zrp_txg;
5541		spa->spa_extreme_rewind = B_TRUE;
5542		zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5543		    poolname, (longlong_t)policy.zrp_txg);
5544	} else {
5545		zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5546	}
5547
5548	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5549	    == 0) {
5550		zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5551		spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5552	} else {
5553		spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5554	}
5555
5556	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5557
5558	/*
5559	 * If 'tryconfig' was at least parsable, return the current config.
5560	 */
5561	if (spa->spa_root_vdev != NULL) {
5562		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5563		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5564		    poolname) == 0);
5565		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5566		    state) == 0);
5567		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5568		    spa->spa_uberblock.ub_timestamp) == 0);
5569		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5570		    spa->spa_load_info) == 0);
5571
5572		/*
5573		 * If the bootfs property exists on this pool then we
5574		 * copy it out so that external consumers can tell which
5575		 * pools are bootable.
5576		 */
5577		if ((!error || error == EEXIST) && spa->spa_bootfs) {
5578			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5579
5580			/*
5581			 * We have to play games with the name since the
5582			 * pool was opened as TRYIMPORT_NAME.
5583			 */
5584			if (dsl_dsobj_to_dsname(spa_name(spa),
5585			    spa->spa_bootfs, tmpname) == 0) {
5586				char *cp;
5587				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5588
5589				cp = strchr(tmpname, '/');
5590				if (cp == NULL) {
5591					(void) strlcpy(dsname, tmpname,
5592					    MAXPATHLEN);
5593				} else {
5594					(void) snprintf(dsname, MAXPATHLEN,
5595					    "%s/%s", poolname, ++cp);
5596				}
5597				VERIFY(nvlist_add_string(config,
5598				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5599				kmem_free(dsname, MAXPATHLEN);
5600			}
5601			kmem_free(tmpname, MAXPATHLEN);
5602		}
5603
5604		/*
5605		 * Add the list of hot spares and level 2 cache devices.
5606		 */
5607		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5608		spa_add_spares(spa, config);
5609		spa_add_l2cache(spa, config);
5610		spa_config_exit(spa, SCL_CONFIG, FTAG);
5611	}
5612
5613	spa_unload(spa);
5614	spa_deactivate(spa);
5615	spa_remove(spa);
5616	mutex_exit(&spa_namespace_lock);
5617
5618	return (config);
5619}
5620
5621/*
5622 * Pool export/destroy
5623 *
5624 * The act of destroying or exporting a pool is very simple.  We make sure there
5625 * is no more pending I/O and any references to the pool are gone.  Then, we
5626 * update the pool state and sync all the labels to disk, removing the
5627 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5628 * we don't sync the labels or remove the configuration cache.
5629 */
5630static int
5631spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5632    boolean_t force, boolean_t hardforce)
5633{
5634	spa_t *spa;
5635
5636	if (oldconfig)
5637		*oldconfig = NULL;
5638
5639	if (!(spa_mode_global & FWRITE))
5640		return (SET_ERROR(EROFS));
5641
5642	mutex_enter(&spa_namespace_lock);
5643	if ((spa = spa_lookup(pool)) == NULL) {
5644		mutex_exit(&spa_namespace_lock);
5645		return (SET_ERROR(ENOENT));
5646	}
5647
5648	/*
5649	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5650	 * reacquire the namespace lock, and see if we can export.
5651	 */
5652	spa_open_ref(spa, FTAG);
5653	mutex_exit(&spa_namespace_lock);
5654	spa_async_suspend(spa);
5655	mutex_enter(&spa_namespace_lock);
5656	spa_close(spa, FTAG);
5657
5658	/*
5659	 * The pool will be in core if it's openable,
5660	 * in which case we can modify its state.
5661	 */
5662	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
5663		/*
5664		 * Objsets may be open only because they're dirty, so we
5665		 * have to force it to sync before checking spa_refcnt.
5666		 */
5667		txg_wait_synced(spa->spa_dsl_pool, 0);
5668		spa_evicting_os_wait(spa);
5669
5670		/*
5671		 * A pool cannot be exported or destroyed if there are active
5672		 * references.  If we are resetting a pool, allow references by
5673		 * fault injection handlers.
5674		 */
5675		if (!spa_refcount_zero(spa) ||
5676		    (spa->spa_inject_ref != 0 &&
5677		    new_state != POOL_STATE_UNINITIALIZED)) {
5678			spa_async_resume(spa);
5679			mutex_exit(&spa_namespace_lock);
5680			return (SET_ERROR(EBUSY));
5681		}
5682
5683		/*
5684		 * A pool cannot be exported if it has an active shared spare.
5685		 * This is to prevent other pools stealing the active spare
5686		 * from an exported pool. At user's own will, such pool can
5687		 * be forcedly exported.
5688		 */
5689		if (!force && new_state == POOL_STATE_EXPORTED &&
5690		    spa_has_active_shared_spare(spa)) {
5691			spa_async_resume(spa);
5692			mutex_exit(&spa_namespace_lock);
5693			return (SET_ERROR(EXDEV));
5694		}
5695
5696		/*
5697		 * We want this to be reflected on every label,
5698		 * so mark them all dirty.  spa_unload() will do the
5699		 * final sync that pushes these changes out.
5700		 */
5701		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5702			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5703			spa->spa_state = new_state;
5704			spa->spa_final_txg = spa_last_synced_txg(spa) +
5705			    TXG_DEFER_SIZE + 1;
5706			vdev_config_dirty(spa->spa_root_vdev);
5707			spa_config_exit(spa, SCL_ALL, FTAG);
5708		}
5709	}
5710
5711	spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5712
5713	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5714		spa_unload(spa);
5715		spa_deactivate(spa);
5716	}
5717
5718	if (oldconfig && spa->spa_config)
5719		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5720
5721	if (new_state != POOL_STATE_UNINITIALIZED) {
5722		if (!hardforce)
5723			spa_write_cachefile(spa, B_TRUE, B_TRUE);
5724		spa_remove(spa);
5725	}
5726	mutex_exit(&spa_namespace_lock);
5727
5728	return (0);
5729}
5730
5731/*
5732 * Destroy a storage pool.
5733 */
5734int
5735spa_destroy(char *pool)
5736{
5737	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5738	    B_FALSE, B_FALSE));
5739}
5740
5741/*
5742 * Export a storage pool.
5743 */
5744int
5745spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5746    boolean_t hardforce)
5747{
5748	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5749	    force, hardforce));
5750}
5751
5752/*
5753 * Similar to spa_export(), this unloads the spa_t without actually removing it
5754 * from the namespace in any way.
5755 */
5756int
5757spa_reset(char *pool)
5758{
5759	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5760	    B_FALSE, B_FALSE));
5761}
5762
5763/*
5764 * ==========================================================================
5765 * Device manipulation
5766 * ==========================================================================
5767 */
5768
5769/*
5770 * Add a device to a storage pool.
5771 */
5772int
5773spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5774{
5775	uint64_t txg, id;
5776	int error;
5777	vdev_t *rvd = spa->spa_root_vdev;
5778	vdev_t *vd, *tvd;
5779	nvlist_t **spares, **l2cache;
5780	uint_t nspares, nl2cache;
5781
5782	ASSERT(spa_writeable(spa));
5783
5784	txg = spa_vdev_enter(spa);
5785
5786	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5787	    VDEV_ALLOC_ADD)) != 0)
5788		return (spa_vdev_exit(spa, NULL, txg, error));
5789
5790	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
5791
5792	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5793	    &nspares) != 0)
5794		nspares = 0;
5795
5796	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5797	    &nl2cache) != 0)
5798		nl2cache = 0;
5799
5800	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5801		return (spa_vdev_exit(spa, vd, txg, EINVAL));
5802
5803	if (vd->vdev_children != 0 &&
5804	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
5805		return (spa_vdev_exit(spa, vd, txg, error));
5806
5807	/*
5808	 * We must validate the spares and l2cache devices after checking the
5809	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
5810	 */
5811	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5812		return (spa_vdev_exit(spa, vd, txg, error));
5813
5814	/*
5815	 * If we are in the middle of a device removal, we can only add
5816	 * devices which match the existing devices in the pool.
5817	 * If we are in the middle of a removal, or have some indirect
5818	 * vdevs, we can not add raidz toplevels.
5819	 */
5820	if (spa->spa_vdev_removal != NULL ||
5821	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5822		for (int c = 0; c < vd->vdev_children; c++) {
5823			tvd = vd->vdev_child[c];
5824			if (spa->spa_vdev_removal != NULL &&
5825			    tvd->vdev_ashift !=
5826			    spa->spa_vdev_removal->svr_vdev->vdev_ashift) {
5827				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5828			}
5829			/* Fail if top level vdev is raidz */
5830			if (tvd->vdev_ops == &vdev_raidz_ops) {
5831				return (spa_vdev_exit(spa, vd, txg, EINVAL));
5832			}
5833			/*
5834			 * Need the top level mirror to be
5835			 * a mirror of leaf vdevs only
5836			 */
5837			if (tvd->vdev_ops == &vdev_mirror_ops) {
5838				for (uint64_t cid = 0;
5839				    cid < tvd->vdev_children; cid++) {
5840					vdev_t *cvd = tvd->vdev_child[cid];
5841					if (!cvd->vdev_ops->vdev_op_leaf) {
5842						return (spa_vdev_exit(spa, vd,
5843						    txg, EINVAL));
5844					}
5845				}
5846			}
5847		}
5848	}
5849
5850	for (int c = 0; c < vd->vdev_children; c++) {
5851
5852		/*
5853		 * Set the vdev id to the first hole, if one exists.
5854		 */
5855		for (id = 0; id < rvd->vdev_children; id++) {
5856			if (rvd->vdev_child[id]->vdev_ishole) {
5857				vdev_free(rvd->vdev_child[id]);
5858				break;
5859			}
5860		}
5861		tvd = vd->vdev_child[c];
5862		vdev_remove_child(vd, tvd);
5863		tvd->vdev_id = id;
5864		vdev_add_child(rvd, tvd);
5865		vdev_config_dirty(tvd);
5866	}
5867
5868	if (nspares != 0) {
5869		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5870		    ZPOOL_CONFIG_SPARES);
5871		spa_load_spares(spa);
5872		spa->spa_spares.sav_sync = B_TRUE;
5873	}
5874
5875	if (nl2cache != 0) {
5876		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5877		    ZPOOL_CONFIG_L2CACHE);
5878		spa_load_l2cache(spa);
5879		spa->spa_l2cache.sav_sync = B_TRUE;
5880	}
5881
5882	/*
5883	 * We have to be careful when adding new vdevs to an existing pool.
5884	 * If other threads start allocating from these vdevs before we
5885	 * sync the config cache, and we lose power, then upon reboot we may
5886	 * fail to open the pool because there are DVAs that the config cache
5887	 * can't translate.  Therefore, we first add the vdevs without
5888	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5889	 * and then let spa_config_update() initialize the new metaslabs.
5890	 *
5891	 * spa_load() checks for added-but-not-initialized vdevs, so that
5892	 * if we lose power at any point in this sequence, the remaining
5893	 * steps will be completed the next time we load the pool.
5894	 */
5895	(void) spa_vdev_exit(spa, vd, txg, 0);
5896
5897	mutex_enter(&spa_namespace_lock);
5898	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5899	spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5900	mutex_exit(&spa_namespace_lock);
5901
5902	return (0);
5903}
5904
5905/*
5906 * Attach a device to a mirror.  The arguments are the path to any device
5907 * in the mirror, and the nvroot for the new device.  If the path specifies
5908 * a device that is not mirrored, we automatically insert the mirror vdev.
5909 *
5910 * If 'replacing' is specified, the new device is intended to replace the
5911 * existing device; in this case the two devices are made into their own
5912 * mirror using the 'replacing' vdev, which is functionally identical to
5913 * the mirror vdev (it actually reuses all the same ops) but has a few
5914 * extra rules: you can't attach to it after it's been created, and upon
5915 * completion of resilvering, the first disk (the one being replaced)
5916 * is automatically detached.
5917 */
5918int
5919spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5920{
5921	uint64_t txg, dtl_max_txg;
5922	vdev_t *rvd = spa->spa_root_vdev;
5923	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5924	vdev_ops_t *pvops;
5925	char *oldvdpath, *newvdpath;
5926	int newvd_isspare;
5927	int error;
5928
5929	ASSERT(spa_writeable(spa));
5930
5931	txg = spa_vdev_enter(spa);
5932
5933	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5934
5935	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5936	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5937		error = (spa_has_checkpoint(spa)) ?
5938		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5939		return (spa_vdev_exit(spa, NULL, txg, error));
5940	}
5941
5942	if (spa->spa_vdev_removal != NULL ||
5943	    spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5944		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5945	}
5946
5947	if (oldvd == NULL)
5948		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5949
5950	if (!oldvd->vdev_ops->vdev_op_leaf)
5951		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5952
5953	pvd = oldvd->vdev_parent;
5954
5955	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5956	    VDEV_ALLOC_ATTACH)) != 0)
5957		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5958
5959	if (newrootvd->vdev_children != 1)
5960		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5961
5962	newvd = newrootvd->vdev_child[0];
5963
5964	if (!newvd->vdev_ops->vdev_op_leaf)
5965		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5966
5967	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5968		return (spa_vdev_exit(spa, newrootvd, txg, error));
5969
5970	/*
5971	 * Spares can't replace logs
5972	 */
5973	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5974		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5975
5976	if (!replacing) {
5977		/*
5978		 * For attach, the only allowable parent is a mirror or the root
5979		 * vdev.
5980		 */
5981		if (pvd->vdev_ops != &vdev_mirror_ops &&
5982		    pvd->vdev_ops != &vdev_root_ops)
5983			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5984
5985		pvops = &vdev_mirror_ops;
5986	} else {
5987		/*
5988		 * Active hot spares can only be replaced by inactive hot
5989		 * spares.
5990		 */
5991		if (pvd->vdev_ops == &vdev_spare_ops &&
5992		    oldvd->vdev_isspare &&
5993		    !spa_has_spare(spa, newvd->vdev_guid))
5994			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5995
5996		/*
5997		 * If the source is a hot spare, and the parent isn't already a
5998		 * spare, then we want to create a new hot spare.  Otherwise, we
5999		 * want to create a replacing vdev.  The user is not allowed to
6000		 * attach to a spared vdev child unless the 'isspare' state is
6001		 * the same (spare replaces spare, non-spare replaces
6002		 * non-spare).
6003		 */
6004		if (pvd->vdev_ops == &vdev_replacing_ops &&
6005		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
6006			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6007		} else if (pvd->vdev_ops == &vdev_spare_ops &&
6008		    newvd->vdev_isspare != oldvd->vdev_isspare) {
6009			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
6010		}
6011
6012		if (newvd->vdev_isspare)
6013			pvops = &vdev_spare_ops;
6014		else
6015			pvops = &vdev_replacing_ops;
6016	}
6017
6018	/*
6019	 * Make sure the new device is big enough.
6020	 */
6021	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6022		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6023
6024	/*
6025	 * The new device cannot have a higher alignment requirement
6026	 * than the top-level vdev.
6027	 */
6028	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6029		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6030
6031	/*
6032	 * If this is an in-place replacement, update oldvd's path and devid
6033	 * to make it distinguishable from newvd, and unopenable from now on.
6034	 */
6035	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6036		spa_strfree(oldvd->vdev_path);
6037		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6038		    KM_SLEEP);
6039		(void) sprintf(oldvd->vdev_path, "%s/%s",
6040		    newvd->vdev_path, "old");
6041		if (oldvd->vdev_devid != NULL) {
6042			spa_strfree(oldvd->vdev_devid);
6043			oldvd->vdev_devid = NULL;
6044		}
6045	}
6046
6047	/* mark the device being resilvered */
6048	newvd->vdev_resilver_txg = txg;
6049
6050	/*
6051	 * If the parent is not a mirror, or if we're replacing, insert the new
6052	 * mirror/replacing/spare vdev above oldvd.
6053	 */
6054	if (pvd->vdev_ops != pvops)
6055		pvd = vdev_add_parent(oldvd, pvops);
6056
6057	ASSERT(pvd->vdev_top->vdev_parent == rvd);
6058	ASSERT(pvd->vdev_ops == pvops);
6059	ASSERT(oldvd->vdev_parent == pvd);
6060
6061	/*
6062	 * Extract the new device from its root and add it to pvd.
6063	 */
6064	vdev_remove_child(newrootvd, newvd);
6065	newvd->vdev_id = pvd->vdev_children;
6066	newvd->vdev_crtxg = oldvd->vdev_crtxg;
6067	vdev_add_child(pvd, newvd);
6068
6069	tvd = newvd->vdev_top;
6070	ASSERT(pvd->vdev_top == tvd);
6071	ASSERT(tvd->vdev_parent == rvd);
6072
6073	vdev_config_dirty(tvd);
6074
6075	/*
6076	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6077	 * for any dmu_sync-ed blocks.  It will propagate upward when
6078	 * spa_vdev_exit() calls vdev_dtl_reassess().
6079	 */
6080	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6081
6082	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6083	    dtl_max_txg - TXG_INITIAL);
6084
6085	if (newvd->vdev_isspare) {
6086		spa_spare_activate(newvd);
6087		spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6088	}
6089
6090	oldvdpath = spa_strdup(oldvd->vdev_path);
6091	newvdpath = spa_strdup(newvd->vdev_path);
6092	newvd_isspare = newvd->vdev_isspare;
6093
6094	/*
6095	 * Mark newvd's DTL dirty in this txg.
6096	 */
6097	vdev_dirty(tvd, VDD_DTL, newvd, txg);
6098
6099	/*
6100	 * Schedule the resilver to restart in the future. We do this to
6101	 * ensure that dmu_sync-ed blocks have been stitched into the
6102	 * respective datasets.
6103	 */
6104	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
6105
6106	if (spa->spa_bootfs)
6107		spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6108
6109	spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6110
6111	/*
6112	 * Commit the config
6113	 */
6114	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6115
6116	spa_history_log_internal(spa, "vdev attach", NULL,
6117	    "%s vdev=%s %s vdev=%s",
6118	    replacing && newvd_isspare ? "spare in" :
6119	    replacing ? "replace" : "attach", newvdpath,
6120	    replacing ? "for" : "to", oldvdpath);
6121
6122	spa_strfree(oldvdpath);
6123	spa_strfree(newvdpath);
6124
6125	return (0);
6126}
6127
6128/*
6129 * Detach a device from a mirror or replacing vdev.
6130 *
6131 * If 'replace_done' is specified, only detach if the parent
6132 * is a replacing vdev.
6133 */
6134int
6135spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6136{
6137	uint64_t txg;
6138	int error;
6139	vdev_t *rvd = spa->spa_root_vdev;
6140	vdev_t *vd, *pvd, *cvd, *tvd;
6141	boolean_t unspare = B_FALSE;
6142	uint64_t unspare_guid = 0;
6143	char *vdpath;
6144
6145	ASSERT(spa_writeable(spa));
6146
6147	txg = spa_vdev_enter(spa);
6148
6149	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6150
6151	/*
6152	 * Besides being called directly from the userland through the
6153	 * ioctl interface, spa_vdev_detach() can be potentially called
6154	 * at the end of spa_vdev_resilver_done().
6155	 *
6156	 * In the regular case, when we have a checkpoint this shouldn't
6157	 * happen as we never empty the DTLs of a vdev during the scrub
6158	 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6159	 * should never get here when we have a checkpoint.
6160	 *
6161	 * That said, even in a case when we checkpoint the pool exactly
6162	 * as spa_vdev_resilver_done() calls this function everything
6163	 * should be fine as the resilver will return right away.
6164	 */
6165	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6166	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6167		error = (spa_has_checkpoint(spa)) ?
6168		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6169		return (spa_vdev_exit(spa, NULL, txg, error));
6170	}
6171
6172	if (vd == NULL)
6173		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6174
6175	if (!vd->vdev_ops->vdev_op_leaf)
6176		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6177
6178	pvd = vd->vdev_parent;
6179
6180	/*
6181	 * If the parent/child relationship is not as expected, don't do it.
6182	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6183	 * vdev that's replacing B with C.  The user's intent in replacing
6184	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
6185	 * the replace by detaching C, the expected behavior is to end up
6186	 * M(A,B).  But suppose that right after deciding to detach C,
6187	 * the replacement of B completes.  We would have M(A,C), and then
6188	 * ask to detach C, which would leave us with just A -- not what
6189	 * the user wanted.  To prevent this, we make sure that the
6190	 * parent/child relationship hasn't changed -- in this example,
6191	 * that C's parent is still the replacing vdev R.
6192	 */
6193	if (pvd->vdev_guid != pguid && pguid != 0)
6194		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6195
6196	/*
6197	 * Only 'replacing' or 'spare' vdevs can be replaced.
6198	 */
6199	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6200	    pvd->vdev_ops != &vdev_spare_ops)
6201		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6202
6203	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6204	    spa_version(spa) >= SPA_VERSION_SPARES);
6205
6206	/*
6207	 * Only mirror, replacing, and spare vdevs support detach.
6208	 */
6209	if (pvd->vdev_ops != &vdev_replacing_ops &&
6210	    pvd->vdev_ops != &vdev_mirror_ops &&
6211	    pvd->vdev_ops != &vdev_spare_ops)
6212		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6213
6214	/*
6215	 * If this device has the only valid copy of some data,
6216	 * we cannot safely detach it.
6217	 */
6218	if (vdev_dtl_required(vd))
6219		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6220
6221	ASSERT(pvd->vdev_children >= 2);
6222
6223	/*
6224	 * If we are detaching the second disk from a replacing vdev, then
6225	 * check to see if we changed the original vdev's path to have "/old"
6226	 * at the end in spa_vdev_attach().  If so, undo that change now.
6227	 */
6228	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6229	    vd->vdev_path != NULL) {
6230		size_t len = strlen(vd->vdev_path);
6231
6232		for (int c = 0; c < pvd->vdev_children; c++) {
6233			cvd = pvd->vdev_child[c];
6234
6235			if (cvd == vd || cvd->vdev_path == NULL)
6236				continue;
6237
6238			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6239			    strcmp(cvd->vdev_path + len, "/old") == 0) {
6240				spa_strfree(cvd->vdev_path);
6241				cvd->vdev_path = spa_strdup(vd->vdev_path);
6242				break;
6243			}
6244		}
6245	}
6246
6247	/*
6248	 * If we are detaching the original disk from a spare, then it implies
6249	 * that the spare should become a real disk, and be removed from the
6250	 * active spare list for the pool.
6251	 */
6252	if (pvd->vdev_ops == &vdev_spare_ops &&
6253	    vd->vdev_id == 0 &&
6254	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6255		unspare = B_TRUE;
6256
6257	/*
6258	 * Erase the disk labels so the disk can be used for other things.
6259	 * This must be done after all other error cases are handled,
6260	 * but before we disembowel vd (so we can still do I/O to it).
6261	 * But if we can't do it, don't treat the error as fatal --
6262	 * it may be that the unwritability of the disk is the reason
6263	 * it's being detached!
6264	 */
6265	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6266
6267	/*
6268	 * Remove vd from its parent and compact the parent's children.
6269	 */
6270	vdev_remove_child(pvd, vd);
6271	vdev_compact_children(pvd);
6272
6273	/*
6274	 * Remember one of the remaining children so we can get tvd below.
6275	 */
6276	cvd = pvd->vdev_child[pvd->vdev_children - 1];
6277
6278	/*
6279	 * If we need to remove the remaining child from the list of hot spares,
6280	 * do it now, marking the vdev as no longer a spare in the process.
6281	 * We must do this before vdev_remove_parent(), because that can
6282	 * change the GUID if it creates a new toplevel GUID.  For a similar
6283	 * reason, we must remove the spare now, in the same txg as the detach;
6284	 * otherwise someone could attach a new sibling, change the GUID, and
6285	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6286	 */
6287	if (unspare) {
6288		ASSERT(cvd->vdev_isspare);
6289		spa_spare_remove(cvd);
6290		unspare_guid = cvd->vdev_guid;
6291		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6292		cvd->vdev_unspare = B_TRUE;
6293	}
6294
6295	/*
6296	 * If the parent mirror/replacing vdev only has one child,
6297	 * the parent is no longer needed.  Remove it from the tree.
6298	 */
6299	if (pvd->vdev_children == 1) {
6300		if (pvd->vdev_ops == &vdev_spare_ops)
6301			cvd->vdev_unspare = B_FALSE;
6302		vdev_remove_parent(cvd);
6303	}
6304
6305
6306	/*
6307	 * We don't set tvd until now because the parent we just removed
6308	 * may have been the previous top-level vdev.
6309	 */
6310	tvd = cvd->vdev_top;
6311	ASSERT(tvd->vdev_parent == rvd);
6312
6313	/*
6314	 * Reevaluate the parent vdev state.
6315	 */
6316	vdev_propagate_state(cvd);
6317
6318	/*
6319	 * If the 'autoexpand' property is set on the pool then automatically
6320	 * try to expand the size of the pool. For example if the device we
6321	 * just detached was smaller than the others, it may be possible to
6322	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6323	 * first so that we can obtain the updated sizes of the leaf vdevs.
6324	 */
6325	if (spa->spa_autoexpand) {
6326		vdev_reopen(tvd);
6327		vdev_expand(tvd, txg);
6328	}
6329
6330	vdev_config_dirty(tvd);
6331
6332	/*
6333	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
6334	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6335	 * But first make sure we're not on any *other* txg's DTL list, to
6336	 * prevent vd from being accessed after it's freed.
6337	 */
6338	vdpath = spa_strdup(vd->vdev_path);
6339	for (int t = 0; t < TXG_SIZE; t++)
6340		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6341	vd->vdev_detached = B_TRUE;
6342	vdev_dirty(tvd, VDD_DTL, vd, txg);
6343
6344	spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6345
6346	/* hang on to the spa before we release the lock */
6347	spa_open_ref(spa, FTAG);
6348
6349	error = spa_vdev_exit(spa, vd, txg, 0);
6350
6351	spa_history_log_internal(spa, "detach", NULL,
6352	    "vdev=%s", vdpath);
6353	spa_strfree(vdpath);
6354
6355	/*
6356	 * If this was the removal of the original device in a hot spare vdev,
6357	 * then we want to go through and remove the device from the hot spare
6358	 * list of every other pool.
6359	 */
6360	if (unspare) {
6361		spa_t *altspa = NULL;
6362
6363		mutex_enter(&spa_namespace_lock);
6364		while ((altspa = spa_next(altspa)) != NULL) {
6365			if (altspa->spa_state != POOL_STATE_ACTIVE ||
6366			    altspa == spa)
6367				continue;
6368
6369			spa_open_ref(altspa, FTAG);
6370			mutex_exit(&spa_namespace_lock);
6371			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6372			mutex_enter(&spa_namespace_lock);
6373			spa_close(altspa, FTAG);
6374		}
6375		mutex_exit(&spa_namespace_lock);
6376
6377		/* search the rest of the vdevs for spares to remove */
6378		spa_vdev_resilver_done(spa);
6379	}
6380
6381	/* all done with the spa; OK to release */
6382	mutex_enter(&spa_namespace_lock);
6383	spa_close(spa, FTAG);
6384	mutex_exit(&spa_namespace_lock);
6385
6386	return (error);
6387}
6388
6389/*
6390 * Split a set of devices from their mirrors, and create a new pool from them.
6391 */
6392int
6393spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6394    nvlist_t *props, boolean_t exp)
6395{
6396	int error = 0;
6397	uint64_t txg, *glist;
6398	spa_t *newspa;
6399	uint_t c, children, lastlog;
6400	nvlist_t **child, *nvl, *tmp;
6401	dmu_tx_t *tx;
6402	char *altroot = NULL;
6403	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
6404	boolean_t activate_slog;
6405
6406	ASSERT(spa_writeable(spa));
6407
6408	txg = spa_vdev_enter(spa);
6409
6410	ASSERT(MUTEX_HELD(&spa_namespace_lock));
6411	if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6412		error = (spa_has_checkpoint(spa)) ?
6413		    ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6414		return (spa_vdev_exit(spa, NULL, txg, error));
6415	}
6416
6417	/* clear the log and flush everything up to now */
6418	activate_slog = spa_passivate_log(spa);
6419	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6420	error = spa_reset_logs(spa);
6421	txg = spa_vdev_config_enter(spa);
6422
6423	if (activate_slog)
6424		spa_activate_log(spa);
6425
6426	if (error != 0)
6427		return (spa_vdev_exit(spa, NULL, txg, error));
6428
6429	/* check new spa name before going any further */
6430	if (spa_lookup(newname) != NULL)
6431		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6432
6433	/*
6434	 * scan through all the children to ensure they're all mirrors
6435	 */
6436	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6437	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6438	    &children) != 0)
6439		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6440
6441	/* first, check to ensure we've got the right child count */
6442	rvd = spa->spa_root_vdev;
6443	lastlog = 0;
6444	for (c = 0; c < rvd->vdev_children; c++) {
6445		vdev_t *vd = rvd->vdev_child[c];
6446
6447		/* don't count the holes & logs as children */
6448		if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6449			if (lastlog == 0)
6450				lastlog = c;
6451			continue;
6452		}
6453
6454		lastlog = 0;
6455	}
6456	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6457		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6458
6459	/* next, ensure no spare or cache devices are part of the split */
6460	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6461	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6462		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6463
6464	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6465	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6466
6467	/* then, loop over each vdev and validate it */
6468	for (c = 0; c < children; c++) {
6469		uint64_t is_hole = 0;
6470
6471		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6472		    &is_hole);
6473
6474		if (is_hole != 0) {
6475			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6476			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6477				continue;
6478			} else {
6479				error = SET_ERROR(EINVAL);
6480				break;
6481			}
6482		}
6483
6484		/* which disk is going to be split? */
6485		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6486		    &glist[c]) != 0) {
6487			error = SET_ERROR(EINVAL);
6488			break;
6489		}
6490
6491		/* look it up in the spa */
6492		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6493		if (vml[c] == NULL) {
6494			error = SET_ERROR(ENODEV);
6495			break;
6496		}
6497
6498		/* make sure there's nothing stopping the split */
6499		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6500		    vml[c]->vdev_islog ||
6501		    !vdev_is_concrete(vml[c]) ||
6502		    vml[c]->vdev_isspare ||
6503		    vml[c]->vdev_isl2cache ||
6504		    !vdev_writeable(vml[c]) ||
6505		    vml[c]->vdev_children != 0 ||
6506		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6507		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6508			error = SET_ERROR(EINVAL);
6509			break;
6510		}
6511
6512		if (vdev_dtl_required(vml[c])) {
6513			error = SET_ERROR(EBUSY);
6514			break;
6515		}
6516
6517		/* we need certain info from the top level */
6518		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6519		    vml[c]->vdev_top->vdev_ms_array) == 0);
6520		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6521		    vml[c]->vdev_top->vdev_ms_shift) == 0);
6522		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6523		    vml[c]->vdev_top->vdev_asize) == 0);
6524		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6525		    vml[c]->vdev_top->vdev_ashift) == 0);
6526
6527		/* transfer per-vdev ZAPs */
6528		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6529		VERIFY0(nvlist_add_uint64(child[c],
6530		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6531
6532		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6533		VERIFY0(nvlist_add_uint64(child[c],
6534		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
6535		    vml[c]->vdev_parent->vdev_top_zap));
6536	}
6537
6538	if (error != 0) {
6539		kmem_free(vml, children * sizeof (vdev_t *));
6540		kmem_free(glist, children * sizeof (uint64_t));
6541		return (spa_vdev_exit(spa, NULL, txg, error));
6542	}
6543
6544	/* stop writers from using the disks */
6545	for (c = 0; c < children; c++) {
6546		if (vml[c] != NULL)
6547			vml[c]->vdev_offline = B_TRUE;
6548	}
6549	vdev_reopen(spa->spa_root_vdev);
6550
6551	/*
6552	 * Temporarily record the splitting vdevs in the spa config.  This
6553	 * will disappear once the config is regenerated.
6554	 */
6555	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6556	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6557	    glist, children) == 0);
6558	kmem_free(glist, children * sizeof (uint64_t));
6559
6560	mutex_enter(&spa->spa_props_lock);
6561	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6562	    nvl) == 0);
6563	mutex_exit(&spa->spa_props_lock);
6564	spa->spa_config_splitting = nvl;
6565	vdev_config_dirty(spa->spa_root_vdev);
6566
6567	/* configure and create the new pool */
6568	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6569	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6570	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6571	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6572	    spa_version(spa)) == 0);
6573	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6574	    spa->spa_config_txg) == 0);
6575	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6576	    spa_generate_guid(NULL)) == 0);
6577	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6578	(void) nvlist_lookup_string(props,
6579	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6580
6581	/* add the new pool to the namespace */
6582	newspa = spa_add(newname, config, altroot);
6583	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6584	newspa->spa_config_txg = spa->spa_config_txg;
6585	spa_set_log_state(newspa, SPA_LOG_CLEAR);
6586
6587	/* release the spa config lock, retaining the namespace lock */
6588	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6589
6590	if (zio_injection_enabled)
6591		zio_handle_panic_injection(spa, FTAG, 1);
6592
6593	spa_activate(newspa, spa_mode_global);
6594	spa_async_suspend(newspa);
6595
6596#ifndef illumos
6597	/* mark that we are creating new spa by splitting */
6598	newspa->spa_splitting_newspa = B_TRUE;
6599#endif
6600	newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6601
6602	/* create the new pool from the disks of the original pool */
6603	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6604#ifndef illumos
6605	newspa->spa_splitting_newspa = B_FALSE;
6606#endif
6607	if (error)
6608		goto out;
6609
6610	/* if that worked, generate a real config for the new pool */
6611	if (newspa->spa_root_vdev != NULL) {
6612		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6613		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
6614		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6615		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6616		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6617		    B_TRUE));
6618	}
6619
6620	/* set the props */
6621	if (props != NULL) {
6622		spa_configfile_set(newspa, props, B_FALSE);
6623		error = spa_prop_set(newspa, props);
6624		if (error)
6625			goto out;
6626	}
6627
6628	/* flush everything */
6629	txg = spa_vdev_config_enter(newspa);
6630	vdev_config_dirty(newspa->spa_root_vdev);
6631	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6632
6633	if (zio_injection_enabled)
6634		zio_handle_panic_injection(spa, FTAG, 2);
6635
6636	spa_async_resume(newspa);
6637
6638	/* finally, update the original pool's config */
6639	txg = spa_vdev_config_enter(spa);
6640	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6641	error = dmu_tx_assign(tx, TXG_WAIT);
6642	if (error != 0)
6643		dmu_tx_abort(tx);
6644	for (c = 0; c < children; c++) {
6645		if (vml[c] != NULL) {
6646			vdev_split(vml[c]);
6647			if (error == 0)
6648				spa_history_log_internal(spa, "detach", tx,
6649				    "vdev=%s", vml[c]->vdev_path);
6650
6651			vdev_free(vml[c]);
6652		}
6653	}
6654	spa->spa_avz_action = AVZ_ACTION_REBUILD;
6655	vdev_config_dirty(spa->spa_root_vdev);
6656	spa->spa_config_splitting = NULL;
6657	nvlist_free(nvl);
6658	if (error == 0)
6659		dmu_tx_commit(tx);
6660	(void) spa_vdev_exit(spa, NULL, txg, 0);
6661
6662	if (zio_injection_enabled)
6663		zio_handle_panic_injection(spa, FTAG, 3);
6664
6665	/* split is complete; log a history record */
6666	spa_history_log_internal(newspa, "split", NULL,
6667	    "from pool %s", spa_name(spa));
6668
6669	kmem_free(vml, children * sizeof (vdev_t *));
6670
6671	/* if we're not going to mount the filesystems in userland, export */
6672	if (exp)
6673		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6674		    B_FALSE, B_FALSE);
6675
6676	return (error);
6677
6678out:
6679	spa_unload(newspa);
6680	spa_deactivate(newspa);
6681	spa_remove(newspa);
6682
6683	txg = spa_vdev_config_enter(spa);
6684
6685	/* re-online all offlined disks */
6686	for (c = 0; c < children; c++) {
6687		if (vml[c] != NULL)
6688			vml[c]->vdev_offline = B_FALSE;
6689	}
6690	vdev_reopen(spa->spa_root_vdev);
6691
6692	nvlist_free(spa->spa_config_splitting);
6693	spa->spa_config_splitting = NULL;
6694	(void) spa_vdev_exit(spa, NULL, txg, error);
6695
6696	kmem_free(vml, children * sizeof (vdev_t *));
6697	return (error);
6698}
6699
6700/*
6701 * Find any device that's done replacing, or a vdev marked 'unspare' that's
6702 * currently spared, so we can detach it.
6703 */
6704static vdev_t *
6705spa_vdev_resilver_done_hunt(vdev_t *vd)
6706{
6707	vdev_t *newvd, *oldvd;
6708
6709	for (int c = 0; c < vd->vdev_children; c++) {
6710		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6711		if (oldvd != NULL)
6712			return (oldvd);
6713	}
6714
6715	/*
6716	 * Check for a completed replacement.  We always consider the first
6717	 * vdev in the list to be the oldest vdev, and the last one to be
6718	 * the newest (see spa_vdev_attach() for how that works).  In
6719	 * the case where the newest vdev is faulted, we will not automatically
6720	 * remove it after a resilver completes.  This is OK as it will require
6721	 * user intervention to determine which disk the admin wishes to keep.
6722	 */
6723	if (vd->vdev_ops == &vdev_replacing_ops) {
6724		ASSERT(vd->vdev_children > 1);
6725
6726		newvd = vd->vdev_child[vd->vdev_children - 1];
6727		oldvd = vd->vdev_child[0];
6728
6729		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6730		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6731		    !vdev_dtl_required(oldvd))
6732			return (oldvd);
6733	}
6734
6735	/*
6736	 * Check for a completed resilver with the 'unspare' flag set.
6737	 */
6738	if (vd->vdev_ops == &vdev_spare_ops) {
6739		vdev_t *first = vd->vdev_child[0];
6740		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6741
6742		if (last->vdev_unspare) {
6743			oldvd = first;
6744			newvd = last;
6745		} else if (first->vdev_unspare) {
6746			oldvd = last;
6747			newvd = first;
6748		} else {
6749			oldvd = NULL;
6750		}
6751
6752		if (oldvd != NULL &&
6753		    vdev_dtl_empty(newvd, DTL_MISSING) &&
6754		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6755		    !vdev_dtl_required(oldvd))
6756			return (oldvd);
6757
6758		/*
6759		 * If there are more than two spares attached to a disk,
6760		 * and those spares are not required, then we want to
6761		 * attempt to free them up now so that they can be used
6762		 * by other pools.  Once we're back down to a single
6763		 * disk+spare, we stop removing them.
6764		 */
6765		if (vd->vdev_children > 2) {
6766			newvd = vd->vdev_child[1];
6767
6768			if (newvd->vdev_isspare && last->vdev_isspare &&
6769			    vdev_dtl_empty(last, DTL_MISSING) &&
6770			    vdev_dtl_empty(last, DTL_OUTAGE) &&
6771			    !vdev_dtl_required(newvd))
6772				return (newvd);
6773		}
6774	}
6775
6776	return (NULL);
6777}
6778
6779static void
6780spa_vdev_resilver_done(spa_t *spa)
6781{
6782	vdev_t *vd, *pvd, *ppvd;
6783	uint64_t guid, sguid, pguid, ppguid;
6784
6785	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6786
6787	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6788		pvd = vd->vdev_parent;
6789		ppvd = pvd->vdev_parent;
6790		guid = vd->vdev_guid;
6791		pguid = pvd->vdev_guid;
6792		ppguid = ppvd->vdev_guid;
6793		sguid = 0;
6794		/*
6795		 * If we have just finished replacing a hot spared device, then
6796		 * we need to detach the parent's first child (the original hot
6797		 * spare) as well.
6798		 */
6799		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6800		    ppvd->vdev_children == 2) {
6801			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6802			sguid = ppvd->vdev_child[1]->vdev_guid;
6803		}
6804		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6805
6806		spa_config_exit(spa, SCL_ALL, FTAG);
6807		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6808			return;
6809		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6810			return;
6811		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6812	}
6813
6814	spa_config_exit(spa, SCL_ALL, FTAG);
6815}
6816
6817/*
6818 * Update the stored path or FRU for this vdev.
6819 */
6820int
6821spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6822    boolean_t ispath)
6823{
6824	vdev_t *vd;
6825	boolean_t sync = B_FALSE;
6826
6827	ASSERT(spa_writeable(spa));
6828
6829	spa_vdev_state_enter(spa, SCL_ALL);
6830
6831	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6832		return (spa_vdev_state_exit(spa, NULL, ENOENT));
6833
6834	if (!vd->vdev_ops->vdev_op_leaf)
6835		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6836
6837	if (ispath) {
6838		if (strcmp(value, vd->vdev_path) != 0) {
6839			spa_strfree(vd->vdev_path);
6840			vd->vdev_path = spa_strdup(value);
6841			sync = B_TRUE;
6842		}
6843	} else {
6844		if (vd->vdev_fru == NULL) {
6845			vd->vdev_fru = spa_strdup(value);
6846			sync = B_TRUE;
6847		} else if (strcmp(value, vd->vdev_fru) != 0) {
6848			spa_strfree(vd->vdev_fru);
6849			vd->vdev_fru = spa_strdup(value);
6850			sync = B_TRUE;
6851		}
6852	}
6853
6854	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6855}
6856
6857int
6858spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6859{
6860	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6861}
6862
6863int
6864spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6865{
6866	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6867}
6868
6869/*
6870 * ==========================================================================
6871 * SPA Scanning
6872 * ==========================================================================
6873 */
6874int
6875spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6876{
6877	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6878
6879	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6880		return (SET_ERROR(EBUSY));
6881
6882	return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6883}
6884
6885int
6886spa_scan_stop(spa_t *spa)
6887{
6888	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6889	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6890		return (SET_ERROR(EBUSY));
6891	return (dsl_scan_cancel(spa->spa_dsl_pool));
6892}
6893
6894int
6895spa_scan(spa_t *spa, pool_scan_func_t func)
6896{
6897	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6898
6899	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6900		return (SET_ERROR(ENOTSUP));
6901
6902	/*
6903	 * If a resilver was requested, but there is no DTL on a
6904	 * writeable leaf device, we have nothing to do.
6905	 */
6906	if (func == POOL_SCAN_RESILVER &&
6907	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6908		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6909		return (0);
6910	}
6911
6912	return (dsl_scan(spa->spa_dsl_pool, func));
6913}
6914
6915/*
6916 * ==========================================================================
6917 * SPA async task processing
6918 * ==========================================================================
6919 */
6920
6921static void
6922spa_async_remove(spa_t *spa, vdev_t *vd)
6923{
6924	if (vd->vdev_remove_wanted) {
6925		vd->vdev_remove_wanted = B_FALSE;
6926		vd->vdev_delayed_close = B_FALSE;
6927		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6928
6929		/*
6930		 * We want to clear the stats, but we don't want to do a full
6931		 * vdev_clear() as that will cause us to throw away
6932		 * degraded/faulted state as well as attempt to reopen the
6933		 * device, all of which is a waste.
6934		 */
6935		vd->vdev_stat.vs_read_errors = 0;
6936		vd->vdev_stat.vs_write_errors = 0;
6937		vd->vdev_stat.vs_checksum_errors = 0;
6938
6939		vdev_state_dirty(vd->vdev_top);
6940		/* Tell userspace that the vdev is gone. */
6941		zfs_post_remove(spa, vd);
6942	}
6943
6944	for (int c = 0; c < vd->vdev_children; c++)
6945		spa_async_remove(spa, vd->vdev_child[c]);
6946}
6947
6948static void
6949spa_async_probe(spa_t *spa, vdev_t *vd)
6950{
6951	if (vd->vdev_probe_wanted) {
6952		vd->vdev_probe_wanted = B_FALSE;
6953		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6954	}
6955
6956	for (int c = 0; c < vd->vdev_children; c++)
6957		spa_async_probe(spa, vd->vdev_child[c]);
6958}
6959
6960static void
6961spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6962{
6963	sysevent_id_t eid;
6964	nvlist_t *attr;
6965	char *physpath;
6966
6967	if (!spa->spa_autoexpand)
6968		return;
6969
6970	for (int c = 0; c < vd->vdev_children; c++) {
6971		vdev_t *cvd = vd->vdev_child[c];
6972		spa_async_autoexpand(spa, cvd);
6973	}
6974
6975	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6976		return;
6977
6978	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6979	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6980
6981	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6982	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6983
6984	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6985	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6986
6987	nvlist_free(attr);
6988	kmem_free(physpath, MAXPATHLEN);
6989}
6990
6991static void
6992spa_async_thread(void *arg)
6993{
6994	spa_t *spa = (spa_t *)arg;
6995	int tasks;
6996
6997	ASSERT(spa->spa_sync_on);
6998
6999	mutex_enter(&spa->spa_async_lock);
7000	tasks = spa->spa_async_tasks;
7001	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
7002	mutex_exit(&spa->spa_async_lock);
7003
7004	/*
7005	 * See if the config needs to be updated.
7006	 */
7007	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7008		uint64_t old_space, new_space;
7009
7010		mutex_enter(&spa_namespace_lock);
7011		old_space = metaslab_class_get_space(spa_normal_class(spa));
7012		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7013		new_space = metaslab_class_get_space(spa_normal_class(spa));
7014		mutex_exit(&spa_namespace_lock);
7015
7016		/*
7017		 * If the pool grew as a result of the config update,
7018		 * then log an internal history event.
7019		 */
7020		if (new_space != old_space) {
7021			spa_history_log_internal(spa, "vdev online", NULL,
7022			    "pool '%s' size: %llu(+%llu)",
7023			    spa_name(spa), new_space, new_space - old_space);
7024		}
7025	}
7026
7027	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7028		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7029		spa_async_autoexpand(spa, spa->spa_root_vdev);
7030		spa_config_exit(spa, SCL_CONFIG, FTAG);
7031	}
7032
7033	/*
7034	 * See if any devices need to be probed.
7035	 */
7036	if (tasks & SPA_ASYNC_PROBE) {
7037		spa_vdev_state_enter(spa, SCL_NONE);
7038		spa_async_probe(spa, spa->spa_root_vdev);
7039		(void) spa_vdev_state_exit(spa, NULL, 0);
7040	}
7041
7042	/*
7043	 * If any devices are done replacing, detach them.
7044	 */
7045	if (tasks & SPA_ASYNC_RESILVER_DONE)
7046		spa_vdev_resilver_done(spa);
7047
7048	/*
7049	 * Kick off a resilver.
7050	 */
7051	if (tasks & SPA_ASYNC_RESILVER)
7052		dsl_resilver_restart(spa->spa_dsl_pool, 0);
7053
7054	/*
7055	 * Let the world know that we're done.
7056	 */
7057	mutex_enter(&spa->spa_async_lock);
7058	spa->spa_async_thread = NULL;
7059	cv_broadcast(&spa->spa_async_cv);
7060	mutex_exit(&spa->spa_async_lock);
7061	thread_exit();
7062}
7063
7064static void
7065spa_async_thread_vd(void *arg)
7066{
7067	spa_t *spa = arg;
7068	int tasks;
7069
7070	mutex_enter(&spa->spa_async_lock);
7071	tasks = spa->spa_async_tasks;
7072retry:
7073	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
7074	mutex_exit(&spa->spa_async_lock);
7075
7076	/*
7077	 * See if any devices need to be marked REMOVED.
7078	 */
7079	if (tasks & SPA_ASYNC_REMOVE) {
7080		spa_vdev_state_enter(spa, SCL_NONE);
7081		spa_async_remove(spa, spa->spa_root_vdev);
7082		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7083			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7084		for (int i = 0; i < spa->spa_spares.sav_count; i++)
7085			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7086		(void) spa_vdev_state_exit(spa, NULL, 0);
7087	}
7088
7089	/*
7090	 * Let the world know that we're done.
7091	 */
7092	mutex_enter(&spa->spa_async_lock);
7093	tasks = spa->spa_async_tasks;
7094	if ((tasks & SPA_ASYNC_REMOVE) != 0)
7095		goto retry;
7096	spa->spa_async_thread_vd = NULL;
7097	cv_broadcast(&spa->spa_async_cv);
7098	mutex_exit(&spa->spa_async_lock);
7099	thread_exit();
7100}
7101
7102void
7103spa_async_suspend(spa_t *spa)
7104{
7105	mutex_enter(&spa->spa_async_lock);
7106	spa->spa_async_suspended++;
7107	while (spa->spa_async_thread != NULL ||
7108	    spa->spa_async_thread_vd != NULL)
7109		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7110	mutex_exit(&spa->spa_async_lock);
7111
7112	spa_vdev_remove_suspend(spa);
7113
7114	zthr_t *condense_thread = spa->spa_condense_zthr;
7115	if (condense_thread != NULL && zthr_isrunning(condense_thread))
7116		VERIFY0(zthr_cancel(condense_thread));
7117
7118	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7119	if (discard_thread != NULL && zthr_isrunning(discard_thread))
7120		VERIFY0(zthr_cancel(discard_thread));
7121}
7122
7123void
7124spa_async_resume(spa_t *spa)
7125{
7126	mutex_enter(&spa->spa_async_lock);
7127	ASSERT(spa->spa_async_suspended != 0);
7128	spa->spa_async_suspended--;
7129	mutex_exit(&spa->spa_async_lock);
7130	spa_restart_removal(spa);
7131
7132	zthr_t *condense_thread = spa->spa_condense_zthr;
7133	if (condense_thread != NULL && !zthr_isrunning(condense_thread))
7134		zthr_resume(condense_thread);
7135
7136	zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7137	if (discard_thread != NULL && !zthr_isrunning(discard_thread))
7138		zthr_resume(discard_thread);
7139}
7140
7141static boolean_t
7142spa_async_tasks_pending(spa_t *spa)
7143{
7144	uint_t non_config_tasks;
7145	uint_t config_task;
7146	boolean_t config_task_suspended;
7147
7148	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
7149	    SPA_ASYNC_REMOVE);
7150	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7151	if (spa->spa_ccw_fail_time == 0) {
7152		config_task_suspended = B_FALSE;
7153	} else {
7154		config_task_suspended =
7155		    (gethrtime() - spa->spa_ccw_fail_time) <
7156		    (zfs_ccw_retry_interval * NANOSEC);
7157	}
7158
7159	return (non_config_tasks || (config_task && !config_task_suspended));
7160}
7161
7162static void
7163spa_async_dispatch(spa_t *spa)
7164{
7165	mutex_enter(&spa->spa_async_lock);
7166	if (spa_async_tasks_pending(spa) &&
7167	    !spa->spa_async_suspended &&
7168	    spa->spa_async_thread == NULL &&
7169	    rootdir != NULL)
7170		spa->spa_async_thread = thread_create(NULL, 0,
7171		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7172	mutex_exit(&spa->spa_async_lock);
7173}
7174
7175static void
7176spa_async_dispatch_vd(spa_t *spa)
7177{
7178	mutex_enter(&spa->spa_async_lock);
7179	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
7180	    !spa->spa_async_suspended &&
7181	    spa->spa_async_thread_vd == NULL &&
7182	    rootdir != NULL)
7183		spa->spa_async_thread_vd = thread_create(NULL, 0,
7184		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
7185	mutex_exit(&spa->spa_async_lock);
7186}
7187
7188void
7189spa_async_request(spa_t *spa, int task)
7190{
7191	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7192	mutex_enter(&spa->spa_async_lock);
7193	spa->spa_async_tasks |= task;
7194	mutex_exit(&spa->spa_async_lock);
7195	spa_async_dispatch_vd(spa);
7196}
7197
7198/*
7199 * ==========================================================================
7200 * SPA syncing routines
7201 * ==========================================================================
7202 */
7203
7204static int
7205bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7206{
7207	bpobj_t *bpo = arg;
7208	bpobj_enqueue(bpo, bp, tx);
7209	return (0);
7210}
7211
7212static int
7213spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7214{
7215	zio_t *zio = arg;
7216
7217	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7218	    BP_GET_PSIZE(bp), zio->io_flags));
7219	return (0);
7220}
7221
7222/*
7223 * Note: this simple function is not inlined to make it easier to dtrace the
7224 * amount of time spent syncing frees.
7225 */
7226static void
7227spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7228{
7229	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7230	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7231	VERIFY(zio_wait(zio) == 0);
7232}
7233
7234/*
7235 * Note: this simple function is not inlined to make it easier to dtrace the
7236 * amount of time spent syncing deferred frees.
7237 */
7238static void
7239spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7240{
7241	zio_t *zio = zio_root(spa, NULL, NULL, 0);
7242	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7243	    spa_free_sync_cb, zio, tx), ==, 0);
7244	VERIFY0(zio_wait(zio));
7245}
7246
7247
7248static void
7249spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7250{
7251	char *packed = NULL;
7252	size_t bufsize;
7253	size_t nvsize = 0;
7254	dmu_buf_t *db;
7255
7256	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7257
7258	/*
7259	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7260	 * information.  This avoids the dmu_buf_will_dirty() path and
7261	 * saves us a pre-read to get data we don't actually care about.
7262	 */
7263	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7264	packed = kmem_alloc(bufsize, KM_SLEEP);
7265
7266	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7267	    KM_SLEEP) == 0);
7268	bzero(packed + nvsize, bufsize - nvsize);
7269
7270	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7271
7272	kmem_free(packed, bufsize);
7273
7274	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7275	dmu_buf_will_dirty(db, tx);
7276	*(uint64_t *)db->db_data = nvsize;
7277	dmu_buf_rele(db, FTAG);
7278}
7279
7280static void
7281spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7282    const char *config, const char *entry)
7283{
7284	nvlist_t *nvroot;
7285	nvlist_t **list;
7286	int i;
7287
7288	if (!sav->sav_sync)
7289		return;
7290
7291	/*
7292	 * Update the MOS nvlist describing the list of available devices.
7293	 * spa_validate_aux() will have already made sure this nvlist is
7294	 * valid and the vdevs are labeled appropriately.
7295	 */
7296	if (sav->sav_object == 0) {
7297		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7298		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7299		    sizeof (uint64_t), tx);
7300		VERIFY(zap_update(spa->spa_meta_objset,
7301		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7302		    &sav->sav_object, tx) == 0);
7303	}
7304
7305	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7306	if (sav->sav_count == 0) {
7307		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7308	} else {
7309		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
7310		for (i = 0; i < sav->sav_count; i++)
7311			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7312			    B_FALSE, VDEV_CONFIG_L2CACHE);
7313		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7314		    sav->sav_count) == 0);
7315		for (i = 0; i < sav->sav_count; i++)
7316			nvlist_free(list[i]);
7317		kmem_free(list, sav->sav_count * sizeof (void *));
7318	}
7319
7320	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7321	nvlist_free(nvroot);
7322
7323	sav->sav_sync = B_FALSE;
7324}
7325
7326/*
7327 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7328 * The all-vdev ZAP must be empty.
7329 */
7330static void
7331spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7332{
7333	spa_t *spa = vd->vdev_spa;
7334	if (vd->vdev_top_zap != 0) {
7335		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7336		    vd->vdev_top_zap, tx));
7337	}
7338	if (vd->vdev_leaf_zap != 0) {
7339		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7340		    vd->vdev_leaf_zap, tx));
7341	}
7342	for (uint64_t i = 0; i < vd->vdev_children; i++) {
7343		spa_avz_build(vd->vdev_child[i], avz, tx);
7344	}
7345}
7346
7347static void
7348spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7349{
7350	nvlist_t *config;
7351
7352	/*
7353	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7354	 * its config may not be dirty but we still need to build per-vdev ZAPs.
7355	 * Similarly, if the pool is being assembled (e.g. after a split), we
7356	 * need to rebuild the AVZ although the config may not be dirty.
7357	 */
7358	if (list_is_empty(&spa->spa_config_dirty_list) &&
7359	    spa->spa_avz_action == AVZ_ACTION_NONE)
7360		return;
7361
7362	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7363
7364	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7365	    spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7366	    spa->spa_all_vdev_zaps != 0);
7367
7368	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7369		/* Make and build the new AVZ */
7370		uint64_t new_avz = zap_create(spa->spa_meta_objset,
7371		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7372		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7373
7374		/* Diff old AVZ with new one */
7375		zap_cursor_t zc;
7376		zap_attribute_t za;
7377
7378		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7379		    spa->spa_all_vdev_zaps);
7380		    zap_cursor_retrieve(&zc, &za) == 0;
7381		    zap_cursor_advance(&zc)) {
7382			uint64_t vdzap = za.za_first_integer;
7383			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7384			    vdzap) == ENOENT) {
7385				/*
7386				 * ZAP is listed in old AVZ but not in new one;
7387				 * destroy it
7388				 */
7389				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7390				    tx));
7391			}
7392		}
7393
7394		zap_cursor_fini(&zc);
7395
7396		/* Destroy the old AVZ */
7397		VERIFY0(zap_destroy(spa->spa_meta_objset,
7398		    spa->spa_all_vdev_zaps, tx));
7399
7400		/* Replace the old AVZ in the dir obj with the new one */
7401		VERIFY0(zap_update(spa->spa_meta_objset,
7402		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7403		    sizeof (new_avz), 1, &new_avz, tx));
7404
7405		spa->spa_all_vdev_zaps = new_avz;
7406	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7407		zap_cursor_t zc;
7408		zap_attribute_t za;
7409
7410		/* Walk through the AVZ and destroy all listed ZAPs */
7411		for (zap_cursor_init(&zc, spa->spa_meta_objset,
7412		    spa->spa_all_vdev_zaps);
7413		    zap_cursor_retrieve(&zc, &za) == 0;
7414		    zap_cursor_advance(&zc)) {
7415			uint64_t zap = za.za_first_integer;
7416			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7417		}
7418
7419		zap_cursor_fini(&zc);
7420
7421		/* Destroy and unlink the AVZ itself */
7422		VERIFY0(zap_destroy(spa->spa_meta_objset,
7423		    spa->spa_all_vdev_zaps, tx));
7424		VERIFY0(zap_remove(spa->spa_meta_objset,
7425		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7426		spa->spa_all_vdev_zaps = 0;
7427	}
7428
7429	if (spa->spa_all_vdev_zaps == 0) {
7430		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7431		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7432		    DMU_POOL_VDEV_ZAP_MAP, tx);
7433	}
7434	spa->spa_avz_action = AVZ_ACTION_NONE;
7435
7436	/* Create ZAPs for vdevs that don't have them. */
7437	vdev_construct_zaps(spa->spa_root_vdev, tx);
7438
7439	config = spa_config_generate(spa, spa->spa_root_vdev,
7440	    dmu_tx_get_txg(tx), B_FALSE);
7441
7442	/*
7443	 * If we're upgrading the spa version then make sure that
7444	 * the config object gets updated with the correct version.
7445	 */
7446	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7447		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7448		    spa->spa_uberblock.ub_version);
7449
7450	spa_config_exit(spa, SCL_STATE, FTAG);
7451
7452	nvlist_free(spa->spa_config_syncing);
7453	spa->spa_config_syncing = config;
7454
7455	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7456}
7457
7458static void
7459spa_sync_version(void *arg, dmu_tx_t *tx)
7460{
7461	uint64_t *versionp = arg;
7462	uint64_t version = *versionp;
7463	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7464
7465	/*
7466	 * Setting the version is special cased when first creating the pool.
7467	 */
7468	ASSERT(tx->tx_txg != TXG_INITIAL);
7469
7470	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7471	ASSERT(version >= spa_version(spa));
7472
7473	spa->spa_uberblock.ub_version = version;
7474	vdev_config_dirty(spa->spa_root_vdev);
7475	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7476}
7477
7478/*
7479 * Set zpool properties.
7480 */
7481static void
7482spa_sync_props(void *arg, dmu_tx_t *tx)
7483{
7484	nvlist_t *nvp = arg;
7485	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7486	objset_t *mos = spa->spa_meta_objset;
7487	nvpair_t *elem = NULL;
7488
7489	mutex_enter(&spa->spa_props_lock);
7490
7491	while ((elem = nvlist_next_nvpair(nvp, elem))) {
7492		uint64_t intval;
7493		char *strval, *fname;
7494		zpool_prop_t prop;
7495		const char *propname;
7496		zprop_type_t proptype;
7497		spa_feature_t fid;
7498
7499		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7500		case ZPOOL_PROP_INVAL:
7501			/*
7502			 * We checked this earlier in spa_prop_validate().
7503			 */
7504			ASSERT(zpool_prop_feature(nvpair_name(elem)));
7505
7506			fname = strchr(nvpair_name(elem), '@') + 1;
7507			VERIFY0(zfeature_lookup_name(fname, &fid));
7508
7509			spa_feature_enable(spa, fid, tx);
7510			spa_history_log_internal(spa, "set", tx,
7511			    "%s=enabled", nvpair_name(elem));
7512			break;
7513
7514		case ZPOOL_PROP_VERSION:
7515			intval = fnvpair_value_uint64(elem);
7516			/*
7517			 * The version is synced seperatly before other
7518			 * properties and should be correct by now.
7519			 */
7520			ASSERT3U(spa_version(spa), >=, intval);
7521			break;
7522
7523		case ZPOOL_PROP_ALTROOT:
7524			/*
7525			 * 'altroot' is a non-persistent property. It should
7526			 * have been set temporarily at creation or import time.
7527			 */
7528			ASSERT(spa->spa_root != NULL);
7529			break;
7530
7531		case ZPOOL_PROP_READONLY:
7532		case ZPOOL_PROP_CACHEFILE:
7533			/*
7534			 * 'readonly' and 'cachefile' are also non-persisitent
7535			 * properties.
7536			 */
7537			break;
7538		case ZPOOL_PROP_COMMENT:
7539			strval = fnvpair_value_string(elem);
7540			if (spa->spa_comment != NULL)
7541				spa_strfree(spa->spa_comment);
7542			spa->spa_comment = spa_strdup(strval);
7543			/*
7544			 * We need to dirty the configuration on all the vdevs
7545			 * so that their labels get updated.  It's unnecessary
7546			 * to do this for pool creation since the vdev's
7547			 * configuratoin has already been dirtied.
7548			 */
7549			if (tx->tx_txg != TXG_INITIAL)
7550				vdev_config_dirty(spa->spa_root_vdev);
7551			spa_history_log_internal(spa, "set", tx,
7552			    "%s=%s", nvpair_name(elem), strval);
7553			break;
7554		default:
7555			/*
7556			 * Set pool property values in the poolprops mos object.
7557			 */
7558			if (spa->spa_pool_props_object == 0) {
7559				spa->spa_pool_props_object =
7560				    zap_create_link(mos, DMU_OT_POOL_PROPS,
7561				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7562				    tx);
7563			}
7564
7565			/* normalize the property name */
7566			propname = zpool_prop_to_name(prop);
7567			proptype = zpool_prop_get_type(prop);
7568
7569			if (nvpair_type(elem) == DATA_TYPE_STRING) {
7570				ASSERT(proptype == PROP_TYPE_STRING);
7571				strval = fnvpair_value_string(elem);
7572				VERIFY0(zap_update(mos,
7573				    spa->spa_pool_props_object, propname,
7574				    1, strlen(strval) + 1, strval, tx));
7575				spa_history_log_internal(spa, "set", tx,
7576				    "%s=%s", nvpair_name(elem), strval);
7577			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7578				intval = fnvpair_value_uint64(elem);
7579
7580				if (proptype == PROP_TYPE_INDEX) {
7581					const char *unused;
7582					VERIFY0(zpool_prop_index_to_string(
7583					    prop, intval, &unused));
7584				}
7585				VERIFY0(zap_update(mos,
7586				    spa->spa_pool_props_object, propname,
7587				    8, 1, &intval, tx));
7588				spa_history_log_internal(spa, "set", tx,
7589				    "%s=%lld", nvpair_name(elem), intval);
7590			} else {
7591				ASSERT(0); /* not allowed */
7592			}
7593
7594			switch (prop) {
7595			case ZPOOL_PROP_DELEGATION:
7596				spa->spa_delegation = intval;
7597				break;
7598			case ZPOOL_PROP_BOOTFS:
7599				spa->spa_bootfs = intval;
7600				break;
7601			case ZPOOL_PROP_FAILUREMODE:
7602				spa->spa_failmode = intval;
7603				break;
7604			case ZPOOL_PROP_AUTOEXPAND:
7605				spa->spa_autoexpand = intval;
7606				if (tx->tx_txg != TXG_INITIAL)
7607					spa_async_request(spa,
7608					    SPA_ASYNC_AUTOEXPAND);
7609				break;
7610			case ZPOOL_PROP_DEDUPDITTO:
7611				spa->spa_dedup_ditto = intval;
7612				break;
7613			default:
7614				break;
7615			}
7616		}
7617
7618	}
7619
7620	mutex_exit(&spa->spa_props_lock);
7621}
7622
7623/*
7624 * Perform one-time upgrade on-disk changes.  spa_version() does not
7625 * reflect the new version this txg, so there must be no changes this
7626 * txg to anything that the upgrade code depends on after it executes.
7627 * Therefore this must be called after dsl_pool_sync() does the sync
7628 * tasks.
7629 */
7630static void
7631spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7632{
7633	dsl_pool_t *dp = spa->spa_dsl_pool;
7634
7635	ASSERT(spa->spa_sync_pass == 1);
7636
7637	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7638
7639	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7640	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7641		dsl_pool_create_origin(dp, tx);
7642
7643		/* Keeping the origin open increases spa_minref */
7644		spa->spa_minref += 3;
7645	}
7646
7647	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7648	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7649		dsl_pool_upgrade_clones(dp, tx);
7650	}
7651
7652	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7653	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7654		dsl_pool_upgrade_dir_clones(dp, tx);
7655
7656		/* Keeping the freedir open increases spa_minref */
7657		spa->spa_minref += 3;
7658	}
7659
7660	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7661	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7662		spa_feature_create_zap_objects(spa, tx);
7663	}
7664
7665	/*
7666	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7667	 * when possibility to use lz4 compression for metadata was added
7668	 * Old pools that have this feature enabled must be upgraded to have
7669	 * this feature active
7670	 */
7671	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7672		boolean_t lz4_en = spa_feature_is_enabled(spa,
7673		    SPA_FEATURE_LZ4_COMPRESS);
7674		boolean_t lz4_ac = spa_feature_is_active(spa,
7675		    SPA_FEATURE_LZ4_COMPRESS);
7676
7677		if (lz4_en && !lz4_ac)
7678			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7679	}
7680
7681	/*
7682	 * If we haven't written the salt, do so now.  Note that the
7683	 * feature may not be activated yet, but that's fine since
7684	 * the presence of this ZAP entry is backwards compatible.
7685	 */
7686	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7687	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7688		VERIFY0(zap_add(spa->spa_meta_objset,
7689		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7690		    sizeof (spa->spa_cksum_salt.zcs_bytes),
7691		    spa->spa_cksum_salt.zcs_bytes, tx));
7692	}
7693
7694	rrw_exit(&dp->dp_config_rwlock, FTAG);
7695}
7696
7697static void
7698vdev_indirect_state_sync_verify(vdev_t *vd)
7699{
7700	vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
7701	vdev_indirect_births_t *vib = vd->vdev_indirect_births;
7702
7703	if (vd->vdev_ops == &vdev_indirect_ops) {
7704		ASSERT(vim != NULL);
7705		ASSERT(vib != NULL);
7706	}
7707
7708	if (vdev_obsolete_sm_object(vd) != 0) {
7709		ASSERT(vd->vdev_obsolete_sm != NULL);
7710		ASSERT(vd->vdev_removing ||
7711		    vd->vdev_ops == &vdev_indirect_ops);
7712		ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7713		ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7714
7715		ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7716		    space_map_object(vd->vdev_obsolete_sm));
7717		ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7718		    space_map_allocated(vd->vdev_obsolete_sm));
7719	}
7720	ASSERT(vd->vdev_obsolete_segments != NULL);
7721
7722	/*
7723	 * Since frees / remaps to an indirect vdev can only
7724	 * happen in syncing context, the obsolete segments
7725	 * tree must be empty when we start syncing.
7726	 */
7727	ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7728}
7729
7730/*
7731 * Sync the specified transaction group.  New blocks may be dirtied as
7732 * part of the process, so we iterate until it converges.
7733 */
7734void
7735spa_sync(spa_t *spa, uint64_t txg)
7736{
7737	dsl_pool_t *dp = spa->spa_dsl_pool;
7738	objset_t *mos = spa->spa_meta_objset;
7739	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7740	vdev_t *rvd = spa->spa_root_vdev;
7741	vdev_t *vd;
7742	dmu_tx_t *tx;
7743	int error;
7744	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7745	    zfs_vdev_queue_depth_pct / 100;
7746
7747	VERIFY(spa_writeable(spa));
7748
7749	/*
7750	 * Wait for i/os issued in open context that need to complete
7751	 * before this txg syncs.
7752	 */
7753	VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
7754	spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
7755
7756	/*
7757	 * Lock out configuration changes.
7758	 */
7759	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7760
7761	spa->spa_syncing_txg = txg;
7762	spa->spa_sync_pass = 0;
7763
7764	mutex_enter(&spa->spa_alloc_lock);
7765	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7766	mutex_exit(&spa->spa_alloc_lock);
7767
7768	/*
7769	 * If there are any pending vdev state changes, convert them
7770	 * into config changes that go out with this transaction group.
7771	 */
7772	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7773	while (list_head(&spa->spa_state_dirty_list) != NULL) {
7774		/*
7775		 * We need the write lock here because, for aux vdevs,
7776		 * calling vdev_config_dirty() modifies sav_config.
7777		 * This is ugly and will become unnecessary when we
7778		 * eliminate the aux vdev wart by integrating all vdevs
7779		 * into the root vdev tree.
7780		 */
7781		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7782		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7783		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7784			vdev_state_clean(vd);
7785			vdev_config_dirty(vd);
7786		}
7787		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7788		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7789	}
7790	spa_config_exit(spa, SCL_STATE, FTAG);
7791
7792	tx = dmu_tx_create_assigned(dp, txg);
7793
7794	spa->spa_sync_starttime = gethrtime();
7795#ifdef illumos
7796	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
7797	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
7798#else	/* !illumos */
7799#ifdef _KERNEL
7800	callout_schedule(&spa->spa_deadman_cycid,
7801	    hz * spa->spa_deadman_synctime / NANOSEC);
7802#endif
7803#endif	/* illumos */
7804
7805	/*
7806	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7807	 * set spa_deflate if we have no raid-z vdevs.
7808	 */
7809	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7810	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7811		int i;
7812
7813		for (i = 0; i < rvd->vdev_children; i++) {
7814			vd = rvd->vdev_child[i];
7815			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7816				break;
7817		}
7818		if (i == rvd->vdev_children) {
7819			spa->spa_deflate = TRUE;
7820			VERIFY(0 == zap_add(spa->spa_meta_objset,
7821			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7822			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7823		}
7824	}
7825
7826	/*
7827	 * Set the top-level vdev's max queue depth. Evaluate each
7828	 * top-level's async write queue depth in case it changed.
7829	 * The max queue depth will not change in the middle of syncing
7830	 * out this txg.
7831	 */
7832	uint64_t queue_depth_total = 0;
7833	for (int c = 0; c < rvd->vdev_children; c++) {
7834		vdev_t *tvd = rvd->vdev_child[c];
7835		metaslab_group_t *mg = tvd->vdev_mg;
7836
7837		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7838		    !metaslab_group_initialized(mg))
7839			continue;
7840
7841		/*
7842		 * It is safe to do a lock-free check here because only async
7843		 * allocations look at mg_max_alloc_queue_depth, and async
7844		 * allocations all happen from spa_sync().
7845		 */
7846		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
7847		mg->mg_max_alloc_queue_depth = max_queue_depth;
7848		queue_depth_total += mg->mg_max_alloc_queue_depth;
7849	}
7850	metaslab_class_t *mc = spa_normal_class(spa);
7851	ASSERT0(refcount_count(&mc->mc_alloc_slots));
7852	mc->mc_alloc_max_slots = queue_depth_total;
7853	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7854
7855	ASSERT3U(mc->mc_alloc_max_slots, <=,
7856	    max_queue_depth * rvd->vdev_children);
7857
7858	for (int c = 0; c < rvd->vdev_children; c++) {
7859		vdev_t *vd = rvd->vdev_child[c];
7860		vdev_indirect_state_sync_verify(vd);
7861
7862		if (vdev_indirect_should_condense(vd)) {
7863			spa_condense_indirect_start_sync(vd, tx);
7864			break;
7865		}
7866	}
7867
7868	/*
7869	 * Iterate to convergence.
7870	 */
7871	do {
7872		int pass = ++spa->spa_sync_pass;
7873
7874		spa_sync_config_object(spa, tx);
7875		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7876		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7877		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7878		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7879		spa_errlog_sync(spa, txg);
7880		dsl_pool_sync(dp, txg);
7881
7882		if (pass < zfs_sync_pass_deferred_free) {
7883			spa_sync_frees(spa, free_bpl, tx);
7884		} else {
7885			/*
7886			 * We can not defer frees in pass 1, because
7887			 * we sync the deferred frees later in pass 1.
7888			 */
7889			ASSERT3U(pass, >, 1);
7890			bplist_iterate(free_bpl, bpobj_enqueue_cb,
7891			    &spa->spa_deferred_bpobj, tx);
7892		}
7893
7894		ddt_sync(spa, txg);
7895		dsl_scan_sync(dp, tx);
7896
7897		if (spa->spa_vdev_removal != NULL)
7898			svr_sync(spa, tx);
7899
7900		while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7901		    != NULL)
7902			vdev_sync(vd, txg);
7903
7904		if (pass == 1) {
7905			spa_sync_upgrades(spa, tx);
7906			ASSERT3U(txg, >=,
7907			    spa->spa_uberblock.ub_rootbp.blk_birth);
7908			/*
7909			 * Note: We need to check if the MOS is dirty
7910			 * because we could have marked the MOS dirty
7911			 * without updating the uberblock (e.g. if we
7912			 * have sync tasks but no dirty user data).  We
7913			 * need to check the uberblock's rootbp because
7914			 * it is updated if we have synced out dirty
7915			 * data (though in this case the MOS will most
7916			 * likely also be dirty due to second order
7917			 * effects, we don't want to rely on that here).
7918			 */
7919			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7920			    !dmu_objset_is_dirty(mos, txg)) {
7921				/*
7922				 * Nothing changed on the first pass,
7923				 * therefore this TXG is a no-op.  Avoid
7924				 * syncing deferred frees, so that we
7925				 * can keep this TXG as a no-op.
7926				 */
7927				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7928				    txg));
7929				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7930				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7931				ASSERT(txg_list_empty(&dp->dp_early_sync_tasks,
7932				    txg));
7933				break;
7934			}
7935			spa_sync_deferred_frees(spa, tx);
7936		}
7937
7938	} while (dmu_objset_is_dirty(mos, txg));
7939
7940	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7941		/*
7942		 * Make sure that the number of ZAPs for all the vdevs matches
7943		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7944		 * called if the config is dirty; otherwise there may be
7945		 * outstanding AVZ operations that weren't completed in
7946		 * spa_sync_config_object.
7947		 */
7948		uint64_t all_vdev_zap_entry_count;
7949		ASSERT0(zap_count(spa->spa_meta_objset,
7950		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7951		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7952		    all_vdev_zap_entry_count);
7953	}
7954
7955	if (spa->spa_vdev_removal != NULL) {
7956		ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7957	}
7958
7959	/*
7960	 * Rewrite the vdev configuration (which includes the uberblock)
7961	 * to commit the transaction group.
7962	 *
7963	 * If there are no dirty vdevs, we sync the uberblock to a few
7964	 * random top-level vdevs that are known to be visible in the
7965	 * config cache (see spa_vdev_add() for a complete description).
7966	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7967	 */
7968	for (;;) {
7969		/*
7970		 * We hold SCL_STATE to prevent vdev open/close/etc.
7971		 * while we're attempting to write the vdev labels.
7972		 */
7973		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7974
7975		if (list_is_empty(&spa->spa_config_dirty_list)) {
7976			vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
7977			int svdcount = 0;
7978			int children = rvd->vdev_children;
7979			int c0 = spa_get_random(children);
7980
7981			for (int c = 0; c < children; c++) {
7982				vd = rvd->vdev_child[(c0 + c) % children];
7983
7984				/* Stop when revisiting the first vdev */
7985				if (c > 0 && svd[0] == vd)
7986					break;
7987
7988				if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7989				    !vdev_is_concrete(vd))
7990					continue;
7991
7992				svd[svdcount++] = vd;
7993				if (svdcount == SPA_SYNC_MIN_VDEVS)
7994					break;
7995			}
7996			error = vdev_config_sync(svd, svdcount, txg);
7997		} else {
7998			error = vdev_config_sync(rvd->vdev_child,
7999			    rvd->vdev_children, txg);
8000		}
8001
8002		if (error == 0)
8003			spa->spa_last_synced_guid = rvd->vdev_guid;
8004
8005		spa_config_exit(spa, SCL_STATE, FTAG);
8006
8007		if (error == 0)
8008			break;
8009		zio_suspend(spa, NULL);
8010		zio_resume_wait(spa);
8011	}
8012	dmu_tx_commit(tx);
8013
8014#ifdef illumos
8015	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
8016#else	/* !illumos */
8017#ifdef _KERNEL
8018	callout_drain(&spa->spa_deadman_cycid);
8019#endif
8020#endif	/* illumos */
8021
8022	/*
8023	 * Clear the dirty config list.
8024	 */
8025	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8026		vdev_config_clean(vd);
8027
8028	/*
8029	 * Now that the new config has synced transactionally,
8030	 * let it become visible to the config cache.
8031	 */
8032	if (spa->spa_config_syncing != NULL) {
8033		spa_config_set(spa, spa->spa_config_syncing);
8034		spa->spa_config_txg = txg;
8035		spa->spa_config_syncing = NULL;
8036	}
8037
8038	dsl_pool_sync_done(dp, txg);
8039
8040	mutex_enter(&spa->spa_alloc_lock);
8041	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
8042	mutex_exit(&spa->spa_alloc_lock);
8043
8044	/*
8045	 * Update usable space statistics.
8046	 */
8047	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8048		vdev_sync_done(vd, txg);
8049
8050	spa_update_dspace(spa);
8051
8052	/*
8053	 * It had better be the case that we didn't dirty anything
8054	 * since vdev_config_sync().
8055	 */
8056	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8057	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8058	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8059
8060	while (zfs_pause_spa_sync)
8061		delay(1);
8062
8063	spa->spa_sync_pass = 0;
8064
8065	/*
8066	 * Update the last synced uberblock here. We want to do this at
8067	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8068	 * will be guaranteed that all the processing associated with
8069	 * that txg has been completed.
8070	 */
8071	spa->spa_ubsync = spa->spa_uberblock;
8072	spa_config_exit(spa, SCL_CONFIG, FTAG);
8073
8074	spa_handle_ignored_writes(spa);
8075
8076	/*
8077	 * If any async tasks have been requested, kick them off.
8078	 */
8079	spa_async_dispatch(spa);
8080	spa_async_dispatch_vd(spa);
8081}
8082
8083/*
8084 * Sync all pools.  We don't want to hold the namespace lock across these
8085 * operations, so we take a reference on the spa_t and drop the lock during the
8086 * sync.
8087 */
8088void
8089spa_sync_allpools(void)
8090{
8091	spa_t *spa = NULL;
8092	mutex_enter(&spa_namespace_lock);
8093	while ((spa = spa_next(spa)) != NULL) {
8094		if (spa_state(spa) != POOL_STATE_ACTIVE ||
8095		    !spa_writeable(spa) || spa_suspended(spa))
8096			continue;
8097		spa_open_ref(spa, FTAG);
8098		mutex_exit(&spa_namespace_lock);
8099		txg_wait_synced(spa_get_dsl(spa), 0);
8100		mutex_enter(&spa_namespace_lock);
8101		spa_close(spa, FTAG);
8102	}
8103	mutex_exit(&spa_namespace_lock);
8104}
8105
8106/*
8107 * ==========================================================================
8108 * Miscellaneous routines
8109 * ==========================================================================
8110 */
8111
8112/*
8113 * Remove all pools in the system.
8114 */
8115void
8116spa_evict_all(void)
8117{
8118	spa_t *spa;
8119
8120	/*
8121	 * Remove all cached state.  All pools should be closed now,
8122	 * so every spa in the AVL tree should be unreferenced.
8123	 */
8124	mutex_enter(&spa_namespace_lock);
8125	while ((spa = spa_next(NULL)) != NULL) {
8126		/*
8127		 * Stop async tasks.  The async thread may need to detach
8128		 * a device that's been replaced, which requires grabbing
8129		 * spa_namespace_lock, so we must drop it here.
8130		 */
8131		spa_open_ref(spa, FTAG);
8132		mutex_exit(&spa_namespace_lock);
8133		spa_async_suspend(spa);
8134		mutex_enter(&spa_namespace_lock);
8135		spa_close(spa, FTAG);
8136
8137		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8138			spa_unload(spa);
8139			spa_deactivate(spa);
8140		}
8141		spa_remove(spa);
8142	}
8143	mutex_exit(&spa_namespace_lock);
8144}
8145
8146vdev_t *
8147spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8148{
8149	vdev_t *vd;
8150	int i;
8151
8152	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8153		return (vd);
8154
8155	if (aux) {
8156		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8157			vd = spa->spa_l2cache.sav_vdevs[i];
8158			if (vd->vdev_guid == guid)
8159				return (vd);
8160		}
8161
8162		for (i = 0; i < spa->spa_spares.sav_count; i++) {
8163			vd = spa->spa_spares.sav_vdevs[i];
8164			if (vd->vdev_guid == guid)
8165				return (vd);
8166		}
8167	}
8168
8169	return (NULL);
8170}
8171
8172void
8173spa_upgrade(spa_t *spa, uint64_t version)
8174{
8175	ASSERT(spa_writeable(spa));
8176
8177	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8178
8179	/*
8180	 * This should only be called for a non-faulted pool, and since a
8181	 * future version would result in an unopenable pool, this shouldn't be
8182	 * possible.
8183	 */
8184	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8185	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8186
8187	spa->spa_uberblock.ub_version = version;
8188	vdev_config_dirty(spa->spa_root_vdev);
8189
8190	spa_config_exit(spa, SCL_ALL, FTAG);
8191
8192	txg_wait_synced(spa_get_dsl(spa), 0);
8193}
8194
8195boolean_t
8196spa_has_spare(spa_t *spa, uint64_t guid)
8197{
8198	int i;
8199	uint64_t spareguid;
8200	spa_aux_vdev_t *sav = &spa->spa_spares;
8201
8202	for (i = 0; i < sav->sav_count; i++)
8203		if (sav->sav_vdevs[i]->vdev_guid == guid)
8204			return (B_TRUE);
8205
8206	for (i = 0; i < sav->sav_npending; i++) {
8207		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8208		    &spareguid) == 0 && spareguid == guid)
8209			return (B_TRUE);
8210	}
8211
8212	return (B_FALSE);
8213}
8214
8215/*
8216 * Check if a pool has an active shared spare device.
8217 * Note: reference count of an active spare is 2, as a spare and as a replace
8218 */
8219static boolean_t
8220spa_has_active_shared_spare(spa_t *spa)
8221{
8222	int i, refcnt;
8223	uint64_t pool;
8224	spa_aux_vdev_t *sav = &spa->spa_spares;
8225
8226	for (i = 0; i < sav->sav_count; i++) {
8227		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8228		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8229		    refcnt > 2)
8230			return (B_TRUE);
8231	}
8232
8233	return (B_FALSE);
8234}
8235
8236sysevent_t *
8237spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8238{
8239	sysevent_t		*ev = NULL;
8240#ifdef _KERNEL
8241	sysevent_attr_list_t	*attr = NULL;
8242	sysevent_value_t	value;
8243
8244	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
8245	    SE_SLEEP);
8246	ASSERT(ev != NULL);
8247
8248	value.value_type = SE_DATA_TYPE_STRING;
8249	value.value.sv_string = spa_name(spa);
8250	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
8251		goto done;
8252
8253	value.value_type = SE_DATA_TYPE_UINT64;
8254	value.value.sv_uint64 = spa_guid(spa);
8255	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
8256		goto done;
8257
8258	if (vd) {
8259		value.value_type = SE_DATA_TYPE_UINT64;
8260		value.value.sv_uint64 = vd->vdev_guid;
8261		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
8262		    SE_SLEEP) != 0)
8263			goto done;
8264
8265		if (vd->vdev_path) {
8266			value.value_type = SE_DATA_TYPE_STRING;
8267			value.value.sv_string = vd->vdev_path;
8268			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
8269			    &value, SE_SLEEP) != 0)
8270				goto done;
8271		}
8272	}
8273
8274	if (hist_nvl != NULL) {
8275		fnvlist_merge((nvlist_t *)attr, hist_nvl);
8276	}
8277
8278	if (sysevent_attach_attributes(ev, attr) != 0)
8279		goto done;
8280	attr = NULL;
8281
8282done:
8283	if (attr)
8284		sysevent_free_attr(attr);
8285
8286#endif
8287	return (ev);
8288}
8289
8290void
8291spa_event_post(sysevent_t *ev)
8292{
8293#ifdef _KERNEL
8294	sysevent_id_t		eid;
8295
8296	(void) log_sysevent(ev, SE_SLEEP, &eid);
8297	sysevent_free(ev);
8298#endif
8299}
8300
8301void
8302spa_event_discard(sysevent_t *ev)
8303{
8304#ifdef _KERNEL
8305	sysevent_free(ev);
8306#endif
8307}
8308
8309/*
8310 * Post a sysevent corresponding to the given event.  The 'name' must be one of
8311 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
8312 * filled in from the spa and (optionally) the vdev and history nvl.  This
8313 * doesn't do anything in the userland libzpool, as we don't want consumers to
8314 * misinterpret ztest or zdb as real changes.
8315 */
8316void
8317spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8318{
8319	spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8320}
8321