spa.c revision 310515
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
97    "Check hostid on import?");
98TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
99SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
100    &zfs_ccw_retry_interval, 0,
101    "Configuration cache file write, retry after failure, interval (seconds)");
102
103typedef enum zti_modes {
104	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
105	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
106	ZTI_MODE_NULL,			/* don't create a taskq */
107	ZTI_NMODES
108} zti_modes_t;
109
110#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
111#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
112#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
113
114#define	ZTI_N(n)	ZTI_P(n, 1)
115#define	ZTI_ONE		ZTI_N(1)
116
117typedef struct zio_taskq_info {
118	zti_modes_t zti_mode;
119	uint_t zti_value;
120	uint_t zti_count;
121} zio_taskq_info_t;
122
123static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
124	"issue", "issue_high", "intr", "intr_high"
125};
126
127/*
128 * This table defines the taskq settings for each ZFS I/O type. When
129 * initializing a pool, we use this table to create an appropriately sized
130 * taskq. Some operations are low volume and therefore have a small, static
131 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
132 * macros. Other operations process a large amount of data; the ZTI_BATCH
133 * macro causes us to create a taskq oriented for throughput. Some operations
134 * are so high frequency and short-lived that the taskq itself can become a a
135 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
136 * additional degree of parallelism specified by the number of threads per-
137 * taskq and the number of taskqs; when dispatching an event in this case, the
138 * particular taskq is chosen at random.
139 *
140 * The different taskq priorities are to handle the different contexts (issue
141 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
142 * need to be handled with minimum delay.
143 */
144const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
145	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
146	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
147	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
148	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
149	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
150	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
152};
153
154static sysevent_t *spa_event_create(spa_t *spa, vdev_t *vd, const char *name);
155static void spa_event_post(sysevent_t *ev);
156static void spa_sync_version(void *arg, dmu_tx_t *tx);
157static void spa_sync_props(void *arg, dmu_tx_t *tx);
158static boolean_t spa_has_active_shared_spare(spa_t *spa);
159static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
160    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
161    char **ereport);
162static void spa_vdev_resilver_done(spa_t *spa);
163
164uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
165#ifdef PSRSET_BIND
166id_t		zio_taskq_psrset_bind = PS_NONE;
167#endif
168#ifdef SYSDC
169boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
170#endif
171uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
172
173boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
174extern int	zfs_sync_pass_deferred_free;
175
176#ifndef illumos
177extern void spa_deadman(void *arg);
178#endif
179
180/*
181 * This (illegal) pool name is used when temporarily importing a spa_t in order
182 * to get the vdev stats associated with the imported devices.
183 */
184#define	TRYIMPORT_NAME	"$import"
185
186/*
187 * ==========================================================================
188 * SPA properties routines
189 * ==========================================================================
190 */
191
192/*
193 * Add a (source=src, propname=propval) list to an nvlist.
194 */
195static void
196spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
197    uint64_t intval, zprop_source_t src)
198{
199	const char *propname = zpool_prop_to_name(prop);
200	nvlist_t *propval;
201
202	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
203	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
204
205	if (strval != NULL)
206		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
207	else
208		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
209
210	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
211	nvlist_free(propval);
212}
213
214/*
215 * Get property values from the spa configuration.
216 */
217static void
218spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
219{
220	vdev_t *rvd = spa->spa_root_vdev;
221	dsl_pool_t *pool = spa->spa_dsl_pool;
222	uint64_t size, alloc, cap, version;
223	zprop_source_t src = ZPROP_SRC_NONE;
224	spa_config_dirent_t *dp;
225	metaslab_class_t *mc = spa_normal_class(spa);
226
227	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
228
229	if (rvd != NULL) {
230		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
231		size = metaslab_class_get_space(spa_normal_class(spa));
232		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
234		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
235		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
236		    size - alloc, src);
237
238		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
239		    metaslab_class_fragmentation(mc), src);
240		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
241		    metaslab_class_expandable_space(mc), src);
242		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
243		    (spa_mode(spa) == FREAD), src);
244
245		cap = (size == 0) ? 0 : (alloc * 100 / size);
246		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
247
248		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
249		    ddt_get_pool_dedup_ratio(spa), src);
250
251		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
252		    rvd->vdev_state, src);
253
254		version = spa_version(spa);
255		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
256			src = ZPROP_SRC_DEFAULT;
257		else
258			src = ZPROP_SRC_LOCAL;
259		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
260	}
261
262	if (pool != NULL) {
263		/*
264		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
265		 * when opening pools before this version freedir will be NULL.
266		 */
267		if (pool->dp_free_dir != NULL) {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
269			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
270			    src);
271		} else {
272			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
273			    NULL, 0, src);
274		}
275
276		if (pool->dp_leak_dir != NULL) {
277			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
278			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
279			    src);
280		} else {
281			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
282			    NULL, 0, src);
283		}
284	}
285
286	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
287
288	if (spa->spa_comment != NULL) {
289		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
290		    0, ZPROP_SRC_LOCAL);
291	}
292
293	if (spa->spa_root != NULL)
294		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
295		    0, ZPROP_SRC_LOCAL);
296
297	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
298		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
299		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
300	} else {
301		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
302		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
303	}
304
305	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
306		if (dp->scd_path == NULL) {
307			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
308			    "none", 0, ZPROP_SRC_LOCAL);
309		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
310			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
311			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
312		}
313	}
314}
315
316/*
317 * Get zpool property values.
318 */
319int
320spa_prop_get(spa_t *spa, nvlist_t **nvp)
321{
322	objset_t *mos = spa->spa_meta_objset;
323	zap_cursor_t zc;
324	zap_attribute_t za;
325	int err;
326
327	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
328
329	mutex_enter(&spa->spa_props_lock);
330
331	/*
332	 * Get properties from the spa config.
333	 */
334	spa_prop_get_config(spa, nvp);
335
336	/* If no pool property object, no more prop to get. */
337	if (mos == NULL || spa->spa_pool_props_object == 0) {
338		mutex_exit(&spa->spa_props_lock);
339		return (0);
340	}
341
342	/*
343	 * Get properties from the MOS pool property object.
344	 */
345	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
346	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
347	    zap_cursor_advance(&zc)) {
348		uint64_t intval = 0;
349		char *strval = NULL;
350		zprop_source_t src = ZPROP_SRC_DEFAULT;
351		zpool_prop_t prop;
352
353		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
354			continue;
355
356		switch (za.za_integer_length) {
357		case 8:
358			/* integer property */
359			if (za.za_first_integer !=
360			    zpool_prop_default_numeric(prop))
361				src = ZPROP_SRC_LOCAL;
362
363			if (prop == ZPOOL_PROP_BOOTFS) {
364				dsl_pool_t *dp;
365				dsl_dataset_t *ds = NULL;
366
367				dp = spa_get_dsl(spa);
368				dsl_pool_config_enter(dp, FTAG);
369				if (err = dsl_dataset_hold_obj(dp,
370				    za.za_first_integer, FTAG, &ds)) {
371					dsl_pool_config_exit(dp, FTAG);
372					break;
373				}
374
375				strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
376				    KM_SLEEP);
377				dsl_dataset_name(ds, strval);
378				dsl_dataset_rele(ds, FTAG);
379				dsl_pool_config_exit(dp, FTAG);
380			} else {
381				strval = NULL;
382				intval = za.za_first_integer;
383			}
384
385			spa_prop_add_list(*nvp, prop, strval, intval, src);
386
387			if (strval != NULL)
388				kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
389
390			break;
391
392		case 1:
393			/* string property */
394			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
395			err = zap_lookup(mos, spa->spa_pool_props_object,
396			    za.za_name, 1, za.za_num_integers, strval);
397			if (err) {
398				kmem_free(strval, za.za_num_integers);
399				break;
400			}
401			spa_prop_add_list(*nvp, prop, strval, 0, src);
402			kmem_free(strval, za.za_num_integers);
403			break;
404
405		default:
406			break;
407		}
408	}
409	zap_cursor_fini(&zc);
410	mutex_exit(&spa->spa_props_lock);
411out:
412	if (err && err != ENOENT) {
413		nvlist_free(*nvp);
414		*nvp = NULL;
415		return (err);
416	}
417
418	return (0);
419}
420
421/*
422 * Validate the given pool properties nvlist and modify the list
423 * for the property values to be set.
424 */
425static int
426spa_prop_validate(spa_t *spa, nvlist_t *props)
427{
428	nvpair_t *elem;
429	int error = 0, reset_bootfs = 0;
430	uint64_t objnum = 0;
431	boolean_t has_feature = B_FALSE;
432
433	elem = NULL;
434	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
435		uint64_t intval;
436		char *strval, *slash, *check, *fname;
437		const char *propname = nvpair_name(elem);
438		zpool_prop_t prop = zpool_name_to_prop(propname);
439
440		switch (prop) {
441		case ZPROP_INVAL:
442			if (!zpool_prop_feature(propname)) {
443				error = SET_ERROR(EINVAL);
444				break;
445			}
446
447			/*
448			 * Sanitize the input.
449			 */
450			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			if (nvpair_value_uint64(elem, &intval) != 0) {
456				error = SET_ERROR(EINVAL);
457				break;
458			}
459
460			if (intval != 0) {
461				error = SET_ERROR(EINVAL);
462				break;
463			}
464
465			fname = strchr(propname, '@') + 1;
466			if (zfeature_lookup_name(fname, NULL) != 0) {
467				error = SET_ERROR(EINVAL);
468				break;
469			}
470
471			has_feature = B_TRUE;
472			break;
473
474		case ZPOOL_PROP_VERSION:
475			error = nvpair_value_uint64(elem, &intval);
476			if (!error &&
477			    (intval < spa_version(spa) ||
478			    intval > SPA_VERSION_BEFORE_FEATURES ||
479			    has_feature))
480				error = SET_ERROR(EINVAL);
481			break;
482
483		case ZPOOL_PROP_DELEGATION:
484		case ZPOOL_PROP_AUTOREPLACE:
485		case ZPOOL_PROP_LISTSNAPS:
486		case ZPOOL_PROP_AUTOEXPAND:
487			error = nvpair_value_uint64(elem, &intval);
488			if (!error && intval > 1)
489				error = SET_ERROR(EINVAL);
490			break;
491
492		case ZPOOL_PROP_BOOTFS:
493			/*
494			 * If the pool version is less than SPA_VERSION_BOOTFS,
495			 * or the pool is still being created (version == 0),
496			 * the bootfs property cannot be set.
497			 */
498			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
499				error = SET_ERROR(ENOTSUP);
500				break;
501			}
502
503			/*
504			 * Make sure the vdev config is bootable
505			 */
506			if (!vdev_is_bootable(spa->spa_root_vdev)) {
507				error = SET_ERROR(ENOTSUP);
508				break;
509			}
510
511			reset_bootfs = 1;
512
513			error = nvpair_value_string(elem, &strval);
514
515			if (!error) {
516				objset_t *os;
517				uint64_t propval;
518
519				if (strval == NULL || strval[0] == '\0') {
520					objnum = zpool_prop_default_numeric(
521					    ZPOOL_PROP_BOOTFS);
522					break;
523				}
524
525				if (error = dmu_objset_hold(strval, FTAG, &os))
526					break;
527
528				/*
529				 * Must be ZPL, and its property settings
530				 * must be supported by GRUB (compression
531				 * is not gzip, and large blocks are not used).
532				 */
533
534				if (dmu_objset_type(os) != DMU_OST_ZFS) {
535					error = SET_ERROR(ENOTSUP);
536				} else if ((error =
537				    dsl_prop_get_int_ds(dmu_objset_ds(os),
538				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
539				    &propval)) == 0 &&
540				    !BOOTFS_COMPRESS_VALID(propval)) {
541					error = SET_ERROR(ENOTSUP);
542				} else if ((error =
543				    dsl_prop_get_int_ds(dmu_objset_ds(os),
544				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
545				    &propval)) == 0 &&
546				    propval > SPA_OLD_MAXBLOCKSIZE) {
547					error = SET_ERROR(ENOTSUP);
548				} else {
549					objnum = dmu_objset_id(os);
550				}
551				dmu_objset_rele(os, FTAG);
552			}
553			break;
554
555		case ZPOOL_PROP_FAILUREMODE:
556			error = nvpair_value_uint64(elem, &intval);
557			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
558			    intval > ZIO_FAILURE_MODE_PANIC))
559				error = SET_ERROR(EINVAL);
560
561			/*
562			 * This is a special case which only occurs when
563			 * the pool has completely failed. This allows
564			 * the user to change the in-core failmode property
565			 * without syncing it out to disk (I/Os might
566			 * currently be blocked). We do this by returning
567			 * EIO to the caller (spa_prop_set) to trick it
568			 * into thinking we encountered a property validation
569			 * error.
570			 */
571			if (!error && spa_suspended(spa)) {
572				spa->spa_failmode = intval;
573				error = SET_ERROR(EIO);
574			}
575			break;
576
577		case ZPOOL_PROP_CACHEFILE:
578			if ((error = nvpair_value_string(elem, &strval)) != 0)
579				break;
580
581			if (strval[0] == '\0')
582				break;
583
584			if (strcmp(strval, "none") == 0)
585				break;
586
587			if (strval[0] != '/') {
588				error = SET_ERROR(EINVAL);
589				break;
590			}
591
592			slash = strrchr(strval, '/');
593			ASSERT(slash != NULL);
594
595			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
596			    strcmp(slash, "/..") == 0)
597				error = SET_ERROR(EINVAL);
598			break;
599
600		case ZPOOL_PROP_COMMENT:
601			if ((error = nvpair_value_string(elem, &strval)) != 0)
602				break;
603			for (check = strval; *check != '\0'; check++) {
604				/*
605				 * The kernel doesn't have an easy isprint()
606				 * check.  For this kernel check, we merely
607				 * check ASCII apart from DEL.  Fix this if
608				 * there is an easy-to-use kernel isprint().
609				 */
610				if (*check >= 0x7f) {
611					error = SET_ERROR(EINVAL);
612					break;
613				}
614			}
615			if (strlen(strval) > ZPROP_MAX_COMMENT)
616				error = E2BIG;
617			break;
618
619		case ZPOOL_PROP_DEDUPDITTO:
620			if (spa_version(spa) < SPA_VERSION_DEDUP)
621				error = SET_ERROR(ENOTSUP);
622			else
623				error = nvpair_value_uint64(elem, &intval);
624			if (error == 0 &&
625			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
626				error = SET_ERROR(EINVAL);
627			break;
628		}
629
630		if (error)
631			break;
632	}
633
634	if (!error && reset_bootfs) {
635		error = nvlist_remove(props,
636		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
637
638		if (!error) {
639			error = nvlist_add_uint64(props,
640			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
641		}
642	}
643
644	return (error);
645}
646
647void
648spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
649{
650	char *cachefile;
651	spa_config_dirent_t *dp;
652
653	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
654	    &cachefile) != 0)
655		return;
656
657	dp = kmem_alloc(sizeof (spa_config_dirent_t),
658	    KM_SLEEP);
659
660	if (cachefile[0] == '\0')
661		dp->scd_path = spa_strdup(spa_config_path);
662	else if (strcmp(cachefile, "none") == 0)
663		dp->scd_path = NULL;
664	else
665		dp->scd_path = spa_strdup(cachefile);
666
667	list_insert_head(&spa->spa_config_list, dp);
668	if (need_sync)
669		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
670}
671
672int
673spa_prop_set(spa_t *spa, nvlist_t *nvp)
674{
675	int error;
676	nvpair_t *elem = NULL;
677	boolean_t need_sync = B_FALSE;
678
679	if ((error = spa_prop_validate(spa, nvp)) != 0)
680		return (error);
681
682	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
683		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
684
685		if (prop == ZPOOL_PROP_CACHEFILE ||
686		    prop == ZPOOL_PROP_ALTROOT ||
687		    prop == ZPOOL_PROP_READONLY)
688			continue;
689
690		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
691			uint64_t ver;
692
693			if (prop == ZPOOL_PROP_VERSION) {
694				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
695			} else {
696				ASSERT(zpool_prop_feature(nvpair_name(elem)));
697				ver = SPA_VERSION_FEATURES;
698				need_sync = B_TRUE;
699			}
700
701			/* Save time if the version is already set. */
702			if (ver == spa_version(spa))
703				continue;
704
705			/*
706			 * In addition to the pool directory object, we might
707			 * create the pool properties object, the features for
708			 * read object, the features for write object, or the
709			 * feature descriptions object.
710			 */
711			error = dsl_sync_task(spa->spa_name, NULL,
712			    spa_sync_version, &ver,
713			    6, ZFS_SPACE_CHECK_RESERVED);
714			if (error)
715				return (error);
716			continue;
717		}
718
719		need_sync = B_TRUE;
720		break;
721	}
722
723	if (need_sync) {
724		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
725		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
726	}
727
728	return (0);
729}
730
731/*
732 * If the bootfs property value is dsobj, clear it.
733 */
734void
735spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
736{
737	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
738		VERIFY(zap_remove(spa->spa_meta_objset,
739		    spa->spa_pool_props_object,
740		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
741		spa->spa_bootfs = 0;
742	}
743}
744
745/*ARGSUSED*/
746static int
747spa_change_guid_check(void *arg, dmu_tx_t *tx)
748{
749	uint64_t *newguid = arg;
750	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
751	vdev_t *rvd = spa->spa_root_vdev;
752	uint64_t vdev_state;
753
754	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755	vdev_state = rvd->vdev_state;
756	spa_config_exit(spa, SCL_STATE, FTAG);
757
758	if (vdev_state != VDEV_STATE_HEALTHY)
759		return (SET_ERROR(ENXIO));
760
761	ASSERT3U(spa_guid(spa), !=, *newguid);
762
763	return (0);
764}
765
766static void
767spa_change_guid_sync(void *arg, dmu_tx_t *tx)
768{
769	uint64_t *newguid = arg;
770	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
771	uint64_t oldguid;
772	vdev_t *rvd = spa->spa_root_vdev;
773
774	oldguid = spa_guid(spa);
775
776	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
777	rvd->vdev_guid = *newguid;
778	rvd->vdev_guid_sum += (*newguid - oldguid);
779	vdev_config_dirty(rvd);
780	spa_config_exit(spa, SCL_STATE, FTAG);
781
782	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
783	    oldguid, *newguid);
784}
785
786/*
787 * Change the GUID for the pool.  This is done so that we can later
788 * re-import a pool built from a clone of our own vdevs.  We will modify
789 * the root vdev's guid, our own pool guid, and then mark all of our
790 * vdevs dirty.  Note that we must make sure that all our vdevs are
791 * online when we do this, or else any vdevs that weren't present
792 * would be orphaned from our pool.  We are also going to issue a
793 * sysevent to update any watchers.
794 */
795int
796spa_change_guid(spa_t *spa)
797{
798	int error;
799	uint64_t guid;
800
801	mutex_enter(&spa->spa_vdev_top_lock);
802	mutex_enter(&spa_namespace_lock);
803	guid = spa_generate_guid(NULL);
804
805	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
806	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
807
808	if (error == 0) {
809		spa_config_sync(spa, B_FALSE, B_TRUE);
810		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
811	}
812
813	mutex_exit(&spa_namespace_lock);
814	mutex_exit(&spa->spa_vdev_top_lock);
815
816	return (error);
817}
818
819/*
820 * ==========================================================================
821 * SPA state manipulation (open/create/destroy/import/export)
822 * ==========================================================================
823 */
824
825static int
826spa_error_entry_compare(const void *a, const void *b)
827{
828	spa_error_entry_t *sa = (spa_error_entry_t *)a;
829	spa_error_entry_t *sb = (spa_error_entry_t *)b;
830	int ret;
831
832	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
833	    sizeof (zbookmark_phys_t));
834
835	if (ret < 0)
836		return (-1);
837	else if (ret > 0)
838		return (1);
839	else
840		return (0);
841}
842
843/*
844 * Utility function which retrieves copies of the current logs and
845 * re-initializes them in the process.
846 */
847void
848spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
849{
850	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
851
852	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
853	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
854
855	avl_create(&spa->spa_errlist_scrub,
856	    spa_error_entry_compare, sizeof (spa_error_entry_t),
857	    offsetof(spa_error_entry_t, se_avl));
858	avl_create(&spa->spa_errlist_last,
859	    spa_error_entry_compare, sizeof (spa_error_entry_t),
860	    offsetof(spa_error_entry_t, se_avl));
861}
862
863static void
864spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
865{
866	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
867	enum zti_modes mode = ztip->zti_mode;
868	uint_t value = ztip->zti_value;
869	uint_t count = ztip->zti_count;
870	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
871	char name[32];
872	uint_t flags = 0;
873	boolean_t batch = B_FALSE;
874
875	if (mode == ZTI_MODE_NULL) {
876		tqs->stqs_count = 0;
877		tqs->stqs_taskq = NULL;
878		return;
879	}
880
881	ASSERT3U(count, >, 0);
882
883	tqs->stqs_count = count;
884	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
885
886	switch (mode) {
887	case ZTI_MODE_FIXED:
888		ASSERT3U(value, >=, 1);
889		value = MAX(value, 1);
890		break;
891
892	case ZTI_MODE_BATCH:
893		batch = B_TRUE;
894		flags |= TASKQ_THREADS_CPU_PCT;
895		value = zio_taskq_batch_pct;
896		break;
897
898	default:
899		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
900		    "spa_activate()",
901		    zio_type_name[t], zio_taskq_types[q], mode, value);
902		break;
903	}
904
905	for (uint_t i = 0; i < count; i++) {
906		taskq_t *tq;
907
908		if (count > 1) {
909			(void) snprintf(name, sizeof (name), "%s_%s_%u",
910			    zio_type_name[t], zio_taskq_types[q], i);
911		} else {
912			(void) snprintf(name, sizeof (name), "%s_%s",
913			    zio_type_name[t], zio_taskq_types[q]);
914		}
915
916#ifdef SYSDC
917		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
918			if (batch)
919				flags |= TASKQ_DC_BATCH;
920
921			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
922			    spa->spa_proc, zio_taskq_basedc, flags);
923		} else {
924#endif
925			pri_t pri = maxclsyspri;
926			/*
927			 * The write issue taskq can be extremely CPU
928			 * intensive.  Run it at slightly lower priority
929			 * than the other taskqs.
930			 */
931			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
932				pri++;
933
934			tq = taskq_create_proc(name, value, pri, 50,
935			    INT_MAX, spa->spa_proc, flags);
936#ifdef SYSDC
937		}
938#endif
939
940		tqs->stqs_taskq[i] = tq;
941	}
942}
943
944static void
945spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948
949	if (tqs->stqs_taskq == NULL) {
950		ASSERT0(tqs->stqs_count);
951		return;
952	}
953
954	for (uint_t i = 0; i < tqs->stqs_count; i++) {
955		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
956		taskq_destroy(tqs->stqs_taskq[i]);
957	}
958
959	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
960	tqs->stqs_taskq = NULL;
961}
962
963/*
964 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
965 * Note that a type may have multiple discrete taskqs to avoid lock contention
966 * on the taskq itself. In that case we choose which taskq at random by using
967 * the low bits of gethrtime().
968 */
969void
970spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
971    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
972{
973	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
974	taskq_t *tq;
975
976	ASSERT3P(tqs->stqs_taskq, !=, NULL);
977	ASSERT3U(tqs->stqs_count, !=, 0);
978
979	if (tqs->stqs_count == 1) {
980		tq = tqs->stqs_taskq[0];
981	} else {
982#ifdef _KERNEL
983		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
984#else
985		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
986#endif
987	}
988
989	taskq_dispatch_ent(tq, func, arg, flags, ent);
990}
991
992static void
993spa_create_zio_taskqs(spa_t *spa)
994{
995	for (int t = 0; t < ZIO_TYPES; t++) {
996		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
997			spa_taskqs_init(spa, t, q);
998		}
999	}
1000}
1001
1002#ifdef _KERNEL
1003#ifdef SPA_PROCESS
1004static void
1005spa_thread(void *arg)
1006{
1007	callb_cpr_t cprinfo;
1008
1009	spa_t *spa = arg;
1010	user_t *pu = PTOU(curproc);
1011
1012	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1013	    spa->spa_name);
1014
1015	ASSERT(curproc != &p0);
1016	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1017	    "zpool-%s", spa->spa_name);
1018	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1019
1020#ifdef PSRSET_BIND
1021	/* bind this thread to the requested psrset */
1022	if (zio_taskq_psrset_bind != PS_NONE) {
1023		pool_lock();
1024		mutex_enter(&cpu_lock);
1025		mutex_enter(&pidlock);
1026		mutex_enter(&curproc->p_lock);
1027
1028		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1029		    0, NULL, NULL) == 0)  {
1030			curthread->t_bind_pset = zio_taskq_psrset_bind;
1031		} else {
1032			cmn_err(CE_WARN,
1033			    "Couldn't bind process for zfs pool \"%s\" to "
1034			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1035		}
1036
1037		mutex_exit(&curproc->p_lock);
1038		mutex_exit(&pidlock);
1039		mutex_exit(&cpu_lock);
1040		pool_unlock();
1041	}
1042#endif
1043
1044#ifdef SYSDC
1045	if (zio_taskq_sysdc) {
1046		sysdc_thread_enter(curthread, 100, 0);
1047	}
1048#endif
1049
1050	spa->spa_proc = curproc;
1051	spa->spa_did = curthread->t_did;
1052
1053	spa_create_zio_taskqs(spa);
1054
1055	mutex_enter(&spa->spa_proc_lock);
1056	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1057
1058	spa->spa_proc_state = SPA_PROC_ACTIVE;
1059	cv_broadcast(&spa->spa_proc_cv);
1060
1061	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1062	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1063		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1064	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1065
1066	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1067	spa->spa_proc_state = SPA_PROC_GONE;
1068	spa->spa_proc = &p0;
1069	cv_broadcast(&spa->spa_proc_cv);
1070	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1071
1072	mutex_enter(&curproc->p_lock);
1073	lwp_exit();
1074}
1075#endif	/* SPA_PROCESS */
1076#endif
1077
1078/*
1079 * Activate an uninitialized pool.
1080 */
1081static void
1082spa_activate(spa_t *spa, int mode)
1083{
1084	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1085
1086	spa->spa_state = POOL_STATE_ACTIVE;
1087	spa->spa_mode = mode;
1088
1089	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091
1092	/* Try to create a covering process */
1093	mutex_enter(&spa->spa_proc_lock);
1094	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1095	ASSERT(spa->spa_proc == &p0);
1096	spa->spa_did = 0;
1097
1098#ifdef SPA_PROCESS
1099	/* Only create a process if we're going to be around a while. */
1100	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1101		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1102		    NULL, 0) == 0) {
1103			spa->spa_proc_state = SPA_PROC_CREATED;
1104			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1105				cv_wait(&spa->spa_proc_cv,
1106				    &spa->spa_proc_lock);
1107			}
1108			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1109			ASSERT(spa->spa_proc != &p0);
1110			ASSERT(spa->spa_did != 0);
1111		} else {
1112#ifdef _KERNEL
1113			cmn_err(CE_WARN,
1114			    "Couldn't create process for zfs pool \"%s\"\n",
1115			    spa->spa_name);
1116#endif
1117		}
1118	}
1119#endif	/* SPA_PROCESS */
1120	mutex_exit(&spa->spa_proc_lock);
1121
1122	/* If we didn't create a process, we need to create our taskqs. */
1123	ASSERT(spa->spa_proc == &p0);
1124	if (spa->spa_proc == &p0) {
1125		spa_create_zio_taskqs(spa);
1126	}
1127
1128	/*
1129	 * Start TRIM thread.
1130	 */
1131	trim_thread_create(spa);
1132
1133	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1134	    offsetof(vdev_t, vdev_config_dirty_node));
1135	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1136	    offsetof(objset_t, os_evicting_node));
1137	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1138	    offsetof(vdev_t, vdev_state_dirty_node));
1139
1140	txg_list_create(&spa->spa_vdev_txg_list,
1141	    offsetof(struct vdev, vdev_txg_node));
1142
1143	avl_create(&spa->spa_errlist_scrub,
1144	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1145	    offsetof(spa_error_entry_t, se_avl));
1146	avl_create(&spa->spa_errlist_last,
1147	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1148	    offsetof(spa_error_entry_t, se_avl));
1149}
1150
1151/*
1152 * Opposite of spa_activate().
1153 */
1154static void
1155spa_deactivate(spa_t *spa)
1156{
1157	ASSERT(spa->spa_sync_on == B_FALSE);
1158	ASSERT(spa->spa_dsl_pool == NULL);
1159	ASSERT(spa->spa_root_vdev == NULL);
1160	ASSERT(spa->spa_async_zio_root == NULL);
1161	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1162
1163	/*
1164	 * Stop TRIM thread in case spa_unload() wasn't called directly
1165	 * before spa_deactivate().
1166	 */
1167	trim_thread_destroy(spa);
1168
1169	spa_evicting_os_wait(spa);
1170
1171	txg_list_destroy(&spa->spa_vdev_txg_list);
1172
1173	list_destroy(&spa->spa_config_dirty_list);
1174	list_destroy(&spa->spa_evicting_os_list);
1175	list_destroy(&spa->spa_state_dirty_list);
1176
1177	for (int t = 0; t < ZIO_TYPES; t++) {
1178		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1179			spa_taskqs_fini(spa, t, q);
1180		}
1181	}
1182
1183	metaslab_class_destroy(spa->spa_normal_class);
1184	spa->spa_normal_class = NULL;
1185
1186	metaslab_class_destroy(spa->spa_log_class);
1187	spa->spa_log_class = NULL;
1188
1189	/*
1190	 * If this was part of an import or the open otherwise failed, we may
1191	 * still have errors left in the queues.  Empty them just in case.
1192	 */
1193	spa_errlog_drain(spa);
1194
1195	avl_destroy(&spa->spa_errlist_scrub);
1196	avl_destroy(&spa->spa_errlist_last);
1197
1198	spa->spa_state = POOL_STATE_UNINITIALIZED;
1199
1200	mutex_enter(&spa->spa_proc_lock);
1201	if (spa->spa_proc_state != SPA_PROC_NONE) {
1202		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1203		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1204		cv_broadcast(&spa->spa_proc_cv);
1205		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1206			ASSERT(spa->spa_proc != &p0);
1207			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1208		}
1209		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1210		spa->spa_proc_state = SPA_PROC_NONE;
1211	}
1212	ASSERT(spa->spa_proc == &p0);
1213	mutex_exit(&spa->spa_proc_lock);
1214
1215#ifdef SPA_PROCESS
1216	/*
1217	 * We want to make sure spa_thread() has actually exited the ZFS
1218	 * module, so that the module can't be unloaded out from underneath
1219	 * it.
1220	 */
1221	if (spa->spa_did != 0) {
1222		thread_join(spa->spa_did);
1223		spa->spa_did = 0;
1224	}
1225#endif	/* SPA_PROCESS */
1226}
1227
1228/*
1229 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1230 * will create all the necessary vdevs in the appropriate layout, with each vdev
1231 * in the CLOSED state.  This will prep the pool before open/creation/import.
1232 * All vdev validation is done by the vdev_alloc() routine.
1233 */
1234static int
1235spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1236    uint_t id, int atype)
1237{
1238	nvlist_t **child;
1239	uint_t children;
1240	int error;
1241
1242	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1243		return (error);
1244
1245	if ((*vdp)->vdev_ops->vdev_op_leaf)
1246		return (0);
1247
1248	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1249	    &child, &children);
1250
1251	if (error == ENOENT)
1252		return (0);
1253
1254	if (error) {
1255		vdev_free(*vdp);
1256		*vdp = NULL;
1257		return (SET_ERROR(EINVAL));
1258	}
1259
1260	for (int c = 0; c < children; c++) {
1261		vdev_t *vd;
1262		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1263		    atype)) != 0) {
1264			vdev_free(*vdp);
1265			*vdp = NULL;
1266			return (error);
1267		}
1268	}
1269
1270	ASSERT(*vdp != NULL);
1271
1272	return (0);
1273}
1274
1275/*
1276 * Opposite of spa_load().
1277 */
1278static void
1279spa_unload(spa_t *spa)
1280{
1281	int i;
1282
1283	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1284
1285	/*
1286	 * Stop TRIM thread.
1287	 */
1288	trim_thread_destroy(spa);
1289
1290	/*
1291	 * Stop async tasks.
1292	 */
1293	spa_async_suspend(spa);
1294
1295	/*
1296	 * Stop syncing.
1297	 */
1298	if (spa->spa_sync_on) {
1299		txg_sync_stop(spa->spa_dsl_pool);
1300		spa->spa_sync_on = B_FALSE;
1301	}
1302
1303	/*
1304	 * Wait for any outstanding async I/O to complete.
1305	 */
1306	if (spa->spa_async_zio_root != NULL) {
1307		for (int i = 0; i < max_ncpus; i++)
1308			(void) zio_wait(spa->spa_async_zio_root[i]);
1309		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1310		spa->spa_async_zio_root = NULL;
1311	}
1312
1313	bpobj_close(&spa->spa_deferred_bpobj);
1314
1315	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1316
1317	/*
1318	 * Close all vdevs.
1319	 */
1320	if (spa->spa_root_vdev)
1321		vdev_free(spa->spa_root_vdev);
1322	ASSERT(spa->spa_root_vdev == NULL);
1323
1324	/*
1325	 * Close the dsl pool.
1326	 */
1327	if (spa->spa_dsl_pool) {
1328		dsl_pool_close(spa->spa_dsl_pool);
1329		spa->spa_dsl_pool = NULL;
1330		spa->spa_meta_objset = NULL;
1331	}
1332
1333	ddt_unload(spa);
1334
1335	/*
1336	 * Drop and purge level 2 cache
1337	 */
1338	spa_l2cache_drop(spa);
1339
1340	for (i = 0; i < spa->spa_spares.sav_count; i++)
1341		vdev_free(spa->spa_spares.sav_vdevs[i]);
1342	if (spa->spa_spares.sav_vdevs) {
1343		kmem_free(spa->spa_spares.sav_vdevs,
1344		    spa->spa_spares.sav_count * sizeof (void *));
1345		spa->spa_spares.sav_vdevs = NULL;
1346	}
1347	if (spa->spa_spares.sav_config) {
1348		nvlist_free(spa->spa_spares.sav_config);
1349		spa->spa_spares.sav_config = NULL;
1350	}
1351	spa->spa_spares.sav_count = 0;
1352
1353	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1354		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1355		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1356	}
1357	if (spa->spa_l2cache.sav_vdevs) {
1358		kmem_free(spa->spa_l2cache.sav_vdevs,
1359		    spa->spa_l2cache.sav_count * sizeof (void *));
1360		spa->spa_l2cache.sav_vdevs = NULL;
1361	}
1362	if (spa->spa_l2cache.sav_config) {
1363		nvlist_free(spa->spa_l2cache.sav_config);
1364		spa->spa_l2cache.sav_config = NULL;
1365	}
1366	spa->spa_l2cache.sav_count = 0;
1367
1368	spa->spa_async_suspended = 0;
1369
1370	if (spa->spa_comment != NULL) {
1371		spa_strfree(spa->spa_comment);
1372		spa->spa_comment = NULL;
1373	}
1374
1375	spa_config_exit(spa, SCL_ALL, FTAG);
1376}
1377
1378/*
1379 * Load (or re-load) the current list of vdevs describing the active spares for
1380 * this pool.  When this is called, we have some form of basic information in
1381 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1382 * then re-generate a more complete list including status information.
1383 */
1384static void
1385spa_load_spares(spa_t *spa)
1386{
1387	nvlist_t **spares;
1388	uint_t nspares;
1389	int i;
1390	vdev_t *vd, *tvd;
1391
1392	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1393
1394	/*
1395	 * First, close and free any existing spare vdevs.
1396	 */
1397	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1398		vd = spa->spa_spares.sav_vdevs[i];
1399
1400		/* Undo the call to spa_activate() below */
1401		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1402		    B_FALSE)) != NULL && tvd->vdev_isspare)
1403			spa_spare_remove(tvd);
1404		vdev_close(vd);
1405		vdev_free(vd);
1406	}
1407
1408	if (spa->spa_spares.sav_vdevs)
1409		kmem_free(spa->spa_spares.sav_vdevs,
1410		    spa->spa_spares.sav_count * sizeof (void *));
1411
1412	if (spa->spa_spares.sav_config == NULL)
1413		nspares = 0;
1414	else
1415		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1416		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1417
1418	spa->spa_spares.sav_count = (int)nspares;
1419	spa->spa_spares.sav_vdevs = NULL;
1420
1421	if (nspares == 0)
1422		return;
1423
1424	/*
1425	 * Construct the array of vdevs, opening them to get status in the
1426	 * process.   For each spare, there is potentially two different vdev_t
1427	 * structures associated with it: one in the list of spares (used only
1428	 * for basic validation purposes) and one in the active vdev
1429	 * configuration (if it's spared in).  During this phase we open and
1430	 * validate each vdev on the spare list.  If the vdev also exists in the
1431	 * active configuration, then we also mark this vdev as an active spare.
1432	 */
1433	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1434	    KM_SLEEP);
1435	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1436		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1437		    VDEV_ALLOC_SPARE) == 0);
1438		ASSERT(vd != NULL);
1439
1440		spa->spa_spares.sav_vdevs[i] = vd;
1441
1442		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1443		    B_FALSE)) != NULL) {
1444			if (!tvd->vdev_isspare)
1445				spa_spare_add(tvd);
1446
1447			/*
1448			 * We only mark the spare active if we were successfully
1449			 * able to load the vdev.  Otherwise, importing a pool
1450			 * with a bad active spare would result in strange
1451			 * behavior, because multiple pool would think the spare
1452			 * is actively in use.
1453			 *
1454			 * There is a vulnerability here to an equally bizarre
1455			 * circumstance, where a dead active spare is later
1456			 * brought back to life (onlined or otherwise).  Given
1457			 * the rarity of this scenario, and the extra complexity
1458			 * it adds, we ignore the possibility.
1459			 */
1460			if (!vdev_is_dead(tvd))
1461				spa_spare_activate(tvd);
1462		}
1463
1464		vd->vdev_top = vd;
1465		vd->vdev_aux = &spa->spa_spares;
1466
1467		if (vdev_open(vd) != 0)
1468			continue;
1469
1470		if (vdev_validate_aux(vd) == 0)
1471			spa_spare_add(vd);
1472	}
1473
1474	/*
1475	 * Recompute the stashed list of spares, with status information
1476	 * this time.
1477	 */
1478	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1479	    DATA_TYPE_NVLIST_ARRAY) == 0);
1480
1481	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1482	    KM_SLEEP);
1483	for (i = 0; i < spa->spa_spares.sav_count; i++)
1484		spares[i] = vdev_config_generate(spa,
1485		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1486	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1487	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1488	for (i = 0; i < spa->spa_spares.sav_count; i++)
1489		nvlist_free(spares[i]);
1490	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1491}
1492
1493/*
1494 * Load (or re-load) the current list of vdevs describing the active l2cache for
1495 * this pool.  When this is called, we have some form of basic information in
1496 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1497 * then re-generate a more complete list including status information.
1498 * Devices which are already active have their details maintained, and are
1499 * not re-opened.
1500 */
1501static void
1502spa_load_l2cache(spa_t *spa)
1503{
1504	nvlist_t **l2cache;
1505	uint_t nl2cache;
1506	int i, j, oldnvdevs;
1507	uint64_t guid;
1508	vdev_t *vd, **oldvdevs, **newvdevs;
1509	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1510
1511	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1512
1513	if (sav->sav_config != NULL) {
1514		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1515		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1516		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1517	} else {
1518		nl2cache = 0;
1519		newvdevs = NULL;
1520	}
1521
1522	oldvdevs = sav->sav_vdevs;
1523	oldnvdevs = sav->sav_count;
1524	sav->sav_vdevs = NULL;
1525	sav->sav_count = 0;
1526
1527	/*
1528	 * Process new nvlist of vdevs.
1529	 */
1530	for (i = 0; i < nl2cache; i++) {
1531		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1532		    &guid) == 0);
1533
1534		newvdevs[i] = NULL;
1535		for (j = 0; j < oldnvdevs; j++) {
1536			vd = oldvdevs[j];
1537			if (vd != NULL && guid == vd->vdev_guid) {
1538				/*
1539				 * Retain previous vdev for add/remove ops.
1540				 */
1541				newvdevs[i] = vd;
1542				oldvdevs[j] = NULL;
1543				break;
1544			}
1545		}
1546
1547		if (newvdevs[i] == NULL) {
1548			/*
1549			 * Create new vdev
1550			 */
1551			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1552			    VDEV_ALLOC_L2CACHE) == 0);
1553			ASSERT(vd != NULL);
1554			newvdevs[i] = vd;
1555
1556			/*
1557			 * Commit this vdev as an l2cache device,
1558			 * even if it fails to open.
1559			 */
1560			spa_l2cache_add(vd);
1561
1562			vd->vdev_top = vd;
1563			vd->vdev_aux = sav;
1564
1565			spa_l2cache_activate(vd);
1566
1567			if (vdev_open(vd) != 0)
1568				continue;
1569
1570			(void) vdev_validate_aux(vd);
1571
1572			if (!vdev_is_dead(vd))
1573				l2arc_add_vdev(spa, vd);
1574		}
1575	}
1576
1577	/*
1578	 * Purge vdevs that were dropped
1579	 */
1580	for (i = 0; i < oldnvdevs; i++) {
1581		uint64_t pool;
1582
1583		vd = oldvdevs[i];
1584		if (vd != NULL) {
1585			ASSERT(vd->vdev_isl2cache);
1586
1587			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1588			    pool != 0ULL && l2arc_vdev_present(vd))
1589				l2arc_remove_vdev(vd);
1590			vdev_clear_stats(vd);
1591			vdev_free(vd);
1592		}
1593	}
1594
1595	if (oldvdevs)
1596		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1597
1598	if (sav->sav_config == NULL)
1599		goto out;
1600
1601	sav->sav_vdevs = newvdevs;
1602	sav->sav_count = (int)nl2cache;
1603
1604	/*
1605	 * Recompute the stashed list of l2cache devices, with status
1606	 * information this time.
1607	 */
1608	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1609	    DATA_TYPE_NVLIST_ARRAY) == 0);
1610
1611	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1612	for (i = 0; i < sav->sav_count; i++)
1613		l2cache[i] = vdev_config_generate(spa,
1614		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1615	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1616	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1617out:
1618	for (i = 0; i < sav->sav_count; i++)
1619		nvlist_free(l2cache[i]);
1620	if (sav->sav_count)
1621		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1622}
1623
1624static int
1625load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1626{
1627	dmu_buf_t *db;
1628	char *packed = NULL;
1629	size_t nvsize = 0;
1630	int error;
1631	*value = NULL;
1632
1633	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1634	if (error != 0)
1635		return (error);
1636
1637	nvsize = *(uint64_t *)db->db_data;
1638	dmu_buf_rele(db, FTAG);
1639
1640	packed = kmem_alloc(nvsize, KM_SLEEP);
1641	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1642	    DMU_READ_PREFETCH);
1643	if (error == 0)
1644		error = nvlist_unpack(packed, nvsize, value, 0);
1645	kmem_free(packed, nvsize);
1646
1647	return (error);
1648}
1649
1650/*
1651 * Checks to see if the given vdev could not be opened, in which case we post a
1652 * sysevent to notify the autoreplace code that the device has been removed.
1653 */
1654static void
1655spa_check_removed(vdev_t *vd)
1656{
1657	for (int c = 0; c < vd->vdev_children; c++)
1658		spa_check_removed(vd->vdev_child[c]);
1659
1660	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1661	    !vd->vdev_ishole) {
1662		zfs_post_autoreplace(vd->vdev_spa, vd);
1663		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1664	}
1665}
1666
1667static void
1668spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1669{
1670	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1671
1672	vd->vdev_top_zap = mvd->vdev_top_zap;
1673	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1674
1675	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1676		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1677	}
1678}
1679
1680/*
1681 * Validate the current config against the MOS config
1682 */
1683static boolean_t
1684spa_config_valid(spa_t *spa, nvlist_t *config)
1685{
1686	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1687	nvlist_t *nv;
1688
1689	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1690
1691	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1692	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1693
1694	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1695
1696	/*
1697	 * If we're doing a normal import, then build up any additional
1698	 * diagnostic information about missing devices in this config.
1699	 * We'll pass this up to the user for further processing.
1700	 */
1701	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1702		nvlist_t **child, *nv;
1703		uint64_t idx = 0;
1704
1705		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1706		    KM_SLEEP);
1707		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1708
1709		for (int c = 0; c < rvd->vdev_children; c++) {
1710			vdev_t *tvd = rvd->vdev_child[c];
1711			vdev_t *mtvd  = mrvd->vdev_child[c];
1712
1713			if (tvd->vdev_ops == &vdev_missing_ops &&
1714			    mtvd->vdev_ops != &vdev_missing_ops &&
1715			    mtvd->vdev_islog)
1716				child[idx++] = vdev_config_generate(spa, mtvd,
1717				    B_FALSE, 0);
1718		}
1719
1720		if (idx) {
1721			VERIFY(nvlist_add_nvlist_array(nv,
1722			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1723			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1724			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1725
1726			for (int i = 0; i < idx; i++)
1727				nvlist_free(child[i]);
1728		}
1729		nvlist_free(nv);
1730		kmem_free(child, rvd->vdev_children * sizeof (char **));
1731	}
1732
1733	/*
1734	 * Compare the root vdev tree with the information we have
1735	 * from the MOS config (mrvd). Check each top-level vdev
1736	 * with the corresponding MOS config top-level (mtvd).
1737	 */
1738	for (int c = 0; c < rvd->vdev_children; c++) {
1739		vdev_t *tvd = rvd->vdev_child[c];
1740		vdev_t *mtvd  = mrvd->vdev_child[c];
1741
1742		/*
1743		 * Resolve any "missing" vdevs in the current configuration.
1744		 * If we find that the MOS config has more accurate information
1745		 * about the top-level vdev then use that vdev instead.
1746		 */
1747		if (tvd->vdev_ops == &vdev_missing_ops &&
1748		    mtvd->vdev_ops != &vdev_missing_ops) {
1749
1750			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1751				continue;
1752
1753			/*
1754			 * Device specific actions.
1755			 */
1756			if (mtvd->vdev_islog) {
1757				spa_set_log_state(spa, SPA_LOG_CLEAR);
1758			} else {
1759				/*
1760				 * XXX - once we have 'readonly' pool
1761				 * support we should be able to handle
1762				 * missing data devices by transitioning
1763				 * the pool to readonly.
1764				 */
1765				continue;
1766			}
1767
1768			/*
1769			 * Swap the missing vdev with the data we were
1770			 * able to obtain from the MOS config.
1771			 */
1772			vdev_remove_child(rvd, tvd);
1773			vdev_remove_child(mrvd, mtvd);
1774
1775			vdev_add_child(rvd, mtvd);
1776			vdev_add_child(mrvd, tvd);
1777
1778			spa_config_exit(spa, SCL_ALL, FTAG);
1779			vdev_load(mtvd);
1780			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1781
1782			vdev_reopen(rvd);
1783		} else {
1784			if (mtvd->vdev_islog) {
1785				/*
1786				 * Load the slog device's state from the MOS
1787				 * config since it's possible that the label
1788				 * does not contain the most up-to-date
1789				 * information.
1790				 */
1791				vdev_load_log_state(tvd, mtvd);
1792				vdev_reopen(tvd);
1793			}
1794
1795			/*
1796			 * Per-vdev ZAP info is stored exclusively in the MOS.
1797			 */
1798			spa_config_valid_zaps(tvd, mtvd);
1799		}
1800	}
1801
1802	vdev_free(mrvd);
1803	spa_config_exit(spa, SCL_ALL, FTAG);
1804
1805	/*
1806	 * Ensure we were able to validate the config.
1807	 */
1808	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1809}
1810
1811/*
1812 * Check for missing log devices
1813 */
1814static boolean_t
1815spa_check_logs(spa_t *spa)
1816{
1817	boolean_t rv = B_FALSE;
1818	dsl_pool_t *dp = spa_get_dsl(spa);
1819
1820	switch (spa->spa_log_state) {
1821	case SPA_LOG_MISSING:
1822		/* need to recheck in case slog has been restored */
1823	case SPA_LOG_UNKNOWN:
1824		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1825		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1826		if (rv)
1827			spa_set_log_state(spa, SPA_LOG_MISSING);
1828		break;
1829	}
1830	return (rv);
1831}
1832
1833static boolean_t
1834spa_passivate_log(spa_t *spa)
1835{
1836	vdev_t *rvd = spa->spa_root_vdev;
1837	boolean_t slog_found = B_FALSE;
1838
1839	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1840
1841	if (!spa_has_slogs(spa))
1842		return (B_FALSE);
1843
1844	for (int c = 0; c < rvd->vdev_children; c++) {
1845		vdev_t *tvd = rvd->vdev_child[c];
1846		metaslab_group_t *mg = tvd->vdev_mg;
1847
1848		if (tvd->vdev_islog) {
1849			metaslab_group_passivate(mg);
1850			slog_found = B_TRUE;
1851		}
1852	}
1853
1854	return (slog_found);
1855}
1856
1857static void
1858spa_activate_log(spa_t *spa)
1859{
1860	vdev_t *rvd = spa->spa_root_vdev;
1861
1862	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1863
1864	for (int c = 0; c < rvd->vdev_children; c++) {
1865		vdev_t *tvd = rvd->vdev_child[c];
1866		metaslab_group_t *mg = tvd->vdev_mg;
1867
1868		if (tvd->vdev_islog)
1869			metaslab_group_activate(mg);
1870	}
1871}
1872
1873int
1874spa_offline_log(spa_t *spa)
1875{
1876	int error;
1877
1878	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1879	    NULL, DS_FIND_CHILDREN);
1880	if (error == 0) {
1881		/*
1882		 * We successfully offlined the log device, sync out the
1883		 * current txg so that the "stubby" block can be removed
1884		 * by zil_sync().
1885		 */
1886		txg_wait_synced(spa->spa_dsl_pool, 0);
1887	}
1888	return (error);
1889}
1890
1891static void
1892spa_aux_check_removed(spa_aux_vdev_t *sav)
1893{
1894	int i;
1895
1896	for (i = 0; i < sav->sav_count; i++)
1897		spa_check_removed(sav->sav_vdevs[i]);
1898}
1899
1900void
1901spa_claim_notify(zio_t *zio)
1902{
1903	spa_t *spa = zio->io_spa;
1904
1905	if (zio->io_error)
1906		return;
1907
1908	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1909	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1910		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1911	mutex_exit(&spa->spa_props_lock);
1912}
1913
1914typedef struct spa_load_error {
1915	uint64_t	sle_meta_count;
1916	uint64_t	sle_data_count;
1917} spa_load_error_t;
1918
1919static void
1920spa_load_verify_done(zio_t *zio)
1921{
1922	blkptr_t *bp = zio->io_bp;
1923	spa_load_error_t *sle = zio->io_private;
1924	dmu_object_type_t type = BP_GET_TYPE(bp);
1925	int error = zio->io_error;
1926	spa_t *spa = zio->io_spa;
1927
1928	if (error) {
1929		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1930		    type != DMU_OT_INTENT_LOG)
1931			atomic_inc_64(&sle->sle_meta_count);
1932		else
1933			atomic_inc_64(&sle->sle_data_count);
1934	}
1935	zio_data_buf_free(zio->io_data, zio->io_size);
1936
1937	mutex_enter(&spa->spa_scrub_lock);
1938	spa->spa_scrub_inflight--;
1939	cv_broadcast(&spa->spa_scrub_io_cv);
1940	mutex_exit(&spa->spa_scrub_lock);
1941}
1942
1943/*
1944 * Maximum number of concurrent scrub i/os to create while verifying
1945 * a pool while importing it.
1946 */
1947int spa_load_verify_maxinflight = 10000;
1948boolean_t spa_load_verify_metadata = B_TRUE;
1949boolean_t spa_load_verify_data = B_TRUE;
1950
1951SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1952    &spa_load_verify_maxinflight, 0,
1953    "Maximum number of concurrent scrub I/Os to create while verifying a "
1954    "pool while importing it");
1955
1956SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1957    &spa_load_verify_metadata, 0,
1958    "Check metadata on import?");
1959
1960SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1961    &spa_load_verify_data, 0,
1962    "Check user data on import?");
1963
1964/*ARGSUSED*/
1965static int
1966spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1967    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1968{
1969	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1970		return (0);
1971	/*
1972	 * Note: normally this routine will not be called if
1973	 * spa_load_verify_metadata is not set.  However, it may be useful
1974	 * to manually set the flag after the traversal has begun.
1975	 */
1976	if (!spa_load_verify_metadata)
1977		return (0);
1978	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1979		return (0);
1980
1981	zio_t *rio = arg;
1982	size_t size = BP_GET_PSIZE(bp);
1983	void *data = zio_data_buf_alloc(size);
1984
1985	mutex_enter(&spa->spa_scrub_lock);
1986	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1987		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1988	spa->spa_scrub_inflight++;
1989	mutex_exit(&spa->spa_scrub_lock);
1990
1991	zio_nowait(zio_read(rio, spa, bp, data, size,
1992	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1993	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1994	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1995	return (0);
1996}
1997
1998/* ARGSUSED */
1999int
2000verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2001{
2002	if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2003		return (SET_ERROR(ENAMETOOLONG));
2004
2005	return (0);
2006}
2007
2008static int
2009spa_load_verify(spa_t *spa)
2010{
2011	zio_t *rio;
2012	spa_load_error_t sle = { 0 };
2013	zpool_rewind_policy_t policy;
2014	boolean_t verify_ok = B_FALSE;
2015	int error = 0;
2016
2017	zpool_get_rewind_policy(spa->spa_config, &policy);
2018
2019	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2020		return (0);
2021
2022	dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2023	error = dmu_objset_find_dp(spa->spa_dsl_pool,
2024	    spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2025	    DS_FIND_CHILDREN);
2026	dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2027	if (error != 0)
2028		return (error);
2029
2030	rio = zio_root(spa, NULL, &sle,
2031	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2032
2033	if (spa_load_verify_metadata) {
2034		error = traverse_pool(spa, spa->spa_verify_min_txg,
2035		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2036		    spa_load_verify_cb, rio);
2037	}
2038
2039	(void) zio_wait(rio);
2040
2041	spa->spa_load_meta_errors = sle.sle_meta_count;
2042	spa->spa_load_data_errors = sle.sle_data_count;
2043
2044	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2045	    sle.sle_data_count <= policy.zrp_maxdata) {
2046		int64_t loss = 0;
2047
2048		verify_ok = B_TRUE;
2049		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2050		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2051
2052		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2053		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2054		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2055		VERIFY(nvlist_add_int64(spa->spa_load_info,
2056		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2057		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2058		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2059	} else {
2060		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2061	}
2062
2063	if (error) {
2064		if (error != ENXIO && error != EIO)
2065			error = SET_ERROR(EIO);
2066		return (error);
2067	}
2068
2069	return (verify_ok ? 0 : EIO);
2070}
2071
2072/*
2073 * Find a value in the pool props object.
2074 */
2075static void
2076spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2077{
2078	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2079	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2080}
2081
2082/*
2083 * Find a value in the pool directory object.
2084 */
2085static int
2086spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2087{
2088	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2089	    name, sizeof (uint64_t), 1, val));
2090}
2091
2092static int
2093spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2094{
2095	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2096	return (err);
2097}
2098
2099/*
2100 * Fix up config after a partly-completed split.  This is done with the
2101 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2102 * pool have that entry in their config, but only the splitting one contains
2103 * a list of all the guids of the vdevs that are being split off.
2104 *
2105 * This function determines what to do with that list: either rejoin
2106 * all the disks to the pool, or complete the splitting process.  To attempt
2107 * the rejoin, each disk that is offlined is marked online again, and
2108 * we do a reopen() call.  If the vdev label for every disk that was
2109 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2110 * then we call vdev_split() on each disk, and complete the split.
2111 *
2112 * Otherwise we leave the config alone, with all the vdevs in place in
2113 * the original pool.
2114 */
2115static void
2116spa_try_repair(spa_t *spa, nvlist_t *config)
2117{
2118	uint_t extracted;
2119	uint64_t *glist;
2120	uint_t i, gcount;
2121	nvlist_t *nvl;
2122	vdev_t **vd;
2123	boolean_t attempt_reopen;
2124
2125	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2126		return;
2127
2128	/* check that the config is complete */
2129	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2130	    &glist, &gcount) != 0)
2131		return;
2132
2133	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2134
2135	/* attempt to online all the vdevs & validate */
2136	attempt_reopen = B_TRUE;
2137	for (i = 0; i < gcount; i++) {
2138		if (glist[i] == 0)	/* vdev is hole */
2139			continue;
2140
2141		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2142		if (vd[i] == NULL) {
2143			/*
2144			 * Don't bother attempting to reopen the disks;
2145			 * just do the split.
2146			 */
2147			attempt_reopen = B_FALSE;
2148		} else {
2149			/* attempt to re-online it */
2150			vd[i]->vdev_offline = B_FALSE;
2151		}
2152	}
2153
2154	if (attempt_reopen) {
2155		vdev_reopen(spa->spa_root_vdev);
2156
2157		/* check each device to see what state it's in */
2158		for (extracted = 0, i = 0; i < gcount; i++) {
2159			if (vd[i] != NULL &&
2160			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2161				break;
2162			++extracted;
2163		}
2164	}
2165
2166	/*
2167	 * If every disk has been moved to the new pool, or if we never
2168	 * even attempted to look at them, then we split them off for
2169	 * good.
2170	 */
2171	if (!attempt_reopen || gcount == extracted) {
2172		for (i = 0; i < gcount; i++)
2173			if (vd[i] != NULL)
2174				vdev_split(vd[i]);
2175		vdev_reopen(spa->spa_root_vdev);
2176	}
2177
2178	kmem_free(vd, gcount * sizeof (vdev_t *));
2179}
2180
2181static int
2182spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2183    boolean_t mosconfig)
2184{
2185	nvlist_t *config = spa->spa_config;
2186	char *ereport = FM_EREPORT_ZFS_POOL;
2187	char *comment;
2188	int error;
2189	uint64_t pool_guid;
2190	nvlist_t *nvl;
2191
2192	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2193		return (SET_ERROR(EINVAL));
2194
2195	ASSERT(spa->spa_comment == NULL);
2196	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2197		spa->spa_comment = spa_strdup(comment);
2198
2199	/*
2200	 * Versioning wasn't explicitly added to the label until later, so if
2201	 * it's not present treat it as the initial version.
2202	 */
2203	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2204	    &spa->spa_ubsync.ub_version) != 0)
2205		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2206
2207	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2208	    &spa->spa_config_txg);
2209
2210	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2211	    spa_guid_exists(pool_guid, 0)) {
2212		error = SET_ERROR(EEXIST);
2213	} else {
2214		spa->spa_config_guid = pool_guid;
2215
2216		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2217		    &nvl) == 0) {
2218			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2219			    KM_SLEEP) == 0);
2220		}
2221
2222		nvlist_free(spa->spa_load_info);
2223		spa->spa_load_info = fnvlist_alloc();
2224
2225		gethrestime(&spa->spa_loaded_ts);
2226		error = spa_load_impl(spa, pool_guid, config, state, type,
2227		    mosconfig, &ereport);
2228	}
2229
2230	/*
2231	 * Don't count references from objsets that are already closed
2232	 * and are making their way through the eviction process.
2233	 */
2234	spa_evicting_os_wait(spa);
2235	spa->spa_minref = refcount_count(&spa->spa_refcount);
2236	if (error) {
2237		if (error != EEXIST) {
2238			spa->spa_loaded_ts.tv_sec = 0;
2239			spa->spa_loaded_ts.tv_nsec = 0;
2240		}
2241		if (error != EBADF) {
2242			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2243		}
2244	}
2245	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2246	spa->spa_ena = 0;
2247
2248	return (error);
2249}
2250
2251/*
2252 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2253 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2254 * spa's per-vdev ZAP list.
2255 */
2256static uint64_t
2257vdev_count_verify_zaps(vdev_t *vd)
2258{
2259	spa_t *spa = vd->vdev_spa;
2260	uint64_t total = 0;
2261	if (vd->vdev_top_zap != 0) {
2262		total++;
2263		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2264		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2265	}
2266	if (vd->vdev_leaf_zap != 0) {
2267		total++;
2268		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2269		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2270	}
2271
2272	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2273		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2274	}
2275
2276	return (total);
2277}
2278
2279/*
2280 * Load an existing storage pool, using the pool's builtin spa_config as a
2281 * source of configuration information.
2282 */
2283static int
2284spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2285    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2286    char **ereport)
2287{
2288	int error = 0;
2289	nvlist_t *nvroot = NULL;
2290	nvlist_t *label;
2291	vdev_t *rvd;
2292	uberblock_t *ub = &spa->spa_uberblock;
2293	uint64_t children, config_cache_txg = spa->spa_config_txg;
2294	int orig_mode = spa->spa_mode;
2295	int parse;
2296	uint64_t obj;
2297	boolean_t missing_feat_write = B_FALSE;
2298
2299	/*
2300	 * If this is an untrusted config, access the pool in read-only mode.
2301	 * This prevents things like resilvering recently removed devices.
2302	 */
2303	if (!mosconfig)
2304		spa->spa_mode = FREAD;
2305
2306	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2307
2308	spa->spa_load_state = state;
2309
2310	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2311		return (SET_ERROR(EINVAL));
2312
2313	parse = (type == SPA_IMPORT_EXISTING ?
2314	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2315
2316	/*
2317	 * Create "The Godfather" zio to hold all async IOs
2318	 */
2319	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2320	    KM_SLEEP);
2321	for (int i = 0; i < max_ncpus; i++) {
2322		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2323		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2324		    ZIO_FLAG_GODFATHER);
2325	}
2326
2327	/*
2328	 * Parse the configuration into a vdev tree.  We explicitly set the
2329	 * value that will be returned by spa_version() since parsing the
2330	 * configuration requires knowing the version number.
2331	 */
2332	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2333	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2334	spa_config_exit(spa, SCL_ALL, FTAG);
2335
2336	if (error != 0)
2337		return (error);
2338
2339	ASSERT(spa->spa_root_vdev == rvd);
2340	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2341	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2342
2343	if (type != SPA_IMPORT_ASSEMBLE) {
2344		ASSERT(spa_guid(spa) == pool_guid);
2345	}
2346
2347	/*
2348	 * Try to open all vdevs, loading each label in the process.
2349	 */
2350	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2351	error = vdev_open(rvd);
2352	spa_config_exit(spa, SCL_ALL, FTAG);
2353	if (error != 0)
2354		return (error);
2355
2356	/*
2357	 * We need to validate the vdev labels against the configuration that
2358	 * we have in hand, which is dependent on the setting of mosconfig. If
2359	 * mosconfig is true then we're validating the vdev labels based on
2360	 * that config.  Otherwise, we're validating against the cached config
2361	 * (zpool.cache) that was read when we loaded the zfs module, and then
2362	 * later we will recursively call spa_load() and validate against
2363	 * the vdev config.
2364	 *
2365	 * If we're assembling a new pool that's been split off from an
2366	 * existing pool, the labels haven't yet been updated so we skip
2367	 * validation for now.
2368	 */
2369	if (type != SPA_IMPORT_ASSEMBLE) {
2370		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2371		error = vdev_validate(rvd, mosconfig);
2372		spa_config_exit(spa, SCL_ALL, FTAG);
2373
2374		if (error != 0)
2375			return (error);
2376
2377		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2378			return (SET_ERROR(ENXIO));
2379	}
2380
2381	/*
2382	 * Find the best uberblock.
2383	 */
2384	vdev_uberblock_load(rvd, ub, &label);
2385
2386	/*
2387	 * If we weren't able to find a single valid uberblock, return failure.
2388	 */
2389	if (ub->ub_txg == 0) {
2390		nvlist_free(label);
2391		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2392	}
2393
2394	/*
2395	 * If the pool has an unsupported version we can't open it.
2396	 */
2397	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2398		nvlist_free(label);
2399		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2400	}
2401
2402	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2403		nvlist_t *features;
2404
2405		/*
2406		 * If we weren't able to find what's necessary for reading the
2407		 * MOS in the label, return failure.
2408		 */
2409		if (label == NULL || nvlist_lookup_nvlist(label,
2410		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2411			nvlist_free(label);
2412			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2413			    ENXIO));
2414		}
2415
2416		/*
2417		 * Update our in-core representation with the definitive values
2418		 * from the label.
2419		 */
2420		nvlist_free(spa->spa_label_features);
2421		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2422	}
2423
2424	nvlist_free(label);
2425
2426	/*
2427	 * Look through entries in the label nvlist's features_for_read. If
2428	 * there is a feature listed there which we don't understand then we
2429	 * cannot open a pool.
2430	 */
2431	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2432		nvlist_t *unsup_feat;
2433
2434		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2435		    0);
2436
2437		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2438		    NULL); nvp != NULL;
2439		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2440			if (!zfeature_is_supported(nvpair_name(nvp))) {
2441				VERIFY(nvlist_add_string(unsup_feat,
2442				    nvpair_name(nvp), "") == 0);
2443			}
2444		}
2445
2446		if (!nvlist_empty(unsup_feat)) {
2447			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2448			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2449			nvlist_free(unsup_feat);
2450			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2451			    ENOTSUP));
2452		}
2453
2454		nvlist_free(unsup_feat);
2455	}
2456
2457	/*
2458	 * If the vdev guid sum doesn't match the uberblock, we have an
2459	 * incomplete configuration.  We first check to see if the pool
2460	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2461	 * If it is, defer the vdev_guid_sum check till later so we
2462	 * can handle missing vdevs.
2463	 */
2464	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2465	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2466	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2467		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2468
2469	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2470		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2471		spa_try_repair(spa, config);
2472		spa_config_exit(spa, SCL_ALL, FTAG);
2473		nvlist_free(spa->spa_config_splitting);
2474		spa->spa_config_splitting = NULL;
2475	}
2476
2477	/*
2478	 * Initialize internal SPA structures.
2479	 */
2480	spa->spa_state = POOL_STATE_ACTIVE;
2481	spa->spa_ubsync = spa->spa_uberblock;
2482	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2483	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2484	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2485	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2486	spa->spa_claim_max_txg = spa->spa_first_txg;
2487	spa->spa_prev_software_version = ub->ub_software_version;
2488
2489	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2490	if (error)
2491		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2492	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2493
2494	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2495		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496
2497	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2498		boolean_t missing_feat_read = B_FALSE;
2499		nvlist_t *unsup_feat, *enabled_feat;
2500
2501		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2502		    &spa->spa_feat_for_read_obj) != 0) {
2503			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2504		}
2505
2506		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2507		    &spa->spa_feat_for_write_obj) != 0) {
2508			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2509		}
2510
2511		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2512		    &spa->spa_feat_desc_obj) != 0) {
2513			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2514		}
2515
2516		enabled_feat = fnvlist_alloc();
2517		unsup_feat = fnvlist_alloc();
2518
2519		if (!spa_features_check(spa, B_FALSE,
2520		    unsup_feat, enabled_feat))
2521			missing_feat_read = B_TRUE;
2522
2523		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2524			if (!spa_features_check(spa, B_TRUE,
2525			    unsup_feat, enabled_feat)) {
2526				missing_feat_write = B_TRUE;
2527			}
2528		}
2529
2530		fnvlist_add_nvlist(spa->spa_load_info,
2531		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2532
2533		if (!nvlist_empty(unsup_feat)) {
2534			fnvlist_add_nvlist(spa->spa_load_info,
2535			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2536		}
2537
2538		fnvlist_free(enabled_feat);
2539		fnvlist_free(unsup_feat);
2540
2541		if (!missing_feat_read) {
2542			fnvlist_add_boolean(spa->spa_load_info,
2543			    ZPOOL_CONFIG_CAN_RDONLY);
2544		}
2545
2546		/*
2547		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2548		 * twofold: to determine whether the pool is available for
2549		 * import in read-write mode and (if it is not) whether the
2550		 * pool is available for import in read-only mode. If the pool
2551		 * is available for import in read-write mode, it is displayed
2552		 * as available in userland; if it is not available for import
2553		 * in read-only mode, it is displayed as unavailable in
2554		 * userland. If the pool is available for import in read-only
2555		 * mode but not read-write mode, it is displayed as unavailable
2556		 * in userland with a special note that the pool is actually
2557		 * available for open in read-only mode.
2558		 *
2559		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2560		 * missing a feature for write, we must first determine whether
2561		 * the pool can be opened read-only before returning to
2562		 * userland in order to know whether to display the
2563		 * abovementioned note.
2564		 */
2565		if (missing_feat_read || (missing_feat_write &&
2566		    spa_writeable(spa))) {
2567			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2568			    ENOTSUP));
2569		}
2570
2571		/*
2572		 * Load refcounts for ZFS features from disk into an in-memory
2573		 * cache during SPA initialization.
2574		 */
2575		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2576			uint64_t refcount;
2577
2578			error = feature_get_refcount_from_disk(spa,
2579			    &spa_feature_table[i], &refcount);
2580			if (error == 0) {
2581				spa->spa_feat_refcount_cache[i] = refcount;
2582			} else if (error == ENOTSUP) {
2583				spa->spa_feat_refcount_cache[i] =
2584				    SPA_FEATURE_DISABLED;
2585			} else {
2586				return (spa_vdev_err(rvd,
2587				    VDEV_AUX_CORRUPT_DATA, EIO));
2588			}
2589		}
2590	}
2591
2592	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2593		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2594		    &spa->spa_feat_enabled_txg_obj) != 0)
2595			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2596	}
2597
2598	spa->spa_is_initializing = B_TRUE;
2599	error = dsl_pool_open(spa->spa_dsl_pool);
2600	spa->spa_is_initializing = B_FALSE;
2601	if (error != 0)
2602		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2603
2604	if (!mosconfig) {
2605		uint64_t hostid;
2606		nvlist_t *policy = NULL, *nvconfig;
2607
2608		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2609			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2610
2611		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2612		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2613			char *hostname;
2614			unsigned long myhostid = 0;
2615
2616			VERIFY(nvlist_lookup_string(nvconfig,
2617			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2618
2619#ifdef	_KERNEL
2620			myhostid = zone_get_hostid(NULL);
2621#else	/* _KERNEL */
2622			/*
2623			 * We're emulating the system's hostid in userland, so
2624			 * we can't use zone_get_hostid().
2625			 */
2626			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2627#endif	/* _KERNEL */
2628			if (check_hostid && hostid != 0 && myhostid != 0 &&
2629			    hostid != myhostid) {
2630				nvlist_free(nvconfig);
2631				cmn_err(CE_WARN, "pool '%s' could not be "
2632				    "loaded as it was last accessed by "
2633				    "another system (host: %s hostid: 0x%lx). "
2634				    "See: http://illumos.org/msg/ZFS-8000-EY",
2635				    spa_name(spa), hostname,
2636				    (unsigned long)hostid);
2637				return (SET_ERROR(EBADF));
2638			}
2639		}
2640		if (nvlist_lookup_nvlist(spa->spa_config,
2641		    ZPOOL_REWIND_POLICY, &policy) == 0)
2642			VERIFY(nvlist_add_nvlist(nvconfig,
2643			    ZPOOL_REWIND_POLICY, policy) == 0);
2644
2645		spa_config_set(spa, nvconfig);
2646		spa_unload(spa);
2647		spa_deactivate(spa);
2648		spa_activate(spa, orig_mode);
2649
2650		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2651	}
2652
2653	/* Grab the secret checksum salt from the MOS. */
2654	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2655	    DMU_POOL_CHECKSUM_SALT, 1,
2656	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2657	    spa->spa_cksum_salt.zcs_bytes);
2658	if (error == ENOENT) {
2659		/* Generate a new salt for subsequent use */
2660		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2661		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2662	} else if (error != 0) {
2663		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2664	}
2665
2666	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2667		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2668	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2669	if (error != 0)
2670		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2671
2672	/*
2673	 * Load the bit that tells us to use the new accounting function
2674	 * (raid-z deflation).  If we have an older pool, this will not
2675	 * be present.
2676	 */
2677	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2678	if (error != 0 && error != ENOENT)
2679		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2680
2681	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2682	    &spa->spa_creation_version);
2683	if (error != 0 && error != ENOENT)
2684		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2685
2686	/*
2687	 * Load the persistent error log.  If we have an older pool, this will
2688	 * not be present.
2689	 */
2690	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2691	if (error != 0 && error != ENOENT)
2692		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2693
2694	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2695	    &spa->spa_errlog_scrub);
2696	if (error != 0 && error != ENOENT)
2697		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2698
2699	/*
2700	 * Load the history object.  If we have an older pool, this
2701	 * will not be present.
2702	 */
2703	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2704	if (error != 0 && error != ENOENT)
2705		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2706
2707	/*
2708	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2709	 * be present; in this case, defer its creation to a later time to
2710	 * avoid dirtying the MOS this early / out of sync context. See
2711	 * spa_sync_config_object.
2712	 */
2713
2714	/* The sentinel is only available in the MOS config. */
2715	nvlist_t *mos_config;
2716	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2717		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2718
2719	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2720	    &spa->spa_all_vdev_zaps);
2721
2722	if (error != ENOENT && error != 0) {
2723		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2724	} else if (error == 0 && !nvlist_exists(mos_config,
2725	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2726		/*
2727		 * An older version of ZFS overwrote the sentinel value, so
2728		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2729		 * destruction to later; see spa_sync_config_object.
2730		 */
2731		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2732		/*
2733		 * We're assuming that no vdevs have had their ZAPs created
2734		 * before this. Better be sure of it.
2735		 */
2736		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2737	}
2738	nvlist_free(mos_config);
2739
2740	/*
2741	 * If we're assembling the pool from the split-off vdevs of
2742	 * an existing pool, we don't want to attach the spares & cache
2743	 * devices.
2744	 */
2745
2746	/*
2747	 * Load any hot spares for this pool.
2748	 */
2749	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2750	if (error != 0 && error != ENOENT)
2751		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2752	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2753		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2754		if (load_nvlist(spa, spa->spa_spares.sav_object,
2755		    &spa->spa_spares.sav_config) != 0)
2756			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2757
2758		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2759		spa_load_spares(spa);
2760		spa_config_exit(spa, SCL_ALL, FTAG);
2761	} else if (error == 0) {
2762		spa->spa_spares.sav_sync = B_TRUE;
2763	}
2764
2765	/*
2766	 * Load any level 2 ARC devices for this pool.
2767	 */
2768	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2769	    &spa->spa_l2cache.sav_object);
2770	if (error != 0 && error != ENOENT)
2771		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2772	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2773		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2774		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2775		    &spa->spa_l2cache.sav_config) != 0)
2776			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2777
2778		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2779		spa_load_l2cache(spa);
2780		spa_config_exit(spa, SCL_ALL, FTAG);
2781	} else if (error == 0) {
2782		spa->spa_l2cache.sav_sync = B_TRUE;
2783	}
2784
2785	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2786
2787	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2788	if (error && error != ENOENT)
2789		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2790
2791	if (error == 0) {
2792		uint64_t autoreplace;
2793
2794		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2795		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2796		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2797		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2798		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2799		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2800		    &spa->spa_dedup_ditto);
2801
2802		spa->spa_autoreplace = (autoreplace != 0);
2803	}
2804
2805	/*
2806	 * If the 'autoreplace' property is set, then post a resource notifying
2807	 * the ZFS DE that it should not issue any faults for unopenable
2808	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2809	 * unopenable vdevs so that the normal autoreplace handler can take
2810	 * over.
2811	 */
2812	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2813		spa_check_removed(spa->spa_root_vdev);
2814		/*
2815		 * For the import case, this is done in spa_import(), because
2816		 * at this point we're using the spare definitions from
2817		 * the MOS config, not necessarily from the userland config.
2818		 */
2819		if (state != SPA_LOAD_IMPORT) {
2820			spa_aux_check_removed(&spa->spa_spares);
2821			spa_aux_check_removed(&spa->spa_l2cache);
2822		}
2823	}
2824
2825	/*
2826	 * Load the vdev state for all toplevel vdevs.
2827	 */
2828	vdev_load(rvd);
2829
2830	/*
2831	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2832	 */
2833	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2834	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2835	spa_config_exit(spa, SCL_ALL, FTAG);
2836
2837	/*
2838	 * Load the DDTs (dedup tables).
2839	 */
2840	error = ddt_load(spa);
2841	if (error != 0)
2842		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2843
2844	spa_update_dspace(spa);
2845
2846	/*
2847	 * Validate the config, using the MOS config to fill in any
2848	 * information which might be missing.  If we fail to validate
2849	 * the config then declare the pool unfit for use. If we're
2850	 * assembling a pool from a split, the log is not transferred
2851	 * over.
2852	 */
2853	if (type != SPA_IMPORT_ASSEMBLE) {
2854		nvlist_t *nvconfig;
2855
2856		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2857			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2858
2859		if (!spa_config_valid(spa, nvconfig)) {
2860			nvlist_free(nvconfig);
2861			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2862			    ENXIO));
2863		}
2864		nvlist_free(nvconfig);
2865
2866		/*
2867		 * Now that we've validated the config, check the state of the
2868		 * root vdev.  If it can't be opened, it indicates one or
2869		 * more toplevel vdevs are faulted.
2870		 */
2871		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2872			return (SET_ERROR(ENXIO));
2873
2874		if (spa_writeable(spa) && spa_check_logs(spa)) {
2875			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2876			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2877		}
2878	}
2879
2880	if (missing_feat_write) {
2881		ASSERT(state == SPA_LOAD_TRYIMPORT);
2882
2883		/*
2884		 * At this point, we know that we can open the pool in
2885		 * read-only mode but not read-write mode. We now have enough
2886		 * information and can return to userland.
2887		 */
2888		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2889	}
2890
2891	/*
2892	 * We've successfully opened the pool, verify that we're ready
2893	 * to start pushing transactions.
2894	 */
2895	if (state != SPA_LOAD_TRYIMPORT) {
2896		if (error = spa_load_verify(spa))
2897			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2898			    error));
2899	}
2900
2901	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2902	    spa->spa_load_max_txg == UINT64_MAX)) {
2903		dmu_tx_t *tx;
2904		int need_update = B_FALSE;
2905		dsl_pool_t *dp = spa_get_dsl(spa);
2906
2907		ASSERT(state != SPA_LOAD_TRYIMPORT);
2908
2909		/*
2910		 * Claim log blocks that haven't been committed yet.
2911		 * This must all happen in a single txg.
2912		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2913		 * invoked from zil_claim_log_block()'s i/o done callback.
2914		 * Price of rollback is that we abandon the log.
2915		 */
2916		spa->spa_claiming = B_TRUE;
2917
2918		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2919		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2920		    zil_claim, tx, DS_FIND_CHILDREN);
2921		dmu_tx_commit(tx);
2922
2923		spa->spa_claiming = B_FALSE;
2924
2925		spa_set_log_state(spa, SPA_LOG_GOOD);
2926		spa->spa_sync_on = B_TRUE;
2927		txg_sync_start(spa->spa_dsl_pool);
2928
2929		/*
2930		 * Wait for all claims to sync.  We sync up to the highest
2931		 * claimed log block birth time so that claimed log blocks
2932		 * don't appear to be from the future.  spa_claim_max_txg
2933		 * will have been set for us by either zil_check_log_chain()
2934		 * (invoked from spa_check_logs()) or zil_claim() above.
2935		 */
2936		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2937
2938		/*
2939		 * If the config cache is stale, or we have uninitialized
2940		 * metaslabs (see spa_vdev_add()), then update the config.
2941		 *
2942		 * If this is a verbatim import, trust the current
2943		 * in-core spa_config and update the disk labels.
2944		 */
2945		if (config_cache_txg != spa->spa_config_txg ||
2946		    state == SPA_LOAD_IMPORT ||
2947		    state == SPA_LOAD_RECOVER ||
2948		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2949			need_update = B_TRUE;
2950
2951		for (int c = 0; c < rvd->vdev_children; c++)
2952			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2953				need_update = B_TRUE;
2954
2955		/*
2956		 * Update the config cache asychronously in case we're the
2957		 * root pool, in which case the config cache isn't writable yet.
2958		 */
2959		if (need_update)
2960			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2961
2962		/*
2963		 * Check all DTLs to see if anything needs resilvering.
2964		 */
2965		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2966		    vdev_resilver_needed(rvd, NULL, NULL))
2967			spa_async_request(spa, SPA_ASYNC_RESILVER);
2968
2969		/*
2970		 * Log the fact that we booted up (so that we can detect if
2971		 * we rebooted in the middle of an operation).
2972		 */
2973		spa_history_log_version(spa, "open");
2974
2975		/*
2976		 * Delete any inconsistent datasets.
2977		 */
2978		(void) dmu_objset_find(spa_name(spa),
2979		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2980
2981		/*
2982		 * Clean up any stale temporary dataset userrefs.
2983		 */
2984		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2985	}
2986
2987	return (0);
2988}
2989
2990static int
2991spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2992{
2993	int mode = spa->spa_mode;
2994
2995	spa_unload(spa);
2996	spa_deactivate(spa);
2997
2998	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2999
3000	spa_activate(spa, mode);
3001	spa_async_suspend(spa);
3002
3003	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
3004}
3005
3006/*
3007 * If spa_load() fails this function will try loading prior txg's. If
3008 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3009 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3010 * function will not rewind the pool and will return the same error as
3011 * spa_load().
3012 */
3013static int
3014spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
3015    uint64_t max_request, int rewind_flags)
3016{
3017	nvlist_t *loadinfo = NULL;
3018	nvlist_t *config = NULL;
3019	int load_error, rewind_error;
3020	uint64_t safe_rewind_txg;
3021	uint64_t min_txg;
3022
3023	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3024		spa->spa_load_max_txg = spa->spa_load_txg;
3025		spa_set_log_state(spa, SPA_LOG_CLEAR);
3026	} else {
3027		spa->spa_load_max_txg = max_request;
3028		if (max_request != UINT64_MAX)
3029			spa->spa_extreme_rewind = B_TRUE;
3030	}
3031
3032	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3033	    mosconfig);
3034	if (load_error == 0)
3035		return (0);
3036
3037	if (spa->spa_root_vdev != NULL)
3038		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3039
3040	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3041	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3042
3043	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3044		nvlist_free(config);
3045		return (load_error);
3046	}
3047
3048	if (state == SPA_LOAD_RECOVER) {
3049		/* Price of rolling back is discarding txgs, including log */
3050		spa_set_log_state(spa, SPA_LOG_CLEAR);
3051	} else {
3052		/*
3053		 * If we aren't rolling back save the load info from our first
3054		 * import attempt so that we can restore it after attempting
3055		 * to rewind.
3056		 */
3057		loadinfo = spa->spa_load_info;
3058		spa->spa_load_info = fnvlist_alloc();
3059	}
3060
3061	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3062	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3063	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3064	    TXG_INITIAL : safe_rewind_txg;
3065
3066	/*
3067	 * Continue as long as we're finding errors, we're still within
3068	 * the acceptable rewind range, and we're still finding uberblocks
3069	 */
3070	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3071	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3072		if (spa->spa_load_max_txg < safe_rewind_txg)
3073			spa->spa_extreme_rewind = B_TRUE;
3074		rewind_error = spa_load_retry(spa, state, mosconfig);
3075	}
3076
3077	spa->spa_extreme_rewind = B_FALSE;
3078	spa->spa_load_max_txg = UINT64_MAX;
3079
3080	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3081		spa_config_set(spa, config);
3082
3083	if (state == SPA_LOAD_RECOVER) {
3084		ASSERT3P(loadinfo, ==, NULL);
3085		return (rewind_error);
3086	} else {
3087		/* Store the rewind info as part of the initial load info */
3088		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3089		    spa->spa_load_info);
3090
3091		/* Restore the initial load info */
3092		fnvlist_free(spa->spa_load_info);
3093		spa->spa_load_info = loadinfo;
3094
3095		return (load_error);
3096	}
3097}
3098
3099/*
3100 * Pool Open/Import
3101 *
3102 * The import case is identical to an open except that the configuration is sent
3103 * down from userland, instead of grabbed from the configuration cache.  For the
3104 * case of an open, the pool configuration will exist in the
3105 * POOL_STATE_UNINITIALIZED state.
3106 *
3107 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3108 * the same time open the pool, without having to keep around the spa_t in some
3109 * ambiguous state.
3110 */
3111static int
3112spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3113    nvlist_t **config)
3114{
3115	spa_t *spa;
3116	spa_load_state_t state = SPA_LOAD_OPEN;
3117	int error;
3118	int locked = B_FALSE;
3119	int firstopen = B_FALSE;
3120
3121	*spapp = NULL;
3122
3123	/*
3124	 * As disgusting as this is, we need to support recursive calls to this
3125	 * function because dsl_dir_open() is called during spa_load(), and ends
3126	 * up calling spa_open() again.  The real fix is to figure out how to
3127	 * avoid dsl_dir_open() calling this in the first place.
3128	 */
3129	if (mutex_owner(&spa_namespace_lock) != curthread) {
3130		mutex_enter(&spa_namespace_lock);
3131		locked = B_TRUE;
3132	}
3133
3134	if ((spa = spa_lookup(pool)) == NULL) {
3135		if (locked)
3136			mutex_exit(&spa_namespace_lock);
3137		return (SET_ERROR(ENOENT));
3138	}
3139
3140	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3141		zpool_rewind_policy_t policy;
3142
3143		firstopen = B_TRUE;
3144
3145		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3146		    &policy);
3147		if (policy.zrp_request & ZPOOL_DO_REWIND)
3148			state = SPA_LOAD_RECOVER;
3149
3150		spa_activate(spa, spa_mode_global);
3151
3152		if (state != SPA_LOAD_RECOVER)
3153			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3154
3155		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3156		    policy.zrp_request);
3157
3158		if (error == EBADF) {
3159			/*
3160			 * If vdev_validate() returns failure (indicated by
3161			 * EBADF), it indicates that one of the vdevs indicates
3162			 * that the pool has been exported or destroyed.  If
3163			 * this is the case, the config cache is out of sync and
3164			 * we should remove the pool from the namespace.
3165			 */
3166			spa_unload(spa);
3167			spa_deactivate(spa);
3168			spa_config_sync(spa, B_TRUE, B_TRUE);
3169			spa_remove(spa);
3170			if (locked)
3171				mutex_exit(&spa_namespace_lock);
3172			return (SET_ERROR(ENOENT));
3173		}
3174
3175		if (error) {
3176			/*
3177			 * We can't open the pool, but we still have useful
3178			 * information: the state of each vdev after the
3179			 * attempted vdev_open().  Return this to the user.
3180			 */
3181			if (config != NULL && spa->spa_config) {
3182				VERIFY(nvlist_dup(spa->spa_config, config,
3183				    KM_SLEEP) == 0);
3184				VERIFY(nvlist_add_nvlist(*config,
3185				    ZPOOL_CONFIG_LOAD_INFO,
3186				    spa->spa_load_info) == 0);
3187			}
3188			spa_unload(spa);
3189			spa_deactivate(spa);
3190			spa->spa_last_open_failed = error;
3191			if (locked)
3192				mutex_exit(&spa_namespace_lock);
3193			*spapp = NULL;
3194			return (error);
3195		}
3196	}
3197
3198	spa_open_ref(spa, tag);
3199
3200	if (config != NULL)
3201		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3202
3203	/*
3204	 * If we've recovered the pool, pass back any information we
3205	 * gathered while doing the load.
3206	 */
3207	if (state == SPA_LOAD_RECOVER) {
3208		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3209		    spa->spa_load_info) == 0);
3210	}
3211
3212	if (locked) {
3213		spa->spa_last_open_failed = 0;
3214		spa->spa_last_ubsync_txg = 0;
3215		spa->spa_load_txg = 0;
3216		mutex_exit(&spa_namespace_lock);
3217#ifdef __FreeBSD__
3218#ifdef _KERNEL
3219		if (firstopen)
3220			zvol_create_minors(spa->spa_name);
3221#endif
3222#endif
3223	}
3224
3225	*spapp = spa;
3226
3227	return (0);
3228}
3229
3230int
3231spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3232    nvlist_t **config)
3233{
3234	return (spa_open_common(name, spapp, tag, policy, config));
3235}
3236
3237int
3238spa_open(const char *name, spa_t **spapp, void *tag)
3239{
3240	return (spa_open_common(name, spapp, tag, NULL, NULL));
3241}
3242
3243/*
3244 * Lookup the given spa_t, incrementing the inject count in the process,
3245 * preventing it from being exported or destroyed.
3246 */
3247spa_t *
3248spa_inject_addref(char *name)
3249{
3250	spa_t *spa;
3251
3252	mutex_enter(&spa_namespace_lock);
3253	if ((spa = spa_lookup(name)) == NULL) {
3254		mutex_exit(&spa_namespace_lock);
3255		return (NULL);
3256	}
3257	spa->spa_inject_ref++;
3258	mutex_exit(&spa_namespace_lock);
3259
3260	return (spa);
3261}
3262
3263void
3264spa_inject_delref(spa_t *spa)
3265{
3266	mutex_enter(&spa_namespace_lock);
3267	spa->spa_inject_ref--;
3268	mutex_exit(&spa_namespace_lock);
3269}
3270
3271/*
3272 * Add spares device information to the nvlist.
3273 */
3274static void
3275spa_add_spares(spa_t *spa, nvlist_t *config)
3276{
3277	nvlist_t **spares;
3278	uint_t i, nspares;
3279	nvlist_t *nvroot;
3280	uint64_t guid;
3281	vdev_stat_t *vs;
3282	uint_t vsc;
3283	uint64_t pool;
3284
3285	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3286
3287	if (spa->spa_spares.sav_count == 0)
3288		return;
3289
3290	VERIFY(nvlist_lookup_nvlist(config,
3291	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3292	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3293	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3294	if (nspares != 0) {
3295		VERIFY(nvlist_add_nvlist_array(nvroot,
3296		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3297		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3298		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3299
3300		/*
3301		 * Go through and find any spares which have since been
3302		 * repurposed as an active spare.  If this is the case, update
3303		 * their status appropriately.
3304		 */
3305		for (i = 0; i < nspares; i++) {
3306			VERIFY(nvlist_lookup_uint64(spares[i],
3307			    ZPOOL_CONFIG_GUID, &guid) == 0);
3308			if (spa_spare_exists(guid, &pool, NULL) &&
3309			    pool != 0ULL) {
3310				VERIFY(nvlist_lookup_uint64_array(
3311				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3312				    (uint64_t **)&vs, &vsc) == 0);
3313				vs->vs_state = VDEV_STATE_CANT_OPEN;
3314				vs->vs_aux = VDEV_AUX_SPARED;
3315			}
3316		}
3317	}
3318}
3319
3320/*
3321 * Add l2cache device information to the nvlist, including vdev stats.
3322 */
3323static void
3324spa_add_l2cache(spa_t *spa, nvlist_t *config)
3325{
3326	nvlist_t **l2cache;
3327	uint_t i, j, nl2cache;
3328	nvlist_t *nvroot;
3329	uint64_t guid;
3330	vdev_t *vd;
3331	vdev_stat_t *vs;
3332	uint_t vsc;
3333
3334	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3335
3336	if (spa->spa_l2cache.sav_count == 0)
3337		return;
3338
3339	VERIFY(nvlist_lookup_nvlist(config,
3340	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3341	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3342	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3343	if (nl2cache != 0) {
3344		VERIFY(nvlist_add_nvlist_array(nvroot,
3345		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3346		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3347		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3348
3349		/*
3350		 * Update level 2 cache device stats.
3351		 */
3352
3353		for (i = 0; i < nl2cache; i++) {
3354			VERIFY(nvlist_lookup_uint64(l2cache[i],
3355			    ZPOOL_CONFIG_GUID, &guid) == 0);
3356
3357			vd = NULL;
3358			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3359				if (guid ==
3360				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3361					vd = spa->spa_l2cache.sav_vdevs[j];
3362					break;
3363				}
3364			}
3365			ASSERT(vd != NULL);
3366
3367			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3368			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3369			    == 0);
3370			vdev_get_stats(vd, vs);
3371		}
3372	}
3373}
3374
3375static void
3376spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3377{
3378	nvlist_t *features;
3379	zap_cursor_t zc;
3380	zap_attribute_t za;
3381
3382	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3383	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3384
3385	/* We may be unable to read features if pool is suspended. */
3386	if (spa_suspended(spa))
3387		goto out;
3388
3389	if (spa->spa_feat_for_read_obj != 0) {
3390		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3391		    spa->spa_feat_for_read_obj);
3392		    zap_cursor_retrieve(&zc, &za) == 0;
3393		    zap_cursor_advance(&zc)) {
3394			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3395			    za.za_num_integers == 1);
3396			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3397			    za.za_first_integer));
3398		}
3399		zap_cursor_fini(&zc);
3400	}
3401
3402	if (spa->spa_feat_for_write_obj != 0) {
3403		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3404		    spa->spa_feat_for_write_obj);
3405		    zap_cursor_retrieve(&zc, &za) == 0;
3406		    zap_cursor_advance(&zc)) {
3407			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3408			    za.za_num_integers == 1);
3409			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3410			    za.za_first_integer));
3411		}
3412		zap_cursor_fini(&zc);
3413	}
3414
3415out:
3416	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3417	    features) == 0);
3418	nvlist_free(features);
3419}
3420
3421int
3422spa_get_stats(const char *name, nvlist_t **config,
3423    char *altroot, size_t buflen)
3424{
3425	int error;
3426	spa_t *spa;
3427
3428	*config = NULL;
3429	error = spa_open_common(name, &spa, FTAG, NULL, config);
3430
3431	if (spa != NULL) {
3432		/*
3433		 * This still leaves a window of inconsistency where the spares
3434		 * or l2cache devices could change and the config would be
3435		 * self-inconsistent.
3436		 */
3437		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3438
3439		if (*config != NULL) {
3440			uint64_t loadtimes[2];
3441
3442			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3443			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3444			VERIFY(nvlist_add_uint64_array(*config,
3445			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3446
3447			VERIFY(nvlist_add_uint64(*config,
3448			    ZPOOL_CONFIG_ERRCOUNT,
3449			    spa_get_errlog_size(spa)) == 0);
3450
3451			if (spa_suspended(spa))
3452				VERIFY(nvlist_add_uint64(*config,
3453				    ZPOOL_CONFIG_SUSPENDED,
3454				    spa->spa_failmode) == 0);
3455
3456			spa_add_spares(spa, *config);
3457			spa_add_l2cache(spa, *config);
3458			spa_add_feature_stats(spa, *config);
3459		}
3460	}
3461
3462	/*
3463	 * We want to get the alternate root even for faulted pools, so we cheat
3464	 * and call spa_lookup() directly.
3465	 */
3466	if (altroot) {
3467		if (spa == NULL) {
3468			mutex_enter(&spa_namespace_lock);
3469			spa = spa_lookup(name);
3470			if (spa)
3471				spa_altroot(spa, altroot, buflen);
3472			else
3473				altroot[0] = '\0';
3474			spa = NULL;
3475			mutex_exit(&spa_namespace_lock);
3476		} else {
3477			spa_altroot(spa, altroot, buflen);
3478		}
3479	}
3480
3481	if (spa != NULL) {
3482		spa_config_exit(spa, SCL_CONFIG, FTAG);
3483		spa_close(spa, FTAG);
3484	}
3485
3486	return (error);
3487}
3488
3489/*
3490 * Validate that the auxiliary device array is well formed.  We must have an
3491 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3492 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3493 * specified, as long as they are well-formed.
3494 */
3495static int
3496spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3497    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3498    vdev_labeltype_t label)
3499{
3500	nvlist_t **dev;
3501	uint_t i, ndev;
3502	vdev_t *vd;
3503	int error;
3504
3505	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3506
3507	/*
3508	 * It's acceptable to have no devs specified.
3509	 */
3510	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3511		return (0);
3512
3513	if (ndev == 0)
3514		return (SET_ERROR(EINVAL));
3515
3516	/*
3517	 * Make sure the pool is formatted with a version that supports this
3518	 * device type.
3519	 */
3520	if (spa_version(spa) < version)
3521		return (SET_ERROR(ENOTSUP));
3522
3523	/*
3524	 * Set the pending device list so we correctly handle device in-use
3525	 * checking.
3526	 */
3527	sav->sav_pending = dev;
3528	sav->sav_npending = ndev;
3529
3530	for (i = 0; i < ndev; i++) {
3531		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3532		    mode)) != 0)
3533			goto out;
3534
3535		if (!vd->vdev_ops->vdev_op_leaf) {
3536			vdev_free(vd);
3537			error = SET_ERROR(EINVAL);
3538			goto out;
3539		}
3540
3541		/*
3542		 * The L2ARC currently only supports disk devices in
3543		 * kernel context.  For user-level testing, we allow it.
3544		 */
3545#ifdef _KERNEL
3546		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3547		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3548			error = SET_ERROR(ENOTBLK);
3549			vdev_free(vd);
3550			goto out;
3551		}
3552#endif
3553		vd->vdev_top = vd;
3554
3555		if ((error = vdev_open(vd)) == 0 &&
3556		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3557			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3558			    vd->vdev_guid) == 0);
3559		}
3560
3561		vdev_free(vd);
3562
3563		if (error &&
3564		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3565			goto out;
3566		else
3567			error = 0;
3568	}
3569
3570out:
3571	sav->sav_pending = NULL;
3572	sav->sav_npending = 0;
3573	return (error);
3574}
3575
3576static int
3577spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3578{
3579	int error;
3580
3581	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3582
3583	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3584	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3585	    VDEV_LABEL_SPARE)) != 0) {
3586		return (error);
3587	}
3588
3589	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3590	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3591	    VDEV_LABEL_L2CACHE));
3592}
3593
3594static void
3595spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3596    const char *config)
3597{
3598	int i;
3599
3600	if (sav->sav_config != NULL) {
3601		nvlist_t **olddevs;
3602		uint_t oldndevs;
3603		nvlist_t **newdevs;
3604
3605		/*
3606		 * Generate new dev list by concatentating with the
3607		 * current dev list.
3608		 */
3609		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3610		    &olddevs, &oldndevs) == 0);
3611
3612		newdevs = kmem_alloc(sizeof (void *) *
3613		    (ndevs + oldndevs), KM_SLEEP);
3614		for (i = 0; i < oldndevs; i++)
3615			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3616			    KM_SLEEP) == 0);
3617		for (i = 0; i < ndevs; i++)
3618			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3619			    KM_SLEEP) == 0);
3620
3621		VERIFY(nvlist_remove(sav->sav_config, config,
3622		    DATA_TYPE_NVLIST_ARRAY) == 0);
3623
3624		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3625		    config, newdevs, ndevs + oldndevs) == 0);
3626		for (i = 0; i < oldndevs + ndevs; i++)
3627			nvlist_free(newdevs[i]);
3628		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3629	} else {
3630		/*
3631		 * Generate a new dev list.
3632		 */
3633		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3634		    KM_SLEEP) == 0);
3635		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3636		    devs, ndevs) == 0);
3637	}
3638}
3639
3640/*
3641 * Stop and drop level 2 ARC devices
3642 */
3643void
3644spa_l2cache_drop(spa_t *spa)
3645{
3646	vdev_t *vd;
3647	int i;
3648	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3649
3650	for (i = 0; i < sav->sav_count; i++) {
3651		uint64_t pool;
3652
3653		vd = sav->sav_vdevs[i];
3654		ASSERT(vd != NULL);
3655
3656		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3657		    pool != 0ULL && l2arc_vdev_present(vd))
3658			l2arc_remove_vdev(vd);
3659	}
3660}
3661
3662/*
3663 * Pool Creation
3664 */
3665int
3666spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3667    nvlist_t *zplprops)
3668{
3669	spa_t *spa;
3670	char *altroot = NULL;
3671	vdev_t *rvd;
3672	dsl_pool_t *dp;
3673	dmu_tx_t *tx;
3674	int error = 0;
3675	uint64_t txg = TXG_INITIAL;
3676	nvlist_t **spares, **l2cache;
3677	uint_t nspares, nl2cache;
3678	uint64_t version, obj;
3679	boolean_t has_features;
3680
3681	/*
3682	 * If this pool already exists, return failure.
3683	 */
3684	mutex_enter(&spa_namespace_lock);
3685	if (spa_lookup(pool) != NULL) {
3686		mutex_exit(&spa_namespace_lock);
3687		return (SET_ERROR(EEXIST));
3688	}
3689
3690	/*
3691	 * Allocate a new spa_t structure.
3692	 */
3693	(void) nvlist_lookup_string(props,
3694	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3695	spa = spa_add(pool, NULL, altroot);
3696	spa_activate(spa, spa_mode_global);
3697
3698	if (props && (error = spa_prop_validate(spa, props))) {
3699		spa_deactivate(spa);
3700		spa_remove(spa);
3701		mutex_exit(&spa_namespace_lock);
3702		return (error);
3703	}
3704
3705	has_features = B_FALSE;
3706	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3707	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3708		if (zpool_prop_feature(nvpair_name(elem)))
3709			has_features = B_TRUE;
3710	}
3711
3712	if (has_features || nvlist_lookup_uint64(props,
3713	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3714		version = SPA_VERSION;
3715	}
3716	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3717
3718	spa->spa_first_txg = txg;
3719	spa->spa_uberblock.ub_txg = txg - 1;
3720	spa->spa_uberblock.ub_version = version;
3721	spa->spa_ubsync = spa->spa_uberblock;
3722	spa->spa_load_state = SPA_LOAD_CREATE;
3723
3724	/*
3725	 * Create "The Godfather" zio to hold all async IOs
3726	 */
3727	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3728	    KM_SLEEP);
3729	for (int i = 0; i < max_ncpus; i++) {
3730		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3731		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3732		    ZIO_FLAG_GODFATHER);
3733	}
3734
3735	/*
3736	 * Create the root vdev.
3737	 */
3738	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3739
3740	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3741
3742	ASSERT(error != 0 || rvd != NULL);
3743	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3744
3745	if (error == 0 && !zfs_allocatable_devs(nvroot))
3746		error = SET_ERROR(EINVAL);
3747
3748	if (error == 0 &&
3749	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3750	    (error = spa_validate_aux(spa, nvroot, txg,
3751	    VDEV_ALLOC_ADD)) == 0) {
3752		for (int c = 0; c < rvd->vdev_children; c++) {
3753			vdev_ashift_optimize(rvd->vdev_child[c]);
3754			vdev_metaslab_set_size(rvd->vdev_child[c]);
3755			vdev_expand(rvd->vdev_child[c], txg);
3756		}
3757	}
3758
3759	spa_config_exit(spa, SCL_ALL, FTAG);
3760
3761	if (error != 0) {
3762		spa_unload(spa);
3763		spa_deactivate(spa);
3764		spa_remove(spa);
3765		mutex_exit(&spa_namespace_lock);
3766		return (error);
3767	}
3768
3769	/*
3770	 * Get the list of spares, if specified.
3771	 */
3772	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3773	    &spares, &nspares) == 0) {
3774		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3775		    KM_SLEEP) == 0);
3776		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3777		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3778		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3779		spa_load_spares(spa);
3780		spa_config_exit(spa, SCL_ALL, FTAG);
3781		spa->spa_spares.sav_sync = B_TRUE;
3782	}
3783
3784	/*
3785	 * Get the list of level 2 cache devices, if specified.
3786	 */
3787	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3788	    &l2cache, &nl2cache) == 0) {
3789		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3790		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3791		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3792		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3793		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3794		spa_load_l2cache(spa);
3795		spa_config_exit(spa, SCL_ALL, FTAG);
3796		spa->spa_l2cache.sav_sync = B_TRUE;
3797	}
3798
3799	spa->spa_is_initializing = B_TRUE;
3800	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3801	spa->spa_meta_objset = dp->dp_meta_objset;
3802	spa->spa_is_initializing = B_FALSE;
3803
3804	/*
3805	 * Create DDTs (dedup tables).
3806	 */
3807	ddt_create(spa);
3808
3809	spa_update_dspace(spa);
3810
3811	tx = dmu_tx_create_assigned(dp, txg);
3812
3813	/*
3814	 * Create the pool config object.
3815	 */
3816	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3817	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3818	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3819
3820	if (zap_add(spa->spa_meta_objset,
3821	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3822	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3823		cmn_err(CE_PANIC, "failed to add pool config");
3824	}
3825
3826	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3827		spa_feature_create_zap_objects(spa, tx);
3828
3829	if (zap_add(spa->spa_meta_objset,
3830	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3831	    sizeof (uint64_t), 1, &version, tx) != 0) {
3832		cmn_err(CE_PANIC, "failed to add pool version");
3833	}
3834
3835	/* Newly created pools with the right version are always deflated. */
3836	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3837		spa->spa_deflate = TRUE;
3838		if (zap_add(spa->spa_meta_objset,
3839		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3840		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3841			cmn_err(CE_PANIC, "failed to add deflate");
3842		}
3843	}
3844
3845	/*
3846	 * Create the deferred-free bpobj.  Turn off compression
3847	 * because sync-to-convergence takes longer if the blocksize
3848	 * keeps changing.
3849	 */
3850	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3851	dmu_object_set_compress(spa->spa_meta_objset, obj,
3852	    ZIO_COMPRESS_OFF, tx);
3853	if (zap_add(spa->spa_meta_objset,
3854	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3855	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3856		cmn_err(CE_PANIC, "failed to add bpobj");
3857	}
3858	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3859	    spa->spa_meta_objset, obj));
3860
3861	/*
3862	 * Create the pool's history object.
3863	 */
3864	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3865		spa_history_create_obj(spa, tx);
3866
3867	/*
3868	 * Generate some random noise for salted checksums to operate on.
3869	 */
3870	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3871	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3872
3873	/*
3874	 * Set pool properties.
3875	 */
3876	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3877	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3878	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3879	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3880
3881	if (props != NULL) {
3882		spa_configfile_set(spa, props, B_FALSE);
3883		spa_sync_props(props, tx);
3884	}
3885
3886	dmu_tx_commit(tx);
3887
3888	spa->spa_sync_on = B_TRUE;
3889	txg_sync_start(spa->spa_dsl_pool);
3890
3891	/*
3892	 * We explicitly wait for the first transaction to complete so that our
3893	 * bean counters are appropriately updated.
3894	 */
3895	txg_wait_synced(spa->spa_dsl_pool, txg);
3896
3897	spa_config_sync(spa, B_FALSE, B_TRUE);
3898	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3899
3900	spa_history_log_version(spa, "create");
3901
3902	/*
3903	 * Don't count references from objsets that are already closed
3904	 * and are making their way through the eviction process.
3905	 */
3906	spa_evicting_os_wait(spa);
3907	spa->spa_minref = refcount_count(&spa->spa_refcount);
3908	spa->spa_load_state = SPA_LOAD_NONE;
3909
3910	mutex_exit(&spa_namespace_lock);
3911
3912	return (0);
3913}
3914
3915#ifdef _KERNEL
3916#ifdef illumos
3917/*
3918 * Get the root pool information from the root disk, then import the root pool
3919 * during the system boot up time.
3920 */
3921extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3922
3923static nvlist_t *
3924spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3925{
3926	nvlist_t *config;
3927	nvlist_t *nvtop, *nvroot;
3928	uint64_t pgid;
3929
3930	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3931		return (NULL);
3932
3933	/*
3934	 * Add this top-level vdev to the child array.
3935	 */
3936	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3937	    &nvtop) == 0);
3938	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3939	    &pgid) == 0);
3940	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3941
3942	/*
3943	 * Put this pool's top-level vdevs into a root vdev.
3944	 */
3945	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3946	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3947	    VDEV_TYPE_ROOT) == 0);
3948	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3949	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3950	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3951	    &nvtop, 1) == 0);
3952
3953	/*
3954	 * Replace the existing vdev_tree with the new root vdev in
3955	 * this pool's configuration (remove the old, add the new).
3956	 */
3957	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3958	nvlist_free(nvroot);
3959	return (config);
3960}
3961
3962/*
3963 * Walk the vdev tree and see if we can find a device with "better"
3964 * configuration. A configuration is "better" if the label on that
3965 * device has a more recent txg.
3966 */
3967static void
3968spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3969{
3970	for (int c = 0; c < vd->vdev_children; c++)
3971		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3972
3973	if (vd->vdev_ops->vdev_op_leaf) {
3974		nvlist_t *label;
3975		uint64_t label_txg;
3976
3977		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3978		    &label) != 0)
3979			return;
3980
3981		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3982		    &label_txg) == 0);
3983
3984		/*
3985		 * Do we have a better boot device?
3986		 */
3987		if (label_txg > *txg) {
3988			*txg = label_txg;
3989			*avd = vd;
3990		}
3991		nvlist_free(label);
3992	}
3993}
3994
3995/*
3996 * Import a root pool.
3997 *
3998 * For x86. devpath_list will consist of devid and/or physpath name of
3999 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
4000 * The GRUB "findroot" command will return the vdev we should boot.
4001 *
4002 * For Sparc, devpath_list consists the physpath name of the booting device
4003 * no matter the rootpool is a single device pool or a mirrored pool.
4004 * e.g.
4005 *	"/pci@1f,0/ide@d/disk@0,0:a"
4006 */
4007int
4008spa_import_rootpool(char *devpath, char *devid)
4009{
4010	spa_t *spa;
4011	vdev_t *rvd, *bvd, *avd = NULL;
4012	nvlist_t *config, *nvtop;
4013	uint64_t guid, txg;
4014	char *pname;
4015	int error;
4016
4017	/*
4018	 * Read the label from the boot device and generate a configuration.
4019	 */
4020	config = spa_generate_rootconf(devpath, devid, &guid);
4021#if defined(_OBP) && defined(_KERNEL)
4022	if (config == NULL) {
4023		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4024			/* iscsi boot */
4025			get_iscsi_bootpath_phy(devpath);
4026			config = spa_generate_rootconf(devpath, devid, &guid);
4027		}
4028	}
4029#endif
4030	if (config == NULL) {
4031		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4032		    devpath);
4033		return (SET_ERROR(EIO));
4034	}
4035
4036	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4037	    &pname) == 0);
4038	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4039
4040	mutex_enter(&spa_namespace_lock);
4041	if ((spa = spa_lookup(pname)) != NULL) {
4042		/*
4043		 * Remove the existing root pool from the namespace so that we
4044		 * can replace it with the correct config we just read in.
4045		 */
4046		spa_remove(spa);
4047	}
4048
4049	spa = spa_add(pname, config, NULL);
4050	spa->spa_is_root = B_TRUE;
4051	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4052
4053	/*
4054	 * Build up a vdev tree based on the boot device's label config.
4055	 */
4056	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4057	    &nvtop) == 0);
4058	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4059	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4060	    VDEV_ALLOC_ROOTPOOL);
4061	spa_config_exit(spa, SCL_ALL, FTAG);
4062	if (error) {
4063		mutex_exit(&spa_namespace_lock);
4064		nvlist_free(config);
4065		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4066		    pname);
4067		return (error);
4068	}
4069
4070	/*
4071	 * Get the boot vdev.
4072	 */
4073	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4074		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4075		    (u_longlong_t)guid);
4076		error = SET_ERROR(ENOENT);
4077		goto out;
4078	}
4079
4080	/*
4081	 * Determine if there is a better boot device.
4082	 */
4083	avd = bvd;
4084	spa_alt_rootvdev(rvd, &avd, &txg);
4085	if (avd != bvd) {
4086		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4087		    "try booting from '%s'", avd->vdev_path);
4088		error = SET_ERROR(EINVAL);
4089		goto out;
4090	}
4091
4092	/*
4093	 * If the boot device is part of a spare vdev then ensure that
4094	 * we're booting off the active spare.
4095	 */
4096	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4097	    !bvd->vdev_isspare) {
4098		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4099		    "try booting from '%s'",
4100		    bvd->vdev_parent->
4101		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4102		error = SET_ERROR(EINVAL);
4103		goto out;
4104	}
4105
4106	error = 0;
4107out:
4108	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4109	vdev_free(rvd);
4110	spa_config_exit(spa, SCL_ALL, FTAG);
4111	mutex_exit(&spa_namespace_lock);
4112
4113	nvlist_free(config);
4114	return (error);
4115}
4116
4117#else	/* !illumos */
4118
4119extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4120    uint64_t *count);
4121
4122static nvlist_t *
4123spa_generate_rootconf(const char *name)
4124{
4125	nvlist_t **configs, **tops;
4126	nvlist_t *config;
4127	nvlist_t *best_cfg, *nvtop, *nvroot;
4128	uint64_t *holes;
4129	uint64_t best_txg;
4130	uint64_t nchildren;
4131	uint64_t pgid;
4132	uint64_t count;
4133	uint64_t i;
4134	uint_t   nholes;
4135
4136	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4137		return (NULL);
4138
4139	ASSERT3U(count, !=, 0);
4140	best_txg = 0;
4141	for (i = 0; i < count; i++) {
4142		uint64_t txg;
4143
4144		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4145		    &txg) == 0);
4146		if (txg > best_txg) {
4147			best_txg = txg;
4148			best_cfg = configs[i];
4149		}
4150	}
4151
4152	nchildren = 1;
4153	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4154	holes = NULL;
4155	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4156	    &holes, &nholes);
4157
4158	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4159	for (i = 0; i < nchildren; i++) {
4160		if (i >= count)
4161			break;
4162		if (configs[i] == NULL)
4163			continue;
4164		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4165		    &nvtop) == 0);
4166		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4167	}
4168	for (i = 0; holes != NULL && i < nholes; i++) {
4169		if (i >= nchildren)
4170			continue;
4171		if (tops[holes[i]] != NULL)
4172			continue;
4173		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4174		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4175		    VDEV_TYPE_HOLE) == 0);
4176		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4177		    holes[i]) == 0);
4178		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4179		    0) == 0);
4180	}
4181	for (i = 0; i < nchildren; i++) {
4182		if (tops[i] != NULL)
4183			continue;
4184		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4185		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4186		    VDEV_TYPE_MISSING) == 0);
4187		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4188		    i) == 0);
4189		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4190		    0) == 0);
4191	}
4192
4193	/*
4194	 * Create pool config based on the best vdev config.
4195	 */
4196	nvlist_dup(best_cfg, &config, KM_SLEEP);
4197
4198	/*
4199	 * Put this pool's top-level vdevs into a root vdev.
4200	 */
4201	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4202	    &pgid) == 0);
4203	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4204	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4205	    VDEV_TYPE_ROOT) == 0);
4206	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4207	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4208	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4209	    tops, nchildren) == 0);
4210
4211	/*
4212	 * Replace the existing vdev_tree with the new root vdev in
4213	 * this pool's configuration (remove the old, add the new).
4214	 */
4215	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4216
4217	/*
4218	 * Drop vdev config elements that should not be present at pool level.
4219	 */
4220	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4221	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4222
4223	for (i = 0; i < count; i++)
4224		nvlist_free(configs[i]);
4225	kmem_free(configs, count * sizeof(void *));
4226	for (i = 0; i < nchildren; i++)
4227		nvlist_free(tops[i]);
4228	kmem_free(tops, nchildren * sizeof(void *));
4229	nvlist_free(nvroot);
4230	return (config);
4231}
4232
4233int
4234spa_import_rootpool(const char *name)
4235{
4236	spa_t *spa;
4237	vdev_t *rvd, *bvd, *avd = NULL;
4238	nvlist_t *config, *nvtop;
4239	uint64_t txg;
4240	char *pname;
4241	int error;
4242
4243	/*
4244	 * Read the label from the boot device and generate a configuration.
4245	 */
4246	config = spa_generate_rootconf(name);
4247
4248	mutex_enter(&spa_namespace_lock);
4249	if (config != NULL) {
4250		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4251		    &pname) == 0 && strcmp(name, pname) == 0);
4252		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4253		    == 0);
4254
4255		if ((spa = spa_lookup(pname)) != NULL) {
4256			/*
4257			 * Remove the existing root pool from the namespace so
4258			 * that we can replace it with the correct config
4259			 * we just read in.
4260			 */
4261			spa_remove(spa);
4262		}
4263		spa = spa_add(pname, config, NULL);
4264
4265		/*
4266		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4267		 * via spa_version().
4268		 */
4269		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4270		    &spa->spa_ubsync.ub_version) != 0)
4271			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4272	} else if ((spa = spa_lookup(name)) == NULL) {
4273		mutex_exit(&spa_namespace_lock);
4274		nvlist_free(config);
4275		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4276		    name);
4277		return (EIO);
4278	} else {
4279		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4280	}
4281	spa->spa_is_root = B_TRUE;
4282	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4283
4284	/*
4285	 * Build up a vdev tree based on the boot device's label config.
4286	 */
4287	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4288	    &nvtop) == 0);
4289	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4290	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4291	    VDEV_ALLOC_ROOTPOOL);
4292	spa_config_exit(spa, SCL_ALL, FTAG);
4293	if (error) {
4294		mutex_exit(&spa_namespace_lock);
4295		nvlist_free(config);
4296		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4297		    pname);
4298		return (error);
4299	}
4300
4301	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4302	vdev_free(rvd);
4303	spa_config_exit(spa, SCL_ALL, FTAG);
4304	mutex_exit(&spa_namespace_lock);
4305
4306	nvlist_free(config);
4307	return (0);
4308}
4309
4310#endif	/* illumos */
4311#endif	/* _KERNEL */
4312
4313/*
4314 * Import a non-root pool into the system.
4315 */
4316int
4317spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4318{
4319	spa_t *spa;
4320	char *altroot = NULL;
4321	spa_load_state_t state = SPA_LOAD_IMPORT;
4322	zpool_rewind_policy_t policy;
4323	uint64_t mode = spa_mode_global;
4324	uint64_t readonly = B_FALSE;
4325	int error;
4326	nvlist_t *nvroot;
4327	nvlist_t **spares, **l2cache;
4328	uint_t nspares, nl2cache;
4329
4330	/*
4331	 * If a pool with this name exists, return failure.
4332	 */
4333	mutex_enter(&spa_namespace_lock);
4334	if (spa_lookup(pool) != NULL) {
4335		mutex_exit(&spa_namespace_lock);
4336		return (SET_ERROR(EEXIST));
4337	}
4338
4339	/*
4340	 * Create and initialize the spa structure.
4341	 */
4342	(void) nvlist_lookup_string(props,
4343	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4344	(void) nvlist_lookup_uint64(props,
4345	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4346	if (readonly)
4347		mode = FREAD;
4348	spa = spa_add(pool, config, altroot);
4349	spa->spa_import_flags = flags;
4350
4351	/*
4352	 * Verbatim import - Take a pool and insert it into the namespace
4353	 * as if it had been loaded at boot.
4354	 */
4355	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4356		if (props != NULL)
4357			spa_configfile_set(spa, props, B_FALSE);
4358
4359		spa_config_sync(spa, B_FALSE, B_TRUE);
4360		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4361
4362		mutex_exit(&spa_namespace_lock);
4363		return (0);
4364	}
4365
4366	spa_activate(spa, mode);
4367
4368	/*
4369	 * Don't start async tasks until we know everything is healthy.
4370	 */
4371	spa_async_suspend(spa);
4372
4373	zpool_get_rewind_policy(config, &policy);
4374	if (policy.zrp_request & ZPOOL_DO_REWIND)
4375		state = SPA_LOAD_RECOVER;
4376
4377	/*
4378	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4379	 * because the user-supplied config is actually the one to trust when
4380	 * doing an import.
4381	 */
4382	if (state != SPA_LOAD_RECOVER)
4383		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4384
4385	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4386	    policy.zrp_request);
4387
4388	/*
4389	 * Propagate anything learned while loading the pool and pass it
4390	 * back to caller (i.e. rewind info, missing devices, etc).
4391	 */
4392	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4393	    spa->spa_load_info) == 0);
4394
4395	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4396	/*
4397	 * Toss any existing sparelist, as it doesn't have any validity
4398	 * anymore, and conflicts with spa_has_spare().
4399	 */
4400	if (spa->spa_spares.sav_config) {
4401		nvlist_free(spa->spa_spares.sav_config);
4402		spa->spa_spares.sav_config = NULL;
4403		spa_load_spares(spa);
4404	}
4405	if (spa->spa_l2cache.sav_config) {
4406		nvlist_free(spa->spa_l2cache.sav_config);
4407		spa->spa_l2cache.sav_config = NULL;
4408		spa_load_l2cache(spa);
4409	}
4410
4411	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4412	    &nvroot) == 0);
4413	if (error == 0)
4414		error = spa_validate_aux(spa, nvroot, -1ULL,
4415		    VDEV_ALLOC_SPARE);
4416	if (error == 0)
4417		error = spa_validate_aux(spa, nvroot, -1ULL,
4418		    VDEV_ALLOC_L2CACHE);
4419	spa_config_exit(spa, SCL_ALL, FTAG);
4420
4421	if (props != NULL)
4422		spa_configfile_set(spa, props, B_FALSE);
4423
4424	if (error != 0 || (props && spa_writeable(spa) &&
4425	    (error = spa_prop_set(spa, props)))) {
4426		spa_unload(spa);
4427		spa_deactivate(spa);
4428		spa_remove(spa);
4429		mutex_exit(&spa_namespace_lock);
4430		return (error);
4431	}
4432
4433	spa_async_resume(spa);
4434
4435	/*
4436	 * Override any spares and level 2 cache devices as specified by
4437	 * the user, as these may have correct device names/devids, etc.
4438	 */
4439	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4440	    &spares, &nspares) == 0) {
4441		if (spa->spa_spares.sav_config)
4442			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4443			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4444		else
4445			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4446			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4447		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4448		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4449		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4450		spa_load_spares(spa);
4451		spa_config_exit(spa, SCL_ALL, FTAG);
4452		spa->spa_spares.sav_sync = B_TRUE;
4453	}
4454	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4455	    &l2cache, &nl2cache) == 0) {
4456		if (spa->spa_l2cache.sav_config)
4457			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4458			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4459		else
4460			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4461			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4462		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4463		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4464		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4465		spa_load_l2cache(spa);
4466		spa_config_exit(spa, SCL_ALL, FTAG);
4467		spa->spa_l2cache.sav_sync = B_TRUE;
4468	}
4469
4470	/*
4471	 * Check for any removed devices.
4472	 */
4473	if (spa->spa_autoreplace) {
4474		spa_aux_check_removed(&spa->spa_spares);
4475		spa_aux_check_removed(&spa->spa_l2cache);
4476	}
4477
4478	if (spa_writeable(spa)) {
4479		/*
4480		 * Update the config cache to include the newly-imported pool.
4481		 */
4482		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4483	}
4484
4485	/*
4486	 * It's possible that the pool was expanded while it was exported.
4487	 * We kick off an async task to handle this for us.
4488	 */
4489	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4490
4491	spa_history_log_version(spa, "import");
4492
4493	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4494
4495	mutex_exit(&spa_namespace_lock);
4496
4497#ifdef __FreeBSD__
4498#ifdef _KERNEL
4499	zvol_create_minors(pool);
4500#endif
4501#endif
4502	return (0);
4503}
4504
4505nvlist_t *
4506spa_tryimport(nvlist_t *tryconfig)
4507{
4508	nvlist_t *config = NULL;
4509	char *poolname;
4510	spa_t *spa;
4511	uint64_t state;
4512	int error;
4513
4514	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4515		return (NULL);
4516
4517	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4518		return (NULL);
4519
4520	/*
4521	 * Create and initialize the spa structure.
4522	 */
4523	mutex_enter(&spa_namespace_lock);
4524	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4525	spa_activate(spa, FREAD);
4526
4527	/*
4528	 * Pass off the heavy lifting to spa_load().
4529	 * Pass TRUE for mosconfig because the user-supplied config
4530	 * is actually the one to trust when doing an import.
4531	 */
4532	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4533
4534	/*
4535	 * If 'tryconfig' was at least parsable, return the current config.
4536	 */
4537	if (spa->spa_root_vdev != NULL) {
4538		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4539		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4540		    poolname) == 0);
4541		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4542		    state) == 0);
4543		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4544		    spa->spa_uberblock.ub_timestamp) == 0);
4545		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4546		    spa->spa_load_info) == 0);
4547
4548		/*
4549		 * If the bootfs property exists on this pool then we
4550		 * copy it out so that external consumers can tell which
4551		 * pools are bootable.
4552		 */
4553		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4554			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4555
4556			/*
4557			 * We have to play games with the name since the
4558			 * pool was opened as TRYIMPORT_NAME.
4559			 */
4560			if (dsl_dsobj_to_dsname(spa_name(spa),
4561			    spa->spa_bootfs, tmpname) == 0) {
4562				char *cp;
4563				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4564
4565				cp = strchr(tmpname, '/');
4566				if (cp == NULL) {
4567					(void) strlcpy(dsname, tmpname,
4568					    MAXPATHLEN);
4569				} else {
4570					(void) snprintf(dsname, MAXPATHLEN,
4571					    "%s/%s", poolname, ++cp);
4572				}
4573				VERIFY(nvlist_add_string(config,
4574				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4575				kmem_free(dsname, MAXPATHLEN);
4576			}
4577			kmem_free(tmpname, MAXPATHLEN);
4578		}
4579
4580		/*
4581		 * Add the list of hot spares and level 2 cache devices.
4582		 */
4583		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4584		spa_add_spares(spa, config);
4585		spa_add_l2cache(spa, config);
4586		spa_config_exit(spa, SCL_CONFIG, FTAG);
4587	}
4588
4589	spa_unload(spa);
4590	spa_deactivate(spa);
4591	spa_remove(spa);
4592	mutex_exit(&spa_namespace_lock);
4593
4594	return (config);
4595}
4596
4597/*
4598 * Pool export/destroy
4599 *
4600 * The act of destroying or exporting a pool is very simple.  We make sure there
4601 * is no more pending I/O and any references to the pool are gone.  Then, we
4602 * update the pool state and sync all the labels to disk, removing the
4603 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4604 * we don't sync the labels or remove the configuration cache.
4605 */
4606static int
4607spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4608    boolean_t force, boolean_t hardforce)
4609{
4610	spa_t *spa;
4611
4612	if (oldconfig)
4613		*oldconfig = NULL;
4614
4615	if (!(spa_mode_global & FWRITE))
4616		return (SET_ERROR(EROFS));
4617
4618	mutex_enter(&spa_namespace_lock);
4619	if ((spa = spa_lookup(pool)) == NULL) {
4620		mutex_exit(&spa_namespace_lock);
4621		return (SET_ERROR(ENOENT));
4622	}
4623
4624	/*
4625	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4626	 * reacquire the namespace lock, and see if we can export.
4627	 */
4628	spa_open_ref(spa, FTAG);
4629	mutex_exit(&spa_namespace_lock);
4630	spa_async_suspend(spa);
4631	mutex_enter(&spa_namespace_lock);
4632	spa_close(spa, FTAG);
4633
4634	/*
4635	 * The pool will be in core if it's openable,
4636	 * in which case we can modify its state.
4637	 */
4638	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4639		/*
4640		 * Objsets may be open only because they're dirty, so we
4641		 * have to force it to sync before checking spa_refcnt.
4642		 */
4643		txg_wait_synced(spa->spa_dsl_pool, 0);
4644		spa_evicting_os_wait(spa);
4645
4646		/*
4647		 * A pool cannot be exported or destroyed if there are active
4648		 * references.  If we are resetting a pool, allow references by
4649		 * fault injection handlers.
4650		 */
4651		if (!spa_refcount_zero(spa) ||
4652		    (spa->spa_inject_ref != 0 &&
4653		    new_state != POOL_STATE_UNINITIALIZED)) {
4654			spa_async_resume(spa);
4655			mutex_exit(&spa_namespace_lock);
4656			return (SET_ERROR(EBUSY));
4657		}
4658
4659		/*
4660		 * A pool cannot be exported if it has an active shared spare.
4661		 * This is to prevent other pools stealing the active spare
4662		 * from an exported pool. At user's own will, such pool can
4663		 * be forcedly exported.
4664		 */
4665		if (!force && new_state == POOL_STATE_EXPORTED &&
4666		    spa_has_active_shared_spare(spa)) {
4667			spa_async_resume(spa);
4668			mutex_exit(&spa_namespace_lock);
4669			return (SET_ERROR(EXDEV));
4670		}
4671
4672		/*
4673		 * We want this to be reflected on every label,
4674		 * so mark them all dirty.  spa_unload() will do the
4675		 * final sync that pushes these changes out.
4676		 */
4677		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4678			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4679			spa->spa_state = new_state;
4680			spa->spa_final_txg = spa_last_synced_txg(spa) +
4681			    TXG_DEFER_SIZE + 1;
4682			vdev_config_dirty(spa->spa_root_vdev);
4683			spa_config_exit(spa, SCL_ALL, FTAG);
4684		}
4685	}
4686
4687	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4688
4689	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4690		spa_unload(spa);
4691		spa_deactivate(spa);
4692	}
4693
4694	if (oldconfig && spa->spa_config)
4695		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4696
4697	if (new_state != POOL_STATE_UNINITIALIZED) {
4698		if (!hardforce)
4699			spa_config_sync(spa, B_TRUE, B_TRUE);
4700		spa_remove(spa);
4701	}
4702	mutex_exit(&spa_namespace_lock);
4703
4704	return (0);
4705}
4706
4707/*
4708 * Destroy a storage pool.
4709 */
4710int
4711spa_destroy(char *pool)
4712{
4713	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4714	    B_FALSE, B_FALSE));
4715}
4716
4717/*
4718 * Export a storage pool.
4719 */
4720int
4721spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4722    boolean_t hardforce)
4723{
4724	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4725	    force, hardforce));
4726}
4727
4728/*
4729 * Similar to spa_export(), this unloads the spa_t without actually removing it
4730 * from the namespace in any way.
4731 */
4732int
4733spa_reset(char *pool)
4734{
4735	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4736	    B_FALSE, B_FALSE));
4737}
4738
4739/*
4740 * ==========================================================================
4741 * Device manipulation
4742 * ==========================================================================
4743 */
4744
4745/*
4746 * Add a device to a storage pool.
4747 */
4748int
4749spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4750{
4751	uint64_t txg, id;
4752	int error;
4753	vdev_t *rvd = spa->spa_root_vdev;
4754	vdev_t *vd, *tvd;
4755	nvlist_t **spares, **l2cache;
4756	uint_t nspares, nl2cache;
4757
4758	ASSERT(spa_writeable(spa));
4759
4760	txg = spa_vdev_enter(spa);
4761
4762	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4763	    VDEV_ALLOC_ADD)) != 0)
4764		return (spa_vdev_exit(spa, NULL, txg, error));
4765
4766	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4767
4768	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4769	    &nspares) != 0)
4770		nspares = 0;
4771
4772	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4773	    &nl2cache) != 0)
4774		nl2cache = 0;
4775
4776	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4777		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4778
4779	if (vd->vdev_children != 0 &&
4780	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4781		return (spa_vdev_exit(spa, vd, txg, error));
4782
4783	/*
4784	 * We must validate the spares and l2cache devices after checking the
4785	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4786	 */
4787	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4788		return (spa_vdev_exit(spa, vd, txg, error));
4789
4790	/*
4791	 * Transfer each new top-level vdev from vd to rvd.
4792	 */
4793	for (int c = 0; c < vd->vdev_children; c++) {
4794
4795		/*
4796		 * Set the vdev id to the first hole, if one exists.
4797		 */
4798		for (id = 0; id < rvd->vdev_children; id++) {
4799			if (rvd->vdev_child[id]->vdev_ishole) {
4800				vdev_free(rvd->vdev_child[id]);
4801				break;
4802			}
4803		}
4804		tvd = vd->vdev_child[c];
4805		vdev_remove_child(vd, tvd);
4806		tvd->vdev_id = id;
4807		vdev_add_child(rvd, tvd);
4808		vdev_config_dirty(tvd);
4809	}
4810
4811	if (nspares != 0) {
4812		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4813		    ZPOOL_CONFIG_SPARES);
4814		spa_load_spares(spa);
4815		spa->spa_spares.sav_sync = B_TRUE;
4816	}
4817
4818	if (nl2cache != 0) {
4819		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4820		    ZPOOL_CONFIG_L2CACHE);
4821		spa_load_l2cache(spa);
4822		spa->spa_l2cache.sav_sync = B_TRUE;
4823	}
4824
4825	/*
4826	 * We have to be careful when adding new vdevs to an existing pool.
4827	 * If other threads start allocating from these vdevs before we
4828	 * sync the config cache, and we lose power, then upon reboot we may
4829	 * fail to open the pool because there are DVAs that the config cache
4830	 * can't translate.  Therefore, we first add the vdevs without
4831	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4832	 * and then let spa_config_update() initialize the new metaslabs.
4833	 *
4834	 * spa_load() checks for added-but-not-initialized vdevs, so that
4835	 * if we lose power at any point in this sequence, the remaining
4836	 * steps will be completed the next time we load the pool.
4837	 */
4838	(void) spa_vdev_exit(spa, vd, txg, 0);
4839
4840	mutex_enter(&spa_namespace_lock);
4841	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4842	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4843	mutex_exit(&spa_namespace_lock);
4844
4845	return (0);
4846}
4847
4848/*
4849 * Attach a device to a mirror.  The arguments are the path to any device
4850 * in the mirror, and the nvroot for the new device.  If the path specifies
4851 * a device that is not mirrored, we automatically insert the mirror vdev.
4852 *
4853 * If 'replacing' is specified, the new device is intended to replace the
4854 * existing device; in this case the two devices are made into their own
4855 * mirror using the 'replacing' vdev, which is functionally identical to
4856 * the mirror vdev (it actually reuses all the same ops) but has a few
4857 * extra rules: you can't attach to it after it's been created, and upon
4858 * completion of resilvering, the first disk (the one being replaced)
4859 * is automatically detached.
4860 */
4861int
4862spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4863{
4864	uint64_t txg, dtl_max_txg;
4865	vdev_t *rvd = spa->spa_root_vdev;
4866	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4867	vdev_ops_t *pvops;
4868	char *oldvdpath, *newvdpath;
4869	int newvd_isspare;
4870	int error;
4871
4872	ASSERT(spa_writeable(spa));
4873
4874	txg = spa_vdev_enter(spa);
4875
4876	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4877
4878	if (oldvd == NULL)
4879		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4880
4881	if (!oldvd->vdev_ops->vdev_op_leaf)
4882		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4883
4884	pvd = oldvd->vdev_parent;
4885
4886	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4887	    VDEV_ALLOC_ATTACH)) != 0)
4888		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4889
4890	if (newrootvd->vdev_children != 1)
4891		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4892
4893	newvd = newrootvd->vdev_child[0];
4894
4895	if (!newvd->vdev_ops->vdev_op_leaf)
4896		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4897
4898	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4899		return (spa_vdev_exit(spa, newrootvd, txg, error));
4900
4901	/*
4902	 * Spares can't replace logs
4903	 */
4904	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4905		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4906
4907	if (!replacing) {
4908		/*
4909		 * For attach, the only allowable parent is a mirror or the root
4910		 * vdev.
4911		 */
4912		if (pvd->vdev_ops != &vdev_mirror_ops &&
4913		    pvd->vdev_ops != &vdev_root_ops)
4914			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4915
4916		pvops = &vdev_mirror_ops;
4917	} else {
4918		/*
4919		 * Active hot spares can only be replaced by inactive hot
4920		 * spares.
4921		 */
4922		if (pvd->vdev_ops == &vdev_spare_ops &&
4923		    oldvd->vdev_isspare &&
4924		    !spa_has_spare(spa, newvd->vdev_guid))
4925			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4926
4927		/*
4928		 * If the source is a hot spare, and the parent isn't already a
4929		 * spare, then we want to create a new hot spare.  Otherwise, we
4930		 * want to create a replacing vdev.  The user is not allowed to
4931		 * attach to a spared vdev child unless the 'isspare' state is
4932		 * the same (spare replaces spare, non-spare replaces
4933		 * non-spare).
4934		 */
4935		if (pvd->vdev_ops == &vdev_replacing_ops &&
4936		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4937			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4938		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4939		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4940			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4941		}
4942
4943		if (newvd->vdev_isspare)
4944			pvops = &vdev_spare_ops;
4945		else
4946			pvops = &vdev_replacing_ops;
4947	}
4948
4949	/*
4950	 * Make sure the new device is big enough.
4951	 */
4952	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4953		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4954
4955	/*
4956	 * The new device cannot have a higher alignment requirement
4957	 * than the top-level vdev.
4958	 */
4959	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4960		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4961
4962	/*
4963	 * If this is an in-place replacement, update oldvd's path and devid
4964	 * to make it distinguishable from newvd, and unopenable from now on.
4965	 */
4966	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4967		spa_strfree(oldvd->vdev_path);
4968		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4969		    KM_SLEEP);
4970		(void) sprintf(oldvd->vdev_path, "%s/%s",
4971		    newvd->vdev_path, "old");
4972		if (oldvd->vdev_devid != NULL) {
4973			spa_strfree(oldvd->vdev_devid);
4974			oldvd->vdev_devid = NULL;
4975		}
4976	}
4977
4978	/* mark the device being resilvered */
4979	newvd->vdev_resilver_txg = txg;
4980
4981	/*
4982	 * If the parent is not a mirror, or if we're replacing, insert the new
4983	 * mirror/replacing/spare vdev above oldvd.
4984	 */
4985	if (pvd->vdev_ops != pvops)
4986		pvd = vdev_add_parent(oldvd, pvops);
4987
4988	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4989	ASSERT(pvd->vdev_ops == pvops);
4990	ASSERT(oldvd->vdev_parent == pvd);
4991
4992	/*
4993	 * Extract the new device from its root and add it to pvd.
4994	 */
4995	vdev_remove_child(newrootvd, newvd);
4996	newvd->vdev_id = pvd->vdev_children;
4997	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4998	vdev_add_child(pvd, newvd);
4999
5000	tvd = newvd->vdev_top;
5001	ASSERT(pvd->vdev_top == tvd);
5002	ASSERT(tvd->vdev_parent == rvd);
5003
5004	vdev_config_dirty(tvd);
5005
5006	/*
5007	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5008	 * for any dmu_sync-ed blocks.  It will propagate upward when
5009	 * spa_vdev_exit() calls vdev_dtl_reassess().
5010	 */
5011	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5012
5013	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5014	    dtl_max_txg - TXG_INITIAL);
5015
5016	if (newvd->vdev_isspare) {
5017		spa_spare_activate(newvd);
5018		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
5019	}
5020
5021	oldvdpath = spa_strdup(oldvd->vdev_path);
5022	newvdpath = spa_strdup(newvd->vdev_path);
5023	newvd_isspare = newvd->vdev_isspare;
5024
5025	/*
5026	 * Mark newvd's DTL dirty in this txg.
5027	 */
5028	vdev_dirty(tvd, VDD_DTL, newvd, txg);
5029
5030	/*
5031	 * Schedule the resilver to restart in the future. We do this to
5032	 * ensure that dmu_sync-ed blocks have been stitched into the
5033	 * respective datasets.
5034	 */
5035	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5036
5037	if (spa->spa_bootfs)
5038		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5039
5040	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
5041
5042	/*
5043	 * Commit the config
5044	 */
5045	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5046
5047	spa_history_log_internal(spa, "vdev attach", NULL,
5048	    "%s vdev=%s %s vdev=%s",
5049	    replacing && newvd_isspare ? "spare in" :
5050	    replacing ? "replace" : "attach", newvdpath,
5051	    replacing ? "for" : "to", oldvdpath);
5052
5053	spa_strfree(oldvdpath);
5054	spa_strfree(newvdpath);
5055
5056	return (0);
5057}
5058
5059/*
5060 * Detach a device from a mirror or replacing vdev.
5061 *
5062 * If 'replace_done' is specified, only detach if the parent
5063 * is a replacing vdev.
5064 */
5065int
5066spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5067{
5068	uint64_t txg;
5069	int error;
5070	vdev_t *rvd = spa->spa_root_vdev;
5071	vdev_t *vd, *pvd, *cvd, *tvd;
5072	boolean_t unspare = B_FALSE;
5073	uint64_t unspare_guid = 0;
5074	char *vdpath;
5075
5076	ASSERT(spa_writeable(spa));
5077
5078	txg = spa_vdev_enter(spa);
5079
5080	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5081
5082	if (vd == NULL)
5083		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5084
5085	if (!vd->vdev_ops->vdev_op_leaf)
5086		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5087
5088	pvd = vd->vdev_parent;
5089
5090	/*
5091	 * If the parent/child relationship is not as expected, don't do it.
5092	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5093	 * vdev that's replacing B with C.  The user's intent in replacing
5094	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5095	 * the replace by detaching C, the expected behavior is to end up
5096	 * M(A,B).  But suppose that right after deciding to detach C,
5097	 * the replacement of B completes.  We would have M(A,C), and then
5098	 * ask to detach C, which would leave us with just A -- not what
5099	 * the user wanted.  To prevent this, we make sure that the
5100	 * parent/child relationship hasn't changed -- in this example,
5101	 * that C's parent is still the replacing vdev R.
5102	 */
5103	if (pvd->vdev_guid != pguid && pguid != 0)
5104		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5105
5106	/*
5107	 * Only 'replacing' or 'spare' vdevs can be replaced.
5108	 */
5109	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5110	    pvd->vdev_ops != &vdev_spare_ops)
5111		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5112
5113	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5114	    spa_version(spa) >= SPA_VERSION_SPARES);
5115
5116	/*
5117	 * Only mirror, replacing, and spare vdevs support detach.
5118	 */
5119	if (pvd->vdev_ops != &vdev_replacing_ops &&
5120	    pvd->vdev_ops != &vdev_mirror_ops &&
5121	    pvd->vdev_ops != &vdev_spare_ops)
5122		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5123
5124	/*
5125	 * If this device has the only valid copy of some data,
5126	 * we cannot safely detach it.
5127	 */
5128	if (vdev_dtl_required(vd))
5129		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5130
5131	ASSERT(pvd->vdev_children >= 2);
5132
5133	/*
5134	 * If we are detaching the second disk from a replacing vdev, then
5135	 * check to see if we changed the original vdev's path to have "/old"
5136	 * at the end in spa_vdev_attach().  If so, undo that change now.
5137	 */
5138	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5139	    vd->vdev_path != NULL) {
5140		size_t len = strlen(vd->vdev_path);
5141
5142		for (int c = 0; c < pvd->vdev_children; c++) {
5143			cvd = pvd->vdev_child[c];
5144
5145			if (cvd == vd || cvd->vdev_path == NULL)
5146				continue;
5147
5148			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5149			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5150				spa_strfree(cvd->vdev_path);
5151				cvd->vdev_path = spa_strdup(vd->vdev_path);
5152				break;
5153			}
5154		}
5155	}
5156
5157	/*
5158	 * If we are detaching the original disk from a spare, then it implies
5159	 * that the spare should become a real disk, and be removed from the
5160	 * active spare list for the pool.
5161	 */
5162	if (pvd->vdev_ops == &vdev_spare_ops &&
5163	    vd->vdev_id == 0 &&
5164	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5165		unspare = B_TRUE;
5166
5167	/*
5168	 * Erase the disk labels so the disk can be used for other things.
5169	 * This must be done after all other error cases are handled,
5170	 * but before we disembowel vd (so we can still do I/O to it).
5171	 * But if we can't do it, don't treat the error as fatal --
5172	 * it may be that the unwritability of the disk is the reason
5173	 * it's being detached!
5174	 */
5175	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5176
5177	/*
5178	 * Remove vd from its parent and compact the parent's children.
5179	 */
5180	vdev_remove_child(pvd, vd);
5181	vdev_compact_children(pvd);
5182
5183	/*
5184	 * Remember one of the remaining children so we can get tvd below.
5185	 */
5186	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5187
5188	/*
5189	 * If we need to remove the remaining child from the list of hot spares,
5190	 * do it now, marking the vdev as no longer a spare in the process.
5191	 * We must do this before vdev_remove_parent(), because that can
5192	 * change the GUID if it creates a new toplevel GUID.  For a similar
5193	 * reason, we must remove the spare now, in the same txg as the detach;
5194	 * otherwise someone could attach a new sibling, change the GUID, and
5195	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5196	 */
5197	if (unspare) {
5198		ASSERT(cvd->vdev_isspare);
5199		spa_spare_remove(cvd);
5200		unspare_guid = cvd->vdev_guid;
5201		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5202		cvd->vdev_unspare = B_TRUE;
5203	}
5204
5205	/*
5206	 * If the parent mirror/replacing vdev only has one child,
5207	 * the parent is no longer needed.  Remove it from the tree.
5208	 */
5209	if (pvd->vdev_children == 1) {
5210		if (pvd->vdev_ops == &vdev_spare_ops)
5211			cvd->vdev_unspare = B_FALSE;
5212		vdev_remove_parent(cvd);
5213	}
5214
5215
5216	/*
5217	 * We don't set tvd until now because the parent we just removed
5218	 * may have been the previous top-level vdev.
5219	 */
5220	tvd = cvd->vdev_top;
5221	ASSERT(tvd->vdev_parent == rvd);
5222
5223	/*
5224	 * Reevaluate the parent vdev state.
5225	 */
5226	vdev_propagate_state(cvd);
5227
5228	/*
5229	 * If the 'autoexpand' property is set on the pool then automatically
5230	 * try to expand the size of the pool. For example if the device we
5231	 * just detached was smaller than the others, it may be possible to
5232	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5233	 * first so that we can obtain the updated sizes of the leaf vdevs.
5234	 */
5235	if (spa->spa_autoexpand) {
5236		vdev_reopen(tvd);
5237		vdev_expand(tvd, txg);
5238	}
5239
5240	vdev_config_dirty(tvd);
5241
5242	/*
5243	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5244	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5245	 * But first make sure we're not on any *other* txg's DTL list, to
5246	 * prevent vd from being accessed after it's freed.
5247	 */
5248	vdpath = spa_strdup(vd->vdev_path);
5249	for (int t = 0; t < TXG_SIZE; t++)
5250		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5251	vd->vdev_detached = B_TRUE;
5252	vdev_dirty(tvd, VDD_DTL, vd, txg);
5253
5254	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5255
5256	/* hang on to the spa before we release the lock */
5257	spa_open_ref(spa, FTAG);
5258
5259	error = spa_vdev_exit(spa, vd, txg, 0);
5260
5261	spa_history_log_internal(spa, "detach", NULL,
5262	    "vdev=%s", vdpath);
5263	spa_strfree(vdpath);
5264
5265	/*
5266	 * If this was the removal of the original device in a hot spare vdev,
5267	 * then we want to go through and remove the device from the hot spare
5268	 * list of every other pool.
5269	 */
5270	if (unspare) {
5271		spa_t *altspa = NULL;
5272
5273		mutex_enter(&spa_namespace_lock);
5274		while ((altspa = spa_next(altspa)) != NULL) {
5275			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5276			    altspa == spa)
5277				continue;
5278
5279			spa_open_ref(altspa, FTAG);
5280			mutex_exit(&spa_namespace_lock);
5281			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5282			mutex_enter(&spa_namespace_lock);
5283			spa_close(altspa, FTAG);
5284		}
5285		mutex_exit(&spa_namespace_lock);
5286
5287		/* search the rest of the vdevs for spares to remove */
5288		spa_vdev_resilver_done(spa);
5289	}
5290
5291	/* all done with the spa; OK to release */
5292	mutex_enter(&spa_namespace_lock);
5293	spa_close(spa, FTAG);
5294	mutex_exit(&spa_namespace_lock);
5295
5296	return (error);
5297}
5298
5299/*
5300 * Split a set of devices from their mirrors, and create a new pool from them.
5301 */
5302int
5303spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5304    nvlist_t *props, boolean_t exp)
5305{
5306	int error = 0;
5307	uint64_t txg, *glist;
5308	spa_t *newspa;
5309	uint_t c, children, lastlog;
5310	nvlist_t **child, *nvl, *tmp;
5311	dmu_tx_t *tx;
5312	char *altroot = NULL;
5313	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5314	boolean_t activate_slog;
5315
5316	ASSERT(spa_writeable(spa));
5317
5318	txg = spa_vdev_enter(spa);
5319
5320	/* clear the log and flush everything up to now */
5321	activate_slog = spa_passivate_log(spa);
5322	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5323	error = spa_offline_log(spa);
5324	txg = spa_vdev_config_enter(spa);
5325
5326	if (activate_slog)
5327		spa_activate_log(spa);
5328
5329	if (error != 0)
5330		return (spa_vdev_exit(spa, NULL, txg, error));
5331
5332	/* check new spa name before going any further */
5333	if (spa_lookup(newname) != NULL)
5334		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5335
5336	/*
5337	 * scan through all the children to ensure they're all mirrors
5338	 */
5339	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5340	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5341	    &children) != 0)
5342		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5343
5344	/* first, check to ensure we've got the right child count */
5345	rvd = spa->spa_root_vdev;
5346	lastlog = 0;
5347	for (c = 0; c < rvd->vdev_children; c++) {
5348		vdev_t *vd = rvd->vdev_child[c];
5349
5350		/* don't count the holes & logs as children */
5351		if (vd->vdev_islog || vd->vdev_ishole) {
5352			if (lastlog == 0)
5353				lastlog = c;
5354			continue;
5355		}
5356
5357		lastlog = 0;
5358	}
5359	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5360		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5361
5362	/* next, ensure no spare or cache devices are part of the split */
5363	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5364	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5365		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5366
5367	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5368	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5369
5370	/* then, loop over each vdev and validate it */
5371	for (c = 0; c < children; c++) {
5372		uint64_t is_hole = 0;
5373
5374		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5375		    &is_hole);
5376
5377		if (is_hole != 0) {
5378			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5379			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5380				continue;
5381			} else {
5382				error = SET_ERROR(EINVAL);
5383				break;
5384			}
5385		}
5386
5387		/* which disk is going to be split? */
5388		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5389		    &glist[c]) != 0) {
5390			error = SET_ERROR(EINVAL);
5391			break;
5392		}
5393
5394		/* look it up in the spa */
5395		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5396		if (vml[c] == NULL) {
5397			error = SET_ERROR(ENODEV);
5398			break;
5399		}
5400
5401		/* make sure there's nothing stopping the split */
5402		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5403		    vml[c]->vdev_islog ||
5404		    vml[c]->vdev_ishole ||
5405		    vml[c]->vdev_isspare ||
5406		    vml[c]->vdev_isl2cache ||
5407		    !vdev_writeable(vml[c]) ||
5408		    vml[c]->vdev_children != 0 ||
5409		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5410		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5411			error = SET_ERROR(EINVAL);
5412			break;
5413		}
5414
5415		if (vdev_dtl_required(vml[c])) {
5416			error = SET_ERROR(EBUSY);
5417			break;
5418		}
5419
5420		/* we need certain info from the top level */
5421		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5422		    vml[c]->vdev_top->vdev_ms_array) == 0);
5423		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5424		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5425		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5426		    vml[c]->vdev_top->vdev_asize) == 0);
5427		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5428		    vml[c]->vdev_top->vdev_ashift) == 0);
5429
5430		/* transfer per-vdev ZAPs */
5431		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5432		VERIFY0(nvlist_add_uint64(child[c],
5433		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5434
5435		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5436		VERIFY0(nvlist_add_uint64(child[c],
5437		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5438		    vml[c]->vdev_parent->vdev_top_zap));
5439	}
5440
5441	if (error != 0) {
5442		kmem_free(vml, children * sizeof (vdev_t *));
5443		kmem_free(glist, children * sizeof (uint64_t));
5444		return (spa_vdev_exit(spa, NULL, txg, error));
5445	}
5446
5447	/* stop writers from using the disks */
5448	for (c = 0; c < children; c++) {
5449		if (vml[c] != NULL)
5450			vml[c]->vdev_offline = B_TRUE;
5451	}
5452	vdev_reopen(spa->spa_root_vdev);
5453
5454	/*
5455	 * Temporarily record the splitting vdevs in the spa config.  This
5456	 * will disappear once the config is regenerated.
5457	 */
5458	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5459	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5460	    glist, children) == 0);
5461	kmem_free(glist, children * sizeof (uint64_t));
5462
5463	mutex_enter(&spa->spa_props_lock);
5464	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5465	    nvl) == 0);
5466	mutex_exit(&spa->spa_props_lock);
5467	spa->spa_config_splitting = nvl;
5468	vdev_config_dirty(spa->spa_root_vdev);
5469
5470	/* configure and create the new pool */
5471	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5472	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5473	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5474	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5475	    spa_version(spa)) == 0);
5476	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5477	    spa->spa_config_txg) == 0);
5478	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5479	    spa_generate_guid(NULL)) == 0);
5480	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5481	(void) nvlist_lookup_string(props,
5482	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5483
5484	/* add the new pool to the namespace */
5485	newspa = spa_add(newname, config, altroot);
5486	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5487	newspa->spa_config_txg = spa->spa_config_txg;
5488	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5489
5490	/* release the spa config lock, retaining the namespace lock */
5491	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5492
5493	if (zio_injection_enabled)
5494		zio_handle_panic_injection(spa, FTAG, 1);
5495
5496	spa_activate(newspa, spa_mode_global);
5497	spa_async_suspend(newspa);
5498
5499#ifndef illumos
5500	/* mark that we are creating new spa by splitting */
5501	newspa->spa_splitting_newspa = B_TRUE;
5502#endif
5503	/* create the new pool from the disks of the original pool */
5504	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5505#ifndef illumos
5506	newspa->spa_splitting_newspa = B_FALSE;
5507#endif
5508	if (error)
5509		goto out;
5510
5511	/* if that worked, generate a real config for the new pool */
5512	if (newspa->spa_root_vdev != NULL) {
5513		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5514		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5515		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5516		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5517		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5518		    B_TRUE));
5519	}
5520
5521	/* set the props */
5522	if (props != NULL) {
5523		spa_configfile_set(newspa, props, B_FALSE);
5524		error = spa_prop_set(newspa, props);
5525		if (error)
5526			goto out;
5527	}
5528
5529	/* flush everything */
5530	txg = spa_vdev_config_enter(newspa);
5531	vdev_config_dirty(newspa->spa_root_vdev);
5532	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5533
5534	if (zio_injection_enabled)
5535		zio_handle_panic_injection(spa, FTAG, 2);
5536
5537	spa_async_resume(newspa);
5538
5539	/* finally, update the original pool's config */
5540	txg = spa_vdev_config_enter(spa);
5541	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5542	error = dmu_tx_assign(tx, TXG_WAIT);
5543	if (error != 0)
5544		dmu_tx_abort(tx);
5545	for (c = 0; c < children; c++) {
5546		if (vml[c] != NULL) {
5547			vdev_split(vml[c]);
5548			if (error == 0)
5549				spa_history_log_internal(spa, "detach", tx,
5550				    "vdev=%s", vml[c]->vdev_path);
5551
5552			vdev_free(vml[c]);
5553		}
5554	}
5555	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5556	vdev_config_dirty(spa->spa_root_vdev);
5557	spa->spa_config_splitting = NULL;
5558	nvlist_free(nvl);
5559	if (error == 0)
5560		dmu_tx_commit(tx);
5561	(void) spa_vdev_exit(spa, NULL, txg, 0);
5562
5563	if (zio_injection_enabled)
5564		zio_handle_panic_injection(spa, FTAG, 3);
5565
5566	/* split is complete; log a history record */
5567	spa_history_log_internal(newspa, "split", NULL,
5568	    "from pool %s", spa_name(spa));
5569
5570	kmem_free(vml, children * sizeof (vdev_t *));
5571
5572	/* if we're not going to mount the filesystems in userland, export */
5573	if (exp)
5574		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5575		    B_FALSE, B_FALSE);
5576
5577	return (error);
5578
5579out:
5580	spa_unload(newspa);
5581	spa_deactivate(newspa);
5582	spa_remove(newspa);
5583
5584	txg = spa_vdev_config_enter(spa);
5585
5586	/* re-online all offlined disks */
5587	for (c = 0; c < children; c++) {
5588		if (vml[c] != NULL)
5589			vml[c]->vdev_offline = B_FALSE;
5590	}
5591	vdev_reopen(spa->spa_root_vdev);
5592
5593	nvlist_free(spa->spa_config_splitting);
5594	spa->spa_config_splitting = NULL;
5595	(void) spa_vdev_exit(spa, NULL, txg, error);
5596
5597	kmem_free(vml, children * sizeof (vdev_t *));
5598	return (error);
5599}
5600
5601static nvlist_t *
5602spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5603{
5604	for (int i = 0; i < count; i++) {
5605		uint64_t guid;
5606
5607		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5608		    &guid) == 0);
5609
5610		if (guid == target_guid)
5611			return (nvpp[i]);
5612	}
5613
5614	return (NULL);
5615}
5616
5617static void
5618spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5619    nvlist_t *dev_to_remove)
5620{
5621	nvlist_t **newdev = NULL;
5622
5623	if (count > 1)
5624		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5625
5626	for (int i = 0, j = 0; i < count; i++) {
5627		if (dev[i] == dev_to_remove)
5628			continue;
5629		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5630	}
5631
5632	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5633	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5634
5635	for (int i = 0; i < count - 1; i++)
5636		nvlist_free(newdev[i]);
5637
5638	if (count > 1)
5639		kmem_free(newdev, (count - 1) * sizeof (void *));
5640}
5641
5642/*
5643 * Evacuate the device.
5644 */
5645static int
5646spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5647{
5648	uint64_t txg;
5649	int error = 0;
5650
5651	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5652	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5653	ASSERT(vd == vd->vdev_top);
5654
5655	/*
5656	 * Evacuate the device.  We don't hold the config lock as writer
5657	 * since we need to do I/O but we do keep the
5658	 * spa_namespace_lock held.  Once this completes the device
5659	 * should no longer have any blocks allocated on it.
5660	 */
5661	if (vd->vdev_islog) {
5662		if (vd->vdev_stat.vs_alloc != 0)
5663			error = spa_offline_log(spa);
5664	} else {
5665		error = SET_ERROR(ENOTSUP);
5666	}
5667
5668	if (error)
5669		return (error);
5670
5671	/*
5672	 * The evacuation succeeded.  Remove any remaining MOS metadata
5673	 * associated with this vdev, and wait for these changes to sync.
5674	 */
5675	ASSERT0(vd->vdev_stat.vs_alloc);
5676	txg = spa_vdev_config_enter(spa);
5677	vd->vdev_removing = B_TRUE;
5678	vdev_dirty_leaves(vd, VDD_DTL, txg);
5679	vdev_config_dirty(vd);
5680	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5681
5682	return (0);
5683}
5684
5685/*
5686 * Complete the removal by cleaning up the namespace.
5687 */
5688static void
5689spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5690{
5691	vdev_t *rvd = spa->spa_root_vdev;
5692	uint64_t id = vd->vdev_id;
5693	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5694
5695	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5696	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5697	ASSERT(vd == vd->vdev_top);
5698
5699	/*
5700	 * Only remove any devices which are empty.
5701	 */
5702	if (vd->vdev_stat.vs_alloc != 0)
5703		return;
5704
5705	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5706
5707	if (list_link_active(&vd->vdev_state_dirty_node))
5708		vdev_state_clean(vd);
5709	if (list_link_active(&vd->vdev_config_dirty_node))
5710		vdev_config_clean(vd);
5711
5712	vdev_free(vd);
5713
5714	if (last_vdev) {
5715		vdev_compact_children(rvd);
5716	} else {
5717		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5718		vdev_add_child(rvd, vd);
5719	}
5720	vdev_config_dirty(rvd);
5721
5722	/*
5723	 * Reassess the health of our root vdev.
5724	 */
5725	vdev_reopen(rvd);
5726}
5727
5728/*
5729 * Remove a device from the pool -
5730 *
5731 * Removing a device from the vdev namespace requires several steps
5732 * and can take a significant amount of time.  As a result we use
5733 * the spa_vdev_config_[enter/exit] functions which allow us to
5734 * grab and release the spa_config_lock while still holding the namespace
5735 * lock.  During each step the configuration is synced out.
5736 *
5737 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5738 * devices.
5739 */
5740int
5741spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5742{
5743	vdev_t *vd;
5744	sysevent_t *ev = NULL;
5745	metaslab_group_t *mg;
5746	nvlist_t **spares, **l2cache, *nv;
5747	uint64_t txg = 0;
5748	uint_t nspares, nl2cache;
5749	int error = 0;
5750	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5751
5752	ASSERT(spa_writeable(spa));
5753
5754	if (!locked)
5755		txg = spa_vdev_enter(spa);
5756
5757	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5758
5759	if (spa->spa_spares.sav_vdevs != NULL &&
5760	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5761	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5762	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5763		/*
5764		 * Only remove the hot spare if it's not currently in use
5765		 * in this pool.
5766		 */
5767		if (vd == NULL || unspare) {
5768			if (vd == NULL)
5769				vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5770			ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5771			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5772			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5773			spa_load_spares(spa);
5774			spa->spa_spares.sav_sync = B_TRUE;
5775		} else {
5776			error = SET_ERROR(EBUSY);
5777		}
5778	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5779	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5780	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5781	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5782		/*
5783		 * Cache devices can always be removed.
5784		 */
5785		vd = spa_lookup_by_guid(spa, guid, B_TRUE);
5786		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_AUX);
5787		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5788		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5789		spa_load_l2cache(spa);
5790		spa->spa_l2cache.sav_sync = B_TRUE;
5791	} else if (vd != NULL && vd->vdev_islog) {
5792		ASSERT(!locked);
5793		ASSERT(vd == vd->vdev_top);
5794
5795		mg = vd->vdev_mg;
5796
5797		/*
5798		 * Stop allocating from this vdev.
5799		 */
5800		metaslab_group_passivate(mg);
5801
5802		/*
5803		 * Wait for the youngest allocations and frees to sync,
5804		 * and then wait for the deferral of those frees to finish.
5805		 */
5806		spa_vdev_config_exit(spa, NULL,
5807		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5808
5809		/*
5810		 * Attempt to evacuate the vdev.
5811		 */
5812		error = spa_vdev_remove_evacuate(spa, vd);
5813
5814		txg = spa_vdev_config_enter(spa);
5815
5816		/*
5817		 * If we couldn't evacuate the vdev, unwind.
5818		 */
5819		if (error) {
5820			metaslab_group_activate(mg);
5821			return (spa_vdev_exit(spa, NULL, txg, error));
5822		}
5823
5824		/*
5825		 * Clean up the vdev namespace.
5826		 */
5827		ev = spa_event_create(spa, vd, ESC_ZFS_VDEV_REMOVE_DEV);
5828		spa_vdev_remove_from_namespace(spa, vd);
5829
5830	} else if (vd != NULL) {
5831		/*
5832		 * Normal vdevs cannot be removed (yet).
5833		 */
5834		error = SET_ERROR(ENOTSUP);
5835	} else {
5836		/*
5837		 * There is no vdev of any kind with the specified guid.
5838		 */
5839		error = SET_ERROR(ENOENT);
5840	}
5841
5842	if (!locked)
5843		error = spa_vdev_exit(spa, NULL, txg, error);
5844
5845	if (ev)
5846		spa_event_post(ev);
5847
5848	return (error);
5849}
5850
5851/*
5852 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5853 * currently spared, so we can detach it.
5854 */
5855static vdev_t *
5856spa_vdev_resilver_done_hunt(vdev_t *vd)
5857{
5858	vdev_t *newvd, *oldvd;
5859
5860	for (int c = 0; c < vd->vdev_children; c++) {
5861		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5862		if (oldvd != NULL)
5863			return (oldvd);
5864	}
5865
5866	/*
5867	 * Check for a completed replacement.  We always consider the first
5868	 * vdev in the list to be the oldest vdev, and the last one to be
5869	 * the newest (see spa_vdev_attach() for how that works).  In
5870	 * the case where the newest vdev is faulted, we will not automatically
5871	 * remove it after a resilver completes.  This is OK as it will require
5872	 * user intervention to determine which disk the admin wishes to keep.
5873	 */
5874	if (vd->vdev_ops == &vdev_replacing_ops) {
5875		ASSERT(vd->vdev_children > 1);
5876
5877		newvd = vd->vdev_child[vd->vdev_children - 1];
5878		oldvd = vd->vdev_child[0];
5879
5880		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5881		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5882		    !vdev_dtl_required(oldvd))
5883			return (oldvd);
5884	}
5885
5886	/*
5887	 * Check for a completed resilver with the 'unspare' flag set.
5888	 */
5889	if (vd->vdev_ops == &vdev_spare_ops) {
5890		vdev_t *first = vd->vdev_child[0];
5891		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5892
5893		if (last->vdev_unspare) {
5894			oldvd = first;
5895			newvd = last;
5896		} else if (first->vdev_unspare) {
5897			oldvd = last;
5898			newvd = first;
5899		} else {
5900			oldvd = NULL;
5901		}
5902
5903		if (oldvd != NULL &&
5904		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5905		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5906		    !vdev_dtl_required(oldvd))
5907			return (oldvd);
5908
5909		/*
5910		 * If there are more than two spares attached to a disk,
5911		 * and those spares are not required, then we want to
5912		 * attempt to free them up now so that they can be used
5913		 * by other pools.  Once we're back down to a single
5914		 * disk+spare, we stop removing them.
5915		 */
5916		if (vd->vdev_children > 2) {
5917			newvd = vd->vdev_child[1];
5918
5919			if (newvd->vdev_isspare && last->vdev_isspare &&
5920			    vdev_dtl_empty(last, DTL_MISSING) &&
5921			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5922			    !vdev_dtl_required(newvd))
5923				return (newvd);
5924		}
5925	}
5926
5927	return (NULL);
5928}
5929
5930static void
5931spa_vdev_resilver_done(spa_t *spa)
5932{
5933	vdev_t *vd, *pvd, *ppvd;
5934	uint64_t guid, sguid, pguid, ppguid;
5935
5936	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5937
5938	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5939		pvd = vd->vdev_parent;
5940		ppvd = pvd->vdev_parent;
5941		guid = vd->vdev_guid;
5942		pguid = pvd->vdev_guid;
5943		ppguid = ppvd->vdev_guid;
5944		sguid = 0;
5945		/*
5946		 * If we have just finished replacing a hot spared device, then
5947		 * we need to detach the parent's first child (the original hot
5948		 * spare) as well.
5949		 */
5950		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5951		    ppvd->vdev_children == 2) {
5952			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5953			sguid = ppvd->vdev_child[1]->vdev_guid;
5954		}
5955		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5956
5957		spa_config_exit(spa, SCL_ALL, FTAG);
5958		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5959			return;
5960		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5961			return;
5962		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5963	}
5964
5965	spa_config_exit(spa, SCL_ALL, FTAG);
5966}
5967
5968/*
5969 * Update the stored path or FRU for this vdev.
5970 */
5971int
5972spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5973    boolean_t ispath)
5974{
5975	vdev_t *vd;
5976	boolean_t sync = B_FALSE;
5977
5978	ASSERT(spa_writeable(spa));
5979
5980	spa_vdev_state_enter(spa, SCL_ALL);
5981
5982	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5983		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5984
5985	if (!vd->vdev_ops->vdev_op_leaf)
5986		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5987
5988	if (ispath) {
5989		if (strcmp(value, vd->vdev_path) != 0) {
5990			spa_strfree(vd->vdev_path);
5991			vd->vdev_path = spa_strdup(value);
5992			sync = B_TRUE;
5993		}
5994	} else {
5995		if (vd->vdev_fru == NULL) {
5996			vd->vdev_fru = spa_strdup(value);
5997			sync = B_TRUE;
5998		} else if (strcmp(value, vd->vdev_fru) != 0) {
5999			spa_strfree(vd->vdev_fru);
6000			vd->vdev_fru = spa_strdup(value);
6001			sync = B_TRUE;
6002		}
6003	}
6004
6005	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6006}
6007
6008int
6009spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6010{
6011	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6012}
6013
6014int
6015spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6016{
6017	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6018}
6019
6020/*
6021 * ==========================================================================
6022 * SPA Scanning
6023 * ==========================================================================
6024 */
6025
6026int
6027spa_scan_stop(spa_t *spa)
6028{
6029	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6030	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6031		return (SET_ERROR(EBUSY));
6032	return (dsl_scan_cancel(spa->spa_dsl_pool));
6033}
6034
6035int
6036spa_scan(spa_t *spa, pool_scan_func_t func)
6037{
6038	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6039
6040	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6041		return (SET_ERROR(ENOTSUP));
6042
6043	/*
6044	 * If a resilver was requested, but there is no DTL on a
6045	 * writeable leaf device, we have nothing to do.
6046	 */
6047	if (func == POOL_SCAN_RESILVER &&
6048	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6049		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6050		return (0);
6051	}
6052
6053	return (dsl_scan(spa->spa_dsl_pool, func));
6054}
6055
6056/*
6057 * ==========================================================================
6058 * SPA async task processing
6059 * ==========================================================================
6060 */
6061
6062static void
6063spa_async_remove(spa_t *spa, vdev_t *vd)
6064{
6065	if (vd->vdev_remove_wanted) {
6066		vd->vdev_remove_wanted = B_FALSE;
6067		vd->vdev_delayed_close = B_FALSE;
6068		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6069
6070		/*
6071		 * We want to clear the stats, but we don't want to do a full
6072		 * vdev_clear() as that will cause us to throw away
6073		 * degraded/faulted state as well as attempt to reopen the
6074		 * device, all of which is a waste.
6075		 */
6076		vd->vdev_stat.vs_read_errors = 0;
6077		vd->vdev_stat.vs_write_errors = 0;
6078		vd->vdev_stat.vs_checksum_errors = 0;
6079
6080		vdev_state_dirty(vd->vdev_top);
6081		/* Tell userspace that the vdev is gone. */
6082		zfs_post_remove(spa, vd);
6083	}
6084
6085	for (int c = 0; c < vd->vdev_children; c++)
6086		spa_async_remove(spa, vd->vdev_child[c]);
6087}
6088
6089static void
6090spa_async_probe(spa_t *spa, vdev_t *vd)
6091{
6092	if (vd->vdev_probe_wanted) {
6093		vd->vdev_probe_wanted = B_FALSE;
6094		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6095	}
6096
6097	for (int c = 0; c < vd->vdev_children; c++)
6098		spa_async_probe(spa, vd->vdev_child[c]);
6099}
6100
6101static void
6102spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6103{
6104	sysevent_id_t eid;
6105	nvlist_t *attr;
6106	char *physpath;
6107
6108	if (!spa->spa_autoexpand)
6109		return;
6110
6111	for (int c = 0; c < vd->vdev_children; c++) {
6112		vdev_t *cvd = vd->vdev_child[c];
6113		spa_async_autoexpand(spa, cvd);
6114	}
6115
6116	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6117		return;
6118
6119	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6120	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6121
6122	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6123	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6124
6125	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6126	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6127
6128	nvlist_free(attr);
6129	kmem_free(physpath, MAXPATHLEN);
6130}
6131
6132static void
6133spa_async_thread(void *arg)
6134{
6135	spa_t *spa = arg;
6136	int tasks;
6137
6138	ASSERT(spa->spa_sync_on);
6139
6140	mutex_enter(&spa->spa_async_lock);
6141	tasks = spa->spa_async_tasks;
6142	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6143	mutex_exit(&spa->spa_async_lock);
6144
6145	/*
6146	 * See if the config needs to be updated.
6147	 */
6148	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6149		uint64_t old_space, new_space;
6150
6151		mutex_enter(&spa_namespace_lock);
6152		old_space = metaslab_class_get_space(spa_normal_class(spa));
6153		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6154		new_space = metaslab_class_get_space(spa_normal_class(spa));
6155		mutex_exit(&spa_namespace_lock);
6156
6157		/*
6158		 * If the pool grew as a result of the config update,
6159		 * then log an internal history event.
6160		 */
6161		if (new_space != old_space) {
6162			spa_history_log_internal(spa, "vdev online", NULL,
6163			    "pool '%s' size: %llu(+%llu)",
6164			    spa_name(spa), new_space, new_space - old_space);
6165		}
6166	}
6167
6168	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6169		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6170		spa_async_autoexpand(spa, spa->spa_root_vdev);
6171		spa_config_exit(spa, SCL_CONFIG, FTAG);
6172	}
6173
6174	/*
6175	 * See if any devices need to be probed.
6176	 */
6177	if (tasks & SPA_ASYNC_PROBE) {
6178		spa_vdev_state_enter(spa, SCL_NONE);
6179		spa_async_probe(spa, spa->spa_root_vdev);
6180		(void) spa_vdev_state_exit(spa, NULL, 0);
6181	}
6182
6183	/*
6184	 * If any devices are done replacing, detach them.
6185	 */
6186	if (tasks & SPA_ASYNC_RESILVER_DONE)
6187		spa_vdev_resilver_done(spa);
6188
6189	/*
6190	 * Kick off a resilver.
6191	 */
6192	if (tasks & SPA_ASYNC_RESILVER)
6193		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6194
6195	/*
6196	 * Let the world know that we're done.
6197	 */
6198	mutex_enter(&spa->spa_async_lock);
6199	spa->spa_async_thread = NULL;
6200	cv_broadcast(&spa->spa_async_cv);
6201	mutex_exit(&spa->spa_async_lock);
6202	thread_exit();
6203}
6204
6205static void
6206spa_async_thread_vd(void *arg)
6207{
6208	spa_t *spa = arg;
6209	int tasks;
6210
6211	ASSERT(spa->spa_sync_on);
6212
6213	mutex_enter(&spa->spa_async_lock);
6214	tasks = spa->spa_async_tasks;
6215retry:
6216	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6217	mutex_exit(&spa->spa_async_lock);
6218
6219	/*
6220	 * See if any devices need to be marked REMOVED.
6221	 */
6222	if (tasks & SPA_ASYNC_REMOVE) {
6223		spa_vdev_state_enter(spa, SCL_NONE);
6224		spa_async_remove(spa, spa->spa_root_vdev);
6225		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6226			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6227		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6228			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6229		(void) spa_vdev_state_exit(spa, NULL, 0);
6230	}
6231
6232	/*
6233	 * Let the world know that we're done.
6234	 */
6235	mutex_enter(&spa->spa_async_lock);
6236	tasks = spa->spa_async_tasks;
6237	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6238		goto retry;
6239	spa->spa_async_thread_vd = NULL;
6240	cv_broadcast(&spa->spa_async_cv);
6241	mutex_exit(&spa->spa_async_lock);
6242	thread_exit();
6243}
6244
6245void
6246spa_async_suspend(spa_t *spa)
6247{
6248	mutex_enter(&spa->spa_async_lock);
6249	spa->spa_async_suspended++;
6250	while (spa->spa_async_thread != NULL &&
6251	    spa->spa_async_thread_vd != NULL)
6252		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6253	mutex_exit(&spa->spa_async_lock);
6254}
6255
6256void
6257spa_async_resume(spa_t *spa)
6258{
6259	mutex_enter(&spa->spa_async_lock);
6260	ASSERT(spa->spa_async_suspended != 0);
6261	spa->spa_async_suspended--;
6262	mutex_exit(&spa->spa_async_lock);
6263}
6264
6265static boolean_t
6266spa_async_tasks_pending(spa_t *spa)
6267{
6268	uint_t non_config_tasks;
6269	uint_t config_task;
6270	boolean_t config_task_suspended;
6271
6272	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6273	    SPA_ASYNC_REMOVE);
6274	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6275	if (spa->spa_ccw_fail_time == 0) {
6276		config_task_suspended = B_FALSE;
6277	} else {
6278		config_task_suspended =
6279		    (gethrtime() - spa->spa_ccw_fail_time) <
6280		    (zfs_ccw_retry_interval * NANOSEC);
6281	}
6282
6283	return (non_config_tasks || (config_task && !config_task_suspended));
6284}
6285
6286static void
6287spa_async_dispatch(spa_t *spa)
6288{
6289	mutex_enter(&spa->spa_async_lock);
6290	if (spa_async_tasks_pending(spa) &&
6291	    !spa->spa_async_suspended &&
6292	    spa->spa_async_thread == NULL &&
6293	    rootdir != NULL)
6294		spa->spa_async_thread = thread_create(NULL, 0,
6295		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6296	mutex_exit(&spa->spa_async_lock);
6297}
6298
6299static void
6300spa_async_dispatch_vd(spa_t *spa)
6301{
6302	mutex_enter(&spa->spa_async_lock);
6303	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6304	    !spa->spa_async_suspended &&
6305	    spa->spa_async_thread_vd == NULL &&
6306	    rootdir != NULL)
6307		spa->spa_async_thread_vd = thread_create(NULL, 0,
6308		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6309	mutex_exit(&spa->spa_async_lock);
6310}
6311
6312void
6313spa_async_request(spa_t *spa, int task)
6314{
6315	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6316	mutex_enter(&spa->spa_async_lock);
6317	spa->spa_async_tasks |= task;
6318	mutex_exit(&spa->spa_async_lock);
6319	spa_async_dispatch_vd(spa);
6320}
6321
6322/*
6323 * ==========================================================================
6324 * SPA syncing routines
6325 * ==========================================================================
6326 */
6327
6328static int
6329bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6330{
6331	bpobj_t *bpo = arg;
6332	bpobj_enqueue(bpo, bp, tx);
6333	return (0);
6334}
6335
6336static int
6337spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6338{
6339	zio_t *zio = arg;
6340
6341	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6342	    BP_GET_PSIZE(bp), zio->io_flags));
6343	return (0);
6344}
6345
6346/*
6347 * Note: this simple function is not inlined to make it easier to dtrace the
6348 * amount of time spent syncing frees.
6349 */
6350static void
6351spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6352{
6353	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6354	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6355	VERIFY(zio_wait(zio) == 0);
6356}
6357
6358/*
6359 * Note: this simple function is not inlined to make it easier to dtrace the
6360 * amount of time spent syncing deferred frees.
6361 */
6362static void
6363spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6364{
6365	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6366	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6367	    spa_free_sync_cb, zio, tx), ==, 0);
6368	VERIFY0(zio_wait(zio));
6369}
6370
6371
6372static void
6373spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6374{
6375	char *packed = NULL;
6376	size_t bufsize;
6377	size_t nvsize = 0;
6378	dmu_buf_t *db;
6379
6380	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6381
6382	/*
6383	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6384	 * information.  This avoids the dmu_buf_will_dirty() path and
6385	 * saves us a pre-read to get data we don't actually care about.
6386	 */
6387	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6388	packed = kmem_alloc(bufsize, KM_SLEEP);
6389
6390	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6391	    KM_SLEEP) == 0);
6392	bzero(packed + nvsize, bufsize - nvsize);
6393
6394	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6395
6396	kmem_free(packed, bufsize);
6397
6398	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6399	dmu_buf_will_dirty(db, tx);
6400	*(uint64_t *)db->db_data = nvsize;
6401	dmu_buf_rele(db, FTAG);
6402}
6403
6404static void
6405spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6406    const char *config, const char *entry)
6407{
6408	nvlist_t *nvroot;
6409	nvlist_t **list;
6410	int i;
6411
6412	if (!sav->sav_sync)
6413		return;
6414
6415	/*
6416	 * Update the MOS nvlist describing the list of available devices.
6417	 * spa_validate_aux() will have already made sure this nvlist is
6418	 * valid and the vdevs are labeled appropriately.
6419	 */
6420	if (sav->sav_object == 0) {
6421		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6422		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6423		    sizeof (uint64_t), tx);
6424		VERIFY(zap_update(spa->spa_meta_objset,
6425		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6426		    &sav->sav_object, tx) == 0);
6427	}
6428
6429	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6430	if (sav->sav_count == 0) {
6431		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6432	} else {
6433		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6434		for (i = 0; i < sav->sav_count; i++)
6435			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6436			    B_FALSE, VDEV_CONFIG_L2CACHE);
6437		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6438		    sav->sav_count) == 0);
6439		for (i = 0; i < sav->sav_count; i++)
6440			nvlist_free(list[i]);
6441		kmem_free(list, sav->sav_count * sizeof (void *));
6442	}
6443
6444	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6445	nvlist_free(nvroot);
6446
6447	sav->sav_sync = B_FALSE;
6448}
6449
6450/*
6451 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6452 * The all-vdev ZAP must be empty.
6453 */
6454static void
6455spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6456{
6457	spa_t *spa = vd->vdev_spa;
6458	if (vd->vdev_top_zap != 0) {
6459		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6460		    vd->vdev_top_zap, tx));
6461	}
6462	if (vd->vdev_leaf_zap != 0) {
6463		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6464		    vd->vdev_leaf_zap, tx));
6465	}
6466	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6467		spa_avz_build(vd->vdev_child[i], avz, tx);
6468	}
6469}
6470
6471static void
6472spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6473{
6474	nvlist_t *config;
6475
6476	/*
6477	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6478	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6479	 * Similarly, if the pool is being assembled (e.g. after a split), we
6480	 * need to rebuild the AVZ although the config may not be dirty.
6481	 */
6482	if (list_is_empty(&spa->spa_config_dirty_list) &&
6483	    spa->spa_avz_action == AVZ_ACTION_NONE)
6484		return;
6485
6486	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6487
6488	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6489	    spa->spa_all_vdev_zaps != 0);
6490
6491	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6492		/* Make and build the new AVZ */
6493		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6494		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6495		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6496
6497		/* Diff old AVZ with new one */
6498		zap_cursor_t zc;
6499		zap_attribute_t za;
6500
6501		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6502		    spa->spa_all_vdev_zaps);
6503		    zap_cursor_retrieve(&zc, &za) == 0;
6504		    zap_cursor_advance(&zc)) {
6505			uint64_t vdzap = za.za_first_integer;
6506			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6507			    vdzap) == ENOENT) {
6508				/*
6509				 * ZAP is listed in old AVZ but not in new one;
6510				 * destroy it
6511				 */
6512				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6513				    tx));
6514			}
6515		}
6516
6517		zap_cursor_fini(&zc);
6518
6519		/* Destroy the old AVZ */
6520		VERIFY0(zap_destroy(spa->spa_meta_objset,
6521		    spa->spa_all_vdev_zaps, tx));
6522
6523		/* Replace the old AVZ in the dir obj with the new one */
6524		VERIFY0(zap_update(spa->spa_meta_objset,
6525		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6526		    sizeof (new_avz), 1, &new_avz, tx));
6527
6528		spa->spa_all_vdev_zaps = new_avz;
6529	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6530		zap_cursor_t zc;
6531		zap_attribute_t za;
6532
6533		/* Walk through the AVZ and destroy all listed ZAPs */
6534		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6535		    spa->spa_all_vdev_zaps);
6536		    zap_cursor_retrieve(&zc, &za) == 0;
6537		    zap_cursor_advance(&zc)) {
6538			uint64_t zap = za.za_first_integer;
6539			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6540		}
6541
6542		zap_cursor_fini(&zc);
6543
6544		/* Destroy and unlink the AVZ itself */
6545		VERIFY0(zap_destroy(spa->spa_meta_objset,
6546		    spa->spa_all_vdev_zaps, tx));
6547		VERIFY0(zap_remove(spa->spa_meta_objset,
6548		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6549		spa->spa_all_vdev_zaps = 0;
6550	}
6551
6552	if (spa->spa_all_vdev_zaps == 0) {
6553		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6554		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6555		    DMU_POOL_VDEV_ZAP_MAP, tx);
6556	}
6557	spa->spa_avz_action = AVZ_ACTION_NONE;
6558
6559	/* Create ZAPs for vdevs that don't have them. */
6560	vdev_construct_zaps(spa->spa_root_vdev, tx);
6561
6562	config = spa_config_generate(spa, spa->spa_root_vdev,
6563	    dmu_tx_get_txg(tx), B_FALSE);
6564
6565	/*
6566	 * If we're upgrading the spa version then make sure that
6567	 * the config object gets updated with the correct version.
6568	 */
6569	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6570		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6571		    spa->spa_uberblock.ub_version);
6572
6573	spa_config_exit(spa, SCL_STATE, FTAG);
6574
6575	nvlist_free(spa->spa_config_syncing);
6576	spa->spa_config_syncing = config;
6577
6578	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6579}
6580
6581static void
6582spa_sync_version(void *arg, dmu_tx_t *tx)
6583{
6584	uint64_t *versionp = arg;
6585	uint64_t version = *versionp;
6586	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6587
6588	/*
6589	 * Setting the version is special cased when first creating the pool.
6590	 */
6591	ASSERT(tx->tx_txg != TXG_INITIAL);
6592
6593	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6594	ASSERT(version >= spa_version(spa));
6595
6596	spa->spa_uberblock.ub_version = version;
6597	vdev_config_dirty(spa->spa_root_vdev);
6598	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6599}
6600
6601/*
6602 * Set zpool properties.
6603 */
6604static void
6605spa_sync_props(void *arg, dmu_tx_t *tx)
6606{
6607	nvlist_t *nvp = arg;
6608	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6609	objset_t *mos = spa->spa_meta_objset;
6610	nvpair_t *elem = NULL;
6611
6612	mutex_enter(&spa->spa_props_lock);
6613
6614	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6615		uint64_t intval;
6616		char *strval, *fname;
6617		zpool_prop_t prop;
6618		const char *propname;
6619		zprop_type_t proptype;
6620		spa_feature_t fid;
6621
6622		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6623		case ZPROP_INVAL:
6624			/*
6625			 * We checked this earlier in spa_prop_validate().
6626			 */
6627			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6628
6629			fname = strchr(nvpair_name(elem), '@') + 1;
6630			VERIFY0(zfeature_lookup_name(fname, &fid));
6631
6632			spa_feature_enable(spa, fid, tx);
6633			spa_history_log_internal(spa, "set", tx,
6634			    "%s=enabled", nvpair_name(elem));
6635			break;
6636
6637		case ZPOOL_PROP_VERSION:
6638			intval = fnvpair_value_uint64(elem);
6639			/*
6640			 * The version is synced seperatly before other
6641			 * properties and should be correct by now.
6642			 */
6643			ASSERT3U(spa_version(spa), >=, intval);
6644			break;
6645
6646		case ZPOOL_PROP_ALTROOT:
6647			/*
6648			 * 'altroot' is a non-persistent property. It should
6649			 * have been set temporarily at creation or import time.
6650			 */
6651			ASSERT(spa->spa_root != NULL);
6652			break;
6653
6654		case ZPOOL_PROP_READONLY:
6655		case ZPOOL_PROP_CACHEFILE:
6656			/*
6657			 * 'readonly' and 'cachefile' are also non-persisitent
6658			 * properties.
6659			 */
6660			break;
6661		case ZPOOL_PROP_COMMENT:
6662			strval = fnvpair_value_string(elem);
6663			if (spa->spa_comment != NULL)
6664				spa_strfree(spa->spa_comment);
6665			spa->spa_comment = spa_strdup(strval);
6666			/*
6667			 * We need to dirty the configuration on all the vdevs
6668			 * so that their labels get updated.  It's unnecessary
6669			 * to do this for pool creation since the vdev's
6670			 * configuratoin has already been dirtied.
6671			 */
6672			if (tx->tx_txg != TXG_INITIAL)
6673				vdev_config_dirty(spa->spa_root_vdev);
6674			spa_history_log_internal(spa, "set", tx,
6675			    "%s=%s", nvpair_name(elem), strval);
6676			break;
6677		default:
6678			/*
6679			 * Set pool property values in the poolprops mos object.
6680			 */
6681			if (spa->spa_pool_props_object == 0) {
6682				spa->spa_pool_props_object =
6683				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6684				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6685				    tx);
6686			}
6687
6688			/* normalize the property name */
6689			propname = zpool_prop_to_name(prop);
6690			proptype = zpool_prop_get_type(prop);
6691
6692			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6693				ASSERT(proptype == PROP_TYPE_STRING);
6694				strval = fnvpair_value_string(elem);
6695				VERIFY0(zap_update(mos,
6696				    spa->spa_pool_props_object, propname,
6697				    1, strlen(strval) + 1, strval, tx));
6698				spa_history_log_internal(spa, "set", tx,
6699				    "%s=%s", nvpair_name(elem), strval);
6700			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6701				intval = fnvpair_value_uint64(elem);
6702
6703				if (proptype == PROP_TYPE_INDEX) {
6704					const char *unused;
6705					VERIFY0(zpool_prop_index_to_string(
6706					    prop, intval, &unused));
6707				}
6708				VERIFY0(zap_update(mos,
6709				    spa->spa_pool_props_object, propname,
6710				    8, 1, &intval, tx));
6711				spa_history_log_internal(spa, "set", tx,
6712				    "%s=%lld", nvpair_name(elem), intval);
6713			} else {
6714				ASSERT(0); /* not allowed */
6715			}
6716
6717			switch (prop) {
6718			case ZPOOL_PROP_DELEGATION:
6719				spa->spa_delegation = intval;
6720				break;
6721			case ZPOOL_PROP_BOOTFS:
6722				spa->spa_bootfs = intval;
6723				break;
6724			case ZPOOL_PROP_FAILUREMODE:
6725				spa->spa_failmode = intval;
6726				break;
6727			case ZPOOL_PROP_AUTOEXPAND:
6728				spa->spa_autoexpand = intval;
6729				if (tx->tx_txg != TXG_INITIAL)
6730					spa_async_request(spa,
6731					    SPA_ASYNC_AUTOEXPAND);
6732				break;
6733			case ZPOOL_PROP_DEDUPDITTO:
6734				spa->spa_dedup_ditto = intval;
6735				break;
6736			default:
6737				break;
6738			}
6739		}
6740
6741	}
6742
6743	mutex_exit(&spa->spa_props_lock);
6744}
6745
6746/*
6747 * Perform one-time upgrade on-disk changes.  spa_version() does not
6748 * reflect the new version this txg, so there must be no changes this
6749 * txg to anything that the upgrade code depends on after it executes.
6750 * Therefore this must be called after dsl_pool_sync() does the sync
6751 * tasks.
6752 */
6753static void
6754spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6755{
6756	dsl_pool_t *dp = spa->spa_dsl_pool;
6757
6758	ASSERT(spa->spa_sync_pass == 1);
6759
6760	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6761
6762	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6763	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6764		dsl_pool_create_origin(dp, tx);
6765
6766		/* Keeping the origin open increases spa_minref */
6767		spa->spa_minref += 3;
6768	}
6769
6770	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6771	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6772		dsl_pool_upgrade_clones(dp, tx);
6773	}
6774
6775	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6776	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6777		dsl_pool_upgrade_dir_clones(dp, tx);
6778
6779		/* Keeping the freedir open increases spa_minref */
6780		spa->spa_minref += 3;
6781	}
6782
6783	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6784	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6785		spa_feature_create_zap_objects(spa, tx);
6786	}
6787
6788	/*
6789	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6790	 * when possibility to use lz4 compression for metadata was added
6791	 * Old pools that have this feature enabled must be upgraded to have
6792	 * this feature active
6793	 */
6794	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6795		boolean_t lz4_en = spa_feature_is_enabled(spa,
6796		    SPA_FEATURE_LZ4_COMPRESS);
6797		boolean_t lz4_ac = spa_feature_is_active(spa,
6798		    SPA_FEATURE_LZ4_COMPRESS);
6799
6800		if (lz4_en && !lz4_ac)
6801			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6802	}
6803
6804	/*
6805	 * If we haven't written the salt, do so now.  Note that the
6806	 * feature may not be activated yet, but that's fine since
6807	 * the presence of this ZAP entry is backwards compatible.
6808	 */
6809	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6810	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6811		VERIFY0(zap_add(spa->spa_meta_objset,
6812		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6813		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6814		    spa->spa_cksum_salt.zcs_bytes, tx));
6815	}
6816
6817	rrw_exit(&dp->dp_config_rwlock, FTAG);
6818}
6819
6820/*
6821 * Sync the specified transaction group.  New blocks may be dirtied as
6822 * part of the process, so we iterate until it converges.
6823 */
6824void
6825spa_sync(spa_t *spa, uint64_t txg)
6826{
6827	dsl_pool_t *dp = spa->spa_dsl_pool;
6828	objset_t *mos = spa->spa_meta_objset;
6829	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6830	vdev_t *rvd = spa->spa_root_vdev;
6831	vdev_t *vd;
6832	dmu_tx_t *tx;
6833	int error;
6834	uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
6835	    zfs_vdev_queue_depth_pct / 100;
6836
6837	VERIFY(spa_writeable(spa));
6838
6839	/*
6840	 * Lock out configuration changes.
6841	 */
6842	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6843
6844	spa->spa_syncing_txg = txg;
6845	spa->spa_sync_pass = 0;
6846
6847	mutex_enter(&spa->spa_alloc_lock);
6848	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
6849	mutex_exit(&spa->spa_alloc_lock);
6850
6851	/*
6852	 * If there are any pending vdev state changes, convert them
6853	 * into config changes that go out with this transaction group.
6854	 */
6855	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6856	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6857		/*
6858		 * We need the write lock here because, for aux vdevs,
6859		 * calling vdev_config_dirty() modifies sav_config.
6860		 * This is ugly and will become unnecessary when we
6861		 * eliminate the aux vdev wart by integrating all vdevs
6862		 * into the root vdev tree.
6863		 */
6864		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6865		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6866		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6867			vdev_state_clean(vd);
6868			vdev_config_dirty(vd);
6869		}
6870		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6871		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6872	}
6873	spa_config_exit(spa, SCL_STATE, FTAG);
6874
6875	tx = dmu_tx_create_assigned(dp, txg);
6876
6877	spa->spa_sync_starttime = gethrtime();
6878#ifdef illumos
6879	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6880	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6881#else	/* !illumos */
6882#ifdef _KERNEL
6883	callout_reset(&spa->spa_deadman_cycid,
6884	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6885#endif
6886#endif	/* illumos */
6887
6888	/*
6889	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6890	 * set spa_deflate if we have no raid-z vdevs.
6891	 */
6892	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6893	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6894		int i;
6895
6896		for (i = 0; i < rvd->vdev_children; i++) {
6897			vd = rvd->vdev_child[i];
6898			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6899				break;
6900		}
6901		if (i == rvd->vdev_children) {
6902			spa->spa_deflate = TRUE;
6903			VERIFY(0 == zap_add(spa->spa_meta_objset,
6904			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6905			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6906		}
6907	}
6908
6909	/*
6910	 * Set the top-level vdev's max queue depth. Evaluate each
6911	 * top-level's async write queue depth in case it changed.
6912	 * The max queue depth will not change in the middle of syncing
6913	 * out this txg.
6914	 */
6915	uint64_t queue_depth_total = 0;
6916	for (int c = 0; c < rvd->vdev_children; c++) {
6917		vdev_t *tvd = rvd->vdev_child[c];
6918		metaslab_group_t *mg = tvd->vdev_mg;
6919
6920		if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
6921		    !metaslab_group_initialized(mg))
6922			continue;
6923
6924		/*
6925		 * It is safe to do a lock-free check here because only async
6926		 * allocations look at mg_max_alloc_queue_depth, and async
6927		 * allocations all happen from spa_sync().
6928		 */
6929		ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
6930		mg->mg_max_alloc_queue_depth = max_queue_depth;
6931		queue_depth_total += mg->mg_max_alloc_queue_depth;
6932	}
6933	metaslab_class_t *mc = spa_normal_class(spa);
6934	ASSERT0(refcount_count(&mc->mc_alloc_slots));
6935	mc->mc_alloc_max_slots = queue_depth_total;
6936	mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
6937
6938	ASSERT3U(mc->mc_alloc_max_slots, <=,
6939	    max_queue_depth * rvd->vdev_children);
6940
6941	/*
6942	 * Iterate to convergence.
6943	 */
6944	do {
6945		int pass = ++spa->spa_sync_pass;
6946
6947		spa_sync_config_object(spa, tx);
6948		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6949		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6950		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6951		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6952		spa_errlog_sync(spa, txg);
6953		dsl_pool_sync(dp, txg);
6954
6955		if (pass < zfs_sync_pass_deferred_free) {
6956			spa_sync_frees(spa, free_bpl, tx);
6957		} else {
6958			/*
6959			 * We can not defer frees in pass 1, because
6960			 * we sync the deferred frees later in pass 1.
6961			 */
6962			ASSERT3U(pass, >, 1);
6963			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6964			    &spa->spa_deferred_bpobj, tx);
6965		}
6966
6967		ddt_sync(spa, txg);
6968		dsl_scan_sync(dp, tx);
6969
6970		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6971			vdev_sync(vd, txg);
6972
6973		if (pass == 1) {
6974			spa_sync_upgrades(spa, tx);
6975			ASSERT3U(txg, >=,
6976			    spa->spa_uberblock.ub_rootbp.blk_birth);
6977			/*
6978			 * Note: We need to check if the MOS is dirty
6979			 * because we could have marked the MOS dirty
6980			 * without updating the uberblock (e.g. if we
6981			 * have sync tasks but no dirty user data).  We
6982			 * need to check the uberblock's rootbp because
6983			 * it is updated if we have synced out dirty
6984			 * data (though in this case the MOS will most
6985			 * likely also be dirty due to second order
6986			 * effects, we don't want to rely on that here).
6987			 */
6988			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6989			    !dmu_objset_is_dirty(mos, txg)) {
6990				/*
6991				 * Nothing changed on the first pass,
6992				 * therefore this TXG is a no-op.  Avoid
6993				 * syncing deferred frees, so that we
6994				 * can keep this TXG as a no-op.
6995				 */
6996				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6997				    txg));
6998				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6999				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7000				break;
7001			}
7002			spa_sync_deferred_frees(spa, tx);
7003		}
7004
7005	} while (dmu_objset_is_dirty(mos, txg));
7006
7007	if (!list_is_empty(&spa->spa_config_dirty_list)) {
7008		/*
7009		 * Make sure that the number of ZAPs for all the vdevs matches
7010		 * the number of ZAPs in the per-vdev ZAP list. This only gets
7011		 * called if the config is dirty; otherwise there may be
7012		 * outstanding AVZ operations that weren't completed in
7013		 * spa_sync_config_object.
7014		 */
7015		uint64_t all_vdev_zap_entry_count;
7016		ASSERT0(zap_count(spa->spa_meta_objset,
7017		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7018		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7019		    all_vdev_zap_entry_count);
7020	}
7021
7022	/*
7023	 * Rewrite the vdev configuration (which includes the uberblock)
7024	 * to commit the transaction group.
7025	 *
7026	 * If there are no dirty vdevs, we sync the uberblock to a few
7027	 * random top-level vdevs that are known to be visible in the
7028	 * config cache (see spa_vdev_add() for a complete description).
7029	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7030	 */
7031	for (;;) {
7032		/*
7033		 * We hold SCL_STATE to prevent vdev open/close/etc.
7034		 * while we're attempting to write the vdev labels.
7035		 */
7036		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7037
7038		if (list_is_empty(&spa->spa_config_dirty_list)) {
7039			vdev_t *svd[SPA_DVAS_PER_BP];
7040			int svdcount = 0;
7041			int children = rvd->vdev_children;
7042			int c0 = spa_get_random(children);
7043
7044			for (int c = 0; c < children; c++) {
7045				vd = rvd->vdev_child[(c0 + c) % children];
7046				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
7047					continue;
7048				svd[svdcount++] = vd;
7049				if (svdcount == SPA_DVAS_PER_BP)
7050					break;
7051			}
7052			error = vdev_config_sync(svd, svdcount, txg);
7053		} else {
7054			error = vdev_config_sync(rvd->vdev_child,
7055			    rvd->vdev_children, txg);
7056		}
7057
7058		if (error == 0)
7059			spa->spa_last_synced_guid = rvd->vdev_guid;
7060
7061		spa_config_exit(spa, SCL_STATE, FTAG);
7062
7063		if (error == 0)
7064			break;
7065		zio_suspend(spa, NULL);
7066		zio_resume_wait(spa);
7067	}
7068	dmu_tx_commit(tx);
7069
7070#ifdef illumos
7071	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7072#else	/* !illumos */
7073#ifdef _KERNEL
7074	callout_drain(&spa->spa_deadman_cycid);
7075#endif
7076#endif	/* illumos */
7077
7078	/*
7079	 * Clear the dirty config list.
7080	 */
7081	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7082		vdev_config_clean(vd);
7083
7084	/*
7085	 * Now that the new config has synced transactionally,
7086	 * let it become visible to the config cache.
7087	 */
7088	if (spa->spa_config_syncing != NULL) {
7089		spa_config_set(spa, spa->spa_config_syncing);
7090		spa->spa_config_txg = txg;
7091		spa->spa_config_syncing = NULL;
7092	}
7093
7094	dsl_pool_sync_done(dp, txg);
7095
7096	mutex_enter(&spa->spa_alloc_lock);
7097	VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7098	mutex_exit(&spa->spa_alloc_lock);
7099
7100	/*
7101	 * Update usable space statistics.
7102	 */
7103	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7104		vdev_sync_done(vd, txg);
7105
7106	spa_update_dspace(spa);
7107
7108	/*
7109	 * It had better be the case that we didn't dirty anything
7110	 * since vdev_config_sync().
7111	 */
7112	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7113	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7114	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7115
7116	spa->spa_sync_pass = 0;
7117
7118	/*
7119	 * Update the last synced uberblock here. We want to do this at
7120	 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7121	 * will be guaranteed that all the processing associated with
7122	 * that txg has been completed.
7123	 */
7124	spa->spa_ubsync = spa->spa_uberblock;
7125	spa_config_exit(spa, SCL_CONFIG, FTAG);
7126
7127	spa_handle_ignored_writes(spa);
7128
7129	/*
7130	 * If any async tasks have been requested, kick them off.
7131	 */
7132	spa_async_dispatch(spa);
7133	spa_async_dispatch_vd(spa);
7134}
7135
7136/*
7137 * Sync all pools.  We don't want to hold the namespace lock across these
7138 * operations, so we take a reference on the spa_t and drop the lock during the
7139 * sync.
7140 */
7141void
7142spa_sync_allpools(void)
7143{
7144	spa_t *spa = NULL;
7145	mutex_enter(&spa_namespace_lock);
7146	while ((spa = spa_next(spa)) != NULL) {
7147		if (spa_state(spa) != POOL_STATE_ACTIVE ||
7148		    !spa_writeable(spa) || spa_suspended(spa))
7149			continue;
7150		spa_open_ref(spa, FTAG);
7151		mutex_exit(&spa_namespace_lock);
7152		txg_wait_synced(spa_get_dsl(spa), 0);
7153		mutex_enter(&spa_namespace_lock);
7154		spa_close(spa, FTAG);
7155	}
7156	mutex_exit(&spa_namespace_lock);
7157}
7158
7159/*
7160 * ==========================================================================
7161 * Miscellaneous routines
7162 * ==========================================================================
7163 */
7164
7165/*
7166 * Remove all pools in the system.
7167 */
7168void
7169spa_evict_all(void)
7170{
7171	spa_t *spa;
7172
7173	/*
7174	 * Remove all cached state.  All pools should be closed now,
7175	 * so every spa in the AVL tree should be unreferenced.
7176	 */
7177	mutex_enter(&spa_namespace_lock);
7178	while ((spa = spa_next(NULL)) != NULL) {
7179		/*
7180		 * Stop async tasks.  The async thread may need to detach
7181		 * a device that's been replaced, which requires grabbing
7182		 * spa_namespace_lock, so we must drop it here.
7183		 */
7184		spa_open_ref(spa, FTAG);
7185		mutex_exit(&spa_namespace_lock);
7186		spa_async_suspend(spa);
7187		mutex_enter(&spa_namespace_lock);
7188		spa_close(spa, FTAG);
7189
7190		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7191			spa_unload(spa);
7192			spa_deactivate(spa);
7193		}
7194		spa_remove(spa);
7195	}
7196	mutex_exit(&spa_namespace_lock);
7197}
7198
7199vdev_t *
7200spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7201{
7202	vdev_t *vd;
7203	int i;
7204
7205	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7206		return (vd);
7207
7208	if (aux) {
7209		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7210			vd = spa->spa_l2cache.sav_vdevs[i];
7211			if (vd->vdev_guid == guid)
7212				return (vd);
7213		}
7214
7215		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7216			vd = spa->spa_spares.sav_vdevs[i];
7217			if (vd->vdev_guid == guid)
7218				return (vd);
7219		}
7220	}
7221
7222	return (NULL);
7223}
7224
7225void
7226spa_upgrade(spa_t *spa, uint64_t version)
7227{
7228	ASSERT(spa_writeable(spa));
7229
7230	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7231
7232	/*
7233	 * This should only be called for a non-faulted pool, and since a
7234	 * future version would result in an unopenable pool, this shouldn't be
7235	 * possible.
7236	 */
7237	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7238	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7239
7240	spa->spa_uberblock.ub_version = version;
7241	vdev_config_dirty(spa->spa_root_vdev);
7242
7243	spa_config_exit(spa, SCL_ALL, FTAG);
7244
7245	txg_wait_synced(spa_get_dsl(spa), 0);
7246}
7247
7248boolean_t
7249spa_has_spare(spa_t *spa, uint64_t guid)
7250{
7251	int i;
7252	uint64_t spareguid;
7253	spa_aux_vdev_t *sav = &spa->spa_spares;
7254
7255	for (i = 0; i < sav->sav_count; i++)
7256		if (sav->sav_vdevs[i]->vdev_guid == guid)
7257			return (B_TRUE);
7258
7259	for (i = 0; i < sav->sav_npending; i++) {
7260		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7261		    &spareguid) == 0 && spareguid == guid)
7262			return (B_TRUE);
7263	}
7264
7265	return (B_FALSE);
7266}
7267
7268/*
7269 * Check if a pool has an active shared spare device.
7270 * Note: reference count of an active spare is 2, as a spare and as a replace
7271 */
7272static boolean_t
7273spa_has_active_shared_spare(spa_t *spa)
7274{
7275	int i, refcnt;
7276	uint64_t pool;
7277	spa_aux_vdev_t *sav = &spa->spa_spares;
7278
7279	for (i = 0; i < sav->sav_count; i++) {
7280		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7281		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7282		    refcnt > 2)
7283			return (B_TRUE);
7284	}
7285
7286	return (B_FALSE);
7287}
7288
7289static sysevent_t *
7290spa_event_create(spa_t *spa, vdev_t *vd, const char *name)
7291{
7292	sysevent_t		*ev = NULL;
7293#ifdef _KERNEL
7294	sysevent_attr_list_t	*attr = NULL;
7295	sysevent_value_t	value;
7296
7297	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7298	    SE_SLEEP);
7299	ASSERT(ev != NULL);
7300
7301	value.value_type = SE_DATA_TYPE_STRING;
7302	value.value.sv_string = spa_name(spa);
7303	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7304		goto done;
7305
7306	value.value_type = SE_DATA_TYPE_UINT64;
7307	value.value.sv_uint64 = spa_guid(spa);
7308	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7309		goto done;
7310
7311	if (vd) {
7312		value.value_type = SE_DATA_TYPE_UINT64;
7313		value.value.sv_uint64 = vd->vdev_guid;
7314		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7315		    SE_SLEEP) != 0)
7316			goto done;
7317
7318		if (vd->vdev_path) {
7319			value.value_type = SE_DATA_TYPE_STRING;
7320			value.value.sv_string = vd->vdev_path;
7321			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7322			    &value, SE_SLEEP) != 0)
7323				goto done;
7324		}
7325	}
7326
7327	if (sysevent_attach_attributes(ev, attr) != 0)
7328		goto done;
7329	attr = NULL;
7330
7331done:
7332	if (attr)
7333		sysevent_free_attr(attr);
7334
7335#endif
7336	return (ev);
7337}
7338
7339static void
7340spa_event_post(sysevent_t *ev)
7341{
7342#ifdef _KERNEL
7343	sysevent_id_t		eid;
7344
7345	(void) log_sysevent(ev, SE_SLEEP, &eid);
7346	sysevent_free(ev);
7347#endif
7348}
7349
7350/*
7351 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7352 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7353 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7354 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7355 * or zdb as real changes.
7356 */
7357void
7358spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7359{
7360	spa_event_post(spa_event_create(spa, vd, name));
7361}
7362