spa.c revision 299441
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
97    "Check hostid on import?");
98TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
99SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
100    &zfs_ccw_retry_interval, 0,
101    "Configuration cache file write, retry after failure, interval (seconds)");
102
103typedef enum zti_modes {
104	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
105	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
106	ZTI_MODE_NULL,			/* don't create a taskq */
107	ZTI_NMODES
108} zti_modes_t;
109
110#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
111#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
112#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
113
114#define	ZTI_N(n)	ZTI_P(n, 1)
115#define	ZTI_ONE		ZTI_N(1)
116
117typedef struct zio_taskq_info {
118	zti_modes_t zti_mode;
119	uint_t zti_value;
120	uint_t zti_count;
121} zio_taskq_info_t;
122
123static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
124	"issue", "issue_high", "intr", "intr_high"
125};
126
127/*
128 * This table defines the taskq settings for each ZFS I/O type. When
129 * initializing a pool, we use this table to create an appropriately sized
130 * taskq. Some operations are low volume and therefore have a small, static
131 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
132 * macros. Other operations process a large amount of data; the ZTI_BATCH
133 * macro causes us to create a taskq oriented for throughput. Some operations
134 * are so high frequency and short-lived that the taskq itself can become a a
135 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
136 * additional degree of parallelism specified by the number of threads per-
137 * taskq and the number of taskqs; when dispatching an event in this case, the
138 * particular taskq is chosen at random.
139 *
140 * The different taskq priorities are to handle the different contexts (issue
141 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
142 * need to be handled with minimum delay.
143 */
144const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
145	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
146	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
147	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
148	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
149	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
150	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
152};
153
154static void spa_sync_version(void *arg, dmu_tx_t *tx);
155static void spa_sync_props(void *arg, dmu_tx_t *tx);
156static boolean_t spa_has_active_shared_spare(spa_t *spa);
157static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
158    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
159    char **ereport);
160static void spa_vdev_resilver_done(spa_t *spa);
161
162uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
163#ifdef PSRSET_BIND
164id_t		zio_taskq_psrset_bind = PS_NONE;
165#endif
166#ifdef SYSDC
167boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
168#endif
169uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
170
171boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
172extern int	zfs_sync_pass_deferred_free;
173
174#ifndef illumos
175extern void spa_deadman(void *arg);
176#endif
177
178/*
179 * This (illegal) pool name is used when temporarily importing a spa_t in order
180 * to get the vdev stats associated with the imported devices.
181 */
182#define	TRYIMPORT_NAME	"$import"
183
184/*
185 * ==========================================================================
186 * SPA properties routines
187 * ==========================================================================
188 */
189
190/*
191 * Add a (source=src, propname=propval) list to an nvlist.
192 */
193static void
194spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
195    uint64_t intval, zprop_source_t src)
196{
197	const char *propname = zpool_prop_to_name(prop);
198	nvlist_t *propval;
199
200	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
201	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
202
203	if (strval != NULL)
204		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
205	else
206		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
207
208	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
209	nvlist_free(propval);
210}
211
212/*
213 * Get property values from the spa configuration.
214 */
215static void
216spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
217{
218	vdev_t *rvd = spa->spa_root_vdev;
219	dsl_pool_t *pool = spa->spa_dsl_pool;
220	uint64_t size, alloc, cap, version;
221	zprop_source_t src = ZPROP_SRC_NONE;
222	spa_config_dirent_t *dp;
223	metaslab_class_t *mc = spa_normal_class(spa);
224
225	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
226
227	if (rvd != NULL) {
228		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
229		size = metaslab_class_get_space(spa_normal_class(spa));
230		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
231		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
234		    size - alloc, src);
235
236		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
237		    metaslab_class_fragmentation(mc), src);
238		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
239		    metaslab_class_expandable_space(mc), src);
240		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
241		    (spa_mode(spa) == FREAD), src);
242
243		cap = (size == 0) ? 0 : (alloc * 100 / size);
244		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
247		    ddt_get_pool_dedup_ratio(spa), src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
250		    rvd->vdev_state, src);
251
252		version = spa_version(spa);
253		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
254			src = ZPROP_SRC_DEFAULT;
255		else
256			src = ZPROP_SRC_LOCAL;
257		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
258	}
259
260	if (pool != NULL) {
261		/*
262		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
263		 * when opening pools before this version freedir will be NULL.
264		 */
265		if (pool->dp_free_dir != NULL) {
266			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
267			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
268			    src);
269		} else {
270			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
271			    NULL, 0, src);
272		}
273
274		if (pool->dp_leak_dir != NULL) {
275			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
276			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
277			    src);
278		} else {
279			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
280			    NULL, 0, src);
281		}
282	}
283
284	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
285
286	if (spa->spa_comment != NULL) {
287		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
288		    0, ZPROP_SRC_LOCAL);
289	}
290
291	if (spa->spa_root != NULL)
292		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
293		    0, ZPROP_SRC_LOCAL);
294
295	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
296		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
297		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
298	} else {
299		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
300		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
301	}
302
303	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
304		if (dp->scd_path == NULL) {
305			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
306			    "none", 0, ZPROP_SRC_LOCAL);
307		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
308			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
309			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
310		}
311	}
312}
313
314/*
315 * Get zpool property values.
316 */
317int
318spa_prop_get(spa_t *spa, nvlist_t **nvp)
319{
320	objset_t *mos = spa->spa_meta_objset;
321	zap_cursor_t zc;
322	zap_attribute_t za;
323	int err;
324
325	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
326
327	mutex_enter(&spa->spa_props_lock);
328
329	/*
330	 * Get properties from the spa config.
331	 */
332	spa_prop_get_config(spa, nvp);
333
334	/* If no pool property object, no more prop to get. */
335	if (mos == NULL || spa->spa_pool_props_object == 0) {
336		mutex_exit(&spa->spa_props_lock);
337		return (0);
338	}
339
340	/*
341	 * Get properties from the MOS pool property object.
342	 */
343	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
344	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
345	    zap_cursor_advance(&zc)) {
346		uint64_t intval = 0;
347		char *strval = NULL;
348		zprop_source_t src = ZPROP_SRC_DEFAULT;
349		zpool_prop_t prop;
350
351		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
352			continue;
353
354		switch (za.za_integer_length) {
355		case 8:
356			/* integer property */
357			if (za.za_first_integer !=
358			    zpool_prop_default_numeric(prop))
359				src = ZPROP_SRC_LOCAL;
360
361			if (prop == ZPOOL_PROP_BOOTFS) {
362				dsl_pool_t *dp;
363				dsl_dataset_t *ds = NULL;
364
365				dp = spa_get_dsl(spa);
366				dsl_pool_config_enter(dp, FTAG);
367				if (err = dsl_dataset_hold_obj(dp,
368				    za.za_first_integer, FTAG, &ds)) {
369					dsl_pool_config_exit(dp, FTAG);
370					break;
371				}
372
373				strval = kmem_alloc(
374				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
375				    KM_SLEEP);
376				dsl_dataset_name(ds, strval);
377				dsl_dataset_rele(ds, FTAG);
378				dsl_pool_config_exit(dp, FTAG);
379			} else {
380				strval = NULL;
381				intval = za.za_first_integer;
382			}
383
384			spa_prop_add_list(*nvp, prop, strval, intval, src);
385
386			if (strval != NULL)
387				kmem_free(strval,
388				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
389
390			break;
391
392		case 1:
393			/* string property */
394			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
395			err = zap_lookup(mos, spa->spa_pool_props_object,
396			    za.za_name, 1, za.za_num_integers, strval);
397			if (err) {
398				kmem_free(strval, za.za_num_integers);
399				break;
400			}
401			spa_prop_add_list(*nvp, prop, strval, 0, src);
402			kmem_free(strval, za.za_num_integers);
403			break;
404
405		default:
406			break;
407		}
408	}
409	zap_cursor_fini(&zc);
410	mutex_exit(&spa->spa_props_lock);
411out:
412	if (err && err != ENOENT) {
413		nvlist_free(*nvp);
414		*nvp = NULL;
415		return (err);
416	}
417
418	return (0);
419}
420
421/*
422 * Validate the given pool properties nvlist and modify the list
423 * for the property values to be set.
424 */
425static int
426spa_prop_validate(spa_t *spa, nvlist_t *props)
427{
428	nvpair_t *elem;
429	int error = 0, reset_bootfs = 0;
430	uint64_t objnum = 0;
431	boolean_t has_feature = B_FALSE;
432
433	elem = NULL;
434	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
435		uint64_t intval;
436		char *strval, *slash, *check, *fname;
437		const char *propname = nvpair_name(elem);
438		zpool_prop_t prop = zpool_name_to_prop(propname);
439
440		switch (prop) {
441		case ZPROP_INVAL:
442			if (!zpool_prop_feature(propname)) {
443				error = SET_ERROR(EINVAL);
444				break;
445			}
446
447			/*
448			 * Sanitize the input.
449			 */
450			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			if (nvpair_value_uint64(elem, &intval) != 0) {
456				error = SET_ERROR(EINVAL);
457				break;
458			}
459
460			if (intval != 0) {
461				error = SET_ERROR(EINVAL);
462				break;
463			}
464
465			fname = strchr(propname, '@') + 1;
466			if (zfeature_lookup_name(fname, NULL) != 0) {
467				error = SET_ERROR(EINVAL);
468				break;
469			}
470
471			has_feature = B_TRUE;
472			break;
473
474		case ZPOOL_PROP_VERSION:
475			error = nvpair_value_uint64(elem, &intval);
476			if (!error &&
477			    (intval < spa_version(spa) ||
478			    intval > SPA_VERSION_BEFORE_FEATURES ||
479			    has_feature))
480				error = SET_ERROR(EINVAL);
481			break;
482
483		case ZPOOL_PROP_DELEGATION:
484		case ZPOOL_PROP_AUTOREPLACE:
485		case ZPOOL_PROP_LISTSNAPS:
486		case ZPOOL_PROP_AUTOEXPAND:
487			error = nvpair_value_uint64(elem, &intval);
488			if (!error && intval > 1)
489				error = SET_ERROR(EINVAL);
490			break;
491
492		case ZPOOL_PROP_BOOTFS:
493			/*
494			 * If the pool version is less than SPA_VERSION_BOOTFS,
495			 * or the pool is still being created (version == 0),
496			 * the bootfs property cannot be set.
497			 */
498			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
499				error = SET_ERROR(ENOTSUP);
500				break;
501			}
502
503			/*
504			 * Make sure the vdev config is bootable
505			 */
506			if (!vdev_is_bootable(spa->spa_root_vdev)) {
507				error = SET_ERROR(ENOTSUP);
508				break;
509			}
510
511			reset_bootfs = 1;
512
513			error = nvpair_value_string(elem, &strval);
514
515			if (!error) {
516				objset_t *os;
517				uint64_t propval;
518
519				if (strval == NULL || strval[0] == '\0') {
520					objnum = zpool_prop_default_numeric(
521					    ZPOOL_PROP_BOOTFS);
522					break;
523				}
524
525				if (error = dmu_objset_hold(strval, FTAG, &os))
526					break;
527
528				/*
529				 * Must be ZPL, and its property settings
530				 * must be supported by GRUB (compression
531				 * is not gzip, and large blocks are not used).
532				 */
533
534				if (dmu_objset_type(os) != DMU_OST_ZFS) {
535					error = SET_ERROR(ENOTSUP);
536				} else if ((error =
537				    dsl_prop_get_int_ds(dmu_objset_ds(os),
538				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
539				    &propval)) == 0 &&
540				    !BOOTFS_COMPRESS_VALID(propval)) {
541					error = SET_ERROR(ENOTSUP);
542				} else if ((error =
543				    dsl_prop_get_int_ds(dmu_objset_ds(os),
544				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
545				    &propval)) == 0 &&
546				    propval > SPA_OLD_MAXBLOCKSIZE) {
547					error = SET_ERROR(ENOTSUP);
548				} else {
549					objnum = dmu_objset_id(os);
550				}
551				dmu_objset_rele(os, FTAG);
552			}
553			break;
554
555		case ZPOOL_PROP_FAILUREMODE:
556			error = nvpair_value_uint64(elem, &intval);
557			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
558			    intval > ZIO_FAILURE_MODE_PANIC))
559				error = SET_ERROR(EINVAL);
560
561			/*
562			 * This is a special case which only occurs when
563			 * the pool has completely failed. This allows
564			 * the user to change the in-core failmode property
565			 * without syncing it out to disk (I/Os might
566			 * currently be blocked). We do this by returning
567			 * EIO to the caller (spa_prop_set) to trick it
568			 * into thinking we encountered a property validation
569			 * error.
570			 */
571			if (!error && spa_suspended(spa)) {
572				spa->spa_failmode = intval;
573				error = SET_ERROR(EIO);
574			}
575			break;
576
577		case ZPOOL_PROP_CACHEFILE:
578			if ((error = nvpair_value_string(elem, &strval)) != 0)
579				break;
580
581			if (strval[0] == '\0')
582				break;
583
584			if (strcmp(strval, "none") == 0)
585				break;
586
587			if (strval[0] != '/') {
588				error = SET_ERROR(EINVAL);
589				break;
590			}
591
592			slash = strrchr(strval, '/');
593			ASSERT(slash != NULL);
594
595			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
596			    strcmp(slash, "/..") == 0)
597				error = SET_ERROR(EINVAL);
598			break;
599
600		case ZPOOL_PROP_COMMENT:
601			if ((error = nvpair_value_string(elem, &strval)) != 0)
602				break;
603			for (check = strval; *check != '\0'; check++) {
604				/*
605				 * The kernel doesn't have an easy isprint()
606				 * check.  For this kernel check, we merely
607				 * check ASCII apart from DEL.  Fix this if
608				 * there is an easy-to-use kernel isprint().
609				 */
610				if (*check >= 0x7f) {
611					error = SET_ERROR(EINVAL);
612					break;
613				}
614			}
615			if (strlen(strval) > ZPROP_MAX_COMMENT)
616				error = E2BIG;
617			break;
618
619		case ZPOOL_PROP_DEDUPDITTO:
620			if (spa_version(spa) < SPA_VERSION_DEDUP)
621				error = SET_ERROR(ENOTSUP);
622			else
623				error = nvpair_value_uint64(elem, &intval);
624			if (error == 0 &&
625			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
626				error = SET_ERROR(EINVAL);
627			break;
628		}
629
630		if (error)
631			break;
632	}
633
634	if (!error && reset_bootfs) {
635		error = nvlist_remove(props,
636		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
637
638		if (!error) {
639			error = nvlist_add_uint64(props,
640			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
641		}
642	}
643
644	return (error);
645}
646
647void
648spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
649{
650	char *cachefile;
651	spa_config_dirent_t *dp;
652
653	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
654	    &cachefile) != 0)
655		return;
656
657	dp = kmem_alloc(sizeof (spa_config_dirent_t),
658	    KM_SLEEP);
659
660	if (cachefile[0] == '\0')
661		dp->scd_path = spa_strdup(spa_config_path);
662	else if (strcmp(cachefile, "none") == 0)
663		dp->scd_path = NULL;
664	else
665		dp->scd_path = spa_strdup(cachefile);
666
667	list_insert_head(&spa->spa_config_list, dp);
668	if (need_sync)
669		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
670}
671
672int
673spa_prop_set(spa_t *spa, nvlist_t *nvp)
674{
675	int error;
676	nvpair_t *elem = NULL;
677	boolean_t need_sync = B_FALSE;
678
679	if ((error = spa_prop_validate(spa, nvp)) != 0)
680		return (error);
681
682	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
683		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
684
685		if (prop == ZPOOL_PROP_CACHEFILE ||
686		    prop == ZPOOL_PROP_ALTROOT ||
687		    prop == ZPOOL_PROP_READONLY)
688			continue;
689
690		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
691			uint64_t ver;
692
693			if (prop == ZPOOL_PROP_VERSION) {
694				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
695			} else {
696				ASSERT(zpool_prop_feature(nvpair_name(elem)));
697				ver = SPA_VERSION_FEATURES;
698				need_sync = B_TRUE;
699			}
700
701			/* Save time if the version is already set. */
702			if (ver == spa_version(spa))
703				continue;
704
705			/*
706			 * In addition to the pool directory object, we might
707			 * create the pool properties object, the features for
708			 * read object, the features for write object, or the
709			 * feature descriptions object.
710			 */
711			error = dsl_sync_task(spa->spa_name, NULL,
712			    spa_sync_version, &ver,
713			    6, ZFS_SPACE_CHECK_RESERVED);
714			if (error)
715				return (error);
716			continue;
717		}
718
719		need_sync = B_TRUE;
720		break;
721	}
722
723	if (need_sync) {
724		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
725		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
726	}
727
728	return (0);
729}
730
731/*
732 * If the bootfs property value is dsobj, clear it.
733 */
734void
735spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
736{
737	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
738		VERIFY(zap_remove(spa->spa_meta_objset,
739		    spa->spa_pool_props_object,
740		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
741		spa->spa_bootfs = 0;
742	}
743}
744
745/*ARGSUSED*/
746static int
747spa_change_guid_check(void *arg, dmu_tx_t *tx)
748{
749	uint64_t *newguid = arg;
750	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
751	vdev_t *rvd = spa->spa_root_vdev;
752	uint64_t vdev_state;
753
754	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755	vdev_state = rvd->vdev_state;
756	spa_config_exit(spa, SCL_STATE, FTAG);
757
758	if (vdev_state != VDEV_STATE_HEALTHY)
759		return (SET_ERROR(ENXIO));
760
761	ASSERT3U(spa_guid(spa), !=, *newguid);
762
763	return (0);
764}
765
766static void
767spa_change_guid_sync(void *arg, dmu_tx_t *tx)
768{
769	uint64_t *newguid = arg;
770	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
771	uint64_t oldguid;
772	vdev_t *rvd = spa->spa_root_vdev;
773
774	oldguid = spa_guid(spa);
775
776	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
777	rvd->vdev_guid = *newguid;
778	rvd->vdev_guid_sum += (*newguid - oldguid);
779	vdev_config_dirty(rvd);
780	spa_config_exit(spa, SCL_STATE, FTAG);
781
782	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
783	    oldguid, *newguid);
784}
785
786/*
787 * Change the GUID for the pool.  This is done so that we can later
788 * re-import a pool built from a clone of our own vdevs.  We will modify
789 * the root vdev's guid, our own pool guid, and then mark all of our
790 * vdevs dirty.  Note that we must make sure that all our vdevs are
791 * online when we do this, or else any vdevs that weren't present
792 * would be orphaned from our pool.  We are also going to issue a
793 * sysevent to update any watchers.
794 */
795int
796spa_change_guid(spa_t *spa)
797{
798	int error;
799	uint64_t guid;
800
801	mutex_enter(&spa->spa_vdev_top_lock);
802	mutex_enter(&spa_namespace_lock);
803	guid = spa_generate_guid(NULL);
804
805	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
806	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
807
808	if (error == 0) {
809		spa_config_sync(spa, B_FALSE, B_TRUE);
810		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
811	}
812
813	mutex_exit(&spa_namespace_lock);
814	mutex_exit(&spa->spa_vdev_top_lock);
815
816	return (error);
817}
818
819/*
820 * ==========================================================================
821 * SPA state manipulation (open/create/destroy/import/export)
822 * ==========================================================================
823 */
824
825static int
826spa_error_entry_compare(const void *a, const void *b)
827{
828	spa_error_entry_t *sa = (spa_error_entry_t *)a;
829	spa_error_entry_t *sb = (spa_error_entry_t *)b;
830	int ret;
831
832	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
833	    sizeof (zbookmark_phys_t));
834
835	if (ret < 0)
836		return (-1);
837	else if (ret > 0)
838		return (1);
839	else
840		return (0);
841}
842
843/*
844 * Utility function which retrieves copies of the current logs and
845 * re-initializes them in the process.
846 */
847void
848spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
849{
850	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
851
852	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
853	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
854
855	avl_create(&spa->spa_errlist_scrub,
856	    spa_error_entry_compare, sizeof (spa_error_entry_t),
857	    offsetof(spa_error_entry_t, se_avl));
858	avl_create(&spa->spa_errlist_last,
859	    spa_error_entry_compare, sizeof (spa_error_entry_t),
860	    offsetof(spa_error_entry_t, se_avl));
861}
862
863static void
864spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
865{
866	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
867	enum zti_modes mode = ztip->zti_mode;
868	uint_t value = ztip->zti_value;
869	uint_t count = ztip->zti_count;
870	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
871	char name[32];
872	uint_t flags = 0;
873	boolean_t batch = B_FALSE;
874
875	if (mode == ZTI_MODE_NULL) {
876		tqs->stqs_count = 0;
877		tqs->stqs_taskq = NULL;
878		return;
879	}
880
881	ASSERT3U(count, >, 0);
882
883	tqs->stqs_count = count;
884	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
885
886	switch (mode) {
887	case ZTI_MODE_FIXED:
888		ASSERT3U(value, >=, 1);
889		value = MAX(value, 1);
890		break;
891
892	case ZTI_MODE_BATCH:
893		batch = B_TRUE;
894		flags |= TASKQ_THREADS_CPU_PCT;
895		value = zio_taskq_batch_pct;
896		break;
897
898	default:
899		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
900		    "spa_activate()",
901		    zio_type_name[t], zio_taskq_types[q], mode, value);
902		break;
903	}
904
905	for (uint_t i = 0; i < count; i++) {
906		taskq_t *tq;
907
908		if (count > 1) {
909			(void) snprintf(name, sizeof (name), "%s_%s_%u",
910			    zio_type_name[t], zio_taskq_types[q], i);
911		} else {
912			(void) snprintf(name, sizeof (name), "%s_%s",
913			    zio_type_name[t], zio_taskq_types[q]);
914		}
915
916#ifdef SYSDC
917		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
918			if (batch)
919				flags |= TASKQ_DC_BATCH;
920
921			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
922			    spa->spa_proc, zio_taskq_basedc, flags);
923		} else {
924#endif
925			pri_t pri = maxclsyspri;
926			/*
927			 * The write issue taskq can be extremely CPU
928			 * intensive.  Run it at slightly lower priority
929			 * than the other taskqs.
930			 */
931			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
932				pri++;
933
934			tq = taskq_create_proc(name, value, pri, 50,
935			    INT_MAX, spa->spa_proc, flags);
936#ifdef SYSDC
937		}
938#endif
939
940		tqs->stqs_taskq[i] = tq;
941	}
942}
943
944static void
945spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948
949	if (tqs->stqs_taskq == NULL) {
950		ASSERT0(tqs->stqs_count);
951		return;
952	}
953
954	for (uint_t i = 0; i < tqs->stqs_count; i++) {
955		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
956		taskq_destroy(tqs->stqs_taskq[i]);
957	}
958
959	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
960	tqs->stqs_taskq = NULL;
961}
962
963/*
964 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
965 * Note that a type may have multiple discrete taskqs to avoid lock contention
966 * on the taskq itself. In that case we choose which taskq at random by using
967 * the low bits of gethrtime().
968 */
969void
970spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
971    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
972{
973	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
974	taskq_t *tq;
975
976	ASSERT3P(tqs->stqs_taskq, !=, NULL);
977	ASSERT3U(tqs->stqs_count, !=, 0);
978
979	if (tqs->stqs_count == 1) {
980		tq = tqs->stqs_taskq[0];
981	} else {
982#ifdef _KERNEL
983		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
984#else
985		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
986#endif
987	}
988
989	taskq_dispatch_ent(tq, func, arg, flags, ent);
990}
991
992static void
993spa_create_zio_taskqs(spa_t *spa)
994{
995	for (int t = 0; t < ZIO_TYPES; t++) {
996		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
997			spa_taskqs_init(spa, t, q);
998		}
999	}
1000}
1001
1002#ifdef _KERNEL
1003#ifdef SPA_PROCESS
1004static void
1005spa_thread(void *arg)
1006{
1007	callb_cpr_t cprinfo;
1008
1009	spa_t *spa = arg;
1010	user_t *pu = PTOU(curproc);
1011
1012	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1013	    spa->spa_name);
1014
1015	ASSERT(curproc != &p0);
1016	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1017	    "zpool-%s", spa->spa_name);
1018	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1019
1020#ifdef PSRSET_BIND
1021	/* bind this thread to the requested psrset */
1022	if (zio_taskq_psrset_bind != PS_NONE) {
1023		pool_lock();
1024		mutex_enter(&cpu_lock);
1025		mutex_enter(&pidlock);
1026		mutex_enter(&curproc->p_lock);
1027
1028		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1029		    0, NULL, NULL) == 0)  {
1030			curthread->t_bind_pset = zio_taskq_psrset_bind;
1031		} else {
1032			cmn_err(CE_WARN,
1033			    "Couldn't bind process for zfs pool \"%s\" to "
1034			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1035		}
1036
1037		mutex_exit(&curproc->p_lock);
1038		mutex_exit(&pidlock);
1039		mutex_exit(&cpu_lock);
1040		pool_unlock();
1041	}
1042#endif
1043
1044#ifdef SYSDC
1045	if (zio_taskq_sysdc) {
1046		sysdc_thread_enter(curthread, 100, 0);
1047	}
1048#endif
1049
1050	spa->spa_proc = curproc;
1051	spa->spa_did = curthread->t_did;
1052
1053	spa_create_zio_taskqs(spa);
1054
1055	mutex_enter(&spa->spa_proc_lock);
1056	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1057
1058	spa->spa_proc_state = SPA_PROC_ACTIVE;
1059	cv_broadcast(&spa->spa_proc_cv);
1060
1061	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1062	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1063		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1064	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1065
1066	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1067	spa->spa_proc_state = SPA_PROC_GONE;
1068	spa->spa_proc = &p0;
1069	cv_broadcast(&spa->spa_proc_cv);
1070	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1071
1072	mutex_enter(&curproc->p_lock);
1073	lwp_exit();
1074}
1075#endif	/* SPA_PROCESS */
1076#endif
1077
1078/*
1079 * Activate an uninitialized pool.
1080 */
1081static void
1082spa_activate(spa_t *spa, int mode)
1083{
1084	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1085
1086	spa->spa_state = POOL_STATE_ACTIVE;
1087	spa->spa_mode = mode;
1088
1089	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091
1092	/* Try to create a covering process */
1093	mutex_enter(&spa->spa_proc_lock);
1094	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1095	ASSERT(spa->spa_proc == &p0);
1096	spa->spa_did = 0;
1097
1098#ifdef SPA_PROCESS
1099	/* Only create a process if we're going to be around a while. */
1100	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1101		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1102		    NULL, 0) == 0) {
1103			spa->spa_proc_state = SPA_PROC_CREATED;
1104			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1105				cv_wait(&spa->spa_proc_cv,
1106				    &spa->spa_proc_lock);
1107			}
1108			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1109			ASSERT(spa->spa_proc != &p0);
1110			ASSERT(spa->spa_did != 0);
1111		} else {
1112#ifdef _KERNEL
1113			cmn_err(CE_WARN,
1114			    "Couldn't create process for zfs pool \"%s\"\n",
1115			    spa->spa_name);
1116#endif
1117		}
1118	}
1119#endif	/* SPA_PROCESS */
1120	mutex_exit(&spa->spa_proc_lock);
1121
1122	/* If we didn't create a process, we need to create our taskqs. */
1123	ASSERT(spa->spa_proc == &p0);
1124	if (spa->spa_proc == &p0) {
1125		spa_create_zio_taskqs(spa);
1126	}
1127
1128	/*
1129	 * Start TRIM thread.
1130	 */
1131	trim_thread_create(spa);
1132
1133	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1134	    offsetof(vdev_t, vdev_config_dirty_node));
1135	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1136	    offsetof(objset_t, os_evicting_node));
1137	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1138	    offsetof(vdev_t, vdev_state_dirty_node));
1139
1140	txg_list_create(&spa->spa_vdev_txg_list,
1141	    offsetof(struct vdev, vdev_txg_node));
1142
1143	avl_create(&spa->spa_errlist_scrub,
1144	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1145	    offsetof(spa_error_entry_t, se_avl));
1146	avl_create(&spa->spa_errlist_last,
1147	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1148	    offsetof(spa_error_entry_t, se_avl));
1149}
1150
1151/*
1152 * Opposite of spa_activate().
1153 */
1154static void
1155spa_deactivate(spa_t *spa)
1156{
1157	ASSERT(spa->spa_sync_on == B_FALSE);
1158	ASSERT(spa->spa_dsl_pool == NULL);
1159	ASSERT(spa->spa_root_vdev == NULL);
1160	ASSERT(spa->spa_async_zio_root == NULL);
1161	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1162
1163	/*
1164	 * Stop TRIM thread in case spa_unload() wasn't called directly
1165	 * before spa_deactivate().
1166	 */
1167	trim_thread_destroy(spa);
1168
1169	spa_evicting_os_wait(spa);
1170
1171	txg_list_destroy(&spa->spa_vdev_txg_list);
1172
1173	list_destroy(&spa->spa_config_dirty_list);
1174	list_destroy(&spa->spa_evicting_os_list);
1175	list_destroy(&spa->spa_state_dirty_list);
1176
1177	for (int t = 0; t < ZIO_TYPES; t++) {
1178		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1179			spa_taskqs_fini(spa, t, q);
1180		}
1181	}
1182
1183	metaslab_class_destroy(spa->spa_normal_class);
1184	spa->spa_normal_class = NULL;
1185
1186	metaslab_class_destroy(spa->spa_log_class);
1187	spa->spa_log_class = NULL;
1188
1189	/*
1190	 * If this was part of an import or the open otherwise failed, we may
1191	 * still have errors left in the queues.  Empty them just in case.
1192	 */
1193	spa_errlog_drain(spa);
1194
1195	avl_destroy(&spa->spa_errlist_scrub);
1196	avl_destroy(&spa->spa_errlist_last);
1197
1198	spa->spa_state = POOL_STATE_UNINITIALIZED;
1199
1200	mutex_enter(&spa->spa_proc_lock);
1201	if (spa->spa_proc_state != SPA_PROC_NONE) {
1202		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1203		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1204		cv_broadcast(&spa->spa_proc_cv);
1205		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1206			ASSERT(spa->spa_proc != &p0);
1207			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1208		}
1209		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1210		spa->spa_proc_state = SPA_PROC_NONE;
1211	}
1212	ASSERT(spa->spa_proc == &p0);
1213	mutex_exit(&spa->spa_proc_lock);
1214
1215#ifdef SPA_PROCESS
1216	/*
1217	 * We want to make sure spa_thread() has actually exited the ZFS
1218	 * module, so that the module can't be unloaded out from underneath
1219	 * it.
1220	 */
1221	if (spa->spa_did != 0) {
1222		thread_join(spa->spa_did);
1223		spa->spa_did = 0;
1224	}
1225#endif	/* SPA_PROCESS */
1226}
1227
1228/*
1229 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1230 * will create all the necessary vdevs in the appropriate layout, with each vdev
1231 * in the CLOSED state.  This will prep the pool before open/creation/import.
1232 * All vdev validation is done by the vdev_alloc() routine.
1233 */
1234static int
1235spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1236    uint_t id, int atype)
1237{
1238	nvlist_t **child;
1239	uint_t children;
1240	int error;
1241
1242	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1243		return (error);
1244
1245	if ((*vdp)->vdev_ops->vdev_op_leaf)
1246		return (0);
1247
1248	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1249	    &child, &children);
1250
1251	if (error == ENOENT)
1252		return (0);
1253
1254	if (error) {
1255		vdev_free(*vdp);
1256		*vdp = NULL;
1257		return (SET_ERROR(EINVAL));
1258	}
1259
1260	for (int c = 0; c < children; c++) {
1261		vdev_t *vd;
1262		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1263		    atype)) != 0) {
1264			vdev_free(*vdp);
1265			*vdp = NULL;
1266			return (error);
1267		}
1268	}
1269
1270	ASSERT(*vdp != NULL);
1271
1272	return (0);
1273}
1274
1275/*
1276 * Opposite of spa_load().
1277 */
1278static void
1279spa_unload(spa_t *spa)
1280{
1281	int i;
1282
1283	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1284
1285	/*
1286	 * Stop TRIM thread.
1287	 */
1288	trim_thread_destroy(spa);
1289
1290	/*
1291	 * Stop async tasks.
1292	 */
1293	spa_async_suspend(spa);
1294
1295	/*
1296	 * Stop syncing.
1297	 */
1298	if (spa->spa_sync_on) {
1299		txg_sync_stop(spa->spa_dsl_pool);
1300		spa->spa_sync_on = B_FALSE;
1301	}
1302
1303	/*
1304	 * Wait for any outstanding async I/O to complete.
1305	 */
1306	if (spa->spa_async_zio_root != NULL) {
1307		for (int i = 0; i < max_ncpus; i++)
1308			(void) zio_wait(spa->spa_async_zio_root[i]);
1309		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1310		spa->spa_async_zio_root = NULL;
1311	}
1312
1313	bpobj_close(&spa->spa_deferred_bpobj);
1314
1315	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1316
1317	/*
1318	 * Close all vdevs.
1319	 */
1320	if (spa->spa_root_vdev)
1321		vdev_free(spa->spa_root_vdev);
1322	ASSERT(spa->spa_root_vdev == NULL);
1323
1324	/*
1325	 * Close the dsl pool.
1326	 */
1327	if (spa->spa_dsl_pool) {
1328		dsl_pool_close(spa->spa_dsl_pool);
1329		spa->spa_dsl_pool = NULL;
1330		spa->spa_meta_objset = NULL;
1331	}
1332
1333	ddt_unload(spa);
1334
1335
1336	/*
1337	 * Drop and purge level 2 cache
1338	 */
1339	spa_l2cache_drop(spa);
1340
1341	for (i = 0; i < spa->spa_spares.sav_count; i++)
1342		vdev_free(spa->spa_spares.sav_vdevs[i]);
1343	if (spa->spa_spares.sav_vdevs) {
1344		kmem_free(spa->spa_spares.sav_vdevs,
1345		    spa->spa_spares.sav_count * sizeof (void *));
1346		spa->spa_spares.sav_vdevs = NULL;
1347	}
1348	if (spa->spa_spares.sav_config) {
1349		nvlist_free(spa->spa_spares.sav_config);
1350		spa->spa_spares.sav_config = NULL;
1351	}
1352	spa->spa_spares.sav_count = 0;
1353
1354	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1355		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1356		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1357	}
1358	if (spa->spa_l2cache.sav_vdevs) {
1359		kmem_free(spa->spa_l2cache.sav_vdevs,
1360		    spa->spa_l2cache.sav_count * sizeof (void *));
1361		spa->spa_l2cache.sav_vdevs = NULL;
1362	}
1363	if (spa->spa_l2cache.sav_config) {
1364		nvlist_free(spa->spa_l2cache.sav_config);
1365		spa->spa_l2cache.sav_config = NULL;
1366	}
1367	spa->spa_l2cache.sav_count = 0;
1368
1369	spa->spa_async_suspended = 0;
1370
1371	if (spa->spa_comment != NULL) {
1372		spa_strfree(spa->spa_comment);
1373		spa->spa_comment = NULL;
1374	}
1375
1376	spa_config_exit(spa, SCL_ALL, FTAG);
1377}
1378
1379/*
1380 * Load (or re-load) the current list of vdevs describing the active spares for
1381 * this pool.  When this is called, we have some form of basic information in
1382 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1383 * then re-generate a more complete list including status information.
1384 */
1385static void
1386spa_load_spares(spa_t *spa)
1387{
1388	nvlist_t **spares;
1389	uint_t nspares;
1390	int i;
1391	vdev_t *vd, *tvd;
1392
1393	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1394
1395	/*
1396	 * First, close and free any existing spare vdevs.
1397	 */
1398	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1399		vd = spa->spa_spares.sav_vdevs[i];
1400
1401		/* Undo the call to spa_activate() below */
1402		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1403		    B_FALSE)) != NULL && tvd->vdev_isspare)
1404			spa_spare_remove(tvd);
1405		vdev_close(vd);
1406		vdev_free(vd);
1407	}
1408
1409	if (spa->spa_spares.sav_vdevs)
1410		kmem_free(spa->spa_spares.sav_vdevs,
1411		    spa->spa_spares.sav_count * sizeof (void *));
1412
1413	if (spa->spa_spares.sav_config == NULL)
1414		nspares = 0;
1415	else
1416		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1417		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1418
1419	spa->spa_spares.sav_count = (int)nspares;
1420	spa->spa_spares.sav_vdevs = NULL;
1421
1422	if (nspares == 0)
1423		return;
1424
1425	/*
1426	 * Construct the array of vdevs, opening them to get status in the
1427	 * process.   For each spare, there is potentially two different vdev_t
1428	 * structures associated with it: one in the list of spares (used only
1429	 * for basic validation purposes) and one in the active vdev
1430	 * configuration (if it's spared in).  During this phase we open and
1431	 * validate each vdev on the spare list.  If the vdev also exists in the
1432	 * active configuration, then we also mark this vdev as an active spare.
1433	 */
1434	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1435	    KM_SLEEP);
1436	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1437		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1438		    VDEV_ALLOC_SPARE) == 0);
1439		ASSERT(vd != NULL);
1440
1441		spa->spa_spares.sav_vdevs[i] = vd;
1442
1443		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1444		    B_FALSE)) != NULL) {
1445			if (!tvd->vdev_isspare)
1446				spa_spare_add(tvd);
1447
1448			/*
1449			 * We only mark the spare active if we were successfully
1450			 * able to load the vdev.  Otherwise, importing a pool
1451			 * with a bad active spare would result in strange
1452			 * behavior, because multiple pool would think the spare
1453			 * is actively in use.
1454			 *
1455			 * There is a vulnerability here to an equally bizarre
1456			 * circumstance, where a dead active spare is later
1457			 * brought back to life (onlined or otherwise).  Given
1458			 * the rarity of this scenario, and the extra complexity
1459			 * it adds, we ignore the possibility.
1460			 */
1461			if (!vdev_is_dead(tvd))
1462				spa_spare_activate(tvd);
1463		}
1464
1465		vd->vdev_top = vd;
1466		vd->vdev_aux = &spa->spa_spares;
1467
1468		if (vdev_open(vd) != 0)
1469			continue;
1470
1471		if (vdev_validate_aux(vd) == 0)
1472			spa_spare_add(vd);
1473	}
1474
1475	/*
1476	 * Recompute the stashed list of spares, with status information
1477	 * this time.
1478	 */
1479	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1480	    DATA_TYPE_NVLIST_ARRAY) == 0);
1481
1482	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1483	    KM_SLEEP);
1484	for (i = 0; i < spa->spa_spares.sav_count; i++)
1485		spares[i] = vdev_config_generate(spa,
1486		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1487	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1488	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1489	for (i = 0; i < spa->spa_spares.sav_count; i++)
1490		nvlist_free(spares[i]);
1491	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1492}
1493
1494/*
1495 * Load (or re-load) the current list of vdevs describing the active l2cache for
1496 * this pool.  When this is called, we have some form of basic information in
1497 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1498 * then re-generate a more complete list including status information.
1499 * Devices which are already active have their details maintained, and are
1500 * not re-opened.
1501 */
1502static void
1503spa_load_l2cache(spa_t *spa)
1504{
1505	nvlist_t **l2cache;
1506	uint_t nl2cache;
1507	int i, j, oldnvdevs;
1508	uint64_t guid;
1509	vdev_t *vd, **oldvdevs, **newvdevs;
1510	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1511
1512	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1513
1514	if (sav->sav_config != NULL) {
1515		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1516		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1517		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1518	} else {
1519		nl2cache = 0;
1520		newvdevs = NULL;
1521	}
1522
1523	oldvdevs = sav->sav_vdevs;
1524	oldnvdevs = sav->sav_count;
1525	sav->sav_vdevs = NULL;
1526	sav->sav_count = 0;
1527
1528	/*
1529	 * Process new nvlist of vdevs.
1530	 */
1531	for (i = 0; i < nl2cache; i++) {
1532		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1533		    &guid) == 0);
1534
1535		newvdevs[i] = NULL;
1536		for (j = 0; j < oldnvdevs; j++) {
1537			vd = oldvdevs[j];
1538			if (vd != NULL && guid == vd->vdev_guid) {
1539				/*
1540				 * Retain previous vdev for add/remove ops.
1541				 */
1542				newvdevs[i] = vd;
1543				oldvdevs[j] = NULL;
1544				break;
1545			}
1546		}
1547
1548		if (newvdevs[i] == NULL) {
1549			/*
1550			 * Create new vdev
1551			 */
1552			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1553			    VDEV_ALLOC_L2CACHE) == 0);
1554			ASSERT(vd != NULL);
1555			newvdevs[i] = vd;
1556
1557			/*
1558			 * Commit this vdev as an l2cache device,
1559			 * even if it fails to open.
1560			 */
1561			spa_l2cache_add(vd);
1562
1563			vd->vdev_top = vd;
1564			vd->vdev_aux = sav;
1565
1566			spa_l2cache_activate(vd);
1567
1568			if (vdev_open(vd) != 0)
1569				continue;
1570
1571			(void) vdev_validate_aux(vd);
1572
1573			if (!vdev_is_dead(vd))
1574				l2arc_add_vdev(spa, vd);
1575		}
1576	}
1577
1578	/*
1579	 * Purge vdevs that were dropped
1580	 */
1581	for (i = 0; i < oldnvdevs; i++) {
1582		uint64_t pool;
1583
1584		vd = oldvdevs[i];
1585		if (vd != NULL) {
1586			ASSERT(vd->vdev_isl2cache);
1587
1588			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1589			    pool != 0ULL && l2arc_vdev_present(vd))
1590				l2arc_remove_vdev(vd);
1591			vdev_clear_stats(vd);
1592			vdev_free(vd);
1593		}
1594	}
1595
1596	if (oldvdevs)
1597		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1598
1599	if (sav->sav_config == NULL)
1600		goto out;
1601
1602	sav->sav_vdevs = newvdevs;
1603	sav->sav_count = (int)nl2cache;
1604
1605	/*
1606	 * Recompute the stashed list of l2cache devices, with status
1607	 * information this time.
1608	 */
1609	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1610	    DATA_TYPE_NVLIST_ARRAY) == 0);
1611
1612	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1613	for (i = 0; i < sav->sav_count; i++)
1614		l2cache[i] = vdev_config_generate(spa,
1615		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1616	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1617	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1618out:
1619	for (i = 0; i < sav->sav_count; i++)
1620		nvlist_free(l2cache[i]);
1621	if (sav->sav_count)
1622		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1623}
1624
1625static int
1626load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1627{
1628	dmu_buf_t *db;
1629	char *packed = NULL;
1630	size_t nvsize = 0;
1631	int error;
1632	*value = NULL;
1633
1634	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1635	if (error != 0)
1636		return (error);
1637
1638	nvsize = *(uint64_t *)db->db_data;
1639	dmu_buf_rele(db, FTAG);
1640
1641	packed = kmem_alloc(nvsize, KM_SLEEP);
1642	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1643	    DMU_READ_PREFETCH);
1644	if (error == 0)
1645		error = nvlist_unpack(packed, nvsize, value, 0);
1646	kmem_free(packed, nvsize);
1647
1648	return (error);
1649}
1650
1651/*
1652 * Checks to see if the given vdev could not be opened, in which case we post a
1653 * sysevent to notify the autoreplace code that the device has been removed.
1654 */
1655static void
1656spa_check_removed(vdev_t *vd)
1657{
1658	for (int c = 0; c < vd->vdev_children; c++)
1659		spa_check_removed(vd->vdev_child[c]);
1660
1661	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1662	    !vd->vdev_ishole) {
1663		zfs_post_autoreplace(vd->vdev_spa, vd);
1664		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1665	}
1666}
1667
1668static void
1669spa_config_valid_zaps(vdev_t *vd, vdev_t *mvd)
1670{
1671	ASSERT3U(vd->vdev_children, ==, mvd->vdev_children);
1672
1673	vd->vdev_top_zap = mvd->vdev_top_zap;
1674	vd->vdev_leaf_zap = mvd->vdev_leaf_zap;
1675
1676	for (uint64_t i = 0; i < vd->vdev_children; i++) {
1677		spa_config_valid_zaps(vd->vdev_child[i], mvd->vdev_child[i]);
1678	}
1679}
1680
1681/*
1682 * Validate the current config against the MOS config
1683 */
1684static boolean_t
1685spa_config_valid(spa_t *spa, nvlist_t *config)
1686{
1687	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1688	nvlist_t *nv;
1689
1690	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1691
1692	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1693	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1694
1695	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1696
1697	/*
1698	 * If we're doing a normal import, then build up any additional
1699	 * diagnostic information about missing devices in this config.
1700	 * We'll pass this up to the user for further processing.
1701	 */
1702	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1703		nvlist_t **child, *nv;
1704		uint64_t idx = 0;
1705
1706		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1707		    KM_SLEEP);
1708		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1709
1710		for (int c = 0; c < rvd->vdev_children; c++) {
1711			vdev_t *tvd = rvd->vdev_child[c];
1712			vdev_t *mtvd  = mrvd->vdev_child[c];
1713
1714			if (tvd->vdev_ops == &vdev_missing_ops &&
1715			    mtvd->vdev_ops != &vdev_missing_ops &&
1716			    mtvd->vdev_islog)
1717				child[idx++] = vdev_config_generate(spa, mtvd,
1718				    B_FALSE, 0);
1719		}
1720
1721		if (idx) {
1722			VERIFY(nvlist_add_nvlist_array(nv,
1723			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1724			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1725			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1726
1727			for (int i = 0; i < idx; i++)
1728				nvlist_free(child[i]);
1729		}
1730		nvlist_free(nv);
1731		kmem_free(child, rvd->vdev_children * sizeof (char **));
1732	}
1733
1734	/*
1735	 * Compare the root vdev tree with the information we have
1736	 * from the MOS config (mrvd). Check each top-level vdev
1737	 * with the corresponding MOS config top-level (mtvd).
1738	 */
1739	for (int c = 0; c < rvd->vdev_children; c++) {
1740		vdev_t *tvd = rvd->vdev_child[c];
1741		vdev_t *mtvd  = mrvd->vdev_child[c];
1742
1743		/*
1744		 * Resolve any "missing" vdevs in the current configuration.
1745		 * If we find that the MOS config has more accurate information
1746		 * about the top-level vdev then use that vdev instead.
1747		 */
1748		if (tvd->vdev_ops == &vdev_missing_ops &&
1749		    mtvd->vdev_ops != &vdev_missing_ops) {
1750
1751			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1752				continue;
1753
1754			/*
1755			 * Device specific actions.
1756			 */
1757			if (mtvd->vdev_islog) {
1758				spa_set_log_state(spa, SPA_LOG_CLEAR);
1759			} else {
1760				/*
1761				 * XXX - once we have 'readonly' pool
1762				 * support we should be able to handle
1763				 * missing data devices by transitioning
1764				 * the pool to readonly.
1765				 */
1766				continue;
1767			}
1768
1769			/*
1770			 * Swap the missing vdev with the data we were
1771			 * able to obtain from the MOS config.
1772			 */
1773			vdev_remove_child(rvd, tvd);
1774			vdev_remove_child(mrvd, mtvd);
1775
1776			vdev_add_child(rvd, mtvd);
1777			vdev_add_child(mrvd, tvd);
1778
1779			spa_config_exit(spa, SCL_ALL, FTAG);
1780			vdev_load(mtvd);
1781			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1782
1783			vdev_reopen(rvd);
1784		} else {
1785			if (mtvd->vdev_islog) {
1786				/*
1787				 * Load the slog device's state from the MOS
1788				 * config since it's possible that the label
1789				 * does not contain the most up-to-date
1790				 * information.
1791				 */
1792				vdev_load_log_state(tvd, mtvd);
1793				vdev_reopen(tvd);
1794			}
1795
1796			/*
1797			 * Per-vdev ZAP info is stored exclusively in the MOS.
1798			 */
1799			spa_config_valid_zaps(tvd, mtvd);
1800		}
1801	}
1802
1803	vdev_free(mrvd);
1804	spa_config_exit(spa, SCL_ALL, FTAG);
1805
1806	/*
1807	 * Ensure we were able to validate the config.
1808	 */
1809	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1810}
1811
1812/*
1813 * Check for missing log devices
1814 */
1815static boolean_t
1816spa_check_logs(spa_t *spa)
1817{
1818	boolean_t rv = B_FALSE;
1819	dsl_pool_t *dp = spa_get_dsl(spa);
1820
1821	switch (spa->spa_log_state) {
1822	case SPA_LOG_MISSING:
1823		/* need to recheck in case slog has been restored */
1824	case SPA_LOG_UNKNOWN:
1825		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1826		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1827		if (rv)
1828			spa_set_log_state(spa, SPA_LOG_MISSING);
1829		break;
1830	}
1831	return (rv);
1832}
1833
1834static boolean_t
1835spa_passivate_log(spa_t *spa)
1836{
1837	vdev_t *rvd = spa->spa_root_vdev;
1838	boolean_t slog_found = B_FALSE;
1839
1840	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1841
1842	if (!spa_has_slogs(spa))
1843		return (B_FALSE);
1844
1845	for (int c = 0; c < rvd->vdev_children; c++) {
1846		vdev_t *tvd = rvd->vdev_child[c];
1847		metaslab_group_t *mg = tvd->vdev_mg;
1848
1849		if (tvd->vdev_islog) {
1850			metaslab_group_passivate(mg);
1851			slog_found = B_TRUE;
1852		}
1853	}
1854
1855	return (slog_found);
1856}
1857
1858static void
1859spa_activate_log(spa_t *spa)
1860{
1861	vdev_t *rvd = spa->spa_root_vdev;
1862
1863	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1864
1865	for (int c = 0; c < rvd->vdev_children; c++) {
1866		vdev_t *tvd = rvd->vdev_child[c];
1867		metaslab_group_t *mg = tvd->vdev_mg;
1868
1869		if (tvd->vdev_islog)
1870			metaslab_group_activate(mg);
1871	}
1872}
1873
1874int
1875spa_offline_log(spa_t *spa)
1876{
1877	int error;
1878
1879	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1880	    NULL, DS_FIND_CHILDREN);
1881	if (error == 0) {
1882		/*
1883		 * We successfully offlined the log device, sync out the
1884		 * current txg so that the "stubby" block can be removed
1885		 * by zil_sync().
1886		 */
1887		txg_wait_synced(spa->spa_dsl_pool, 0);
1888	}
1889	return (error);
1890}
1891
1892static void
1893spa_aux_check_removed(spa_aux_vdev_t *sav)
1894{
1895	int i;
1896
1897	for (i = 0; i < sav->sav_count; i++)
1898		spa_check_removed(sav->sav_vdevs[i]);
1899}
1900
1901void
1902spa_claim_notify(zio_t *zio)
1903{
1904	spa_t *spa = zio->io_spa;
1905
1906	if (zio->io_error)
1907		return;
1908
1909	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1910	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1911		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1912	mutex_exit(&spa->spa_props_lock);
1913}
1914
1915typedef struct spa_load_error {
1916	uint64_t	sle_meta_count;
1917	uint64_t	sle_data_count;
1918} spa_load_error_t;
1919
1920static void
1921spa_load_verify_done(zio_t *zio)
1922{
1923	blkptr_t *bp = zio->io_bp;
1924	spa_load_error_t *sle = zio->io_private;
1925	dmu_object_type_t type = BP_GET_TYPE(bp);
1926	int error = zio->io_error;
1927	spa_t *spa = zio->io_spa;
1928
1929	if (error) {
1930		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1931		    type != DMU_OT_INTENT_LOG)
1932			atomic_inc_64(&sle->sle_meta_count);
1933		else
1934			atomic_inc_64(&sle->sle_data_count);
1935	}
1936	zio_data_buf_free(zio->io_data, zio->io_size);
1937
1938	mutex_enter(&spa->spa_scrub_lock);
1939	spa->spa_scrub_inflight--;
1940	cv_broadcast(&spa->spa_scrub_io_cv);
1941	mutex_exit(&spa->spa_scrub_lock);
1942}
1943
1944/*
1945 * Maximum number of concurrent scrub i/os to create while verifying
1946 * a pool while importing it.
1947 */
1948int spa_load_verify_maxinflight = 10000;
1949boolean_t spa_load_verify_metadata = B_TRUE;
1950boolean_t spa_load_verify_data = B_TRUE;
1951
1952SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1953    &spa_load_verify_maxinflight, 0,
1954    "Maximum number of concurrent scrub I/Os to create while verifying a "
1955    "pool while importing it");
1956
1957SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1958    &spa_load_verify_metadata, 0,
1959    "Check metadata on import?");
1960
1961SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1962    &spa_load_verify_data, 0,
1963    "Check user data on import?");
1964
1965/*ARGSUSED*/
1966static int
1967spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1968    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1969{
1970	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1971		return (0);
1972	/*
1973	 * Note: normally this routine will not be called if
1974	 * spa_load_verify_metadata is not set.  However, it may be useful
1975	 * to manually set the flag after the traversal has begun.
1976	 */
1977	if (!spa_load_verify_metadata)
1978		return (0);
1979	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1980		return (0);
1981
1982	zio_t *rio = arg;
1983	size_t size = BP_GET_PSIZE(bp);
1984	void *data = zio_data_buf_alloc(size);
1985
1986	mutex_enter(&spa->spa_scrub_lock);
1987	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1988		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1989	spa->spa_scrub_inflight++;
1990	mutex_exit(&spa->spa_scrub_lock);
1991
1992	zio_nowait(zio_read(rio, spa, bp, data, size,
1993	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1994	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1995	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1996	return (0);
1997}
1998
1999static int
2000spa_load_verify(spa_t *spa)
2001{
2002	zio_t *rio;
2003	spa_load_error_t sle = { 0 };
2004	zpool_rewind_policy_t policy;
2005	boolean_t verify_ok = B_FALSE;
2006	int error = 0;
2007
2008	zpool_get_rewind_policy(spa->spa_config, &policy);
2009
2010	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
2011		return (0);
2012
2013	rio = zio_root(spa, NULL, &sle,
2014	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2015
2016	if (spa_load_verify_metadata) {
2017		error = traverse_pool(spa, spa->spa_verify_min_txg,
2018		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
2019		    spa_load_verify_cb, rio);
2020	}
2021
2022	(void) zio_wait(rio);
2023
2024	spa->spa_load_meta_errors = sle.sle_meta_count;
2025	spa->spa_load_data_errors = sle.sle_data_count;
2026
2027	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2028	    sle.sle_data_count <= policy.zrp_maxdata) {
2029		int64_t loss = 0;
2030
2031		verify_ok = B_TRUE;
2032		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2033		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2034
2035		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2036		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2037		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2038		VERIFY(nvlist_add_int64(spa->spa_load_info,
2039		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2040		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2041		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2042	} else {
2043		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2044	}
2045
2046	if (error) {
2047		if (error != ENXIO && error != EIO)
2048			error = SET_ERROR(EIO);
2049		return (error);
2050	}
2051
2052	return (verify_ok ? 0 : EIO);
2053}
2054
2055/*
2056 * Find a value in the pool props object.
2057 */
2058static void
2059spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2060{
2061	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2062	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2063}
2064
2065/*
2066 * Find a value in the pool directory object.
2067 */
2068static int
2069spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2070{
2071	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2072	    name, sizeof (uint64_t), 1, val));
2073}
2074
2075static int
2076spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2077{
2078	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2079	return (err);
2080}
2081
2082/*
2083 * Fix up config after a partly-completed split.  This is done with the
2084 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2085 * pool have that entry in their config, but only the splitting one contains
2086 * a list of all the guids of the vdevs that are being split off.
2087 *
2088 * This function determines what to do with that list: either rejoin
2089 * all the disks to the pool, or complete the splitting process.  To attempt
2090 * the rejoin, each disk that is offlined is marked online again, and
2091 * we do a reopen() call.  If the vdev label for every disk that was
2092 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2093 * then we call vdev_split() on each disk, and complete the split.
2094 *
2095 * Otherwise we leave the config alone, with all the vdevs in place in
2096 * the original pool.
2097 */
2098static void
2099spa_try_repair(spa_t *spa, nvlist_t *config)
2100{
2101	uint_t extracted;
2102	uint64_t *glist;
2103	uint_t i, gcount;
2104	nvlist_t *nvl;
2105	vdev_t **vd;
2106	boolean_t attempt_reopen;
2107
2108	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2109		return;
2110
2111	/* check that the config is complete */
2112	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2113	    &glist, &gcount) != 0)
2114		return;
2115
2116	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2117
2118	/* attempt to online all the vdevs & validate */
2119	attempt_reopen = B_TRUE;
2120	for (i = 0; i < gcount; i++) {
2121		if (glist[i] == 0)	/* vdev is hole */
2122			continue;
2123
2124		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2125		if (vd[i] == NULL) {
2126			/*
2127			 * Don't bother attempting to reopen the disks;
2128			 * just do the split.
2129			 */
2130			attempt_reopen = B_FALSE;
2131		} else {
2132			/* attempt to re-online it */
2133			vd[i]->vdev_offline = B_FALSE;
2134		}
2135	}
2136
2137	if (attempt_reopen) {
2138		vdev_reopen(spa->spa_root_vdev);
2139
2140		/* check each device to see what state it's in */
2141		for (extracted = 0, i = 0; i < gcount; i++) {
2142			if (vd[i] != NULL &&
2143			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2144				break;
2145			++extracted;
2146		}
2147	}
2148
2149	/*
2150	 * If every disk has been moved to the new pool, or if we never
2151	 * even attempted to look at them, then we split them off for
2152	 * good.
2153	 */
2154	if (!attempt_reopen || gcount == extracted) {
2155		for (i = 0; i < gcount; i++)
2156			if (vd[i] != NULL)
2157				vdev_split(vd[i]);
2158		vdev_reopen(spa->spa_root_vdev);
2159	}
2160
2161	kmem_free(vd, gcount * sizeof (vdev_t *));
2162}
2163
2164static int
2165spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2166    boolean_t mosconfig)
2167{
2168	nvlist_t *config = spa->spa_config;
2169	char *ereport = FM_EREPORT_ZFS_POOL;
2170	char *comment;
2171	int error;
2172	uint64_t pool_guid;
2173	nvlist_t *nvl;
2174
2175	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2176		return (SET_ERROR(EINVAL));
2177
2178	ASSERT(spa->spa_comment == NULL);
2179	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2180		spa->spa_comment = spa_strdup(comment);
2181
2182	/*
2183	 * Versioning wasn't explicitly added to the label until later, so if
2184	 * it's not present treat it as the initial version.
2185	 */
2186	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2187	    &spa->spa_ubsync.ub_version) != 0)
2188		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2189
2190	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2191	    &spa->spa_config_txg);
2192
2193	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2194	    spa_guid_exists(pool_guid, 0)) {
2195		error = SET_ERROR(EEXIST);
2196	} else {
2197		spa->spa_config_guid = pool_guid;
2198
2199		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2200		    &nvl) == 0) {
2201			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2202			    KM_SLEEP) == 0);
2203		}
2204
2205		nvlist_free(spa->spa_load_info);
2206		spa->spa_load_info = fnvlist_alloc();
2207
2208		gethrestime(&spa->spa_loaded_ts);
2209		error = spa_load_impl(spa, pool_guid, config, state, type,
2210		    mosconfig, &ereport);
2211	}
2212
2213	/*
2214	 * Don't count references from objsets that are already closed
2215	 * and are making their way through the eviction process.
2216	 */
2217	spa_evicting_os_wait(spa);
2218	spa->spa_minref = refcount_count(&spa->spa_refcount);
2219	if (error) {
2220		if (error != EEXIST) {
2221			spa->spa_loaded_ts.tv_sec = 0;
2222			spa->spa_loaded_ts.tv_nsec = 0;
2223		}
2224		if (error != EBADF) {
2225			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2226		}
2227	}
2228	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2229	spa->spa_ena = 0;
2230
2231	return (error);
2232}
2233
2234/*
2235 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2236 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2237 * spa's per-vdev ZAP list.
2238 */
2239static uint64_t
2240vdev_count_verify_zaps(vdev_t *vd)
2241{
2242	spa_t *spa = vd->vdev_spa;
2243	uint64_t total = 0;
2244	if (vd->vdev_top_zap != 0) {
2245		total++;
2246		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2247		    spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2248	}
2249	if (vd->vdev_leaf_zap != 0) {
2250		total++;
2251		ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2252		    spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2253	}
2254
2255	for (uint64_t i = 0; i < vd->vdev_children; i++) {
2256		total += vdev_count_verify_zaps(vd->vdev_child[i]);
2257	}
2258
2259	return (total);
2260}
2261
2262/*
2263 * Load an existing storage pool, using the pool's builtin spa_config as a
2264 * source of configuration information.
2265 */
2266static int
2267spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2268    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2269    char **ereport)
2270{
2271	int error = 0;
2272	nvlist_t *nvroot = NULL;
2273	nvlist_t *label;
2274	vdev_t *rvd;
2275	uberblock_t *ub = &spa->spa_uberblock;
2276	uint64_t children, config_cache_txg = spa->spa_config_txg;
2277	int orig_mode = spa->spa_mode;
2278	int parse;
2279	uint64_t obj;
2280	boolean_t missing_feat_write = B_FALSE;
2281
2282	/*
2283	 * If this is an untrusted config, access the pool in read-only mode.
2284	 * This prevents things like resilvering recently removed devices.
2285	 */
2286	if (!mosconfig)
2287		spa->spa_mode = FREAD;
2288
2289	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2290
2291	spa->spa_load_state = state;
2292
2293	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2294		return (SET_ERROR(EINVAL));
2295
2296	parse = (type == SPA_IMPORT_EXISTING ?
2297	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2298
2299	/*
2300	 * Create "The Godfather" zio to hold all async IOs
2301	 */
2302	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2303	    KM_SLEEP);
2304	for (int i = 0; i < max_ncpus; i++) {
2305		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2306		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2307		    ZIO_FLAG_GODFATHER);
2308	}
2309
2310	/*
2311	 * Parse the configuration into a vdev tree.  We explicitly set the
2312	 * value that will be returned by spa_version() since parsing the
2313	 * configuration requires knowing the version number.
2314	 */
2315	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2316	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2317	spa_config_exit(spa, SCL_ALL, FTAG);
2318
2319	if (error != 0)
2320		return (error);
2321
2322	ASSERT(spa->spa_root_vdev == rvd);
2323	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2324	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2325
2326	if (type != SPA_IMPORT_ASSEMBLE) {
2327		ASSERT(spa_guid(spa) == pool_guid);
2328	}
2329
2330	/*
2331	 * Try to open all vdevs, loading each label in the process.
2332	 */
2333	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2334	error = vdev_open(rvd);
2335	spa_config_exit(spa, SCL_ALL, FTAG);
2336	if (error != 0)
2337		return (error);
2338
2339	/*
2340	 * We need to validate the vdev labels against the configuration that
2341	 * we have in hand, which is dependent on the setting of mosconfig. If
2342	 * mosconfig is true then we're validating the vdev labels based on
2343	 * that config.  Otherwise, we're validating against the cached config
2344	 * (zpool.cache) that was read when we loaded the zfs module, and then
2345	 * later we will recursively call spa_load() and validate against
2346	 * the vdev config.
2347	 *
2348	 * If we're assembling a new pool that's been split off from an
2349	 * existing pool, the labels haven't yet been updated so we skip
2350	 * validation for now.
2351	 */
2352	if (type != SPA_IMPORT_ASSEMBLE) {
2353		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2354		error = vdev_validate(rvd, mosconfig);
2355		spa_config_exit(spa, SCL_ALL, FTAG);
2356
2357		if (error != 0)
2358			return (error);
2359
2360		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2361			return (SET_ERROR(ENXIO));
2362	}
2363
2364	/*
2365	 * Find the best uberblock.
2366	 */
2367	vdev_uberblock_load(rvd, ub, &label);
2368
2369	/*
2370	 * If we weren't able to find a single valid uberblock, return failure.
2371	 */
2372	if (ub->ub_txg == 0) {
2373		nvlist_free(label);
2374		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2375	}
2376
2377	/*
2378	 * If the pool has an unsupported version we can't open it.
2379	 */
2380	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2381		nvlist_free(label);
2382		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2383	}
2384
2385	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2386		nvlist_t *features;
2387
2388		/*
2389		 * If we weren't able to find what's necessary for reading the
2390		 * MOS in the label, return failure.
2391		 */
2392		if (label == NULL || nvlist_lookup_nvlist(label,
2393		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2394			nvlist_free(label);
2395			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2396			    ENXIO));
2397		}
2398
2399		/*
2400		 * Update our in-core representation with the definitive values
2401		 * from the label.
2402		 */
2403		nvlist_free(spa->spa_label_features);
2404		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2405	}
2406
2407	nvlist_free(label);
2408
2409	/*
2410	 * Look through entries in the label nvlist's features_for_read. If
2411	 * there is a feature listed there which we don't understand then we
2412	 * cannot open a pool.
2413	 */
2414	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2415		nvlist_t *unsup_feat;
2416
2417		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2418		    0);
2419
2420		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2421		    NULL); nvp != NULL;
2422		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2423			if (!zfeature_is_supported(nvpair_name(nvp))) {
2424				VERIFY(nvlist_add_string(unsup_feat,
2425				    nvpair_name(nvp), "") == 0);
2426			}
2427		}
2428
2429		if (!nvlist_empty(unsup_feat)) {
2430			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2431			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2432			nvlist_free(unsup_feat);
2433			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2434			    ENOTSUP));
2435		}
2436
2437		nvlist_free(unsup_feat);
2438	}
2439
2440	/*
2441	 * If the vdev guid sum doesn't match the uberblock, we have an
2442	 * incomplete configuration.  We first check to see if the pool
2443	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2444	 * If it is, defer the vdev_guid_sum check till later so we
2445	 * can handle missing vdevs.
2446	 */
2447	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2448	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2449	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2450		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2451
2452	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2453		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2454		spa_try_repair(spa, config);
2455		spa_config_exit(spa, SCL_ALL, FTAG);
2456		nvlist_free(spa->spa_config_splitting);
2457		spa->spa_config_splitting = NULL;
2458	}
2459
2460	/*
2461	 * Initialize internal SPA structures.
2462	 */
2463	spa->spa_state = POOL_STATE_ACTIVE;
2464	spa->spa_ubsync = spa->spa_uberblock;
2465	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2466	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2467	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2468	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2469	spa->spa_claim_max_txg = spa->spa_first_txg;
2470	spa->spa_prev_software_version = ub->ub_software_version;
2471
2472	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2473	if (error)
2474		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2475	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2476
2477	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2478		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2479
2480	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2481		boolean_t missing_feat_read = B_FALSE;
2482		nvlist_t *unsup_feat, *enabled_feat;
2483
2484		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2485		    &spa->spa_feat_for_read_obj) != 0) {
2486			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2487		}
2488
2489		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2490		    &spa->spa_feat_for_write_obj) != 0) {
2491			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2492		}
2493
2494		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2495		    &spa->spa_feat_desc_obj) != 0) {
2496			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2497		}
2498
2499		enabled_feat = fnvlist_alloc();
2500		unsup_feat = fnvlist_alloc();
2501
2502		if (!spa_features_check(spa, B_FALSE,
2503		    unsup_feat, enabled_feat))
2504			missing_feat_read = B_TRUE;
2505
2506		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2507			if (!spa_features_check(spa, B_TRUE,
2508			    unsup_feat, enabled_feat)) {
2509				missing_feat_write = B_TRUE;
2510			}
2511		}
2512
2513		fnvlist_add_nvlist(spa->spa_load_info,
2514		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2515
2516		if (!nvlist_empty(unsup_feat)) {
2517			fnvlist_add_nvlist(spa->spa_load_info,
2518			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2519		}
2520
2521		fnvlist_free(enabled_feat);
2522		fnvlist_free(unsup_feat);
2523
2524		if (!missing_feat_read) {
2525			fnvlist_add_boolean(spa->spa_load_info,
2526			    ZPOOL_CONFIG_CAN_RDONLY);
2527		}
2528
2529		/*
2530		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2531		 * twofold: to determine whether the pool is available for
2532		 * import in read-write mode and (if it is not) whether the
2533		 * pool is available for import in read-only mode. If the pool
2534		 * is available for import in read-write mode, it is displayed
2535		 * as available in userland; if it is not available for import
2536		 * in read-only mode, it is displayed as unavailable in
2537		 * userland. If the pool is available for import in read-only
2538		 * mode but not read-write mode, it is displayed as unavailable
2539		 * in userland with a special note that the pool is actually
2540		 * available for open in read-only mode.
2541		 *
2542		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2543		 * missing a feature for write, we must first determine whether
2544		 * the pool can be opened read-only before returning to
2545		 * userland in order to know whether to display the
2546		 * abovementioned note.
2547		 */
2548		if (missing_feat_read || (missing_feat_write &&
2549		    spa_writeable(spa))) {
2550			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2551			    ENOTSUP));
2552		}
2553
2554		/*
2555		 * Load refcounts for ZFS features from disk into an in-memory
2556		 * cache during SPA initialization.
2557		 */
2558		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2559			uint64_t refcount;
2560
2561			error = feature_get_refcount_from_disk(spa,
2562			    &spa_feature_table[i], &refcount);
2563			if (error == 0) {
2564				spa->spa_feat_refcount_cache[i] = refcount;
2565			} else if (error == ENOTSUP) {
2566				spa->spa_feat_refcount_cache[i] =
2567				    SPA_FEATURE_DISABLED;
2568			} else {
2569				return (spa_vdev_err(rvd,
2570				    VDEV_AUX_CORRUPT_DATA, EIO));
2571			}
2572		}
2573	}
2574
2575	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2576		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2577		    &spa->spa_feat_enabled_txg_obj) != 0)
2578			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2579	}
2580
2581	spa->spa_is_initializing = B_TRUE;
2582	error = dsl_pool_open(spa->spa_dsl_pool);
2583	spa->spa_is_initializing = B_FALSE;
2584	if (error != 0)
2585		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2586
2587	if (!mosconfig) {
2588		uint64_t hostid;
2589		nvlist_t *policy = NULL, *nvconfig;
2590
2591		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2592			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2593
2594		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2595		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2596			char *hostname;
2597			unsigned long myhostid = 0;
2598
2599			VERIFY(nvlist_lookup_string(nvconfig,
2600			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2601
2602#ifdef	_KERNEL
2603			myhostid = zone_get_hostid(NULL);
2604#else	/* _KERNEL */
2605			/*
2606			 * We're emulating the system's hostid in userland, so
2607			 * we can't use zone_get_hostid().
2608			 */
2609			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2610#endif	/* _KERNEL */
2611			if (check_hostid && hostid != 0 && myhostid != 0 &&
2612			    hostid != myhostid) {
2613				nvlist_free(nvconfig);
2614				cmn_err(CE_WARN, "pool '%s' could not be "
2615				    "loaded as it was last accessed by "
2616				    "another system (host: %s hostid: 0x%lx). "
2617				    "See: http://illumos.org/msg/ZFS-8000-EY",
2618				    spa_name(spa), hostname,
2619				    (unsigned long)hostid);
2620				return (SET_ERROR(EBADF));
2621			}
2622		}
2623		if (nvlist_lookup_nvlist(spa->spa_config,
2624		    ZPOOL_REWIND_POLICY, &policy) == 0)
2625			VERIFY(nvlist_add_nvlist(nvconfig,
2626			    ZPOOL_REWIND_POLICY, policy) == 0);
2627
2628		spa_config_set(spa, nvconfig);
2629		spa_unload(spa);
2630		spa_deactivate(spa);
2631		spa_activate(spa, orig_mode);
2632
2633		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2634	}
2635
2636	/* Grab the secret checksum salt from the MOS. */
2637	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2638	    DMU_POOL_CHECKSUM_SALT, 1,
2639	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2640	    spa->spa_cksum_salt.zcs_bytes);
2641	if (error == ENOENT) {
2642		/* Generate a new salt for subsequent use */
2643		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2644		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2645	} else if (error != 0) {
2646		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2647	}
2648
2649	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2650		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2651	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2652	if (error != 0)
2653		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2654
2655	/*
2656	 * Load the bit that tells us to use the new accounting function
2657	 * (raid-z deflation).  If we have an older pool, this will not
2658	 * be present.
2659	 */
2660	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2661	if (error != 0 && error != ENOENT)
2662		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2663
2664	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2665	    &spa->spa_creation_version);
2666	if (error != 0 && error != ENOENT)
2667		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2668
2669	/*
2670	 * Load the persistent error log.  If we have an older pool, this will
2671	 * not be present.
2672	 */
2673	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2674	if (error != 0 && error != ENOENT)
2675		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2676
2677	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2678	    &spa->spa_errlog_scrub);
2679	if (error != 0 && error != ENOENT)
2680		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2681
2682	/*
2683	 * Load the history object.  If we have an older pool, this
2684	 * will not be present.
2685	 */
2686	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2687	if (error != 0 && error != ENOENT)
2688		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2689
2690	/*
2691	 * Load the per-vdev ZAP map. If we have an older pool, this will not
2692	 * be present; in this case, defer its creation to a later time to
2693	 * avoid dirtying the MOS this early / out of sync context. See
2694	 * spa_sync_config_object.
2695	 */
2696
2697	/* The sentinel is only available in the MOS config. */
2698	nvlist_t *mos_config;
2699	if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0)
2700		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2701
2702	error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
2703	    &spa->spa_all_vdev_zaps);
2704
2705	if (error != ENOENT && error != 0) {
2706		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2707	} else if (error == 0 && !nvlist_exists(mos_config,
2708	    ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
2709		/*
2710		 * An older version of ZFS overwrote the sentinel value, so
2711		 * we have orphaned per-vdev ZAPs in the MOS. Defer their
2712		 * destruction to later; see spa_sync_config_object.
2713		 */
2714		spa->spa_avz_action = AVZ_ACTION_DESTROY;
2715		/*
2716		 * We're assuming that no vdevs have had their ZAPs created
2717		 * before this. Better be sure of it.
2718		 */
2719		ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
2720	}
2721	nvlist_free(mos_config);
2722
2723	/*
2724	 * If we're assembling the pool from the split-off vdevs of
2725	 * an existing pool, we don't want to attach the spares & cache
2726	 * devices.
2727	 */
2728
2729	/*
2730	 * Load any hot spares for this pool.
2731	 */
2732	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2733	if (error != 0 && error != ENOENT)
2734		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2735	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2736		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2737		if (load_nvlist(spa, spa->spa_spares.sav_object,
2738		    &spa->spa_spares.sav_config) != 0)
2739			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2740
2741		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2742		spa_load_spares(spa);
2743		spa_config_exit(spa, SCL_ALL, FTAG);
2744	} else if (error == 0) {
2745		spa->spa_spares.sav_sync = B_TRUE;
2746	}
2747
2748	/*
2749	 * Load any level 2 ARC devices for this pool.
2750	 */
2751	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2752	    &spa->spa_l2cache.sav_object);
2753	if (error != 0 && error != ENOENT)
2754		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2755	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2756		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2757		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2758		    &spa->spa_l2cache.sav_config) != 0)
2759			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2760
2761		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2762		spa_load_l2cache(spa);
2763		spa_config_exit(spa, SCL_ALL, FTAG);
2764	} else if (error == 0) {
2765		spa->spa_l2cache.sav_sync = B_TRUE;
2766	}
2767
2768	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2769
2770	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2771	if (error && error != ENOENT)
2772		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2773
2774	if (error == 0) {
2775		uint64_t autoreplace;
2776
2777		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2778		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2779		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2780		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2781		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2782		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2783		    &spa->spa_dedup_ditto);
2784
2785		spa->spa_autoreplace = (autoreplace != 0);
2786	}
2787
2788	/*
2789	 * If the 'autoreplace' property is set, then post a resource notifying
2790	 * the ZFS DE that it should not issue any faults for unopenable
2791	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2792	 * unopenable vdevs so that the normal autoreplace handler can take
2793	 * over.
2794	 */
2795	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2796		spa_check_removed(spa->spa_root_vdev);
2797		/*
2798		 * For the import case, this is done in spa_import(), because
2799		 * at this point we're using the spare definitions from
2800		 * the MOS config, not necessarily from the userland config.
2801		 */
2802		if (state != SPA_LOAD_IMPORT) {
2803			spa_aux_check_removed(&spa->spa_spares);
2804			spa_aux_check_removed(&spa->spa_l2cache);
2805		}
2806	}
2807
2808	/*
2809	 * Load the vdev state for all toplevel vdevs.
2810	 */
2811	vdev_load(rvd);
2812
2813	/*
2814	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2815	 */
2816	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2817	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2818	spa_config_exit(spa, SCL_ALL, FTAG);
2819
2820	/*
2821	 * Load the DDTs (dedup tables).
2822	 */
2823	error = ddt_load(spa);
2824	if (error != 0)
2825		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2826
2827	spa_update_dspace(spa);
2828
2829	/*
2830	 * Validate the config, using the MOS config to fill in any
2831	 * information which might be missing.  If we fail to validate
2832	 * the config then declare the pool unfit for use. If we're
2833	 * assembling a pool from a split, the log is not transferred
2834	 * over.
2835	 */
2836	if (type != SPA_IMPORT_ASSEMBLE) {
2837		nvlist_t *nvconfig;
2838
2839		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2840			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2841
2842		if (!spa_config_valid(spa, nvconfig)) {
2843			nvlist_free(nvconfig);
2844			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2845			    ENXIO));
2846		}
2847		nvlist_free(nvconfig);
2848
2849		/*
2850		 * Now that we've validated the config, check the state of the
2851		 * root vdev.  If it can't be opened, it indicates one or
2852		 * more toplevel vdevs are faulted.
2853		 */
2854		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2855			return (SET_ERROR(ENXIO));
2856
2857		if (spa_writeable(spa) && spa_check_logs(spa)) {
2858			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2859			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2860		}
2861	}
2862
2863	if (missing_feat_write) {
2864		ASSERT(state == SPA_LOAD_TRYIMPORT);
2865
2866		/*
2867		 * At this point, we know that we can open the pool in
2868		 * read-only mode but not read-write mode. We now have enough
2869		 * information and can return to userland.
2870		 */
2871		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2872	}
2873
2874	/*
2875	 * We've successfully opened the pool, verify that we're ready
2876	 * to start pushing transactions.
2877	 */
2878	if (state != SPA_LOAD_TRYIMPORT) {
2879		if (error = spa_load_verify(spa))
2880			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2881			    error));
2882	}
2883
2884	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2885	    spa->spa_load_max_txg == UINT64_MAX)) {
2886		dmu_tx_t *tx;
2887		int need_update = B_FALSE;
2888		dsl_pool_t *dp = spa_get_dsl(spa);
2889
2890		ASSERT(state != SPA_LOAD_TRYIMPORT);
2891
2892		/*
2893		 * Claim log blocks that haven't been committed yet.
2894		 * This must all happen in a single txg.
2895		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2896		 * invoked from zil_claim_log_block()'s i/o done callback.
2897		 * Price of rollback is that we abandon the log.
2898		 */
2899		spa->spa_claiming = B_TRUE;
2900
2901		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2902		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2903		    zil_claim, tx, DS_FIND_CHILDREN);
2904		dmu_tx_commit(tx);
2905
2906		spa->spa_claiming = B_FALSE;
2907
2908		spa_set_log_state(spa, SPA_LOG_GOOD);
2909		spa->spa_sync_on = B_TRUE;
2910		txg_sync_start(spa->spa_dsl_pool);
2911
2912		/*
2913		 * Wait for all claims to sync.  We sync up to the highest
2914		 * claimed log block birth time so that claimed log blocks
2915		 * don't appear to be from the future.  spa_claim_max_txg
2916		 * will have been set for us by either zil_check_log_chain()
2917		 * (invoked from spa_check_logs()) or zil_claim() above.
2918		 */
2919		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2920
2921		/*
2922		 * If the config cache is stale, or we have uninitialized
2923		 * metaslabs (see spa_vdev_add()), then update the config.
2924		 *
2925		 * If this is a verbatim import, trust the current
2926		 * in-core spa_config and update the disk labels.
2927		 */
2928		if (config_cache_txg != spa->spa_config_txg ||
2929		    state == SPA_LOAD_IMPORT ||
2930		    state == SPA_LOAD_RECOVER ||
2931		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2932			need_update = B_TRUE;
2933
2934		for (int c = 0; c < rvd->vdev_children; c++)
2935			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2936				need_update = B_TRUE;
2937
2938		/*
2939		 * Update the config cache asychronously in case we're the
2940		 * root pool, in which case the config cache isn't writable yet.
2941		 */
2942		if (need_update)
2943			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2944
2945		/*
2946		 * Check all DTLs to see if anything needs resilvering.
2947		 */
2948		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2949		    vdev_resilver_needed(rvd, NULL, NULL))
2950			spa_async_request(spa, SPA_ASYNC_RESILVER);
2951
2952		/*
2953		 * Log the fact that we booted up (so that we can detect if
2954		 * we rebooted in the middle of an operation).
2955		 */
2956		spa_history_log_version(spa, "open");
2957
2958		/*
2959		 * Delete any inconsistent datasets.
2960		 */
2961		(void) dmu_objset_find(spa_name(spa),
2962		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2963
2964		/*
2965		 * Clean up any stale temporary dataset userrefs.
2966		 */
2967		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2968	}
2969
2970	return (0);
2971}
2972
2973static int
2974spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2975{
2976	int mode = spa->spa_mode;
2977
2978	spa_unload(spa);
2979	spa_deactivate(spa);
2980
2981	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2982
2983	spa_activate(spa, mode);
2984	spa_async_suspend(spa);
2985
2986	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2987}
2988
2989/*
2990 * If spa_load() fails this function will try loading prior txg's. If
2991 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2992 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2993 * function will not rewind the pool and will return the same error as
2994 * spa_load().
2995 */
2996static int
2997spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2998    uint64_t max_request, int rewind_flags)
2999{
3000	nvlist_t *loadinfo = NULL;
3001	nvlist_t *config = NULL;
3002	int load_error, rewind_error;
3003	uint64_t safe_rewind_txg;
3004	uint64_t min_txg;
3005
3006	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3007		spa->spa_load_max_txg = spa->spa_load_txg;
3008		spa_set_log_state(spa, SPA_LOG_CLEAR);
3009	} else {
3010		spa->spa_load_max_txg = max_request;
3011		if (max_request != UINT64_MAX)
3012			spa->spa_extreme_rewind = B_TRUE;
3013	}
3014
3015	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
3016	    mosconfig);
3017	if (load_error == 0)
3018		return (0);
3019
3020	if (spa->spa_root_vdev != NULL)
3021		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3022
3023	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3024	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3025
3026	if (rewind_flags & ZPOOL_NEVER_REWIND) {
3027		nvlist_free(config);
3028		return (load_error);
3029	}
3030
3031	if (state == SPA_LOAD_RECOVER) {
3032		/* Price of rolling back is discarding txgs, including log */
3033		spa_set_log_state(spa, SPA_LOG_CLEAR);
3034	} else {
3035		/*
3036		 * If we aren't rolling back save the load info from our first
3037		 * import attempt so that we can restore it after attempting
3038		 * to rewind.
3039		 */
3040		loadinfo = spa->spa_load_info;
3041		spa->spa_load_info = fnvlist_alloc();
3042	}
3043
3044	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
3045	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
3046	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
3047	    TXG_INITIAL : safe_rewind_txg;
3048
3049	/*
3050	 * Continue as long as we're finding errors, we're still within
3051	 * the acceptable rewind range, and we're still finding uberblocks
3052	 */
3053	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
3054	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
3055		if (spa->spa_load_max_txg < safe_rewind_txg)
3056			spa->spa_extreme_rewind = B_TRUE;
3057		rewind_error = spa_load_retry(spa, state, mosconfig);
3058	}
3059
3060	spa->spa_extreme_rewind = B_FALSE;
3061	spa->spa_load_max_txg = UINT64_MAX;
3062
3063	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
3064		spa_config_set(spa, config);
3065
3066	if (state == SPA_LOAD_RECOVER) {
3067		ASSERT3P(loadinfo, ==, NULL);
3068		return (rewind_error);
3069	} else {
3070		/* Store the rewind info as part of the initial load info */
3071		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
3072		    spa->spa_load_info);
3073
3074		/* Restore the initial load info */
3075		fnvlist_free(spa->spa_load_info);
3076		spa->spa_load_info = loadinfo;
3077
3078		return (load_error);
3079	}
3080}
3081
3082/*
3083 * Pool Open/Import
3084 *
3085 * The import case is identical to an open except that the configuration is sent
3086 * down from userland, instead of grabbed from the configuration cache.  For the
3087 * case of an open, the pool configuration will exist in the
3088 * POOL_STATE_UNINITIALIZED state.
3089 *
3090 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3091 * the same time open the pool, without having to keep around the spa_t in some
3092 * ambiguous state.
3093 */
3094static int
3095spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3096    nvlist_t **config)
3097{
3098	spa_t *spa;
3099	spa_load_state_t state = SPA_LOAD_OPEN;
3100	int error;
3101	int locked = B_FALSE;
3102	int firstopen = B_FALSE;
3103
3104	*spapp = NULL;
3105
3106	/*
3107	 * As disgusting as this is, we need to support recursive calls to this
3108	 * function because dsl_dir_open() is called during spa_load(), and ends
3109	 * up calling spa_open() again.  The real fix is to figure out how to
3110	 * avoid dsl_dir_open() calling this in the first place.
3111	 */
3112	if (mutex_owner(&spa_namespace_lock) != curthread) {
3113		mutex_enter(&spa_namespace_lock);
3114		locked = B_TRUE;
3115	}
3116
3117	if ((spa = spa_lookup(pool)) == NULL) {
3118		if (locked)
3119			mutex_exit(&spa_namespace_lock);
3120		return (SET_ERROR(ENOENT));
3121	}
3122
3123	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3124		zpool_rewind_policy_t policy;
3125
3126		firstopen = B_TRUE;
3127
3128		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3129		    &policy);
3130		if (policy.zrp_request & ZPOOL_DO_REWIND)
3131			state = SPA_LOAD_RECOVER;
3132
3133		spa_activate(spa, spa_mode_global);
3134
3135		if (state != SPA_LOAD_RECOVER)
3136			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3137
3138		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3139		    policy.zrp_request);
3140
3141		if (error == EBADF) {
3142			/*
3143			 * If vdev_validate() returns failure (indicated by
3144			 * EBADF), it indicates that one of the vdevs indicates
3145			 * that the pool has been exported or destroyed.  If
3146			 * this is the case, the config cache is out of sync and
3147			 * we should remove the pool from the namespace.
3148			 */
3149			spa_unload(spa);
3150			spa_deactivate(spa);
3151			spa_config_sync(spa, B_TRUE, B_TRUE);
3152			spa_remove(spa);
3153			if (locked)
3154				mutex_exit(&spa_namespace_lock);
3155			return (SET_ERROR(ENOENT));
3156		}
3157
3158		if (error) {
3159			/*
3160			 * We can't open the pool, but we still have useful
3161			 * information: the state of each vdev after the
3162			 * attempted vdev_open().  Return this to the user.
3163			 */
3164			if (config != NULL && spa->spa_config) {
3165				VERIFY(nvlist_dup(spa->spa_config, config,
3166				    KM_SLEEP) == 0);
3167				VERIFY(nvlist_add_nvlist(*config,
3168				    ZPOOL_CONFIG_LOAD_INFO,
3169				    spa->spa_load_info) == 0);
3170			}
3171			spa_unload(spa);
3172			spa_deactivate(spa);
3173			spa->spa_last_open_failed = error;
3174			if (locked)
3175				mutex_exit(&spa_namespace_lock);
3176			*spapp = NULL;
3177			return (error);
3178		}
3179	}
3180
3181	spa_open_ref(spa, tag);
3182
3183	if (config != NULL)
3184		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3185
3186	/*
3187	 * If we've recovered the pool, pass back any information we
3188	 * gathered while doing the load.
3189	 */
3190	if (state == SPA_LOAD_RECOVER) {
3191		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3192		    spa->spa_load_info) == 0);
3193	}
3194
3195	if (locked) {
3196		spa->spa_last_open_failed = 0;
3197		spa->spa_last_ubsync_txg = 0;
3198		spa->spa_load_txg = 0;
3199		mutex_exit(&spa_namespace_lock);
3200#ifdef __FreeBSD__
3201#ifdef _KERNEL
3202		if (firstopen)
3203			zvol_create_minors(spa->spa_name);
3204#endif
3205#endif
3206	}
3207
3208	*spapp = spa;
3209
3210	return (0);
3211}
3212
3213int
3214spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3215    nvlist_t **config)
3216{
3217	return (spa_open_common(name, spapp, tag, policy, config));
3218}
3219
3220int
3221spa_open(const char *name, spa_t **spapp, void *tag)
3222{
3223	return (spa_open_common(name, spapp, tag, NULL, NULL));
3224}
3225
3226/*
3227 * Lookup the given spa_t, incrementing the inject count in the process,
3228 * preventing it from being exported or destroyed.
3229 */
3230spa_t *
3231spa_inject_addref(char *name)
3232{
3233	spa_t *spa;
3234
3235	mutex_enter(&spa_namespace_lock);
3236	if ((spa = spa_lookup(name)) == NULL) {
3237		mutex_exit(&spa_namespace_lock);
3238		return (NULL);
3239	}
3240	spa->spa_inject_ref++;
3241	mutex_exit(&spa_namespace_lock);
3242
3243	return (spa);
3244}
3245
3246void
3247spa_inject_delref(spa_t *spa)
3248{
3249	mutex_enter(&spa_namespace_lock);
3250	spa->spa_inject_ref--;
3251	mutex_exit(&spa_namespace_lock);
3252}
3253
3254/*
3255 * Add spares device information to the nvlist.
3256 */
3257static void
3258spa_add_spares(spa_t *spa, nvlist_t *config)
3259{
3260	nvlist_t **spares;
3261	uint_t i, nspares;
3262	nvlist_t *nvroot;
3263	uint64_t guid;
3264	vdev_stat_t *vs;
3265	uint_t vsc;
3266	uint64_t pool;
3267
3268	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3269
3270	if (spa->spa_spares.sav_count == 0)
3271		return;
3272
3273	VERIFY(nvlist_lookup_nvlist(config,
3274	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3275	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3276	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3277	if (nspares != 0) {
3278		VERIFY(nvlist_add_nvlist_array(nvroot,
3279		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3280		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3281		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3282
3283		/*
3284		 * Go through and find any spares which have since been
3285		 * repurposed as an active spare.  If this is the case, update
3286		 * their status appropriately.
3287		 */
3288		for (i = 0; i < nspares; i++) {
3289			VERIFY(nvlist_lookup_uint64(spares[i],
3290			    ZPOOL_CONFIG_GUID, &guid) == 0);
3291			if (spa_spare_exists(guid, &pool, NULL) &&
3292			    pool != 0ULL) {
3293				VERIFY(nvlist_lookup_uint64_array(
3294				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3295				    (uint64_t **)&vs, &vsc) == 0);
3296				vs->vs_state = VDEV_STATE_CANT_OPEN;
3297				vs->vs_aux = VDEV_AUX_SPARED;
3298			}
3299		}
3300	}
3301}
3302
3303/*
3304 * Add l2cache device information to the nvlist, including vdev stats.
3305 */
3306static void
3307spa_add_l2cache(spa_t *spa, nvlist_t *config)
3308{
3309	nvlist_t **l2cache;
3310	uint_t i, j, nl2cache;
3311	nvlist_t *nvroot;
3312	uint64_t guid;
3313	vdev_t *vd;
3314	vdev_stat_t *vs;
3315	uint_t vsc;
3316
3317	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3318
3319	if (spa->spa_l2cache.sav_count == 0)
3320		return;
3321
3322	VERIFY(nvlist_lookup_nvlist(config,
3323	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3324	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3325	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3326	if (nl2cache != 0) {
3327		VERIFY(nvlist_add_nvlist_array(nvroot,
3328		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3329		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3330		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3331
3332		/*
3333		 * Update level 2 cache device stats.
3334		 */
3335
3336		for (i = 0; i < nl2cache; i++) {
3337			VERIFY(nvlist_lookup_uint64(l2cache[i],
3338			    ZPOOL_CONFIG_GUID, &guid) == 0);
3339
3340			vd = NULL;
3341			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3342				if (guid ==
3343				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3344					vd = spa->spa_l2cache.sav_vdevs[j];
3345					break;
3346				}
3347			}
3348			ASSERT(vd != NULL);
3349
3350			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3351			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3352			    == 0);
3353			vdev_get_stats(vd, vs);
3354		}
3355	}
3356}
3357
3358static void
3359spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3360{
3361	nvlist_t *features;
3362	zap_cursor_t zc;
3363	zap_attribute_t za;
3364
3365	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3366	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3367
3368	/* We may be unable to read features if pool is suspended. */
3369	if (spa_suspended(spa))
3370		goto out;
3371
3372	if (spa->spa_feat_for_read_obj != 0) {
3373		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3374		    spa->spa_feat_for_read_obj);
3375		    zap_cursor_retrieve(&zc, &za) == 0;
3376		    zap_cursor_advance(&zc)) {
3377			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3378			    za.za_num_integers == 1);
3379			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3380			    za.za_first_integer));
3381		}
3382		zap_cursor_fini(&zc);
3383	}
3384
3385	if (spa->spa_feat_for_write_obj != 0) {
3386		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3387		    spa->spa_feat_for_write_obj);
3388		    zap_cursor_retrieve(&zc, &za) == 0;
3389		    zap_cursor_advance(&zc)) {
3390			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3391			    za.za_num_integers == 1);
3392			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3393			    za.za_first_integer));
3394		}
3395		zap_cursor_fini(&zc);
3396	}
3397
3398out:
3399	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3400	    features) == 0);
3401	nvlist_free(features);
3402}
3403
3404int
3405spa_get_stats(const char *name, nvlist_t **config,
3406    char *altroot, size_t buflen)
3407{
3408	int error;
3409	spa_t *spa;
3410
3411	*config = NULL;
3412	error = spa_open_common(name, &spa, FTAG, NULL, config);
3413
3414	if (spa != NULL) {
3415		/*
3416		 * This still leaves a window of inconsistency where the spares
3417		 * or l2cache devices could change and the config would be
3418		 * self-inconsistent.
3419		 */
3420		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3421
3422		if (*config != NULL) {
3423			uint64_t loadtimes[2];
3424
3425			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3426			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3427			VERIFY(nvlist_add_uint64_array(*config,
3428			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3429
3430			VERIFY(nvlist_add_uint64(*config,
3431			    ZPOOL_CONFIG_ERRCOUNT,
3432			    spa_get_errlog_size(spa)) == 0);
3433
3434			if (spa_suspended(spa))
3435				VERIFY(nvlist_add_uint64(*config,
3436				    ZPOOL_CONFIG_SUSPENDED,
3437				    spa->spa_failmode) == 0);
3438
3439			spa_add_spares(spa, *config);
3440			spa_add_l2cache(spa, *config);
3441			spa_add_feature_stats(spa, *config);
3442		}
3443	}
3444
3445	/*
3446	 * We want to get the alternate root even for faulted pools, so we cheat
3447	 * and call spa_lookup() directly.
3448	 */
3449	if (altroot) {
3450		if (spa == NULL) {
3451			mutex_enter(&spa_namespace_lock);
3452			spa = spa_lookup(name);
3453			if (spa)
3454				spa_altroot(spa, altroot, buflen);
3455			else
3456				altroot[0] = '\0';
3457			spa = NULL;
3458			mutex_exit(&spa_namespace_lock);
3459		} else {
3460			spa_altroot(spa, altroot, buflen);
3461		}
3462	}
3463
3464	if (spa != NULL) {
3465		spa_config_exit(spa, SCL_CONFIG, FTAG);
3466		spa_close(spa, FTAG);
3467	}
3468
3469	return (error);
3470}
3471
3472/*
3473 * Validate that the auxiliary device array is well formed.  We must have an
3474 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3475 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3476 * specified, as long as they are well-formed.
3477 */
3478static int
3479spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3480    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3481    vdev_labeltype_t label)
3482{
3483	nvlist_t **dev;
3484	uint_t i, ndev;
3485	vdev_t *vd;
3486	int error;
3487
3488	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3489
3490	/*
3491	 * It's acceptable to have no devs specified.
3492	 */
3493	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3494		return (0);
3495
3496	if (ndev == 0)
3497		return (SET_ERROR(EINVAL));
3498
3499	/*
3500	 * Make sure the pool is formatted with a version that supports this
3501	 * device type.
3502	 */
3503	if (spa_version(spa) < version)
3504		return (SET_ERROR(ENOTSUP));
3505
3506	/*
3507	 * Set the pending device list so we correctly handle device in-use
3508	 * checking.
3509	 */
3510	sav->sav_pending = dev;
3511	sav->sav_npending = ndev;
3512
3513	for (i = 0; i < ndev; i++) {
3514		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3515		    mode)) != 0)
3516			goto out;
3517
3518		if (!vd->vdev_ops->vdev_op_leaf) {
3519			vdev_free(vd);
3520			error = SET_ERROR(EINVAL);
3521			goto out;
3522		}
3523
3524		/*
3525		 * The L2ARC currently only supports disk devices in
3526		 * kernel context.  For user-level testing, we allow it.
3527		 */
3528#ifdef _KERNEL
3529		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3530		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3531			error = SET_ERROR(ENOTBLK);
3532			vdev_free(vd);
3533			goto out;
3534		}
3535#endif
3536		vd->vdev_top = vd;
3537
3538		if ((error = vdev_open(vd)) == 0 &&
3539		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3540			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3541			    vd->vdev_guid) == 0);
3542		}
3543
3544		vdev_free(vd);
3545
3546		if (error &&
3547		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3548			goto out;
3549		else
3550			error = 0;
3551	}
3552
3553out:
3554	sav->sav_pending = NULL;
3555	sav->sav_npending = 0;
3556	return (error);
3557}
3558
3559static int
3560spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3561{
3562	int error;
3563
3564	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3565
3566	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3567	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3568	    VDEV_LABEL_SPARE)) != 0) {
3569		return (error);
3570	}
3571
3572	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3573	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3574	    VDEV_LABEL_L2CACHE));
3575}
3576
3577static void
3578spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3579    const char *config)
3580{
3581	int i;
3582
3583	if (sav->sav_config != NULL) {
3584		nvlist_t **olddevs;
3585		uint_t oldndevs;
3586		nvlist_t **newdevs;
3587
3588		/*
3589		 * Generate new dev list by concatentating with the
3590		 * current dev list.
3591		 */
3592		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3593		    &olddevs, &oldndevs) == 0);
3594
3595		newdevs = kmem_alloc(sizeof (void *) *
3596		    (ndevs + oldndevs), KM_SLEEP);
3597		for (i = 0; i < oldndevs; i++)
3598			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3599			    KM_SLEEP) == 0);
3600		for (i = 0; i < ndevs; i++)
3601			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3602			    KM_SLEEP) == 0);
3603
3604		VERIFY(nvlist_remove(sav->sav_config, config,
3605		    DATA_TYPE_NVLIST_ARRAY) == 0);
3606
3607		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3608		    config, newdevs, ndevs + oldndevs) == 0);
3609		for (i = 0; i < oldndevs + ndevs; i++)
3610			nvlist_free(newdevs[i]);
3611		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3612	} else {
3613		/*
3614		 * Generate a new dev list.
3615		 */
3616		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3617		    KM_SLEEP) == 0);
3618		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3619		    devs, ndevs) == 0);
3620	}
3621}
3622
3623/*
3624 * Stop and drop level 2 ARC devices
3625 */
3626void
3627spa_l2cache_drop(spa_t *spa)
3628{
3629	vdev_t *vd;
3630	int i;
3631	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3632
3633	for (i = 0; i < sav->sav_count; i++) {
3634		uint64_t pool;
3635
3636		vd = sav->sav_vdevs[i];
3637		ASSERT(vd != NULL);
3638
3639		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3640		    pool != 0ULL && l2arc_vdev_present(vd))
3641			l2arc_remove_vdev(vd);
3642	}
3643}
3644
3645/*
3646 * Pool Creation
3647 */
3648int
3649spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3650    nvlist_t *zplprops)
3651{
3652	spa_t *spa;
3653	char *altroot = NULL;
3654	vdev_t *rvd;
3655	dsl_pool_t *dp;
3656	dmu_tx_t *tx;
3657	int error = 0;
3658	uint64_t txg = TXG_INITIAL;
3659	nvlist_t **spares, **l2cache;
3660	uint_t nspares, nl2cache;
3661	uint64_t version, obj;
3662	boolean_t has_features;
3663
3664	/*
3665	 * If this pool already exists, return failure.
3666	 */
3667	mutex_enter(&spa_namespace_lock);
3668	if (spa_lookup(pool) != NULL) {
3669		mutex_exit(&spa_namespace_lock);
3670		return (SET_ERROR(EEXIST));
3671	}
3672
3673	/*
3674	 * Allocate a new spa_t structure.
3675	 */
3676	(void) nvlist_lookup_string(props,
3677	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3678	spa = spa_add(pool, NULL, altroot);
3679	spa_activate(spa, spa_mode_global);
3680
3681	if (props && (error = spa_prop_validate(spa, props))) {
3682		spa_deactivate(spa);
3683		spa_remove(spa);
3684		mutex_exit(&spa_namespace_lock);
3685		return (error);
3686	}
3687
3688	has_features = B_FALSE;
3689	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3690	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3691		if (zpool_prop_feature(nvpair_name(elem)))
3692			has_features = B_TRUE;
3693	}
3694
3695	if (has_features || nvlist_lookup_uint64(props,
3696	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3697		version = SPA_VERSION;
3698	}
3699	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3700
3701	spa->spa_first_txg = txg;
3702	spa->spa_uberblock.ub_txg = txg - 1;
3703	spa->spa_uberblock.ub_version = version;
3704	spa->spa_ubsync = spa->spa_uberblock;
3705
3706	/*
3707	 * Create "The Godfather" zio to hold all async IOs
3708	 */
3709	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3710	    KM_SLEEP);
3711	for (int i = 0; i < max_ncpus; i++) {
3712		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3713		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3714		    ZIO_FLAG_GODFATHER);
3715	}
3716
3717	/*
3718	 * Create the root vdev.
3719	 */
3720	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3721
3722	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3723
3724	ASSERT(error != 0 || rvd != NULL);
3725	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3726
3727	if (error == 0 && !zfs_allocatable_devs(nvroot))
3728		error = SET_ERROR(EINVAL);
3729
3730	if (error == 0 &&
3731	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3732	    (error = spa_validate_aux(spa, nvroot, txg,
3733	    VDEV_ALLOC_ADD)) == 0) {
3734		for (int c = 0; c < rvd->vdev_children; c++) {
3735			vdev_ashift_optimize(rvd->vdev_child[c]);
3736			vdev_metaslab_set_size(rvd->vdev_child[c]);
3737			vdev_expand(rvd->vdev_child[c], txg);
3738		}
3739	}
3740
3741	spa_config_exit(spa, SCL_ALL, FTAG);
3742
3743	if (error != 0) {
3744		spa_unload(spa);
3745		spa_deactivate(spa);
3746		spa_remove(spa);
3747		mutex_exit(&spa_namespace_lock);
3748		return (error);
3749	}
3750
3751	/*
3752	 * Get the list of spares, if specified.
3753	 */
3754	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3755	    &spares, &nspares) == 0) {
3756		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3757		    KM_SLEEP) == 0);
3758		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3759		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3760		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3761		spa_load_spares(spa);
3762		spa_config_exit(spa, SCL_ALL, FTAG);
3763		spa->spa_spares.sav_sync = B_TRUE;
3764	}
3765
3766	/*
3767	 * Get the list of level 2 cache devices, if specified.
3768	 */
3769	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3770	    &l2cache, &nl2cache) == 0) {
3771		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3772		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3773		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3774		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3775		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3776		spa_load_l2cache(spa);
3777		spa_config_exit(spa, SCL_ALL, FTAG);
3778		spa->spa_l2cache.sav_sync = B_TRUE;
3779	}
3780
3781	spa->spa_is_initializing = B_TRUE;
3782	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3783	spa->spa_meta_objset = dp->dp_meta_objset;
3784	spa->spa_is_initializing = B_FALSE;
3785
3786	/*
3787	 * Create DDTs (dedup tables).
3788	 */
3789	ddt_create(spa);
3790
3791	spa_update_dspace(spa);
3792
3793	tx = dmu_tx_create_assigned(dp, txg);
3794
3795	/*
3796	 * Create the pool config object.
3797	 */
3798	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3799	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3800	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3801
3802	if (zap_add(spa->spa_meta_objset,
3803	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3804	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3805		cmn_err(CE_PANIC, "failed to add pool config");
3806	}
3807
3808	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3809		spa_feature_create_zap_objects(spa, tx);
3810
3811	if (zap_add(spa->spa_meta_objset,
3812	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3813	    sizeof (uint64_t), 1, &version, tx) != 0) {
3814		cmn_err(CE_PANIC, "failed to add pool version");
3815	}
3816
3817	/* Newly created pools with the right version are always deflated. */
3818	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3819		spa->spa_deflate = TRUE;
3820		if (zap_add(spa->spa_meta_objset,
3821		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3822		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3823			cmn_err(CE_PANIC, "failed to add deflate");
3824		}
3825	}
3826
3827	/*
3828	 * Create the deferred-free bpobj.  Turn off compression
3829	 * because sync-to-convergence takes longer if the blocksize
3830	 * keeps changing.
3831	 */
3832	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3833	dmu_object_set_compress(spa->spa_meta_objset, obj,
3834	    ZIO_COMPRESS_OFF, tx);
3835	if (zap_add(spa->spa_meta_objset,
3836	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3837	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3838		cmn_err(CE_PANIC, "failed to add bpobj");
3839	}
3840	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3841	    spa->spa_meta_objset, obj));
3842
3843	/*
3844	 * Create the pool's history object.
3845	 */
3846	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3847		spa_history_create_obj(spa, tx);
3848
3849	/*
3850	 * Generate some random noise for salted checksums to operate on.
3851	 */
3852	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3853	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3854
3855	/*
3856	 * Set pool properties.
3857	 */
3858	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3859	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3860	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3861	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3862
3863	if (props != NULL) {
3864		spa_configfile_set(spa, props, B_FALSE);
3865		spa_sync_props(props, tx);
3866	}
3867
3868	dmu_tx_commit(tx);
3869
3870	spa->spa_sync_on = B_TRUE;
3871	txg_sync_start(spa->spa_dsl_pool);
3872
3873	/*
3874	 * We explicitly wait for the first transaction to complete so that our
3875	 * bean counters are appropriately updated.
3876	 */
3877	txg_wait_synced(spa->spa_dsl_pool, txg);
3878
3879	spa_config_sync(spa, B_FALSE, B_TRUE);
3880	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3881
3882	spa_history_log_version(spa, "create");
3883
3884	/*
3885	 * Don't count references from objsets that are already closed
3886	 * and are making their way through the eviction process.
3887	 */
3888	spa_evicting_os_wait(spa);
3889	spa->spa_minref = refcount_count(&spa->spa_refcount);
3890
3891	mutex_exit(&spa_namespace_lock);
3892
3893	return (0);
3894}
3895
3896#ifdef _KERNEL
3897#ifdef illumos
3898/*
3899 * Get the root pool information from the root disk, then import the root pool
3900 * during the system boot up time.
3901 */
3902extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3903
3904static nvlist_t *
3905spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3906{
3907	nvlist_t *config;
3908	nvlist_t *nvtop, *nvroot;
3909	uint64_t pgid;
3910
3911	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3912		return (NULL);
3913
3914	/*
3915	 * Add this top-level vdev to the child array.
3916	 */
3917	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3918	    &nvtop) == 0);
3919	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3920	    &pgid) == 0);
3921	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3922
3923	/*
3924	 * Put this pool's top-level vdevs into a root vdev.
3925	 */
3926	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3927	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3928	    VDEV_TYPE_ROOT) == 0);
3929	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3930	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3931	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3932	    &nvtop, 1) == 0);
3933
3934	/*
3935	 * Replace the existing vdev_tree with the new root vdev in
3936	 * this pool's configuration (remove the old, add the new).
3937	 */
3938	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3939	nvlist_free(nvroot);
3940	return (config);
3941}
3942
3943/*
3944 * Walk the vdev tree and see if we can find a device with "better"
3945 * configuration. A configuration is "better" if the label on that
3946 * device has a more recent txg.
3947 */
3948static void
3949spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3950{
3951	for (int c = 0; c < vd->vdev_children; c++)
3952		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3953
3954	if (vd->vdev_ops->vdev_op_leaf) {
3955		nvlist_t *label;
3956		uint64_t label_txg;
3957
3958		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3959		    &label) != 0)
3960			return;
3961
3962		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3963		    &label_txg) == 0);
3964
3965		/*
3966		 * Do we have a better boot device?
3967		 */
3968		if (label_txg > *txg) {
3969			*txg = label_txg;
3970			*avd = vd;
3971		}
3972		nvlist_free(label);
3973	}
3974}
3975
3976/*
3977 * Import a root pool.
3978 *
3979 * For x86. devpath_list will consist of devid and/or physpath name of
3980 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3981 * The GRUB "findroot" command will return the vdev we should boot.
3982 *
3983 * For Sparc, devpath_list consists the physpath name of the booting device
3984 * no matter the rootpool is a single device pool or a mirrored pool.
3985 * e.g.
3986 *	"/pci@1f,0/ide@d/disk@0,0:a"
3987 */
3988int
3989spa_import_rootpool(char *devpath, char *devid)
3990{
3991	spa_t *spa;
3992	vdev_t *rvd, *bvd, *avd = NULL;
3993	nvlist_t *config, *nvtop;
3994	uint64_t guid, txg;
3995	char *pname;
3996	int error;
3997
3998	/*
3999	 * Read the label from the boot device and generate a configuration.
4000	 */
4001	config = spa_generate_rootconf(devpath, devid, &guid);
4002#if defined(_OBP) && defined(_KERNEL)
4003	if (config == NULL) {
4004		if (strstr(devpath, "/iscsi/ssd") != NULL) {
4005			/* iscsi boot */
4006			get_iscsi_bootpath_phy(devpath);
4007			config = spa_generate_rootconf(devpath, devid, &guid);
4008		}
4009	}
4010#endif
4011	if (config == NULL) {
4012		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
4013		    devpath);
4014		return (SET_ERROR(EIO));
4015	}
4016
4017	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4018	    &pname) == 0);
4019	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
4020
4021	mutex_enter(&spa_namespace_lock);
4022	if ((spa = spa_lookup(pname)) != NULL) {
4023		/*
4024		 * Remove the existing root pool from the namespace so that we
4025		 * can replace it with the correct config we just read in.
4026		 */
4027		spa_remove(spa);
4028	}
4029
4030	spa = spa_add(pname, config, NULL);
4031	spa->spa_is_root = B_TRUE;
4032	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4033
4034	/*
4035	 * Build up a vdev tree based on the boot device's label config.
4036	 */
4037	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4038	    &nvtop) == 0);
4039	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4040	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4041	    VDEV_ALLOC_ROOTPOOL);
4042	spa_config_exit(spa, SCL_ALL, FTAG);
4043	if (error) {
4044		mutex_exit(&spa_namespace_lock);
4045		nvlist_free(config);
4046		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4047		    pname);
4048		return (error);
4049	}
4050
4051	/*
4052	 * Get the boot vdev.
4053	 */
4054	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
4055		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
4056		    (u_longlong_t)guid);
4057		error = SET_ERROR(ENOENT);
4058		goto out;
4059	}
4060
4061	/*
4062	 * Determine if there is a better boot device.
4063	 */
4064	avd = bvd;
4065	spa_alt_rootvdev(rvd, &avd, &txg);
4066	if (avd != bvd) {
4067		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4068		    "try booting from '%s'", avd->vdev_path);
4069		error = SET_ERROR(EINVAL);
4070		goto out;
4071	}
4072
4073	/*
4074	 * If the boot device is part of a spare vdev then ensure that
4075	 * we're booting off the active spare.
4076	 */
4077	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4078	    !bvd->vdev_isspare) {
4079		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4080		    "try booting from '%s'",
4081		    bvd->vdev_parent->
4082		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4083		error = SET_ERROR(EINVAL);
4084		goto out;
4085	}
4086
4087	error = 0;
4088out:
4089	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4090	vdev_free(rvd);
4091	spa_config_exit(spa, SCL_ALL, FTAG);
4092	mutex_exit(&spa_namespace_lock);
4093
4094	nvlist_free(config);
4095	return (error);
4096}
4097
4098#else	/* !illumos */
4099
4100extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4101    uint64_t *count);
4102
4103static nvlist_t *
4104spa_generate_rootconf(const char *name)
4105{
4106	nvlist_t **configs, **tops;
4107	nvlist_t *config;
4108	nvlist_t *best_cfg, *nvtop, *nvroot;
4109	uint64_t *holes;
4110	uint64_t best_txg;
4111	uint64_t nchildren;
4112	uint64_t pgid;
4113	uint64_t count;
4114	uint64_t i;
4115	uint_t   nholes;
4116
4117	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4118		return (NULL);
4119
4120	ASSERT3U(count, !=, 0);
4121	best_txg = 0;
4122	for (i = 0; i < count; i++) {
4123		uint64_t txg;
4124
4125		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4126		    &txg) == 0);
4127		if (txg > best_txg) {
4128			best_txg = txg;
4129			best_cfg = configs[i];
4130		}
4131	}
4132
4133	nchildren = 1;
4134	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4135	holes = NULL;
4136	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4137	    &holes, &nholes);
4138
4139	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4140	for (i = 0; i < nchildren; i++) {
4141		if (i >= count)
4142			break;
4143		if (configs[i] == NULL)
4144			continue;
4145		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4146		    &nvtop) == 0);
4147		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4148	}
4149	for (i = 0; holes != NULL && i < nholes; i++) {
4150		if (i >= nchildren)
4151			continue;
4152		if (tops[holes[i]] != NULL)
4153			continue;
4154		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4155		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4156		    VDEV_TYPE_HOLE) == 0);
4157		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4158		    holes[i]) == 0);
4159		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4160		    0) == 0);
4161	}
4162	for (i = 0; i < nchildren; i++) {
4163		if (tops[i] != NULL)
4164			continue;
4165		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4166		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4167		    VDEV_TYPE_MISSING) == 0);
4168		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4169		    i) == 0);
4170		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4171		    0) == 0);
4172	}
4173
4174	/*
4175	 * Create pool config based on the best vdev config.
4176	 */
4177	nvlist_dup(best_cfg, &config, KM_SLEEP);
4178
4179	/*
4180	 * Put this pool's top-level vdevs into a root vdev.
4181	 */
4182	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4183	    &pgid) == 0);
4184	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4185	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4186	    VDEV_TYPE_ROOT) == 0);
4187	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4188	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4189	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4190	    tops, nchildren) == 0);
4191
4192	/*
4193	 * Replace the existing vdev_tree with the new root vdev in
4194	 * this pool's configuration (remove the old, add the new).
4195	 */
4196	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4197
4198	/*
4199	 * Drop vdev config elements that should not be present at pool level.
4200	 */
4201	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4202	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4203
4204	for (i = 0; i < count; i++)
4205		nvlist_free(configs[i]);
4206	kmem_free(configs, count * sizeof(void *));
4207	for (i = 0; i < nchildren; i++)
4208		nvlist_free(tops[i]);
4209	kmem_free(tops, nchildren * sizeof(void *));
4210	nvlist_free(nvroot);
4211	return (config);
4212}
4213
4214int
4215spa_import_rootpool(const char *name)
4216{
4217	spa_t *spa;
4218	vdev_t *rvd, *bvd, *avd = NULL;
4219	nvlist_t *config, *nvtop;
4220	uint64_t txg;
4221	char *pname;
4222	int error;
4223
4224	/*
4225	 * Read the label from the boot device and generate a configuration.
4226	 */
4227	config = spa_generate_rootconf(name);
4228
4229	mutex_enter(&spa_namespace_lock);
4230	if (config != NULL) {
4231		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4232		    &pname) == 0 && strcmp(name, pname) == 0);
4233		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4234		    == 0);
4235
4236		if ((spa = spa_lookup(pname)) != NULL) {
4237			/*
4238			 * Remove the existing root pool from the namespace so
4239			 * that we can replace it with the correct config
4240			 * we just read in.
4241			 */
4242			spa_remove(spa);
4243		}
4244		spa = spa_add(pname, config, NULL);
4245
4246		/*
4247		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4248		 * via spa_version().
4249		 */
4250		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4251		    &spa->spa_ubsync.ub_version) != 0)
4252			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4253	} else if ((spa = spa_lookup(name)) == NULL) {
4254		mutex_exit(&spa_namespace_lock);
4255		nvlist_free(config);
4256		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4257		    name);
4258		return (EIO);
4259	} else {
4260		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4261	}
4262	spa->spa_is_root = B_TRUE;
4263	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4264
4265	/*
4266	 * Build up a vdev tree based on the boot device's label config.
4267	 */
4268	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4269	    &nvtop) == 0);
4270	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4271	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4272	    VDEV_ALLOC_ROOTPOOL);
4273	spa_config_exit(spa, SCL_ALL, FTAG);
4274	if (error) {
4275		mutex_exit(&spa_namespace_lock);
4276		nvlist_free(config);
4277		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4278		    pname);
4279		return (error);
4280	}
4281
4282	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4283	vdev_free(rvd);
4284	spa_config_exit(spa, SCL_ALL, FTAG);
4285	mutex_exit(&spa_namespace_lock);
4286
4287	nvlist_free(config);
4288	return (0);
4289}
4290
4291#endif	/* illumos */
4292#endif	/* _KERNEL */
4293
4294/*
4295 * Import a non-root pool into the system.
4296 */
4297int
4298spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4299{
4300	spa_t *spa;
4301	char *altroot = NULL;
4302	spa_load_state_t state = SPA_LOAD_IMPORT;
4303	zpool_rewind_policy_t policy;
4304	uint64_t mode = spa_mode_global;
4305	uint64_t readonly = B_FALSE;
4306	int error;
4307	nvlist_t *nvroot;
4308	nvlist_t **spares, **l2cache;
4309	uint_t nspares, nl2cache;
4310
4311	/*
4312	 * If a pool with this name exists, return failure.
4313	 */
4314	mutex_enter(&spa_namespace_lock);
4315	if (spa_lookup(pool) != NULL) {
4316		mutex_exit(&spa_namespace_lock);
4317		return (SET_ERROR(EEXIST));
4318	}
4319
4320	/*
4321	 * Create and initialize the spa structure.
4322	 */
4323	(void) nvlist_lookup_string(props,
4324	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4325	(void) nvlist_lookup_uint64(props,
4326	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4327	if (readonly)
4328		mode = FREAD;
4329	spa = spa_add(pool, config, altroot);
4330	spa->spa_import_flags = flags;
4331
4332	/*
4333	 * Verbatim import - Take a pool and insert it into the namespace
4334	 * as if it had been loaded at boot.
4335	 */
4336	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4337		if (props != NULL)
4338			spa_configfile_set(spa, props, B_FALSE);
4339
4340		spa_config_sync(spa, B_FALSE, B_TRUE);
4341		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4342
4343		mutex_exit(&spa_namespace_lock);
4344		return (0);
4345	}
4346
4347	spa_activate(spa, mode);
4348
4349	/*
4350	 * Don't start async tasks until we know everything is healthy.
4351	 */
4352	spa_async_suspend(spa);
4353
4354	zpool_get_rewind_policy(config, &policy);
4355	if (policy.zrp_request & ZPOOL_DO_REWIND)
4356		state = SPA_LOAD_RECOVER;
4357
4358	/*
4359	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4360	 * because the user-supplied config is actually the one to trust when
4361	 * doing an import.
4362	 */
4363	if (state != SPA_LOAD_RECOVER)
4364		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4365
4366	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4367	    policy.zrp_request);
4368
4369	/*
4370	 * Propagate anything learned while loading the pool and pass it
4371	 * back to caller (i.e. rewind info, missing devices, etc).
4372	 */
4373	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4374	    spa->spa_load_info) == 0);
4375
4376	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4377	/*
4378	 * Toss any existing sparelist, as it doesn't have any validity
4379	 * anymore, and conflicts with spa_has_spare().
4380	 */
4381	if (spa->spa_spares.sav_config) {
4382		nvlist_free(spa->spa_spares.sav_config);
4383		spa->spa_spares.sav_config = NULL;
4384		spa_load_spares(spa);
4385	}
4386	if (spa->spa_l2cache.sav_config) {
4387		nvlist_free(spa->spa_l2cache.sav_config);
4388		spa->spa_l2cache.sav_config = NULL;
4389		spa_load_l2cache(spa);
4390	}
4391
4392	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4393	    &nvroot) == 0);
4394	if (error == 0)
4395		error = spa_validate_aux(spa, nvroot, -1ULL,
4396		    VDEV_ALLOC_SPARE);
4397	if (error == 0)
4398		error = spa_validate_aux(spa, nvroot, -1ULL,
4399		    VDEV_ALLOC_L2CACHE);
4400	spa_config_exit(spa, SCL_ALL, FTAG);
4401
4402	if (props != NULL)
4403		spa_configfile_set(spa, props, B_FALSE);
4404
4405	if (error != 0 || (props && spa_writeable(spa) &&
4406	    (error = spa_prop_set(spa, props)))) {
4407		spa_unload(spa);
4408		spa_deactivate(spa);
4409		spa_remove(spa);
4410		mutex_exit(&spa_namespace_lock);
4411		return (error);
4412	}
4413
4414	spa_async_resume(spa);
4415
4416	/*
4417	 * Override any spares and level 2 cache devices as specified by
4418	 * the user, as these may have correct device names/devids, etc.
4419	 */
4420	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4421	    &spares, &nspares) == 0) {
4422		if (spa->spa_spares.sav_config)
4423			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4424			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4425		else
4426			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4427			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4428		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4429		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4430		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4431		spa_load_spares(spa);
4432		spa_config_exit(spa, SCL_ALL, FTAG);
4433		spa->spa_spares.sav_sync = B_TRUE;
4434	}
4435	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4436	    &l2cache, &nl2cache) == 0) {
4437		if (spa->spa_l2cache.sav_config)
4438			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4439			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4440		else
4441			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4442			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4443		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4444		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4445		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4446		spa_load_l2cache(spa);
4447		spa_config_exit(spa, SCL_ALL, FTAG);
4448		spa->spa_l2cache.sav_sync = B_TRUE;
4449	}
4450
4451	/*
4452	 * Check for any removed devices.
4453	 */
4454	if (spa->spa_autoreplace) {
4455		spa_aux_check_removed(&spa->spa_spares);
4456		spa_aux_check_removed(&spa->spa_l2cache);
4457	}
4458
4459	if (spa_writeable(spa)) {
4460		/*
4461		 * Update the config cache to include the newly-imported pool.
4462		 */
4463		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4464	}
4465
4466	/*
4467	 * It's possible that the pool was expanded while it was exported.
4468	 * We kick off an async task to handle this for us.
4469	 */
4470	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4471
4472	spa_history_log_version(spa, "import");
4473
4474	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4475
4476	mutex_exit(&spa_namespace_lock);
4477
4478#ifdef __FreeBSD__
4479#ifdef _KERNEL
4480	zvol_create_minors(pool);
4481#endif
4482#endif
4483	return (0);
4484}
4485
4486nvlist_t *
4487spa_tryimport(nvlist_t *tryconfig)
4488{
4489	nvlist_t *config = NULL;
4490	char *poolname;
4491	spa_t *spa;
4492	uint64_t state;
4493	int error;
4494
4495	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4496		return (NULL);
4497
4498	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4499		return (NULL);
4500
4501	/*
4502	 * Create and initialize the spa structure.
4503	 */
4504	mutex_enter(&spa_namespace_lock);
4505	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4506	spa_activate(spa, FREAD);
4507
4508	/*
4509	 * Pass off the heavy lifting to spa_load().
4510	 * Pass TRUE for mosconfig because the user-supplied config
4511	 * is actually the one to trust when doing an import.
4512	 */
4513	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4514
4515	/*
4516	 * If 'tryconfig' was at least parsable, return the current config.
4517	 */
4518	if (spa->spa_root_vdev != NULL) {
4519		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4520		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4521		    poolname) == 0);
4522		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4523		    state) == 0);
4524		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4525		    spa->spa_uberblock.ub_timestamp) == 0);
4526		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4527		    spa->spa_load_info) == 0);
4528
4529		/*
4530		 * If the bootfs property exists on this pool then we
4531		 * copy it out so that external consumers can tell which
4532		 * pools are bootable.
4533		 */
4534		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4535			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4536
4537			/*
4538			 * We have to play games with the name since the
4539			 * pool was opened as TRYIMPORT_NAME.
4540			 */
4541			if (dsl_dsobj_to_dsname(spa_name(spa),
4542			    spa->spa_bootfs, tmpname) == 0) {
4543				char *cp;
4544				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4545
4546				cp = strchr(tmpname, '/');
4547				if (cp == NULL) {
4548					(void) strlcpy(dsname, tmpname,
4549					    MAXPATHLEN);
4550				} else {
4551					(void) snprintf(dsname, MAXPATHLEN,
4552					    "%s/%s", poolname, ++cp);
4553				}
4554				VERIFY(nvlist_add_string(config,
4555				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4556				kmem_free(dsname, MAXPATHLEN);
4557			}
4558			kmem_free(tmpname, MAXPATHLEN);
4559		}
4560
4561		/*
4562		 * Add the list of hot spares and level 2 cache devices.
4563		 */
4564		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4565		spa_add_spares(spa, config);
4566		spa_add_l2cache(spa, config);
4567		spa_config_exit(spa, SCL_CONFIG, FTAG);
4568	}
4569
4570	spa_unload(spa);
4571	spa_deactivate(spa);
4572	spa_remove(spa);
4573	mutex_exit(&spa_namespace_lock);
4574
4575	return (config);
4576}
4577
4578/*
4579 * Pool export/destroy
4580 *
4581 * The act of destroying or exporting a pool is very simple.  We make sure there
4582 * is no more pending I/O and any references to the pool are gone.  Then, we
4583 * update the pool state and sync all the labels to disk, removing the
4584 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4585 * we don't sync the labels or remove the configuration cache.
4586 */
4587static int
4588spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4589    boolean_t force, boolean_t hardforce)
4590{
4591	spa_t *spa;
4592
4593	if (oldconfig)
4594		*oldconfig = NULL;
4595
4596	if (!(spa_mode_global & FWRITE))
4597		return (SET_ERROR(EROFS));
4598
4599	mutex_enter(&spa_namespace_lock);
4600	if ((spa = spa_lookup(pool)) == NULL) {
4601		mutex_exit(&spa_namespace_lock);
4602		return (SET_ERROR(ENOENT));
4603	}
4604
4605	/*
4606	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4607	 * reacquire the namespace lock, and see if we can export.
4608	 */
4609	spa_open_ref(spa, FTAG);
4610	mutex_exit(&spa_namespace_lock);
4611	spa_async_suspend(spa);
4612	mutex_enter(&spa_namespace_lock);
4613	spa_close(spa, FTAG);
4614
4615	/*
4616	 * The pool will be in core if it's openable,
4617	 * in which case we can modify its state.
4618	 */
4619	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4620		/*
4621		 * Objsets may be open only because they're dirty, so we
4622		 * have to force it to sync before checking spa_refcnt.
4623		 */
4624		txg_wait_synced(spa->spa_dsl_pool, 0);
4625		spa_evicting_os_wait(spa);
4626
4627		/*
4628		 * A pool cannot be exported or destroyed if there are active
4629		 * references.  If we are resetting a pool, allow references by
4630		 * fault injection handlers.
4631		 */
4632		if (!spa_refcount_zero(spa) ||
4633		    (spa->spa_inject_ref != 0 &&
4634		    new_state != POOL_STATE_UNINITIALIZED)) {
4635			spa_async_resume(spa);
4636			mutex_exit(&spa_namespace_lock);
4637			return (SET_ERROR(EBUSY));
4638		}
4639
4640		/*
4641		 * A pool cannot be exported if it has an active shared spare.
4642		 * This is to prevent other pools stealing the active spare
4643		 * from an exported pool. At user's own will, such pool can
4644		 * be forcedly exported.
4645		 */
4646		if (!force && new_state == POOL_STATE_EXPORTED &&
4647		    spa_has_active_shared_spare(spa)) {
4648			spa_async_resume(spa);
4649			mutex_exit(&spa_namespace_lock);
4650			return (SET_ERROR(EXDEV));
4651		}
4652
4653		/*
4654		 * We want this to be reflected on every label,
4655		 * so mark them all dirty.  spa_unload() will do the
4656		 * final sync that pushes these changes out.
4657		 */
4658		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4659			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4660			spa->spa_state = new_state;
4661			spa->spa_final_txg = spa_last_synced_txg(spa) +
4662			    TXG_DEFER_SIZE + 1;
4663			vdev_config_dirty(spa->spa_root_vdev);
4664			spa_config_exit(spa, SCL_ALL, FTAG);
4665		}
4666	}
4667
4668	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4669
4670	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4671		spa_unload(spa);
4672		spa_deactivate(spa);
4673	}
4674
4675	if (oldconfig && spa->spa_config)
4676		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4677
4678	if (new_state != POOL_STATE_UNINITIALIZED) {
4679		if (!hardforce)
4680			spa_config_sync(spa, B_TRUE, B_TRUE);
4681		spa_remove(spa);
4682	}
4683	mutex_exit(&spa_namespace_lock);
4684
4685	return (0);
4686}
4687
4688/*
4689 * Destroy a storage pool.
4690 */
4691int
4692spa_destroy(char *pool)
4693{
4694	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4695	    B_FALSE, B_FALSE));
4696}
4697
4698/*
4699 * Export a storage pool.
4700 */
4701int
4702spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4703    boolean_t hardforce)
4704{
4705	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4706	    force, hardforce));
4707}
4708
4709/*
4710 * Similar to spa_export(), this unloads the spa_t without actually removing it
4711 * from the namespace in any way.
4712 */
4713int
4714spa_reset(char *pool)
4715{
4716	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4717	    B_FALSE, B_FALSE));
4718}
4719
4720/*
4721 * ==========================================================================
4722 * Device manipulation
4723 * ==========================================================================
4724 */
4725
4726/*
4727 * Add a device to a storage pool.
4728 */
4729int
4730spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4731{
4732	uint64_t txg, id;
4733	int error;
4734	vdev_t *rvd = spa->spa_root_vdev;
4735	vdev_t *vd, *tvd;
4736	nvlist_t **spares, **l2cache;
4737	uint_t nspares, nl2cache;
4738
4739	ASSERT(spa_writeable(spa));
4740
4741	txg = spa_vdev_enter(spa);
4742
4743	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4744	    VDEV_ALLOC_ADD)) != 0)
4745		return (spa_vdev_exit(spa, NULL, txg, error));
4746
4747	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4748
4749	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4750	    &nspares) != 0)
4751		nspares = 0;
4752
4753	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4754	    &nl2cache) != 0)
4755		nl2cache = 0;
4756
4757	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4758		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4759
4760	if (vd->vdev_children != 0 &&
4761	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4762		return (spa_vdev_exit(spa, vd, txg, error));
4763
4764	/*
4765	 * We must validate the spares and l2cache devices after checking the
4766	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4767	 */
4768	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4769		return (spa_vdev_exit(spa, vd, txg, error));
4770
4771	/*
4772	 * Transfer each new top-level vdev from vd to rvd.
4773	 */
4774	for (int c = 0; c < vd->vdev_children; c++) {
4775
4776		/*
4777		 * Set the vdev id to the first hole, if one exists.
4778		 */
4779		for (id = 0; id < rvd->vdev_children; id++) {
4780			if (rvd->vdev_child[id]->vdev_ishole) {
4781				vdev_free(rvd->vdev_child[id]);
4782				break;
4783			}
4784		}
4785		tvd = vd->vdev_child[c];
4786		vdev_remove_child(vd, tvd);
4787		tvd->vdev_id = id;
4788		vdev_add_child(rvd, tvd);
4789		vdev_config_dirty(tvd);
4790	}
4791
4792	if (nspares != 0) {
4793		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4794		    ZPOOL_CONFIG_SPARES);
4795		spa_load_spares(spa);
4796		spa->spa_spares.sav_sync = B_TRUE;
4797	}
4798
4799	if (nl2cache != 0) {
4800		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4801		    ZPOOL_CONFIG_L2CACHE);
4802		spa_load_l2cache(spa);
4803		spa->spa_l2cache.sav_sync = B_TRUE;
4804	}
4805
4806	/*
4807	 * We have to be careful when adding new vdevs to an existing pool.
4808	 * If other threads start allocating from these vdevs before we
4809	 * sync the config cache, and we lose power, then upon reboot we may
4810	 * fail to open the pool because there are DVAs that the config cache
4811	 * can't translate.  Therefore, we first add the vdevs without
4812	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4813	 * and then let spa_config_update() initialize the new metaslabs.
4814	 *
4815	 * spa_load() checks for added-but-not-initialized vdevs, so that
4816	 * if we lose power at any point in this sequence, the remaining
4817	 * steps will be completed the next time we load the pool.
4818	 */
4819	(void) spa_vdev_exit(spa, vd, txg, 0);
4820
4821	mutex_enter(&spa_namespace_lock);
4822	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4823	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4824	mutex_exit(&spa_namespace_lock);
4825
4826	return (0);
4827}
4828
4829/*
4830 * Attach a device to a mirror.  The arguments are the path to any device
4831 * in the mirror, and the nvroot for the new device.  If the path specifies
4832 * a device that is not mirrored, we automatically insert the mirror vdev.
4833 *
4834 * If 'replacing' is specified, the new device is intended to replace the
4835 * existing device; in this case the two devices are made into their own
4836 * mirror using the 'replacing' vdev, which is functionally identical to
4837 * the mirror vdev (it actually reuses all the same ops) but has a few
4838 * extra rules: you can't attach to it after it's been created, and upon
4839 * completion of resilvering, the first disk (the one being replaced)
4840 * is automatically detached.
4841 */
4842int
4843spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4844{
4845	uint64_t txg, dtl_max_txg;
4846	vdev_t *rvd = spa->spa_root_vdev;
4847	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4848	vdev_ops_t *pvops;
4849	char *oldvdpath, *newvdpath;
4850	int newvd_isspare;
4851	int error;
4852
4853	ASSERT(spa_writeable(spa));
4854
4855	txg = spa_vdev_enter(spa);
4856
4857	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4858
4859	if (oldvd == NULL)
4860		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4861
4862	if (!oldvd->vdev_ops->vdev_op_leaf)
4863		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4864
4865	pvd = oldvd->vdev_parent;
4866
4867	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4868	    VDEV_ALLOC_ATTACH)) != 0)
4869		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4870
4871	if (newrootvd->vdev_children != 1)
4872		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4873
4874	newvd = newrootvd->vdev_child[0];
4875
4876	if (!newvd->vdev_ops->vdev_op_leaf)
4877		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4878
4879	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4880		return (spa_vdev_exit(spa, newrootvd, txg, error));
4881
4882	/*
4883	 * Spares can't replace logs
4884	 */
4885	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4886		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4887
4888	if (!replacing) {
4889		/*
4890		 * For attach, the only allowable parent is a mirror or the root
4891		 * vdev.
4892		 */
4893		if (pvd->vdev_ops != &vdev_mirror_ops &&
4894		    pvd->vdev_ops != &vdev_root_ops)
4895			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4896
4897		pvops = &vdev_mirror_ops;
4898	} else {
4899		/*
4900		 * Active hot spares can only be replaced by inactive hot
4901		 * spares.
4902		 */
4903		if (pvd->vdev_ops == &vdev_spare_ops &&
4904		    oldvd->vdev_isspare &&
4905		    !spa_has_spare(spa, newvd->vdev_guid))
4906			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4907
4908		/*
4909		 * If the source is a hot spare, and the parent isn't already a
4910		 * spare, then we want to create a new hot spare.  Otherwise, we
4911		 * want to create a replacing vdev.  The user is not allowed to
4912		 * attach to a spared vdev child unless the 'isspare' state is
4913		 * the same (spare replaces spare, non-spare replaces
4914		 * non-spare).
4915		 */
4916		if (pvd->vdev_ops == &vdev_replacing_ops &&
4917		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4918			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4919		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4920		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4921			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4922		}
4923
4924		if (newvd->vdev_isspare)
4925			pvops = &vdev_spare_ops;
4926		else
4927			pvops = &vdev_replacing_ops;
4928	}
4929
4930	/*
4931	 * Make sure the new device is big enough.
4932	 */
4933	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4934		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4935
4936	/*
4937	 * The new device cannot have a higher alignment requirement
4938	 * than the top-level vdev.
4939	 */
4940	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4941		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4942
4943	/*
4944	 * If this is an in-place replacement, update oldvd's path and devid
4945	 * to make it distinguishable from newvd, and unopenable from now on.
4946	 */
4947	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4948		spa_strfree(oldvd->vdev_path);
4949		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4950		    KM_SLEEP);
4951		(void) sprintf(oldvd->vdev_path, "%s/%s",
4952		    newvd->vdev_path, "old");
4953		if (oldvd->vdev_devid != NULL) {
4954			spa_strfree(oldvd->vdev_devid);
4955			oldvd->vdev_devid = NULL;
4956		}
4957	}
4958
4959	/* mark the device being resilvered */
4960	newvd->vdev_resilver_txg = txg;
4961
4962	/*
4963	 * If the parent is not a mirror, or if we're replacing, insert the new
4964	 * mirror/replacing/spare vdev above oldvd.
4965	 */
4966	if (pvd->vdev_ops != pvops)
4967		pvd = vdev_add_parent(oldvd, pvops);
4968
4969	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4970	ASSERT(pvd->vdev_ops == pvops);
4971	ASSERT(oldvd->vdev_parent == pvd);
4972
4973	/*
4974	 * Extract the new device from its root and add it to pvd.
4975	 */
4976	vdev_remove_child(newrootvd, newvd);
4977	newvd->vdev_id = pvd->vdev_children;
4978	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4979	vdev_add_child(pvd, newvd);
4980
4981	tvd = newvd->vdev_top;
4982	ASSERT(pvd->vdev_top == tvd);
4983	ASSERT(tvd->vdev_parent == rvd);
4984
4985	vdev_config_dirty(tvd);
4986
4987	/*
4988	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4989	 * for any dmu_sync-ed blocks.  It will propagate upward when
4990	 * spa_vdev_exit() calls vdev_dtl_reassess().
4991	 */
4992	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4993
4994	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4995	    dtl_max_txg - TXG_INITIAL);
4996
4997	if (newvd->vdev_isspare) {
4998		spa_spare_activate(newvd);
4999		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
5000	}
5001
5002	oldvdpath = spa_strdup(oldvd->vdev_path);
5003	newvdpath = spa_strdup(newvd->vdev_path);
5004	newvd_isspare = newvd->vdev_isspare;
5005
5006	/*
5007	 * Mark newvd's DTL dirty in this txg.
5008	 */
5009	vdev_dirty(tvd, VDD_DTL, newvd, txg);
5010
5011	/*
5012	 * Schedule the resilver to restart in the future. We do this to
5013	 * ensure that dmu_sync-ed blocks have been stitched into the
5014	 * respective datasets.
5015	 */
5016	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5017
5018	if (spa->spa_bootfs)
5019		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5020
5021	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
5022
5023	/*
5024	 * Commit the config
5025	 */
5026	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5027
5028	spa_history_log_internal(spa, "vdev attach", NULL,
5029	    "%s vdev=%s %s vdev=%s",
5030	    replacing && newvd_isspare ? "spare in" :
5031	    replacing ? "replace" : "attach", newvdpath,
5032	    replacing ? "for" : "to", oldvdpath);
5033
5034	spa_strfree(oldvdpath);
5035	spa_strfree(newvdpath);
5036
5037	return (0);
5038}
5039
5040/*
5041 * Detach a device from a mirror or replacing vdev.
5042 *
5043 * If 'replace_done' is specified, only detach if the parent
5044 * is a replacing vdev.
5045 */
5046int
5047spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5048{
5049	uint64_t txg;
5050	int error;
5051	vdev_t *rvd = spa->spa_root_vdev;
5052	vdev_t *vd, *pvd, *cvd, *tvd;
5053	boolean_t unspare = B_FALSE;
5054	uint64_t unspare_guid = 0;
5055	char *vdpath;
5056
5057	ASSERT(spa_writeable(spa));
5058
5059	txg = spa_vdev_enter(spa);
5060
5061	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5062
5063	if (vd == NULL)
5064		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5065
5066	if (!vd->vdev_ops->vdev_op_leaf)
5067		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5068
5069	pvd = vd->vdev_parent;
5070
5071	/*
5072	 * If the parent/child relationship is not as expected, don't do it.
5073	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5074	 * vdev that's replacing B with C.  The user's intent in replacing
5075	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
5076	 * the replace by detaching C, the expected behavior is to end up
5077	 * M(A,B).  But suppose that right after deciding to detach C,
5078	 * the replacement of B completes.  We would have M(A,C), and then
5079	 * ask to detach C, which would leave us with just A -- not what
5080	 * the user wanted.  To prevent this, we make sure that the
5081	 * parent/child relationship hasn't changed -- in this example,
5082	 * that C's parent is still the replacing vdev R.
5083	 */
5084	if (pvd->vdev_guid != pguid && pguid != 0)
5085		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5086
5087	/*
5088	 * Only 'replacing' or 'spare' vdevs can be replaced.
5089	 */
5090	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5091	    pvd->vdev_ops != &vdev_spare_ops)
5092		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5093
5094	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5095	    spa_version(spa) >= SPA_VERSION_SPARES);
5096
5097	/*
5098	 * Only mirror, replacing, and spare vdevs support detach.
5099	 */
5100	if (pvd->vdev_ops != &vdev_replacing_ops &&
5101	    pvd->vdev_ops != &vdev_mirror_ops &&
5102	    pvd->vdev_ops != &vdev_spare_ops)
5103		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5104
5105	/*
5106	 * If this device has the only valid copy of some data,
5107	 * we cannot safely detach it.
5108	 */
5109	if (vdev_dtl_required(vd))
5110		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5111
5112	ASSERT(pvd->vdev_children >= 2);
5113
5114	/*
5115	 * If we are detaching the second disk from a replacing vdev, then
5116	 * check to see if we changed the original vdev's path to have "/old"
5117	 * at the end in spa_vdev_attach().  If so, undo that change now.
5118	 */
5119	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5120	    vd->vdev_path != NULL) {
5121		size_t len = strlen(vd->vdev_path);
5122
5123		for (int c = 0; c < pvd->vdev_children; c++) {
5124			cvd = pvd->vdev_child[c];
5125
5126			if (cvd == vd || cvd->vdev_path == NULL)
5127				continue;
5128
5129			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5130			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5131				spa_strfree(cvd->vdev_path);
5132				cvd->vdev_path = spa_strdup(vd->vdev_path);
5133				break;
5134			}
5135		}
5136	}
5137
5138	/*
5139	 * If we are detaching the original disk from a spare, then it implies
5140	 * that the spare should become a real disk, and be removed from the
5141	 * active spare list for the pool.
5142	 */
5143	if (pvd->vdev_ops == &vdev_spare_ops &&
5144	    vd->vdev_id == 0 &&
5145	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5146		unspare = B_TRUE;
5147
5148	/*
5149	 * Erase the disk labels so the disk can be used for other things.
5150	 * This must be done after all other error cases are handled,
5151	 * but before we disembowel vd (so we can still do I/O to it).
5152	 * But if we can't do it, don't treat the error as fatal --
5153	 * it may be that the unwritability of the disk is the reason
5154	 * it's being detached!
5155	 */
5156	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5157
5158	/*
5159	 * Remove vd from its parent and compact the parent's children.
5160	 */
5161	vdev_remove_child(pvd, vd);
5162	vdev_compact_children(pvd);
5163
5164	/*
5165	 * Remember one of the remaining children so we can get tvd below.
5166	 */
5167	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5168
5169	/*
5170	 * If we need to remove the remaining child from the list of hot spares,
5171	 * do it now, marking the vdev as no longer a spare in the process.
5172	 * We must do this before vdev_remove_parent(), because that can
5173	 * change the GUID if it creates a new toplevel GUID.  For a similar
5174	 * reason, we must remove the spare now, in the same txg as the detach;
5175	 * otherwise someone could attach a new sibling, change the GUID, and
5176	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5177	 */
5178	if (unspare) {
5179		ASSERT(cvd->vdev_isspare);
5180		spa_spare_remove(cvd);
5181		unspare_guid = cvd->vdev_guid;
5182		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5183		cvd->vdev_unspare = B_TRUE;
5184	}
5185
5186	/*
5187	 * If the parent mirror/replacing vdev only has one child,
5188	 * the parent is no longer needed.  Remove it from the tree.
5189	 */
5190	if (pvd->vdev_children == 1) {
5191		if (pvd->vdev_ops == &vdev_spare_ops)
5192			cvd->vdev_unspare = B_FALSE;
5193		vdev_remove_parent(cvd);
5194	}
5195
5196
5197	/*
5198	 * We don't set tvd until now because the parent we just removed
5199	 * may have been the previous top-level vdev.
5200	 */
5201	tvd = cvd->vdev_top;
5202	ASSERT(tvd->vdev_parent == rvd);
5203
5204	/*
5205	 * Reevaluate the parent vdev state.
5206	 */
5207	vdev_propagate_state(cvd);
5208
5209	/*
5210	 * If the 'autoexpand' property is set on the pool then automatically
5211	 * try to expand the size of the pool. For example if the device we
5212	 * just detached was smaller than the others, it may be possible to
5213	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5214	 * first so that we can obtain the updated sizes of the leaf vdevs.
5215	 */
5216	if (spa->spa_autoexpand) {
5217		vdev_reopen(tvd);
5218		vdev_expand(tvd, txg);
5219	}
5220
5221	vdev_config_dirty(tvd);
5222
5223	/*
5224	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5225	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5226	 * But first make sure we're not on any *other* txg's DTL list, to
5227	 * prevent vd from being accessed after it's freed.
5228	 */
5229	vdpath = spa_strdup(vd->vdev_path);
5230	for (int t = 0; t < TXG_SIZE; t++)
5231		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5232	vd->vdev_detached = B_TRUE;
5233	vdev_dirty(tvd, VDD_DTL, vd, txg);
5234
5235	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5236
5237	/* hang on to the spa before we release the lock */
5238	spa_open_ref(spa, FTAG);
5239
5240	error = spa_vdev_exit(spa, vd, txg, 0);
5241
5242	spa_history_log_internal(spa, "detach", NULL,
5243	    "vdev=%s", vdpath);
5244	spa_strfree(vdpath);
5245
5246	/*
5247	 * If this was the removal of the original device in a hot spare vdev,
5248	 * then we want to go through and remove the device from the hot spare
5249	 * list of every other pool.
5250	 */
5251	if (unspare) {
5252		spa_t *altspa = NULL;
5253
5254		mutex_enter(&spa_namespace_lock);
5255		while ((altspa = spa_next(altspa)) != NULL) {
5256			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5257			    altspa == spa)
5258				continue;
5259
5260			spa_open_ref(altspa, FTAG);
5261			mutex_exit(&spa_namespace_lock);
5262			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5263			mutex_enter(&spa_namespace_lock);
5264			spa_close(altspa, FTAG);
5265		}
5266		mutex_exit(&spa_namespace_lock);
5267
5268		/* search the rest of the vdevs for spares to remove */
5269		spa_vdev_resilver_done(spa);
5270	}
5271
5272	/* all done with the spa; OK to release */
5273	mutex_enter(&spa_namespace_lock);
5274	spa_close(spa, FTAG);
5275	mutex_exit(&spa_namespace_lock);
5276
5277	return (error);
5278}
5279
5280/*
5281 * Split a set of devices from their mirrors, and create a new pool from them.
5282 */
5283int
5284spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5285    nvlist_t *props, boolean_t exp)
5286{
5287	int error = 0;
5288	uint64_t txg, *glist;
5289	spa_t *newspa;
5290	uint_t c, children, lastlog;
5291	nvlist_t **child, *nvl, *tmp;
5292	dmu_tx_t *tx;
5293	char *altroot = NULL;
5294	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5295	boolean_t activate_slog;
5296
5297	ASSERT(spa_writeable(spa));
5298
5299	txg = spa_vdev_enter(spa);
5300
5301	/* clear the log and flush everything up to now */
5302	activate_slog = spa_passivate_log(spa);
5303	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5304	error = spa_offline_log(spa);
5305	txg = spa_vdev_config_enter(spa);
5306
5307	if (activate_slog)
5308		spa_activate_log(spa);
5309
5310	if (error != 0)
5311		return (spa_vdev_exit(spa, NULL, txg, error));
5312
5313	/* check new spa name before going any further */
5314	if (spa_lookup(newname) != NULL)
5315		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5316
5317	/*
5318	 * scan through all the children to ensure they're all mirrors
5319	 */
5320	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5321	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5322	    &children) != 0)
5323		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5324
5325	/* first, check to ensure we've got the right child count */
5326	rvd = spa->spa_root_vdev;
5327	lastlog = 0;
5328	for (c = 0; c < rvd->vdev_children; c++) {
5329		vdev_t *vd = rvd->vdev_child[c];
5330
5331		/* don't count the holes & logs as children */
5332		if (vd->vdev_islog || vd->vdev_ishole) {
5333			if (lastlog == 0)
5334				lastlog = c;
5335			continue;
5336		}
5337
5338		lastlog = 0;
5339	}
5340	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5341		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5342
5343	/* next, ensure no spare or cache devices are part of the split */
5344	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5345	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5346		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5347
5348	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5349	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5350
5351	/* then, loop over each vdev and validate it */
5352	for (c = 0; c < children; c++) {
5353		uint64_t is_hole = 0;
5354
5355		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5356		    &is_hole);
5357
5358		if (is_hole != 0) {
5359			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5360			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5361				continue;
5362			} else {
5363				error = SET_ERROR(EINVAL);
5364				break;
5365			}
5366		}
5367
5368		/* which disk is going to be split? */
5369		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5370		    &glist[c]) != 0) {
5371			error = SET_ERROR(EINVAL);
5372			break;
5373		}
5374
5375		/* look it up in the spa */
5376		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5377		if (vml[c] == NULL) {
5378			error = SET_ERROR(ENODEV);
5379			break;
5380		}
5381
5382		/* make sure there's nothing stopping the split */
5383		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5384		    vml[c]->vdev_islog ||
5385		    vml[c]->vdev_ishole ||
5386		    vml[c]->vdev_isspare ||
5387		    vml[c]->vdev_isl2cache ||
5388		    !vdev_writeable(vml[c]) ||
5389		    vml[c]->vdev_children != 0 ||
5390		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5391		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5392			error = SET_ERROR(EINVAL);
5393			break;
5394		}
5395
5396		if (vdev_dtl_required(vml[c])) {
5397			error = SET_ERROR(EBUSY);
5398			break;
5399		}
5400
5401		/* we need certain info from the top level */
5402		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5403		    vml[c]->vdev_top->vdev_ms_array) == 0);
5404		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5405		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5406		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5407		    vml[c]->vdev_top->vdev_asize) == 0);
5408		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5409		    vml[c]->vdev_top->vdev_ashift) == 0);
5410
5411		/* transfer per-vdev ZAPs */
5412		ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
5413		VERIFY0(nvlist_add_uint64(child[c],
5414		    ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
5415
5416		ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
5417		VERIFY0(nvlist_add_uint64(child[c],
5418		    ZPOOL_CONFIG_VDEV_TOP_ZAP,
5419		    vml[c]->vdev_parent->vdev_top_zap));
5420	}
5421
5422	if (error != 0) {
5423		kmem_free(vml, children * sizeof (vdev_t *));
5424		kmem_free(glist, children * sizeof (uint64_t));
5425		return (spa_vdev_exit(spa, NULL, txg, error));
5426	}
5427
5428	/* stop writers from using the disks */
5429	for (c = 0; c < children; c++) {
5430		if (vml[c] != NULL)
5431			vml[c]->vdev_offline = B_TRUE;
5432	}
5433	vdev_reopen(spa->spa_root_vdev);
5434
5435	/*
5436	 * Temporarily record the splitting vdevs in the spa config.  This
5437	 * will disappear once the config is regenerated.
5438	 */
5439	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5440	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5441	    glist, children) == 0);
5442	kmem_free(glist, children * sizeof (uint64_t));
5443
5444	mutex_enter(&spa->spa_props_lock);
5445	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5446	    nvl) == 0);
5447	mutex_exit(&spa->spa_props_lock);
5448	spa->spa_config_splitting = nvl;
5449	vdev_config_dirty(spa->spa_root_vdev);
5450
5451	/* configure and create the new pool */
5452	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5453	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5454	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5455	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5456	    spa_version(spa)) == 0);
5457	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5458	    spa->spa_config_txg) == 0);
5459	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5460	    spa_generate_guid(NULL)) == 0);
5461	VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
5462	(void) nvlist_lookup_string(props,
5463	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5464
5465	/* add the new pool to the namespace */
5466	newspa = spa_add(newname, config, altroot);
5467	newspa->spa_avz_action = AVZ_ACTION_REBUILD;
5468	newspa->spa_config_txg = spa->spa_config_txg;
5469	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5470
5471	/* release the spa config lock, retaining the namespace lock */
5472	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5473
5474	if (zio_injection_enabled)
5475		zio_handle_panic_injection(spa, FTAG, 1);
5476
5477	spa_activate(newspa, spa_mode_global);
5478	spa_async_suspend(newspa);
5479
5480#ifndef illumos
5481	/* mark that we are creating new spa by splitting */
5482	newspa->spa_splitting_newspa = B_TRUE;
5483#endif
5484	/* create the new pool from the disks of the original pool */
5485	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5486#ifndef illumos
5487	newspa->spa_splitting_newspa = B_FALSE;
5488#endif
5489	if (error)
5490		goto out;
5491
5492	/* if that worked, generate a real config for the new pool */
5493	if (newspa->spa_root_vdev != NULL) {
5494		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5495		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5496		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5497		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5498		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5499		    B_TRUE));
5500	}
5501
5502	/* set the props */
5503	if (props != NULL) {
5504		spa_configfile_set(newspa, props, B_FALSE);
5505		error = spa_prop_set(newspa, props);
5506		if (error)
5507			goto out;
5508	}
5509
5510	/* flush everything */
5511	txg = spa_vdev_config_enter(newspa);
5512	vdev_config_dirty(newspa->spa_root_vdev);
5513	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5514
5515	if (zio_injection_enabled)
5516		zio_handle_panic_injection(spa, FTAG, 2);
5517
5518	spa_async_resume(newspa);
5519
5520	/* finally, update the original pool's config */
5521	txg = spa_vdev_config_enter(spa);
5522	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5523	error = dmu_tx_assign(tx, TXG_WAIT);
5524	if (error != 0)
5525		dmu_tx_abort(tx);
5526	for (c = 0; c < children; c++) {
5527		if (vml[c] != NULL) {
5528			vdev_split(vml[c]);
5529			if (error == 0)
5530				spa_history_log_internal(spa, "detach", tx,
5531				    "vdev=%s", vml[c]->vdev_path);
5532
5533			vdev_free(vml[c]);
5534		}
5535	}
5536	spa->spa_avz_action = AVZ_ACTION_REBUILD;
5537	vdev_config_dirty(spa->spa_root_vdev);
5538	spa->spa_config_splitting = NULL;
5539	nvlist_free(nvl);
5540	if (error == 0)
5541		dmu_tx_commit(tx);
5542	(void) spa_vdev_exit(spa, NULL, txg, 0);
5543
5544	if (zio_injection_enabled)
5545		zio_handle_panic_injection(spa, FTAG, 3);
5546
5547	/* split is complete; log a history record */
5548	spa_history_log_internal(newspa, "split", NULL,
5549	    "from pool %s", spa_name(spa));
5550
5551	kmem_free(vml, children * sizeof (vdev_t *));
5552
5553	/* if we're not going to mount the filesystems in userland, export */
5554	if (exp)
5555		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5556		    B_FALSE, B_FALSE);
5557
5558	return (error);
5559
5560out:
5561	spa_unload(newspa);
5562	spa_deactivate(newspa);
5563	spa_remove(newspa);
5564
5565	txg = spa_vdev_config_enter(spa);
5566
5567	/* re-online all offlined disks */
5568	for (c = 0; c < children; c++) {
5569		if (vml[c] != NULL)
5570			vml[c]->vdev_offline = B_FALSE;
5571	}
5572	vdev_reopen(spa->spa_root_vdev);
5573
5574	nvlist_free(spa->spa_config_splitting);
5575	spa->spa_config_splitting = NULL;
5576	(void) spa_vdev_exit(spa, NULL, txg, error);
5577
5578	kmem_free(vml, children * sizeof (vdev_t *));
5579	return (error);
5580}
5581
5582static nvlist_t *
5583spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5584{
5585	for (int i = 0; i < count; i++) {
5586		uint64_t guid;
5587
5588		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5589		    &guid) == 0);
5590
5591		if (guid == target_guid)
5592			return (nvpp[i]);
5593	}
5594
5595	return (NULL);
5596}
5597
5598static void
5599spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5600	nvlist_t *dev_to_remove)
5601{
5602	nvlist_t **newdev = NULL;
5603
5604	if (count > 1)
5605		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5606
5607	for (int i = 0, j = 0; i < count; i++) {
5608		if (dev[i] == dev_to_remove)
5609			continue;
5610		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5611	}
5612
5613	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5614	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5615
5616	for (int i = 0; i < count - 1; i++)
5617		nvlist_free(newdev[i]);
5618
5619	if (count > 1)
5620		kmem_free(newdev, (count - 1) * sizeof (void *));
5621}
5622
5623/*
5624 * Evacuate the device.
5625 */
5626static int
5627spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5628{
5629	uint64_t txg;
5630	int error = 0;
5631
5632	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5633	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5634	ASSERT(vd == vd->vdev_top);
5635
5636	/*
5637	 * Evacuate the device.  We don't hold the config lock as writer
5638	 * since we need to do I/O but we do keep the
5639	 * spa_namespace_lock held.  Once this completes the device
5640	 * should no longer have any blocks allocated on it.
5641	 */
5642	if (vd->vdev_islog) {
5643		if (vd->vdev_stat.vs_alloc != 0)
5644			error = spa_offline_log(spa);
5645	} else {
5646		error = SET_ERROR(ENOTSUP);
5647	}
5648
5649	if (error)
5650		return (error);
5651
5652	/*
5653	 * The evacuation succeeded.  Remove any remaining MOS metadata
5654	 * associated with this vdev, and wait for these changes to sync.
5655	 */
5656	ASSERT0(vd->vdev_stat.vs_alloc);
5657	txg = spa_vdev_config_enter(spa);
5658	vd->vdev_removing = B_TRUE;
5659	vdev_dirty_leaves(vd, VDD_DTL, txg);
5660	vdev_config_dirty(vd);
5661	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5662
5663	return (0);
5664}
5665
5666/*
5667 * Complete the removal by cleaning up the namespace.
5668 */
5669static void
5670spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5671{
5672	vdev_t *rvd = spa->spa_root_vdev;
5673	uint64_t id = vd->vdev_id;
5674	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5675
5676	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5677	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5678	ASSERT(vd == vd->vdev_top);
5679
5680	/*
5681	 * Only remove any devices which are empty.
5682	 */
5683	if (vd->vdev_stat.vs_alloc != 0)
5684		return;
5685
5686	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5687
5688	if (list_link_active(&vd->vdev_state_dirty_node))
5689		vdev_state_clean(vd);
5690	if (list_link_active(&vd->vdev_config_dirty_node))
5691		vdev_config_clean(vd);
5692
5693	vdev_free(vd);
5694
5695	if (last_vdev) {
5696		vdev_compact_children(rvd);
5697	} else {
5698		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5699		vdev_add_child(rvd, vd);
5700	}
5701	vdev_config_dirty(rvd);
5702
5703	/*
5704	 * Reassess the health of our root vdev.
5705	 */
5706	vdev_reopen(rvd);
5707}
5708
5709/*
5710 * Remove a device from the pool -
5711 *
5712 * Removing a device from the vdev namespace requires several steps
5713 * and can take a significant amount of time.  As a result we use
5714 * the spa_vdev_config_[enter/exit] functions which allow us to
5715 * grab and release the spa_config_lock while still holding the namespace
5716 * lock.  During each step the configuration is synced out.
5717 *
5718 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5719 * devices.
5720 */
5721int
5722spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5723{
5724	vdev_t *vd;
5725	metaslab_group_t *mg;
5726	nvlist_t **spares, **l2cache, *nv;
5727	uint64_t txg = 0;
5728	uint_t nspares, nl2cache;
5729	int error = 0;
5730	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5731
5732	ASSERT(spa_writeable(spa));
5733
5734	if (!locked)
5735		txg = spa_vdev_enter(spa);
5736
5737	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5738
5739	if (spa->spa_spares.sav_vdevs != NULL &&
5740	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5741	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5742	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5743		/*
5744		 * Only remove the hot spare if it's not currently in use
5745		 * in this pool.
5746		 */
5747		if (vd == NULL || unspare) {
5748			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5749			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5750			spa_load_spares(spa);
5751			spa->spa_spares.sav_sync = B_TRUE;
5752		} else {
5753			error = SET_ERROR(EBUSY);
5754		}
5755	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5756	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5757	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5758	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5759		/*
5760		 * Cache devices can always be removed.
5761		 */
5762		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5763		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5764		spa_load_l2cache(spa);
5765		spa->spa_l2cache.sav_sync = B_TRUE;
5766	} else if (vd != NULL && vd->vdev_islog) {
5767		ASSERT(!locked);
5768		ASSERT(vd == vd->vdev_top);
5769
5770		mg = vd->vdev_mg;
5771
5772		/*
5773		 * Stop allocating from this vdev.
5774		 */
5775		metaslab_group_passivate(mg);
5776
5777		/*
5778		 * Wait for the youngest allocations and frees to sync,
5779		 * and then wait for the deferral of those frees to finish.
5780		 */
5781		spa_vdev_config_exit(spa, NULL,
5782		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5783
5784		/*
5785		 * Attempt to evacuate the vdev.
5786		 */
5787		error = spa_vdev_remove_evacuate(spa, vd);
5788
5789		txg = spa_vdev_config_enter(spa);
5790
5791		/*
5792		 * If we couldn't evacuate the vdev, unwind.
5793		 */
5794		if (error) {
5795			metaslab_group_activate(mg);
5796			return (spa_vdev_exit(spa, NULL, txg, error));
5797		}
5798
5799		/*
5800		 * Clean up the vdev namespace.
5801		 */
5802		spa_vdev_remove_from_namespace(spa, vd);
5803
5804	} else if (vd != NULL) {
5805		/*
5806		 * Normal vdevs cannot be removed (yet).
5807		 */
5808		error = SET_ERROR(ENOTSUP);
5809	} else {
5810		/*
5811		 * There is no vdev of any kind with the specified guid.
5812		 */
5813		error = SET_ERROR(ENOENT);
5814	}
5815
5816	if (!locked)
5817		return (spa_vdev_exit(spa, NULL, txg, error));
5818
5819	return (error);
5820}
5821
5822/*
5823 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5824 * currently spared, so we can detach it.
5825 */
5826static vdev_t *
5827spa_vdev_resilver_done_hunt(vdev_t *vd)
5828{
5829	vdev_t *newvd, *oldvd;
5830
5831	for (int c = 0; c < vd->vdev_children; c++) {
5832		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5833		if (oldvd != NULL)
5834			return (oldvd);
5835	}
5836
5837	/*
5838	 * Check for a completed replacement.  We always consider the first
5839	 * vdev in the list to be the oldest vdev, and the last one to be
5840	 * the newest (see spa_vdev_attach() for how that works).  In
5841	 * the case where the newest vdev is faulted, we will not automatically
5842	 * remove it after a resilver completes.  This is OK as it will require
5843	 * user intervention to determine which disk the admin wishes to keep.
5844	 */
5845	if (vd->vdev_ops == &vdev_replacing_ops) {
5846		ASSERT(vd->vdev_children > 1);
5847
5848		newvd = vd->vdev_child[vd->vdev_children - 1];
5849		oldvd = vd->vdev_child[0];
5850
5851		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5852		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5853		    !vdev_dtl_required(oldvd))
5854			return (oldvd);
5855	}
5856
5857	/*
5858	 * Check for a completed resilver with the 'unspare' flag set.
5859	 */
5860	if (vd->vdev_ops == &vdev_spare_ops) {
5861		vdev_t *first = vd->vdev_child[0];
5862		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5863
5864		if (last->vdev_unspare) {
5865			oldvd = first;
5866			newvd = last;
5867		} else if (first->vdev_unspare) {
5868			oldvd = last;
5869			newvd = first;
5870		} else {
5871			oldvd = NULL;
5872		}
5873
5874		if (oldvd != NULL &&
5875		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5876		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5877		    !vdev_dtl_required(oldvd))
5878			return (oldvd);
5879
5880		/*
5881		 * If there are more than two spares attached to a disk,
5882		 * and those spares are not required, then we want to
5883		 * attempt to free them up now so that they can be used
5884		 * by other pools.  Once we're back down to a single
5885		 * disk+spare, we stop removing them.
5886		 */
5887		if (vd->vdev_children > 2) {
5888			newvd = vd->vdev_child[1];
5889
5890			if (newvd->vdev_isspare && last->vdev_isspare &&
5891			    vdev_dtl_empty(last, DTL_MISSING) &&
5892			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5893			    !vdev_dtl_required(newvd))
5894				return (newvd);
5895		}
5896	}
5897
5898	return (NULL);
5899}
5900
5901static void
5902spa_vdev_resilver_done(spa_t *spa)
5903{
5904	vdev_t *vd, *pvd, *ppvd;
5905	uint64_t guid, sguid, pguid, ppguid;
5906
5907	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5908
5909	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5910		pvd = vd->vdev_parent;
5911		ppvd = pvd->vdev_parent;
5912		guid = vd->vdev_guid;
5913		pguid = pvd->vdev_guid;
5914		ppguid = ppvd->vdev_guid;
5915		sguid = 0;
5916		/*
5917		 * If we have just finished replacing a hot spared device, then
5918		 * we need to detach the parent's first child (the original hot
5919		 * spare) as well.
5920		 */
5921		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5922		    ppvd->vdev_children == 2) {
5923			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5924			sguid = ppvd->vdev_child[1]->vdev_guid;
5925		}
5926		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5927
5928		spa_config_exit(spa, SCL_ALL, FTAG);
5929		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5930			return;
5931		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5932			return;
5933		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5934	}
5935
5936	spa_config_exit(spa, SCL_ALL, FTAG);
5937}
5938
5939/*
5940 * Update the stored path or FRU for this vdev.
5941 */
5942int
5943spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5944    boolean_t ispath)
5945{
5946	vdev_t *vd;
5947	boolean_t sync = B_FALSE;
5948
5949	ASSERT(spa_writeable(spa));
5950
5951	spa_vdev_state_enter(spa, SCL_ALL);
5952
5953	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5954		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5955
5956	if (!vd->vdev_ops->vdev_op_leaf)
5957		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5958
5959	if (ispath) {
5960		if (strcmp(value, vd->vdev_path) != 0) {
5961			spa_strfree(vd->vdev_path);
5962			vd->vdev_path = spa_strdup(value);
5963			sync = B_TRUE;
5964		}
5965	} else {
5966		if (vd->vdev_fru == NULL) {
5967			vd->vdev_fru = spa_strdup(value);
5968			sync = B_TRUE;
5969		} else if (strcmp(value, vd->vdev_fru) != 0) {
5970			spa_strfree(vd->vdev_fru);
5971			vd->vdev_fru = spa_strdup(value);
5972			sync = B_TRUE;
5973		}
5974	}
5975
5976	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5977}
5978
5979int
5980spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5981{
5982	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5983}
5984
5985int
5986spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5987{
5988	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5989}
5990
5991/*
5992 * ==========================================================================
5993 * SPA Scanning
5994 * ==========================================================================
5995 */
5996
5997int
5998spa_scan_stop(spa_t *spa)
5999{
6000	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6001	if (dsl_scan_resilvering(spa->spa_dsl_pool))
6002		return (SET_ERROR(EBUSY));
6003	return (dsl_scan_cancel(spa->spa_dsl_pool));
6004}
6005
6006int
6007spa_scan(spa_t *spa, pool_scan_func_t func)
6008{
6009	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6010
6011	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6012		return (SET_ERROR(ENOTSUP));
6013
6014	/*
6015	 * If a resilver was requested, but there is no DTL on a
6016	 * writeable leaf device, we have nothing to do.
6017	 */
6018	if (func == POOL_SCAN_RESILVER &&
6019	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6020		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6021		return (0);
6022	}
6023
6024	return (dsl_scan(spa->spa_dsl_pool, func));
6025}
6026
6027/*
6028 * ==========================================================================
6029 * SPA async task processing
6030 * ==========================================================================
6031 */
6032
6033static void
6034spa_async_remove(spa_t *spa, vdev_t *vd)
6035{
6036	if (vd->vdev_remove_wanted) {
6037		vd->vdev_remove_wanted = B_FALSE;
6038		vd->vdev_delayed_close = B_FALSE;
6039		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6040
6041		/*
6042		 * We want to clear the stats, but we don't want to do a full
6043		 * vdev_clear() as that will cause us to throw away
6044		 * degraded/faulted state as well as attempt to reopen the
6045		 * device, all of which is a waste.
6046		 */
6047		vd->vdev_stat.vs_read_errors = 0;
6048		vd->vdev_stat.vs_write_errors = 0;
6049		vd->vdev_stat.vs_checksum_errors = 0;
6050
6051		vdev_state_dirty(vd->vdev_top);
6052		/* Tell userspace that the vdev is gone. */
6053		zfs_post_remove(spa, vd);
6054	}
6055
6056	for (int c = 0; c < vd->vdev_children; c++)
6057		spa_async_remove(spa, vd->vdev_child[c]);
6058}
6059
6060static void
6061spa_async_probe(spa_t *spa, vdev_t *vd)
6062{
6063	if (vd->vdev_probe_wanted) {
6064		vd->vdev_probe_wanted = B_FALSE;
6065		vdev_reopen(vd);	/* vdev_open() does the actual probe */
6066	}
6067
6068	for (int c = 0; c < vd->vdev_children; c++)
6069		spa_async_probe(spa, vd->vdev_child[c]);
6070}
6071
6072static void
6073spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6074{
6075	sysevent_id_t eid;
6076	nvlist_t *attr;
6077	char *physpath;
6078
6079	if (!spa->spa_autoexpand)
6080		return;
6081
6082	for (int c = 0; c < vd->vdev_children; c++) {
6083		vdev_t *cvd = vd->vdev_child[c];
6084		spa_async_autoexpand(spa, cvd);
6085	}
6086
6087	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6088		return;
6089
6090	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
6091	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
6092
6093	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6094	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
6095
6096	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6097	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6098
6099	nvlist_free(attr);
6100	kmem_free(physpath, MAXPATHLEN);
6101}
6102
6103static void
6104spa_async_thread(void *arg)
6105{
6106	spa_t *spa = arg;
6107	int tasks;
6108
6109	ASSERT(spa->spa_sync_on);
6110
6111	mutex_enter(&spa->spa_async_lock);
6112	tasks = spa->spa_async_tasks;
6113	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6114	mutex_exit(&spa->spa_async_lock);
6115
6116	/*
6117	 * See if the config needs to be updated.
6118	 */
6119	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6120		uint64_t old_space, new_space;
6121
6122		mutex_enter(&spa_namespace_lock);
6123		old_space = metaslab_class_get_space(spa_normal_class(spa));
6124		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6125		new_space = metaslab_class_get_space(spa_normal_class(spa));
6126		mutex_exit(&spa_namespace_lock);
6127
6128		/*
6129		 * If the pool grew as a result of the config update,
6130		 * then log an internal history event.
6131		 */
6132		if (new_space != old_space) {
6133			spa_history_log_internal(spa, "vdev online", NULL,
6134			    "pool '%s' size: %llu(+%llu)",
6135			    spa_name(spa), new_space, new_space - old_space);
6136		}
6137	}
6138
6139	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6140		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6141		spa_async_autoexpand(spa, spa->spa_root_vdev);
6142		spa_config_exit(spa, SCL_CONFIG, FTAG);
6143	}
6144
6145	/*
6146	 * See if any devices need to be probed.
6147	 */
6148	if (tasks & SPA_ASYNC_PROBE) {
6149		spa_vdev_state_enter(spa, SCL_NONE);
6150		spa_async_probe(spa, spa->spa_root_vdev);
6151		(void) spa_vdev_state_exit(spa, NULL, 0);
6152	}
6153
6154	/*
6155	 * If any devices are done replacing, detach them.
6156	 */
6157	if (tasks & SPA_ASYNC_RESILVER_DONE)
6158		spa_vdev_resilver_done(spa);
6159
6160	/*
6161	 * Kick off a resilver.
6162	 */
6163	if (tasks & SPA_ASYNC_RESILVER)
6164		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6165
6166	/*
6167	 * Let the world know that we're done.
6168	 */
6169	mutex_enter(&spa->spa_async_lock);
6170	spa->spa_async_thread = NULL;
6171	cv_broadcast(&spa->spa_async_cv);
6172	mutex_exit(&spa->spa_async_lock);
6173	thread_exit();
6174}
6175
6176static void
6177spa_async_thread_vd(void *arg)
6178{
6179	spa_t *spa = arg;
6180	int tasks;
6181
6182	ASSERT(spa->spa_sync_on);
6183
6184	mutex_enter(&spa->spa_async_lock);
6185	tasks = spa->spa_async_tasks;
6186retry:
6187	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6188	mutex_exit(&spa->spa_async_lock);
6189
6190	/*
6191	 * See if any devices need to be marked REMOVED.
6192	 */
6193	if (tasks & SPA_ASYNC_REMOVE) {
6194		spa_vdev_state_enter(spa, SCL_NONE);
6195		spa_async_remove(spa, spa->spa_root_vdev);
6196		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6197			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6198		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6199			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6200		(void) spa_vdev_state_exit(spa, NULL, 0);
6201	}
6202
6203	/*
6204	 * Let the world know that we're done.
6205	 */
6206	mutex_enter(&spa->spa_async_lock);
6207	tasks = spa->spa_async_tasks;
6208	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6209		goto retry;
6210	spa->spa_async_thread_vd = NULL;
6211	cv_broadcast(&spa->spa_async_cv);
6212	mutex_exit(&spa->spa_async_lock);
6213	thread_exit();
6214}
6215
6216void
6217spa_async_suspend(spa_t *spa)
6218{
6219	mutex_enter(&spa->spa_async_lock);
6220	spa->spa_async_suspended++;
6221	while (spa->spa_async_thread != NULL &&
6222	    spa->spa_async_thread_vd != NULL)
6223		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6224	mutex_exit(&spa->spa_async_lock);
6225}
6226
6227void
6228spa_async_resume(spa_t *spa)
6229{
6230	mutex_enter(&spa->spa_async_lock);
6231	ASSERT(spa->spa_async_suspended != 0);
6232	spa->spa_async_suspended--;
6233	mutex_exit(&spa->spa_async_lock);
6234}
6235
6236static boolean_t
6237spa_async_tasks_pending(spa_t *spa)
6238{
6239	uint_t non_config_tasks;
6240	uint_t config_task;
6241	boolean_t config_task_suspended;
6242
6243	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6244	    SPA_ASYNC_REMOVE);
6245	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6246	if (spa->spa_ccw_fail_time == 0) {
6247		config_task_suspended = B_FALSE;
6248	} else {
6249		config_task_suspended =
6250		    (gethrtime() - spa->spa_ccw_fail_time) <
6251		    (zfs_ccw_retry_interval * NANOSEC);
6252	}
6253
6254	return (non_config_tasks || (config_task && !config_task_suspended));
6255}
6256
6257static void
6258spa_async_dispatch(spa_t *spa)
6259{
6260	mutex_enter(&spa->spa_async_lock);
6261	if (spa_async_tasks_pending(spa) &&
6262	    !spa->spa_async_suspended &&
6263	    spa->spa_async_thread == NULL &&
6264	    rootdir != NULL)
6265		spa->spa_async_thread = thread_create(NULL, 0,
6266		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6267	mutex_exit(&spa->spa_async_lock);
6268}
6269
6270static void
6271spa_async_dispatch_vd(spa_t *spa)
6272{
6273	mutex_enter(&spa->spa_async_lock);
6274	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6275	    !spa->spa_async_suspended &&
6276	    spa->spa_async_thread_vd == NULL &&
6277	    rootdir != NULL)
6278		spa->spa_async_thread_vd = thread_create(NULL, 0,
6279		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6280	mutex_exit(&spa->spa_async_lock);
6281}
6282
6283void
6284spa_async_request(spa_t *spa, int task)
6285{
6286	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6287	mutex_enter(&spa->spa_async_lock);
6288	spa->spa_async_tasks |= task;
6289	mutex_exit(&spa->spa_async_lock);
6290	spa_async_dispatch_vd(spa);
6291}
6292
6293/*
6294 * ==========================================================================
6295 * SPA syncing routines
6296 * ==========================================================================
6297 */
6298
6299static int
6300bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6301{
6302	bpobj_t *bpo = arg;
6303	bpobj_enqueue(bpo, bp, tx);
6304	return (0);
6305}
6306
6307static int
6308spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6309{
6310	zio_t *zio = arg;
6311
6312	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6313	    BP_GET_PSIZE(bp), zio->io_flags));
6314	return (0);
6315}
6316
6317/*
6318 * Note: this simple function is not inlined to make it easier to dtrace the
6319 * amount of time spent syncing frees.
6320 */
6321static void
6322spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6323{
6324	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6325	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6326	VERIFY(zio_wait(zio) == 0);
6327}
6328
6329/*
6330 * Note: this simple function is not inlined to make it easier to dtrace the
6331 * amount of time spent syncing deferred frees.
6332 */
6333static void
6334spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6335{
6336	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6337	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6338	    spa_free_sync_cb, zio, tx), ==, 0);
6339	VERIFY0(zio_wait(zio));
6340}
6341
6342
6343static void
6344spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6345{
6346	char *packed = NULL;
6347	size_t bufsize;
6348	size_t nvsize = 0;
6349	dmu_buf_t *db;
6350
6351	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6352
6353	/*
6354	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6355	 * information.  This avoids the dmu_buf_will_dirty() path and
6356	 * saves us a pre-read to get data we don't actually care about.
6357	 */
6358	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6359	packed = kmem_alloc(bufsize, KM_SLEEP);
6360
6361	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6362	    KM_SLEEP) == 0);
6363	bzero(packed + nvsize, bufsize - nvsize);
6364
6365	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6366
6367	kmem_free(packed, bufsize);
6368
6369	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6370	dmu_buf_will_dirty(db, tx);
6371	*(uint64_t *)db->db_data = nvsize;
6372	dmu_buf_rele(db, FTAG);
6373}
6374
6375static void
6376spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6377    const char *config, const char *entry)
6378{
6379	nvlist_t *nvroot;
6380	nvlist_t **list;
6381	int i;
6382
6383	if (!sav->sav_sync)
6384		return;
6385
6386	/*
6387	 * Update the MOS nvlist describing the list of available devices.
6388	 * spa_validate_aux() will have already made sure this nvlist is
6389	 * valid and the vdevs are labeled appropriately.
6390	 */
6391	if (sav->sav_object == 0) {
6392		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6393		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6394		    sizeof (uint64_t), tx);
6395		VERIFY(zap_update(spa->spa_meta_objset,
6396		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6397		    &sav->sav_object, tx) == 0);
6398	}
6399
6400	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6401	if (sav->sav_count == 0) {
6402		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6403	} else {
6404		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6405		for (i = 0; i < sav->sav_count; i++)
6406			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6407			    B_FALSE, VDEV_CONFIG_L2CACHE);
6408		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6409		    sav->sav_count) == 0);
6410		for (i = 0; i < sav->sav_count; i++)
6411			nvlist_free(list[i]);
6412		kmem_free(list, sav->sav_count * sizeof (void *));
6413	}
6414
6415	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6416	nvlist_free(nvroot);
6417
6418	sav->sav_sync = B_FALSE;
6419}
6420
6421/*
6422 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6423 * The all-vdev ZAP must be empty.
6424 */
6425static void
6426spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6427{
6428	spa_t *spa = vd->vdev_spa;
6429	if (vd->vdev_top_zap != 0) {
6430		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6431		    vd->vdev_top_zap, tx));
6432	}
6433	if (vd->vdev_leaf_zap != 0) {
6434		VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6435		    vd->vdev_leaf_zap, tx));
6436	}
6437	for (uint64_t i = 0; i < vd->vdev_children; i++) {
6438		spa_avz_build(vd->vdev_child[i], avz, tx);
6439	}
6440}
6441
6442static void
6443spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6444{
6445	nvlist_t *config;
6446
6447	/*
6448	 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6449	 * its config may not be dirty but we still need to build per-vdev ZAPs.
6450	 * Similarly, if the pool is being assembled (e.g. after a split), we
6451	 * need to rebuild the AVZ although the config may not be dirty.
6452	 */
6453	if (list_is_empty(&spa->spa_config_dirty_list) &&
6454	    spa->spa_avz_action == AVZ_ACTION_NONE)
6455		return;
6456
6457	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6458
6459	ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6460	    spa->spa_all_vdev_zaps != 0);
6461
6462	if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6463		/* Make and build the new AVZ */
6464		uint64_t new_avz = zap_create(spa->spa_meta_objset,
6465		    DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6466		spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6467
6468		/* Diff old AVZ with new one */
6469		zap_cursor_t zc;
6470		zap_attribute_t za;
6471
6472		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6473		    spa->spa_all_vdev_zaps);
6474		    zap_cursor_retrieve(&zc, &za) == 0;
6475		    zap_cursor_advance(&zc)) {
6476			uint64_t vdzap = za.za_first_integer;
6477			if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6478			    vdzap) == ENOENT) {
6479				/*
6480				 * ZAP is listed in old AVZ but not in new one;
6481				 * destroy it
6482				 */
6483				VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6484				    tx));
6485			}
6486		}
6487
6488		zap_cursor_fini(&zc);
6489
6490		/* Destroy the old AVZ */
6491		VERIFY0(zap_destroy(spa->spa_meta_objset,
6492		    spa->spa_all_vdev_zaps, tx));
6493
6494		/* Replace the old AVZ in the dir obj with the new one */
6495		VERIFY0(zap_update(spa->spa_meta_objset,
6496		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6497		    sizeof (new_avz), 1, &new_avz, tx));
6498
6499		spa->spa_all_vdev_zaps = new_avz;
6500	} else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6501		zap_cursor_t zc;
6502		zap_attribute_t za;
6503
6504		/* Walk through the AVZ and destroy all listed ZAPs */
6505		for (zap_cursor_init(&zc, spa->spa_meta_objset,
6506		    spa->spa_all_vdev_zaps);
6507		    zap_cursor_retrieve(&zc, &za) == 0;
6508		    zap_cursor_advance(&zc)) {
6509			uint64_t zap = za.za_first_integer;
6510			VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6511		}
6512
6513		zap_cursor_fini(&zc);
6514
6515		/* Destroy and unlink the AVZ itself */
6516		VERIFY0(zap_destroy(spa->spa_meta_objset,
6517		    spa->spa_all_vdev_zaps, tx));
6518		VERIFY0(zap_remove(spa->spa_meta_objset,
6519		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6520		spa->spa_all_vdev_zaps = 0;
6521	}
6522
6523	if (spa->spa_all_vdev_zaps == 0) {
6524		spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6525		    DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6526		    DMU_POOL_VDEV_ZAP_MAP, tx);
6527	}
6528	spa->spa_avz_action = AVZ_ACTION_NONE;
6529
6530	/* Create ZAPs for vdevs that don't have them. */
6531	vdev_construct_zaps(spa->spa_root_vdev, tx);
6532
6533	config = spa_config_generate(spa, spa->spa_root_vdev,
6534	    dmu_tx_get_txg(tx), B_FALSE);
6535
6536	/*
6537	 * If we're upgrading the spa version then make sure that
6538	 * the config object gets updated with the correct version.
6539	 */
6540	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6541		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6542		    spa->spa_uberblock.ub_version);
6543
6544	spa_config_exit(spa, SCL_STATE, FTAG);
6545
6546	nvlist_free(spa->spa_config_syncing);
6547	spa->spa_config_syncing = config;
6548
6549	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6550}
6551
6552static void
6553spa_sync_version(void *arg, dmu_tx_t *tx)
6554{
6555	uint64_t *versionp = arg;
6556	uint64_t version = *versionp;
6557	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6558
6559	/*
6560	 * Setting the version is special cased when first creating the pool.
6561	 */
6562	ASSERT(tx->tx_txg != TXG_INITIAL);
6563
6564	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6565	ASSERT(version >= spa_version(spa));
6566
6567	spa->spa_uberblock.ub_version = version;
6568	vdev_config_dirty(spa->spa_root_vdev);
6569	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6570}
6571
6572/*
6573 * Set zpool properties.
6574 */
6575static void
6576spa_sync_props(void *arg, dmu_tx_t *tx)
6577{
6578	nvlist_t *nvp = arg;
6579	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6580	objset_t *mos = spa->spa_meta_objset;
6581	nvpair_t *elem = NULL;
6582
6583	mutex_enter(&spa->spa_props_lock);
6584
6585	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6586		uint64_t intval;
6587		char *strval, *fname;
6588		zpool_prop_t prop;
6589		const char *propname;
6590		zprop_type_t proptype;
6591		spa_feature_t fid;
6592
6593		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6594		case ZPROP_INVAL:
6595			/*
6596			 * We checked this earlier in spa_prop_validate().
6597			 */
6598			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6599
6600			fname = strchr(nvpair_name(elem), '@') + 1;
6601			VERIFY0(zfeature_lookup_name(fname, &fid));
6602
6603			spa_feature_enable(spa, fid, tx);
6604			spa_history_log_internal(spa, "set", tx,
6605			    "%s=enabled", nvpair_name(elem));
6606			break;
6607
6608		case ZPOOL_PROP_VERSION:
6609			intval = fnvpair_value_uint64(elem);
6610			/*
6611			 * The version is synced seperatly before other
6612			 * properties and should be correct by now.
6613			 */
6614			ASSERT3U(spa_version(spa), >=, intval);
6615			break;
6616
6617		case ZPOOL_PROP_ALTROOT:
6618			/*
6619			 * 'altroot' is a non-persistent property. It should
6620			 * have been set temporarily at creation or import time.
6621			 */
6622			ASSERT(spa->spa_root != NULL);
6623			break;
6624
6625		case ZPOOL_PROP_READONLY:
6626		case ZPOOL_PROP_CACHEFILE:
6627			/*
6628			 * 'readonly' and 'cachefile' are also non-persisitent
6629			 * properties.
6630			 */
6631			break;
6632		case ZPOOL_PROP_COMMENT:
6633			strval = fnvpair_value_string(elem);
6634			if (spa->spa_comment != NULL)
6635				spa_strfree(spa->spa_comment);
6636			spa->spa_comment = spa_strdup(strval);
6637			/*
6638			 * We need to dirty the configuration on all the vdevs
6639			 * so that their labels get updated.  It's unnecessary
6640			 * to do this for pool creation since the vdev's
6641			 * configuratoin has already been dirtied.
6642			 */
6643			if (tx->tx_txg != TXG_INITIAL)
6644				vdev_config_dirty(spa->spa_root_vdev);
6645			spa_history_log_internal(spa, "set", tx,
6646			    "%s=%s", nvpair_name(elem), strval);
6647			break;
6648		default:
6649			/*
6650			 * Set pool property values in the poolprops mos object.
6651			 */
6652			if (spa->spa_pool_props_object == 0) {
6653				spa->spa_pool_props_object =
6654				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6655				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6656				    tx);
6657			}
6658
6659			/* normalize the property name */
6660			propname = zpool_prop_to_name(prop);
6661			proptype = zpool_prop_get_type(prop);
6662
6663			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6664				ASSERT(proptype == PROP_TYPE_STRING);
6665				strval = fnvpair_value_string(elem);
6666				VERIFY0(zap_update(mos,
6667				    spa->spa_pool_props_object, propname,
6668				    1, strlen(strval) + 1, strval, tx));
6669				spa_history_log_internal(spa, "set", tx,
6670				    "%s=%s", nvpair_name(elem), strval);
6671			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6672				intval = fnvpair_value_uint64(elem);
6673
6674				if (proptype == PROP_TYPE_INDEX) {
6675					const char *unused;
6676					VERIFY0(zpool_prop_index_to_string(
6677					    prop, intval, &unused));
6678				}
6679				VERIFY0(zap_update(mos,
6680				    spa->spa_pool_props_object, propname,
6681				    8, 1, &intval, tx));
6682				spa_history_log_internal(spa, "set", tx,
6683				    "%s=%lld", nvpair_name(elem), intval);
6684			} else {
6685				ASSERT(0); /* not allowed */
6686			}
6687
6688			switch (prop) {
6689			case ZPOOL_PROP_DELEGATION:
6690				spa->spa_delegation = intval;
6691				break;
6692			case ZPOOL_PROP_BOOTFS:
6693				spa->spa_bootfs = intval;
6694				break;
6695			case ZPOOL_PROP_FAILUREMODE:
6696				spa->spa_failmode = intval;
6697				break;
6698			case ZPOOL_PROP_AUTOEXPAND:
6699				spa->spa_autoexpand = intval;
6700				if (tx->tx_txg != TXG_INITIAL)
6701					spa_async_request(spa,
6702					    SPA_ASYNC_AUTOEXPAND);
6703				break;
6704			case ZPOOL_PROP_DEDUPDITTO:
6705				spa->spa_dedup_ditto = intval;
6706				break;
6707			default:
6708				break;
6709			}
6710		}
6711
6712	}
6713
6714	mutex_exit(&spa->spa_props_lock);
6715}
6716
6717/*
6718 * Perform one-time upgrade on-disk changes.  spa_version() does not
6719 * reflect the new version this txg, so there must be no changes this
6720 * txg to anything that the upgrade code depends on after it executes.
6721 * Therefore this must be called after dsl_pool_sync() does the sync
6722 * tasks.
6723 */
6724static void
6725spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6726{
6727	dsl_pool_t *dp = spa->spa_dsl_pool;
6728
6729	ASSERT(spa->spa_sync_pass == 1);
6730
6731	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6732
6733	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6734	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6735		dsl_pool_create_origin(dp, tx);
6736
6737		/* Keeping the origin open increases spa_minref */
6738		spa->spa_minref += 3;
6739	}
6740
6741	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6742	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6743		dsl_pool_upgrade_clones(dp, tx);
6744	}
6745
6746	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6747	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6748		dsl_pool_upgrade_dir_clones(dp, tx);
6749
6750		/* Keeping the freedir open increases spa_minref */
6751		spa->spa_minref += 3;
6752	}
6753
6754	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6755	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6756		spa_feature_create_zap_objects(spa, tx);
6757	}
6758
6759	/*
6760	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6761	 * when possibility to use lz4 compression for metadata was added
6762	 * Old pools that have this feature enabled must be upgraded to have
6763	 * this feature active
6764	 */
6765	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6766		boolean_t lz4_en = spa_feature_is_enabled(spa,
6767		    SPA_FEATURE_LZ4_COMPRESS);
6768		boolean_t lz4_ac = spa_feature_is_active(spa,
6769		    SPA_FEATURE_LZ4_COMPRESS);
6770
6771		if (lz4_en && !lz4_ac)
6772			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6773	}
6774
6775	/*
6776	 * If we haven't written the salt, do so now.  Note that the
6777	 * feature may not be activated yet, but that's fine since
6778	 * the presence of this ZAP entry is backwards compatible.
6779	 */
6780	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6781	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6782		VERIFY0(zap_add(spa->spa_meta_objset,
6783		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6784		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6785		    spa->spa_cksum_salt.zcs_bytes, tx));
6786	}
6787
6788	rrw_exit(&dp->dp_config_rwlock, FTAG);
6789}
6790
6791/*
6792 * Sync the specified transaction group.  New blocks may be dirtied as
6793 * part of the process, so we iterate until it converges.
6794 */
6795void
6796spa_sync(spa_t *spa, uint64_t txg)
6797{
6798	dsl_pool_t *dp = spa->spa_dsl_pool;
6799	objset_t *mos = spa->spa_meta_objset;
6800	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6801	vdev_t *rvd = spa->spa_root_vdev;
6802	vdev_t *vd;
6803	dmu_tx_t *tx;
6804	int error;
6805
6806	VERIFY(spa_writeable(spa));
6807
6808	/*
6809	 * Lock out configuration changes.
6810	 */
6811	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6812
6813	spa->spa_syncing_txg = txg;
6814	spa->spa_sync_pass = 0;
6815
6816	/*
6817	 * If there are any pending vdev state changes, convert them
6818	 * into config changes that go out with this transaction group.
6819	 */
6820	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6821	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6822		/*
6823		 * We need the write lock here because, for aux vdevs,
6824		 * calling vdev_config_dirty() modifies sav_config.
6825		 * This is ugly and will become unnecessary when we
6826		 * eliminate the aux vdev wart by integrating all vdevs
6827		 * into the root vdev tree.
6828		 */
6829		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6830		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6831		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6832			vdev_state_clean(vd);
6833			vdev_config_dirty(vd);
6834		}
6835		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6836		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6837	}
6838	spa_config_exit(spa, SCL_STATE, FTAG);
6839
6840	tx = dmu_tx_create_assigned(dp, txg);
6841
6842	spa->spa_sync_starttime = gethrtime();
6843#ifdef illumos
6844	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6845	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6846#else	/* !illumos */
6847#ifdef _KERNEL
6848	callout_reset(&spa->spa_deadman_cycid,
6849	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6850#endif
6851#endif	/* illumos */
6852
6853	/*
6854	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6855	 * set spa_deflate if we have no raid-z vdevs.
6856	 */
6857	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6858	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6859		int i;
6860
6861		for (i = 0; i < rvd->vdev_children; i++) {
6862			vd = rvd->vdev_child[i];
6863			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6864				break;
6865		}
6866		if (i == rvd->vdev_children) {
6867			spa->spa_deflate = TRUE;
6868			VERIFY(0 == zap_add(spa->spa_meta_objset,
6869			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6870			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6871		}
6872	}
6873
6874	/*
6875	 * Iterate to convergence.
6876	 */
6877	do {
6878		int pass = ++spa->spa_sync_pass;
6879
6880		spa_sync_config_object(spa, tx);
6881		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6882		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6883		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6884		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6885		spa_errlog_sync(spa, txg);
6886		dsl_pool_sync(dp, txg);
6887
6888		if (pass < zfs_sync_pass_deferred_free) {
6889			spa_sync_frees(spa, free_bpl, tx);
6890		} else {
6891			/*
6892			 * We can not defer frees in pass 1, because
6893			 * we sync the deferred frees later in pass 1.
6894			 */
6895			ASSERT3U(pass, >, 1);
6896			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6897			    &spa->spa_deferred_bpobj, tx);
6898		}
6899
6900		ddt_sync(spa, txg);
6901		dsl_scan_sync(dp, tx);
6902
6903		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6904			vdev_sync(vd, txg);
6905
6906		if (pass == 1) {
6907			spa_sync_upgrades(spa, tx);
6908			ASSERT3U(txg, >=,
6909			    spa->spa_uberblock.ub_rootbp.blk_birth);
6910			/*
6911			 * Note: We need to check if the MOS is dirty
6912			 * because we could have marked the MOS dirty
6913			 * without updating the uberblock (e.g. if we
6914			 * have sync tasks but no dirty user data).  We
6915			 * need to check the uberblock's rootbp because
6916			 * it is updated if we have synced out dirty
6917			 * data (though in this case the MOS will most
6918			 * likely also be dirty due to second order
6919			 * effects, we don't want to rely on that here).
6920			 */
6921			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6922			    !dmu_objset_is_dirty(mos, txg)) {
6923				/*
6924				 * Nothing changed on the first pass,
6925				 * therefore this TXG is a no-op.  Avoid
6926				 * syncing deferred frees, so that we
6927				 * can keep this TXG as a no-op.
6928				 */
6929				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6930				    txg));
6931				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6932				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6933				break;
6934			}
6935			spa_sync_deferred_frees(spa, tx);
6936		}
6937
6938	} while (dmu_objset_is_dirty(mos, txg));
6939
6940	if (!list_is_empty(&spa->spa_config_dirty_list)) {
6941		/*
6942		 * Make sure that the number of ZAPs for all the vdevs matches
6943		 * the number of ZAPs in the per-vdev ZAP list. This only gets
6944		 * called if the config is dirty; otherwise there may be
6945		 * outstanding AVZ operations that weren't completed in
6946		 * spa_sync_config_object.
6947		 */
6948		uint64_t all_vdev_zap_entry_count;
6949		ASSERT0(zap_count(spa->spa_meta_objset,
6950		    spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
6951		ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
6952		    all_vdev_zap_entry_count);
6953	}
6954
6955	/*
6956	 * Rewrite the vdev configuration (which includes the uberblock)
6957	 * to commit the transaction group.
6958	 *
6959	 * If there are no dirty vdevs, we sync the uberblock to a few
6960	 * random top-level vdevs that are known to be visible in the
6961	 * config cache (see spa_vdev_add() for a complete description).
6962	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6963	 */
6964	for (;;) {
6965		/*
6966		 * We hold SCL_STATE to prevent vdev open/close/etc.
6967		 * while we're attempting to write the vdev labels.
6968		 */
6969		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6970
6971		if (list_is_empty(&spa->spa_config_dirty_list)) {
6972			vdev_t *svd[SPA_DVAS_PER_BP];
6973			int svdcount = 0;
6974			int children = rvd->vdev_children;
6975			int c0 = spa_get_random(children);
6976
6977			for (int c = 0; c < children; c++) {
6978				vd = rvd->vdev_child[(c0 + c) % children];
6979				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6980					continue;
6981				svd[svdcount++] = vd;
6982				if (svdcount == SPA_DVAS_PER_BP)
6983					break;
6984			}
6985			error = vdev_config_sync(svd, svdcount, txg);
6986		} else {
6987			error = vdev_config_sync(rvd->vdev_child,
6988			    rvd->vdev_children, txg);
6989		}
6990
6991		if (error == 0)
6992			spa->spa_last_synced_guid = rvd->vdev_guid;
6993
6994		spa_config_exit(spa, SCL_STATE, FTAG);
6995
6996		if (error == 0)
6997			break;
6998		zio_suspend(spa, NULL);
6999		zio_resume_wait(spa);
7000	}
7001	dmu_tx_commit(tx);
7002
7003#ifdef illumos
7004	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
7005#else	/* !illumos */
7006#ifdef _KERNEL
7007	callout_drain(&spa->spa_deadman_cycid);
7008#endif
7009#endif	/* illumos */
7010
7011	/*
7012	 * Clear the dirty config list.
7013	 */
7014	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7015		vdev_config_clean(vd);
7016
7017	/*
7018	 * Now that the new config has synced transactionally,
7019	 * let it become visible to the config cache.
7020	 */
7021	if (spa->spa_config_syncing != NULL) {
7022		spa_config_set(spa, spa->spa_config_syncing);
7023		spa->spa_config_txg = txg;
7024		spa->spa_config_syncing = NULL;
7025	}
7026
7027	spa->spa_ubsync = spa->spa_uberblock;
7028
7029	dsl_pool_sync_done(dp, txg);
7030
7031	/*
7032	 * Update usable space statistics.
7033	 */
7034	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
7035		vdev_sync_done(vd, txg);
7036
7037	spa_update_dspace(spa);
7038
7039	/*
7040	 * It had better be the case that we didn't dirty anything
7041	 * since vdev_config_sync().
7042	 */
7043	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7044	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7045	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7046
7047	spa->spa_sync_pass = 0;
7048
7049	spa_config_exit(spa, SCL_CONFIG, FTAG);
7050
7051	spa_handle_ignored_writes(spa);
7052
7053	/*
7054	 * If any async tasks have been requested, kick them off.
7055	 */
7056	spa_async_dispatch(spa);
7057	spa_async_dispatch_vd(spa);
7058}
7059
7060/*
7061 * Sync all pools.  We don't want to hold the namespace lock across these
7062 * operations, so we take a reference on the spa_t and drop the lock during the
7063 * sync.
7064 */
7065void
7066spa_sync_allpools(void)
7067{
7068	spa_t *spa = NULL;
7069	mutex_enter(&spa_namespace_lock);
7070	while ((spa = spa_next(spa)) != NULL) {
7071		if (spa_state(spa) != POOL_STATE_ACTIVE ||
7072		    !spa_writeable(spa) || spa_suspended(spa))
7073			continue;
7074		spa_open_ref(spa, FTAG);
7075		mutex_exit(&spa_namespace_lock);
7076		txg_wait_synced(spa_get_dsl(spa), 0);
7077		mutex_enter(&spa_namespace_lock);
7078		spa_close(spa, FTAG);
7079	}
7080	mutex_exit(&spa_namespace_lock);
7081}
7082
7083/*
7084 * ==========================================================================
7085 * Miscellaneous routines
7086 * ==========================================================================
7087 */
7088
7089/*
7090 * Remove all pools in the system.
7091 */
7092void
7093spa_evict_all(void)
7094{
7095	spa_t *spa;
7096
7097	/*
7098	 * Remove all cached state.  All pools should be closed now,
7099	 * so every spa in the AVL tree should be unreferenced.
7100	 */
7101	mutex_enter(&spa_namespace_lock);
7102	while ((spa = spa_next(NULL)) != NULL) {
7103		/*
7104		 * Stop async tasks.  The async thread may need to detach
7105		 * a device that's been replaced, which requires grabbing
7106		 * spa_namespace_lock, so we must drop it here.
7107		 */
7108		spa_open_ref(spa, FTAG);
7109		mutex_exit(&spa_namespace_lock);
7110		spa_async_suspend(spa);
7111		mutex_enter(&spa_namespace_lock);
7112		spa_close(spa, FTAG);
7113
7114		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7115			spa_unload(spa);
7116			spa_deactivate(spa);
7117		}
7118		spa_remove(spa);
7119	}
7120	mutex_exit(&spa_namespace_lock);
7121}
7122
7123vdev_t *
7124spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7125{
7126	vdev_t *vd;
7127	int i;
7128
7129	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7130		return (vd);
7131
7132	if (aux) {
7133		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7134			vd = spa->spa_l2cache.sav_vdevs[i];
7135			if (vd->vdev_guid == guid)
7136				return (vd);
7137		}
7138
7139		for (i = 0; i < spa->spa_spares.sav_count; i++) {
7140			vd = spa->spa_spares.sav_vdevs[i];
7141			if (vd->vdev_guid == guid)
7142				return (vd);
7143		}
7144	}
7145
7146	return (NULL);
7147}
7148
7149void
7150spa_upgrade(spa_t *spa, uint64_t version)
7151{
7152	ASSERT(spa_writeable(spa));
7153
7154	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7155
7156	/*
7157	 * This should only be called for a non-faulted pool, and since a
7158	 * future version would result in an unopenable pool, this shouldn't be
7159	 * possible.
7160	 */
7161	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7162	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7163
7164	spa->spa_uberblock.ub_version = version;
7165	vdev_config_dirty(spa->spa_root_vdev);
7166
7167	spa_config_exit(spa, SCL_ALL, FTAG);
7168
7169	txg_wait_synced(spa_get_dsl(spa), 0);
7170}
7171
7172boolean_t
7173spa_has_spare(spa_t *spa, uint64_t guid)
7174{
7175	int i;
7176	uint64_t spareguid;
7177	spa_aux_vdev_t *sav = &spa->spa_spares;
7178
7179	for (i = 0; i < sav->sav_count; i++)
7180		if (sav->sav_vdevs[i]->vdev_guid == guid)
7181			return (B_TRUE);
7182
7183	for (i = 0; i < sav->sav_npending; i++) {
7184		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7185		    &spareguid) == 0 && spareguid == guid)
7186			return (B_TRUE);
7187	}
7188
7189	return (B_FALSE);
7190}
7191
7192/*
7193 * Check if a pool has an active shared spare device.
7194 * Note: reference count of an active spare is 2, as a spare and as a replace
7195 */
7196static boolean_t
7197spa_has_active_shared_spare(spa_t *spa)
7198{
7199	int i, refcnt;
7200	uint64_t pool;
7201	spa_aux_vdev_t *sav = &spa->spa_spares;
7202
7203	for (i = 0; i < sav->sav_count; i++) {
7204		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7205		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7206		    refcnt > 2)
7207			return (B_TRUE);
7208	}
7209
7210	return (B_FALSE);
7211}
7212
7213/*
7214 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7215 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7216 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7217 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7218 * or zdb as real changes.
7219 */
7220void
7221spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7222{
7223#ifdef _KERNEL
7224	sysevent_t		*ev;
7225	sysevent_attr_list_t	*attr = NULL;
7226	sysevent_value_t	value;
7227	sysevent_id_t		eid;
7228
7229	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7230	    SE_SLEEP);
7231
7232	value.value_type = SE_DATA_TYPE_STRING;
7233	value.value.sv_string = spa_name(spa);
7234	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7235		goto done;
7236
7237	value.value_type = SE_DATA_TYPE_UINT64;
7238	value.value.sv_uint64 = spa_guid(spa);
7239	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7240		goto done;
7241
7242	if (vd) {
7243		value.value_type = SE_DATA_TYPE_UINT64;
7244		value.value.sv_uint64 = vd->vdev_guid;
7245		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7246		    SE_SLEEP) != 0)
7247			goto done;
7248
7249		if (vd->vdev_path) {
7250			value.value_type = SE_DATA_TYPE_STRING;
7251			value.value.sv_string = vd->vdev_path;
7252			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7253			    &value, SE_SLEEP) != 0)
7254				goto done;
7255		}
7256	}
7257
7258	if (sysevent_attach_attributes(ev, attr) != 0)
7259		goto done;
7260	attr = NULL;
7261
7262	(void) log_sysevent(ev, SE_SLEEP, &eid);
7263
7264done:
7265	if (attr)
7266		sysevent_free_attr(attr);
7267	sysevent_free(ev);
7268#endif
7269}
7270