spa.c revision 297709
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 */
31
32/*
33 * SPA: Storage Pool Allocator
34 *
35 * This file contains all the routines used when modifying on-disk SPA state.
36 * This includes opening, importing, destroying, exporting a pool, and syncing a
37 * pool.
38 */
39
40#include <sys/zfs_context.h>
41#include <sys/fm/fs/zfs.h>
42#include <sys/spa_impl.h>
43#include <sys/zio.h>
44#include <sys/zio_checksum.h>
45#include <sys/dmu.h>
46#include <sys/dmu_tx.h>
47#include <sys/zap.h>
48#include <sys/zil.h>
49#include <sys/ddt.h>
50#include <sys/vdev_impl.h>
51#include <sys/metaslab.h>
52#include <sys/metaslab_impl.h>
53#include <sys/uberblock_impl.h>
54#include <sys/txg.h>
55#include <sys/avl.h>
56#include <sys/dmu_traverse.h>
57#include <sys/dmu_objset.h>
58#include <sys/unique.h>
59#include <sys/dsl_pool.h>
60#include <sys/dsl_dataset.h>
61#include <sys/dsl_dir.h>
62#include <sys/dsl_prop.h>
63#include <sys/dsl_synctask.h>
64#include <sys/fs/zfs.h>
65#include <sys/arc.h>
66#include <sys/callb.h>
67#include <sys/spa_boot.h>
68#include <sys/zfs_ioctl.h>
69#include <sys/dsl_scan.h>
70#include <sys/dmu_send.h>
71#include <sys/dsl_destroy.h>
72#include <sys/dsl_userhold.h>
73#include <sys/zfeature.h>
74#include <sys/zvol.h>
75#include <sys/trim_map.h>
76
77#ifdef	_KERNEL
78#include <sys/callb.h>
79#include <sys/cpupart.h>
80#include <sys/zone.h>
81#endif	/* _KERNEL */
82
83#include "zfs_prop.h"
84#include "zfs_comutil.h"
85
86/* Check hostid on import? */
87static int check_hostid = 1;
88
89/*
90 * The interval, in seconds, at which failed configuration cache file writes
91 * should be retried.
92 */
93static int zfs_ccw_retry_interval = 300;
94
95SYSCTL_DECL(_vfs_zfs);
96SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
97    "Check hostid on import?");
98TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
99SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
100    &zfs_ccw_retry_interval, 0,
101    "Configuration cache file write, retry after failure, interval (seconds)");
102
103typedef enum zti_modes {
104	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
105	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
106	ZTI_MODE_NULL,			/* don't create a taskq */
107	ZTI_NMODES
108} zti_modes_t;
109
110#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
111#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
112#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
113
114#define	ZTI_N(n)	ZTI_P(n, 1)
115#define	ZTI_ONE		ZTI_N(1)
116
117typedef struct zio_taskq_info {
118	zti_modes_t zti_mode;
119	uint_t zti_value;
120	uint_t zti_count;
121} zio_taskq_info_t;
122
123static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
124	"issue", "issue_high", "intr", "intr_high"
125};
126
127/*
128 * This table defines the taskq settings for each ZFS I/O type. When
129 * initializing a pool, we use this table to create an appropriately sized
130 * taskq. Some operations are low volume and therefore have a small, static
131 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
132 * macros. Other operations process a large amount of data; the ZTI_BATCH
133 * macro causes us to create a taskq oriented for throughput. Some operations
134 * are so high frequency and short-lived that the taskq itself can become a a
135 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
136 * additional degree of parallelism specified by the number of threads per-
137 * taskq and the number of taskqs; when dispatching an event in this case, the
138 * particular taskq is chosen at random.
139 *
140 * The different taskq priorities are to handle the different contexts (issue
141 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
142 * need to be handled with minimum delay.
143 */
144const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
145	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
146	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
147	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
148	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
149	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
150	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
151	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
152};
153
154static void spa_sync_version(void *arg, dmu_tx_t *tx);
155static void spa_sync_props(void *arg, dmu_tx_t *tx);
156static boolean_t spa_has_active_shared_spare(spa_t *spa);
157static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
158    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
159    char **ereport);
160static void spa_vdev_resilver_done(spa_t *spa);
161
162uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
163#ifdef PSRSET_BIND
164id_t		zio_taskq_psrset_bind = PS_NONE;
165#endif
166#ifdef SYSDC
167boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
168#endif
169uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
170
171boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
172extern int	zfs_sync_pass_deferred_free;
173
174#ifndef illumos
175extern void spa_deadman(void *arg);
176#endif
177
178/*
179 * This (illegal) pool name is used when temporarily importing a spa_t in order
180 * to get the vdev stats associated with the imported devices.
181 */
182#define	TRYIMPORT_NAME	"$import"
183
184/*
185 * ==========================================================================
186 * SPA properties routines
187 * ==========================================================================
188 */
189
190/*
191 * Add a (source=src, propname=propval) list to an nvlist.
192 */
193static void
194spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
195    uint64_t intval, zprop_source_t src)
196{
197	const char *propname = zpool_prop_to_name(prop);
198	nvlist_t *propval;
199
200	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
201	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
202
203	if (strval != NULL)
204		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
205	else
206		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
207
208	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
209	nvlist_free(propval);
210}
211
212/*
213 * Get property values from the spa configuration.
214 */
215static void
216spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
217{
218	vdev_t *rvd = spa->spa_root_vdev;
219	dsl_pool_t *pool = spa->spa_dsl_pool;
220	uint64_t size, alloc, cap, version;
221	zprop_source_t src = ZPROP_SRC_NONE;
222	spa_config_dirent_t *dp;
223	metaslab_class_t *mc = spa_normal_class(spa);
224
225	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
226
227	if (rvd != NULL) {
228		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
229		size = metaslab_class_get_space(spa_normal_class(spa));
230		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
231		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
233		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
234		    size - alloc, src);
235
236		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
237		    metaslab_class_fragmentation(mc), src);
238		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
239		    metaslab_class_expandable_space(mc), src);
240		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
241		    (spa_mode(spa) == FREAD), src);
242
243		cap = (size == 0) ? 0 : (alloc * 100 / size);
244		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
247		    ddt_get_pool_dedup_ratio(spa), src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
250		    rvd->vdev_state, src);
251
252		version = spa_version(spa);
253		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
254			src = ZPROP_SRC_DEFAULT;
255		else
256			src = ZPROP_SRC_LOCAL;
257		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
258	}
259
260	if (pool != NULL) {
261		/*
262		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
263		 * when opening pools before this version freedir will be NULL.
264		 */
265		if (pool->dp_free_dir != NULL) {
266			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
267			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
268			    src);
269		} else {
270			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
271			    NULL, 0, src);
272		}
273
274		if (pool->dp_leak_dir != NULL) {
275			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
276			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
277			    src);
278		} else {
279			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
280			    NULL, 0, src);
281		}
282	}
283
284	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
285
286	if (spa->spa_comment != NULL) {
287		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
288		    0, ZPROP_SRC_LOCAL);
289	}
290
291	if (spa->spa_root != NULL)
292		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
293		    0, ZPROP_SRC_LOCAL);
294
295	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
296		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
297		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
298	} else {
299		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
300		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
301	}
302
303	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
304		if (dp->scd_path == NULL) {
305			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
306			    "none", 0, ZPROP_SRC_LOCAL);
307		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
308			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
309			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
310		}
311	}
312}
313
314/*
315 * Get zpool property values.
316 */
317int
318spa_prop_get(spa_t *spa, nvlist_t **nvp)
319{
320	objset_t *mos = spa->spa_meta_objset;
321	zap_cursor_t zc;
322	zap_attribute_t za;
323	int err;
324
325	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
326
327	mutex_enter(&spa->spa_props_lock);
328
329	/*
330	 * Get properties from the spa config.
331	 */
332	spa_prop_get_config(spa, nvp);
333
334	/* If no pool property object, no more prop to get. */
335	if (mos == NULL || spa->spa_pool_props_object == 0) {
336		mutex_exit(&spa->spa_props_lock);
337		return (0);
338	}
339
340	/*
341	 * Get properties from the MOS pool property object.
342	 */
343	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
344	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
345	    zap_cursor_advance(&zc)) {
346		uint64_t intval = 0;
347		char *strval = NULL;
348		zprop_source_t src = ZPROP_SRC_DEFAULT;
349		zpool_prop_t prop;
350
351		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
352			continue;
353
354		switch (za.za_integer_length) {
355		case 8:
356			/* integer property */
357			if (za.za_first_integer !=
358			    zpool_prop_default_numeric(prop))
359				src = ZPROP_SRC_LOCAL;
360
361			if (prop == ZPOOL_PROP_BOOTFS) {
362				dsl_pool_t *dp;
363				dsl_dataset_t *ds = NULL;
364
365				dp = spa_get_dsl(spa);
366				dsl_pool_config_enter(dp, FTAG);
367				if (err = dsl_dataset_hold_obj(dp,
368				    za.za_first_integer, FTAG, &ds)) {
369					dsl_pool_config_exit(dp, FTAG);
370					break;
371				}
372
373				strval = kmem_alloc(
374				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
375				    KM_SLEEP);
376				dsl_dataset_name(ds, strval);
377				dsl_dataset_rele(ds, FTAG);
378				dsl_pool_config_exit(dp, FTAG);
379			} else {
380				strval = NULL;
381				intval = za.za_first_integer;
382			}
383
384			spa_prop_add_list(*nvp, prop, strval, intval, src);
385
386			if (strval != NULL)
387				kmem_free(strval,
388				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
389
390			break;
391
392		case 1:
393			/* string property */
394			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
395			err = zap_lookup(mos, spa->spa_pool_props_object,
396			    za.za_name, 1, za.za_num_integers, strval);
397			if (err) {
398				kmem_free(strval, za.za_num_integers);
399				break;
400			}
401			spa_prop_add_list(*nvp, prop, strval, 0, src);
402			kmem_free(strval, za.za_num_integers);
403			break;
404
405		default:
406			break;
407		}
408	}
409	zap_cursor_fini(&zc);
410	mutex_exit(&spa->spa_props_lock);
411out:
412	if (err && err != ENOENT) {
413		nvlist_free(*nvp);
414		*nvp = NULL;
415		return (err);
416	}
417
418	return (0);
419}
420
421/*
422 * Validate the given pool properties nvlist and modify the list
423 * for the property values to be set.
424 */
425static int
426spa_prop_validate(spa_t *spa, nvlist_t *props)
427{
428	nvpair_t *elem;
429	int error = 0, reset_bootfs = 0;
430	uint64_t objnum = 0;
431	boolean_t has_feature = B_FALSE;
432
433	elem = NULL;
434	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
435		uint64_t intval;
436		char *strval, *slash, *check, *fname;
437		const char *propname = nvpair_name(elem);
438		zpool_prop_t prop = zpool_name_to_prop(propname);
439
440		switch (prop) {
441		case ZPROP_INVAL:
442			if (!zpool_prop_feature(propname)) {
443				error = SET_ERROR(EINVAL);
444				break;
445			}
446
447			/*
448			 * Sanitize the input.
449			 */
450			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			if (nvpair_value_uint64(elem, &intval) != 0) {
456				error = SET_ERROR(EINVAL);
457				break;
458			}
459
460			if (intval != 0) {
461				error = SET_ERROR(EINVAL);
462				break;
463			}
464
465			fname = strchr(propname, '@') + 1;
466			if (zfeature_lookup_name(fname, NULL) != 0) {
467				error = SET_ERROR(EINVAL);
468				break;
469			}
470
471			has_feature = B_TRUE;
472			break;
473
474		case ZPOOL_PROP_VERSION:
475			error = nvpair_value_uint64(elem, &intval);
476			if (!error &&
477			    (intval < spa_version(spa) ||
478			    intval > SPA_VERSION_BEFORE_FEATURES ||
479			    has_feature))
480				error = SET_ERROR(EINVAL);
481			break;
482
483		case ZPOOL_PROP_DELEGATION:
484		case ZPOOL_PROP_AUTOREPLACE:
485		case ZPOOL_PROP_LISTSNAPS:
486		case ZPOOL_PROP_AUTOEXPAND:
487			error = nvpair_value_uint64(elem, &intval);
488			if (!error && intval > 1)
489				error = SET_ERROR(EINVAL);
490			break;
491
492		case ZPOOL_PROP_BOOTFS:
493			/*
494			 * If the pool version is less than SPA_VERSION_BOOTFS,
495			 * or the pool is still being created (version == 0),
496			 * the bootfs property cannot be set.
497			 */
498			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
499				error = SET_ERROR(ENOTSUP);
500				break;
501			}
502
503			/*
504			 * Make sure the vdev config is bootable
505			 */
506			if (!vdev_is_bootable(spa->spa_root_vdev)) {
507				error = SET_ERROR(ENOTSUP);
508				break;
509			}
510
511			reset_bootfs = 1;
512
513			error = nvpair_value_string(elem, &strval);
514
515			if (!error) {
516				objset_t *os;
517				uint64_t propval;
518
519				if (strval == NULL || strval[0] == '\0') {
520					objnum = zpool_prop_default_numeric(
521					    ZPOOL_PROP_BOOTFS);
522					break;
523				}
524
525				if (error = dmu_objset_hold(strval, FTAG, &os))
526					break;
527
528				/*
529				 * Must be ZPL, and its property settings
530				 * must be supported by GRUB (compression
531				 * is not gzip, and large blocks are not used).
532				 */
533
534				if (dmu_objset_type(os) != DMU_OST_ZFS) {
535					error = SET_ERROR(ENOTSUP);
536				} else if ((error =
537				    dsl_prop_get_int_ds(dmu_objset_ds(os),
538				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
539				    &propval)) == 0 &&
540				    !BOOTFS_COMPRESS_VALID(propval)) {
541					error = SET_ERROR(ENOTSUP);
542				} else if ((error =
543				    dsl_prop_get_int_ds(dmu_objset_ds(os),
544				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
545				    &propval)) == 0 &&
546				    propval > SPA_OLD_MAXBLOCKSIZE) {
547					error = SET_ERROR(ENOTSUP);
548				} else {
549					objnum = dmu_objset_id(os);
550				}
551				dmu_objset_rele(os, FTAG);
552			}
553			break;
554
555		case ZPOOL_PROP_FAILUREMODE:
556			error = nvpair_value_uint64(elem, &intval);
557			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
558			    intval > ZIO_FAILURE_MODE_PANIC))
559				error = SET_ERROR(EINVAL);
560
561			/*
562			 * This is a special case which only occurs when
563			 * the pool has completely failed. This allows
564			 * the user to change the in-core failmode property
565			 * without syncing it out to disk (I/Os might
566			 * currently be blocked). We do this by returning
567			 * EIO to the caller (spa_prop_set) to trick it
568			 * into thinking we encountered a property validation
569			 * error.
570			 */
571			if (!error && spa_suspended(spa)) {
572				spa->spa_failmode = intval;
573				error = SET_ERROR(EIO);
574			}
575			break;
576
577		case ZPOOL_PROP_CACHEFILE:
578			if ((error = nvpair_value_string(elem, &strval)) != 0)
579				break;
580
581			if (strval[0] == '\0')
582				break;
583
584			if (strcmp(strval, "none") == 0)
585				break;
586
587			if (strval[0] != '/') {
588				error = SET_ERROR(EINVAL);
589				break;
590			}
591
592			slash = strrchr(strval, '/');
593			ASSERT(slash != NULL);
594
595			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
596			    strcmp(slash, "/..") == 0)
597				error = SET_ERROR(EINVAL);
598			break;
599
600		case ZPOOL_PROP_COMMENT:
601			if ((error = nvpair_value_string(elem, &strval)) != 0)
602				break;
603			for (check = strval; *check != '\0'; check++) {
604				/*
605				 * The kernel doesn't have an easy isprint()
606				 * check.  For this kernel check, we merely
607				 * check ASCII apart from DEL.  Fix this if
608				 * there is an easy-to-use kernel isprint().
609				 */
610				if (*check >= 0x7f) {
611					error = SET_ERROR(EINVAL);
612					break;
613				}
614			}
615			if (strlen(strval) > ZPROP_MAX_COMMENT)
616				error = E2BIG;
617			break;
618
619		case ZPOOL_PROP_DEDUPDITTO:
620			if (spa_version(spa) < SPA_VERSION_DEDUP)
621				error = SET_ERROR(ENOTSUP);
622			else
623				error = nvpair_value_uint64(elem, &intval);
624			if (error == 0 &&
625			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
626				error = SET_ERROR(EINVAL);
627			break;
628		}
629
630		if (error)
631			break;
632	}
633
634	if (!error && reset_bootfs) {
635		error = nvlist_remove(props,
636		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
637
638		if (!error) {
639			error = nvlist_add_uint64(props,
640			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
641		}
642	}
643
644	return (error);
645}
646
647void
648spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
649{
650	char *cachefile;
651	spa_config_dirent_t *dp;
652
653	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
654	    &cachefile) != 0)
655		return;
656
657	dp = kmem_alloc(sizeof (spa_config_dirent_t),
658	    KM_SLEEP);
659
660	if (cachefile[0] == '\0')
661		dp->scd_path = spa_strdup(spa_config_path);
662	else if (strcmp(cachefile, "none") == 0)
663		dp->scd_path = NULL;
664	else
665		dp->scd_path = spa_strdup(cachefile);
666
667	list_insert_head(&spa->spa_config_list, dp);
668	if (need_sync)
669		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
670}
671
672int
673spa_prop_set(spa_t *spa, nvlist_t *nvp)
674{
675	int error;
676	nvpair_t *elem = NULL;
677	boolean_t need_sync = B_FALSE;
678
679	if ((error = spa_prop_validate(spa, nvp)) != 0)
680		return (error);
681
682	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
683		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
684
685		if (prop == ZPOOL_PROP_CACHEFILE ||
686		    prop == ZPOOL_PROP_ALTROOT ||
687		    prop == ZPOOL_PROP_READONLY)
688			continue;
689
690		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
691			uint64_t ver;
692
693			if (prop == ZPOOL_PROP_VERSION) {
694				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
695			} else {
696				ASSERT(zpool_prop_feature(nvpair_name(elem)));
697				ver = SPA_VERSION_FEATURES;
698				need_sync = B_TRUE;
699			}
700
701			/* Save time if the version is already set. */
702			if (ver == spa_version(spa))
703				continue;
704
705			/*
706			 * In addition to the pool directory object, we might
707			 * create the pool properties object, the features for
708			 * read object, the features for write object, or the
709			 * feature descriptions object.
710			 */
711			error = dsl_sync_task(spa->spa_name, NULL,
712			    spa_sync_version, &ver,
713			    6, ZFS_SPACE_CHECK_RESERVED);
714			if (error)
715				return (error);
716			continue;
717		}
718
719		need_sync = B_TRUE;
720		break;
721	}
722
723	if (need_sync) {
724		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
725		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
726	}
727
728	return (0);
729}
730
731/*
732 * If the bootfs property value is dsobj, clear it.
733 */
734void
735spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
736{
737	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
738		VERIFY(zap_remove(spa->spa_meta_objset,
739		    spa->spa_pool_props_object,
740		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
741		spa->spa_bootfs = 0;
742	}
743}
744
745/*ARGSUSED*/
746static int
747spa_change_guid_check(void *arg, dmu_tx_t *tx)
748{
749	uint64_t *newguid = arg;
750	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
751	vdev_t *rvd = spa->spa_root_vdev;
752	uint64_t vdev_state;
753
754	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
755	vdev_state = rvd->vdev_state;
756	spa_config_exit(spa, SCL_STATE, FTAG);
757
758	if (vdev_state != VDEV_STATE_HEALTHY)
759		return (SET_ERROR(ENXIO));
760
761	ASSERT3U(spa_guid(spa), !=, *newguid);
762
763	return (0);
764}
765
766static void
767spa_change_guid_sync(void *arg, dmu_tx_t *tx)
768{
769	uint64_t *newguid = arg;
770	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
771	uint64_t oldguid;
772	vdev_t *rvd = spa->spa_root_vdev;
773
774	oldguid = spa_guid(spa);
775
776	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
777	rvd->vdev_guid = *newguid;
778	rvd->vdev_guid_sum += (*newguid - oldguid);
779	vdev_config_dirty(rvd);
780	spa_config_exit(spa, SCL_STATE, FTAG);
781
782	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
783	    oldguid, *newguid);
784}
785
786/*
787 * Change the GUID for the pool.  This is done so that we can later
788 * re-import a pool built from a clone of our own vdevs.  We will modify
789 * the root vdev's guid, our own pool guid, and then mark all of our
790 * vdevs dirty.  Note that we must make sure that all our vdevs are
791 * online when we do this, or else any vdevs that weren't present
792 * would be orphaned from our pool.  We are also going to issue a
793 * sysevent to update any watchers.
794 */
795int
796spa_change_guid(spa_t *spa)
797{
798	int error;
799	uint64_t guid;
800
801	mutex_enter(&spa->spa_vdev_top_lock);
802	mutex_enter(&spa_namespace_lock);
803	guid = spa_generate_guid(NULL);
804
805	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
806	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
807
808	if (error == 0) {
809		spa_config_sync(spa, B_FALSE, B_TRUE);
810		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
811	}
812
813	mutex_exit(&spa_namespace_lock);
814	mutex_exit(&spa->spa_vdev_top_lock);
815
816	return (error);
817}
818
819/*
820 * ==========================================================================
821 * SPA state manipulation (open/create/destroy/import/export)
822 * ==========================================================================
823 */
824
825static int
826spa_error_entry_compare(const void *a, const void *b)
827{
828	spa_error_entry_t *sa = (spa_error_entry_t *)a;
829	spa_error_entry_t *sb = (spa_error_entry_t *)b;
830	int ret;
831
832	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
833	    sizeof (zbookmark_phys_t));
834
835	if (ret < 0)
836		return (-1);
837	else if (ret > 0)
838		return (1);
839	else
840		return (0);
841}
842
843/*
844 * Utility function which retrieves copies of the current logs and
845 * re-initializes them in the process.
846 */
847void
848spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
849{
850	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
851
852	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
853	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
854
855	avl_create(&spa->spa_errlist_scrub,
856	    spa_error_entry_compare, sizeof (spa_error_entry_t),
857	    offsetof(spa_error_entry_t, se_avl));
858	avl_create(&spa->spa_errlist_last,
859	    spa_error_entry_compare, sizeof (spa_error_entry_t),
860	    offsetof(spa_error_entry_t, se_avl));
861}
862
863static void
864spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
865{
866	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
867	enum zti_modes mode = ztip->zti_mode;
868	uint_t value = ztip->zti_value;
869	uint_t count = ztip->zti_count;
870	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
871	char name[32];
872	uint_t flags = 0;
873	boolean_t batch = B_FALSE;
874
875	if (mode == ZTI_MODE_NULL) {
876		tqs->stqs_count = 0;
877		tqs->stqs_taskq = NULL;
878		return;
879	}
880
881	ASSERT3U(count, >, 0);
882
883	tqs->stqs_count = count;
884	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
885
886	switch (mode) {
887	case ZTI_MODE_FIXED:
888		ASSERT3U(value, >=, 1);
889		value = MAX(value, 1);
890		break;
891
892	case ZTI_MODE_BATCH:
893		batch = B_TRUE;
894		flags |= TASKQ_THREADS_CPU_PCT;
895		value = zio_taskq_batch_pct;
896		break;
897
898	default:
899		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
900		    "spa_activate()",
901		    zio_type_name[t], zio_taskq_types[q], mode, value);
902		break;
903	}
904
905	for (uint_t i = 0; i < count; i++) {
906		taskq_t *tq;
907
908		if (count > 1) {
909			(void) snprintf(name, sizeof (name), "%s_%s_%u",
910			    zio_type_name[t], zio_taskq_types[q], i);
911		} else {
912			(void) snprintf(name, sizeof (name), "%s_%s",
913			    zio_type_name[t], zio_taskq_types[q]);
914		}
915
916#ifdef SYSDC
917		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
918			if (batch)
919				flags |= TASKQ_DC_BATCH;
920
921			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
922			    spa->spa_proc, zio_taskq_basedc, flags);
923		} else {
924#endif
925			pri_t pri = maxclsyspri;
926			/*
927			 * The write issue taskq can be extremely CPU
928			 * intensive.  Run it at slightly lower priority
929			 * than the other taskqs.
930			 */
931			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
932				pri++;
933
934			tq = taskq_create_proc(name, value, pri, 50,
935			    INT_MAX, spa->spa_proc, flags);
936#ifdef SYSDC
937		}
938#endif
939
940		tqs->stqs_taskq[i] = tq;
941	}
942}
943
944static void
945spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948
949	if (tqs->stqs_taskq == NULL) {
950		ASSERT0(tqs->stqs_count);
951		return;
952	}
953
954	for (uint_t i = 0; i < tqs->stqs_count; i++) {
955		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
956		taskq_destroy(tqs->stqs_taskq[i]);
957	}
958
959	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
960	tqs->stqs_taskq = NULL;
961}
962
963/*
964 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
965 * Note that a type may have multiple discrete taskqs to avoid lock contention
966 * on the taskq itself. In that case we choose which taskq at random by using
967 * the low bits of gethrtime().
968 */
969void
970spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
971    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
972{
973	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
974	taskq_t *tq;
975
976	ASSERT3P(tqs->stqs_taskq, !=, NULL);
977	ASSERT3U(tqs->stqs_count, !=, 0);
978
979	if (tqs->stqs_count == 1) {
980		tq = tqs->stqs_taskq[0];
981	} else {
982#ifdef _KERNEL
983		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
984#else
985		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
986#endif
987	}
988
989	taskq_dispatch_ent(tq, func, arg, flags, ent);
990}
991
992static void
993spa_create_zio_taskqs(spa_t *spa)
994{
995	for (int t = 0; t < ZIO_TYPES; t++) {
996		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
997			spa_taskqs_init(spa, t, q);
998		}
999	}
1000}
1001
1002#ifdef _KERNEL
1003#ifdef SPA_PROCESS
1004static void
1005spa_thread(void *arg)
1006{
1007	callb_cpr_t cprinfo;
1008
1009	spa_t *spa = arg;
1010	user_t *pu = PTOU(curproc);
1011
1012	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1013	    spa->spa_name);
1014
1015	ASSERT(curproc != &p0);
1016	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1017	    "zpool-%s", spa->spa_name);
1018	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1019
1020#ifdef PSRSET_BIND
1021	/* bind this thread to the requested psrset */
1022	if (zio_taskq_psrset_bind != PS_NONE) {
1023		pool_lock();
1024		mutex_enter(&cpu_lock);
1025		mutex_enter(&pidlock);
1026		mutex_enter(&curproc->p_lock);
1027
1028		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1029		    0, NULL, NULL) == 0)  {
1030			curthread->t_bind_pset = zio_taskq_psrset_bind;
1031		} else {
1032			cmn_err(CE_WARN,
1033			    "Couldn't bind process for zfs pool \"%s\" to "
1034			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1035		}
1036
1037		mutex_exit(&curproc->p_lock);
1038		mutex_exit(&pidlock);
1039		mutex_exit(&cpu_lock);
1040		pool_unlock();
1041	}
1042#endif
1043
1044#ifdef SYSDC
1045	if (zio_taskq_sysdc) {
1046		sysdc_thread_enter(curthread, 100, 0);
1047	}
1048#endif
1049
1050	spa->spa_proc = curproc;
1051	spa->spa_did = curthread->t_did;
1052
1053	spa_create_zio_taskqs(spa);
1054
1055	mutex_enter(&spa->spa_proc_lock);
1056	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1057
1058	spa->spa_proc_state = SPA_PROC_ACTIVE;
1059	cv_broadcast(&spa->spa_proc_cv);
1060
1061	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1062	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1063		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1064	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1065
1066	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1067	spa->spa_proc_state = SPA_PROC_GONE;
1068	spa->spa_proc = &p0;
1069	cv_broadcast(&spa->spa_proc_cv);
1070	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1071
1072	mutex_enter(&curproc->p_lock);
1073	lwp_exit();
1074}
1075#endif	/* SPA_PROCESS */
1076#endif
1077
1078/*
1079 * Activate an uninitialized pool.
1080 */
1081static void
1082spa_activate(spa_t *spa, int mode)
1083{
1084	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1085
1086	spa->spa_state = POOL_STATE_ACTIVE;
1087	spa->spa_mode = mode;
1088
1089	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1091
1092	/* Try to create a covering process */
1093	mutex_enter(&spa->spa_proc_lock);
1094	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1095	ASSERT(spa->spa_proc == &p0);
1096	spa->spa_did = 0;
1097
1098#ifdef SPA_PROCESS
1099	/* Only create a process if we're going to be around a while. */
1100	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1101		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1102		    NULL, 0) == 0) {
1103			spa->spa_proc_state = SPA_PROC_CREATED;
1104			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1105				cv_wait(&spa->spa_proc_cv,
1106				    &spa->spa_proc_lock);
1107			}
1108			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1109			ASSERT(spa->spa_proc != &p0);
1110			ASSERT(spa->spa_did != 0);
1111		} else {
1112#ifdef _KERNEL
1113			cmn_err(CE_WARN,
1114			    "Couldn't create process for zfs pool \"%s\"\n",
1115			    spa->spa_name);
1116#endif
1117		}
1118	}
1119#endif	/* SPA_PROCESS */
1120	mutex_exit(&spa->spa_proc_lock);
1121
1122	/* If we didn't create a process, we need to create our taskqs. */
1123	ASSERT(spa->spa_proc == &p0);
1124	if (spa->spa_proc == &p0) {
1125		spa_create_zio_taskqs(spa);
1126	}
1127
1128	/*
1129	 * Start TRIM thread.
1130	 */
1131	trim_thread_create(spa);
1132
1133	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1134	    offsetof(vdev_t, vdev_config_dirty_node));
1135	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1136	    offsetof(objset_t, os_evicting_node));
1137	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1138	    offsetof(vdev_t, vdev_state_dirty_node));
1139
1140	txg_list_create(&spa->spa_vdev_txg_list,
1141	    offsetof(struct vdev, vdev_txg_node));
1142
1143	avl_create(&spa->spa_errlist_scrub,
1144	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1145	    offsetof(spa_error_entry_t, se_avl));
1146	avl_create(&spa->spa_errlist_last,
1147	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1148	    offsetof(spa_error_entry_t, se_avl));
1149}
1150
1151/*
1152 * Opposite of spa_activate().
1153 */
1154static void
1155spa_deactivate(spa_t *spa)
1156{
1157	ASSERT(spa->spa_sync_on == B_FALSE);
1158	ASSERT(spa->spa_dsl_pool == NULL);
1159	ASSERT(spa->spa_root_vdev == NULL);
1160	ASSERT(spa->spa_async_zio_root == NULL);
1161	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1162
1163	/*
1164	 * Stop TRIM thread in case spa_unload() wasn't called directly
1165	 * before spa_deactivate().
1166	 */
1167	trim_thread_destroy(spa);
1168
1169	spa_evicting_os_wait(spa);
1170
1171	txg_list_destroy(&spa->spa_vdev_txg_list);
1172
1173	list_destroy(&spa->spa_config_dirty_list);
1174	list_destroy(&spa->spa_evicting_os_list);
1175	list_destroy(&spa->spa_state_dirty_list);
1176
1177	for (int t = 0; t < ZIO_TYPES; t++) {
1178		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1179			spa_taskqs_fini(spa, t, q);
1180		}
1181	}
1182
1183	metaslab_class_destroy(spa->spa_normal_class);
1184	spa->spa_normal_class = NULL;
1185
1186	metaslab_class_destroy(spa->spa_log_class);
1187	spa->spa_log_class = NULL;
1188
1189	/*
1190	 * If this was part of an import or the open otherwise failed, we may
1191	 * still have errors left in the queues.  Empty them just in case.
1192	 */
1193	spa_errlog_drain(spa);
1194
1195	avl_destroy(&spa->spa_errlist_scrub);
1196	avl_destroy(&spa->spa_errlist_last);
1197
1198	spa->spa_state = POOL_STATE_UNINITIALIZED;
1199
1200	mutex_enter(&spa->spa_proc_lock);
1201	if (spa->spa_proc_state != SPA_PROC_NONE) {
1202		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1203		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1204		cv_broadcast(&spa->spa_proc_cv);
1205		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1206			ASSERT(spa->spa_proc != &p0);
1207			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1208		}
1209		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1210		spa->spa_proc_state = SPA_PROC_NONE;
1211	}
1212	ASSERT(spa->spa_proc == &p0);
1213	mutex_exit(&spa->spa_proc_lock);
1214
1215#ifdef SPA_PROCESS
1216	/*
1217	 * We want to make sure spa_thread() has actually exited the ZFS
1218	 * module, so that the module can't be unloaded out from underneath
1219	 * it.
1220	 */
1221	if (spa->spa_did != 0) {
1222		thread_join(spa->spa_did);
1223		spa->spa_did = 0;
1224	}
1225#endif	/* SPA_PROCESS */
1226}
1227
1228/*
1229 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1230 * will create all the necessary vdevs in the appropriate layout, with each vdev
1231 * in the CLOSED state.  This will prep the pool before open/creation/import.
1232 * All vdev validation is done by the vdev_alloc() routine.
1233 */
1234static int
1235spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1236    uint_t id, int atype)
1237{
1238	nvlist_t **child;
1239	uint_t children;
1240	int error;
1241
1242	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1243		return (error);
1244
1245	if ((*vdp)->vdev_ops->vdev_op_leaf)
1246		return (0);
1247
1248	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1249	    &child, &children);
1250
1251	if (error == ENOENT)
1252		return (0);
1253
1254	if (error) {
1255		vdev_free(*vdp);
1256		*vdp = NULL;
1257		return (SET_ERROR(EINVAL));
1258	}
1259
1260	for (int c = 0; c < children; c++) {
1261		vdev_t *vd;
1262		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1263		    atype)) != 0) {
1264			vdev_free(*vdp);
1265			*vdp = NULL;
1266			return (error);
1267		}
1268	}
1269
1270	ASSERT(*vdp != NULL);
1271
1272	return (0);
1273}
1274
1275/*
1276 * Opposite of spa_load().
1277 */
1278static void
1279spa_unload(spa_t *spa)
1280{
1281	int i;
1282
1283	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1284
1285	/*
1286	 * Stop TRIM thread.
1287	 */
1288	trim_thread_destroy(spa);
1289
1290	/*
1291	 * Stop async tasks.
1292	 */
1293	spa_async_suspend(spa);
1294
1295	/*
1296	 * Stop syncing.
1297	 */
1298	if (spa->spa_sync_on) {
1299		txg_sync_stop(spa->spa_dsl_pool);
1300		spa->spa_sync_on = B_FALSE;
1301	}
1302
1303	/*
1304	 * Wait for any outstanding async I/O to complete.
1305	 */
1306	if (spa->spa_async_zio_root != NULL) {
1307		for (int i = 0; i < max_ncpus; i++)
1308			(void) zio_wait(spa->spa_async_zio_root[i]);
1309		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1310		spa->spa_async_zio_root = NULL;
1311	}
1312
1313	bpobj_close(&spa->spa_deferred_bpobj);
1314
1315	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1316
1317	/*
1318	 * Close all vdevs.
1319	 */
1320	if (spa->spa_root_vdev)
1321		vdev_free(spa->spa_root_vdev);
1322	ASSERT(spa->spa_root_vdev == NULL);
1323
1324	/*
1325	 * Close the dsl pool.
1326	 */
1327	if (spa->spa_dsl_pool) {
1328		dsl_pool_close(spa->spa_dsl_pool);
1329		spa->spa_dsl_pool = NULL;
1330		spa->spa_meta_objset = NULL;
1331	}
1332
1333	ddt_unload(spa);
1334
1335
1336	/*
1337	 * Drop and purge level 2 cache
1338	 */
1339	spa_l2cache_drop(spa);
1340
1341	for (i = 0; i < spa->spa_spares.sav_count; i++)
1342		vdev_free(spa->spa_spares.sav_vdevs[i]);
1343	if (spa->spa_spares.sav_vdevs) {
1344		kmem_free(spa->spa_spares.sav_vdevs,
1345		    spa->spa_spares.sav_count * sizeof (void *));
1346		spa->spa_spares.sav_vdevs = NULL;
1347	}
1348	if (spa->spa_spares.sav_config) {
1349		nvlist_free(spa->spa_spares.sav_config);
1350		spa->spa_spares.sav_config = NULL;
1351	}
1352	spa->spa_spares.sav_count = 0;
1353
1354	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1355		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1356		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1357	}
1358	if (spa->spa_l2cache.sav_vdevs) {
1359		kmem_free(spa->spa_l2cache.sav_vdevs,
1360		    spa->spa_l2cache.sav_count * sizeof (void *));
1361		spa->spa_l2cache.sav_vdevs = NULL;
1362	}
1363	if (spa->spa_l2cache.sav_config) {
1364		nvlist_free(spa->spa_l2cache.sav_config);
1365		spa->spa_l2cache.sav_config = NULL;
1366	}
1367	spa->spa_l2cache.sav_count = 0;
1368
1369	spa->spa_async_suspended = 0;
1370
1371	if (spa->spa_comment != NULL) {
1372		spa_strfree(spa->spa_comment);
1373		spa->spa_comment = NULL;
1374	}
1375
1376	spa_config_exit(spa, SCL_ALL, FTAG);
1377}
1378
1379/*
1380 * Load (or re-load) the current list of vdevs describing the active spares for
1381 * this pool.  When this is called, we have some form of basic information in
1382 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1383 * then re-generate a more complete list including status information.
1384 */
1385static void
1386spa_load_spares(spa_t *spa)
1387{
1388	nvlist_t **spares;
1389	uint_t nspares;
1390	int i;
1391	vdev_t *vd, *tvd;
1392
1393	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1394
1395	/*
1396	 * First, close and free any existing spare vdevs.
1397	 */
1398	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1399		vd = spa->spa_spares.sav_vdevs[i];
1400
1401		/* Undo the call to spa_activate() below */
1402		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1403		    B_FALSE)) != NULL && tvd->vdev_isspare)
1404			spa_spare_remove(tvd);
1405		vdev_close(vd);
1406		vdev_free(vd);
1407	}
1408
1409	if (spa->spa_spares.sav_vdevs)
1410		kmem_free(spa->spa_spares.sav_vdevs,
1411		    spa->spa_spares.sav_count * sizeof (void *));
1412
1413	if (spa->spa_spares.sav_config == NULL)
1414		nspares = 0;
1415	else
1416		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1417		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1418
1419	spa->spa_spares.sav_count = (int)nspares;
1420	spa->spa_spares.sav_vdevs = NULL;
1421
1422	if (nspares == 0)
1423		return;
1424
1425	/*
1426	 * Construct the array of vdevs, opening them to get status in the
1427	 * process.   For each spare, there is potentially two different vdev_t
1428	 * structures associated with it: one in the list of spares (used only
1429	 * for basic validation purposes) and one in the active vdev
1430	 * configuration (if it's spared in).  During this phase we open and
1431	 * validate each vdev on the spare list.  If the vdev also exists in the
1432	 * active configuration, then we also mark this vdev as an active spare.
1433	 */
1434	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1435	    KM_SLEEP);
1436	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1437		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1438		    VDEV_ALLOC_SPARE) == 0);
1439		ASSERT(vd != NULL);
1440
1441		spa->spa_spares.sav_vdevs[i] = vd;
1442
1443		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1444		    B_FALSE)) != NULL) {
1445			if (!tvd->vdev_isspare)
1446				spa_spare_add(tvd);
1447
1448			/*
1449			 * We only mark the spare active if we were successfully
1450			 * able to load the vdev.  Otherwise, importing a pool
1451			 * with a bad active spare would result in strange
1452			 * behavior, because multiple pool would think the spare
1453			 * is actively in use.
1454			 *
1455			 * There is a vulnerability here to an equally bizarre
1456			 * circumstance, where a dead active spare is later
1457			 * brought back to life (onlined or otherwise).  Given
1458			 * the rarity of this scenario, and the extra complexity
1459			 * it adds, we ignore the possibility.
1460			 */
1461			if (!vdev_is_dead(tvd))
1462				spa_spare_activate(tvd);
1463		}
1464
1465		vd->vdev_top = vd;
1466		vd->vdev_aux = &spa->spa_spares;
1467
1468		if (vdev_open(vd) != 0)
1469			continue;
1470
1471		if (vdev_validate_aux(vd) == 0)
1472			spa_spare_add(vd);
1473	}
1474
1475	/*
1476	 * Recompute the stashed list of spares, with status information
1477	 * this time.
1478	 */
1479	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1480	    DATA_TYPE_NVLIST_ARRAY) == 0);
1481
1482	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1483	    KM_SLEEP);
1484	for (i = 0; i < spa->spa_spares.sav_count; i++)
1485		spares[i] = vdev_config_generate(spa,
1486		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1487	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1488	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1489	for (i = 0; i < spa->spa_spares.sav_count; i++)
1490		nvlist_free(spares[i]);
1491	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1492}
1493
1494/*
1495 * Load (or re-load) the current list of vdevs describing the active l2cache for
1496 * this pool.  When this is called, we have some form of basic information in
1497 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1498 * then re-generate a more complete list including status information.
1499 * Devices which are already active have their details maintained, and are
1500 * not re-opened.
1501 */
1502static void
1503spa_load_l2cache(spa_t *spa)
1504{
1505	nvlist_t **l2cache;
1506	uint_t nl2cache;
1507	int i, j, oldnvdevs;
1508	uint64_t guid;
1509	vdev_t *vd, **oldvdevs, **newvdevs;
1510	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1511
1512	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1513
1514	if (sav->sav_config != NULL) {
1515		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1516		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1517		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1518	} else {
1519		nl2cache = 0;
1520		newvdevs = NULL;
1521	}
1522
1523	oldvdevs = sav->sav_vdevs;
1524	oldnvdevs = sav->sav_count;
1525	sav->sav_vdevs = NULL;
1526	sav->sav_count = 0;
1527
1528	/*
1529	 * Process new nvlist of vdevs.
1530	 */
1531	for (i = 0; i < nl2cache; i++) {
1532		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1533		    &guid) == 0);
1534
1535		newvdevs[i] = NULL;
1536		for (j = 0; j < oldnvdevs; j++) {
1537			vd = oldvdevs[j];
1538			if (vd != NULL && guid == vd->vdev_guid) {
1539				/*
1540				 * Retain previous vdev for add/remove ops.
1541				 */
1542				newvdevs[i] = vd;
1543				oldvdevs[j] = NULL;
1544				break;
1545			}
1546		}
1547
1548		if (newvdevs[i] == NULL) {
1549			/*
1550			 * Create new vdev
1551			 */
1552			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1553			    VDEV_ALLOC_L2CACHE) == 0);
1554			ASSERT(vd != NULL);
1555			newvdevs[i] = vd;
1556
1557			/*
1558			 * Commit this vdev as an l2cache device,
1559			 * even if it fails to open.
1560			 */
1561			spa_l2cache_add(vd);
1562
1563			vd->vdev_top = vd;
1564			vd->vdev_aux = sav;
1565
1566			spa_l2cache_activate(vd);
1567
1568			if (vdev_open(vd) != 0)
1569				continue;
1570
1571			(void) vdev_validate_aux(vd);
1572
1573			if (!vdev_is_dead(vd))
1574				l2arc_add_vdev(spa, vd);
1575		}
1576	}
1577
1578	/*
1579	 * Purge vdevs that were dropped
1580	 */
1581	for (i = 0; i < oldnvdevs; i++) {
1582		uint64_t pool;
1583
1584		vd = oldvdevs[i];
1585		if (vd != NULL) {
1586			ASSERT(vd->vdev_isl2cache);
1587
1588			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1589			    pool != 0ULL && l2arc_vdev_present(vd))
1590				l2arc_remove_vdev(vd);
1591			vdev_clear_stats(vd);
1592			vdev_free(vd);
1593		}
1594	}
1595
1596	if (oldvdevs)
1597		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1598
1599	if (sav->sav_config == NULL)
1600		goto out;
1601
1602	sav->sav_vdevs = newvdevs;
1603	sav->sav_count = (int)nl2cache;
1604
1605	/*
1606	 * Recompute the stashed list of l2cache devices, with status
1607	 * information this time.
1608	 */
1609	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1610	    DATA_TYPE_NVLIST_ARRAY) == 0);
1611
1612	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1613	for (i = 0; i < sav->sav_count; i++)
1614		l2cache[i] = vdev_config_generate(spa,
1615		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1616	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1617	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1618out:
1619	for (i = 0; i < sav->sav_count; i++)
1620		nvlist_free(l2cache[i]);
1621	if (sav->sav_count)
1622		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1623}
1624
1625static int
1626load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1627{
1628	dmu_buf_t *db;
1629	char *packed = NULL;
1630	size_t nvsize = 0;
1631	int error;
1632	*value = NULL;
1633
1634	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1635	if (error != 0)
1636		return (error);
1637
1638	nvsize = *(uint64_t *)db->db_data;
1639	dmu_buf_rele(db, FTAG);
1640
1641	packed = kmem_alloc(nvsize, KM_SLEEP);
1642	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1643	    DMU_READ_PREFETCH);
1644	if (error == 0)
1645		error = nvlist_unpack(packed, nvsize, value, 0);
1646	kmem_free(packed, nvsize);
1647
1648	return (error);
1649}
1650
1651/*
1652 * Checks to see if the given vdev could not be opened, in which case we post a
1653 * sysevent to notify the autoreplace code that the device has been removed.
1654 */
1655static void
1656spa_check_removed(vdev_t *vd)
1657{
1658	for (int c = 0; c < vd->vdev_children; c++)
1659		spa_check_removed(vd->vdev_child[c]);
1660
1661	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1662	    !vd->vdev_ishole) {
1663		zfs_post_autoreplace(vd->vdev_spa, vd);
1664		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1665	}
1666}
1667
1668/*
1669 * Validate the current config against the MOS config
1670 */
1671static boolean_t
1672spa_config_valid(spa_t *spa, nvlist_t *config)
1673{
1674	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1675	nvlist_t *nv;
1676
1677	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1678
1679	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1680	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1681
1682	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1683
1684	/*
1685	 * If we're doing a normal import, then build up any additional
1686	 * diagnostic information about missing devices in this config.
1687	 * We'll pass this up to the user for further processing.
1688	 */
1689	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1690		nvlist_t **child, *nv;
1691		uint64_t idx = 0;
1692
1693		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1694		    KM_SLEEP);
1695		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1696
1697		for (int c = 0; c < rvd->vdev_children; c++) {
1698			vdev_t *tvd = rvd->vdev_child[c];
1699			vdev_t *mtvd  = mrvd->vdev_child[c];
1700
1701			if (tvd->vdev_ops == &vdev_missing_ops &&
1702			    mtvd->vdev_ops != &vdev_missing_ops &&
1703			    mtvd->vdev_islog)
1704				child[idx++] = vdev_config_generate(spa, mtvd,
1705				    B_FALSE, 0);
1706		}
1707
1708		if (idx) {
1709			VERIFY(nvlist_add_nvlist_array(nv,
1710			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1711			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1712			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1713
1714			for (int i = 0; i < idx; i++)
1715				nvlist_free(child[i]);
1716		}
1717		nvlist_free(nv);
1718		kmem_free(child, rvd->vdev_children * sizeof (char **));
1719	}
1720
1721	/*
1722	 * Compare the root vdev tree with the information we have
1723	 * from the MOS config (mrvd). Check each top-level vdev
1724	 * with the corresponding MOS config top-level (mtvd).
1725	 */
1726	for (int c = 0; c < rvd->vdev_children; c++) {
1727		vdev_t *tvd = rvd->vdev_child[c];
1728		vdev_t *mtvd  = mrvd->vdev_child[c];
1729
1730		/*
1731		 * Resolve any "missing" vdevs in the current configuration.
1732		 * If we find that the MOS config has more accurate information
1733		 * about the top-level vdev then use that vdev instead.
1734		 */
1735		if (tvd->vdev_ops == &vdev_missing_ops &&
1736		    mtvd->vdev_ops != &vdev_missing_ops) {
1737
1738			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1739				continue;
1740
1741			/*
1742			 * Device specific actions.
1743			 */
1744			if (mtvd->vdev_islog) {
1745				spa_set_log_state(spa, SPA_LOG_CLEAR);
1746			} else {
1747				/*
1748				 * XXX - once we have 'readonly' pool
1749				 * support we should be able to handle
1750				 * missing data devices by transitioning
1751				 * the pool to readonly.
1752				 */
1753				continue;
1754			}
1755
1756			/*
1757			 * Swap the missing vdev with the data we were
1758			 * able to obtain from the MOS config.
1759			 */
1760			vdev_remove_child(rvd, tvd);
1761			vdev_remove_child(mrvd, mtvd);
1762
1763			vdev_add_child(rvd, mtvd);
1764			vdev_add_child(mrvd, tvd);
1765
1766			spa_config_exit(spa, SCL_ALL, FTAG);
1767			vdev_load(mtvd);
1768			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1769
1770			vdev_reopen(rvd);
1771		} else if (mtvd->vdev_islog) {
1772			/*
1773			 * Load the slog device's state from the MOS config
1774			 * since it's possible that the label does not
1775			 * contain the most up-to-date information.
1776			 */
1777			vdev_load_log_state(tvd, mtvd);
1778			vdev_reopen(tvd);
1779		}
1780	}
1781	vdev_free(mrvd);
1782	spa_config_exit(spa, SCL_ALL, FTAG);
1783
1784	/*
1785	 * Ensure we were able to validate the config.
1786	 */
1787	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1788}
1789
1790/*
1791 * Check for missing log devices
1792 */
1793static boolean_t
1794spa_check_logs(spa_t *spa)
1795{
1796	boolean_t rv = B_FALSE;
1797	dsl_pool_t *dp = spa_get_dsl(spa);
1798
1799	switch (spa->spa_log_state) {
1800	case SPA_LOG_MISSING:
1801		/* need to recheck in case slog has been restored */
1802	case SPA_LOG_UNKNOWN:
1803		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1804		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1805		if (rv)
1806			spa_set_log_state(spa, SPA_LOG_MISSING);
1807		break;
1808	}
1809	return (rv);
1810}
1811
1812static boolean_t
1813spa_passivate_log(spa_t *spa)
1814{
1815	vdev_t *rvd = spa->spa_root_vdev;
1816	boolean_t slog_found = B_FALSE;
1817
1818	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1819
1820	if (!spa_has_slogs(spa))
1821		return (B_FALSE);
1822
1823	for (int c = 0; c < rvd->vdev_children; c++) {
1824		vdev_t *tvd = rvd->vdev_child[c];
1825		metaslab_group_t *mg = tvd->vdev_mg;
1826
1827		if (tvd->vdev_islog) {
1828			metaslab_group_passivate(mg);
1829			slog_found = B_TRUE;
1830		}
1831	}
1832
1833	return (slog_found);
1834}
1835
1836static void
1837spa_activate_log(spa_t *spa)
1838{
1839	vdev_t *rvd = spa->spa_root_vdev;
1840
1841	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1842
1843	for (int c = 0; c < rvd->vdev_children; c++) {
1844		vdev_t *tvd = rvd->vdev_child[c];
1845		metaslab_group_t *mg = tvd->vdev_mg;
1846
1847		if (tvd->vdev_islog)
1848			metaslab_group_activate(mg);
1849	}
1850}
1851
1852int
1853spa_offline_log(spa_t *spa)
1854{
1855	int error;
1856
1857	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1858	    NULL, DS_FIND_CHILDREN);
1859	if (error == 0) {
1860		/*
1861		 * We successfully offlined the log device, sync out the
1862		 * current txg so that the "stubby" block can be removed
1863		 * by zil_sync().
1864		 */
1865		txg_wait_synced(spa->spa_dsl_pool, 0);
1866	}
1867	return (error);
1868}
1869
1870static void
1871spa_aux_check_removed(spa_aux_vdev_t *sav)
1872{
1873	int i;
1874
1875	for (i = 0; i < sav->sav_count; i++)
1876		spa_check_removed(sav->sav_vdevs[i]);
1877}
1878
1879void
1880spa_claim_notify(zio_t *zio)
1881{
1882	spa_t *spa = zio->io_spa;
1883
1884	if (zio->io_error)
1885		return;
1886
1887	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1888	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1889		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1890	mutex_exit(&spa->spa_props_lock);
1891}
1892
1893typedef struct spa_load_error {
1894	uint64_t	sle_meta_count;
1895	uint64_t	sle_data_count;
1896} spa_load_error_t;
1897
1898static void
1899spa_load_verify_done(zio_t *zio)
1900{
1901	blkptr_t *bp = zio->io_bp;
1902	spa_load_error_t *sle = zio->io_private;
1903	dmu_object_type_t type = BP_GET_TYPE(bp);
1904	int error = zio->io_error;
1905	spa_t *spa = zio->io_spa;
1906
1907	if (error) {
1908		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1909		    type != DMU_OT_INTENT_LOG)
1910			atomic_inc_64(&sle->sle_meta_count);
1911		else
1912			atomic_inc_64(&sle->sle_data_count);
1913	}
1914	zio_data_buf_free(zio->io_data, zio->io_size);
1915
1916	mutex_enter(&spa->spa_scrub_lock);
1917	spa->spa_scrub_inflight--;
1918	cv_broadcast(&spa->spa_scrub_io_cv);
1919	mutex_exit(&spa->spa_scrub_lock);
1920}
1921
1922/*
1923 * Maximum number of concurrent scrub i/os to create while verifying
1924 * a pool while importing it.
1925 */
1926int spa_load_verify_maxinflight = 10000;
1927boolean_t spa_load_verify_metadata = B_TRUE;
1928boolean_t spa_load_verify_data = B_TRUE;
1929
1930SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1931    &spa_load_verify_maxinflight, 0,
1932    "Maximum number of concurrent scrub I/Os to create while verifying a "
1933    "pool while importing it");
1934
1935SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1936    &spa_load_verify_metadata, 0,
1937    "Check metadata on import?");
1938
1939SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1940    &spa_load_verify_data, 0,
1941    "Check user data on import?");
1942
1943/*ARGSUSED*/
1944static int
1945spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1946    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1947{
1948	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1949		return (0);
1950	/*
1951	 * Note: normally this routine will not be called if
1952	 * spa_load_verify_metadata is not set.  However, it may be useful
1953	 * to manually set the flag after the traversal has begun.
1954	 */
1955	if (!spa_load_verify_metadata)
1956		return (0);
1957	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1958		return (0);
1959
1960	zio_t *rio = arg;
1961	size_t size = BP_GET_PSIZE(bp);
1962	void *data = zio_data_buf_alloc(size);
1963
1964	mutex_enter(&spa->spa_scrub_lock);
1965	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1966		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1967	spa->spa_scrub_inflight++;
1968	mutex_exit(&spa->spa_scrub_lock);
1969
1970	zio_nowait(zio_read(rio, spa, bp, data, size,
1971	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1972	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1973	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1974	return (0);
1975}
1976
1977static int
1978spa_load_verify(spa_t *spa)
1979{
1980	zio_t *rio;
1981	spa_load_error_t sle = { 0 };
1982	zpool_rewind_policy_t policy;
1983	boolean_t verify_ok = B_FALSE;
1984	int error = 0;
1985
1986	zpool_get_rewind_policy(spa->spa_config, &policy);
1987
1988	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1989		return (0);
1990
1991	rio = zio_root(spa, NULL, &sle,
1992	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1993
1994	if (spa_load_verify_metadata) {
1995		error = traverse_pool(spa, spa->spa_verify_min_txg,
1996		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1997		    spa_load_verify_cb, rio);
1998	}
1999
2000	(void) zio_wait(rio);
2001
2002	spa->spa_load_meta_errors = sle.sle_meta_count;
2003	spa->spa_load_data_errors = sle.sle_data_count;
2004
2005	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2006	    sle.sle_data_count <= policy.zrp_maxdata) {
2007		int64_t loss = 0;
2008
2009		verify_ok = B_TRUE;
2010		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2011		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2012
2013		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2014		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2015		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2016		VERIFY(nvlist_add_int64(spa->spa_load_info,
2017		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2018		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2019		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2020	} else {
2021		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2022	}
2023
2024	if (error) {
2025		if (error != ENXIO && error != EIO)
2026			error = SET_ERROR(EIO);
2027		return (error);
2028	}
2029
2030	return (verify_ok ? 0 : EIO);
2031}
2032
2033/*
2034 * Find a value in the pool props object.
2035 */
2036static void
2037spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2038{
2039	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2040	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2041}
2042
2043/*
2044 * Find a value in the pool directory object.
2045 */
2046static int
2047spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2048{
2049	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2050	    name, sizeof (uint64_t), 1, val));
2051}
2052
2053static int
2054spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2055{
2056	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2057	return (err);
2058}
2059
2060/*
2061 * Fix up config after a partly-completed split.  This is done with the
2062 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2063 * pool have that entry in their config, but only the splitting one contains
2064 * a list of all the guids of the vdevs that are being split off.
2065 *
2066 * This function determines what to do with that list: either rejoin
2067 * all the disks to the pool, or complete the splitting process.  To attempt
2068 * the rejoin, each disk that is offlined is marked online again, and
2069 * we do a reopen() call.  If the vdev label for every disk that was
2070 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2071 * then we call vdev_split() on each disk, and complete the split.
2072 *
2073 * Otherwise we leave the config alone, with all the vdevs in place in
2074 * the original pool.
2075 */
2076static void
2077spa_try_repair(spa_t *spa, nvlist_t *config)
2078{
2079	uint_t extracted;
2080	uint64_t *glist;
2081	uint_t i, gcount;
2082	nvlist_t *nvl;
2083	vdev_t **vd;
2084	boolean_t attempt_reopen;
2085
2086	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2087		return;
2088
2089	/* check that the config is complete */
2090	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2091	    &glist, &gcount) != 0)
2092		return;
2093
2094	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2095
2096	/* attempt to online all the vdevs & validate */
2097	attempt_reopen = B_TRUE;
2098	for (i = 0; i < gcount; i++) {
2099		if (glist[i] == 0)	/* vdev is hole */
2100			continue;
2101
2102		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2103		if (vd[i] == NULL) {
2104			/*
2105			 * Don't bother attempting to reopen the disks;
2106			 * just do the split.
2107			 */
2108			attempt_reopen = B_FALSE;
2109		} else {
2110			/* attempt to re-online it */
2111			vd[i]->vdev_offline = B_FALSE;
2112		}
2113	}
2114
2115	if (attempt_reopen) {
2116		vdev_reopen(spa->spa_root_vdev);
2117
2118		/* check each device to see what state it's in */
2119		for (extracted = 0, i = 0; i < gcount; i++) {
2120			if (vd[i] != NULL &&
2121			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2122				break;
2123			++extracted;
2124		}
2125	}
2126
2127	/*
2128	 * If every disk has been moved to the new pool, or if we never
2129	 * even attempted to look at them, then we split them off for
2130	 * good.
2131	 */
2132	if (!attempt_reopen || gcount == extracted) {
2133		for (i = 0; i < gcount; i++)
2134			if (vd[i] != NULL)
2135				vdev_split(vd[i]);
2136		vdev_reopen(spa->spa_root_vdev);
2137	}
2138
2139	kmem_free(vd, gcount * sizeof (vdev_t *));
2140}
2141
2142static int
2143spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2144    boolean_t mosconfig)
2145{
2146	nvlist_t *config = spa->spa_config;
2147	char *ereport = FM_EREPORT_ZFS_POOL;
2148	char *comment;
2149	int error;
2150	uint64_t pool_guid;
2151	nvlist_t *nvl;
2152
2153	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2154		return (SET_ERROR(EINVAL));
2155
2156	ASSERT(spa->spa_comment == NULL);
2157	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2158		spa->spa_comment = spa_strdup(comment);
2159
2160	/*
2161	 * Versioning wasn't explicitly added to the label until later, so if
2162	 * it's not present treat it as the initial version.
2163	 */
2164	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2165	    &spa->spa_ubsync.ub_version) != 0)
2166		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2167
2168	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2169	    &spa->spa_config_txg);
2170
2171	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2172	    spa_guid_exists(pool_guid, 0)) {
2173		error = SET_ERROR(EEXIST);
2174	} else {
2175		spa->spa_config_guid = pool_guid;
2176
2177		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2178		    &nvl) == 0) {
2179			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2180			    KM_SLEEP) == 0);
2181		}
2182
2183		nvlist_free(spa->spa_load_info);
2184		spa->spa_load_info = fnvlist_alloc();
2185
2186		gethrestime(&spa->spa_loaded_ts);
2187		error = spa_load_impl(spa, pool_guid, config, state, type,
2188		    mosconfig, &ereport);
2189	}
2190
2191	/*
2192	 * Don't count references from objsets that are already closed
2193	 * and are making their way through the eviction process.
2194	 */
2195	spa_evicting_os_wait(spa);
2196	spa->spa_minref = refcount_count(&spa->spa_refcount);
2197	if (error) {
2198		if (error != EEXIST) {
2199			spa->spa_loaded_ts.tv_sec = 0;
2200			spa->spa_loaded_ts.tv_nsec = 0;
2201		}
2202		if (error != EBADF) {
2203			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2204		}
2205	}
2206	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2207	spa->spa_ena = 0;
2208
2209	return (error);
2210}
2211
2212/*
2213 * Load an existing storage pool, using the pool's builtin spa_config as a
2214 * source of configuration information.
2215 */
2216static int
2217spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2218    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2219    char **ereport)
2220{
2221	int error = 0;
2222	nvlist_t *nvroot = NULL;
2223	nvlist_t *label;
2224	vdev_t *rvd;
2225	uberblock_t *ub = &spa->spa_uberblock;
2226	uint64_t children, config_cache_txg = spa->spa_config_txg;
2227	int orig_mode = spa->spa_mode;
2228	int parse;
2229	uint64_t obj;
2230	boolean_t missing_feat_write = B_FALSE;
2231
2232	/*
2233	 * If this is an untrusted config, access the pool in read-only mode.
2234	 * This prevents things like resilvering recently removed devices.
2235	 */
2236	if (!mosconfig)
2237		spa->spa_mode = FREAD;
2238
2239	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2240
2241	spa->spa_load_state = state;
2242
2243	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2244		return (SET_ERROR(EINVAL));
2245
2246	parse = (type == SPA_IMPORT_EXISTING ?
2247	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2248
2249	/*
2250	 * Create "The Godfather" zio to hold all async IOs
2251	 */
2252	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2253	    KM_SLEEP);
2254	for (int i = 0; i < max_ncpus; i++) {
2255		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2256		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2257		    ZIO_FLAG_GODFATHER);
2258	}
2259
2260	/*
2261	 * Parse the configuration into a vdev tree.  We explicitly set the
2262	 * value that will be returned by spa_version() since parsing the
2263	 * configuration requires knowing the version number.
2264	 */
2265	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2266	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2267	spa_config_exit(spa, SCL_ALL, FTAG);
2268
2269	if (error != 0)
2270		return (error);
2271
2272	ASSERT(spa->spa_root_vdev == rvd);
2273	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2274	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2275
2276	if (type != SPA_IMPORT_ASSEMBLE) {
2277		ASSERT(spa_guid(spa) == pool_guid);
2278	}
2279
2280	/*
2281	 * Try to open all vdevs, loading each label in the process.
2282	 */
2283	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2284	error = vdev_open(rvd);
2285	spa_config_exit(spa, SCL_ALL, FTAG);
2286	if (error != 0)
2287		return (error);
2288
2289	/*
2290	 * We need to validate the vdev labels against the configuration that
2291	 * we have in hand, which is dependent on the setting of mosconfig. If
2292	 * mosconfig is true then we're validating the vdev labels based on
2293	 * that config.  Otherwise, we're validating against the cached config
2294	 * (zpool.cache) that was read when we loaded the zfs module, and then
2295	 * later we will recursively call spa_load() and validate against
2296	 * the vdev config.
2297	 *
2298	 * If we're assembling a new pool that's been split off from an
2299	 * existing pool, the labels haven't yet been updated so we skip
2300	 * validation for now.
2301	 */
2302	if (type != SPA_IMPORT_ASSEMBLE) {
2303		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2304		error = vdev_validate(rvd, mosconfig);
2305		spa_config_exit(spa, SCL_ALL, FTAG);
2306
2307		if (error != 0)
2308			return (error);
2309
2310		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2311			return (SET_ERROR(ENXIO));
2312	}
2313
2314	/*
2315	 * Find the best uberblock.
2316	 */
2317	vdev_uberblock_load(rvd, ub, &label);
2318
2319	/*
2320	 * If we weren't able to find a single valid uberblock, return failure.
2321	 */
2322	if (ub->ub_txg == 0) {
2323		nvlist_free(label);
2324		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2325	}
2326
2327	/*
2328	 * If the pool has an unsupported version we can't open it.
2329	 */
2330	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2331		nvlist_free(label);
2332		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2333	}
2334
2335	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2336		nvlist_t *features;
2337
2338		/*
2339		 * If we weren't able to find what's necessary for reading the
2340		 * MOS in the label, return failure.
2341		 */
2342		if (label == NULL || nvlist_lookup_nvlist(label,
2343		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2344			nvlist_free(label);
2345			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2346			    ENXIO));
2347		}
2348
2349		/*
2350		 * Update our in-core representation with the definitive values
2351		 * from the label.
2352		 */
2353		nvlist_free(spa->spa_label_features);
2354		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2355	}
2356
2357	nvlist_free(label);
2358
2359	/*
2360	 * Look through entries in the label nvlist's features_for_read. If
2361	 * there is a feature listed there which we don't understand then we
2362	 * cannot open a pool.
2363	 */
2364	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2365		nvlist_t *unsup_feat;
2366
2367		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2368		    0);
2369
2370		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2371		    NULL); nvp != NULL;
2372		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2373			if (!zfeature_is_supported(nvpair_name(nvp))) {
2374				VERIFY(nvlist_add_string(unsup_feat,
2375				    nvpair_name(nvp), "") == 0);
2376			}
2377		}
2378
2379		if (!nvlist_empty(unsup_feat)) {
2380			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2381			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2382			nvlist_free(unsup_feat);
2383			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2384			    ENOTSUP));
2385		}
2386
2387		nvlist_free(unsup_feat);
2388	}
2389
2390	/*
2391	 * If the vdev guid sum doesn't match the uberblock, we have an
2392	 * incomplete configuration.  We first check to see if the pool
2393	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2394	 * If it is, defer the vdev_guid_sum check till later so we
2395	 * can handle missing vdevs.
2396	 */
2397	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2398	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2399	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2400		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2401
2402	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2403		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2404		spa_try_repair(spa, config);
2405		spa_config_exit(spa, SCL_ALL, FTAG);
2406		nvlist_free(spa->spa_config_splitting);
2407		spa->spa_config_splitting = NULL;
2408	}
2409
2410	/*
2411	 * Initialize internal SPA structures.
2412	 */
2413	spa->spa_state = POOL_STATE_ACTIVE;
2414	spa->spa_ubsync = spa->spa_uberblock;
2415	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2416	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2417	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2418	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2419	spa->spa_claim_max_txg = spa->spa_first_txg;
2420	spa->spa_prev_software_version = ub->ub_software_version;
2421
2422	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2423	if (error)
2424		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2425	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2426
2427	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2428		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2429
2430	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2431		boolean_t missing_feat_read = B_FALSE;
2432		nvlist_t *unsup_feat, *enabled_feat;
2433
2434		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2435		    &spa->spa_feat_for_read_obj) != 0) {
2436			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2437		}
2438
2439		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2440		    &spa->spa_feat_for_write_obj) != 0) {
2441			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2442		}
2443
2444		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2445		    &spa->spa_feat_desc_obj) != 0) {
2446			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447		}
2448
2449		enabled_feat = fnvlist_alloc();
2450		unsup_feat = fnvlist_alloc();
2451
2452		if (!spa_features_check(spa, B_FALSE,
2453		    unsup_feat, enabled_feat))
2454			missing_feat_read = B_TRUE;
2455
2456		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2457			if (!spa_features_check(spa, B_TRUE,
2458			    unsup_feat, enabled_feat)) {
2459				missing_feat_write = B_TRUE;
2460			}
2461		}
2462
2463		fnvlist_add_nvlist(spa->spa_load_info,
2464		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2465
2466		if (!nvlist_empty(unsup_feat)) {
2467			fnvlist_add_nvlist(spa->spa_load_info,
2468			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2469		}
2470
2471		fnvlist_free(enabled_feat);
2472		fnvlist_free(unsup_feat);
2473
2474		if (!missing_feat_read) {
2475			fnvlist_add_boolean(spa->spa_load_info,
2476			    ZPOOL_CONFIG_CAN_RDONLY);
2477		}
2478
2479		/*
2480		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2481		 * twofold: to determine whether the pool is available for
2482		 * import in read-write mode and (if it is not) whether the
2483		 * pool is available for import in read-only mode. If the pool
2484		 * is available for import in read-write mode, it is displayed
2485		 * as available in userland; if it is not available for import
2486		 * in read-only mode, it is displayed as unavailable in
2487		 * userland. If the pool is available for import in read-only
2488		 * mode but not read-write mode, it is displayed as unavailable
2489		 * in userland with a special note that the pool is actually
2490		 * available for open in read-only mode.
2491		 *
2492		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2493		 * missing a feature for write, we must first determine whether
2494		 * the pool can be opened read-only before returning to
2495		 * userland in order to know whether to display the
2496		 * abovementioned note.
2497		 */
2498		if (missing_feat_read || (missing_feat_write &&
2499		    spa_writeable(spa))) {
2500			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2501			    ENOTSUP));
2502		}
2503
2504		/*
2505		 * Load refcounts for ZFS features from disk into an in-memory
2506		 * cache during SPA initialization.
2507		 */
2508		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2509			uint64_t refcount;
2510
2511			error = feature_get_refcount_from_disk(spa,
2512			    &spa_feature_table[i], &refcount);
2513			if (error == 0) {
2514				spa->spa_feat_refcount_cache[i] = refcount;
2515			} else if (error == ENOTSUP) {
2516				spa->spa_feat_refcount_cache[i] =
2517				    SPA_FEATURE_DISABLED;
2518			} else {
2519				return (spa_vdev_err(rvd,
2520				    VDEV_AUX_CORRUPT_DATA, EIO));
2521			}
2522		}
2523	}
2524
2525	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2526		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2527		    &spa->spa_feat_enabled_txg_obj) != 0)
2528			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2529	}
2530
2531	spa->spa_is_initializing = B_TRUE;
2532	error = dsl_pool_open(spa->spa_dsl_pool);
2533	spa->spa_is_initializing = B_FALSE;
2534	if (error != 0)
2535		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2536
2537	if (!mosconfig) {
2538		uint64_t hostid;
2539		nvlist_t *policy = NULL, *nvconfig;
2540
2541		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2542			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2543
2544		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2545		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2546			char *hostname;
2547			unsigned long myhostid = 0;
2548
2549			VERIFY(nvlist_lookup_string(nvconfig,
2550			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2551
2552#ifdef	_KERNEL
2553			myhostid = zone_get_hostid(NULL);
2554#else	/* _KERNEL */
2555			/*
2556			 * We're emulating the system's hostid in userland, so
2557			 * we can't use zone_get_hostid().
2558			 */
2559			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2560#endif	/* _KERNEL */
2561			if (check_hostid && hostid != 0 && myhostid != 0 &&
2562			    hostid != myhostid) {
2563				nvlist_free(nvconfig);
2564				cmn_err(CE_WARN, "pool '%s' could not be "
2565				    "loaded as it was last accessed by "
2566				    "another system (host: %s hostid: 0x%lx). "
2567				    "See: http://illumos.org/msg/ZFS-8000-EY",
2568				    spa_name(spa), hostname,
2569				    (unsigned long)hostid);
2570				return (SET_ERROR(EBADF));
2571			}
2572		}
2573		if (nvlist_lookup_nvlist(spa->spa_config,
2574		    ZPOOL_REWIND_POLICY, &policy) == 0)
2575			VERIFY(nvlist_add_nvlist(nvconfig,
2576			    ZPOOL_REWIND_POLICY, policy) == 0);
2577
2578		spa_config_set(spa, nvconfig);
2579		spa_unload(spa);
2580		spa_deactivate(spa);
2581		spa_activate(spa, orig_mode);
2582
2583		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2584	}
2585
2586	/* Grab the secret checksum salt from the MOS. */
2587	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2588	    DMU_POOL_CHECKSUM_SALT, 1,
2589	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2590	    spa->spa_cksum_salt.zcs_bytes);
2591	if (error == ENOENT) {
2592		/* Generate a new salt for subsequent use */
2593		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2594		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2595	} else if (error != 0) {
2596		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597	}
2598
2599	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2600		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2601	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2602	if (error != 0)
2603		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2604
2605	/*
2606	 * Load the bit that tells us to use the new accounting function
2607	 * (raid-z deflation).  If we have an older pool, this will not
2608	 * be present.
2609	 */
2610	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2611	if (error != 0 && error != ENOENT)
2612		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2613
2614	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2615	    &spa->spa_creation_version);
2616	if (error != 0 && error != ENOENT)
2617		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2618
2619	/*
2620	 * Load the persistent error log.  If we have an older pool, this will
2621	 * not be present.
2622	 */
2623	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2624	if (error != 0 && error != ENOENT)
2625		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2626
2627	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2628	    &spa->spa_errlog_scrub);
2629	if (error != 0 && error != ENOENT)
2630		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2631
2632	/*
2633	 * Load the history object.  If we have an older pool, this
2634	 * will not be present.
2635	 */
2636	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2637	if (error != 0 && error != ENOENT)
2638		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2639
2640	/*
2641	 * If we're assembling the pool from the split-off vdevs of
2642	 * an existing pool, we don't want to attach the spares & cache
2643	 * devices.
2644	 */
2645
2646	/*
2647	 * Load any hot spares for this pool.
2648	 */
2649	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2650	if (error != 0 && error != ENOENT)
2651		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2652	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2653		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2654		if (load_nvlist(spa, spa->spa_spares.sav_object,
2655		    &spa->spa_spares.sav_config) != 0)
2656			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2657
2658		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2659		spa_load_spares(spa);
2660		spa_config_exit(spa, SCL_ALL, FTAG);
2661	} else if (error == 0) {
2662		spa->spa_spares.sav_sync = B_TRUE;
2663	}
2664
2665	/*
2666	 * Load any level 2 ARC devices for this pool.
2667	 */
2668	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2669	    &spa->spa_l2cache.sav_object);
2670	if (error != 0 && error != ENOENT)
2671		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2672	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2673		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2674		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2675		    &spa->spa_l2cache.sav_config) != 0)
2676			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2677
2678		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2679		spa_load_l2cache(spa);
2680		spa_config_exit(spa, SCL_ALL, FTAG);
2681	} else if (error == 0) {
2682		spa->spa_l2cache.sav_sync = B_TRUE;
2683	}
2684
2685	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2686
2687	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2688	if (error && error != ENOENT)
2689		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2690
2691	if (error == 0) {
2692		uint64_t autoreplace;
2693
2694		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2695		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2696		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2697		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2698		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2699		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2700		    &spa->spa_dedup_ditto);
2701
2702		spa->spa_autoreplace = (autoreplace != 0);
2703	}
2704
2705	/*
2706	 * If the 'autoreplace' property is set, then post a resource notifying
2707	 * the ZFS DE that it should not issue any faults for unopenable
2708	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2709	 * unopenable vdevs so that the normal autoreplace handler can take
2710	 * over.
2711	 */
2712	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2713		spa_check_removed(spa->spa_root_vdev);
2714		/*
2715		 * For the import case, this is done in spa_import(), because
2716		 * at this point we're using the spare definitions from
2717		 * the MOS config, not necessarily from the userland config.
2718		 */
2719		if (state != SPA_LOAD_IMPORT) {
2720			spa_aux_check_removed(&spa->spa_spares);
2721			spa_aux_check_removed(&spa->spa_l2cache);
2722		}
2723	}
2724
2725	/*
2726	 * Load the vdev state for all toplevel vdevs.
2727	 */
2728	vdev_load(rvd);
2729
2730	/*
2731	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2732	 */
2733	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2734	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2735	spa_config_exit(spa, SCL_ALL, FTAG);
2736
2737	/*
2738	 * Load the DDTs (dedup tables).
2739	 */
2740	error = ddt_load(spa);
2741	if (error != 0)
2742		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2743
2744	spa_update_dspace(spa);
2745
2746	/*
2747	 * Validate the config, using the MOS config to fill in any
2748	 * information which might be missing.  If we fail to validate
2749	 * the config then declare the pool unfit for use. If we're
2750	 * assembling a pool from a split, the log is not transferred
2751	 * over.
2752	 */
2753	if (type != SPA_IMPORT_ASSEMBLE) {
2754		nvlist_t *nvconfig;
2755
2756		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2757			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2758
2759		if (!spa_config_valid(spa, nvconfig)) {
2760			nvlist_free(nvconfig);
2761			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2762			    ENXIO));
2763		}
2764		nvlist_free(nvconfig);
2765
2766		/*
2767		 * Now that we've validated the config, check the state of the
2768		 * root vdev.  If it can't be opened, it indicates one or
2769		 * more toplevel vdevs are faulted.
2770		 */
2771		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2772			return (SET_ERROR(ENXIO));
2773
2774		if (spa_writeable(spa) && spa_check_logs(spa)) {
2775			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2776			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2777		}
2778	}
2779
2780	if (missing_feat_write) {
2781		ASSERT(state == SPA_LOAD_TRYIMPORT);
2782
2783		/*
2784		 * At this point, we know that we can open the pool in
2785		 * read-only mode but not read-write mode. We now have enough
2786		 * information and can return to userland.
2787		 */
2788		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2789	}
2790
2791	/*
2792	 * We've successfully opened the pool, verify that we're ready
2793	 * to start pushing transactions.
2794	 */
2795	if (state != SPA_LOAD_TRYIMPORT) {
2796		if (error = spa_load_verify(spa))
2797			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2798			    error));
2799	}
2800
2801	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2802	    spa->spa_load_max_txg == UINT64_MAX)) {
2803		dmu_tx_t *tx;
2804		int need_update = B_FALSE;
2805		dsl_pool_t *dp = spa_get_dsl(spa);
2806
2807		ASSERT(state != SPA_LOAD_TRYIMPORT);
2808
2809		/*
2810		 * Claim log blocks that haven't been committed yet.
2811		 * This must all happen in a single txg.
2812		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2813		 * invoked from zil_claim_log_block()'s i/o done callback.
2814		 * Price of rollback is that we abandon the log.
2815		 */
2816		spa->spa_claiming = B_TRUE;
2817
2818		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2819		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2820		    zil_claim, tx, DS_FIND_CHILDREN);
2821		dmu_tx_commit(tx);
2822
2823		spa->spa_claiming = B_FALSE;
2824
2825		spa_set_log_state(spa, SPA_LOG_GOOD);
2826		spa->spa_sync_on = B_TRUE;
2827		txg_sync_start(spa->spa_dsl_pool);
2828
2829		/*
2830		 * Wait for all claims to sync.  We sync up to the highest
2831		 * claimed log block birth time so that claimed log blocks
2832		 * don't appear to be from the future.  spa_claim_max_txg
2833		 * will have been set for us by either zil_check_log_chain()
2834		 * (invoked from spa_check_logs()) or zil_claim() above.
2835		 */
2836		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2837
2838		/*
2839		 * If the config cache is stale, or we have uninitialized
2840		 * metaslabs (see spa_vdev_add()), then update the config.
2841		 *
2842		 * If this is a verbatim import, trust the current
2843		 * in-core spa_config and update the disk labels.
2844		 */
2845		if (config_cache_txg != spa->spa_config_txg ||
2846		    state == SPA_LOAD_IMPORT ||
2847		    state == SPA_LOAD_RECOVER ||
2848		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2849			need_update = B_TRUE;
2850
2851		for (int c = 0; c < rvd->vdev_children; c++)
2852			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2853				need_update = B_TRUE;
2854
2855		/*
2856		 * Update the config cache asychronously in case we're the
2857		 * root pool, in which case the config cache isn't writable yet.
2858		 */
2859		if (need_update)
2860			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2861
2862		/*
2863		 * Check all DTLs to see if anything needs resilvering.
2864		 */
2865		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2866		    vdev_resilver_needed(rvd, NULL, NULL))
2867			spa_async_request(spa, SPA_ASYNC_RESILVER);
2868
2869		/*
2870		 * Log the fact that we booted up (so that we can detect if
2871		 * we rebooted in the middle of an operation).
2872		 */
2873		spa_history_log_version(spa, "open");
2874
2875		/*
2876		 * Delete any inconsistent datasets.
2877		 */
2878		(void) dmu_objset_find(spa_name(spa),
2879		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2880
2881		/*
2882		 * Clean up any stale temporary dataset userrefs.
2883		 */
2884		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2885	}
2886
2887	return (0);
2888}
2889
2890static int
2891spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2892{
2893	int mode = spa->spa_mode;
2894
2895	spa_unload(spa);
2896	spa_deactivate(spa);
2897
2898	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2899
2900	spa_activate(spa, mode);
2901	spa_async_suspend(spa);
2902
2903	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2904}
2905
2906/*
2907 * If spa_load() fails this function will try loading prior txg's. If
2908 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2909 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2910 * function will not rewind the pool and will return the same error as
2911 * spa_load().
2912 */
2913static int
2914spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2915    uint64_t max_request, int rewind_flags)
2916{
2917	nvlist_t *loadinfo = NULL;
2918	nvlist_t *config = NULL;
2919	int load_error, rewind_error;
2920	uint64_t safe_rewind_txg;
2921	uint64_t min_txg;
2922
2923	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2924		spa->spa_load_max_txg = spa->spa_load_txg;
2925		spa_set_log_state(spa, SPA_LOG_CLEAR);
2926	} else {
2927		spa->spa_load_max_txg = max_request;
2928		if (max_request != UINT64_MAX)
2929			spa->spa_extreme_rewind = B_TRUE;
2930	}
2931
2932	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2933	    mosconfig);
2934	if (load_error == 0)
2935		return (0);
2936
2937	if (spa->spa_root_vdev != NULL)
2938		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2939
2940	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2941	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2942
2943	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2944		nvlist_free(config);
2945		return (load_error);
2946	}
2947
2948	if (state == SPA_LOAD_RECOVER) {
2949		/* Price of rolling back is discarding txgs, including log */
2950		spa_set_log_state(spa, SPA_LOG_CLEAR);
2951	} else {
2952		/*
2953		 * If we aren't rolling back save the load info from our first
2954		 * import attempt so that we can restore it after attempting
2955		 * to rewind.
2956		 */
2957		loadinfo = spa->spa_load_info;
2958		spa->spa_load_info = fnvlist_alloc();
2959	}
2960
2961	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2962	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2963	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2964	    TXG_INITIAL : safe_rewind_txg;
2965
2966	/*
2967	 * Continue as long as we're finding errors, we're still within
2968	 * the acceptable rewind range, and we're still finding uberblocks
2969	 */
2970	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2971	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2972		if (spa->spa_load_max_txg < safe_rewind_txg)
2973			spa->spa_extreme_rewind = B_TRUE;
2974		rewind_error = spa_load_retry(spa, state, mosconfig);
2975	}
2976
2977	spa->spa_extreme_rewind = B_FALSE;
2978	spa->spa_load_max_txg = UINT64_MAX;
2979
2980	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2981		spa_config_set(spa, config);
2982
2983	if (state == SPA_LOAD_RECOVER) {
2984		ASSERT3P(loadinfo, ==, NULL);
2985		return (rewind_error);
2986	} else {
2987		/* Store the rewind info as part of the initial load info */
2988		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2989		    spa->spa_load_info);
2990
2991		/* Restore the initial load info */
2992		fnvlist_free(spa->spa_load_info);
2993		spa->spa_load_info = loadinfo;
2994
2995		return (load_error);
2996	}
2997}
2998
2999/*
3000 * Pool Open/Import
3001 *
3002 * The import case is identical to an open except that the configuration is sent
3003 * down from userland, instead of grabbed from the configuration cache.  For the
3004 * case of an open, the pool configuration will exist in the
3005 * POOL_STATE_UNINITIALIZED state.
3006 *
3007 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3008 * the same time open the pool, without having to keep around the spa_t in some
3009 * ambiguous state.
3010 */
3011static int
3012spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3013    nvlist_t **config)
3014{
3015	spa_t *spa;
3016	spa_load_state_t state = SPA_LOAD_OPEN;
3017	int error;
3018	int locked = B_FALSE;
3019	int firstopen = B_FALSE;
3020
3021	*spapp = NULL;
3022
3023	/*
3024	 * As disgusting as this is, we need to support recursive calls to this
3025	 * function because dsl_dir_open() is called during spa_load(), and ends
3026	 * up calling spa_open() again.  The real fix is to figure out how to
3027	 * avoid dsl_dir_open() calling this in the first place.
3028	 */
3029	if (mutex_owner(&spa_namespace_lock) != curthread) {
3030		mutex_enter(&spa_namespace_lock);
3031		locked = B_TRUE;
3032	}
3033
3034	if ((spa = spa_lookup(pool)) == NULL) {
3035		if (locked)
3036			mutex_exit(&spa_namespace_lock);
3037		return (SET_ERROR(ENOENT));
3038	}
3039
3040	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3041		zpool_rewind_policy_t policy;
3042
3043		firstopen = B_TRUE;
3044
3045		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3046		    &policy);
3047		if (policy.zrp_request & ZPOOL_DO_REWIND)
3048			state = SPA_LOAD_RECOVER;
3049
3050		spa_activate(spa, spa_mode_global);
3051
3052		if (state != SPA_LOAD_RECOVER)
3053			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3054
3055		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3056		    policy.zrp_request);
3057
3058		if (error == EBADF) {
3059			/*
3060			 * If vdev_validate() returns failure (indicated by
3061			 * EBADF), it indicates that one of the vdevs indicates
3062			 * that the pool has been exported or destroyed.  If
3063			 * this is the case, the config cache is out of sync and
3064			 * we should remove the pool from the namespace.
3065			 */
3066			spa_unload(spa);
3067			spa_deactivate(spa);
3068			spa_config_sync(spa, B_TRUE, B_TRUE);
3069			spa_remove(spa);
3070			if (locked)
3071				mutex_exit(&spa_namespace_lock);
3072			return (SET_ERROR(ENOENT));
3073		}
3074
3075		if (error) {
3076			/*
3077			 * We can't open the pool, but we still have useful
3078			 * information: the state of each vdev after the
3079			 * attempted vdev_open().  Return this to the user.
3080			 */
3081			if (config != NULL && spa->spa_config) {
3082				VERIFY(nvlist_dup(spa->spa_config, config,
3083				    KM_SLEEP) == 0);
3084				VERIFY(nvlist_add_nvlist(*config,
3085				    ZPOOL_CONFIG_LOAD_INFO,
3086				    spa->spa_load_info) == 0);
3087			}
3088			spa_unload(spa);
3089			spa_deactivate(spa);
3090			spa->spa_last_open_failed = error;
3091			if (locked)
3092				mutex_exit(&spa_namespace_lock);
3093			*spapp = NULL;
3094			return (error);
3095		}
3096	}
3097
3098	spa_open_ref(spa, tag);
3099
3100	if (config != NULL)
3101		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3102
3103	/*
3104	 * If we've recovered the pool, pass back any information we
3105	 * gathered while doing the load.
3106	 */
3107	if (state == SPA_LOAD_RECOVER) {
3108		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3109		    spa->spa_load_info) == 0);
3110	}
3111
3112	if (locked) {
3113		spa->spa_last_open_failed = 0;
3114		spa->spa_last_ubsync_txg = 0;
3115		spa->spa_load_txg = 0;
3116		mutex_exit(&spa_namespace_lock);
3117#ifdef __FreeBSD__
3118#ifdef _KERNEL
3119		if (firstopen)
3120			zvol_create_minors(spa->spa_name);
3121#endif
3122#endif
3123	}
3124
3125	*spapp = spa;
3126
3127	return (0);
3128}
3129
3130int
3131spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3132    nvlist_t **config)
3133{
3134	return (spa_open_common(name, spapp, tag, policy, config));
3135}
3136
3137int
3138spa_open(const char *name, spa_t **spapp, void *tag)
3139{
3140	return (spa_open_common(name, spapp, tag, NULL, NULL));
3141}
3142
3143/*
3144 * Lookup the given spa_t, incrementing the inject count in the process,
3145 * preventing it from being exported or destroyed.
3146 */
3147spa_t *
3148spa_inject_addref(char *name)
3149{
3150	spa_t *spa;
3151
3152	mutex_enter(&spa_namespace_lock);
3153	if ((spa = spa_lookup(name)) == NULL) {
3154		mutex_exit(&spa_namespace_lock);
3155		return (NULL);
3156	}
3157	spa->spa_inject_ref++;
3158	mutex_exit(&spa_namespace_lock);
3159
3160	return (spa);
3161}
3162
3163void
3164spa_inject_delref(spa_t *spa)
3165{
3166	mutex_enter(&spa_namespace_lock);
3167	spa->spa_inject_ref--;
3168	mutex_exit(&spa_namespace_lock);
3169}
3170
3171/*
3172 * Add spares device information to the nvlist.
3173 */
3174static void
3175spa_add_spares(spa_t *spa, nvlist_t *config)
3176{
3177	nvlist_t **spares;
3178	uint_t i, nspares;
3179	nvlist_t *nvroot;
3180	uint64_t guid;
3181	vdev_stat_t *vs;
3182	uint_t vsc;
3183	uint64_t pool;
3184
3185	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3186
3187	if (spa->spa_spares.sav_count == 0)
3188		return;
3189
3190	VERIFY(nvlist_lookup_nvlist(config,
3191	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3192	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3193	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3194	if (nspares != 0) {
3195		VERIFY(nvlist_add_nvlist_array(nvroot,
3196		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3197		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3198		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3199
3200		/*
3201		 * Go through and find any spares which have since been
3202		 * repurposed as an active spare.  If this is the case, update
3203		 * their status appropriately.
3204		 */
3205		for (i = 0; i < nspares; i++) {
3206			VERIFY(nvlist_lookup_uint64(spares[i],
3207			    ZPOOL_CONFIG_GUID, &guid) == 0);
3208			if (spa_spare_exists(guid, &pool, NULL) &&
3209			    pool != 0ULL) {
3210				VERIFY(nvlist_lookup_uint64_array(
3211				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3212				    (uint64_t **)&vs, &vsc) == 0);
3213				vs->vs_state = VDEV_STATE_CANT_OPEN;
3214				vs->vs_aux = VDEV_AUX_SPARED;
3215			}
3216		}
3217	}
3218}
3219
3220/*
3221 * Add l2cache device information to the nvlist, including vdev stats.
3222 */
3223static void
3224spa_add_l2cache(spa_t *spa, nvlist_t *config)
3225{
3226	nvlist_t **l2cache;
3227	uint_t i, j, nl2cache;
3228	nvlist_t *nvroot;
3229	uint64_t guid;
3230	vdev_t *vd;
3231	vdev_stat_t *vs;
3232	uint_t vsc;
3233
3234	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3235
3236	if (spa->spa_l2cache.sav_count == 0)
3237		return;
3238
3239	VERIFY(nvlist_lookup_nvlist(config,
3240	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3241	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3242	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3243	if (nl2cache != 0) {
3244		VERIFY(nvlist_add_nvlist_array(nvroot,
3245		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3246		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3247		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3248
3249		/*
3250		 * Update level 2 cache device stats.
3251		 */
3252
3253		for (i = 0; i < nl2cache; i++) {
3254			VERIFY(nvlist_lookup_uint64(l2cache[i],
3255			    ZPOOL_CONFIG_GUID, &guid) == 0);
3256
3257			vd = NULL;
3258			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3259				if (guid ==
3260				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3261					vd = spa->spa_l2cache.sav_vdevs[j];
3262					break;
3263				}
3264			}
3265			ASSERT(vd != NULL);
3266
3267			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3268			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3269			    == 0);
3270			vdev_get_stats(vd, vs);
3271		}
3272	}
3273}
3274
3275static void
3276spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3277{
3278	nvlist_t *features;
3279	zap_cursor_t zc;
3280	zap_attribute_t za;
3281
3282	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3283	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3284
3285	/* We may be unable to read features if pool is suspended. */
3286	if (spa_suspended(spa))
3287		goto out;
3288
3289	if (spa->spa_feat_for_read_obj != 0) {
3290		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3291		    spa->spa_feat_for_read_obj);
3292		    zap_cursor_retrieve(&zc, &za) == 0;
3293		    zap_cursor_advance(&zc)) {
3294			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3295			    za.za_num_integers == 1);
3296			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3297			    za.za_first_integer));
3298		}
3299		zap_cursor_fini(&zc);
3300	}
3301
3302	if (spa->spa_feat_for_write_obj != 0) {
3303		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3304		    spa->spa_feat_for_write_obj);
3305		    zap_cursor_retrieve(&zc, &za) == 0;
3306		    zap_cursor_advance(&zc)) {
3307			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3308			    za.za_num_integers == 1);
3309			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3310			    za.za_first_integer));
3311		}
3312		zap_cursor_fini(&zc);
3313	}
3314
3315out:
3316	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3317	    features) == 0);
3318	nvlist_free(features);
3319}
3320
3321int
3322spa_get_stats(const char *name, nvlist_t **config,
3323    char *altroot, size_t buflen)
3324{
3325	int error;
3326	spa_t *spa;
3327
3328	*config = NULL;
3329	error = spa_open_common(name, &spa, FTAG, NULL, config);
3330
3331	if (spa != NULL) {
3332		/*
3333		 * This still leaves a window of inconsistency where the spares
3334		 * or l2cache devices could change and the config would be
3335		 * self-inconsistent.
3336		 */
3337		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3338
3339		if (*config != NULL) {
3340			uint64_t loadtimes[2];
3341
3342			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3343			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3344			VERIFY(nvlist_add_uint64_array(*config,
3345			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3346
3347			VERIFY(nvlist_add_uint64(*config,
3348			    ZPOOL_CONFIG_ERRCOUNT,
3349			    spa_get_errlog_size(spa)) == 0);
3350
3351			if (spa_suspended(spa))
3352				VERIFY(nvlist_add_uint64(*config,
3353				    ZPOOL_CONFIG_SUSPENDED,
3354				    spa->spa_failmode) == 0);
3355
3356			spa_add_spares(spa, *config);
3357			spa_add_l2cache(spa, *config);
3358			spa_add_feature_stats(spa, *config);
3359		}
3360	}
3361
3362	/*
3363	 * We want to get the alternate root even for faulted pools, so we cheat
3364	 * and call spa_lookup() directly.
3365	 */
3366	if (altroot) {
3367		if (spa == NULL) {
3368			mutex_enter(&spa_namespace_lock);
3369			spa = spa_lookup(name);
3370			if (spa)
3371				spa_altroot(spa, altroot, buflen);
3372			else
3373				altroot[0] = '\0';
3374			spa = NULL;
3375			mutex_exit(&spa_namespace_lock);
3376		} else {
3377			spa_altroot(spa, altroot, buflen);
3378		}
3379	}
3380
3381	if (spa != NULL) {
3382		spa_config_exit(spa, SCL_CONFIG, FTAG);
3383		spa_close(spa, FTAG);
3384	}
3385
3386	return (error);
3387}
3388
3389/*
3390 * Validate that the auxiliary device array is well formed.  We must have an
3391 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3392 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3393 * specified, as long as they are well-formed.
3394 */
3395static int
3396spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3397    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3398    vdev_labeltype_t label)
3399{
3400	nvlist_t **dev;
3401	uint_t i, ndev;
3402	vdev_t *vd;
3403	int error;
3404
3405	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3406
3407	/*
3408	 * It's acceptable to have no devs specified.
3409	 */
3410	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3411		return (0);
3412
3413	if (ndev == 0)
3414		return (SET_ERROR(EINVAL));
3415
3416	/*
3417	 * Make sure the pool is formatted with a version that supports this
3418	 * device type.
3419	 */
3420	if (spa_version(spa) < version)
3421		return (SET_ERROR(ENOTSUP));
3422
3423	/*
3424	 * Set the pending device list so we correctly handle device in-use
3425	 * checking.
3426	 */
3427	sav->sav_pending = dev;
3428	sav->sav_npending = ndev;
3429
3430	for (i = 0; i < ndev; i++) {
3431		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3432		    mode)) != 0)
3433			goto out;
3434
3435		if (!vd->vdev_ops->vdev_op_leaf) {
3436			vdev_free(vd);
3437			error = SET_ERROR(EINVAL);
3438			goto out;
3439		}
3440
3441		/*
3442		 * The L2ARC currently only supports disk devices in
3443		 * kernel context.  For user-level testing, we allow it.
3444		 */
3445#ifdef _KERNEL
3446		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3447		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3448			error = SET_ERROR(ENOTBLK);
3449			vdev_free(vd);
3450			goto out;
3451		}
3452#endif
3453		vd->vdev_top = vd;
3454
3455		if ((error = vdev_open(vd)) == 0 &&
3456		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3457			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3458			    vd->vdev_guid) == 0);
3459		}
3460
3461		vdev_free(vd);
3462
3463		if (error &&
3464		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3465			goto out;
3466		else
3467			error = 0;
3468	}
3469
3470out:
3471	sav->sav_pending = NULL;
3472	sav->sav_npending = 0;
3473	return (error);
3474}
3475
3476static int
3477spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3478{
3479	int error;
3480
3481	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3482
3483	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3484	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3485	    VDEV_LABEL_SPARE)) != 0) {
3486		return (error);
3487	}
3488
3489	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3490	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3491	    VDEV_LABEL_L2CACHE));
3492}
3493
3494static void
3495spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3496    const char *config)
3497{
3498	int i;
3499
3500	if (sav->sav_config != NULL) {
3501		nvlist_t **olddevs;
3502		uint_t oldndevs;
3503		nvlist_t **newdevs;
3504
3505		/*
3506		 * Generate new dev list by concatentating with the
3507		 * current dev list.
3508		 */
3509		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3510		    &olddevs, &oldndevs) == 0);
3511
3512		newdevs = kmem_alloc(sizeof (void *) *
3513		    (ndevs + oldndevs), KM_SLEEP);
3514		for (i = 0; i < oldndevs; i++)
3515			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3516			    KM_SLEEP) == 0);
3517		for (i = 0; i < ndevs; i++)
3518			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3519			    KM_SLEEP) == 0);
3520
3521		VERIFY(nvlist_remove(sav->sav_config, config,
3522		    DATA_TYPE_NVLIST_ARRAY) == 0);
3523
3524		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3525		    config, newdevs, ndevs + oldndevs) == 0);
3526		for (i = 0; i < oldndevs + ndevs; i++)
3527			nvlist_free(newdevs[i]);
3528		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3529	} else {
3530		/*
3531		 * Generate a new dev list.
3532		 */
3533		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3534		    KM_SLEEP) == 0);
3535		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3536		    devs, ndevs) == 0);
3537	}
3538}
3539
3540/*
3541 * Stop and drop level 2 ARC devices
3542 */
3543void
3544spa_l2cache_drop(spa_t *spa)
3545{
3546	vdev_t *vd;
3547	int i;
3548	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3549
3550	for (i = 0; i < sav->sav_count; i++) {
3551		uint64_t pool;
3552
3553		vd = sav->sav_vdevs[i];
3554		ASSERT(vd != NULL);
3555
3556		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3557		    pool != 0ULL && l2arc_vdev_present(vd))
3558			l2arc_remove_vdev(vd);
3559	}
3560}
3561
3562/*
3563 * Pool Creation
3564 */
3565int
3566spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3567    nvlist_t *zplprops)
3568{
3569	spa_t *spa;
3570	char *altroot = NULL;
3571	vdev_t *rvd;
3572	dsl_pool_t *dp;
3573	dmu_tx_t *tx;
3574	int error = 0;
3575	uint64_t txg = TXG_INITIAL;
3576	nvlist_t **spares, **l2cache;
3577	uint_t nspares, nl2cache;
3578	uint64_t version, obj;
3579	boolean_t has_features;
3580
3581	/*
3582	 * If this pool already exists, return failure.
3583	 */
3584	mutex_enter(&spa_namespace_lock);
3585	if (spa_lookup(pool) != NULL) {
3586		mutex_exit(&spa_namespace_lock);
3587		return (SET_ERROR(EEXIST));
3588	}
3589
3590	/*
3591	 * Allocate a new spa_t structure.
3592	 */
3593	(void) nvlist_lookup_string(props,
3594	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3595	spa = spa_add(pool, NULL, altroot);
3596	spa_activate(spa, spa_mode_global);
3597
3598	if (props && (error = spa_prop_validate(spa, props))) {
3599		spa_deactivate(spa);
3600		spa_remove(spa);
3601		mutex_exit(&spa_namespace_lock);
3602		return (error);
3603	}
3604
3605	has_features = B_FALSE;
3606	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3607	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3608		if (zpool_prop_feature(nvpair_name(elem)))
3609			has_features = B_TRUE;
3610	}
3611
3612	if (has_features || nvlist_lookup_uint64(props,
3613	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3614		version = SPA_VERSION;
3615	}
3616	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3617
3618	spa->spa_first_txg = txg;
3619	spa->spa_uberblock.ub_txg = txg - 1;
3620	spa->spa_uberblock.ub_version = version;
3621	spa->spa_ubsync = spa->spa_uberblock;
3622
3623	/*
3624	 * Create "The Godfather" zio to hold all async IOs
3625	 */
3626	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3627	    KM_SLEEP);
3628	for (int i = 0; i < max_ncpus; i++) {
3629		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3630		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3631		    ZIO_FLAG_GODFATHER);
3632	}
3633
3634	/*
3635	 * Create the root vdev.
3636	 */
3637	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3638
3639	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3640
3641	ASSERT(error != 0 || rvd != NULL);
3642	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3643
3644	if (error == 0 && !zfs_allocatable_devs(nvroot))
3645		error = SET_ERROR(EINVAL);
3646
3647	if (error == 0 &&
3648	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3649	    (error = spa_validate_aux(spa, nvroot, txg,
3650	    VDEV_ALLOC_ADD)) == 0) {
3651		for (int c = 0; c < rvd->vdev_children; c++) {
3652			vdev_ashift_optimize(rvd->vdev_child[c]);
3653			vdev_metaslab_set_size(rvd->vdev_child[c]);
3654			vdev_expand(rvd->vdev_child[c], txg);
3655		}
3656	}
3657
3658	spa_config_exit(spa, SCL_ALL, FTAG);
3659
3660	if (error != 0) {
3661		spa_unload(spa);
3662		spa_deactivate(spa);
3663		spa_remove(spa);
3664		mutex_exit(&spa_namespace_lock);
3665		return (error);
3666	}
3667
3668	/*
3669	 * Get the list of spares, if specified.
3670	 */
3671	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3672	    &spares, &nspares) == 0) {
3673		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3674		    KM_SLEEP) == 0);
3675		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3676		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3677		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3678		spa_load_spares(spa);
3679		spa_config_exit(spa, SCL_ALL, FTAG);
3680		spa->spa_spares.sav_sync = B_TRUE;
3681	}
3682
3683	/*
3684	 * Get the list of level 2 cache devices, if specified.
3685	 */
3686	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3687	    &l2cache, &nl2cache) == 0) {
3688		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3689		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3690		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3691		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3692		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3693		spa_load_l2cache(spa);
3694		spa_config_exit(spa, SCL_ALL, FTAG);
3695		spa->spa_l2cache.sav_sync = B_TRUE;
3696	}
3697
3698	spa->spa_is_initializing = B_TRUE;
3699	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3700	spa->spa_meta_objset = dp->dp_meta_objset;
3701	spa->spa_is_initializing = B_FALSE;
3702
3703	/*
3704	 * Create DDTs (dedup tables).
3705	 */
3706	ddt_create(spa);
3707
3708	spa_update_dspace(spa);
3709
3710	tx = dmu_tx_create_assigned(dp, txg);
3711
3712	/*
3713	 * Create the pool config object.
3714	 */
3715	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3716	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3717	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3718
3719	if (zap_add(spa->spa_meta_objset,
3720	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3721	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3722		cmn_err(CE_PANIC, "failed to add pool config");
3723	}
3724
3725	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3726		spa_feature_create_zap_objects(spa, tx);
3727
3728	if (zap_add(spa->spa_meta_objset,
3729	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3730	    sizeof (uint64_t), 1, &version, tx) != 0) {
3731		cmn_err(CE_PANIC, "failed to add pool version");
3732	}
3733
3734	/* Newly created pools with the right version are always deflated. */
3735	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3736		spa->spa_deflate = TRUE;
3737		if (zap_add(spa->spa_meta_objset,
3738		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3739		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3740			cmn_err(CE_PANIC, "failed to add deflate");
3741		}
3742	}
3743
3744	/*
3745	 * Create the deferred-free bpobj.  Turn off compression
3746	 * because sync-to-convergence takes longer if the blocksize
3747	 * keeps changing.
3748	 */
3749	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3750	dmu_object_set_compress(spa->spa_meta_objset, obj,
3751	    ZIO_COMPRESS_OFF, tx);
3752	if (zap_add(spa->spa_meta_objset,
3753	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3754	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3755		cmn_err(CE_PANIC, "failed to add bpobj");
3756	}
3757	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3758	    spa->spa_meta_objset, obj));
3759
3760	/*
3761	 * Create the pool's history object.
3762	 */
3763	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3764		spa_history_create_obj(spa, tx);
3765
3766	/*
3767	 * Generate some random noise for salted checksums to operate on.
3768	 */
3769	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3770	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3771
3772	/*
3773	 * Set pool properties.
3774	 */
3775	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3776	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3777	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3778	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3779
3780	if (props != NULL) {
3781		spa_configfile_set(spa, props, B_FALSE);
3782		spa_sync_props(props, tx);
3783	}
3784
3785	dmu_tx_commit(tx);
3786
3787	spa->spa_sync_on = B_TRUE;
3788	txg_sync_start(spa->spa_dsl_pool);
3789
3790	/*
3791	 * We explicitly wait for the first transaction to complete so that our
3792	 * bean counters are appropriately updated.
3793	 */
3794	txg_wait_synced(spa->spa_dsl_pool, txg);
3795
3796	spa_config_sync(spa, B_FALSE, B_TRUE);
3797	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3798
3799	spa_history_log_version(spa, "create");
3800
3801	/*
3802	 * Don't count references from objsets that are already closed
3803	 * and are making their way through the eviction process.
3804	 */
3805	spa_evicting_os_wait(spa);
3806	spa->spa_minref = refcount_count(&spa->spa_refcount);
3807
3808	mutex_exit(&spa_namespace_lock);
3809
3810	return (0);
3811}
3812
3813#ifdef _KERNEL
3814#ifdef illumos
3815/*
3816 * Get the root pool information from the root disk, then import the root pool
3817 * during the system boot up time.
3818 */
3819extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3820
3821static nvlist_t *
3822spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3823{
3824	nvlist_t *config;
3825	nvlist_t *nvtop, *nvroot;
3826	uint64_t pgid;
3827
3828	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3829		return (NULL);
3830
3831	/*
3832	 * Add this top-level vdev to the child array.
3833	 */
3834	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3835	    &nvtop) == 0);
3836	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3837	    &pgid) == 0);
3838	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3839
3840	/*
3841	 * Put this pool's top-level vdevs into a root vdev.
3842	 */
3843	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3844	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3845	    VDEV_TYPE_ROOT) == 0);
3846	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3847	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3848	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3849	    &nvtop, 1) == 0);
3850
3851	/*
3852	 * Replace the existing vdev_tree with the new root vdev in
3853	 * this pool's configuration (remove the old, add the new).
3854	 */
3855	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3856	nvlist_free(nvroot);
3857	return (config);
3858}
3859
3860/*
3861 * Walk the vdev tree and see if we can find a device with "better"
3862 * configuration. A configuration is "better" if the label on that
3863 * device has a more recent txg.
3864 */
3865static void
3866spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3867{
3868	for (int c = 0; c < vd->vdev_children; c++)
3869		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3870
3871	if (vd->vdev_ops->vdev_op_leaf) {
3872		nvlist_t *label;
3873		uint64_t label_txg;
3874
3875		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3876		    &label) != 0)
3877			return;
3878
3879		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3880		    &label_txg) == 0);
3881
3882		/*
3883		 * Do we have a better boot device?
3884		 */
3885		if (label_txg > *txg) {
3886			*txg = label_txg;
3887			*avd = vd;
3888		}
3889		nvlist_free(label);
3890	}
3891}
3892
3893/*
3894 * Import a root pool.
3895 *
3896 * For x86. devpath_list will consist of devid and/or physpath name of
3897 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3898 * The GRUB "findroot" command will return the vdev we should boot.
3899 *
3900 * For Sparc, devpath_list consists the physpath name of the booting device
3901 * no matter the rootpool is a single device pool or a mirrored pool.
3902 * e.g.
3903 *	"/pci@1f,0/ide@d/disk@0,0:a"
3904 */
3905int
3906spa_import_rootpool(char *devpath, char *devid)
3907{
3908	spa_t *spa;
3909	vdev_t *rvd, *bvd, *avd = NULL;
3910	nvlist_t *config, *nvtop;
3911	uint64_t guid, txg;
3912	char *pname;
3913	int error;
3914
3915	/*
3916	 * Read the label from the boot device and generate a configuration.
3917	 */
3918	config = spa_generate_rootconf(devpath, devid, &guid);
3919#if defined(_OBP) && defined(_KERNEL)
3920	if (config == NULL) {
3921		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3922			/* iscsi boot */
3923			get_iscsi_bootpath_phy(devpath);
3924			config = spa_generate_rootconf(devpath, devid, &guid);
3925		}
3926	}
3927#endif
3928	if (config == NULL) {
3929		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3930		    devpath);
3931		return (SET_ERROR(EIO));
3932	}
3933
3934	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3935	    &pname) == 0);
3936	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3937
3938	mutex_enter(&spa_namespace_lock);
3939	if ((spa = spa_lookup(pname)) != NULL) {
3940		/*
3941		 * Remove the existing root pool from the namespace so that we
3942		 * can replace it with the correct config we just read in.
3943		 */
3944		spa_remove(spa);
3945	}
3946
3947	spa = spa_add(pname, config, NULL);
3948	spa->spa_is_root = B_TRUE;
3949	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3950
3951	/*
3952	 * Build up a vdev tree based on the boot device's label config.
3953	 */
3954	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3955	    &nvtop) == 0);
3956	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3957	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3958	    VDEV_ALLOC_ROOTPOOL);
3959	spa_config_exit(spa, SCL_ALL, FTAG);
3960	if (error) {
3961		mutex_exit(&spa_namespace_lock);
3962		nvlist_free(config);
3963		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3964		    pname);
3965		return (error);
3966	}
3967
3968	/*
3969	 * Get the boot vdev.
3970	 */
3971	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3972		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3973		    (u_longlong_t)guid);
3974		error = SET_ERROR(ENOENT);
3975		goto out;
3976	}
3977
3978	/*
3979	 * Determine if there is a better boot device.
3980	 */
3981	avd = bvd;
3982	spa_alt_rootvdev(rvd, &avd, &txg);
3983	if (avd != bvd) {
3984		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3985		    "try booting from '%s'", avd->vdev_path);
3986		error = SET_ERROR(EINVAL);
3987		goto out;
3988	}
3989
3990	/*
3991	 * If the boot device is part of a spare vdev then ensure that
3992	 * we're booting off the active spare.
3993	 */
3994	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3995	    !bvd->vdev_isspare) {
3996		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3997		    "try booting from '%s'",
3998		    bvd->vdev_parent->
3999		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4000		error = SET_ERROR(EINVAL);
4001		goto out;
4002	}
4003
4004	error = 0;
4005out:
4006	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4007	vdev_free(rvd);
4008	spa_config_exit(spa, SCL_ALL, FTAG);
4009	mutex_exit(&spa_namespace_lock);
4010
4011	nvlist_free(config);
4012	return (error);
4013}
4014
4015#else	/* !illumos */
4016
4017extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4018    uint64_t *count);
4019
4020static nvlist_t *
4021spa_generate_rootconf(const char *name)
4022{
4023	nvlist_t **configs, **tops;
4024	nvlist_t *config;
4025	nvlist_t *best_cfg, *nvtop, *nvroot;
4026	uint64_t *holes;
4027	uint64_t best_txg;
4028	uint64_t nchildren;
4029	uint64_t pgid;
4030	uint64_t count;
4031	uint64_t i;
4032	uint_t   nholes;
4033
4034	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4035		return (NULL);
4036
4037	ASSERT3U(count, !=, 0);
4038	best_txg = 0;
4039	for (i = 0; i < count; i++) {
4040		uint64_t txg;
4041
4042		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4043		    &txg) == 0);
4044		if (txg > best_txg) {
4045			best_txg = txg;
4046			best_cfg = configs[i];
4047		}
4048	}
4049
4050	nchildren = 1;
4051	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4052	holes = NULL;
4053	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4054	    &holes, &nholes);
4055
4056	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4057	for (i = 0; i < nchildren; i++) {
4058		if (i >= count)
4059			break;
4060		if (configs[i] == NULL)
4061			continue;
4062		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4063		    &nvtop) == 0);
4064		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4065	}
4066	for (i = 0; holes != NULL && i < nholes; i++) {
4067		if (i >= nchildren)
4068			continue;
4069		if (tops[holes[i]] != NULL)
4070			continue;
4071		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4072		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4073		    VDEV_TYPE_HOLE) == 0);
4074		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4075		    holes[i]) == 0);
4076		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4077		    0) == 0);
4078	}
4079	for (i = 0; i < nchildren; i++) {
4080		if (tops[i] != NULL)
4081			continue;
4082		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4083		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4084		    VDEV_TYPE_MISSING) == 0);
4085		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4086		    i) == 0);
4087		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4088		    0) == 0);
4089	}
4090
4091	/*
4092	 * Create pool config based on the best vdev config.
4093	 */
4094	nvlist_dup(best_cfg, &config, KM_SLEEP);
4095
4096	/*
4097	 * Put this pool's top-level vdevs into a root vdev.
4098	 */
4099	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4100	    &pgid) == 0);
4101	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4102	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4103	    VDEV_TYPE_ROOT) == 0);
4104	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4105	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4106	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4107	    tops, nchildren) == 0);
4108
4109	/*
4110	 * Replace the existing vdev_tree with the new root vdev in
4111	 * this pool's configuration (remove the old, add the new).
4112	 */
4113	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4114
4115	/*
4116	 * Drop vdev config elements that should not be present at pool level.
4117	 */
4118	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4119	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4120
4121	for (i = 0; i < count; i++)
4122		nvlist_free(configs[i]);
4123	kmem_free(configs, count * sizeof(void *));
4124	for (i = 0; i < nchildren; i++)
4125		nvlist_free(tops[i]);
4126	kmem_free(tops, nchildren * sizeof(void *));
4127	nvlist_free(nvroot);
4128	return (config);
4129}
4130
4131int
4132spa_import_rootpool(const char *name)
4133{
4134	spa_t *spa;
4135	vdev_t *rvd, *bvd, *avd = NULL;
4136	nvlist_t *config, *nvtop;
4137	uint64_t txg;
4138	char *pname;
4139	int error;
4140
4141	/*
4142	 * Read the label from the boot device and generate a configuration.
4143	 */
4144	config = spa_generate_rootconf(name);
4145
4146	mutex_enter(&spa_namespace_lock);
4147	if (config != NULL) {
4148		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4149		    &pname) == 0 && strcmp(name, pname) == 0);
4150		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4151		    == 0);
4152
4153		if ((spa = spa_lookup(pname)) != NULL) {
4154			/*
4155			 * Remove the existing root pool from the namespace so
4156			 * that we can replace it with the correct config
4157			 * we just read in.
4158			 */
4159			spa_remove(spa);
4160		}
4161		spa = spa_add(pname, config, NULL);
4162
4163		/*
4164		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4165		 * via spa_version().
4166		 */
4167		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4168		    &spa->spa_ubsync.ub_version) != 0)
4169			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4170	} else if ((spa = spa_lookup(name)) == NULL) {
4171		mutex_exit(&spa_namespace_lock);
4172		nvlist_free(config);
4173		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4174		    name);
4175		return (EIO);
4176	} else {
4177		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4178	}
4179	spa->spa_is_root = B_TRUE;
4180	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4181
4182	/*
4183	 * Build up a vdev tree based on the boot device's label config.
4184	 */
4185	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4186	    &nvtop) == 0);
4187	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4188	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4189	    VDEV_ALLOC_ROOTPOOL);
4190	spa_config_exit(spa, SCL_ALL, FTAG);
4191	if (error) {
4192		mutex_exit(&spa_namespace_lock);
4193		nvlist_free(config);
4194		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4195		    pname);
4196		return (error);
4197	}
4198
4199	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4200	vdev_free(rvd);
4201	spa_config_exit(spa, SCL_ALL, FTAG);
4202	mutex_exit(&spa_namespace_lock);
4203
4204	nvlist_free(config);
4205	return (0);
4206}
4207
4208#endif	/* illumos */
4209#endif	/* _KERNEL */
4210
4211/*
4212 * Import a non-root pool into the system.
4213 */
4214int
4215spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4216{
4217	spa_t *spa;
4218	char *altroot = NULL;
4219	spa_load_state_t state = SPA_LOAD_IMPORT;
4220	zpool_rewind_policy_t policy;
4221	uint64_t mode = spa_mode_global;
4222	uint64_t readonly = B_FALSE;
4223	int error;
4224	nvlist_t *nvroot;
4225	nvlist_t **spares, **l2cache;
4226	uint_t nspares, nl2cache;
4227
4228	/*
4229	 * If a pool with this name exists, return failure.
4230	 */
4231	mutex_enter(&spa_namespace_lock);
4232	if (spa_lookup(pool) != NULL) {
4233		mutex_exit(&spa_namespace_lock);
4234		return (SET_ERROR(EEXIST));
4235	}
4236
4237	/*
4238	 * Create and initialize the spa structure.
4239	 */
4240	(void) nvlist_lookup_string(props,
4241	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4242	(void) nvlist_lookup_uint64(props,
4243	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4244	if (readonly)
4245		mode = FREAD;
4246	spa = spa_add(pool, config, altroot);
4247	spa->spa_import_flags = flags;
4248
4249	/*
4250	 * Verbatim import - Take a pool and insert it into the namespace
4251	 * as if it had been loaded at boot.
4252	 */
4253	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4254		if (props != NULL)
4255			spa_configfile_set(spa, props, B_FALSE);
4256
4257		spa_config_sync(spa, B_FALSE, B_TRUE);
4258		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4259
4260		mutex_exit(&spa_namespace_lock);
4261		return (0);
4262	}
4263
4264	spa_activate(spa, mode);
4265
4266	/*
4267	 * Don't start async tasks until we know everything is healthy.
4268	 */
4269	spa_async_suspend(spa);
4270
4271	zpool_get_rewind_policy(config, &policy);
4272	if (policy.zrp_request & ZPOOL_DO_REWIND)
4273		state = SPA_LOAD_RECOVER;
4274
4275	/*
4276	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4277	 * because the user-supplied config is actually the one to trust when
4278	 * doing an import.
4279	 */
4280	if (state != SPA_LOAD_RECOVER)
4281		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4282
4283	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4284	    policy.zrp_request);
4285
4286	/*
4287	 * Propagate anything learned while loading the pool and pass it
4288	 * back to caller (i.e. rewind info, missing devices, etc).
4289	 */
4290	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4291	    spa->spa_load_info) == 0);
4292
4293	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4294	/*
4295	 * Toss any existing sparelist, as it doesn't have any validity
4296	 * anymore, and conflicts with spa_has_spare().
4297	 */
4298	if (spa->spa_spares.sav_config) {
4299		nvlist_free(spa->spa_spares.sav_config);
4300		spa->spa_spares.sav_config = NULL;
4301		spa_load_spares(spa);
4302	}
4303	if (spa->spa_l2cache.sav_config) {
4304		nvlist_free(spa->spa_l2cache.sav_config);
4305		spa->spa_l2cache.sav_config = NULL;
4306		spa_load_l2cache(spa);
4307	}
4308
4309	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4310	    &nvroot) == 0);
4311	if (error == 0)
4312		error = spa_validate_aux(spa, nvroot, -1ULL,
4313		    VDEV_ALLOC_SPARE);
4314	if (error == 0)
4315		error = spa_validate_aux(spa, nvroot, -1ULL,
4316		    VDEV_ALLOC_L2CACHE);
4317	spa_config_exit(spa, SCL_ALL, FTAG);
4318
4319	if (props != NULL)
4320		spa_configfile_set(spa, props, B_FALSE);
4321
4322	if (error != 0 || (props && spa_writeable(spa) &&
4323	    (error = spa_prop_set(spa, props)))) {
4324		spa_unload(spa);
4325		spa_deactivate(spa);
4326		spa_remove(spa);
4327		mutex_exit(&spa_namespace_lock);
4328		return (error);
4329	}
4330
4331	spa_async_resume(spa);
4332
4333	/*
4334	 * Override any spares and level 2 cache devices as specified by
4335	 * the user, as these may have correct device names/devids, etc.
4336	 */
4337	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4338	    &spares, &nspares) == 0) {
4339		if (spa->spa_spares.sav_config)
4340			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4341			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4342		else
4343			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4344			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4345		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4346		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4347		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4348		spa_load_spares(spa);
4349		spa_config_exit(spa, SCL_ALL, FTAG);
4350		spa->spa_spares.sav_sync = B_TRUE;
4351	}
4352	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4353	    &l2cache, &nl2cache) == 0) {
4354		if (spa->spa_l2cache.sav_config)
4355			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4356			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4357		else
4358			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4359			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4360		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4361		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4362		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4363		spa_load_l2cache(spa);
4364		spa_config_exit(spa, SCL_ALL, FTAG);
4365		spa->spa_l2cache.sav_sync = B_TRUE;
4366	}
4367
4368	/*
4369	 * Check for any removed devices.
4370	 */
4371	if (spa->spa_autoreplace) {
4372		spa_aux_check_removed(&spa->spa_spares);
4373		spa_aux_check_removed(&spa->spa_l2cache);
4374	}
4375
4376	if (spa_writeable(spa)) {
4377		/*
4378		 * Update the config cache to include the newly-imported pool.
4379		 */
4380		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4381	}
4382
4383	/*
4384	 * It's possible that the pool was expanded while it was exported.
4385	 * We kick off an async task to handle this for us.
4386	 */
4387	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4388
4389	spa_history_log_version(spa, "import");
4390
4391	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4392
4393	mutex_exit(&spa_namespace_lock);
4394
4395#ifdef __FreeBSD__
4396#ifdef _KERNEL
4397	zvol_create_minors(pool);
4398#endif
4399#endif
4400	return (0);
4401}
4402
4403nvlist_t *
4404spa_tryimport(nvlist_t *tryconfig)
4405{
4406	nvlist_t *config = NULL;
4407	char *poolname;
4408	spa_t *spa;
4409	uint64_t state;
4410	int error;
4411
4412	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4413		return (NULL);
4414
4415	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4416		return (NULL);
4417
4418	/*
4419	 * Create and initialize the spa structure.
4420	 */
4421	mutex_enter(&spa_namespace_lock);
4422	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4423	spa_activate(spa, FREAD);
4424
4425	/*
4426	 * Pass off the heavy lifting to spa_load().
4427	 * Pass TRUE for mosconfig because the user-supplied config
4428	 * is actually the one to trust when doing an import.
4429	 */
4430	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4431
4432	/*
4433	 * If 'tryconfig' was at least parsable, return the current config.
4434	 */
4435	if (spa->spa_root_vdev != NULL) {
4436		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4437		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4438		    poolname) == 0);
4439		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4440		    state) == 0);
4441		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4442		    spa->spa_uberblock.ub_timestamp) == 0);
4443		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4444		    spa->spa_load_info) == 0);
4445
4446		/*
4447		 * If the bootfs property exists on this pool then we
4448		 * copy it out so that external consumers can tell which
4449		 * pools are bootable.
4450		 */
4451		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4452			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4453
4454			/*
4455			 * We have to play games with the name since the
4456			 * pool was opened as TRYIMPORT_NAME.
4457			 */
4458			if (dsl_dsobj_to_dsname(spa_name(spa),
4459			    spa->spa_bootfs, tmpname) == 0) {
4460				char *cp;
4461				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4462
4463				cp = strchr(tmpname, '/');
4464				if (cp == NULL) {
4465					(void) strlcpy(dsname, tmpname,
4466					    MAXPATHLEN);
4467				} else {
4468					(void) snprintf(dsname, MAXPATHLEN,
4469					    "%s/%s", poolname, ++cp);
4470				}
4471				VERIFY(nvlist_add_string(config,
4472				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4473				kmem_free(dsname, MAXPATHLEN);
4474			}
4475			kmem_free(tmpname, MAXPATHLEN);
4476		}
4477
4478		/*
4479		 * Add the list of hot spares and level 2 cache devices.
4480		 */
4481		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4482		spa_add_spares(spa, config);
4483		spa_add_l2cache(spa, config);
4484		spa_config_exit(spa, SCL_CONFIG, FTAG);
4485	}
4486
4487	spa_unload(spa);
4488	spa_deactivate(spa);
4489	spa_remove(spa);
4490	mutex_exit(&spa_namespace_lock);
4491
4492	return (config);
4493}
4494
4495/*
4496 * Pool export/destroy
4497 *
4498 * The act of destroying or exporting a pool is very simple.  We make sure there
4499 * is no more pending I/O and any references to the pool are gone.  Then, we
4500 * update the pool state and sync all the labels to disk, removing the
4501 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4502 * we don't sync the labels or remove the configuration cache.
4503 */
4504static int
4505spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4506    boolean_t force, boolean_t hardforce)
4507{
4508	spa_t *spa;
4509
4510	if (oldconfig)
4511		*oldconfig = NULL;
4512
4513	if (!(spa_mode_global & FWRITE))
4514		return (SET_ERROR(EROFS));
4515
4516	mutex_enter(&spa_namespace_lock);
4517	if ((spa = spa_lookup(pool)) == NULL) {
4518		mutex_exit(&spa_namespace_lock);
4519		return (SET_ERROR(ENOENT));
4520	}
4521
4522	/*
4523	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4524	 * reacquire the namespace lock, and see if we can export.
4525	 */
4526	spa_open_ref(spa, FTAG);
4527	mutex_exit(&spa_namespace_lock);
4528	spa_async_suspend(spa);
4529	mutex_enter(&spa_namespace_lock);
4530	spa_close(spa, FTAG);
4531
4532	/*
4533	 * The pool will be in core if it's openable,
4534	 * in which case we can modify its state.
4535	 */
4536	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4537		/*
4538		 * Objsets may be open only because they're dirty, so we
4539		 * have to force it to sync before checking spa_refcnt.
4540		 */
4541		txg_wait_synced(spa->spa_dsl_pool, 0);
4542		spa_evicting_os_wait(spa);
4543
4544		/*
4545		 * A pool cannot be exported or destroyed if there are active
4546		 * references.  If we are resetting a pool, allow references by
4547		 * fault injection handlers.
4548		 */
4549		if (!spa_refcount_zero(spa) ||
4550		    (spa->spa_inject_ref != 0 &&
4551		    new_state != POOL_STATE_UNINITIALIZED)) {
4552			spa_async_resume(spa);
4553			mutex_exit(&spa_namespace_lock);
4554			return (SET_ERROR(EBUSY));
4555		}
4556
4557		/*
4558		 * A pool cannot be exported if it has an active shared spare.
4559		 * This is to prevent other pools stealing the active spare
4560		 * from an exported pool. At user's own will, such pool can
4561		 * be forcedly exported.
4562		 */
4563		if (!force && new_state == POOL_STATE_EXPORTED &&
4564		    spa_has_active_shared_spare(spa)) {
4565			spa_async_resume(spa);
4566			mutex_exit(&spa_namespace_lock);
4567			return (SET_ERROR(EXDEV));
4568		}
4569
4570		/*
4571		 * We want this to be reflected on every label,
4572		 * so mark them all dirty.  spa_unload() will do the
4573		 * final sync that pushes these changes out.
4574		 */
4575		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4576			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4577			spa->spa_state = new_state;
4578			spa->spa_final_txg = spa_last_synced_txg(spa) +
4579			    TXG_DEFER_SIZE + 1;
4580			vdev_config_dirty(spa->spa_root_vdev);
4581			spa_config_exit(spa, SCL_ALL, FTAG);
4582		}
4583	}
4584
4585	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4586
4587	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4588		spa_unload(spa);
4589		spa_deactivate(spa);
4590	}
4591
4592	if (oldconfig && spa->spa_config)
4593		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4594
4595	if (new_state != POOL_STATE_UNINITIALIZED) {
4596		if (!hardforce)
4597			spa_config_sync(spa, B_TRUE, B_TRUE);
4598		spa_remove(spa);
4599	}
4600	mutex_exit(&spa_namespace_lock);
4601
4602	return (0);
4603}
4604
4605/*
4606 * Destroy a storage pool.
4607 */
4608int
4609spa_destroy(char *pool)
4610{
4611	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4612	    B_FALSE, B_FALSE));
4613}
4614
4615/*
4616 * Export a storage pool.
4617 */
4618int
4619spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4620    boolean_t hardforce)
4621{
4622	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4623	    force, hardforce));
4624}
4625
4626/*
4627 * Similar to spa_export(), this unloads the spa_t without actually removing it
4628 * from the namespace in any way.
4629 */
4630int
4631spa_reset(char *pool)
4632{
4633	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4634	    B_FALSE, B_FALSE));
4635}
4636
4637/*
4638 * ==========================================================================
4639 * Device manipulation
4640 * ==========================================================================
4641 */
4642
4643/*
4644 * Add a device to a storage pool.
4645 */
4646int
4647spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4648{
4649	uint64_t txg, id;
4650	int error;
4651	vdev_t *rvd = spa->spa_root_vdev;
4652	vdev_t *vd, *tvd;
4653	nvlist_t **spares, **l2cache;
4654	uint_t nspares, nl2cache;
4655
4656	ASSERT(spa_writeable(spa));
4657
4658	txg = spa_vdev_enter(spa);
4659
4660	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4661	    VDEV_ALLOC_ADD)) != 0)
4662		return (spa_vdev_exit(spa, NULL, txg, error));
4663
4664	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4665
4666	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4667	    &nspares) != 0)
4668		nspares = 0;
4669
4670	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4671	    &nl2cache) != 0)
4672		nl2cache = 0;
4673
4674	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4675		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4676
4677	if (vd->vdev_children != 0 &&
4678	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4679		return (spa_vdev_exit(spa, vd, txg, error));
4680
4681	/*
4682	 * We must validate the spares and l2cache devices after checking the
4683	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4684	 */
4685	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4686		return (spa_vdev_exit(spa, vd, txg, error));
4687
4688	/*
4689	 * Transfer each new top-level vdev from vd to rvd.
4690	 */
4691	for (int c = 0; c < vd->vdev_children; c++) {
4692
4693		/*
4694		 * Set the vdev id to the first hole, if one exists.
4695		 */
4696		for (id = 0; id < rvd->vdev_children; id++) {
4697			if (rvd->vdev_child[id]->vdev_ishole) {
4698				vdev_free(rvd->vdev_child[id]);
4699				break;
4700			}
4701		}
4702		tvd = vd->vdev_child[c];
4703		vdev_remove_child(vd, tvd);
4704		tvd->vdev_id = id;
4705		vdev_add_child(rvd, tvd);
4706		vdev_config_dirty(tvd);
4707	}
4708
4709	if (nspares != 0) {
4710		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4711		    ZPOOL_CONFIG_SPARES);
4712		spa_load_spares(spa);
4713		spa->spa_spares.sav_sync = B_TRUE;
4714	}
4715
4716	if (nl2cache != 0) {
4717		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4718		    ZPOOL_CONFIG_L2CACHE);
4719		spa_load_l2cache(spa);
4720		spa->spa_l2cache.sav_sync = B_TRUE;
4721	}
4722
4723	/*
4724	 * We have to be careful when adding new vdevs to an existing pool.
4725	 * If other threads start allocating from these vdevs before we
4726	 * sync the config cache, and we lose power, then upon reboot we may
4727	 * fail to open the pool because there are DVAs that the config cache
4728	 * can't translate.  Therefore, we first add the vdevs without
4729	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4730	 * and then let spa_config_update() initialize the new metaslabs.
4731	 *
4732	 * spa_load() checks for added-but-not-initialized vdevs, so that
4733	 * if we lose power at any point in this sequence, the remaining
4734	 * steps will be completed the next time we load the pool.
4735	 */
4736	(void) spa_vdev_exit(spa, vd, txg, 0);
4737
4738	mutex_enter(&spa_namespace_lock);
4739	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4740	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4741	mutex_exit(&spa_namespace_lock);
4742
4743	return (0);
4744}
4745
4746/*
4747 * Attach a device to a mirror.  The arguments are the path to any device
4748 * in the mirror, and the nvroot for the new device.  If the path specifies
4749 * a device that is not mirrored, we automatically insert the mirror vdev.
4750 *
4751 * If 'replacing' is specified, the new device is intended to replace the
4752 * existing device; in this case the two devices are made into their own
4753 * mirror using the 'replacing' vdev, which is functionally identical to
4754 * the mirror vdev (it actually reuses all the same ops) but has a few
4755 * extra rules: you can't attach to it after it's been created, and upon
4756 * completion of resilvering, the first disk (the one being replaced)
4757 * is automatically detached.
4758 */
4759int
4760spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4761{
4762	uint64_t txg, dtl_max_txg;
4763	vdev_t *rvd = spa->spa_root_vdev;
4764	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4765	vdev_ops_t *pvops;
4766	char *oldvdpath, *newvdpath;
4767	int newvd_isspare;
4768	int error;
4769
4770	ASSERT(spa_writeable(spa));
4771
4772	txg = spa_vdev_enter(spa);
4773
4774	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4775
4776	if (oldvd == NULL)
4777		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4778
4779	if (!oldvd->vdev_ops->vdev_op_leaf)
4780		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4781
4782	pvd = oldvd->vdev_parent;
4783
4784	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4785	    VDEV_ALLOC_ATTACH)) != 0)
4786		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4787
4788	if (newrootvd->vdev_children != 1)
4789		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4790
4791	newvd = newrootvd->vdev_child[0];
4792
4793	if (!newvd->vdev_ops->vdev_op_leaf)
4794		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4795
4796	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4797		return (spa_vdev_exit(spa, newrootvd, txg, error));
4798
4799	/*
4800	 * Spares can't replace logs
4801	 */
4802	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4803		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4804
4805	if (!replacing) {
4806		/*
4807		 * For attach, the only allowable parent is a mirror or the root
4808		 * vdev.
4809		 */
4810		if (pvd->vdev_ops != &vdev_mirror_ops &&
4811		    pvd->vdev_ops != &vdev_root_ops)
4812			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4813
4814		pvops = &vdev_mirror_ops;
4815	} else {
4816		/*
4817		 * Active hot spares can only be replaced by inactive hot
4818		 * spares.
4819		 */
4820		if (pvd->vdev_ops == &vdev_spare_ops &&
4821		    oldvd->vdev_isspare &&
4822		    !spa_has_spare(spa, newvd->vdev_guid))
4823			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4824
4825		/*
4826		 * If the source is a hot spare, and the parent isn't already a
4827		 * spare, then we want to create a new hot spare.  Otherwise, we
4828		 * want to create a replacing vdev.  The user is not allowed to
4829		 * attach to a spared vdev child unless the 'isspare' state is
4830		 * the same (spare replaces spare, non-spare replaces
4831		 * non-spare).
4832		 */
4833		if (pvd->vdev_ops == &vdev_replacing_ops &&
4834		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4835			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4836		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4837		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4838			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4839		}
4840
4841		if (newvd->vdev_isspare)
4842			pvops = &vdev_spare_ops;
4843		else
4844			pvops = &vdev_replacing_ops;
4845	}
4846
4847	/*
4848	 * Make sure the new device is big enough.
4849	 */
4850	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4851		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4852
4853	/*
4854	 * The new device cannot have a higher alignment requirement
4855	 * than the top-level vdev.
4856	 */
4857	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4858		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4859
4860	/*
4861	 * If this is an in-place replacement, update oldvd's path and devid
4862	 * to make it distinguishable from newvd, and unopenable from now on.
4863	 */
4864	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4865		spa_strfree(oldvd->vdev_path);
4866		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4867		    KM_SLEEP);
4868		(void) sprintf(oldvd->vdev_path, "%s/%s",
4869		    newvd->vdev_path, "old");
4870		if (oldvd->vdev_devid != NULL) {
4871			spa_strfree(oldvd->vdev_devid);
4872			oldvd->vdev_devid = NULL;
4873		}
4874	}
4875
4876	/* mark the device being resilvered */
4877	newvd->vdev_resilver_txg = txg;
4878
4879	/*
4880	 * If the parent is not a mirror, or if we're replacing, insert the new
4881	 * mirror/replacing/spare vdev above oldvd.
4882	 */
4883	if (pvd->vdev_ops != pvops)
4884		pvd = vdev_add_parent(oldvd, pvops);
4885
4886	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4887	ASSERT(pvd->vdev_ops == pvops);
4888	ASSERT(oldvd->vdev_parent == pvd);
4889
4890	/*
4891	 * Extract the new device from its root and add it to pvd.
4892	 */
4893	vdev_remove_child(newrootvd, newvd);
4894	newvd->vdev_id = pvd->vdev_children;
4895	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4896	vdev_add_child(pvd, newvd);
4897
4898	tvd = newvd->vdev_top;
4899	ASSERT(pvd->vdev_top == tvd);
4900	ASSERT(tvd->vdev_parent == rvd);
4901
4902	vdev_config_dirty(tvd);
4903
4904	/*
4905	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4906	 * for any dmu_sync-ed blocks.  It will propagate upward when
4907	 * spa_vdev_exit() calls vdev_dtl_reassess().
4908	 */
4909	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4910
4911	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4912	    dtl_max_txg - TXG_INITIAL);
4913
4914	if (newvd->vdev_isspare) {
4915		spa_spare_activate(newvd);
4916		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4917	}
4918
4919	oldvdpath = spa_strdup(oldvd->vdev_path);
4920	newvdpath = spa_strdup(newvd->vdev_path);
4921	newvd_isspare = newvd->vdev_isspare;
4922
4923	/*
4924	 * Mark newvd's DTL dirty in this txg.
4925	 */
4926	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4927
4928	/*
4929	 * Schedule the resilver to restart in the future. We do this to
4930	 * ensure that dmu_sync-ed blocks have been stitched into the
4931	 * respective datasets.
4932	 */
4933	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4934
4935	if (spa->spa_bootfs)
4936		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4937
4938	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4939
4940	/*
4941	 * Commit the config
4942	 */
4943	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4944
4945	spa_history_log_internal(spa, "vdev attach", NULL,
4946	    "%s vdev=%s %s vdev=%s",
4947	    replacing && newvd_isspare ? "spare in" :
4948	    replacing ? "replace" : "attach", newvdpath,
4949	    replacing ? "for" : "to", oldvdpath);
4950
4951	spa_strfree(oldvdpath);
4952	spa_strfree(newvdpath);
4953
4954	return (0);
4955}
4956
4957/*
4958 * Detach a device from a mirror or replacing vdev.
4959 *
4960 * If 'replace_done' is specified, only detach if the parent
4961 * is a replacing vdev.
4962 */
4963int
4964spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4965{
4966	uint64_t txg;
4967	int error;
4968	vdev_t *rvd = spa->spa_root_vdev;
4969	vdev_t *vd, *pvd, *cvd, *tvd;
4970	boolean_t unspare = B_FALSE;
4971	uint64_t unspare_guid = 0;
4972	char *vdpath;
4973
4974	ASSERT(spa_writeable(spa));
4975
4976	txg = spa_vdev_enter(spa);
4977
4978	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4979
4980	if (vd == NULL)
4981		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4982
4983	if (!vd->vdev_ops->vdev_op_leaf)
4984		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4985
4986	pvd = vd->vdev_parent;
4987
4988	/*
4989	 * If the parent/child relationship is not as expected, don't do it.
4990	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4991	 * vdev that's replacing B with C.  The user's intent in replacing
4992	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4993	 * the replace by detaching C, the expected behavior is to end up
4994	 * M(A,B).  But suppose that right after deciding to detach C,
4995	 * the replacement of B completes.  We would have M(A,C), and then
4996	 * ask to detach C, which would leave us with just A -- not what
4997	 * the user wanted.  To prevent this, we make sure that the
4998	 * parent/child relationship hasn't changed -- in this example,
4999	 * that C's parent is still the replacing vdev R.
5000	 */
5001	if (pvd->vdev_guid != pguid && pguid != 0)
5002		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5003
5004	/*
5005	 * Only 'replacing' or 'spare' vdevs can be replaced.
5006	 */
5007	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5008	    pvd->vdev_ops != &vdev_spare_ops)
5009		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5010
5011	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5012	    spa_version(spa) >= SPA_VERSION_SPARES);
5013
5014	/*
5015	 * Only mirror, replacing, and spare vdevs support detach.
5016	 */
5017	if (pvd->vdev_ops != &vdev_replacing_ops &&
5018	    pvd->vdev_ops != &vdev_mirror_ops &&
5019	    pvd->vdev_ops != &vdev_spare_ops)
5020		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5021
5022	/*
5023	 * If this device has the only valid copy of some data,
5024	 * we cannot safely detach it.
5025	 */
5026	if (vdev_dtl_required(vd))
5027		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5028
5029	ASSERT(pvd->vdev_children >= 2);
5030
5031	/*
5032	 * If we are detaching the second disk from a replacing vdev, then
5033	 * check to see if we changed the original vdev's path to have "/old"
5034	 * at the end in spa_vdev_attach().  If so, undo that change now.
5035	 */
5036	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5037	    vd->vdev_path != NULL) {
5038		size_t len = strlen(vd->vdev_path);
5039
5040		for (int c = 0; c < pvd->vdev_children; c++) {
5041			cvd = pvd->vdev_child[c];
5042
5043			if (cvd == vd || cvd->vdev_path == NULL)
5044				continue;
5045
5046			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5047			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5048				spa_strfree(cvd->vdev_path);
5049				cvd->vdev_path = spa_strdup(vd->vdev_path);
5050				break;
5051			}
5052		}
5053	}
5054
5055	/*
5056	 * If we are detaching the original disk from a spare, then it implies
5057	 * that the spare should become a real disk, and be removed from the
5058	 * active spare list for the pool.
5059	 */
5060	if (pvd->vdev_ops == &vdev_spare_ops &&
5061	    vd->vdev_id == 0 &&
5062	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5063		unspare = B_TRUE;
5064
5065	/*
5066	 * Erase the disk labels so the disk can be used for other things.
5067	 * This must be done after all other error cases are handled,
5068	 * but before we disembowel vd (so we can still do I/O to it).
5069	 * But if we can't do it, don't treat the error as fatal --
5070	 * it may be that the unwritability of the disk is the reason
5071	 * it's being detached!
5072	 */
5073	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5074
5075	/*
5076	 * Remove vd from its parent and compact the parent's children.
5077	 */
5078	vdev_remove_child(pvd, vd);
5079	vdev_compact_children(pvd);
5080
5081	/*
5082	 * Remember one of the remaining children so we can get tvd below.
5083	 */
5084	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5085
5086	/*
5087	 * If we need to remove the remaining child from the list of hot spares,
5088	 * do it now, marking the vdev as no longer a spare in the process.
5089	 * We must do this before vdev_remove_parent(), because that can
5090	 * change the GUID if it creates a new toplevel GUID.  For a similar
5091	 * reason, we must remove the spare now, in the same txg as the detach;
5092	 * otherwise someone could attach a new sibling, change the GUID, and
5093	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5094	 */
5095	if (unspare) {
5096		ASSERT(cvd->vdev_isspare);
5097		spa_spare_remove(cvd);
5098		unspare_guid = cvd->vdev_guid;
5099		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5100		cvd->vdev_unspare = B_TRUE;
5101	}
5102
5103	/*
5104	 * If the parent mirror/replacing vdev only has one child,
5105	 * the parent is no longer needed.  Remove it from the tree.
5106	 */
5107	if (pvd->vdev_children == 1) {
5108		if (pvd->vdev_ops == &vdev_spare_ops)
5109			cvd->vdev_unspare = B_FALSE;
5110		vdev_remove_parent(cvd);
5111	}
5112
5113
5114	/*
5115	 * We don't set tvd until now because the parent we just removed
5116	 * may have been the previous top-level vdev.
5117	 */
5118	tvd = cvd->vdev_top;
5119	ASSERT(tvd->vdev_parent == rvd);
5120
5121	/*
5122	 * Reevaluate the parent vdev state.
5123	 */
5124	vdev_propagate_state(cvd);
5125
5126	/*
5127	 * If the 'autoexpand' property is set on the pool then automatically
5128	 * try to expand the size of the pool. For example if the device we
5129	 * just detached was smaller than the others, it may be possible to
5130	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5131	 * first so that we can obtain the updated sizes of the leaf vdevs.
5132	 */
5133	if (spa->spa_autoexpand) {
5134		vdev_reopen(tvd);
5135		vdev_expand(tvd, txg);
5136	}
5137
5138	vdev_config_dirty(tvd);
5139
5140	/*
5141	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5142	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5143	 * But first make sure we're not on any *other* txg's DTL list, to
5144	 * prevent vd from being accessed after it's freed.
5145	 */
5146	vdpath = spa_strdup(vd->vdev_path);
5147	for (int t = 0; t < TXG_SIZE; t++)
5148		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5149	vd->vdev_detached = B_TRUE;
5150	vdev_dirty(tvd, VDD_DTL, vd, txg);
5151
5152	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5153
5154	/* hang on to the spa before we release the lock */
5155	spa_open_ref(spa, FTAG);
5156
5157	error = spa_vdev_exit(spa, vd, txg, 0);
5158
5159	spa_history_log_internal(spa, "detach", NULL,
5160	    "vdev=%s", vdpath);
5161	spa_strfree(vdpath);
5162
5163	/*
5164	 * If this was the removal of the original device in a hot spare vdev,
5165	 * then we want to go through and remove the device from the hot spare
5166	 * list of every other pool.
5167	 */
5168	if (unspare) {
5169		spa_t *altspa = NULL;
5170
5171		mutex_enter(&spa_namespace_lock);
5172		while ((altspa = spa_next(altspa)) != NULL) {
5173			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5174			    altspa == spa)
5175				continue;
5176
5177			spa_open_ref(altspa, FTAG);
5178			mutex_exit(&spa_namespace_lock);
5179			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5180			mutex_enter(&spa_namespace_lock);
5181			spa_close(altspa, FTAG);
5182		}
5183		mutex_exit(&spa_namespace_lock);
5184
5185		/* search the rest of the vdevs for spares to remove */
5186		spa_vdev_resilver_done(spa);
5187	}
5188
5189	/* all done with the spa; OK to release */
5190	mutex_enter(&spa_namespace_lock);
5191	spa_close(spa, FTAG);
5192	mutex_exit(&spa_namespace_lock);
5193
5194	return (error);
5195}
5196
5197/*
5198 * Split a set of devices from their mirrors, and create a new pool from them.
5199 */
5200int
5201spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5202    nvlist_t *props, boolean_t exp)
5203{
5204	int error = 0;
5205	uint64_t txg, *glist;
5206	spa_t *newspa;
5207	uint_t c, children, lastlog;
5208	nvlist_t **child, *nvl, *tmp;
5209	dmu_tx_t *tx;
5210	char *altroot = NULL;
5211	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5212	boolean_t activate_slog;
5213
5214	ASSERT(spa_writeable(spa));
5215
5216	txg = spa_vdev_enter(spa);
5217
5218	/* clear the log and flush everything up to now */
5219	activate_slog = spa_passivate_log(spa);
5220	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5221	error = spa_offline_log(spa);
5222	txg = spa_vdev_config_enter(spa);
5223
5224	if (activate_slog)
5225		spa_activate_log(spa);
5226
5227	if (error != 0)
5228		return (spa_vdev_exit(spa, NULL, txg, error));
5229
5230	/* check new spa name before going any further */
5231	if (spa_lookup(newname) != NULL)
5232		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5233
5234	/*
5235	 * scan through all the children to ensure they're all mirrors
5236	 */
5237	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5238	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5239	    &children) != 0)
5240		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5241
5242	/* first, check to ensure we've got the right child count */
5243	rvd = spa->spa_root_vdev;
5244	lastlog = 0;
5245	for (c = 0; c < rvd->vdev_children; c++) {
5246		vdev_t *vd = rvd->vdev_child[c];
5247
5248		/* don't count the holes & logs as children */
5249		if (vd->vdev_islog || vd->vdev_ishole) {
5250			if (lastlog == 0)
5251				lastlog = c;
5252			continue;
5253		}
5254
5255		lastlog = 0;
5256	}
5257	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5258		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5259
5260	/* next, ensure no spare or cache devices are part of the split */
5261	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5262	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5263		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5264
5265	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5266	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5267
5268	/* then, loop over each vdev and validate it */
5269	for (c = 0; c < children; c++) {
5270		uint64_t is_hole = 0;
5271
5272		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5273		    &is_hole);
5274
5275		if (is_hole != 0) {
5276			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5277			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5278				continue;
5279			} else {
5280				error = SET_ERROR(EINVAL);
5281				break;
5282			}
5283		}
5284
5285		/* which disk is going to be split? */
5286		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5287		    &glist[c]) != 0) {
5288			error = SET_ERROR(EINVAL);
5289			break;
5290		}
5291
5292		/* look it up in the spa */
5293		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5294		if (vml[c] == NULL) {
5295			error = SET_ERROR(ENODEV);
5296			break;
5297		}
5298
5299		/* make sure there's nothing stopping the split */
5300		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5301		    vml[c]->vdev_islog ||
5302		    vml[c]->vdev_ishole ||
5303		    vml[c]->vdev_isspare ||
5304		    vml[c]->vdev_isl2cache ||
5305		    !vdev_writeable(vml[c]) ||
5306		    vml[c]->vdev_children != 0 ||
5307		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5308		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5309			error = SET_ERROR(EINVAL);
5310			break;
5311		}
5312
5313		if (vdev_dtl_required(vml[c])) {
5314			error = SET_ERROR(EBUSY);
5315			break;
5316		}
5317
5318		/* we need certain info from the top level */
5319		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5320		    vml[c]->vdev_top->vdev_ms_array) == 0);
5321		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5322		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5323		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5324		    vml[c]->vdev_top->vdev_asize) == 0);
5325		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5326		    vml[c]->vdev_top->vdev_ashift) == 0);
5327	}
5328
5329	if (error != 0) {
5330		kmem_free(vml, children * sizeof (vdev_t *));
5331		kmem_free(glist, children * sizeof (uint64_t));
5332		return (spa_vdev_exit(spa, NULL, txg, error));
5333	}
5334
5335	/* stop writers from using the disks */
5336	for (c = 0; c < children; c++) {
5337		if (vml[c] != NULL)
5338			vml[c]->vdev_offline = B_TRUE;
5339	}
5340	vdev_reopen(spa->spa_root_vdev);
5341
5342	/*
5343	 * Temporarily record the splitting vdevs in the spa config.  This
5344	 * will disappear once the config is regenerated.
5345	 */
5346	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5347	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5348	    glist, children) == 0);
5349	kmem_free(glist, children * sizeof (uint64_t));
5350
5351	mutex_enter(&spa->spa_props_lock);
5352	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5353	    nvl) == 0);
5354	mutex_exit(&spa->spa_props_lock);
5355	spa->spa_config_splitting = nvl;
5356	vdev_config_dirty(spa->spa_root_vdev);
5357
5358	/* configure and create the new pool */
5359	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5360	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5361	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5362	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5363	    spa_version(spa)) == 0);
5364	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5365	    spa->spa_config_txg) == 0);
5366	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5367	    spa_generate_guid(NULL)) == 0);
5368	(void) nvlist_lookup_string(props,
5369	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5370
5371	/* add the new pool to the namespace */
5372	newspa = spa_add(newname, config, altroot);
5373	newspa->spa_config_txg = spa->spa_config_txg;
5374	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5375
5376	/* release the spa config lock, retaining the namespace lock */
5377	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5378
5379	if (zio_injection_enabled)
5380		zio_handle_panic_injection(spa, FTAG, 1);
5381
5382	spa_activate(newspa, spa_mode_global);
5383	spa_async_suspend(newspa);
5384
5385#ifndef illumos
5386	/* mark that we are creating new spa by splitting */
5387	newspa->spa_splitting_newspa = B_TRUE;
5388#endif
5389	/* create the new pool from the disks of the original pool */
5390	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5391#ifndef illumos
5392	newspa->spa_splitting_newspa = B_FALSE;
5393#endif
5394	if (error)
5395		goto out;
5396
5397	/* if that worked, generate a real config for the new pool */
5398	if (newspa->spa_root_vdev != NULL) {
5399		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5400		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5401		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5402		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5403		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5404		    B_TRUE));
5405	}
5406
5407	/* set the props */
5408	if (props != NULL) {
5409		spa_configfile_set(newspa, props, B_FALSE);
5410		error = spa_prop_set(newspa, props);
5411		if (error)
5412			goto out;
5413	}
5414
5415	/* flush everything */
5416	txg = spa_vdev_config_enter(newspa);
5417	vdev_config_dirty(newspa->spa_root_vdev);
5418	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5419
5420	if (zio_injection_enabled)
5421		zio_handle_panic_injection(spa, FTAG, 2);
5422
5423	spa_async_resume(newspa);
5424
5425	/* finally, update the original pool's config */
5426	txg = spa_vdev_config_enter(spa);
5427	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5428	error = dmu_tx_assign(tx, TXG_WAIT);
5429	if (error != 0)
5430		dmu_tx_abort(tx);
5431	for (c = 0; c < children; c++) {
5432		if (vml[c] != NULL) {
5433			vdev_split(vml[c]);
5434			if (error == 0)
5435				spa_history_log_internal(spa, "detach", tx,
5436				    "vdev=%s", vml[c]->vdev_path);
5437			vdev_free(vml[c]);
5438		}
5439	}
5440	vdev_config_dirty(spa->spa_root_vdev);
5441	spa->spa_config_splitting = NULL;
5442	nvlist_free(nvl);
5443	if (error == 0)
5444		dmu_tx_commit(tx);
5445	(void) spa_vdev_exit(spa, NULL, txg, 0);
5446
5447	if (zio_injection_enabled)
5448		zio_handle_panic_injection(spa, FTAG, 3);
5449
5450	/* split is complete; log a history record */
5451	spa_history_log_internal(newspa, "split", NULL,
5452	    "from pool %s", spa_name(spa));
5453
5454	kmem_free(vml, children * sizeof (vdev_t *));
5455
5456	/* if we're not going to mount the filesystems in userland, export */
5457	if (exp)
5458		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5459		    B_FALSE, B_FALSE);
5460
5461	return (error);
5462
5463out:
5464	spa_unload(newspa);
5465	spa_deactivate(newspa);
5466	spa_remove(newspa);
5467
5468	txg = spa_vdev_config_enter(spa);
5469
5470	/* re-online all offlined disks */
5471	for (c = 0; c < children; c++) {
5472		if (vml[c] != NULL)
5473			vml[c]->vdev_offline = B_FALSE;
5474	}
5475	vdev_reopen(spa->spa_root_vdev);
5476
5477	nvlist_free(spa->spa_config_splitting);
5478	spa->spa_config_splitting = NULL;
5479	(void) spa_vdev_exit(spa, NULL, txg, error);
5480
5481	kmem_free(vml, children * sizeof (vdev_t *));
5482	return (error);
5483}
5484
5485static nvlist_t *
5486spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5487{
5488	for (int i = 0; i < count; i++) {
5489		uint64_t guid;
5490
5491		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5492		    &guid) == 0);
5493
5494		if (guid == target_guid)
5495			return (nvpp[i]);
5496	}
5497
5498	return (NULL);
5499}
5500
5501static void
5502spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5503	nvlist_t *dev_to_remove)
5504{
5505	nvlist_t **newdev = NULL;
5506
5507	if (count > 1)
5508		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5509
5510	for (int i = 0, j = 0; i < count; i++) {
5511		if (dev[i] == dev_to_remove)
5512			continue;
5513		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5514	}
5515
5516	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5517	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5518
5519	for (int i = 0; i < count - 1; i++)
5520		nvlist_free(newdev[i]);
5521
5522	if (count > 1)
5523		kmem_free(newdev, (count - 1) * sizeof (void *));
5524}
5525
5526/*
5527 * Evacuate the device.
5528 */
5529static int
5530spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5531{
5532	uint64_t txg;
5533	int error = 0;
5534
5535	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5536	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5537	ASSERT(vd == vd->vdev_top);
5538
5539	/*
5540	 * Evacuate the device.  We don't hold the config lock as writer
5541	 * since we need to do I/O but we do keep the
5542	 * spa_namespace_lock held.  Once this completes the device
5543	 * should no longer have any blocks allocated on it.
5544	 */
5545	if (vd->vdev_islog) {
5546		if (vd->vdev_stat.vs_alloc != 0)
5547			error = spa_offline_log(spa);
5548	} else {
5549		error = SET_ERROR(ENOTSUP);
5550	}
5551
5552	if (error)
5553		return (error);
5554
5555	/*
5556	 * The evacuation succeeded.  Remove any remaining MOS metadata
5557	 * associated with this vdev, and wait for these changes to sync.
5558	 */
5559	ASSERT0(vd->vdev_stat.vs_alloc);
5560	txg = spa_vdev_config_enter(spa);
5561	vd->vdev_removing = B_TRUE;
5562	vdev_dirty_leaves(vd, VDD_DTL, txg);
5563	vdev_config_dirty(vd);
5564	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5565
5566	return (0);
5567}
5568
5569/*
5570 * Complete the removal by cleaning up the namespace.
5571 */
5572static void
5573spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5574{
5575	vdev_t *rvd = spa->spa_root_vdev;
5576	uint64_t id = vd->vdev_id;
5577	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5578
5579	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5580	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5581	ASSERT(vd == vd->vdev_top);
5582
5583	/*
5584	 * Only remove any devices which are empty.
5585	 */
5586	if (vd->vdev_stat.vs_alloc != 0)
5587		return;
5588
5589	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5590
5591	if (list_link_active(&vd->vdev_state_dirty_node))
5592		vdev_state_clean(vd);
5593	if (list_link_active(&vd->vdev_config_dirty_node))
5594		vdev_config_clean(vd);
5595
5596	vdev_free(vd);
5597
5598	if (last_vdev) {
5599		vdev_compact_children(rvd);
5600	} else {
5601		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5602		vdev_add_child(rvd, vd);
5603	}
5604	vdev_config_dirty(rvd);
5605
5606	/*
5607	 * Reassess the health of our root vdev.
5608	 */
5609	vdev_reopen(rvd);
5610}
5611
5612/*
5613 * Remove a device from the pool -
5614 *
5615 * Removing a device from the vdev namespace requires several steps
5616 * and can take a significant amount of time.  As a result we use
5617 * the spa_vdev_config_[enter/exit] functions which allow us to
5618 * grab and release the spa_config_lock while still holding the namespace
5619 * lock.  During each step the configuration is synced out.
5620 *
5621 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5622 * devices.
5623 */
5624int
5625spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5626{
5627	vdev_t *vd;
5628	metaslab_group_t *mg;
5629	nvlist_t **spares, **l2cache, *nv;
5630	uint64_t txg = 0;
5631	uint_t nspares, nl2cache;
5632	int error = 0;
5633	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5634
5635	ASSERT(spa_writeable(spa));
5636
5637	if (!locked)
5638		txg = spa_vdev_enter(spa);
5639
5640	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5641
5642	if (spa->spa_spares.sav_vdevs != NULL &&
5643	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5644	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5645	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5646		/*
5647		 * Only remove the hot spare if it's not currently in use
5648		 * in this pool.
5649		 */
5650		if (vd == NULL || unspare) {
5651			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5652			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5653			spa_load_spares(spa);
5654			spa->spa_spares.sav_sync = B_TRUE;
5655		} else {
5656			error = SET_ERROR(EBUSY);
5657		}
5658	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5659	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5660	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5661	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5662		/*
5663		 * Cache devices can always be removed.
5664		 */
5665		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5666		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5667		spa_load_l2cache(spa);
5668		spa->spa_l2cache.sav_sync = B_TRUE;
5669	} else if (vd != NULL && vd->vdev_islog) {
5670		ASSERT(!locked);
5671		ASSERT(vd == vd->vdev_top);
5672
5673		mg = vd->vdev_mg;
5674
5675		/*
5676		 * Stop allocating from this vdev.
5677		 */
5678		metaslab_group_passivate(mg);
5679
5680		/*
5681		 * Wait for the youngest allocations and frees to sync,
5682		 * and then wait for the deferral of those frees to finish.
5683		 */
5684		spa_vdev_config_exit(spa, NULL,
5685		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5686
5687		/*
5688		 * Attempt to evacuate the vdev.
5689		 */
5690		error = spa_vdev_remove_evacuate(spa, vd);
5691
5692		txg = spa_vdev_config_enter(spa);
5693
5694		/*
5695		 * If we couldn't evacuate the vdev, unwind.
5696		 */
5697		if (error) {
5698			metaslab_group_activate(mg);
5699			return (spa_vdev_exit(spa, NULL, txg, error));
5700		}
5701
5702		/*
5703		 * Clean up the vdev namespace.
5704		 */
5705		spa_vdev_remove_from_namespace(spa, vd);
5706
5707	} else if (vd != NULL) {
5708		/*
5709		 * Normal vdevs cannot be removed (yet).
5710		 */
5711		error = SET_ERROR(ENOTSUP);
5712	} else {
5713		/*
5714		 * There is no vdev of any kind with the specified guid.
5715		 */
5716		error = SET_ERROR(ENOENT);
5717	}
5718
5719	if (!locked)
5720		return (spa_vdev_exit(spa, NULL, txg, error));
5721
5722	return (error);
5723}
5724
5725/*
5726 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5727 * currently spared, so we can detach it.
5728 */
5729static vdev_t *
5730spa_vdev_resilver_done_hunt(vdev_t *vd)
5731{
5732	vdev_t *newvd, *oldvd;
5733
5734	for (int c = 0; c < vd->vdev_children; c++) {
5735		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5736		if (oldvd != NULL)
5737			return (oldvd);
5738	}
5739
5740	/*
5741	 * Check for a completed replacement.  We always consider the first
5742	 * vdev in the list to be the oldest vdev, and the last one to be
5743	 * the newest (see spa_vdev_attach() for how that works).  In
5744	 * the case where the newest vdev is faulted, we will not automatically
5745	 * remove it after a resilver completes.  This is OK as it will require
5746	 * user intervention to determine which disk the admin wishes to keep.
5747	 */
5748	if (vd->vdev_ops == &vdev_replacing_ops) {
5749		ASSERT(vd->vdev_children > 1);
5750
5751		newvd = vd->vdev_child[vd->vdev_children - 1];
5752		oldvd = vd->vdev_child[0];
5753
5754		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5755		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5756		    !vdev_dtl_required(oldvd))
5757			return (oldvd);
5758	}
5759
5760	/*
5761	 * Check for a completed resilver with the 'unspare' flag set.
5762	 */
5763	if (vd->vdev_ops == &vdev_spare_ops) {
5764		vdev_t *first = vd->vdev_child[0];
5765		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5766
5767		if (last->vdev_unspare) {
5768			oldvd = first;
5769			newvd = last;
5770		} else if (first->vdev_unspare) {
5771			oldvd = last;
5772			newvd = first;
5773		} else {
5774			oldvd = NULL;
5775		}
5776
5777		if (oldvd != NULL &&
5778		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5779		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5780		    !vdev_dtl_required(oldvd))
5781			return (oldvd);
5782
5783		/*
5784		 * If there are more than two spares attached to a disk,
5785		 * and those spares are not required, then we want to
5786		 * attempt to free them up now so that they can be used
5787		 * by other pools.  Once we're back down to a single
5788		 * disk+spare, we stop removing them.
5789		 */
5790		if (vd->vdev_children > 2) {
5791			newvd = vd->vdev_child[1];
5792
5793			if (newvd->vdev_isspare && last->vdev_isspare &&
5794			    vdev_dtl_empty(last, DTL_MISSING) &&
5795			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5796			    !vdev_dtl_required(newvd))
5797				return (newvd);
5798		}
5799	}
5800
5801	return (NULL);
5802}
5803
5804static void
5805spa_vdev_resilver_done(spa_t *spa)
5806{
5807	vdev_t *vd, *pvd, *ppvd;
5808	uint64_t guid, sguid, pguid, ppguid;
5809
5810	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5811
5812	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5813		pvd = vd->vdev_parent;
5814		ppvd = pvd->vdev_parent;
5815		guid = vd->vdev_guid;
5816		pguid = pvd->vdev_guid;
5817		ppguid = ppvd->vdev_guid;
5818		sguid = 0;
5819		/*
5820		 * If we have just finished replacing a hot spared device, then
5821		 * we need to detach the parent's first child (the original hot
5822		 * spare) as well.
5823		 */
5824		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5825		    ppvd->vdev_children == 2) {
5826			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5827			sguid = ppvd->vdev_child[1]->vdev_guid;
5828		}
5829		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5830
5831		spa_config_exit(spa, SCL_ALL, FTAG);
5832		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5833			return;
5834		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5835			return;
5836		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5837	}
5838
5839	spa_config_exit(spa, SCL_ALL, FTAG);
5840}
5841
5842/*
5843 * Update the stored path or FRU for this vdev.
5844 */
5845int
5846spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5847    boolean_t ispath)
5848{
5849	vdev_t *vd;
5850	boolean_t sync = B_FALSE;
5851
5852	ASSERT(spa_writeable(spa));
5853
5854	spa_vdev_state_enter(spa, SCL_ALL);
5855
5856	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5857		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5858
5859	if (!vd->vdev_ops->vdev_op_leaf)
5860		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5861
5862	if (ispath) {
5863		if (strcmp(value, vd->vdev_path) != 0) {
5864			spa_strfree(vd->vdev_path);
5865			vd->vdev_path = spa_strdup(value);
5866			sync = B_TRUE;
5867		}
5868	} else {
5869		if (vd->vdev_fru == NULL) {
5870			vd->vdev_fru = spa_strdup(value);
5871			sync = B_TRUE;
5872		} else if (strcmp(value, vd->vdev_fru) != 0) {
5873			spa_strfree(vd->vdev_fru);
5874			vd->vdev_fru = spa_strdup(value);
5875			sync = B_TRUE;
5876		}
5877	}
5878
5879	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5880}
5881
5882int
5883spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5884{
5885	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5886}
5887
5888int
5889spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5890{
5891	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5892}
5893
5894/*
5895 * ==========================================================================
5896 * SPA Scanning
5897 * ==========================================================================
5898 */
5899
5900int
5901spa_scan_stop(spa_t *spa)
5902{
5903	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5904	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5905		return (SET_ERROR(EBUSY));
5906	return (dsl_scan_cancel(spa->spa_dsl_pool));
5907}
5908
5909int
5910spa_scan(spa_t *spa, pool_scan_func_t func)
5911{
5912	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5913
5914	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5915		return (SET_ERROR(ENOTSUP));
5916
5917	/*
5918	 * If a resilver was requested, but there is no DTL on a
5919	 * writeable leaf device, we have nothing to do.
5920	 */
5921	if (func == POOL_SCAN_RESILVER &&
5922	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5923		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5924		return (0);
5925	}
5926
5927	return (dsl_scan(spa->spa_dsl_pool, func));
5928}
5929
5930/*
5931 * ==========================================================================
5932 * SPA async task processing
5933 * ==========================================================================
5934 */
5935
5936static void
5937spa_async_remove(spa_t *spa, vdev_t *vd)
5938{
5939	if (vd->vdev_remove_wanted) {
5940		vd->vdev_remove_wanted = B_FALSE;
5941		vd->vdev_delayed_close = B_FALSE;
5942		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5943
5944		/*
5945		 * We want to clear the stats, but we don't want to do a full
5946		 * vdev_clear() as that will cause us to throw away
5947		 * degraded/faulted state as well as attempt to reopen the
5948		 * device, all of which is a waste.
5949		 */
5950		vd->vdev_stat.vs_read_errors = 0;
5951		vd->vdev_stat.vs_write_errors = 0;
5952		vd->vdev_stat.vs_checksum_errors = 0;
5953
5954		vdev_state_dirty(vd->vdev_top);
5955		/* Tell userspace that the vdev is gone. */
5956		zfs_post_remove(spa, vd);
5957	}
5958
5959	for (int c = 0; c < vd->vdev_children; c++)
5960		spa_async_remove(spa, vd->vdev_child[c]);
5961}
5962
5963static void
5964spa_async_probe(spa_t *spa, vdev_t *vd)
5965{
5966	if (vd->vdev_probe_wanted) {
5967		vd->vdev_probe_wanted = B_FALSE;
5968		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5969	}
5970
5971	for (int c = 0; c < vd->vdev_children; c++)
5972		spa_async_probe(spa, vd->vdev_child[c]);
5973}
5974
5975static void
5976spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5977{
5978	sysevent_id_t eid;
5979	nvlist_t *attr;
5980	char *physpath;
5981
5982	if (!spa->spa_autoexpand)
5983		return;
5984
5985	for (int c = 0; c < vd->vdev_children; c++) {
5986		vdev_t *cvd = vd->vdev_child[c];
5987		spa_async_autoexpand(spa, cvd);
5988	}
5989
5990	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5991		return;
5992
5993	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5994	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5995
5996	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5997	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5998
5999	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
6000	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6001
6002	nvlist_free(attr);
6003	kmem_free(physpath, MAXPATHLEN);
6004}
6005
6006static void
6007spa_async_thread(void *arg)
6008{
6009	spa_t *spa = arg;
6010	int tasks;
6011
6012	ASSERT(spa->spa_sync_on);
6013
6014	mutex_enter(&spa->spa_async_lock);
6015	tasks = spa->spa_async_tasks;
6016	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6017	mutex_exit(&spa->spa_async_lock);
6018
6019	/*
6020	 * See if the config needs to be updated.
6021	 */
6022	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6023		uint64_t old_space, new_space;
6024
6025		mutex_enter(&spa_namespace_lock);
6026		old_space = metaslab_class_get_space(spa_normal_class(spa));
6027		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6028		new_space = metaslab_class_get_space(spa_normal_class(spa));
6029		mutex_exit(&spa_namespace_lock);
6030
6031		/*
6032		 * If the pool grew as a result of the config update,
6033		 * then log an internal history event.
6034		 */
6035		if (new_space != old_space) {
6036			spa_history_log_internal(spa, "vdev online", NULL,
6037			    "pool '%s' size: %llu(+%llu)",
6038			    spa_name(spa), new_space, new_space - old_space);
6039		}
6040	}
6041
6042	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6043		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6044		spa_async_autoexpand(spa, spa->spa_root_vdev);
6045		spa_config_exit(spa, SCL_CONFIG, FTAG);
6046	}
6047
6048	/*
6049	 * See if any devices need to be probed.
6050	 */
6051	if (tasks & SPA_ASYNC_PROBE) {
6052		spa_vdev_state_enter(spa, SCL_NONE);
6053		spa_async_probe(spa, spa->spa_root_vdev);
6054		(void) spa_vdev_state_exit(spa, NULL, 0);
6055	}
6056
6057	/*
6058	 * If any devices are done replacing, detach them.
6059	 */
6060	if (tasks & SPA_ASYNC_RESILVER_DONE)
6061		spa_vdev_resilver_done(spa);
6062
6063	/*
6064	 * Kick off a resilver.
6065	 */
6066	if (tasks & SPA_ASYNC_RESILVER)
6067		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6068
6069	/*
6070	 * Let the world know that we're done.
6071	 */
6072	mutex_enter(&spa->spa_async_lock);
6073	spa->spa_async_thread = NULL;
6074	cv_broadcast(&spa->spa_async_cv);
6075	mutex_exit(&spa->spa_async_lock);
6076	thread_exit();
6077}
6078
6079static void
6080spa_async_thread_vd(void *arg)
6081{
6082	spa_t *spa = arg;
6083	int tasks;
6084
6085	ASSERT(spa->spa_sync_on);
6086
6087	mutex_enter(&spa->spa_async_lock);
6088	tasks = spa->spa_async_tasks;
6089retry:
6090	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6091	mutex_exit(&spa->spa_async_lock);
6092
6093	/*
6094	 * See if any devices need to be marked REMOVED.
6095	 */
6096	if (tasks & SPA_ASYNC_REMOVE) {
6097		spa_vdev_state_enter(spa, SCL_NONE);
6098		spa_async_remove(spa, spa->spa_root_vdev);
6099		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6100			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6101		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6102			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6103		(void) spa_vdev_state_exit(spa, NULL, 0);
6104	}
6105
6106	/*
6107	 * Let the world know that we're done.
6108	 */
6109	mutex_enter(&spa->spa_async_lock);
6110	tasks = spa->spa_async_tasks;
6111	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6112		goto retry;
6113	spa->spa_async_thread_vd = NULL;
6114	cv_broadcast(&spa->spa_async_cv);
6115	mutex_exit(&spa->spa_async_lock);
6116	thread_exit();
6117}
6118
6119void
6120spa_async_suspend(spa_t *spa)
6121{
6122	mutex_enter(&spa->spa_async_lock);
6123	spa->spa_async_suspended++;
6124	while (spa->spa_async_thread != NULL &&
6125	    spa->spa_async_thread_vd != NULL)
6126		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6127	mutex_exit(&spa->spa_async_lock);
6128}
6129
6130void
6131spa_async_resume(spa_t *spa)
6132{
6133	mutex_enter(&spa->spa_async_lock);
6134	ASSERT(spa->spa_async_suspended != 0);
6135	spa->spa_async_suspended--;
6136	mutex_exit(&spa->spa_async_lock);
6137}
6138
6139static boolean_t
6140spa_async_tasks_pending(spa_t *spa)
6141{
6142	uint_t non_config_tasks;
6143	uint_t config_task;
6144	boolean_t config_task_suspended;
6145
6146	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6147	    SPA_ASYNC_REMOVE);
6148	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6149	if (spa->spa_ccw_fail_time == 0) {
6150		config_task_suspended = B_FALSE;
6151	} else {
6152		config_task_suspended =
6153		    (gethrtime() - spa->spa_ccw_fail_time) <
6154		    (zfs_ccw_retry_interval * NANOSEC);
6155	}
6156
6157	return (non_config_tasks || (config_task && !config_task_suspended));
6158}
6159
6160static void
6161spa_async_dispatch(spa_t *spa)
6162{
6163	mutex_enter(&spa->spa_async_lock);
6164	if (spa_async_tasks_pending(spa) &&
6165	    !spa->spa_async_suspended &&
6166	    spa->spa_async_thread == NULL &&
6167	    rootdir != NULL)
6168		spa->spa_async_thread = thread_create(NULL, 0,
6169		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6170	mutex_exit(&spa->spa_async_lock);
6171}
6172
6173static void
6174spa_async_dispatch_vd(spa_t *spa)
6175{
6176	mutex_enter(&spa->spa_async_lock);
6177	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6178	    !spa->spa_async_suspended &&
6179	    spa->spa_async_thread_vd == NULL &&
6180	    rootdir != NULL)
6181		spa->spa_async_thread_vd = thread_create(NULL, 0,
6182		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6183	mutex_exit(&spa->spa_async_lock);
6184}
6185
6186void
6187spa_async_request(spa_t *spa, int task)
6188{
6189	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6190	mutex_enter(&spa->spa_async_lock);
6191	spa->spa_async_tasks |= task;
6192	mutex_exit(&spa->spa_async_lock);
6193	spa_async_dispatch_vd(spa);
6194}
6195
6196/*
6197 * ==========================================================================
6198 * SPA syncing routines
6199 * ==========================================================================
6200 */
6201
6202static int
6203bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6204{
6205	bpobj_t *bpo = arg;
6206	bpobj_enqueue(bpo, bp, tx);
6207	return (0);
6208}
6209
6210static int
6211spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6212{
6213	zio_t *zio = arg;
6214
6215	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6216	    BP_GET_PSIZE(bp), zio->io_flags));
6217	return (0);
6218}
6219
6220/*
6221 * Note: this simple function is not inlined to make it easier to dtrace the
6222 * amount of time spent syncing frees.
6223 */
6224static void
6225spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6226{
6227	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6228	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6229	VERIFY(zio_wait(zio) == 0);
6230}
6231
6232/*
6233 * Note: this simple function is not inlined to make it easier to dtrace the
6234 * amount of time spent syncing deferred frees.
6235 */
6236static void
6237spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6238{
6239	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6240	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6241	    spa_free_sync_cb, zio, tx), ==, 0);
6242	VERIFY0(zio_wait(zio));
6243}
6244
6245
6246static void
6247spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6248{
6249	char *packed = NULL;
6250	size_t bufsize;
6251	size_t nvsize = 0;
6252	dmu_buf_t *db;
6253
6254	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6255
6256	/*
6257	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6258	 * information.  This avoids the dmu_buf_will_dirty() path and
6259	 * saves us a pre-read to get data we don't actually care about.
6260	 */
6261	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6262	packed = kmem_alloc(bufsize, KM_SLEEP);
6263
6264	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6265	    KM_SLEEP) == 0);
6266	bzero(packed + nvsize, bufsize - nvsize);
6267
6268	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6269
6270	kmem_free(packed, bufsize);
6271
6272	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6273	dmu_buf_will_dirty(db, tx);
6274	*(uint64_t *)db->db_data = nvsize;
6275	dmu_buf_rele(db, FTAG);
6276}
6277
6278static void
6279spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6280    const char *config, const char *entry)
6281{
6282	nvlist_t *nvroot;
6283	nvlist_t **list;
6284	int i;
6285
6286	if (!sav->sav_sync)
6287		return;
6288
6289	/*
6290	 * Update the MOS nvlist describing the list of available devices.
6291	 * spa_validate_aux() will have already made sure this nvlist is
6292	 * valid and the vdevs are labeled appropriately.
6293	 */
6294	if (sav->sav_object == 0) {
6295		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6296		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6297		    sizeof (uint64_t), tx);
6298		VERIFY(zap_update(spa->spa_meta_objset,
6299		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6300		    &sav->sav_object, tx) == 0);
6301	}
6302
6303	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6304	if (sav->sav_count == 0) {
6305		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6306	} else {
6307		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6308		for (i = 0; i < sav->sav_count; i++)
6309			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6310			    B_FALSE, VDEV_CONFIG_L2CACHE);
6311		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6312		    sav->sav_count) == 0);
6313		for (i = 0; i < sav->sav_count; i++)
6314			nvlist_free(list[i]);
6315		kmem_free(list, sav->sav_count * sizeof (void *));
6316	}
6317
6318	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6319	nvlist_free(nvroot);
6320
6321	sav->sav_sync = B_FALSE;
6322}
6323
6324static void
6325spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6326{
6327	nvlist_t *config;
6328
6329	if (list_is_empty(&spa->spa_config_dirty_list))
6330		return;
6331
6332	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6333
6334	config = spa_config_generate(spa, spa->spa_root_vdev,
6335	    dmu_tx_get_txg(tx), B_FALSE);
6336
6337	/*
6338	 * If we're upgrading the spa version then make sure that
6339	 * the config object gets updated with the correct version.
6340	 */
6341	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6342		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6343		    spa->spa_uberblock.ub_version);
6344
6345	spa_config_exit(spa, SCL_STATE, FTAG);
6346
6347	nvlist_free(spa->spa_config_syncing);
6348	spa->spa_config_syncing = config;
6349
6350	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6351}
6352
6353static void
6354spa_sync_version(void *arg, dmu_tx_t *tx)
6355{
6356	uint64_t *versionp = arg;
6357	uint64_t version = *versionp;
6358	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6359
6360	/*
6361	 * Setting the version is special cased when first creating the pool.
6362	 */
6363	ASSERT(tx->tx_txg != TXG_INITIAL);
6364
6365	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6366	ASSERT(version >= spa_version(spa));
6367
6368	spa->spa_uberblock.ub_version = version;
6369	vdev_config_dirty(spa->spa_root_vdev);
6370	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6371}
6372
6373/*
6374 * Set zpool properties.
6375 */
6376static void
6377spa_sync_props(void *arg, dmu_tx_t *tx)
6378{
6379	nvlist_t *nvp = arg;
6380	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6381	objset_t *mos = spa->spa_meta_objset;
6382	nvpair_t *elem = NULL;
6383
6384	mutex_enter(&spa->spa_props_lock);
6385
6386	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6387		uint64_t intval;
6388		char *strval, *fname;
6389		zpool_prop_t prop;
6390		const char *propname;
6391		zprop_type_t proptype;
6392		spa_feature_t fid;
6393
6394		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6395		case ZPROP_INVAL:
6396			/*
6397			 * We checked this earlier in spa_prop_validate().
6398			 */
6399			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6400
6401			fname = strchr(nvpair_name(elem), '@') + 1;
6402			VERIFY0(zfeature_lookup_name(fname, &fid));
6403
6404			spa_feature_enable(spa, fid, tx);
6405			spa_history_log_internal(spa, "set", tx,
6406			    "%s=enabled", nvpair_name(elem));
6407			break;
6408
6409		case ZPOOL_PROP_VERSION:
6410			intval = fnvpair_value_uint64(elem);
6411			/*
6412			 * The version is synced seperatly before other
6413			 * properties and should be correct by now.
6414			 */
6415			ASSERT3U(spa_version(spa), >=, intval);
6416			break;
6417
6418		case ZPOOL_PROP_ALTROOT:
6419			/*
6420			 * 'altroot' is a non-persistent property. It should
6421			 * have been set temporarily at creation or import time.
6422			 */
6423			ASSERT(spa->spa_root != NULL);
6424			break;
6425
6426		case ZPOOL_PROP_READONLY:
6427		case ZPOOL_PROP_CACHEFILE:
6428			/*
6429			 * 'readonly' and 'cachefile' are also non-persisitent
6430			 * properties.
6431			 */
6432			break;
6433		case ZPOOL_PROP_COMMENT:
6434			strval = fnvpair_value_string(elem);
6435			if (spa->spa_comment != NULL)
6436				spa_strfree(spa->spa_comment);
6437			spa->spa_comment = spa_strdup(strval);
6438			/*
6439			 * We need to dirty the configuration on all the vdevs
6440			 * so that their labels get updated.  It's unnecessary
6441			 * to do this for pool creation since the vdev's
6442			 * configuratoin has already been dirtied.
6443			 */
6444			if (tx->tx_txg != TXG_INITIAL)
6445				vdev_config_dirty(spa->spa_root_vdev);
6446			spa_history_log_internal(spa, "set", tx,
6447			    "%s=%s", nvpair_name(elem), strval);
6448			break;
6449		default:
6450			/*
6451			 * Set pool property values in the poolprops mos object.
6452			 */
6453			if (spa->spa_pool_props_object == 0) {
6454				spa->spa_pool_props_object =
6455				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6456				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6457				    tx);
6458			}
6459
6460			/* normalize the property name */
6461			propname = zpool_prop_to_name(prop);
6462			proptype = zpool_prop_get_type(prop);
6463
6464			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6465				ASSERT(proptype == PROP_TYPE_STRING);
6466				strval = fnvpair_value_string(elem);
6467				VERIFY0(zap_update(mos,
6468				    spa->spa_pool_props_object, propname,
6469				    1, strlen(strval) + 1, strval, tx));
6470				spa_history_log_internal(spa, "set", tx,
6471				    "%s=%s", nvpair_name(elem), strval);
6472			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6473				intval = fnvpair_value_uint64(elem);
6474
6475				if (proptype == PROP_TYPE_INDEX) {
6476					const char *unused;
6477					VERIFY0(zpool_prop_index_to_string(
6478					    prop, intval, &unused));
6479				}
6480				VERIFY0(zap_update(mos,
6481				    spa->spa_pool_props_object, propname,
6482				    8, 1, &intval, tx));
6483				spa_history_log_internal(spa, "set", tx,
6484				    "%s=%lld", nvpair_name(elem), intval);
6485			} else {
6486				ASSERT(0); /* not allowed */
6487			}
6488
6489			switch (prop) {
6490			case ZPOOL_PROP_DELEGATION:
6491				spa->spa_delegation = intval;
6492				break;
6493			case ZPOOL_PROP_BOOTFS:
6494				spa->spa_bootfs = intval;
6495				break;
6496			case ZPOOL_PROP_FAILUREMODE:
6497				spa->spa_failmode = intval;
6498				break;
6499			case ZPOOL_PROP_AUTOEXPAND:
6500				spa->spa_autoexpand = intval;
6501				if (tx->tx_txg != TXG_INITIAL)
6502					spa_async_request(spa,
6503					    SPA_ASYNC_AUTOEXPAND);
6504				break;
6505			case ZPOOL_PROP_DEDUPDITTO:
6506				spa->spa_dedup_ditto = intval;
6507				break;
6508			default:
6509				break;
6510			}
6511		}
6512
6513	}
6514
6515	mutex_exit(&spa->spa_props_lock);
6516}
6517
6518/*
6519 * Perform one-time upgrade on-disk changes.  spa_version() does not
6520 * reflect the new version this txg, so there must be no changes this
6521 * txg to anything that the upgrade code depends on after it executes.
6522 * Therefore this must be called after dsl_pool_sync() does the sync
6523 * tasks.
6524 */
6525static void
6526spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6527{
6528	dsl_pool_t *dp = spa->spa_dsl_pool;
6529
6530	ASSERT(spa->spa_sync_pass == 1);
6531
6532	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6533
6534	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6535	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6536		dsl_pool_create_origin(dp, tx);
6537
6538		/* Keeping the origin open increases spa_minref */
6539		spa->spa_minref += 3;
6540	}
6541
6542	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6543	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6544		dsl_pool_upgrade_clones(dp, tx);
6545	}
6546
6547	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6548	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6549		dsl_pool_upgrade_dir_clones(dp, tx);
6550
6551		/* Keeping the freedir open increases spa_minref */
6552		spa->spa_minref += 3;
6553	}
6554
6555	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6556	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6557		spa_feature_create_zap_objects(spa, tx);
6558	}
6559
6560	/*
6561	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6562	 * when possibility to use lz4 compression for metadata was added
6563	 * Old pools that have this feature enabled must be upgraded to have
6564	 * this feature active
6565	 */
6566	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6567		boolean_t lz4_en = spa_feature_is_enabled(spa,
6568		    SPA_FEATURE_LZ4_COMPRESS);
6569		boolean_t lz4_ac = spa_feature_is_active(spa,
6570		    SPA_FEATURE_LZ4_COMPRESS);
6571
6572		if (lz4_en && !lz4_ac)
6573			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6574	}
6575
6576	/*
6577	 * If we haven't written the salt, do so now.  Note that the
6578	 * feature may not be activated yet, but that's fine since
6579	 * the presence of this ZAP entry is backwards compatible.
6580	 */
6581	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6582	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6583		VERIFY0(zap_add(spa->spa_meta_objset,
6584		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6585		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6586		    spa->spa_cksum_salt.zcs_bytes, tx));
6587	}
6588
6589	rrw_exit(&dp->dp_config_rwlock, FTAG);
6590}
6591
6592/*
6593 * Sync the specified transaction group.  New blocks may be dirtied as
6594 * part of the process, so we iterate until it converges.
6595 */
6596void
6597spa_sync(spa_t *spa, uint64_t txg)
6598{
6599	dsl_pool_t *dp = spa->spa_dsl_pool;
6600	objset_t *mos = spa->spa_meta_objset;
6601	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6602	vdev_t *rvd = spa->spa_root_vdev;
6603	vdev_t *vd;
6604	dmu_tx_t *tx;
6605	int error;
6606
6607	VERIFY(spa_writeable(spa));
6608
6609	/*
6610	 * Lock out configuration changes.
6611	 */
6612	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6613
6614	spa->spa_syncing_txg = txg;
6615	spa->spa_sync_pass = 0;
6616
6617	/*
6618	 * If there are any pending vdev state changes, convert them
6619	 * into config changes that go out with this transaction group.
6620	 */
6621	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6622	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6623		/*
6624		 * We need the write lock here because, for aux vdevs,
6625		 * calling vdev_config_dirty() modifies sav_config.
6626		 * This is ugly and will become unnecessary when we
6627		 * eliminate the aux vdev wart by integrating all vdevs
6628		 * into the root vdev tree.
6629		 */
6630		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6631		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6632		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6633			vdev_state_clean(vd);
6634			vdev_config_dirty(vd);
6635		}
6636		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6637		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6638	}
6639	spa_config_exit(spa, SCL_STATE, FTAG);
6640
6641	tx = dmu_tx_create_assigned(dp, txg);
6642
6643	spa->spa_sync_starttime = gethrtime();
6644#ifdef illumos
6645	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6646	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6647#else	/* !illumos */
6648#ifdef _KERNEL
6649	callout_reset(&spa->spa_deadman_cycid,
6650	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6651#endif
6652#endif	/* illumos */
6653
6654	/*
6655	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6656	 * set spa_deflate if we have no raid-z vdevs.
6657	 */
6658	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6659	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6660		int i;
6661
6662		for (i = 0; i < rvd->vdev_children; i++) {
6663			vd = rvd->vdev_child[i];
6664			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6665				break;
6666		}
6667		if (i == rvd->vdev_children) {
6668			spa->spa_deflate = TRUE;
6669			VERIFY(0 == zap_add(spa->spa_meta_objset,
6670			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6671			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6672		}
6673	}
6674
6675	/*
6676	 * Iterate to convergence.
6677	 */
6678	do {
6679		int pass = ++spa->spa_sync_pass;
6680
6681		spa_sync_config_object(spa, tx);
6682		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6683		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6684		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6685		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6686		spa_errlog_sync(spa, txg);
6687		dsl_pool_sync(dp, txg);
6688
6689		if (pass < zfs_sync_pass_deferred_free) {
6690			spa_sync_frees(spa, free_bpl, tx);
6691		} else {
6692			/*
6693			 * We can not defer frees in pass 1, because
6694			 * we sync the deferred frees later in pass 1.
6695			 */
6696			ASSERT3U(pass, >, 1);
6697			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6698			    &spa->spa_deferred_bpobj, tx);
6699		}
6700
6701		ddt_sync(spa, txg);
6702		dsl_scan_sync(dp, tx);
6703
6704		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6705			vdev_sync(vd, txg);
6706
6707		if (pass == 1) {
6708			spa_sync_upgrades(spa, tx);
6709			ASSERT3U(txg, >=,
6710			    spa->spa_uberblock.ub_rootbp.blk_birth);
6711			/*
6712			 * Note: We need to check if the MOS is dirty
6713			 * because we could have marked the MOS dirty
6714			 * without updating the uberblock (e.g. if we
6715			 * have sync tasks but no dirty user data).  We
6716			 * need to check the uberblock's rootbp because
6717			 * it is updated if we have synced out dirty
6718			 * data (though in this case the MOS will most
6719			 * likely also be dirty due to second order
6720			 * effects, we don't want to rely on that here).
6721			 */
6722			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6723			    !dmu_objset_is_dirty(mos, txg)) {
6724				/*
6725				 * Nothing changed on the first pass,
6726				 * therefore this TXG is a no-op.  Avoid
6727				 * syncing deferred frees, so that we
6728				 * can keep this TXG as a no-op.
6729				 */
6730				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6731				    txg));
6732				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6733				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6734				break;
6735			}
6736			spa_sync_deferred_frees(spa, tx);
6737		}
6738
6739	} while (dmu_objset_is_dirty(mos, txg));
6740
6741	/*
6742	 * Rewrite the vdev configuration (which includes the uberblock)
6743	 * to commit the transaction group.
6744	 *
6745	 * If there are no dirty vdevs, we sync the uberblock to a few
6746	 * random top-level vdevs that are known to be visible in the
6747	 * config cache (see spa_vdev_add() for a complete description).
6748	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6749	 */
6750	for (;;) {
6751		/*
6752		 * We hold SCL_STATE to prevent vdev open/close/etc.
6753		 * while we're attempting to write the vdev labels.
6754		 */
6755		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6756
6757		if (list_is_empty(&spa->spa_config_dirty_list)) {
6758			vdev_t *svd[SPA_DVAS_PER_BP];
6759			int svdcount = 0;
6760			int children = rvd->vdev_children;
6761			int c0 = spa_get_random(children);
6762
6763			for (int c = 0; c < children; c++) {
6764				vd = rvd->vdev_child[(c0 + c) % children];
6765				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6766					continue;
6767				svd[svdcount++] = vd;
6768				if (svdcount == SPA_DVAS_PER_BP)
6769					break;
6770			}
6771			error = vdev_config_sync(svd, svdcount, txg);
6772		} else {
6773			error = vdev_config_sync(rvd->vdev_child,
6774			    rvd->vdev_children, txg);
6775		}
6776
6777		if (error == 0)
6778			spa->spa_last_synced_guid = rvd->vdev_guid;
6779
6780		spa_config_exit(spa, SCL_STATE, FTAG);
6781
6782		if (error == 0)
6783			break;
6784		zio_suspend(spa, NULL);
6785		zio_resume_wait(spa);
6786	}
6787	dmu_tx_commit(tx);
6788
6789#ifdef illumos
6790	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6791#else	/* !illumos */
6792#ifdef _KERNEL
6793	callout_drain(&spa->spa_deadman_cycid);
6794#endif
6795#endif	/* illumos */
6796
6797	/*
6798	 * Clear the dirty config list.
6799	 */
6800	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6801		vdev_config_clean(vd);
6802
6803	/*
6804	 * Now that the new config has synced transactionally,
6805	 * let it become visible to the config cache.
6806	 */
6807	if (spa->spa_config_syncing != NULL) {
6808		spa_config_set(spa, spa->spa_config_syncing);
6809		spa->spa_config_txg = txg;
6810		spa->spa_config_syncing = NULL;
6811	}
6812
6813	spa->spa_ubsync = spa->spa_uberblock;
6814
6815	dsl_pool_sync_done(dp, txg);
6816
6817	/*
6818	 * Update usable space statistics.
6819	 */
6820	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6821		vdev_sync_done(vd, txg);
6822
6823	spa_update_dspace(spa);
6824
6825	/*
6826	 * It had better be the case that we didn't dirty anything
6827	 * since vdev_config_sync().
6828	 */
6829	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6830	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6831	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6832
6833	spa->spa_sync_pass = 0;
6834
6835	spa_config_exit(spa, SCL_CONFIG, FTAG);
6836
6837	spa_handle_ignored_writes(spa);
6838
6839	/*
6840	 * If any async tasks have been requested, kick them off.
6841	 */
6842	spa_async_dispatch(spa);
6843	spa_async_dispatch_vd(spa);
6844}
6845
6846/*
6847 * Sync all pools.  We don't want to hold the namespace lock across these
6848 * operations, so we take a reference on the spa_t and drop the lock during the
6849 * sync.
6850 */
6851void
6852spa_sync_allpools(void)
6853{
6854	spa_t *spa = NULL;
6855	mutex_enter(&spa_namespace_lock);
6856	while ((spa = spa_next(spa)) != NULL) {
6857		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6858		    !spa_writeable(spa) || spa_suspended(spa))
6859			continue;
6860		spa_open_ref(spa, FTAG);
6861		mutex_exit(&spa_namespace_lock);
6862		txg_wait_synced(spa_get_dsl(spa), 0);
6863		mutex_enter(&spa_namespace_lock);
6864		spa_close(spa, FTAG);
6865	}
6866	mutex_exit(&spa_namespace_lock);
6867}
6868
6869/*
6870 * ==========================================================================
6871 * Miscellaneous routines
6872 * ==========================================================================
6873 */
6874
6875/*
6876 * Remove all pools in the system.
6877 */
6878void
6879spa_evict_all(void)
6880{
6881	spa_t *spa;
6882
6883	/*
6884	 * Remove all cached state.  All pools should be closed now,
6885	 * so every spa in the AVL tree should be unreferenced.
6886	 */
6887	mutex_enter(&spa_namespace_lock);
6888	while ((spa = spa_next(NULL)) != NULL) {
6889		/*
6890		 * Stop async tasks.  The async thread may need to detach
6891		 * a device that's been replaced, which requires grabbing
6892		 * spa_namespace_lock, so we must drop it here.
6893		 */
6894		spa_open_ref(spa, FTAG);
6895		mutex_exit(&spa_namespace_lock);
6896		spa_async_suspend(spa);
6897		mutex_enter(&spa_namespace_lock);
6898		spa_close(spa, FTAG);
6899
6900		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6901			spa_unload(spa);
6902			spa_deactivate(spa);
6903		}
6904		spa_remove(spa);
6905	}
6906	mutex_exit(&spa_namespace_lock);
6907}
6908
6909vdev_t *
6910spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6911{
6912	vdev_t *vd;
6913	int i;
6914
6915	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6916		return (vd);
6917
6918	if (aux) {
6919		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6920			vd = spa->spa_l2cache.sav_vdevs[i];
6921			if (vd->vdev_guid == guid)
6922				return (vd);
6923		}
6924
6925		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6926			vd = spa->spa_spares.sav_vdevs[i];
6927			if (vd->vdev_guid == guid)
6928				return (vd);
6929		}
6930	}
6931
6932	return (NULL);
6933}
6934
6935void
6936spa_upgrade(spa_t *spa, uint64_t version)
6937{
6938	ASSERT(spa_writeable(spa));
6939
6940	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6941
6942	/*
6943	 * This should only be called for a non-faulted pool, and since a
6944	 * future version would result in an unopenable pool, this shouldn't be
6945	 * possible.
6946	 */
6947	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6948	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6949
6950	spa->spa_uberblock.ub_version = version;
6951	vdev_config_dirty(spa->spa_root_vdev);
6952
6953	spa_config_exit(spa, SCL_ALL, FTAG);
6954
6955	txg_wait_synced(spa_get_dsl(spa), 0);
6956}
6957
6958boolean_t
6959spa_has_spare(spa_t *spa, uint64_t guid)
6960{
6961	int i;
6962	uint64_t spareguid;
6963	spa_aux_vdev_t *sav = &spa->spa_spares;
6964
6965	for (i = 0; i < sav->sav_count; i++)
6966		if (sav->sav_vdevs[i]->vdev_guid == guid)
6967			return (B_TRUE);
6968
6969	for (i = 0; i < sav->sav_npending; i++) {
6970		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6971		    &spareguid) == 0 && spareguid == guid)
6972			return (B_TRUE);
6973	}
6974
6975	return (B_FALSE);
6976}
6977
6978/*
6979 * Check if a pool has an active shared spare device.
6980 * Note: reference count of an active spare is 2, as a spare and as a replace
6981 */
6982static boolean_t
6983spa_has_active_shared_spare(spa_t *spa)
6984{
6985	int i, refcnt;
6986	uint64_t pool;
6987	spa_aux_vdev_t *sav = &spa->spa_spares;
6988
6989	for (i = 0; i < sav->sav_count; i++) {
6990		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6991		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6992		    refcnt > 2)
6993			return (B_TRUE);
6994	}
6995
6996	return (B_FALSE);
6997}
6998
6999/*
7000 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7001 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7002 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7003 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7004 * or zdb as real changes.
7005 */
7006void
7007spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7008{
7009#ifdef _KERNEL
7010	sysevent_t		*ev;
7011	sysevent_attr_list_t	*attr = NULL;
7012	sysevent_value_t	value;
7013	sysevent_id_t		eid;
7014
7015	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7016	    SE_SLEEP);
7017
7018	value.value_type = SE_DATA_TYPE_STRING;
7019	value.value.sv_string = spa_name(spa);
7020	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7021		goto done;
7022
7023	value.value_type = SE_DATA_TYPE_UINT64;
7024	value.value.sv_uint64 = spa_guid(spa);
7025	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7026		goto done;
7027
7028	if (vd) {
7029		value.value_type = SE_DATA_TYPE_UINT64;
7030		value.value.sv_uint64 = vd->vdev_guid;
7031		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7032		    SE_SLEEP) != 0)
7033			goto done;
7034
7035		if (vd->vdev_path) {
7036			value.value_type = SE_DATA_TYPE_STRING;
7037			value.value.sv_string = vd->vdev_path;
7038			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7039			    &value, SE_SLEEP) != 0)
7040				goto done;
7041		}
7042	}
7043
7044	if (sysevent_attach_attributes(ev, attr) != 0)
7045		goto done;
7046	attr = NULL;
7047
7048	(void) log_sysevent(ev, SE_SLEEP, &eid);
7049
7050done:
7051	if (attr)
7052		sysevent_free_attr(attr);
7053	sysevent_free(ev);
7054#endif
7055}
7056