spa.c revision 294102
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 */
30
31/*
32 * SPA: Storage Pool Allocator
33 *
34 * This file contains all the routines used when modifying on-disk SPA state.
35 * This includes opening, importing, destroying, exporting a pool, and syncing a
36 * pool.
37 */
38
39#include <sys/zfs_context.h>
40#include <sys/fm/fs/zfs.h>
41#include <sys/spa_impl.h>
42#include <sys/zio.h>
43#include <sys/zio_checksum.h>
44#include <sys/dmu.h>
45#include <sys/dmu_tx.h>
46#include <sys/zap.h>
47#include <sys/zil.h>
48#include <sys/ddt.h>
49#include <sys/vdev_impl.h>
50#include <sys/metaslab.h>
51#include <sys/metaslab_impl.h>
52#include <sys/uberblock_impl.h>
53#include <sys/txg.h>
54#include <sys/avl.h>
55#include <sys/dmu_traverse.h>
56#include <sys/dmu_objset.h>
57#include <sys/unique.h>
58#include <sys/dsl_pool.h>
59#include <sys/dsl_dataset.h>
60#include <sys/dsl_dir.h>
61#include <sys/dsl_prop.h>
62#include <sys/dsl_synctask.h>
63#include <sys/fs/zfs.h>
64#include <sys/arc.h>
65#include <sys/callb.h>
66#include <sys/spa_boot.h>
67#include <sys/zfs_ioctl.h>
68#include <sys/dsl_scan.h>
69#include <sys/dmu_send.h>
70#include <sys/dsl_destroy.h>
71#include <sys/dsl_userhold.h>
72#include <sys/zfeature.h>
73#include <sys/zvol.h>
74#include <sys/trim_map.h>
75
76#ifdef	_KERNEL
77#include <sys/callb.h>
78#include <sys/cpupart.h>
79#include <sys/zone.h>
80#endif	/* _KERNEL */
81
82#include "zfs_prop.h"
83#include "zfs_comutil.h"
84
85/* Check hostid on import? */
86static int check_hostid = 1;
87
88/*
89 * The interval, in seconds, at which failed configuration cache file writes
90 * should be retried.
91 */
92static int zfs_ccw_retry_interval = 300;
93
94SYSCTL_DECL(_vfs_zfs);
95SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
96    "Check hostid on import?");
97TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
98SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
99    &zfs_ccw_retry_interval, 0,
100    "Configuration cache file write, retry after failure, interval (seconds)");
101
102typedef enum zti_modes {
103	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
104	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
105	ZTI_MODE_NULL,			/* don't create a taskq */
106	ZTI_NMODES
107} zti_modes_t;
108
109#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
110#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
111#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
112
113#define	ZTI_N(n)	ZTI_P(n, 1)
114#define	ZTI_ONE		ZTI_N(1)
115
116typedef struct zio_taskq_info {
117	zti_modes_t zti_mode;
118	uint_t zti_value;
119	uint_t zti_count;
120} zio_taskq_info_t;
121
122static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
123	"issue", "issue_high", "intr", "intr_high"
124};
125
126/*
127 * This table defines the taskq settings for each ZFS I/O type. When
128 * initializing a pool, we use this table to create an appropriately sized
129 * taskq. Some operations are low volume and therefore have a small, static
130 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
131 * macros. Other operations process a large amount of data; the ZTI_BATCH
132 * macro causes us to create a taskq oriented for throughput. Some operations
133 * are so high frequency and short-lived that the taskq itself can become a a
134 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
135 * additional degree of parallelism specified by the number of threads per-
136 * taskq and the number of taskqs; when dispatching an event in this case, the
137 * particular taskq is chosen at random.
138 *
139 * The different taskq priorities are to handle the different contexts (issue
140 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
141 * need to be handled with minimum delay.
142 */
143const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
144	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
146	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
147	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
148	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
149	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
150	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
151};
152
153static void spa_sync_version(void *arg, dmu_tx_t *tx);
154static void spa_sync_props(void *arg, dmu_tx_t *tx);
155static boolean_t spa_has_active_shared_spare(spa_t *spa);
156static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
157    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
158    char **ereport);
159static void spa_vdev_resilver_done(spa_t *spa);
160
161uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
162#ifdef PSRSET_BIND
163id_t		zio_taskq_psrset_bind = PS_NONE;
164#endif
165#ifdef SYSDC
166boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
167#endif
168uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
169
170boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
171extern int	zfs_sync_pass_deferred_free;
172
173#ifndef illumos
174extern void spa_deadman(void *arg);
175#endif
176
177/*
178 * This (illegal) pool name is used when temporarily importing a spa_t in order
179 * to get the vdev stats associated with the imported devices.
180 */
181#define	TRYIMPORT_NAME	"$import"
182
183/*
184 * ==========================================================================
185 * SPA properties routines
186 * ==========================================================================
187 */
188
189/*
190 * Add a (source=src, propname=propval) list to an nvlist.
191 */
192static void
193spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
194    uint64_t intval, zprop_source_t src)
195{
196	const char *propname = zpool_prop_to_name(prop);
197	nvlist_t *propval;
198
199	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
200	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
201
202	if (strval != NULL)
203		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
204	else
205		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
206
207	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
208	nvlist_free(propval);
209}
210
211/*
212 * Get property values from the spa configuration.
213 */
214static void
215spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
216{
217	vdev_t *rvd = spa->spa_root_vdev;
218	dsl_pool_t *pool = spa->spa_dsl_pool;
219	uint64_t size, alloc, cap, version;
220	zprop_source_t src = ZPROP_SRC_NONE;
221	spa_config_dirent_t *dp;
222	metaslab_class_t *mc = spa_normal_class(spa);
223
224	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
225
226	if (rvd != NULL) {
227		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
228		size = metaslab_class_get_space(spa_normal_class(spa));
229		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
230		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
231		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
232		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
233		    size - alloc, src);
234
235		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
236		    metaslab_class_fragmentation(mc), src);
237		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
238		    metaslab_class_expandable_space(mc), src);
239		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
240		    (spa_mode(spa) == FREAD), src);
241
242		cap = (size == 0) ? 0 : (alloc * 100 / size);
243		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
244
245		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
246		    ddt_get_pool_dedup_ratio(spa), src);
247
248		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
249		    rvd->vdev_state, src);
250
251		version = spa_version(spa);
252		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
253			src = ZPROP_SRC_DEFAULT;
254		else
255			src = ZPROP_SRC_LOCAL;
256		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
257	}
258
259	if (pool != NULL) {
260		/*
261		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
262		 * when opening pools before this version freedir will be NULL.
263		 */
264		if (pool->dp_free_dir != NULL) {
265			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
266			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
267			    src);
268		} else {
269			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
270			    NULL, 0, src);
271		}
272
273		if (pool->dp_leak_dir != NULL) {
274			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
275			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
276			    src);
277		} else {
278			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
279			    NULL, 0, src);
280		}
281	}
282
283	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
284
285	if (spa->spa_comment != NULL) {
286		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
287		    0, ZPROP_SRC_LOCAL);
288	}
289
290	if (spa->spa_root != NULL)
291		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
292		    0, ZPROP_SRC_LOCAL);
293
294	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
295		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
296		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
297	} else {
298		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
299		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
300	}
301
302	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
303		if (dp->scd_path == NULL) {
304			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
305			    "none", 0, ZPROP_SRC_LOCAL);
306		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
307			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
308			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
309		}
310	}
311}
312
313/*
314 * Get zpool property values.
315 */
316int
317spa_prop_get(spa_t *spa, nvlist_t **nvp)
318{
319	objset_t *mos = spa->spa_meta_objset;
320	zap_cursor_t zc;
321	zap_attribute_t za;
322	int err;
323
324	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
325
326	mutex_enter(&spa->spa_props_lock);
327
328	/*
329	 * Get properties from the spa config.
330	 */
331	spa_prop_get_config(spa, nvp);
332
333	/* If no pool property object, no more prop to get. */
334	if (mos == NULL || spa->spa_pool_props_object == 0) {
335		mutex_exit(&spa->spa_props_lock);
336		return (0);
337	}
338
339	/*
340	 * Get properties from the MOS pool property object.
341	 */
342	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
343	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
344	    zap_cursor_advance(&zc)) {
345		uint64_t intval = 0;
346		char *strval = NULL;
347		zprop_source_t src = ZPROP_SRC_DEFAULT;
348		zpool_prop_t prop;
349
350		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
351			continue;
352
353		switch (za.za_integer_length) {
354		case 8:
355			/* integer property */
356			if (za.za_first_integer !=
357			    zpool_prop_default_numeric(prop))
358				src = ZPROP_SRC_LOCAL;
359
360			if (prop == ZPOOL_PROP_BOOTFS) {
361				dsl_pool_t *dp;
362				dsl_dataset_t *ds = NULL;
363
364				dp = spa_get_dsl(spa);
365				dsl_pool_config_enter(dp, FTAG);
366				if (err = dsl_dataset_hold_obj(dp,
367				    za.za_first_integer, FTAG, &ds)) {
368					dsl_pool_config_exit(dp, FTAG);
369					break;
370				}
371
372				strval = kmem_alloc(
373				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
374				    KM_SLEEP);
375				dsl_dataset_name(ds, strval);
376				dsl_dataset_rele(ds, FTAG);
377				dsl_pool_config_exit(dp, FTAG);
378			} else {
379				strval = NULL;
380				intval = za.za_first_integer;
381			}
382
383			spa_prop_add_list(*nvp, prop, strval, intval, src);
384
385			if (strval != NULL)
386				kmem_free(strval,
387				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
388
389			break;
390
391		case 1:
392			/* string property */
393			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
394			err = zap_lookup(mos, spa->spa_pool_props_object,
395			    za.za_name, 1, za.za_num_integers, strval);
396			if (err) {
397				kmem_free(strval, za.za_num_integers);
398				break;
399			}
400			spa_prop_add_list(*nvp, prop, strval, 0, src);
401			kmem_free(strval, za.za_num_integers);
402			break;
403
404		default:
405			break;
406		}
407	}
408	zap_cursor_fini(&zc);
409	mutex_exit(&spa->spa_props_lock);
410out:
411	if (err && err != ENOENT) {
412		nvlist_free(*nvp);
413		*nvp = NULL;
414		return (err);
415	}
416
417	return (0);
418}
419
420/*
421 * Validate the given pool properties nvlist and modify the list
422 * for the property values to be set.
423 */
424static int
425spa_prop_validate(spa_t *spa, nvlist_t *props)
426{
427	nvpair_t *elem;
428	int error = 0, reset_bootfs = 0;
429	uint64_t objnum = 0;
430	boolean_t has_feature = B_FALSE;
431
432	elem = NULL;
433	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
434		uint64_t intval;
435		char *strval, *slash, *check, *fname;
436		const char *propname = nvpair_name(elem);
437		zpool_prop_t prop = zpool_name_to_prop(propname);
438
439		switch (prop) {
440		case ZPROP_INVAL:
441			if (!zpool_prop_feature(propname)) {
442				error = SET_ERROR(EINVAL);
443				break;
444			}
445
446			/*
447			 * Sanitize the input.
448			 */
449			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
450				error = SET_ERROR(EINVAL);
451				break;
452			}
453
454			if (nvpair_value_uint64(elem, &intval) != 0) {
455				error = SET_ERROR(EINVAL);
456				break;
457			}
458
459			if (intval != 0) {
460				error = SET_ERROR(EINVAL);
461				break;
462			}
463
464			fname = strchr(propname, '@') + 1;
465			if (zfeature_lookup_name(fname, NULL) != 0) {
466				error = SET_ERROR(EINVAL);
467				break;
468			}
469
470			has_feature = B_TRUE;
471			break;
472
473		case ZPOOL_PROP_VERSION:
474			error = nvpair_value_uint64(elem, &intval);
475			if (!error &&
476			    (intval < spa_version(spa) ||
477			    intval > SPA_VERSION_BEFORE_FEATURES ||
478			    has_feature))
479				error = SET_ERROR(EINVAL);
480			break;
481
482		case ZPOOL_PROP_DELEGATION:
483		case ZPOOL_PROP_AUTOREPLACE:
484		case ZPOOL_PROP_LISTSNAPS:
485		case ZPOOL_PROP_AUTOEXPAND:
486			error = nvpair_value_uint64(elem, &intval);
487			if (!error && intval > 1)
488				error = SET_ERROR(EINVAL);
489			break;
490
491		case ZPOOL_PROP_BOOTFS:
492			/*
493			 * If the pool version is less than SPA_VERSION_BOOTFS,
494			 * or the pool is still being created (version == 0),
495			 * the bootfs property cannot be set.
496			 */
497			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
498				error = SET_ERROR(ENOTSUP);
499				break;
500			}
501
502			/*
503			 * Make sure the vdev config is bootable
504			 */
505			if (!vdev_is_bootable(spa->spa_root_vdev)) {
506				error = SET_ERROR(ENOTSUP);
507				break;
508			}
509
510			reset_bootfs = 1;
511
512			error = nvpair_value_string(elem, &strval);
513
514			if (!error) {
515				objset_t *os;
516				uint64_t propval;
517
518				if (strval == NULL || strval[0] == '\0') {
519					objnum = zpool_prop_default_numeric(
520					    ZPOOL_PROP_BOOTFS);
521					break;
522				}
523
524				if (error = dmu_objset_hold(strval, FTAG, &os))
525					break;
526
527				/*
528				 * Must be ZPL, and its property settings
529				 * must be supported by GRUB (compression
530				 * is not gzip, and large blocks are not used).
531				 */
532
533				if (dmu_objset_type(os) != DMU_OST_ZFS) {
534					error = SET_ERROR(ENOTSUP);
535				} else if ((error =
536				    dsl_prop_get_int_ds(dmu_objset_ds(os),
537				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
538				    &propval)) == 0 &&
539				    !BOOTFS_COMPRESS_VALID(propval)) {
540					error = SET_ERROR(ENOTSUP);
541				} else if ((error =
542				    dsl_prop_get_int_ds(dmu_objset_ds(os),
543				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
544				    &propval)) == 0 &&
545				    propval > SPA_OLD_MAXBLOCKSIZE) {
546					error = SET_ERROR(ENOTSUP);
547				} else {
548					objnum = dmu_objset_id(os);
549				}
550				dmu_objset_rele(os, FTAG);
551			}
552			break;
553
554		case ZPOOL_PROP_FAILUREMODE:
555			error = nvpair_value_uint64(elem, &intval);
556			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
557			    intval > ZIO_FAILURE_MODE_PANIC))
558				error = SET_ERROR(EINVAL);
559
560			/*
561			 * This is a special case which only occurs when
562			 * the pool has completely failed. This allows
563			 * the user to change the in-core failmode property
564			 * without syncing it out to disk (I/Os might
565			 * currently be blocked). We do this by returning
566			 * EIO to the caller (spa_prop_set) to trick it
567			 * into thinking we encountered a property validation
568			 * error.
569			 */
570			if (!error && spa_suspended(spa)) {
571				spa->spa_failmode = intval;
572				error = SET_ERROR(EIO);
573			}
574			break;
575
576		case ZPOOL_PROP_CACHEFILE:
577			if ((error = nvpair_value_string(elem, &strval)) != 0)
578				break;
579
580			if (strval[0] == '\0')
581				break;
582
583			if (strcmp(strval, "none") == 0)
584				break;
585
586			if (strval[0] != '/') {
587				error = SET_ERROR(EINVAL);
588				break;
589			}
590
591			slash = strrchr(strval, '/');
592			ASSERT(slash != NULL);
593
594			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
595			    strcmp(slash, "/..") == 0)
596				error = SET_ERROR(EINVAL);
597			break;
598
599		case ZPOOL_PROP_COMMENT:
600			if ((error = nvpair_value_string(elem, &strval)) != 0)
601				break;
602			for (check = strval; *check != '\0'; check++) {
603				/*
604				 * The kernel doesn't have an easy isprint()
605				 * check.  For this kernel check, we merely
606				 * check ASCII apart from DEL.  Fix this if
607				 * there is an easy-to-use kernel isprint().
608				 */
609				if (*check >= 0x7f) {
610					error = SET_ERROR(EINVAL);
611					break;
612				}
613			}
614			if (strlen(strval) > ZPROP_MAX_COMMENT)
615				error = E2BIG;
616			break;
617
618		case ZPOOL_PROP_DEDUPDITTO:
619			if (spa_version(spa) < SPA_VERSION_DEDUP)
620				error = SET_ERROR(ENOTSUP);
621			else
622				error = nvpair_value_uint64(elem, &intval);
623			if (error == 0 &&
624			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
625				error = SET_ERROR(EINVAL);
626			break;
627		}
628
629		if (error)
630			break;
631	}
632
633	if (!error && reset_bootfs) {
634		error = nvlist_remove(props,
635		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
636
637		if (!error) {
638			error = nvlist_add_uint64(props,
639			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
640		}
641	}
642
643	return (error);
644}
645
646void
647spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
648{
649	char *cachefile;
650	spa_config_dirent_t *dp;
651
652	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
653	    &cachefile) != 0)
654		return;
655
656	dp = kmem_alloc(sizeof (spa_config_dirent_t),
657	    KM_SLEEP);
658
659	if (cachefile[0] == '\0')
660		dp->scd_path = spa_strdup(spa_config_path);
661	else if (strcmp(cachefile, "none") == 0)
662		dp->scd_path = NULL;
663	else
664		dp->scd_path = spa_strdup(cachefile);
665
666	list_insert_head(&spa->spa_config_list, dp);
667	if (need_sync)
668		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
669}
670
671int
672spa_prop_set(spa_t *spa, nvlist_t *nvp)
673{
674	int error;
675	nvpair_t *elem = NULL;
676	boolean_t need_sync = B_FALSE;
677
678	if ((error = spa_prop_validate(spa, nvp)) != 0)
679		return (error);
680
681	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
682		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
683
684		if (prop == ZPOOL_PROP_CACHEFILE ||
685		    prop == ZPOOL_PROP_ALTROOT ||
686		    prop == ZPOOL_PROP_READONLY)
687			continue;
688
689		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
690			uint64_t ver;
691
692			if (prop == ZPOOL_PROP_VERSION) {
693				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
694			} else {
695				ASSERT(zpool_prop_feature(nvpair_name(elem)));
696				ver = SPA_VERSION_FEATURES;
697				need_sync = B_TRUE;
698			}
699
700			/* Save time if the version is already set. */
701			if (ver == spa_version(spa))
702				continue;
703
704			/*
705			 * In addition to the pool directory object, we might
706			 * create the pool properties object, the features for
707			 * read object, the features for write object, or the
708			 * feature descriptions object.
709			 */
710			error = dsl_sync_task(spa->spa_name, NULL,
711			    spa_sync_version, &ver,
712			    6, ZFS_SPACE_CHECK_RESERVED);
713			if (error)
714				return (error);
715			continue;
716		}
717
718		need_sync = B_TRUE;
719		break;
720	}
721
722	if (need_sync) {
723		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
724		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
725	}
726
727	return (0);
728}
729
730/*
731 * If the bootfs property value is dsobj, clear it.
732 */
733void
734spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
735{
736	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
737		VERIFY(zap_remove(spa->spa_meta_objset,
738		    spa->spa_pool_props_object,
739		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
740		spa->spa_bootfs = 0;
741	}
742}
743
744/*ARGSUSED*/
745static int
746spa_change_guid_check(void *arg, dmu_tx_t *tx)
747{
748	uint64_t *newguid = arg;
749	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
750	vdev_t *rvd = spa->spa_root_vdev;
751	uint64_t vdev_state;
752
753	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
754	vdev_state = rvd->vdev_state;
755	spa_config_exit(spa, SCL_STATE, FTAG);
756
757	if (vdev_state != VDEV_STATE_HEALTHY)
758		return (SET_ERROR(ENXIO));
759
760	ASSERT3U(spa_guid(spa), !=, *newguid);
761
762	return (0);
763}
764
765static void
766spa_change_guid_sync(void *arg, dmu_tx_t *tx)
767{
768	uint64_t *newguid = arg;
769	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
770	uint64_t oldguid;
771	vdev_t *rvd = spa->spa_root_vdev;
772
773	oldguid = spa_guid(spa);
774
775	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
776	rvd->vdev_guid = *newguid;
777	rvd->vdev_guid_sum += (*newguid - oldguid);
778	vdev_config_dirty(rvd);
779	spa_config_exit(spa, SCL_STATE, FTAG);
780
781	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
782	    oldguid, *newguid);
783}
784
785/*
786 * Change the GUID for the pool.  This is done so that we can later
787 * re-import a pool built from a clone of our own vdevs.  We will modify
788 * the root vdev's guid, our own pool guid, and then mark all of our
789 * vdevs dirty.  Note that we must make sure that all our vdevs are
790 * online when we do this, or else any vdevs that weren't present
791 * would be orphaned from our pool.  We are also going to issue a
792 * sysevent to update any watchers.
793 */
794int
795spa_change_guid(spa_t *spa)
796{
797	int error;
798	uint64_t guid;
799
800	mutex_enter(&spa->spa_vdev_top_lock);
801	mutex_enter(&spa_namespace_lock);
802	guid = spa_generate_guid(NULL);
803
804	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
805	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
806
807	if (error == 0) {
808		spa_config_sync(spa, B_FALSE, B_TRUE);
809		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
810	}
811
812	mutex_exit(&spa_namespace_lock);
813	mutex_exit(&spa->spa_vdev_top_lock);
814
815	return (error);
816}
817
818/*
819 * ==========================================================================
820 * SPA state manipulation (open/create/destroy/import/export)
821 * ==========================================================================
822 */
823
824static int
825spa_error_entry_compare(const void *a, const void *b)
826{
827	spa_error_entry_t *sa = (spa_error_entry_t *)a;
828	spa_error_entry_t *sb = (spa_error_entry_t *)b;
829	int ret;
830
831	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
832	    sizeof (zbookmark_phys_t));
833
834	if (ret < 0)
835		return (-1);
836	else if (ret > 0)
837		return (1);
838	else
839		return (0);
840}
841
842/*
843 * Utility function which retrieves copies of the current logs and
844 * re-initializes them in the process.
845 */
846void
847spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
848{
849	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
850
851	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
852	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
853
854	avl_create(&spa->spa_errlist_scrub,
855	    spa_error_entry_compare, sizeof (spa_error_entry_t),
856	    offsetof(spa_error_entry_t, se_avl));
857	avl_create(&spa->spa_errlist_last,
858	    spa_error_entry_compare, sizeof (spa_error_entry_t),
859	    offsetof(spa_error_entry_t, se_avl));
860}
861
862static void
863spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
864{
865	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
866	enum zti_modes mode = ztip->zti_mode;
867	uint_t value = ztip->zti_value;
868	uint_t count = ztip->zti_count;
869	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
870	char name[32];
871	uint_t flags = 0;
872	boolean_t batch = B_FALSE;
873
874	if (mode == ZTI_MODE_NULL) {
875		tqs->stqs_count = 0;
876		tqs->stqs_taskq = NULL;
877		return;
878	}
879
880	ASSERT3U(count, >, 0);
881
882	tqs->stqs_count = count;
883	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
884
885	switch (mode) {
886	case ZTI_MODE_FIXED:
887		ASSERT3U(value, >=, 1);
888		value = MAX(value, 1);
889		break;
890
891	case ZTI_MODE_BATCH:
892		batch = B_TRUE;
893		flags |= TASKQ_THREADS_CPU_PCT;
894		value = zio_taskq_batch_pct;
895		break;
896
897	default:
898		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
899		    "spa_activate()",
900		    zio_type_name[t], zio_taskq_types[q], mode, value);
901		break;
902	}
903
904	for (uint_t i = 0; i < count; i++) {
905		taskq_t *tq;
906
907		if (count > 1) {
908			(void) snprintf(name, sizeof (name), "%s_%s_%u",
909			    zio_type_name[t], zio_taskq_types[q], i);
910		} else {
911			(void) snprintf(name, sizeof (name), "%s_%s",
912			    zio_type_name[t], zio_taskq_types[q]);
913		}
914
915#ifdef SYSDC
916		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
917			if (batch)
918				flags |= TASKQ_DC_BATCH;
919
920			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
921			    spa->spa_proc, zio_taskq_basedc, flags);
922		} else {
923#endif
924			pri_t pri = maxclsyspri;
925			/*
926			 * The write issue taskq can be extremely CPU
927			 * intensive.  Run it at slightly lower priority
928			 * than the other taskqs.
929			 */
930			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
931				pri--;
932
933			tq = taskq_create_proc(name, value, pri, 50,
934			    INT_MAX, spa->spa_proc, flags);
935#ifdef SYSDC
936		}
937#endif
938
939		tqs->stqs_taskq[i] = tq;
940	}
941}
942
943static void
944spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
945{
946	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
947
948	if (tqs->stqs_taskq == NULL) {
949		ASSERT0(tqs->stqs_count);
950		return;
951	}
952
953	for (uint_t i = 0; i < tqs->stqs_count; i++) {
954		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
955		taskq_destroy(tqs->stqs_taskq[i]);
956	}
957
958	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
959	tqs->stqs_taskq = NULL;
960}
961
962/*
963 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
964 * Note that a type may have multiple discrete taskqs to avoid lock contention
965 * on the taskq itself. In that case we choose which taskq at random by using
966 * the low bits of gethrtime().
967 */
968void
969spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
970    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
971{
972	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
973	taskq_t *tq;
974
975	ASSERT3P(tqs->stqs_taskq, !=, NULL);
976	ASSERT3U(tqs->stqs_count, !=, 0);
977
978	if (tqs->stqs_count == 1) {
979		tq = tqs->stqs_taskq[0];
980	} else {
981#ifdef _KERNEL
982		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
983#else
984		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
985#endif
986	}
987
988	taskq_dispatch_ent(tq, func, arg, flags, ent);
989}
990
991static void
992spa_create_zio_taskqs(spa_t *spa)
993{
994	for (int t = 0; t < ZIO_TYPES; t++) {
995		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
996			spa_taskqs_init(spa, t, q);
997		}
998	}
999}
1000
1001#ifdef _KERNEL
1002#ifdef SPA_PROCESS
1003static void
1004spa_thread(void *arg)
1005{
1006	callb_cpr_t cprinfo;
1007
1008	spa_t *spa = arg;
1009	user_t *pu = PTOU(curproc);
1010
1011	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1012	    spa->spa_name);
1013
1014	ASSERT(curproc != &p0);
1015	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1016	    "zpool-%s", spa->spa_name);
1017	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1018
1019#ifdef PSRSET_BIND
1020	/* bind this thread to the requested psrset */
1021	if (zio_taskq_psrset_bind != PS_NONE) {
1022		pool_lock();
1023		mutex_enter(&cpu_lock);
1024		mutex_enter(&pidlock);
1025		mutex_enter(&curproc->p_lock);
1026
1027		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1028		    0, NULL, NULL) == 0)  {
1029			curthread->t_bind_pset = zio_taskq_psrset_bind;
1030		} else {
1031			cmn_err(CE_WARN,
1032			    "Couldn't bind process for zfs pool \"%s\" to "
1033			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1034		}
1035
1036		mutex_exit(&curproc->p_lock);
1037		mutex_exit(&pidlock);
1038		mutex_exit(&cpu_lock);
1039		pool_unlock();
1040	}
1041#endif
1042
1043#ifdef SYSDC
1044	if (zio_taskq_sysdc) {
1045		sysdc_thread_enter(curthread, 100, 0);
1046	}
1047#endif
1048
1049	spa->spa_proc = curproc;
1050	spa->spa_did = curthread->t_did;
1051
1052	spa_create_zio_taskqs(spa);
1053
1054	mutex_enter(&spa->spa_proc_lock);
1055	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1056
1057	spa->spa_proc_state = SPA_PROC_ACTIVE;
1058	cv_broadcast(&spa->spa_proc_cv);
1059
1060	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1061	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1062		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1063	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1064
1065	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1066	spa->spa_proc_state = SPA_PROC_GONE;
1067	spa->spa_proc = &p0;
1068	cv_broadcast(&spa->spa_proc_cv);
1069	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1070
1071	mutex_enter(&curproc->p_lock);
1072	lwp_exit();
1073}
1074#endif	/* SPA_PROCESS */
1075#endif
1076
1077/*
1078 * Activate an uninitialized pool.
1079 */
1080static void
1081spa_activate(spa_t *spa, int mode)
1082{
1083	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1084
1085	spa->spa_state = POOL_STATE_ACTIVE;
1086	spa->spa_mode = mode;
1087
1088	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1089	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1090
1091	/* Try to create a covering process */
1092	mutex_enter(&spa->spa_proc_lock);
1093	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1094	ASSERT(spa->spa_proc == &p0);
1095	spa->spa_did = 0;
1096
1097#ifdef SPA_PROCESS
1098	/* Only create a process if we're going to be around a while. */
1099	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1100		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1101		    NULL, 0) == 0) {
1102			spa->spa_proc_state = SPA_PROC_CREATED;
1103			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1104				cv_wait(&spa->spa_proc_cv,
1105				    &spa->spa_proc_lock);
1106			}
1107			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1108			ASSERT(spa->spa_proc != &p0);
1109			ASSERT(spa->spa_did != 0);
1110		} else {
1111#ifdef _KERNEL
1112			cmn_err(CE_WARN,
1113			    "Couldn't create process for zfs pool \"%s\"\n",
1114			    spa->spa_name);
1115#endif
1116		}
1117	}
1118#endif	/* SPA_PROCESS */
1119	mutex_exit(&spa->spa_proc_lock);
1120
1121	/* If we didn't create a process, we need to create our taskqs. */
1122	ASSERT(spa->spa_proc == &p0);
1123	if (spa->spa_proc == &p0) {
1124		spa_create_zio_taskqs(spa);
1125	}
1126
1127	/*
1128	 * Start TRIM thread.
1129	 */
1130	trim_thread_create(spa);
1131
1132	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1133	    offsetof(vdev_t, vdev_config_dirty_node));
1134	list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1135	    offsetof(objset_t, os_evicting_node));
1136	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1137	    offsetof(vdev_t, vdev_state_dirty_node));
1138
1139	txg_list_create(&spa->spa_vdev_txg_list,
1140	    offsetof(struct vdev, vdev_txg_node));
1141
1142	avl_create(&spa->spa_errlist_scrub,
1143	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1144	    offsetof(spa_error_entry_t, se_avl));
1145	avl_create(&spa->spa_errlist_last,
1146	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1147	    offsetof(spa_error_entry_t, se_avl));
1148}
1149
1150/*
1151 * Opposite of spa_activate().
1152 */
1153static void
1154spa_deactivate(spa_t *spa)
1155{
1156	ASSERT(spa->spa_sync_on == B_FALSE);
1157	ASSERT(spa->spa_dsl_pool == NULL);
1158	ASSERT(spa->spa_root_vdev == NULL);
1159	ASSERT(spa->spa_async_zio_root == NULL);
1160	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1161
1162	/*
1163	 * Stop TRIM thread in case spa_unload() wasn't called directly
1164	 * before spa_deactivate().
1165	 */
1166	trim_thread_destroy(spa);
1167
1168	spa_evicting_os_wait(spa);
1169
1170	txg_list_destroy(&spa->spa_vdev_txg_list);
1171
1172	list_destroy(&spa->spa_config_dirty_list);
1173	list_destroy(&spa->spa_evicting_os_list);
1174	list_destroy(&spa->spa_state_dirty_list);
1175
1176	for (int t = 0; t < ZIO_TYPES; t++) {
1177		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1178			spa_taskqs_fini(spa, t, q);
1179		}
1180	}
1181
1182	metaslab_class_destroy(spa->spa_normal_class);
1183	spa->spa_normal_class = NULL;
1184
1185	metaslab_class_destroy(spa->spa_log_class);
1186	spa->spa_log_class = NULL;
1187
1188	/*
1189	 * If this was part of an import or the open otherwise failed, we may
1190	 * still have errors left in the queues.  Empty them just in case.
1191	 */
1192	spa_errlog_drain(spa);
1193
1194	avl_destroy(&spa->spa_errlist_scrub);
1195	avl_destroy(&spa->spa_errlist_last);
1196
1197	spa->spa_state = POOL_STATE_UNINITIALIZED;
1198
1199	mutex_enter(&spa->spa_proc_lock);
1200	if (spa->spa_proc_state != SPA_PROC_NONE) {
1201		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1202		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1203		cv_broadcast(&spa->spa_proc_cv);
1204		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1205			ASSERT(spa->spa_proc != &p0);
1206			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1207		}
1208		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1209		spa->spa_proc_state = SPA_PROC_NONE;
1210	}
1211	ASSERT(spa->spa_proc == &p0);
1212	mutex_exit(&spa->spa_proc_lock);
1213
1214#ifdef SPA_PROCESS
1215	/*
1216	 * We want to make sure spa_thread() has actually exited the ZFS
1217	 * module, so that the module can't be unloaded out from underneath
1218	 * it.
1219	 */
1220	if (spa->spa_did != 0) {
1221		thread_join(spa->spa_did);
1222		spa->spa_did = 0;
1223	}
1224#endif	/* SPA_PROCESS */
1225}
1226
1227/*
1228 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1229 * will create all the necessary vdevs in the appropriate layout, with each vdev
1230 * in the CLOSED state.  This will prep the pool before open/creation/import.
1231 * All vdev validation is done by the vdev_alloc() routine.
1232 */
1233static int
1234spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1235    uint_t id, int atype)
1236{
1237	nvlist_t **child;
1238	uint_t children;
1239	int error;
1240
1241	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1242		return (error);
1243
1244	if ((*vdp)->vdev_ops->vdev_op_leaf)
1245		return (0);
1246
1247	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1248	    &child, &children);
1249
1250	if (error == ENOENT)
1251		return (0);
1252
1253	if (error) {
1254		vdev_free(*vdp);
1255		*vdp = NULL;
1256		return (SET_ERROR(EINVAL));
1257	}
1258
1259	for (int c = 0; c < children; c++) {
1260		vdev_t *vd;
1261		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1262		    atype)) != 0) {
1263			vdev_free(*vdp);
1264			*vdp = NULL;
1265			return (error);
1266		}
1267	}
1268
1269	ASSERT(*vdp != NULL);
1270
1271	return (0);
1272}
1273
1274/*
1275 * Opposite of spa_load().
1276 */
1277static void
1278spa_unload(spa_t *spa)
1279{
1280	int i;
1281
1282	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1283
1284	/*
1285	 * Stop TRIM thread.
1286	 */
1287	trim_thread_destroy(spa);
1288
1289	/*
1290	 * Stop async tasks.
1291	 */
1292	spa_async_suspend(spa);
1293
1294	/*
1295	 * Stop syncing.
1296	 */
1297	if (spa->spa_sync_on) {
1298		txg_sync_stop(spa->spa_dsl_pool);
1299		spa->spa_sync_on = B_FALSE;
1300	}
1301
1302	/*
1303	 * Wait for any outstanding async I/O to complete.
1304	 */
1305	if (spa->spa_async_zio_root != NULL) {
1306		for (int i = 0; i < max_ncpus; i++)
1307			(void) zio_wait(spa->spa_async_zio_root[i]);
1308		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1309		spa->spa_async_zio_root = NULL;
1310	}
1311
1312	bpobj_close(&spa->spa_deferred_bpobj);
1313
1314	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1315
1316	/*
1317	 * Close all vdevs.
1318	 */
1319	if (spa->spa_root_vdev)
1320		vdev_free(spa->spa_root_vdev);
1321	ASSERT(spa->spa_root_vdev == NULL);
1322
1323	/*
1324	 * Close the dsl pool.
1325	 */
1326	if (spa->spa_dsl_pool) {
1327		dsl_pool_close(spa->spa_dsl_pool);
1328		spa->spa_dsl_pool = NULL;
1329		spa->spa_meta_objset = NULL;
1330	}
1331
1332	ddt_unload(spa);
1333
1334
1335	/*
1336	 * Drop and purge level 2 cache
1337	 */
1338	spa_l2cache_drop(spa);
1339
1340	for (i = 0; i < spa->spa_spares.sav_count; i++)
1341		vdev_free(spa->spa_spares.sav_vdevs[i]);
1342	if (spa->spa_spares.sav_vdevs) {
1343		kmem_free(spa->spa_spares.sav_vdevs,
1344		    spa->spa_spares.sav_count * sizeof (void *));
1345		spa->spa_spares.sav_vdevs = NULL;
1346	}
1347	if (spa->spa_spares.sav_config) {
1348		nvlist_free(spa->spa_spares.sav_config);
1349		spa->spa_spares.sav_config = NULL;
1350	}
1351	spa->spa_spares.sav_count = 0;
1352
1353	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1354		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1355		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1356	}
1357	if (spa->spa_l2cache.sav_vdevs) {
1358		kmem_free(spa->spa_l2cache.sav_vdevs,
1359		    spa->spa_l2cache.sav_count * sizeof (void *));
1360		spa->spa_l2cache.sav_vdevs = NULL;
1361	}
1362	if (spa->spa_l2cache.sav_config) {
1363		nvlist_free(spa->spa_l2cache.sav_config);
1364		spa->spa_l2cache.sav_config = NULL;
1365	}
1366	spa->spa_l2cache.sav_count = 0;
1367
1368	spa->spa_async_suspended = 0;
1369
1370	if (spa->spa_comment != NULL) {
1371		spa_strfree(spa->spa_comment);
1372		spa->spa_comment = NULL;
1373	}
1374
1375	spa_config_exit(spa, SCL_ALL, FTAG);
1376}
1377
1378/*
1379 * Load (or re-load) the current list of vdevs describing the active spares for
1380 * this pool.  When this is called, we have some form of basic information in
1381 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1382 * then re-generate a more complete list including status information.
1383 */
1384static void
1385spa_load_spares(spa_t *spa)
1386{
1387	nvlist_t **spares;
1388	uint_t nspares;
1389	int i;
1390	vdev_t *vd, *tvd;
1391
1392	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1393
1394	/*
1395	 * First, close and free any existing spare vdevs.
1396	 */
1397	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1398		vd = spa->spa_spares.sav_vdevs[i];
1399
1400		/* Undo the call to spa_activate() below */
1401		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1402		    B_FALSE)) != NULL && tvd->vdev_isspare)
1403			spa_spare_remove(tvd);
1404		vdev_close(vd);
1405		vdev_free(vd);
1406	}
1407
1408	if (spa->spa_spares.sav_vdevs)
1409		kmem_free(spa->spa_spares.sav_vdevs,
1410		    spa->spa_spares.sav_count * sizeof (void *));
1411
1412	if (spa->spa_spares.sav_config == NULL)
1413		nspares = 0;
1414	else
1415		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1416		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1417
1418	spa->spa_spares.sav_count = (int)nspares;
1419	spa->spa_spares.sav_vdevs = NULL;
1420
1421	if (nspares == 0)
1422		return;
1423
1424	/*
1425	 * Construct the array of vdevs, opening them to get status in the
1426	 * process.   For each spare, there is potentially two different vdev_t
1427	 * structures associated with it: one in the list of spares (used only
1428	 * for basic validation purposes) and one in the active vdev
1429	 * configuration (if it's spared in).  During this phase we open and
1430	 * validate each vdev on the spare list.  If the vdev also exists in the
1431	 * active configuration, then we also mark this vdev as an active spare.
1432	 */
1433	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1434	    KM_SLEEP);
1435	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1436		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1437		    VDEV_ALLOC_SPARE) == 0);
1438		ASSERT(vd != NULL);
1439
1440		spa->spa_spares.sav_vdevs[i] = vd;
1441
1442		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1443		    B_FALSE)) != NULL) {
1444			if (!tvd->vdev_isspare)
1445				spa_spare_add(tvd);
1446
1447			/*
1448			 * We only mark the spare active if we were successfully
1449			 * able to load the vdev.  Otherwise, importing a pool
1450			 * with a bad active spare would result in strange
1451			 * behavior, because multiple pool would think the spare
1452			 * is actively in use.
1453			 *
1454			 * There is a vulnerability here to an equally bizarre
1455			 * circumstance, where a dead active spare is later
1456			 * brought back to life (onlined or otherwise).  Given
1457			 * the rarity of this scenario, and the extra complexity
1458			 * it adds, we ignore the possibility.
1459			 */
1460			if (!vdev_is_dead(tvd))
1461				spa_spare_activate(tvd);
1462		}
1463
1464		vd->vdev_top = vd;
1465		vd->vdev_aux = &spa->spa_spares;
1466
1467		if (vdev_open(vd) != 0)
1468			continue;
1469
1470		if (vdev_validate_aux(vd) == 0)
1471			spa_spare_add(vd);
1472	}
1473
1474	/*
1475	 * Recompute the stashed list of spares, with status information
1476	 * this time.
1477	 */
1478	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1479	    DATA_TYPE_NVLIST_ARRAY) == 0);
1480
1481	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1482	    KM_SLEEP);
1483	for (i = 0; i < spa->spa_spares.sav_count; i++)
1484		spares[i] = vdev_config_generate(spa,
1485		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1486	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1487	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1488	for (i = 0; i < spa->spa_spares.sav_count; i++)
1489		nvlist_free(spares[i]);
1490	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1491}
1492
1493/*
1494 * Load (or re-load) the current list of vdevs describing the active l2cache for
1495 * this pool.  When this is called, we have some form of basic information in
1496 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1497 * then re-generate a more complete list including status information.
1498 * Devices which are already active have their details maintained, and are
1499 * not re-opened.
1500 */
1501static void
1502spa_load_l2cache(spa_t *spa)
1503{
1504	nvlist_t **l2cache;
1505	uint_t nl2cache;
1506	int i, j, oldnvdevs;
1507	uint64_t guid;
1508	vdev_t *vd, **oldvdevs, **newvdevs;
1509	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1510
1511	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1512
1513	if (sav->sav_config != NULL) {
1514		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1515		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1516		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1517	} else {
1518		nl2cache = 0;
1519		newvdevs = NULL;
1520	}
1521
1522	oldvdevs = sav->sav_vdevs;
1523	oldnvdevs = sav->sav_count;
1524	sav->sav_vdevs = NULL;
1525	sav->sav_count = 0;
1526
1527	/*
1528	 * Process new nvlist of vdevs.
1529	 */
1530	for (i = 0; i < nl2cache; i++) {
1531		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1532		    &guid) == 0);
1533
1534		newvdevs[i] = NULL;
1535		for (j = 0; j < oldnvdevs; j++) {
1536			vd = oldvdevs[j];
1537			if (vd != NULL && guid == vd->vdev_guid) {
1538				/*
1539				 * Retain previous vdev for add/remove ops.
1540				 */
1541				newvdevs[i] = vd;
1542				oldvdevs[j] = NULL;
1543				break;
1544			}
1545		}
1546
1547		if (newvdevs[i] == NULL) {
1548			/*
1549			 * Create new vdev
1550			 */
1551			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1552			    VDEV_ALLOC_L2CACHE) == 0);
1553			ASSERT(vd != NULL);
1554			newvdevs[i] = vd;
1555
1556			/*
1557			 * Commit this vdev as an l2cache device,
1558			 * even if it fails to open.
1559			 */
1560			spa_l2cache_add(vd);
1561
1562			vd->vdev_top = vd;
1563			vd->vdev_aux = sav;
1564
1565			spa_l2cache_activate(vd);
1566
1567			if (vdev_open(vd) != 0)
1568				continue;
1569
1570			(void) vdev_validate_aux(vd);
1571
1572			if (!vdev_is_dead(vd))
1573				l2arc_add_vdev(spa, vd);
1574		}
1575	}
1576
1577	/*
1578	 * Purge vdevs that were dropped
1579	 */
1580	for (i = 0; i < oldnvdevs; i++) {
1581		uint64_t pool;
1582
1583		vd = oldvdevs[i];
1584		if (vd != NULL) {
1585			ASSERT(vd->vdev_isl2cache);
1586
1587			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1588			    pool != 0ULL && l2arc_vdev_present(vd))
1589				l2arc_remove_vdev(vd);
1590			vdev_clear_stats(vd);
1591			vdev_free(vd);
1592		}
1593	}
1594
1595	if (oldvdevs)
1596		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1597
1598	if (sav->sav_config == NULL)
1599		goto out;
1600
1601	sav->sav_vdevs = newvdevs;
1602	sav->sav_count = (int)nl2cache;
1603
1604	/*
1605	 * Recompute the stashed list of l2cache devices, with status
1606	 * information this time.
1607	 */
1608	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1609	    DATA_TYPE_NVLIST_ARRAY) == 0);
1610
1611	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1612	for (i = 0; i < sav->sav_count; i++)
1613		l2cache[i] = vdev_config_generate(spa,
1614		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1615	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1616	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1617out:
1618	for (i = 0; i < sav->sav_count; i++)
1619		nvlist_free(l2cache[i]);
1620	if (sav->sav_count)
1621		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1622}
1623
1624static int
1625load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1626{
1627	dmu_buf_t *db;
1628	char *packed = NULL;
1629	size_t nvsize = 0;
1630	int error;
1631	*value = NULL;
1632
1633	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1634	if (error != 0)
1635		return (error);
1636
1637	nvsize = *(uint64_t *)db->db_data;
1638	dmu_buf_rele(db, FTAG);
1639
1640	packed = kmem_alloc(nvsize, KM_SLEEP);
1641	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1642	    DMU_READ_PREFETCH);
1643	if (error == 0)
1644		error = nvlist_unpack(packed, nvsize, value, 0);
1645	kmem_free(packed, nvsize);
1646
1647	return (error);
1648}
1649
1650/*
1651 * Checks to see if the given vdev could not be opened, in which case we post a
1652 * sysevent to notify the autoreplace code that the device has been removed.
1653 */
1654static void
1655spa_check_removed(vdev_t *vd)
1656{
1657	for (int c = 0; c < vd->vdev_children; c++)
1658		spa_check_removed(vd->vdev_child[c]);
1659
1660	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1661	    !vd->vdev_ishole) {
1662		zfs_post_autoreplace(vd->vdev_spa, vd);
1663		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1664	}
1665}
1666
1667/*
1668 * Validate the current config against the MOS config
1669 */
1670static boolean_t
1671spa_config_valid(spa_t *spa, nvlist_t *config)
1672{
1673	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1674	nvlist_t *nv;
1675
1676	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1677
1678	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1679	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1680
1681	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1682
1683	/*
1684	 * If we're doing a normal import, then build up any additional
1685	 * diagnostic information about missing devices in this config.
1686	 * We'll pass this up to the user for further processing.
1687	 */
1688	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1689		nvlist_t **child, *nv;
1690		uint64_t idx = 0;
1691
1692		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1693		    KM_SLEEP);
1694		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1695
1696		for (int c = 0; c < rvd->vdev_children; c++) {
1697			vdev_t *tvd = rvd->vdev_child[c];
1698			vdev_t *mtvd  = mrvd->vdev_child[c];
1699
1700			if (tvd->vdev_ops == &vdev_missing_ops &&
1701			    mtvd->vdev_ops != &vdev_missing_ops &&
1702			    mtvd->vdev_islog)
1703				child[idx++] = vdev_config_generate(spa, mtvd,
1704				    B_FALSE, 0);
1705		}
1706
1707		if (idx) {
1708			VERIFY(nvlist_add_nvlist_array(nv,
1709			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1710			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1711			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1712
1713			for (int i = 0; i < idx; i++)
1714				nvlist_free(child[i]);
1715		}
1716		nvlist_free(nv);
1717		kmem_free(child, rvd->vdev_children * sizeof (char **));
1718	}
1719
1720	/*
1721	 * Compare the root vdev tree with the information we have
1722	 * from the MOS config (mrvd). Check each top-level vdev
1723	 * with the corresponding MOS config top-level (mtvd).
1724	 */
1725	for (int c = 0; c < rvd->vdev_children; c++) {
1726		vdev_t *tvd = rvd->vdev_child[c];
1727		vdev_t *mtvd  = mrvd->vdev_child[c];
1728
1729		/*
1730		 * Resolve any "missing" vdevs in the current configuration.
1731		 * If we find that the MOS config has more accurate information
1732		 * about the top-level vdev then use that vdev instead.
1733		 */
1734		if (tvd->vdev_ops == &vdev_missing_ops &&
1735		    mtvd->vdev_ops != &vdev_missing_ops) {
1736
1737			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1738				continue;
1739
1740			/*
1741			 * Device specific actions.
1742			 */
1743			if (mtvd->vdev_islog) {
1744				spa_set_log_state(spa, SPA_LOG_CLEAR);
1745			} else {
1746				/*
1747				 * XXX - once we have 'readonly' pool
1748				 * support we should be able to handle
1749				 * missing data devices by transitioning
1750				 * the pool to readonly.
1751				 */
1752				continue;
1753			}
1754
1755			/*
1756			 * Swap the missing vdev with the data we were
1757			 * able to obtain from the MOS config.
1758			 */
1759			vdev_remove_child(rvd, tvd);
1760			vdev_remove_child(mrvd, mtvd);
1761
1762			vdev_add_child(rvd, mtvd);
1763			vdev_add_child(mrvd, tvd);
1764
1765			spa_config_exit(spa, SCL_ALL, FTAG);
1766			vdev_load(mtvd);
1767			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1768
1769			vdev_reopen(rvd);
1770		} else if (mtvd->vdev_islog) {
1771			/*
1772			 * Load the slog device's state from the MOS config
1773			 * since it's possible that the label does not
1774			 * contain the most up-to-date information.
1775			 */
1776			vdev_load_log_state(tvd, mtvd);
1777			vdev_reopen(tvd);
1778		}
1779	}
1780	vdev_free(mrvd);
1781	spa_config_exit(spa, SCL_ALL, FTAG);
1782
1783	/*
1784	 * Ensure we were able to validate the config.
1785	 */
1786	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1787}
1788
1789/*
1790 * Check for missing log devices
1791 */
1792static boolean_t
1793spa_check_logs(spa_t *spa)
1794{
1795	boolean_t rv = B_FALSE;
1796	dsl_pool_t *dp = spa_get_dsl(spa);
1797
1798	switch (spa->spa_log_state) {
1799	case SPA_LOG_MISSING:
1800		/* need to recheck in case slog has been restored */
1801	case SPA_LOG_UNKNOWN:
1802		rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1803		    zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1804		if (rv)
1805			spa_set_log_state(spa, SPA_LOG_MISSING);
1806		break;
1807	}
1808	return (rv);
1809}
1810
1811static boolean_t
1812spa_passivate_log(spa_t *spa)
1813{
1814	vdev_t *rvd = spa->spa_root_vdev;
1815	boolean_t slog_found = B_FALSE;
1816
1817	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1818
1819	if (!spa_has_slogs(spa))
1820		return (B_FALSE);
1821
1822	for (int c = 0; c < rvd->vdev_children; c++) {
1823		vdev_t *tvd = rvd->vdev_child[c];
1824		metaslab_group_t *mg = tvd->vdev_mg;
1825
1826		if (tvd->vdev_islog) {
1827			metaslab_group_passivate(mg);
1828			slog_found = B_TRUE;
1829		}
1830	}
1831
1832	return (slog_found);
1833}
1834
1835static void
1836spa_activate_log(spa_t *spa)
1837{
1838	vdev_t *rvd = spa->spa_root_vdev;
1839
1840	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1841
1842	for (int c = 0; c < rvd->vdev_children; c++) {
1843		vdev_t *tvd = rvd->vdev_child[c];
1844		metaslab_group_t *mg = tvd->vdev_mg;
1845
1846		if (tvd->vdev_islog)
1847			metaslab_group_activate(mg);
1848	}
1849}
1850
1851int
1852spa_offline_log(spa_t *spa)
1853{
1854	int error;
1855
1856	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1857	    NULL, DS_FIND_CHILDREN);
1858	if (error == 0) {
1859		/*
1860		 * We successfully offlined the log device, sync out the
1861		 * current txg so that the "stubby" block can be removed
1862		 * by zil_sync().
1863		 */
1864		txg_wait_synced(spa->spa_dsl_pool, 0);
1865	}
1866	return (error);
1867}
1868
1869static void
1870spa_aux_check_removed(spa_aux_vdev_t *sav)
1871{
1872	int i;
1873
1874	for (i = 0; i < sav->sav_count; i++)
1875		spa_check_removed(sav->sav_vdevs[i]);
1876}
1877
1878void
1879spa_claim_notify(zio_t *zio)
1880{
1881	spa_t *spa = zio->io_spa;
1882
1883	if (zio->io_error)
1884		return;
1885
1886	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1887	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1888		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1889	mutex_exit(&spa->spa_props_lock);
1890}
1891
1892typedef struct spa_load_error {
1893	uint64_t	sle_meta_count;
1894	uint64_t	sle_data_count;
1895} spa_load_error_t;
1896
1897static void
1898spa_load_verify_done(zio_t *zio)
1899{
1900	blkptr_t *bp = zio->io_bp;
1901	spa_load_error_t *sle = zio->io_private;
1902	dmu_object_type_t type = BP_GET_TYPE(bp);
1903	int error = zio->io_error;
1904	spa_t *spa = zio->io_spa;
1905
1906	if (error) {
1907		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1908		    type != DMU_OT_INTENT_LOG)
1909			atomic_inc_64(&sle->sle_meta_count);
1910		else
1911			atomic_inc_64(&sle->sle_data_count);
1912	}
1913	zio_data_buf_free(zio->io_data, zio->io_size);
1914
1915	mutex_enter(&spa->spa_scrub_lock);
1916	spa->spa_scrub_inflight--;
1917	cv_broadcast(&spa->spa_scrub_io_cv);
1918	mutex_exit(&spa->spa_scrub_lock);
1919}
1920
1921/*
1922 * Maximum number of concurrent scrub i/os to create while verifying
1923 * a pool while importing it.
1924 */
1925int spa_load_verify_maxinflight = 10000;
1926boolean_t spa_load_verify_metadata = B_TRUE;
1927boolean_t spa_load_verify_data = B_TRUE;
1928
1929SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1930    &spa_load_verify_maxinflight, 0,
1931    "Maximum number of concurrent scrub I/Os to create while verifying a "
1932    "pool while importing it");
1933
1934SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1935    &spa_load_verify_metadata, 0,
1936    "Check metadata on import?");
1937
1938SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1939    &spa_load_verify_data, 0,
1940    "Check user data on import?");
1941
1942/*ARGSUSED*/
1943static int
1944spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1945    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1946{
1947	if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1948		return (0);
1949	/*
1950	 * Note: normally this routine will not be called if
1951	 * spa_load_verify_metadata is not set.  However, it may be useful
1952	 * to manually set the flag after the traversal has begun.
1953	 */
1954	if (!spa_load_verify_metadata)
1955		return (0);
1956	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1957		return (0);
1958
1959	zio_t *rio = arg;
1960	size_t size = BP_GET_PSIZE(bp);
1961	void *data = zio_data_buf_alloc(size);
1962
1963	mutex_enter(&spa->spa_scrub_lock);
1964	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1965		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1966	spa->spa_scrub_inflight++;
1967	mutex_exit(&spa->spa_scrub_lock);
1968
1969	zio_nowait(zio_read(rio, spa, bp, data, size,
1970	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1971	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1972	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1973	return (0);
1974}
1975
1976static int
1977spa_load_verify(spa_t *spa)
1978{
1979	zio_t *rio;
1980	spa_load_error_t sle = { 0 };
1981	zpool_rewind_policy_t policy;
1982	boolean_t verify_ok = B_FALSE;
1983	int error = 0;
1984
1985	zpool_get_rewind_policy(spa->spa_config, &policy);
1986
1987	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1988		return (0);
1989
1990	rio = zio_root(spa, NULL, &sle,
1991	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1992
1993	if (spa_load_verify_metadata) {
1994		error = traverse_pool(spa, spa->spa_verify_min_txg,
1995		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1996		    spa_load_verify_cb, rio);
1997	}
1998
1999	(void) zio_wait(rio);
2000
2001	spa->spa_load_meta_errors = sle.sle_meta_count;
2002	spa->spa_load_data_errors = sle.sle_data_count;
2003
2004	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
2005	    sle.sle_data_count <= policy.zrp_maxdata) {
2006		int64_t loss = 0;
2007
2008		verify_ok = B_TRUE;
2009		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2010		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2011
2012		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2013		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2014		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2015		VERIFY(nvlist_add_int64(spa->spa_load_info,
2016		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2017		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2018		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2019	} else {
2020		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2021	}
2022
2023	if (error) {
2024		if (error != ENXIO && error != EIO)
2025			error = SET_ERROR(EIO);
2026		return (error);
2027	}
2028
2029	return (verify_ok ? 0 : EIO);
2030}
2031
2032/*
2033 * Find a value in the pool props object.
2034 */
2035static void
2036spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2037{
2038	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2039	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2040}
2041
2042/*
2043 * Find a value in the pool directory object.
2044 */
2045static int
2046spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2047{
2048	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2049	    name, sizeof (uint64_t), 1, val));
2050}
2051
2052static int
2053spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2054{
2055	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2056	return (err);
2057}
2058
2059/*
2060 * Fix up config after a partly-completed split.  This is done with the
2061 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2062 * pool have that entry in their config, but only the splitting one contains
2063 * a list of all the guids of the vdevs that are being split off.
2064 *
2065 * This function determines what to do with that list: either rejoin
2066 * all the disks to the pool, or complete the splitting process.  To attempt
2067 * the rejoin, each disk that is offlined is marked online again, and
2068 * we do a reopen() call.  If the vdev label for every disk that was
2069 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2070 * then we call vdev_split() on each disk, and complete the split.
2071 *
2072 * Otherwise we leave the config alone, with all the vdevs in place in
2073 * the original pool.
2074 */
2075static void
2076spa_try_repair(spa_t *spa, nvlist_t *config)
2077{
2078	uint_t extracted;
2079	uint64_t *glist;
2080	uint_t i, gcount;
2081	nvlist_t *nvl;
2082	vdev_t **vd;
2083	boolean_t attempt_reopen;
2084
2085	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2086		return;
2087
2088	/* check that the config is complete */
2089	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2090	    &glist, &gcount) != 0)
2091		return;
2092
2093	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2094
2095	/* attempt to online all the vdevs & validate */
2096	attempt_reopen = B_TRUE;
2097	for (i = 0; i < gcount; i++) {
2098		if (glist[i] == 0)	/* vdev is hole */
2099			continue;
2100
2101		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2102		if (vd[i] == NULL) {
2103			/*
2104			 * Don't bother attempting to reopen the disks;
2105			 * just do the split.
2106			 */
2107			attempt_reopen = B_FALSE;
2108		} else {
2109			/* attempt to re-online it */
2110			vd[i]->vdev_offline = B_FALSE;
2111		}
2112	}
2113
2114	if (attempt_reopen) {
2115		vdev_reopen(spa->spa_root_vdev);
2116
2117		/* check each device to see what state it's in */
2118		for (extracted = 0, i = 0; i < gcount; i++) {
2119			if (vd[i] != NULL &&
2120			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2121				break;
2122			++extracted;
2123		}
2124	}
2125
2126	/*
2127	 * If every disk has been moved to the new pool, or if we never
2128	 * even attempted to look at them, then we split them off for
2129	 * good.
2130	 */
2131	if (!attempt_reopen || gcount == extracted) {
2132		for (i = 0; i < gcount; i++)
2133			if (vd[i] != NULL)
2134				vdev_split(vd[i]);
2135		vdev_reopen(spa->spa_root_vdev);
2136	}
2137
2138	kmem_free(vd, gcount * sizeof (vdev_t *));
2139}
2140
2141static int
2142spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2143    boolean_t mosconfig)
2144{
2145	nvlist_t *config = spa->spa_config;
2146	char *ereport = FM_EREPORT_ZFS_POOL;
2147	char *comment;
2148	int error;
2149	uint64_t pool_guid;
2150	nvlist_t *nvl;
2151
2152	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2153		return (SET_ERROR(EINVAL));
2154
2155	ASSERT(spa->spa_comment == NULL);
2156	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2157		spa->spa_comment = spa_strdup(comment);
2158
2159	/*
2160	 * Versioning wasn't explicitly added to the label until later, so if
2161	 * it's not present treat it as the initial version.
2162	 */
2163	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2164	    &spa->spa_ubsync.ub_version) != 0)
2165		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2166
2167	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2168	    &spa->spa_config_txg);
2169
2170	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2171	    spa_guid_exists(pool_guid, 0)) {
2172		error = SET_ERROR(EEXIST);
2173	} else {
2174		spa->spa_config_guid = pool_guid;
2175
2176		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2177		    &nvl) == 0) {
2178			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2179			    KM_SLEEP) == 0);
2180		}
2181
2182		nvlist_free(spa->spa_load_info);
2183		spa->spa_load_info = fnvlist_alloc();
2184
2185		gethrestime(&spa->spa_loaded_ts);
2186		error = spa_load_impl(spa, pool_guid, config, state, type,
2187		    mosconfig, &ereport);
2188	}
2189
2190	/*
2191	 * Don't count references from objsets that are already closed
2192	 * and are making their way through the eviction process.
2193	 */
2194	spa_evicting_os_wait(spa);
2195	spa->spa_minref = refcount_count(&spa->spa_refcount);
2196	if (error) {
2197		if (error != EEXIST) {
2198			spa->spa_loaded_ts.tv_sec = 0;
2199			spa->spa_loaded_ts.tv_nsec = 0;
2200		}
2201		if (error != EBADF) {
2202			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2203		}
2204	}
2205	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2206	spa->spa_ena = 0;
2207
2208	return (error);
2209}
2210
2211/*
2212 * Load an existing storage pool, using the pool's builtin spa_config as a
2213 * source of configuration information.
2214 */
2215static int
2216spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2217    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2218    char **ereport)
2219{
2220	int error = 0;
2221	nvlist_t *nvroot = NULL;
2222	nvlist_t *label;
2223	vdev_t *rvd;
2224	uberblock_t *ub = &spa->spa_uberblock;
2225	uint64_t children, config_cache_txg = spa->spa_config_txg;
2226	int orig_mode = spa->spa_mode;
2227	int parse;
2228	uint64_t obj;
2229	boolean_t missing_feat_write = B_FALSE;
2230
2231	/*
2232	 * If this is an untrusted config, access the pool in read-only mode.
2233	 * This prevents things like resilvering recently removed devices.
2234	 */
2235	if (!mosconfig)
2236		spa->spa_mode = FREAD;
2237
2238	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2239
2240	spa->spa_load_state = state;
2241
2242	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2243		return (SET_ERROR(EINVAL));
2244
2245	parse = (type == SPA_IMPORT_EXISTING ?
2246	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2247
2248	/*
2249	 * Create "The Godfather" zio to hold all async IOs
2250	 */
2251	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2252	    KM_SLEEP);
2253	for (int i = 0; i < max_ncpus; i++) {
2254		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2255		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2256		    ZIO_FLAG_GODFATHER);
2257	}
2258
2259	/*
2260	 * Parse the configuration into a vdev tree.  We explicitly set the
2261	 * value that will be returned by spa_version() since parsing the
2262	 * configuration requires knowing the version number.
2263	 */
2264	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2265	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2266	spa_config_exit(spa, SCL_ALL, FTAG);
2267
2268	if (error != 0)
2269		return (error);
2270
2271	ASSERT(spa->spa_root_vdev == rvd);
2272	ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2273	ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2274
2275	if (type != SPA_IMPORT_ASSEMBLE) {
2276		ASSERT(spa_guid(spa) == pool_guid);
2277	}
2278
2279	/*
2280	 * Try to open all vdevs, loading each label in the process.
2281	 */
2282	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2283	error = vdev_open(rvd);
2284	spa_config_exit(spa, SCL_ALL, FTAG);
2285	if (error != 0)
2286		return (error);
2287
2288	/*
2289	 * We need to validate the vdev labels against the configuration that
2290	 * we have in hand, which is dependent on the setting of mosconfig. If
2291	 * mosconfig is true then we're validating the vdev labels based on
2292	 * that config.  Otherwise, we're validating against the cached config
2293	 * (zpool.cache) that was read when we loaded the zfs module, and then
2294	 * later we will recursively call spa_load() and validate against
2295	 * the vdev config.
2296	 *
2297	 * If we're assembling a new pool that's been split off from an
2298	 * existing pool, the labels haven't yet been updated so we skip
2299	 * validation for now.
2300	 */
2301	if (type != SPA_IMPORT_ASSEMBLE) {
2302		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2303		error = vdev_validate(rvd, mosconfig);
2304		spa_config_exit(spa, SCL_ALL, FTAG);
2305
2306		if (error != 0)
2307			return (error);
2308
2309		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2310			return (SET_ERROR(ENXIO));
2311	}
2312
2313	/*
2314	 * Find the best uberblock.
2315	 */
2316	vdev_uberblock_load(rvd, ub, &label);
2317
2318	/*
2319	 * If we weren't able to find a single valid uberblock, return failure.
2320	 */
2321	if (ub->ub_txg == 0) {
2322		nvlist_free(label);
2323		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2324	}
2325
2326	/*
2327	 * If the pool has an unsupported version we can't open it.
2328	 */
2329	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2330		nvlist_free(label);
2331		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2332	}
2333
2334	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2335		nvlist_t *features;
2336
2337		/*
2338		 * If we weren't able to find what's necessary for reading the
2339		 * MOS in the label, return failure.
2340		 */
2341		if (label == NULL || nvlist_lookup_nvlist(label,
2342		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2343			nvlist_free(label);
2344			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2345			    ENXIO));
2346		}
2347
2348		/*
2349		 * Update our in-core representation with the definitive values
2350		 * from the label.
2351		 */
2352		nvlist_free(spa->spa_label_features);
2353		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2354	}
2355
2356	nvlist_free(label);
2357
2358	/*
2359	 * Look through entries in the label nvlist's features_for_read. If
2360	 * there is a feature listed there which we don't understand then we
2361	 * cannot open a pool.
2362	 */
2363	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2364		nvlist_t *unsup_feat;
2365
2366		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2367		    0);
2368
2369		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2370		    NULL); nvp != NULL;
2371		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2372			if (!zfeature_is_supported(nvpair_name(nvp))) {
2373				VERIFY(nvlist_add_string(unsup_feat,
2374				    nvpair_name(nvp), "") == 0);
2375			}
2376		}
2377
2378		if (!nvlist_empty(unsup_feat)) {
2379			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2380			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2381			nvlist_free(unsup_feat);
2382			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2383			    ENOTSUP));
2384		}
2385
2386		nvlist_free(unsup_feat);
2387	}
2388
2389	/*
2390	 * If the vdev guid sum doesn't match the uberblock, we have an
2391	 * incomplete configuration.  We first check to see if the pool
2392	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2393	 * If it is, defer the vdev_guid_sum check till later so we
2394	 * can handle missing vdevs.
2395	 */
2396	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2397	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2398	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2399		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2400
2401	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2402		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2403		spa_try_repair(spa, config);
2404		spa_config_exit(spa, SCL_ALL, FTAG);
2405		nvlist_free(spa->spa_config_splitting);
2406		spa->spa_config_splitting = NULL;
2407	}
2408
2409	/*
2410	 * Initialize internal SPA structures.
2411	 */
2412	spa->spa_state = POOL_STATE_ACTIVE;
2413	spa->spa_ubsync = spa->spa_uberblock;
2414	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2415	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2416	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2417	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2418	spa->spa_claim_max_txg = spa->spa_first_txg;
2419	spa->spa_prev_software_version = ub->ub_software_version;
2420
2421	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2422	if (error)
2423		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2424	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2425
2426	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2427		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2428
2429	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2430		boolean_t missing_feat_read = B_FALSE;
2431		nvlist_t *unsup_feat, *enabled_feat;
2432
2433		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2434		    &spa->spa_feat_for_read_obj) != 0) {
2435			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2436		}
2437
2438		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2439		    &spa->spa_feat_for_write_obj) != 0) {
2440			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2441		}
2442
2443		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2444		    &spa->spa_feat_desc_obj) != 0) {
2445			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2446		}
2447
2448		enabled_feat = fnvlist_alloc();
2449		unsup_feat = fnvlist_alloc();
2450
2451		if (!spa_features_check(spa, B_FALSE,
2452		    unsup_feat, enabled_feat))
2453			missing_feat_read = B_TRUE;
2454
2455		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2456			if (!spa_features_check(spa, B_TRUE,
2457			    unsup_feat, enabled_feat)) {
2458				missing_feat_write = B_TRUE;
2459			}
2460		}
2461
2462		fnvlist_add_nvlist(spa->spa_load_info,
2463		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2464
2465		if (!nvlist_empty(unsup_feat)) {
2466			fnvlist_add_nvlist(spa->spa_load_info,
2467			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2468		}
2469
2470		fnvlist_free(enabled_feat);
2471		fnvlist_free(unsup_feat);
2472
2473		if (!missing_feat_read) {
2474			fnvlist_add_boolean(spa->spa_load_info,
2475			    ZPOOL_CONFIG_CAN_RDONLY);
2476		}
2477
2478		/*
2479		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2480		 * twofold: to determine whether the pool is available for
2481		 * import in read-write mode and (if it is not) whether the
2482		 * pool is available for import in read-only mode. If the pool
2483		 * is available for import in read-write mode, it is displayed
2484		 * as available in userland; if it is not available for import
2485		 * in read-only mode, it is displayed as unavailable in
2486		 * userland. If the pool is available for import in read-only
2487		 * mode but not read-write mode, it is displayed as unavailable
2488		 * in userland with a special note that the pool is actually
2489		 * available for open in read-only mode.
2490		 *
2491		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2492		 * missing a feature for write, we must first determine whether
2493		 * the pool can be opened read-only before returning to
2494		 * userland in order to know whether to display the
2495		 * abovementioned note.
2496		 */
2497		if (missing_feat_read || (missing_feat_write &&
2498		    spa_writeable(spa))) {
2499			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2500			    ENOTSUP));
2501		}
2502
2503		/*
2504		 * Load refcounts for ZFS features from disk into an in-memory
2505		 * cache during SPA initialization.
2506		 */
2507		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2508			uint64_t refcount;
2509
2510			error = feature_get_refcount_from_disk(spa,
2511			    &spa_feature_table[i], &refcount);
2512			if (error == 0) {
2513				spa->spa_feat_refcount_cache[i] = refcount;
2514			} else if (error == ENOTSUP) {
2515				spa->spa_feat_refcount_cache[i] =
2516				    SPA_FEATURE_DISABLED;
2517			} else {
2518				return (spa_vdev_err(rvd,
2519				    VDEV_AUX_CORRUPT_DATA, EIO));
2520			}
2521		}
2522	}
2523
2524	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2525		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2526		    &spa->spa_feat_enabled_txg_obj) != 0)
2527			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2528	}
2529
2530	spa->spa_is_initializing = B_TRUE;
2531	error = dsl_pool_open(spa->spa_dsl_pool);
2532	spa->spa_is_initializing = B_FALSE;
2533	if (error != 0)
2534		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2535
2536	if (!mosconfig) {
2537		uint64_t hostid;
2538		nvlist_t *policy = NULL, *nvconfig;
2539
2540		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2541			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2542
2543		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2544		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2545			char *hostname;
2546			unsigned long myhostid = 0;
2547
2548			VERIFY(nvlist_lookup_string(nvconfig,
2549			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2550
2551#ifdef	_KERNEL
2552			myhostid = zone_get_hostid(NULL);
2553#else	/* _KERNEL */
2554			/*
2555			 * We're emulating the system's hostid in userland, so
2556			 * we can't use zone_get_hostid().
2557			 */
2558			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2559#endif	/* _KERNEL */
2560			if (check_hostid && hostid != 0 && myhostid != 0 &&
2561			    hostid != myhostid) {
2562				nvlist_free(nvconfig);
2563				cmn_err(CE_WARN, "pool '%s' could not be "
2564				    "loaded as it was last accessed by "
2565				    "another system (host: %s hostid: 0x%lx). "
2566				    "See: http://illumos.org/msg/ZFS-8000-EY",
2567				    spa_name(spa), hostname,
2568				    (unsigned long)hostid);
2569				return (SET_ERROR(EBADF));
2570			}
2571		}
2572		if (nvlist_lookup_nvlist(spa->spa_config,
2573		    ZPOOL_REWIND_POLICY, &policy) == 0)
2574			VERIFY(nvlist_add_nvlist(nvconfig,
2575			    ZPOOL_REWIND_POLICY, policy) == 0);
2576
2577		spa_config_set(spa, nvconfig);
2578		spa_unload(spa);
2579		spa_deactivate(spa);
2580		spa_activate(spa, orig_mode);
2581
2582		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2583	}
2584
2585	/* Grab the secret checksum salt from the MOS. */
2586	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2587	    DMU_POOL_CHECKSUM_SALT, 1,
2588	    sizeof (spa->spa_cksum_salt.zcs_bytes),
2589	    spa->spa_cksum_salt.zcs_bytes);
2590	if (error == ENOENT) {
2591		/* Generate a new salt for subsequent use */
2592		(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
2593		    sizeof (spa->spa_cksum_salt.zcs_bytes));
2594	} else if (error != 0) {
2595		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2596	}
2597
2598	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2599		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2600	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2601	if (error != 0)
2602		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2603
2604	/*
2605	 * Load the bit that tells us to use the new accounting function
2606	 * (raid-z deflation).  If we have an older pool, this will not
2607	 * be present.
2608	 */
2609	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2610	if (error != 0 && error != ENOENT)
2611		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2612
2613	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2614	    &spa->spa_creation_version);
2615	if (error != 0 && error != ENOENT)
2616		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2617
2618	/*
2619	 * Load the persistent error log.  If we have an older pool, this will
2620	 * not be present.
2621	 */
2622	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2623	if (error != 0 && error != ENOENT)
2624		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2625
2626	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2627	    &spa->spa_errlog_scrub);
2628	if (error != 0 && error != ENOENT)
2629		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2630
2631	/*
2632	 * Load the history object.  If we have an older pool, this
2633	 * will not be present.
2634	 */
2635	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2636	if (error != 0 && error != ENOENT)
2637		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2638
2639	/*
2640	 * If we're assembling the pool from the split-off vdevs of
2641	 * an existing pool, we don't want to attach the spares & cache
2642	 * devices.
2643	 */
2644
2645	/*
2646	 * Load any hot spares for this pool.
2647	 */
2648	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2649	if (error != 0 && error != ENOENT)
2650		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2651	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2652		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2653		if (load_nvlist(spa, spa->spa_spares.sav_object,
2654		    &spa->spa_spares.sav_config) != 0)
2655			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2656
2657		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2658		spa_load_spares(spa);
2659		spa_config_exit(spa, SCL_ALL, FTAG);
2660	} else if (error == 0) {
2661		spa->spa_spares.sav_sync = B_TRUE;
2662	}
2663
2664	/*
2665	 * Load any level 2 ARC devices for this pool.
2666	 */
2667	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2668	    &spa->spa_l2cache.sav_object);
2669	if (error != 0 && error != ENOENT)
2670		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2671	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2672		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2673		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2674		    &spa->spa_l2cache.sav_config) != 0)
2675			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2676
2677		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2678		spa_load_l2cache(spa);
2679		spa_config_exit(spa, SCL_ALL, FTAG);
2680	} else if (error == 0) {
2681		spa->spa_l2cache.sav_sync = B_TRUE;
2682	}
2683
2684	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2685
2686	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2687	if (error && error != ENOENT)
2688		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2689
2690	if (error == 0) {
2691		uint64_t autoreplace;
2692
2693		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2694		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2695		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2696		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2697		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2698		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2699		    &spa->spa_dedup_ditto);
2700
2701		spa->spa_autoreplace = (autoreplace != 0);
2702	}
2703
2704	/*
2705	 * If the 'autoreplace' property is set, then post a resource notifying
2706	 * the ZFS DE that it should not issue any faults for unopenable
2707	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2708	 * unopenable vdevs so that the normal autoreplace handler can take
2709	 * over.
2710	 */
2711	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2712		spa_check_removed(spa->spa_root_vdev);
2713		/*
2714		 * For the import case, this is done in spa_import(), because
2715		 * at this point we're using the spare definitions from
2716		 * the MOS config, not necessarily from the userland config.
2717		 */
2718		if (state != SPA_LOAD_IMPORT) {
2719			spa_aux_check_removed(&spa->spa_spares);
2720			spa_aux_check_removed(&spa->spa_l2cache);
2721		}
2722	}
2723
2724	/*
2725	 * Load the vdev state for all toplevel vdevs.
2726	 */
2727	vdev_load(rvd);
2728
2729	/*
2730	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2731	 */
2732	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2733	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2734	spa_config_exit(spa, SCL_ALL, FTAG);
2735
2736	/*
2737	 * Load the DDTs (dedup tables).
2738	 */
2739	error = ddt_load(spa);
2740	if (error != 0)
2741		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2742
2743	spa_update_dspace(spa);
2744
2745	/*
2746	 * Validate the config, using the MOS config to fill in any
2747	 * information which might be missing.  If we fail to validate
2748	 * the config then declare the pool unfit for use. If we're
2749	 * assembling a pool from a split, the log is not transferred
2750	 * over.
2751	 */
2752	if (type != SPA_IMPORT_ASSEMBLE) {
2753		nvlist_t *nvconfig;
2754
2755		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2756			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2757
2758		if (!spa_config_valid(spa, nvconfig)) {
2759			nvlist_free(nvconfig);
2760			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2761			    ENXIO));
2762		}
2763		nvlist_free(nvconfig);
2764
2765		/*
2766		 * Now that we've validated the config, check the state of the
2767		 * root vdev.  If it can't be opened, it indicates one or
2768		 * more toplevel vdevs are faulted.
2769		 */
2770		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2771			return (SET_ERROR(ENXIO));
2772
2773		if (spa_writeable(spa) && spa_check_logs(spa)) {
2774			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2775			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2776		}
2777	}
2778
2779	if (missing_feat_write) {
2780		ASSERT(state == SPA_LOAD_TRYIMPORT);
2781
2782		/*
2783		 * At this point, we know that we can open the pool in
2784		 * read-only mode but not read-write mode. We now have enough
2785		 * information and can return to userland.
2786		 */
2787		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2788	}
2789
2790	/*
2791	 * We've successfully opened the pool, verify that we're ready
2792	 * to start pushing transactions.
2793	 */
2794	if (state != SPA_LOAD_TRYIMPORT) {
2795		if (error = spa_load_verify(spa))
2796			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2797			    error));
2798	}
2799
2800	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2801	    spa->spa_load_max_txg == UINT64_MAX)) {
2802		dmu_tx_t *tx;
2803		int need_update = B_FALSE;
2804		dsl_pool_t *dp = spa_get_dsl(spa);
2805
2806		ASSERT(state != SPA_LOAD_TRYIMPORT);
2807
2808		/*
2809		 * Claim log blocks that haven't been committed yet.
2810		 * This must all happen in a single txg.
2811		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2812		 * invoked from zil_claim_log_block()'s i/o done callback.
2813		 * Price of rollback is that we abandon the log.
2814		 */
2815		spa->spa_claiming = B_TRUE;
2816
2817		tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2818		(void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2819		    zil_claim, tx, DS_FIND_CHILDREN);
2820		dmu_tx_commit(tx);
2821
2822		spa->spa_claiming = B_FALSE;
2823
2824		spa_set_log_state(spa, SPA_LOG_GOOD);
2825		spa->spa_sync_on = B_TRUE;
2826		txg_sync_start(spa->spa_dsl_pool);
2827
2828		/*
2829		 * Wait for all claims to sync.  We sync up to the highest
2830		 * claimed log block birth time so that claimed log blocks
2831		 * don't appear to be from the future.  spa_claim_max_txg
2832		 * will have been set for us by either zil_check_log_chain()
2833		 * (invoked from spa_check_logs()) or zil_claim() above.
2834		 */
2835		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2836
2837		/*
2838		 * If the config cache is stale, or we have uninitialized
2839		 * metaslabs (see spa_vdev_add()), then update the config.
2840		 *
2841		 * If this is a verbatim import, trust the current
2842		 * in-core spa_config and update the disk labels.
2843		 */
2844		if (config_cache_txg != spa->spa_config_txg ||
2845		    state == SPA_LOAD_IMPORT ||
2846		    state == SPA_LOAD_RECOVER ||
2847		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2848			need_update = B_TRUE;
2849
2850		for (int c = 0; c < rvd->vdev_children; c++)
2851			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2852				need_update = B_TRUE;
2853
2854		/*
2855		 * Update the config cache asychronously in case we're the
2856		 * root pool, in which case the config cache isn't writable yet.
2857		 */
2858		if (need_update)
2859			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2860
2861		/*
2862		 * Check all DTLs to see if anything needs resilvering.
2863		 */
2864		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2865		    vdev_resilver_needed(rvd, NULL, NULL))
2866			spa_async_request(spa, SPA_ASYNC_RESILVER);
2867
2868		/*
2869		 * Log the fact that we booted up (so that we can detect if
2870		 * we rebooted in the middle of an operation).
2871		 */
2872		spa_history_log_version(spa, "open");
2873
2874		/*
2875		 * Delete any inconsistent datasets.
2876		 */
2877		(void) dmu_objset_find(spa_name(spa),
2878		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2879
2880		/*
2881		 * Clean up any stale temporary dataset userrefs.
2882		 */
2883		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2884	}
2885
2886	return (0);
2887}
2888
2889static int
2890spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2891{
2892	int mode = spa->spa_mode;
2893
2894	spa_unload(spa);
2895	spa_deactivate(spa);
2896
2897	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2898
2899	spa_activate(spa, mode);
2900	spa_async_suspend(spa);
2901
2902	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2903}
2904
2905/*
2906 * If spa_load() fails this function will try loading prior txg's. If
2907 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2908 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2909 * function will not rewind the pool and will return the same error as
2910 * spa_load().
2911 */
2912static int
2913spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2914    uint64_t max_request, int rewind_flags)
2915{
2916	nvlist_t *loadinfo = NULL;
2917	nvlist_t *config = NULL;
2918	int load_error, rewind_error;
2919	uint64_t safe_rewind_txg;
2920	uint64_t min_txg;
2921
2922	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2923		spa->spa_load_max_txg = spa->spa_load_txg;
2924		spa_set_log_state(spa, SPA_LOG_CLEAR);
2925	} else {
2926		spa->spa_load_max_txg = max_request;
2927		if (max_request != UINT64_MAX)
2928			spa->spa_extreme_rewind = B_TRUE;
2929	}
2930
2931	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2932	    mosconfig);
2933	if (load_error == 0)
2934		return (0);
2935
2936	if (spa->spa_root_vdev != NULL)
2937		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2938
2939	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2940	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2941
2942	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2943		nvlist_free(config);
2944		return (load_error);
2945	}
2946
2947	if (state == SPA_LOAD_RECOVER) {
2948		/* Price of rolling back is discarding txgs, including log */
2949		spa_set_log_state(spa, SPA_LOG_CLEAR);
2950	} else {
2951		/*
2952		 * If we aren't rolling back save the load info from our first
2953		 * import attempt so that we can restore it after attempting
2954		 * to rewind.
2955		 */
2956		loadinfo = spa->spa_load_info;
2957		spa->spa_load_info = fnvlist_alloc();
2958	}
2959
2960	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2961	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2962	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2963	    TXG_INITIAL : safe_rewind_txg;
2964
2965	/*
2966	 * Continue as long as we're finding errors, we're still within
2967	 * the acceptable rewind range, and we're still finding uberblocks
2968	 */
2969	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2970	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2971		if (spa->spa_load_max_txg < safe_rewind_txg)
2972			spa->spa_extreme_rewind = B_TRUE;
2973		rewind_error = spa_load_retry(spa, state, mosconfig);
2974	}
2975
2976	spa->spa_extreme_rewind = B_FALSE;
2977	spa->spa_load_max_txg = UINT64_MAX;
2978
2979	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2980		spa_config_set(spa, config);
2981
2982	if (state == SPA_LOAD_RECOVER) {
2983		ASSERT3P(loadinfo, ==, NULL);
2984		return (rewind_error);
2985	} else {
2986		/* Store the rewind info as part of the initial load info */
2987		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2988		    spa->spa_load_info);
2989
2990		/* Restore the initial load info */
2991		fnvlist_free(spa->spa_load_info);
2992		spa->spa_load_info = loadinfo;
2993
2994		return (load_error);
2995	}
2996}
2997
2998/*
2999 * Pool Open/Import
3000 *
3001 * The import case is identical to an open except that the configuration is sent
3002 * down from userland, instead of grabbed from the configuration cache.  For the
3003 * case of an open, the pool configuration will exist in the
3004 * POOL_STATE_UNINITIALIZED state.
3005 *
3006 * The stats information (gen/count/ustats) is used to gather vdev statistics at
3007 * the same time open the pool, without having to keep around the spa_t in some
3008 * ambiguous state.
3009 */
3010static int
3011spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
3012    nvlist_t **config)
3013{
3014	spa_t *spa;
3015	spa_load_state_t state = SPA_LOAD_OPEN;
3016	int error;
3017	int locked = B_FALSE;
3018	int firstopen = B_FALSE;
3019
3020	*spapp = NULL;
3021
3022	/*
3023	 * As disgusting as this is, we need to support recursive calls to this
3024	 * function because dsl_dir_open() is called during spa_load(), and ends
3025	 * up calling spa_open() again.  The real fix is to figure out how to
3026	 * avoid dsl_dir_open() calling this in the first place.
3027	 */
3028	if (mutex_owner(&spa_namespace_lock) != curthread) {
3029		mutex_enter(&spa_namespace_lock);
3030		locked = B_TRUE;
3031	}
3032
3033	if ((spa = spa_lookup(pool)) == NULL) {
3034		if (locked)
3035			mutex_exit(&spa_namespace_lock);
3036		return (SET_ERROR(ENOENT));
3037	}
3038
3039	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3040		zpool_rewind_policy_t policy;
3041
3042		firstopen = B_TRUE;
3043
3044		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3045		    &policy);
3046		if (policy.zrp_request & ZPOOL_DO_REWIND)
3047			state = SPA_LOAD_RECOVER;
3048
3049		spa_activate(spa, spa_mode_global);
3050
3051		if (state != SPA_LOAD_RECOVER)
3052			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3053
3054		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3055		    policy.zrp_request);
3056
3057		if (error == EBADF) {
3058			/*
3059			 * If vdev_validate() returns failure (indicated by
3060			 * EBADF), it indicates that one of the vdevs indicates
3061			 * that the pool has been exported or destroyed.  If
3062			 * this is the case, the config cache is out of sync and
3063			 * we should remove the pool from the namespace.
3064			 */
3065			spa_unload(spa);
3066			spa_deactivate(spa);
3067			spa_config_sync(spa, B_TRUE, B_TRUE);
3068			spa_remove(spa);
3069			if (locked)
3070				mutex_exit(&spa_namespace_lock);
3071			return (SET_ERROR(ENOENT));
3072		}
3073
3074		if (error) {
3075			/*
3076			 * We can't open the pool, but we still have useful
3077			 * information: the state of each vdev after the
3078			 * attempted vdev_open().  Return this to the user.
3079			 */
3080			if (config != NULL && spa->spa_config) {
3081				VERIFY(nvlist_dup(spa->spa_config, config,
3082				    KM_SLEEP) == 0);
3083				VERIFY(nvlist_add_nvlist(*config,
3084				    ZPOOL_CONFIG_LOAD_INFO,
3085				    spa->spa_load_info) == 0);
3086			}
3087			spa_unload(spa);
3088			spa_deactivate(spa);
3089			spa->spa_last_open_failed = error;
3090			if (locked)
3091				mutex_exit(&spa_namespace_lock);
3092			*spapp = NULL;
3093			return (error);
3094		}
3095	}
3096
3097	spa_open_ref(spa, tag);
3098
3099	if (config != NULL)
3100		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3101
3102	/*
3103	 * If we've recovered the pool, pass back any information we
3104	 * gathered while doing the load.
3105	 */
3106	if (state == SPA_LOAD_RECOVER) {
3107		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3108		    spa->spa_load_info) == 0);
3109	}
3110
3111	if (locked) {
3112		spa->spa_last_open_failed = 0;
3113		spa->spa_last_ubsync_txg = 0;
3114		spa->spa_load_txg = 0;
3115		mutex_exit(&spa_namespace_lock);
3116#ifdef __FreeBSD__
3117#ifdef _KERNEL
3118		if (firstopen)
3119			zvol_create_minors(spa->spa_name);
3120#endif
3121#endif
3122	}
3123
3124	*spapp = spa;
3125
3126	return (0);
3127}
3128
3129int
3130spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3131    nvlist_t **config)
3132{
3133	return (spa_open_common(name, spapp, tag, policy, config));
3134}
3135
3136int
3137spa_open(const char *name, spa_t **spapp, void *tag)
3138{
3139	return (spa_open_common(name, spapp, tag, NULL, NULL));
3140}
3141
3142/*
3143 * Lookup the given spa_t, incrementing the inject count in the process,
3144 * preventing it from being exported or destroyed.
3145 */
3146spa_t *
3147spa_inject_addref(char *name)
3148{
3149	spa_t *spa;
3150
3151	mutex_enter(&spa_namespace_lock);
3152	if ((spa = spa_lookup(name)) == NULL) {
3153		mutex_exit(&spa_namespace_lock);
3154		return (NULL);
3155	}
3156	spa->spa_inject_ref++;
3157	mutex_exit(&spa_namespace_lock);
3158
3159	return (spa);
3160}
3161
3162void
3163spa_inject_delref(spa_t *spa)
3164{
3165	mutex_enter(&spa_namespace_lock);
3166	spa->spa_inject_ref--;
3167	mutex_exit(&spa_namespace_lock);
3168}
3169
3170/*
3171 * Add spares device information to the nvlist.
3172 */
3173static void
3174spa_add_spares(spa_t *spa, nvlist_t *config)
3175{
3176	nvlist_t **spares;
3177	uint_t i, nspares;
3178	nvlist_t *nvroot;
3179	uint64_t guid;
3180	vdev_stat_t *vs;
3181	uint_t vsc;
3182	uint64_t pool;
3183
3184	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3185
3186	if (spa->spa_spares.sav_count == 0)
3187		return;
3188
3189	VERIFY(nvlist_lookup_nvlist(config,
3190	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3191	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3192	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3193	if (nspares != 0) {
3194		VERIFY(nvlist_add_nvlist_array(nvroot,
3195		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3196		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3197		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3198
3199		/*
3200		 * Go through and find any spares which have since been
3201		 * repurposed as an active spare.  If this is the case, update
3202		 * their status appropriately.
3203		 */
3204		for (i = 0; i < nspares; i++) {
3205			VERIFY(nvlist_lookup_uint64(spares[i],
3206			    ZPOOL_CONFIG_GUID, &guid) == 0);
3207			if (spa_spare_exists(guid, &pool, NULL) &&
3208			    pool != 0ULL) {
3209				VERIFY(nvlist_lookup_uint64_array(
3210				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3211				    (uint64_t **)&vs, &vsc) == 0);
3212				vs->vs_state = VDEV_STATE_CANT_OPEN;
3213				vs->vs_aux = VDEV_AUX_SPARED;
3214			}
3215		}
3216	}
3217}
3218
3219/*
3220 * Add l2cache device information to the nvlist, including vdev stats.
3221 */
3222static void
3223spa_add_l2cache(spa_t *spa, nvlist_t *config)
3224{
3225	nvlist_t **l2cache;
3226	uint_t i, j, nl2cache;
3227	nvlist_t *nvroot;
3228	uint64_t guid;
3229	vdev_t *vd;
3230	vdev_stat_t *vs;
3231	uint_t vsc;
3232
3233	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3234
3235	if (spa->spa_l2cache.sav_count == 0)
3236		return;
3237
3238	VERIFY(nvlist_lookup_nvlist(config,
3239	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3240	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3241	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3242	if (nl2cache != 0) {
3243		VERIFY(nvlist_add_nvlist_array(nvroot,
3244		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3245		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3246		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3247
3248		/*
3249		 * Update level 2 cache device stats.
3250		 */
3251
3252		for (i = 0; i < nl2cache; i++) {
3253			VERIFY(nvlist_lookup_uint64(l2cache[i],
3254			    ZPOOL_CONFIG_GUID, &guid) == 0);
3255
3256			vd = NULL;
3257			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3258				if (guid ==
3259				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3260					vd = spa->spa_l2cache.sav_vdevs[j];
3261					break;
3262				}
3263			}
3264			ASSERT(vd != NULL);
3265
3266			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3267			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3268			    == 0);
3269			vdev_get_stats(vd, vs);
3270		}
3271	}
3272}
3273
3274static void
3275spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3276{
3277	nvlist_t *features;
3278	zap_cursor_t zc;
3279	zap_attribute_t za;
3280
3281	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3282	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3283
3284	/* We may be unable to read features if pool is suspended. */
3285	if (spa_suspended(spa))
3286		goto out;
3287
3288	if (spa->spa_feat_for_read_obj != 0) {
3289		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3290		    spa->spa_feat_for_read_obj);
3291		    zap_cursor_retrieve(&zc, &za) == 0;
3292		    zap_cursor_advance(&zc)) {
3293			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3294			    za.za_num_integers == 1);
3295			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3296			    za.za_first_integer));
3297		}
3298		zap_cursor_fini(&zc);
3299	}
3300
3301	if (spa->spa_feat_for_write_obj != 0) {
3302		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3303		    spa->spa_feat_for_write_obj);
3304		    zap_cursor_retrieve(&zc, &za) == 0;
3305		    zap_cursor_advance(&zc)) {
3306			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3307			    za.za_num_integers == 1);
3308			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3309			    za.za_first_integer));
3310		}
3311		zap_cursor_fini(&zc);
3312	}
3313
3314out:
3315	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3316	    features) == 0);
3317	nvlist_free(features);
3318}
3319
3320int
3321spa_get_stats(const char *name, nvlist_t **config,
3322    char *altroot, size_t buflen)
3323{
3324	int error;
3325	spa_t *spa;
3326
3327	*config = NULL;
3328	error = spa_open_common(name, &spa, FTAG, NULL, config);
3329
3330	if (spa != NULL) {
3331		/*
3332		 * This still leaves a window of inconsistency where the spares
3333		 * or l2cache devices could change and the config would be
3334		 * self-inconsistent.
3335		 */
3336		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3337
3338		if (*config != NULL) {
3339			uint64_t loadtimes[2];
3340
3341			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3342			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3343			VERIFY(nvlist_add_uint64_array(*config,
3344			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3345
3346			VERIFY(nvlist_add_uint64(*config,
3347			    ZPOOL_CONFIG_ERRCOUNT,
3348			    spa_get_errlog_size(spa)) == 0);
3349
3350			if (spa_suspended(spa))
3351				VERIFY(nvlist_add_uint64(*config,
3352				    ZPOOL_CONFIG_SUSPENDED,
3353				    spa->spa_failmode) == 0);
3354
3355			spa_add_spares(spa, *config);
3356			spa_add_l2cache(spa, *config);
3357			spa_add_feature_stats(spa, *config);
3358		}
3359	}
3360
3361	/*
3362	 * We want to get the alternate root even for faulted pools, so we cheat
3363	 * and call spa_lookup() directly.
3364	 */
3365	if (altroot) {
3366		if (spa == NULL) {
3367			mutex_enter(&spa_namespace_lock);
3368			spa = spa_lookup(name);
3369			if (spa)
3370				spa_altroot(spa, altroot, buflen);
3371			else
3372				altroot[0] = '\0';
3373			spa = NULL;
3374			mutex_exit(&spa_namespace_lock);
3375		} else {
3376			spa_altroot(spa, altroot, buflen);
3377		}
3378	}
3379
3380	if (spa != NULL) {
3381		spa_config_exit(spa, SCL_CONFIG, FTAG);
3382		spa_close(spa, FTAG);
3383	}
3384
3385	return (error);
3386}
3387
3388/*
3389 * Validate that the auxiliary device array is well formed.  We must have an
3390 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3391 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3392 * specified, as long as they are well-formed.
3393 */
3394static int
3395spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3396    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3397    vdev_labeltype_t label)
3398{
3399	nvlist_t **dev;
3400	uint_t i, ndev;
3401	vdev_t *vd;
3402	int error;
3403
3404	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3405
3406	/*
3407	 * It's acceptable to have no devs specified.
3408	 */
3409	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3410		return (0);
3411
3412	if (ndev == 0)
3413		return (SET_ERROR(EINVAL));
3414
3415	/*
3416	 * Make sure the pool is formatted with a version that supports this
3417	 * device type.
3418	 */
3419	if (spa_version(spa) < version)
3420		return (SET_ERROR(ENOTSUP));
3421
3422	/*
3423	 * Set the pending device list so we correctly handle device in-use
3424	 * checking.
3425	 */
3426	sav->sav_pending = dev;
3427	sav->sav_npending = ndev;
3428
3429	for (i = 0; i < ndev; i++) {
3430		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3431		    mode)) != 0)
3432			goto out;
3433
3434		if (!vd->vdev_ops->vdev_op_leaf) {
3435			vdev_free(vd);
3436			error = SET_ERROR(EINVAL);
3437			goto out;
3438		}
3439
3440		/*
3441		 * The L2ARC currently only supports disk devices in
3442		 * kernel context.  For user-level testing, we allow it.
3443		 */
3444#ifdef _KERNEL
3445		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3446		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3447			error = SET_ERROR(ENOTBLK);
3448			vdev_free(vd);
3449			goto out;
3450		}
3451#endif
3452		vd->vdev_top = vd;
3453
3454		if ((error = vdev_open(vd)) == 0 &&
3455		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3456			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3457			    vd->vdev_guid) == 0);
3458		}
3459
3460		vdev_free(vd);
3461
3462		if (error &&
3463		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3464			goto out;
3465		else
3466			error = 0;
3467	}
3468
3469out:
3470	sav->sav_pending = NULL;
3471	sav->sav_npending = 0;
3472	return (error);
3473}
3474
3475static int
3476spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3477{
3478	int error;
3479
3480	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3481
3482	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3483	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3484	    VDEV_LABEL_SPARE)) != 0) {
3485		return (error);
3486	}
3487
3488	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3489	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3490	    VDEV_LABEL_L2CACHE));
3491}
3492
3493static void
3494spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3495    const char *config)
3496{
3497	int i;
3498
3499	if (sav->sav_config != NULL) {
3500		nvlist_t **olddevs;
3501		uint_t oldndevs;
3502		nvlist_t **newdevs;
3503
3504		/*
3505		 * Generate new dev list by concatentating with the
3506		 * current dev list.
3507		 */
3508		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3509		    &olddevs, &oldndevs) == 0);
3510
3511		newdevs = kmem_alloc(sizeof (void *) *
3512		    (ndevs + oldndevs), KM_SLEEP);
3513		for (i = 0; i < oldndevs; i++)
3514			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3515			    KM_SLEEP) == 0);
3516		for (i = 0; i < ndevs; i++)
3517			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3518			    KM_SLEEP) == 0);
3519
3520		VERIFY(nvlist_remove(sav->sav_config, config,
3521		    DATA_TYPE_NVLIST_ARRAY) == 0);
3522
3523		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3524		    config, newdevs, ndevs + oldndevs) == 0);
3525		for (i = 0; i < oldndevs + ndevs; i++)
3526			nvlist_free(newdevs[i]);
3527		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3528	} else {
3529		/*
3530		 * Generate a new dev list.
3531		 */
3532		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3533		    KM_SLEEP) == 0);
3534		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3535		    devs, ndevs) == 0);
3536	}
3537}
3538
3539/*
3540 * Stop and drop level 2 ARC devices
3541 */
3542void
3543spa_l2cache_drop(spa_t *spa)
3544{
3545	vdev_t *vd;
3546	int i;
3547	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3548
3549	for (i = 0; i < sav->sav_count; i++) {
3550		uint64_t pool;
3551
3552		vd = sav->sav_vdevs[i];
3553		ASSERT(vd != NULL);
3554
3555		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3556		    pool != 0ULL && l2arc_vdev_present(vd))
3557			l2arc_remove_vdev(vd);
3558	}
3559}
3560
3561/*
3562 * Pool Creation
3563 */
3564int
3565spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3566    nvlist_t *zplprops)
3567{
3568	spa_t *spa;
3569	char *altroot = NULL;
3570	vdev_t *rvd;
3571	dsl_pool_t *dp;
3572	dmu_tx_t *tx;
3573	int error = 0;
3574	uint64_t txg = TXG_INITIAL;
3575	nvlist_t **spares, **l2cache;
3576	uint_t nspares, nl2cache;
3577	uint64_t version, obj;
3578	boolean_t has_features;
3579
3580	/*
3581	 * If this pool already exists, return failure.
3582	 */
3583	mutex_enter(&spa_namespace_lock);
3584	if (spa_lookup(pool) != NULL) {
3585		mutex_exit(&spa_namespace_lock);
3586		return (SET_ERROR(EEXIST));
3587	}
3588
3589	/*
3590	 * Allocate a new spa_t structure.
3591	 */
3592	(void) nvlist_lookup_string(props,
3593	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3594	spa = spa_add(pool, NULL, altroot);
3595	spa_activate(spa, spa_mode_global);
3596
3597	if (props && (error = spa_prop_validate(spa, props))) {
3598		spa_deactivate(spa);
3599		spa_remove(spa);
3600		mutex_exit(&spa_namespace_lock);
3601		return (error);
3602	}
3603
3604	has_features = B_FALSE;
3605	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3606	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3607		if (zpool_prop_feature(nvpair_name(elem)))
3608			has_features = B_TRUE;
3609	}
3610
3611	if (has_features || nvlist_lookup_uint64(props,
3612	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3613		version = SPA_VERSION;
3614	}
3615	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3616
3617	spa->spa_first_txg = txg;
3618	spa->spa_uberblock.ub_txg = txg - 1;
3619	spa->spa_uberblock.ub_version = version;
3620	spa->spa_ubsync = spa->spa_uberblock;
3621
3622	/*
3623	 * Create "The Godfather" zio to hold all async IOs
3624	 */
3625	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3626	    KM_SLEEP);
3627	for (int i = 0; i < max_ncpus; i++) {
3628		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3629		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3630		    ZIO_FLAG_GODFATHER);
3631	}
3632
3633	/*
3634	 * Create the root vdev.
3635	 */
3636	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3637
3638	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3639
3640	ASSERT(error != 0 || rvd != NULL);
3641	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3642
3643	if (error == 0 && !zfs_allocatable_devs(nvroot))
3644		error = SET_ERROR(EINVAL);
3645
3646	if (error == 0 &&
3647	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3648	    (error = spa_validate_aux(spa, nvroot, txg,
3649	    VDEV_ALLOC_ADD)) == 0) {
3650		for (int c = 0; c < rvd->vdev_children; c++) {
3651			vdev_ashift_optimize(rvd->vdev_child[c]);
3652			vdev_metaslab_set_size(rvd->vdev_child[c]);
3653			vdev_expand(rvd->vdev_child[c], txg);
3654		}
3655	}
3656
3657	spa_config_exit(spa, SCL_ALL, FTAG);
3658
3659	if (error != 0) {
3660		spa_unload(spa);
3661		spa_deactivate(spa);
3662		spa_remove(spa);
3663		mutex_exit(&spa_namespace_lock);
3664		return (error);
3665	}
3666
3667	/*
3668	 * Get the list of spares, if specified.
3669	 */
3670	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3671	    &spares, &nspares) == 0) {
3672		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3673		    KM_SLEEP) == 0);
3674		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3675		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3676		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3677		spa_load_spares(spa);
3678		spa_config_exit(spa, SCL_ALL, FTAG);
3679		spa->spa_spares.sav_sync = B_TRUE;
3680	}
3681
3682	/*
3683	 * Get the list of level 2 cache devices, if specified.
3684	 */
3685	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3686	    &l2cache, &nl2cache) == 0) {
3687		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3688		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3689		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3690		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3691		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3692		spa_load_l2cache(spa);
3693		spa_config_exit(spa, SCL_ALL, FTAG);
3694		spa->spa_l2cache.sav_sync = B_TRUE;
3695	}
3696
3697	spa->spa_is_initializing = B_TRUE;
3698	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3699	spa->spa_meta_objset = dp->dp_meta_objset;
3700	spa->spa_is_initializing = B_FALSE;
3701
3702	/*
3703	 * Create DDTs (dedup tables).
3704	 */
3705	ddt_create(spa);
3706
3707	spa_update_dspace(spa);
3708
3709	tx = dmu_tx_create_assigned(dp, txg);
3710
3711	/*
3712	 * Create the pool config object.
3713	 */
3714	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3715	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3716	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3717
3718	if (zap_add(spa->spa_meta_objset,
3719	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3720	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3721		cmn_err(CE_PANIC, "failed to add pool config");
3722	}
3723
3724	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3725		spa_feature_create_zap_objects(spa, tx);
3726
3727	if (zap_add(spa->spa_meta_objset,
3728	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3729	    sizeof (uint64_t), 1, &version, tx) != 0) {
3730		cmn_err(CE_PANIC, "failed to add pool version");
3731	}
3732
3733	/* Newly created pools with the right version are always deflated. */
3734	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3735		spa->spa_deflate = TRUE;
3736		if (zap_add(spa->spa_meta_objset,
3737		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3738		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3739			cmn_err(CE_PANIC, "failed to add deflate");
3740		}
3741	}
3742
3743	/*
3744	 * Create the deferred-free bpobj.  Turn off compression
3745	 * because sync-to-convergence takes longer if the blocksize
3746	 * keeps changing.
3747	 */
3748	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3749	dmu_object_set_compress(spa->spa_meta_objset, obj,
3750	    ZIO_COMPRESS_OFF, tx);
3751	if (zap_add(spa->spa_meta_objset,
3752	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3753	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3754		cmn_err(CE_PANIC, "failed to add bpobj");
3755	}
3756	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3757	    spa->spa_meta_objset, obj));
3758
3759	/*
3760	 * Create the pool's history object.
3761	 */
3762	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3763		spa_history_create_obj(spa, tx);
3764
3765	/*
3766	 * Generate some random noise for salted checksums to operate on.
3767	 */
3768	(void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3769	    sizeof (spa->spa_cksum_salt.zcs_bytes));
3770
3771	/*
3772	 * Set pool properties.
3773	 */
3774	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3775	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3776	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3777	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3778
3779	if (props != NULL) {
3780		spa_configfile_set(spa, props, B_FALSE);
3781		spa_sync_props(props, tx);
3782	}
3783
3784	dmu_tx_commit(tx);
3785
3786	spa->spa_sync_on = B_TRUE;
3787	txg_sync_start(spa->spa_dsl_pool);
3788
3789	/*
3790	 * We explicitly wait for the first transaction to complete so that our
3791	 * bean counters are appropriately updated.
3792	 */
3793	txg_wait_synced(spa->spa_dsl_pool, txg);
3794
3795	spa_config_sync(spa, B_FALSE, B_TRUE);
3796	spa_event_notify(spa, NULL, ESC_ZFS_POOL_CREATE);
3797
3798	spa_history_log_version(spa, "create");
3799
3800	/*
3801	 * Don't count references from objsets that are already closed
3802	 * and are making their way through the eviction process.
3803	 */
3804	spa_evicting_os_wait(spa);
3805	spa->spa_minref = refcount_count(&spa->spa_refcount);
3806
3807	mutex_exit(&spa_namespace_lock);
3808
3809	return (0);
3810}
3811
3812#ifdef _KERNEL
3813#ifdef illumos
3814/*
3815 * Get the root pool information from the root disk, then import the root pool
3816 * during the system boot up time.
3817 */
3818extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3819
3820static nvlist_t *
3821spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3822{
3823	nvlist_t *config;
3824	nvlist_t *nvtop, *nvroot;
3825	uint64_t pgid;
3826
3827	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3828		return (NULL);
3829
3830	/*
3831	 * Add this top-level vdev to the child array.
3832	 */
3833	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3834	    &nvtop) == 0);
3835	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3836	    &pgid) == 0);
3837	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3838
3839	/*
3840	 * Put this pool's top-level vdevs into a root vdev.
3841	 */
3842	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3843	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3844	    VDEV_TYPE_ROOT) == 0);
3845	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3846	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3847	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3848	    &nvtop, 1) == 0);
3849
3850	/*
3851	 * Replace the existing vdev_tree with the new root vdev in
3852	 * this pool's configuration (remove the old, add the new).
3853	 */
3854	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3855	nvlist_free(nvroot);
3856	return (config);
3857}
3858
3859/*
3860 * Walk the vdev tree and see if we can find a device with "better"
3861 * configuration. A configuration is "better" if the label on that
3862 * device has a more recent txg.
3863 */
3864static void
3865spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3866{
3867	for (int c = 0; c < vd->vdev_children; c++)
3868		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3869
3870	if (vd->vdev_ops->vdev_op_leaf) {
3871		nvlist_t *label;
3872		uint64_t label_txg;
3873
3874		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3875		    &label) != 0)
3876			return;
3877
3878		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3879		    &label_txg) == 0);
3880
3881		/*
3882		 * Do we have a better boot device?
3883		 */
3884		if (label_txg > *txg) {
3885			*txg = label_txg;
3886			*avd = vd;
3887		}
3888		nvlist_free(label);
3889	}
3890}
3891
3892/*
3893 * Import a root pool.
3894 *
3895 * For x86. devpath_list will consist of devid and/or physpath name of
3896 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3897 * The GRUB "findroot" command will return the vdev we should boot.
3898 *
3899 * For Sparc, devpath_list consists the physpath name of the booting device
3900 * no matter the rootpool is a single device pool or a mirrored pool.
3901 * e.g.
3902 *	"/pci@1f,0/ide@d/disk@0,0:a"
3903 */
3904int
3905spa_import_rootpool(char *devpath, char *devid)
3906{
3907	spa_t *spa;
3908	vdev_t *rvd, *bvd, *avd = NULL;
3909	nvlist_t *config, *nvtop;
3910	uint64_t guid, txg;
3911	char *pname;
3912	int error;
3913
3914	/*
3915	 * Read the label from the boot device and generate a configuration.
3916	 */
3917	config = spa_generate_rootconf(devpath, devid, &guid);
3918#if defined(_OBP) && defined(_KERNEL)
3919	if (config == NULL) {
3920		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3921			/* iscsi boot */
3922			get_iscsi_bootpath_phy(devpath);
3923			config = spa_generate_rootconf(devpath, devid, &guid);
3924		}
3925	}
3926#endif
3927	if (config == NULL) {
3928		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3929		    devpath);
3930		return (SET_ERROR(EIO));
3931	}
3932
3933	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3934	    &pname) == 0);
3935	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3936
3937	mutex_enter(&spa_namespace_lock);
3938	if ((spa = spa_lookup(pname)) != NULL) {
3939		/*
3940		 * Remove the existing root pool from the namespace so that we
3941		 * can replace it with the correct config we just read in.
3942		 */
3943		spa_remove(spa);
3944	}
3945
3946	spa = spa_add(pname, config, NULL);
3947	spa->spa_is_root = B_TRUE;
3948	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3949
3950	/*
3951	 * Build up a vdev tree based on the boot device's label config.
3952	 */
3953	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3954	    &nvtop) == 0);
3955	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3956	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3957	    VDEV_ALLOC_ROOTPOOL);
3958	spa_config_exit(spa, SCL_ALL, FTAG);
3959	if (error) {
3960		mutex_exit(&spa_namespace_lock);
3961		nvlist_free(config);
3962		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3963		    pname);
3964		return (error);
3965	}
3966
3967	/*
3968	 * Get the boot vdev.
3969	 */
3970	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3971		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3972		    (u_longlong_t)guid);
3973		error = SET_ERROR(ENOENT);
3974		goto out;
3975	}
3976
3977	/*
3978	 * Determine if there is a better boot device.
3979	 */
3980	avd = bvd;
3981	spa_alt_rootvdev(rvd, &avd, &txg);
3982	if (avd != bvd) {
3983		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3984		    "try booting from '%s'", avd->vdev_path);
3985		error = SET_ERROR(EINVAL);
3986		goto out;
3987	}
3988
3989	/*
3990	 * If the boot device is part of a spare vdev then ensure that
3991	 * we're booting off the active spare.
3992	 */
3993	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3994	    !bvd->vdev_isspare) {
3995		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3996		    "try booting from '%s'",
3997		    bvd->vdev_parent->
3998		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3999		error = SET_ERROR(EINVAL);
4000		goto out;
4001	}
4002
4003	error = 0;
4004out:
4005	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4006	vdev_free(rvd);
4007	spa_config_exit(spa, SCL_ALL, FTAG);
4008	mutex_exit(&spa_namespace_lock);
4009
4010	nvlist_free(config);
4011	return (error);
4012}
4013
4014#else	/* !illumos */
4015
4016extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
4017    uint64_t *count);
4018
4019static nvlist_t *
4020spa_generate_rootconf(const char *name)
4021{
4022	nvlist_t **configs, **tops;
4023	nvlist_t *config;
4024	nvlist_t *best_cfg, *nvtop, *nvroot;
4025	uint64_t *holes;
4026	uint64_t best_txg;
4027	uint64_t nchildren;
4028	uint64_t pgid;
4029	uint64_t count;
4030	uint64_t i;
4031	uint_t   nholes;
4032
4033	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
4034		return (NULL);
4035
4036	ASSERT3U(count, !=, 0);
4037	best_txg = 0;
4038	for (i = 0; i < count; i++) {
4039		uint64_t txg;
4040
4041		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4042		    &txg) == 0);
4043		if (txg > best_txg) {
4044			best_txg = txg;
4045			best_cfg = configs[i];
4046		}
4047	}
4048
4049	nchildren = 1;
4050	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4051	holes = NULL;
4052	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4053	    &holes, &nholes);
4054
4055	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4056	for (i = 0; i < nchildren; i++) {
4057		if (i >= count)
4058			break;
4059		if (configs[i] == NULL)
4060			continue;
4061		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4062		    &nvtop) == 0);
4063		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4064	}
4065	for (i = 0; holes != NULL && i < nholes; i++) {
4066		if (i >= nchildren)
4067			continue;
4068		if (tops[holes[i]] != NULL)
4069			continue;
4070		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4071		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4072		    VDEV_TYPE_HOLE) == 0);
4073		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4074		    holes[i]) == 0);
4075		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4076		    0) == 0);
4077	}
4078	for (i = 0; i < nchildren; i++) {
4079		if (tops[i] != NULL)
4080			continue;
4081		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4082		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4083		    VDEV_TYPE_MISSING) == 0);
4084		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4085		    i) == 0);
4086		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4087		    0) == 0);
4088	}
4089
4090	/*
4091	 * Create pool config based on the best vdev config.
4092	 */
4093	nvlist_dup(best_cfg, &config, KM_SLEEP);
4094
4095	/*
4096	 * Put this pool's top-level vdevs into a root vdev.
4097	 */
4098	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4099	    &pgid) == 0);
4100	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4101	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4102	    VDEV_TYPE_ROOT) == 0);
4103	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4104	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4105	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4106	    tops, nchildren) == 0);
4107
4108	/*
4109	 * Replace the existing vdev_tree with the new root vdev in
4110	 * this pool's configuration (remove the old, add the new).
4111	 */
4112	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4113
4114	/*
4115	 * Drop vdev config elements that should not be present at pool level.
4116	 */
4117	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4118	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4119
4120	for (i = 0; i < count; i++)
4121		nvlist_free(configs[i]);
4122	kmem_free(configs, count * sizeof(void *));
4123	for (i = 0; i < nchildren; i++)
4124		nvlist_free(tops[i]);
4125	kmem_free(tops, nchildren * sizeof(void *));
4126	nvlist_free(nvroot);
4127	return (config);
4128}
4129
4130int
4131spa_import_rootpool(const char *name)
4132{
4133	spa_t *spa;
4134	vdev_t *rvd, *bvd, *avd = NULL;
4135	nvlist_t *config, *nvtop;
4136	uint64_t txg;
4137	char *pname;
4138	int error;
4139
4140	/*
4141	 * Read the label from the boot device and generate a configuration.
4142	 */
4143	config = spa_generate_rootconf(name);
4144
4145	mutex_enter(&spa_namespace_lock);
4146	if (config != NULL) {
4147		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4148		    &pname) == 0 && strcmp(name, pname) == 0);
4149		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4150		    == 0);
4151
4152		if ((spa = spa_lookup(pname)) != NULL) {
4153			/*
4154			 * Remove the existing root pool from the namespace so
4155			 * that we can replace it with the correct config
4156			 * we just read in.
4157			 */
4158			spa_remove(spa);
4159		}
4160		spa = spa_add(pname, config, NULL);
4161
4162		/*
4163		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4164		 * via spa_version().
4165		 */
4166		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4167		    &spa->spa_ubsync.ub_version) != 0)
4168			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4169	} else if ((spa = spa_lookup(name)) == NULL) {
4170		mutex_exit(&spa_namespace_lock);
4171		nvlist_free(config);
4172		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4173		    name);
4174		return (EIO);
4175	} else {
4176		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4177	}
4178	spa->spa_is_root = B_TRUE;
4179	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4180
4181	/*
4182	 * Build up a vdev tree based on the boot device's label config.
4183	 */
4184	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4185	    &nvtop) == 0);
4186	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4187	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4188	    VDEV_ALLOC_ROOTPOOL);
4189	spa_config_exit(spa, SCL_ALL, FTAG);
4190	if (error) {
4191		mutex_exit(&spa_namespace_lock);
4192		nvlist_free(config);
4193		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4194		    pname);
4195		return (error);
4196	}
4197
4198	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4199	vdev_free(rvd);
4200	spa_config_exit(spa, SCL_ALL, FTAG);
4201	mutex_exit(&spa_namespace_lock);
4202
4203	nvlist_free(config);
4204	return (0);
4205}
4206
4207#endif	/* illumos */
4208#endif	/* _KERNEL */
4209
4210/*
4211 * Import a non-root pool into the system.
4212 */
4213int
4214spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4215{
4216	spa_t *spa;
4217	char *altroot = NULL;
4218	spa_load_state_t state = SPA_LOAD_IMPORT;
4219	zpool_rewind_policy_t policy;
4220	uint64_t mode = spa_mode_global;
4221	uint64_t readonly = B_FALSE;
4222	int error;
4223	nvlist_t *nvroot;
4224	nvlist_t **spares, **l2cache;
4225	uint_t nspares, nl2cache;
4226
4227	/*
4228	 * If a pool with this name exists, return failure.
4229	 */
4230	mutex_enter(&spa_namespace_lock);
4231	if (spa_lookup(pool) != NULL) {
4232		mutex_exit(&spa_namespace_lock);
4233		return (SET_ERROR(EEXIST));
4234	}
4235
4236	/*
4237	 * Create and initialize the spa structure.
4238	 */
4239	(void) nvlist_lookup_string(props,
4240	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4241	(void) nvlist_lookup_uint64(props,
4242	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4243	if (readonly)
4244		mode = FREAD;
4245	spa = spa_add(pool, config, altroot);
4246	spa->spa_import_flags = flags;
4247
4248	/*
4249	 * Verbatim import - Take a pool and insert it into the namespace
4250	 * as if it had been loaded at boot.
4251	 */
4252	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4253		if (props != NULL)
4254			spa_configfile_set(spa, props, B_FALSE);
4255
4256		spa_config_sync(spa, B_FALSE, B_TRUE);
4257		spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4258
4259		mutex_exit(&spa_namespace_lock);
4260		return (0);
4261	}
4262
4263	spa_activate(spa, mode);
4264
4265	/*
4266	 * Don't start async tasks until we know everything is healthy.
4267	 */
4268	spa_async_suspend(spa);
4269
4270	zpool_get_rewind_policy(config, &policy);
4271	if (policy.zrp_request & ZPOOL_DO_REWIND)
4272		state = SPA_LOAD_RECOVER;
4273
4274	/*
4275	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4276	 * because the user-supplied config is actually the one to trust when
4277	 * doing an import.
4278	 */
4279	if (state != SPA_LOAD_RECOVER)
4280		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4281
4282	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4283	    policy.zrp_request);
4284
4285	/*
4286	 * Propagate anything learned while loading the pool and pass it
4287	 * back to caller (i.e. rewind info, missing devices, etc).
4288	 */
4289	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4290	    spa->spa_load_info) == 0);
4291
4292	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4293	/*
4294	 * Toss any existing sparelist, as it doesn't have any validity
4295	 * anymore, and conflicts with spa_has_spare().
4296	 */
4297	if (spa->spa_spares.sav_config) {
4298		nvlist_free(spa->spa_spares.sav_config);
4299		spa->spa_spares.sav_config = NULL;
4300		spa_load_spares(spa);
4301	}
4302	if (spa->spa_l2cache.sav_config) {
4303		nvlist_free(spa->spa_l2cache.sav_config);
4304		spa->spa_l2cache.sav_config = NULL;
4305		spa_load_l2cache(spa);
4306	}
4307
4308	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4309	    &nvroot) == 0);
4310	if (error == 0)
4311		error = spa_validate_aux(spa, nvroot, -1ULL,
4312		    VDEV_ALLOC_SPARE);
4313	if (error == 0)
4314		error = spa_validate_aux(spa, nvroot, -1ULL,
4315		    VDEV_ALLOC_L2CACHE);
4316	spa_config_exit(spa, SCL_ALL, FTAG);
4317
4318	if (props != NULL)
4319		spa_configfile_set(spa, props, B_FALSE);
4320
4321	if (error != 0 || (props && spa_writeable(spa) &&
4322	    (error = spa_prop_set(spa, props)))) {
4323		spa_unload(spa);
4324		spa_deactivate(spa);
4325		spa_remove(spa);
4326		mutex_exit(&spa_namespace_lock);
4327		return (error);
4328	}
4329
4330	spa_async_resume(spa);
4331
4332	/*
4333	 * Override any spares and level 2 cache devices as specified by
4334	 * the user, as these may have correct device names/devids, etc.
4335	 */
4336	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4337	    &spares, &nspares) == 0) {
4338		if (spa->spa_spares.sav_config)
4339			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4340			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4341		else
4342			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4343			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4344		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4345		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4346		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4347		spa_load_spares(spa);
4348		spa_config_exit(spa, SCL_ALL, FTAG);
4349		spa->spa_spares.sav_sync = B_TRUE;
4350	}
4351	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4352	    &l2cache, &nl2cache) == 0) {
4353		if (spa->spa_l2cache.sav_config)
4354			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4355			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4356		else
4357			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4358			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4359		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4360		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4361		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4362		spa_load_l2cache(spa);
4363		spa_config_exit(spa, SCL_ALL, FTAG);
4364		spa->spa_l2cache.sav_sync = B_TRUE;
4365	}
4366
4367	/*
4368	 * Check for any removed devices.
4369	 */
4370	if (spa->spa_autoreplace) {
4371		spa_aux_check_removed(&spa->spa_spares);
4372		spa_aux_check_removed(&spa->spa_l2cache);
4373	}
4374
4375	if (spa_writeable(spa)) {
4376		/*
4377		 * Update the config cache to include the newly-imported pool.
4378		 */
4379		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4380	}
4381
4382	/*
4383	 * It's possible that the pool was expanded while it was exported.
4384	 * We kick off an async task to handle this for us.
4385	 */
4386	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4387
4388	spa_history_log_version(spa, "import");
4389
4390	spa_event_notify(spa, NULL, ESC_ZFS_POOL_IMPORT);
4391
4392	mutex_exit(&spa_namespace_lock);
4393
4394#ifdef __FreeBSD__
4395#ifdef _KERNEL
4396	zvol_create_minors(pool);
4397#endif
4398#endif
4399	return (0);
4400}
4401
4402nvlist_t *
4403spa_tryimport(nvlist_t *tryconfig)
4404{
4405	nvlist_t *config = NULL;
4406	char *poolname;
4407	spa_t *spa;
4408	uint64_t state;
4409	int error;
4410
4411	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4412		return (NULL);
4413
4414	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4415		return (NULL);
4416
4417	/*
4418	 * Create and initialize the spa structure.
4419	 */
4420	mutex_enter(&spa_namespace_lock);
4421	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4422	spa_activate(spa, FREAD);
4423
4424	/*
4425	 * Pass off the heavy lifting to spa_load().
4426	 * Pass TRUE for mosconfig because the user-supplied config
4427	 * is actually the one to trust when doing an import.
4428	 */
4429	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4430
4431	/*
4432	 * If 'tryconfig' was at least parsable, return the current config.
4433	 */
4434	if (spa->spa_root_vdev != NULL) {
4435		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4436		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4437		    poolname) == 0);
4438		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4439		    state) == 0);
4440		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4441		    spa->spa_uberblock.ub_timestamp) == 0);
4442		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4443		    spa->spa_load_info) == 0);
4444
4445		/*
4446		 * If the bootfs property exists on this pool then we
4447		 * copy it out so that external consumers can tell which
4448		 * pools are bootable.
4449		 */
4450		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4451			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4452
4453			/*
4454			 * We have to play games with the name since the
4455			 * pool was opened as TRYIMPORT_NAME.
4456			 */
4457			if (dsl_dsobj_to_dsname(spa_name(spa),
4458			    spa->spa_bootfs, tmpname) == 0) {
4459				char *cp;
4460				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4461
4462				cp = strchr(tmpname, '/');
4463				if (cp == NULL) {
4464					(void) strlcpy(dsname, tmpname,
4465					    MAXPATHLEN);
4466				} else {
4467					(void) snprintf(dsname, MAXPATHLEN,
4468					    "%s/%s", poolname, ++cp);
4469				}
4470				VERIFY(nvlist_add_string(config,
4471				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4472				kmem_free(dsname, MAXPATHLEN);
4473			}
4474			kmem_free(tmpname, MAXPATHLEN);
4475		}
4476
4477		/*
4478		 * Add the list of hot spares and level 2 cache devices.
4479		 */
4480		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4481		spa_add_spares(spa, config);
4482		spa_add_l2cache(spa, config);
4483		spa_config_exit(spa, SCL_CONFIG, FTAG);
4484	}
4485
4486	spa_unload(spa);
4487	spa_deactivate(spa);
4488	spa_remove(spa);
4489	mutex_exit(&spa_namespace_lock);
4490
4491	return (config);
4492}
4493
4494/*
4495 * Pool export/destroy
4496 *
4497 * The act of destroying or exporting a pool is very simple.  We make sure there
4498 * is no more pending I/O and any references to the pool are gone.  Then, we
4499 * update the pool state and sync all the labels to disk, removing the
4500 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4501 * we don't sync the labels or remove the configuration cache.
4502 */
4503static int
4504spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4505    boolean_t force, boolean_t hardforce)
4506{
4507	spa_t *spa;
4508
4509	if (oldconfig)
4510		*oldconfig = NULL;
4511
4512	if (!(spa_mode_global & FWRITE))
4513		return (SET_ERROR(EROFS));
4514
4515	mutex_enter(&spa_namespace_lock);
4516	if ((spa = spa_lookup(pool)) == NULL) {
4517		mutex_exit(&spa_namespace_lock);
4518		return (SET_ERROR(ENOENT));
4519	}
4520
4521	/*
4522	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4523	 * reacquire the namespace lock, and see if we can export.
4524	 */
4525	spa_open_ref(spa, FTAG);
4526	mutex_exit(&spa_namespace_lock);
4527	spa_async_suspend(spa);
4528	mutex_enter(&spa_namespace_lock);
4529	spa_close(spa, FTAG);
4530
4531	/*
4532	 * The pool will be in core if it's openable,
4533	 * in which case we can modify its state.
4534	 */
4535	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4536		/*
4537		 * Objsets may be open only because they're dirty, so we
4538		 * have to force it to sync before checking spa_refcnt.
4539		 */
4540		txg_wait_synced(spa->spa_dsl_pool, 0);
4541		spa_evicting_os_wait(spa);
4542
4543		/*
4544		 * A pool cannot be exported or destroyed if there are active
4545		 * references.  If we are resetting a pool, allow references by
4546		 * fault injection handlers.
4547		 */
4548		if (!spa_refcount_zero(spa) ||
4549		    (spa->spa_inject_ref != 0 &&
4550		    new_state != POOL_STATE_UNINITIALIZED)) {
4551			spa_async_resume(spa);
4552			mutex_exit(&spa_namespace_lock);
4553			return (SET_ERROR(EBUSY));
4554		}
4555
4556		/*
4557		 * A pool cannot be exported if it has an active shared spare.
4558		 * This is to prevent other pools stealing the active spare
4559		 * from an exported pool. At user's own will, such pool can
4560		 * be forcedly exported.
4561		 */
4562		if (!force && new_state == POOL_STATE_EXPORTED &&
4563		    spa_has_active_shared_spare(spa)) {
4564			spa_async_resume(spa);
4565			mutex_exit(&spa_namespace_lock);
4566			return (SET_ERROR(EXDEV));
4567		}
4568
4569		/*
4570		 * We want this to be reflected on every label,
4571		 * so mark them all dirty.  spa_unload() will do the
4572		 * final sync that pushes these changes out.
4573		 */
4574		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4575			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4576			spa->spa_state = new_state;
4577			spa->spa_final_txg = spa_last_synced_txg(spa) +
4578			    TXG_DEFER_SIZE + 1;
4579			vdev_config_dirty(spa->spa_root_vdev);
4580			spa_config_exit(spa, SCL_ALL, FTAG);
4581		}
4582	}
4583
4584	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4585
4586	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4587		spa_unload(spa);
4588		spa_deactivate(spa);
4589	}
4590
4591	if (oldconfig && spa->spa_config)
4592		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4593
4594	if (new_state != POOL_STATE_UNINITIALIZED) {
4595		if (!hardforce)
4596			spa_config_sync(spa, B_TRUE, B_TRUE);
4597		spa_remove(spa);
4598	}
4599	mutex_exit(&spa_namespace_lock);
4600
4601	return (0);
4602}
4603
4604/*
4605 * Destroy a storage pool.
4606 */
4607int
4608spa_destroy(char *pool)
4609{
4610	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4611	    B_FALSE, B_FALSE));
4612}
4613
4614/*
4615 * Export a storage pool.
4616 */
4617int
4618spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4619    boolean_t hardforce)
4620{
4621	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4622	    force, hardforce));
4623}
4624
4625/*
4626 * Similar to spa_export(), this unloads the spa_t without actually removing it
4627 * from the namespace in any way.
4628 */
4629int
4630spa_reset(char *pool)
4631{
4632	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4633	    B_FALSE, B_FALSE));
4634}
4635
4636/*
4637 * ==========================================================================
4638 * Device manipulation
4639 * ==========================================================================
4640 */
4641
4642/*
4643 * Add a device to a storage pool.
4644 */
4645int
4646spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4647{
4648	uint64_t txg, id;
4649	int error;
4650	vdev_t *rvd = spa->spa_root_vdev;
4651	vdev_t *vd, *tvd;
4652	nvlist_t **spares, **l2cache;
4653	uint_t nspares, nl2cache;
4654
4655	ASSERT(spa_writeable(spa));
4656
4657	txg = spa_vdev_enter(spa);
4658
4659	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4660	    VDEV_ALLOC_ADD)) != 0)
4661		return (spa_vdev_exit(spa, NULL, txg, error));
4662
4663	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4664
4665	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4666	    &nspares) != 0)
4667		nspares = 0;
4668
4669	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4670	    &nl2cache) != 0)
4671		nl2cache = 0;
4672
4673	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4674		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4675
4676	if (vd->vdev_children != 0 &&
4677	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4678		return (spa_vdev_exit(spa, vd, txg, error));
4679
4680	/*
4681	 * We must validate the spares and l2cache devices after checking the
4682	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4683	 */
4684	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4685		return (spa_vdev_exit(spa, vd, txg, error));
4686
4687	/*
4688	 * Transfer each new top-level vdev from vd to rvd.
4689	 */
4690	for (int c = 0; c < vd->vdev_children; c++) {
4691
4692		/*
4693		 * Set the vdev id to the first hole, if one exists.
4694		 */
4695		for (id = 0; id < rvd->vdev_children; id++) {
4696			if (rvd->vdev_child[id]->vdev_ishole) {
4697				vdev_free(rvd->vdev_child[id]);
4698				break;
4699			}
4700		}
4701		tvd = vd->vdev_child[c];
4702		vdev_remove_child(vd, tvd);
4703		tvd->vdev_id = id;
4704		vdev_add_child(rvd, tvd);
4705		vdev_config_dirty(tvd);
4706	}
4707
4708	if (nspares != 0) {
4709		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4710		    ZPOOL_CONFIG_SPARES);
4711		spa_load_spares(spa);
4712		spa->spa_spares.sav_sync = B_TRUE;
4713	}
4714
4715	if (nl2cache != 0) {
4716		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4717		    ZPOOL_CONFIG_L2CACHE);
4718		spa_load_l2cache(spa);
4719		spa->spa_l2cache.sav_sync = B_TRUE;
4720	}
4721
4722	/*
4723	 * We have to be careful when adding new vdevs to an existing pool.
4724	 * If other threads start allocating from these vdevs before we
4725	 * sync the config cache, and we lose power, then upon reboot we may
4726	 * fail to open the pool because there are DVAs that the config cache
4727	 * can't translate.  Therefore, we first add the vdevs without
4728	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4729	 * and then let spa_config_update() initialize the new metaslabs.
4730	 *
4731	 * spa_load() checks for added-but-not-initialized vdevs, so that
4732	 * if we lose power at any point in this sequence, the remaining
4733	 * steps will be completed the next time we load the pool.
4734	 */
4735	(void) spa_vdev_exit(spa, vd, txg, 0);
4736
4737	mutex_enter(&spa_namespace_lock);
4738	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4739	spa_event_notify(spa, NULL, ESC_ZFS_VDEV_ADD);
4740	mutex_exit(&spa_namespace_lock);
4741
4742	return (0);
4743}
4744
4745/*
4746 * Attach a device to a mirror.  The arguments are the path to any device
4747 * in the mirror, and the nvroot for the new device.  If the path specifies
4748 * a device that is not mirrored, we automatically insert the mirror vdev.
4749 *
4750 * If 'replacing' is specified, the new device is intended to replace the
4751 * existing device; in this case the two devices are made into their own
4752 * mirror using the 'replacing' vdev, which is functionally identical to
4753 * the mirror vdev (it actually reuses all the same ops) but has a few
4754 * extra rules: you can't attach to it after it's been created, and upon
4755 * completion of resilvering, the first disk (the one being replaced)
4756 * is automatically detached.
4757 */
4758int
4759spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4760{
4761	uint64_t txg, dtl_max_txg;
4762	vdev_t *rvd = spa->spa_root_vdev;
4763	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4764	vdev_ops_t *pvops;
4765	char *oldvdpath, *newvdpath;
4766	int newvd_isspare;
4767	int error;
4768
4769	ASSERT(spa_writeable(spa));
4770
4771	txg = spa_vdev_enter(spa);
4772
4773	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4774
4775	if (oldvd == NULL)
4776		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4777
4778	if (!oldvd->vdev_ops->vdev_op_leaf)
4779		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4780
4781	pvd = oldvd->vdev_parent;
4782
4783	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4784	    VDEV_ALLOC_ATTACH)) != 0)
4785		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4786
4787	if (newrootvd->vdev_children != 1)
4788		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4789
4790	newvd = newrootvd->vdev_child[0];
4791
4792	if (!newvd->vdev_ops->vdev_op_leaf)
4793		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4794
4795	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4796		return (spa_vdev_exit(spa, newrootvd, txg, error));
4797
4798	/*
4799	 * Spares can't replace logs
4800	 */
4801	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4802		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4803
4804	if (!replacing) {
4805		/*
4806		 * For attach, the only allowable parent is a mirror or the root
4807		 * vdev.
4808		 */
4809		if (pvd->vdev_ops != &vdev_mirror_ops &&
4810		    pvd->vdev_ops != &vdev_root_ops)
4811			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4812
4813		pvops = &vdev_mirror_ops;
4814	} else {
4815		/*
4816		 * Active hot spares can only be replaced by inactive hot
4817		 * spares.
4818		 */
4819		if (pvd->vdev_ops == &vdev_spare_ops &&
4820		    oldvd->vdev_isspare &&
4821		    !spa_has_spare(spa, newvd->vdev_guid))
4822			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4823
4824		/*
4825		 * If the source is a hot spare, and the parent isn't already a
4826		 * spare, then we want to create a new hot spare.  Otherwise, we
4827		 * want to create a replacing vdev.  The user is not allowed to
4828		 * attach to a spared vdev child unless the 'isspare' state is
4829		 * the same (spare replaces spare, non-spare replaces
4830		 * non-spare).
4831		 */
4832		if (pvd->vdev_ops == &vdev_replacing_ops &&
4833		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4834			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4835		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4836		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4837			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4838		}
4839
4840		if (newvd->vdev_isspare)
4841			pvops = &vdev_spare_ops;
4842		else
4843			pvops = &vdev_replacing_ops;
4844	}
4845
4846	/*
4847	 * Make sure the new device is big enough.
4848	 */
4849	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4850		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4851
4852	/*
4853	 * The new device cannot have a higher alignment requirement
4854	 * than the top-level vdev.
4855	 */
4856	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4857		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4858
4859	/*
4860	 * If this is an in-place replacement, update oldvd's path and devid
4861	 * to make it distinguishable from newvd, and unopenable from now on.
4862	 */
4863	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4864		spa_strfree(oldvd->vdev_path);
4865		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4866		    KM_SLEEP);
4867		(void) sprintf(oldvd->vdev_path, "%s/%s",
4868		    newvd->vdev_path, "old");
4869		if (oldvd->vdev_devid != NULL) {
4870			spa_strfree(oldvd->vdev_devid);
4871			oldvd->vdev_devid = NULL;
4872		}
4873	}
4874
4875	/* mark the device being resilvered */
4876	newvd->vdev_resilver_txg = txg;
4877
4878	/*
4879	 * If the parent is not a mirror, or if we're replacing, insert the new
4880	 * mirror/replacing/spare vdev above oldvd.
4881	 */
4882	if (pvd->vdev_ops != pvops)
4883		pvd = vdev_add_parent(oldvd, pvops);
4884
4885	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4886	ASSERT(pvd->vdev_ops == pvops);
4887	ASSERT(oldvd->vdev_parent == pvd);
4888
4889	/*
4890	 * Extract the new device from its root and add it to pvd.
4891	 */
4892	vdev_remove_child(newrootvd, newvd);
4893	newvd->vdev_id = pvd->vdev_children;
4894	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4895	vdev_add_child(pvd, newvd);
4896
4897	tvd = newvd->vdev_top;
4898	ASSERT(pvd->vdev_top == tvd);
4899	ASSERT(tvd->vdev_parent == rvd);
4900
4901	vdev_config_dirty(tvd);
4902
4903	/*
4904	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4905	 * for any dmu_sync-ed blocks.  It will propagate upward when
4906	 * spa_vdev_exit() calls vdev_dtl_reassess().
4907	 */
4908	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4909
4910	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4911	    dtl_max_txg - TXG_INITIAL);
4912
4913	if (newvd->vdev_isspare) {
4914		spa_spare_activate(newvd);
4915		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4916	}
4917
4918	oldvdpath = spa_strdup(oldvd->vdev_path);
4919	newvdpath = spa_strdup(newvd->vdev_path);
4920	newvd_isspare = newvd->vdev_isspare;
4921
4922	/*
4923	 * Mark newvd's DTL dirty in this txg.
4924	 */
4925	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4926
4927	/*
4928	 * Schedule the resilver to restart in the future. We do this to
4929	 * ensure that dmu_sync-ed blocks have been stitched into the
4930	 * respective datasets.
4931	 */
4932	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4933
4934	if (spa->spa_bootfs)
4935		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4936
4937	spa_event_notify(spa, newvd, ESC_ZFS_VDEV_ATTACH);
4938
4939	/*
4940	 * Commit the config
4941	 */
4942	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4943
4944	spa_history_log_internal(spa, "vdev attach", NULL,
4945	    "%s vdev=%s %s vdev=%s",
4946	    replacing && newvd_isspare ? "spare in" :
4947	    replacing ? "replace" : "attach", newvdpath,
4948	    replacing ? "for" : "to", oldvdpath);
4949
4950	spa_strfree(oldvdpath);
4951	spa_strfree(newvdpath);
4952
4953	return (0);
4954}
4955
4956/*
4957 * Detach a device from a mirror or replacing vdev.
4958 *
4959 * If 'replace_done' is specified, only detach if the parent
4960 * is a replacing vdev.
4961 */
4962int
4963spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4964{
4965	uint64_t txg;
4966	int error;
4967	vdev_t *rvd = spa->spa_root_vdev;
4968	vdev_t *vd, *pvd, *cvd, *tvd;
4969	boolean_t unspare = B_FALSE;
4970	uint64_t unspare_guid = 0;
4971	char *vdpath;
4972
4973	ASSERT(spa_writeable(spa));
4974
4975	txg = spa_vdev_enter(spa);
4976
4977	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4978
4979	if (vd == NULL)
4980		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4981
4982	if (!vd->vdev_ops->vdev_op_leaf)
4983		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4984
4985	pvd = vd->vdev_parent;
4986
4987	/*
4988	 * If the parent/child relationship is not as expected, don't do it.
4989	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4990	 * vdev that's replacing B with C.  The user's intent in replacing
4991	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4992	 * the replace by detaching C, the expected behavior is to end up
4993	 * M(A,B).  But suppose that right after deciding to detach C,
4994	 * the replacement of B completes.  We would have M(A,C), and then
4995	 * ask to detach C, which would leave us with just A -- not what
4996	 * the user wanted.  To prevent this, we make sure that the
4997	 * parent/child relationship hasn't changed -- in this example,
4998	 * that C's parent is still the replacing vdev R.
4999	 */
5000	if (pvd->vdev_guid != pguid && pguid != 0)
5001		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5002
5003	/*
5004	 * Only 'replacing' or 'spare' vdevs can be replaced.
5005	 */
5006	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5007	    pvd->vdev_ops != &vdev_spare_ops)
5008		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5009
5010	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5011	    spa_version(spa) >= SPA_VERSION_SPARES);
5012
5013	/*
5014	 * Only mirror, replacing, and spare vdevs support detach.
5015	 */
5016	if (pvd->vdev_ops != &vdev_replacing_ops &&
5017	    pvd->vdev_ops != &vdev_mirror_ops &&
5018	    pvd->vdev_ops != &vdev_spare_ops)
5019		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5020
5021	/*
5022	 * If this device has the only valid copy of some data,
5023	 * we cannot safely detach it.
5024	 */
5025	if (vdev_dtl_required(vd))
5026		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5027
5028	ASSERT(pvd->vdev_children >= 2);
5029
5030	/*
5031	 * If we are detaching the second disk from a replacing vdev, then
5032	 * check to see if we changed the original vdev's path to have "/old"
5033	 * at the end in spa_vdev_attach().  If so, undo that change now.
5034	 */
5035	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5036	    vd->vdev_path != NULL) {
5037		size_t len = strlen(vd->vdev_path);
5038
5039		for (int c = 0; c < pvd->vdev_children; c++) {
5040			cvd = pvd->vdev_child[c];
5041
5042			if (cvd == vd || cvd->vdev_path == NULL)
5043				continue;
5044
5045			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5046			    strcmp(cvd->vdev_path + len, "/old") == 0) {
5047				spa_strfree(cvd->vdev_path);
5048				cvd->vdev_path = spa_strdup(vd->vdev_path);
5049				break;
5050			}
5051		}
5052	}
5053
5054	/*
5055	 * If we are detaching the original disk from a spare, then it implies
5056	 * that the spare should become a real disk, and be removed from the
5057	 * active spare list for the pool.
5058	 */
5059	if (pvd->vdev_ops == &vdev_spare_ops &&
5060	    vd->vdev_id == 0 &&
5061	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5062		unspare = B_TRUE;
5063
5064	/*
5065	 * Erase the disk labels so the disk can be used for other things.
5066	 * This must be done after all other error cases are handled,
5067	 * but before we disembowel vd (so we can still do I/O to it).
5068	 * But if we can't do it, don't treat the error as fatal --
5069	 * it may be that the unwritability of the disk is the reason
5070	 * it's being detached!
5071	 */
5072	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5073
5074	/*
5075	 * Remove vd from its parent and compact the parent's children.
5076	 */
5077	vdev_remove_child(pvd, vd);
5078	vdev_compact_children(pvd);
5079
5080	/*
5081	 * Remember one of the remaining children so we can get tvd below.
5082	 */
5083	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5084
5085	/*
5086	 * If we need to remove the remaining child from the list of hot spares,
5087	 * do it now, marking the vdev as no longer a spare in the process.
5088	 * We must do this before vdev_remove_parent(), because that can
5089	 * change the GUID if it creates a new toplevel GUID.  For a similar
5090	 * reason, we must remove the spare now, in the same txg as the detach;
5091	 * otherwise someone could attach a new sibling, change the GUID, and
5092	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5093	 */
5094	if (unspare) {
5095		ASSERT(cvd->vdev_isspare);
5096		spa_spare_remove(cvd);
5097		unspare_guid = cvd->vdev_guid;
5098		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5099		cvd->vdev_unspare = B_TRUE;
5100	}
5101
5102	/*
5103	 * If the parent mirror/replacing vdev only has one child,
5104	 * the parent is no longer needed.  Remove it from the tree.
5105	 */
5106	if (pvd->vdev_children == 1) {
5107		if (pvd->vdev_ops == &vdev_spare_ops)
5108			cvd->vdev_unspare = B_FALSE;
5109		vdev_remove_parent(cvd);
5110	}
5111
5112
5113	/*
5114	 * We don't set tvd until now because the parent we just removed
5115	 * may have been the previous top-level vdev.
5116	 */
5117	tvd = cvd->vdev_top;
5118	ASSERT(tvd->vdev_parent == rvd);
5119
5120	/*
5121	 * Reevaluate the parent vdev state.
5122	 */
5123	vdev_propagate_state(cvd);
5124
5125	/*
5126	 * If the 'autoexpand' property is set on the pool then automatically
5127	 * try to expand the size of the pool. For example if the device we
5128	 * just detached was smaller than the others, it may be possible to
5129	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5130	 * first so that we can obtain the updated sizes of the leaf vdevs.
5131	 */
5132	if (spa->spa_autoexpand) {
5133		vdev_reopen(tvd);
5134		vdev_expand(tvd, txg);
5135	}
5136
5137	vdev_config_dirty(tvd);
5138
5139	/*
5140	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5141	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5142	 * But first make sure we're not on any *other* txg's DTL list, to
5143	 * prevent vd from being accessed after it's freed.
5144	 */
5145	vdpath = spa_strdup(vd->vdev_path);
5146	for (int t = 0; t < TXG_SIZE; t++)
5147		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5148	vd->vdev_detached = B_TRUE;
5149	vdev_dirty(tvd, VDD_DTL, vd, txg);
5150
5151	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5152
5153	/* hang on to the spa before we release the lock */
5154	spa_open_ref(spa, FTAG);
5155
5156	error = spa_vdev_exit(spa, vd, txg, 0);
5157
5158	spa_history_log_internal(spa, "detach", NULL,
5159	    "vdev=%s", vdpath);
5160	spa_strfree(vdpath);
5161
5162	/*
5163	 * If this was the removal of the original device in a hot spare vdev,
5164	 * then we want to go through and remove the device from the hot spare
5165	 * list of every other pool.
5166	 */
5167	if (unspare) {
5168		spa_t *altspa = NULL;
5169
5170		mutex_enter(&spa_namespace_lock);
5171		while ((altspa = spa_next(altspa)) != NULL) {
5172			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5173			    altspa == spa)
5174				continue;
5175
5176			spa_open_ref(altspa, FTAG);
5177			mutex_exit(&spa_namespace_lock);
5178			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5179			mutex_enter(&spa_namespace_lock);
5180			spa_close(altspa, FTAG);
5181		}
5182		mutex_exit(&spa_namespace_lock);
5183
5184		/* search the rest of the vdevs for spares to remove */
5185		spa_vdev_resilver_done(spa);
5186	}
5187
5188	/* all done with the spa; OK to release */
5189	mutex_enter(&spa_namespace_lock);
5190	spa_close(spa, FTAG);
5191	mutex_exit(&spa_namespace_lock);
5192
5193	return (error);
5194}
5195
5196/*
5197 * Split a set of devices from their mirrors, and create a new pool from them.
5198 */
5199int
5200spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5201    nvlist_t *props, boolean_t exp)
5202{
5203	int error = 0;
5204	uint64_t txg, *glist;
5205	spa_t *newspa;
5206	uint_t c, children, lastlog;
5207	nvlist_t **child, *nvl, *tmp;
5208	dmu_tx_t *tx;
5209	char *altroot = NULL;
5210	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5211	boolean_t activate_slog;
5212
5213	ASSERT(spa_writeable(spa));
5214
5215	txg = spa_vdev_enter(spa);
5216
5217	/* clear the log and flush everything up to now */
5218	activate_slog = spa_passivate_log(spa);
5219	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5220	error = spa_offline_log(spa);
5221	txg = spa_vdev_config_enter(spa);
5222
5223	if (activate_slog)
5224		spa_activate_log(spa);
5225
5226	if (error != 0)
5227		return (spa_vdev_exit(spa, NULL, txg, error));
5228
5229	/* check new spa name before going any further */
5230	if (spa_lookup(newname) != NULL)
5231		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5232
5233	/*
5234	 * scan through all the children to ensure they're all mirrors
5235	 */
5236	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5237	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5238	    &children) != 0)
5239		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5240
5241	/* first, check to ensure we've got the right child count */
5242	rvd = spa->spa_root_vdev;
5243	lastlog = 0;
5244	for (c = 0; c < rvd->vdev_children; c++) {
5245		vdev_t *vd = rvd->vdev_child[c];
5246
5247		/* don't count the holes & logs as children */
5248		if (vd->vdev_islog || vd->vdev_ishole) {
5249			if (lastlog == 0)
5250				lastlog = c;
5251			continue;
5252		}
5253
5254		lastlog = 0;
5255	}
5256	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5257		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5258
5259	/* next, ensure no spare or cache devices are part of the split */
5260	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5261	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5262		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5263
5264	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5265	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5266
5267	/* then, loop over each vdev and validate it */
5268	for (c = 0; c < children; c++) {
5269		uint64_t is_hole = 0;
5270
5271		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5272		    &is_hole);
5273
5274		if (is_hole != 0) {
5275			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5276			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5277				continue;
5278			} else {
5279				error = SET_ERROR(EINVAL);
5280				break;
5281			}
5282		}
5283
5284		/* which disk is going to be split? */
5285		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5286		    &glist[c]) != 0) {
5287			error = SET_ERROR(EINVAL);
5288			break;
5289		}
5290
5291		/* look it up in the spa */
5292		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5293		if (vml[c] == NULL) {
5294			error = SET_ERROR(ENODEV);
5295			break;
5296		}
5297
5298		/* make sure there's nothing stopping the split */
5299		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5300		    vml[c]->vdev_islog ||
5301		    vml[c]->vdev_ishole ||
5302		    vml[c]->vdev_isspare ||
5303		    vml[c]->vdev_isl2cache ||
5304		    !vdev_writeable(vml[c]) ||
5305		    vml[c]->vdev_children != 0 ||
5306		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5307		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5308			error = SET_ERROR(EINVAL);
5309			break;
5310		}
5311
5312		if (vdev_dtl_required(vml[c])) {
5313			error = SET_ERROR(EBUSY);
5314			break;
5315		}
5316
5317		/* we need certain info from the top level */
5318		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5319		    vml[c]->vdev_top->vdev_ms_array) == 0);
5320		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5321		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5322		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5323		    vml[c]->vdev_top->vdev_asize) == 0);
5324		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5325		    vml[c]->vdev_top->vdev_ashift) == 0);
5326	}
5327
5328	if (error != 0) {
5329		kmem_free(vml, children * sizeof (vdev_t *));
5330		kmem_free(glist, children * sizeof (uint64_t));
5331		return (spa_vdev_exit(spa, NULL, txg, error));
5332	}
5333
5334	/* stop writers from using the disks */
5335	for (c = 0; c < children; c++) {
5336		if (vml[c] != NULL)
5337			vml[c]->vdev_offline = B_TRUE;
5338	}
5339	vdev_reopen(spa->spa_root_vdev);
5340
5341	/*
5342	 * Temporarily record the splitting vdevs in the spa config.  This
5343	 * will disappear once the config is regenerated.
5344	 */
5345	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5346	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5347	    glist, children) == 0);
5348	kmem_free(glist, children * sizeof (uint64_t));
5349
5350	mutex_enter(&spa->spa_props_lock);
5351	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5352	    nvl) == 0);
5353	mutex_exit(&spa->spa_props_lock);
5354	spa->spa_config_splitting = nvl;
5355	vdev_config_dirty(spa->spa_root_vdev);
5356
5357	/* configure and create the new pool */
5358	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5359	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5360	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5361	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5362	    spa_version(spa)) == 0);
5363	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5364	    spa->spa_config_txg) == 0);
5365	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5366	    spa_generate_guid(NULL)) == 0);
5367	(void) nvlist_lookup_string(props,
5368	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5369
5370	/* add the new pool to the namespace */
5371	newspa = spa_add(newname, config, altroot);
5372	newspa->spa_config_txg = spa->spa_config_txg;
5373	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5374
5375	/* release the spa config lock, retaining the namespace lock */
5376	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5377
5378	if (zio_injection_enabled)
5379		zio_handle_panic_injection(spa, FTAG, 1);
5380
5381	spa_activate(newspa, spa_mode_global);
5382	spa_async_suspend(newspa);
5383
5384#ifndef illumos
5385	/* mark that we are creating new spa by splitting */
5386	newspa->spa_splitting_newspa = B_TRUE;
5387#endif
5388	/* create the new pool from the disks of the original pool */
5389	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5390#ifndef illumos
5391	newspa->spa_splitting_newspa = B_FALSE;
5392#endif
5393	if (error)
5394		goto out;
5395
5396	/* if that worked, generate a real config for the new pool */
5397	if (newspa->spa_root_vdev != NULL) {
5398		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5399		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5400		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5401		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5402		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5403		    B_TRUE));
5404	}
5405
5406	/* set the props */
5407	if (props != NULL) {
5408		spa_configfile_set(newspa, props, B_FALSE);
5409		error = spa_prop_set(newspa, props);
5410		if (error)
5411			goto out;
5412	}
5413
5414	/* flush everything */
5415	txg = spa_vdev_config_enter(newspa);
5416	vdev_config_dirty(newspa->spa_root_vdev);
5417	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5418
5419	if (zio_injection_enabled)
5420		zio_handle_panic_injection(spa, FTAG, 2);
5421
5422	spa_async_resume(newspa);
5423
5424	/* finally, update the original pool's config */
5425	txg = spa_vdev_config_enter(spa);
5426	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5427	error = dmu_tx_assign(tx, TXG_WAIT);
5428	if (error != 0)
5429		dmu_tx_abort(tx);
5430	for (c = 0; c < children; c++) {
5431		if (vml[c] != NULL) {
5432			vdev_split(vml[c]);
5433			if (error == 0)
5434				spa_history_log_internal(spa, "detach", tx,
5435				    "vdev=%s", vml[c]->vdev_path);
5436			vdev_free(vml[c]);
5437		}
5438	}
5439	vdev_config_dirty(spa->spa_root_vdev);
5440	spa->spa_config_splitting = NULL;
5441	nvlist_free(nvl);
5442	if (error == 0)
5443		dmu_tx_commit(tx);
5444	(void) spa_vdev_exit(spa, NULL, txg, 0);
5445
5446	if (zio_injection_enabled)
5447		zio_handle_panic_injection(spa, FTAG, 3);
5448
5449	/* split is complete; log a history record */
5450	spa_history_log_internal(newspa, "split", NULL,
5451	    "from pool %s", spa_name(spa));
5452
5453	kmem_free(vml, children * sizeof (vdev_t *));
5454
5455	/* if we're not going to mount the filesystems in userland, export */
5456	if (exp)
5457		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5458		    B_FALSE, B_FALSE);
5459
5460	return (error);
5461
5462out:
5463	spa_unload(newspa);
5464	spa_deactivate(newspa);
5465	spa_remove(newspa);
5466
5467	txg = spa_vdev_config_enter(spa);
5468
5469	/* re-online all offlined disks */
5470	for (c = 0; c < children; c++) {
5471		if (vml[c] != NULL)
5472			vml[c]->vdev_offline = B_FALSE;
5473	}
5474	vdev_reopen(spa->spa_root_vdev);
5475
5476	nvlist_free(spa->spa_config_splitting);
5477	spa->spa_config_splitting = NULL;
5478	(void) spa_vdev_exit(spa, NULL, txg, error);
5479
5480	kmem_free(vml, children * sizeof (vdev_t *));
5481	return (error);
5482}
5483
5484static nvlist_t *
5485spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5486{
5487	for (int i = 0; i < count; i++) {
5488		uint64_t guid;
5489
5490		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5491		    &guid) == 0);
5492
5493		if (guid == target_guid)
5494			return (nvpp[i]);
5495	}
5496
5497	return (NULL);
5498}
5499
5500static void
5501spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5502	nvlist_t *dev_to_remove)
5503{
5504	nvlist_t **newdev = NULL;
5505
5506	if (count > 1)
5507		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5508
5509	for (int i = 0, j = 0; i < count; i++) {
5510		if (dev[i] == dev_to_remove)
5511			continue;
5512		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5513	}
5514
5515	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5516	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5517
5518	for (int i = 0; i < count - 1; i++)
5519		nvlist_free(newdev[i]);
5520
5521	if (count > 1)
5522		kmem_free(newdev, (count - 1) * sizeof (void *));
5523}
5524
5525/*
5526 * Evacuate the device.
5527 */
5528static int
5529spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5530{
5531	uint64_t txg;
5532	int error = 0;
5533
5534	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5535	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5536	ASSERT(vd == vd->vdev_top);
5537
5538	/*
5539	 * Evacuate the device.  We don't hold the config lock as writer
5540	 * since we need to do I/O but we do keep the
5541	 * spa_namespace_lock held.  Once this completes the device
5542	 * should no longer have any blocks allocated on it.
5543	 */
5544	if (vd->vdev_islog) {
5545		if (vd->vdev_stat.vs_alloc != 0)
5546			error = spa_offline_log(spa);
5547	} else {
5548		error = SET_ERROR(ENOTSUP);
5549	}
5550
5551	if (error)
5552		return (error);
5553
5554	/*
5555	 * The evacuation succeeded.  Remove any remaining MOS metadata
5556	 * associated with this vdev, and wait for these changes to sync.
5557	 */
5558	ASSERT0(vd->vdev_stat.vs_alloc);
5559	txg = spa_vdev_config_enter(spa);
5560	vd->vdev_removing = B_TRUE;
5561	vdev_dirty_leaves(vd, VDD_DTL, txg);
5562	vdev_config_dirty(vd);
5563	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5564
5565	return (0);
5566}
5567
5568/*
5569 * Complete the removal by cleaning up the namespace.
5570 */
5571static void
5572spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5573{
5574	vdev_t *rvd = spa->spa_root_vdev;
5575	uint64_t id = vd->vdev_id;
5576	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5577
5578	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5579	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5580	ASSERT(vd == vd->vdev_top);
5581
5582	/*
5583	 * Only remove any devices which are empty.
5584	 */
5585	if (vd->vdev_stat.vs_alloc != 0)
5586		return;
5587
5588	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5589
5590	if (list_link_active(&vd->vdev_state_dirty_node))
5591		vdev_state_clean(vd);
5592	if (list_link_active(&vd->vdev_config_dirty_node))
5593		vdev_config_clean(vd);
5594
5595	vdev_free(vd);
5596
5597	if (last_vdev) {
5598		vdev_compact_children(rvd);
5599	} else {
5600		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5601		vdev_add_child(rvd, vd);
5602	}
5603	vdev_config_dirty(rvd);
5604
5605	/*
5606	 * Reassess the health of our root vdev.
5607	 */
5608	vdev_reopen(rvd);
5609}
5610
5611/*
5612 * Remove a device from the pool -
5613 *
5614 * Removing a device from the vdev namespace requires several steps
5615 * and can take a significant amount of time.  As a result we use
5616 * the spa_vdev_config_[enter/exit] functions which allow us to
5617 * grab and release the spa_config_lock while still holding the namespace
5618 * lock.  During each step the configuration is synced out.
5619 *
5620 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5621 * devices.
5622 */
5623int
5624spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5625{
5626	vdev_t *vd;
5627	metaslab_group_t *mg;
5628	nvlist_t **spares, **l2cache, *nv;
5629	uint64_t txg = 0;
5630	uint_t nspares, nl2cache;
5631	int error = 0;
5632	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5633
5634	ASSERT(spa_writeable(spa));
5635
5636	if (!locked)
5637		txg = spa_vdev_enter(spa);
5638
5639	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5640
5641	if (spa->spa_spares.sav_vdevs != NULL &&
5642	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5643	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5644	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5645		/*
5646		 * Only remove the hot spare if it's not currently in use
5647		 * in this pool.
5648		 */
5649		if (vd == NULL || unspare) {
5650			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5651			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5652			spa_load_spares(spa);
5653			spa->spa_spares.sav_sync = B_TRUE;
5654		} else {
5655			error = SET_ERROR(EBUSY);
5656		}
5657	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5658	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5659	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5660	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5661		/*
5662		 * Cache devices can always be removed.
5663		 */
5664		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5665		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5666		spa_load_l2cache(spa);
5667		spa->spa_l2cache.sav_sync = B_TRUE;
5668	} else if (vd != NULL && vd->vdev_islog) {
5669		ASSERT(!locked);
5670		ASSERT(vd == vd->vdev_top);
5671
5672		mg = vd->vdev_mg;
5673
5674		/*
5675		 * Stop allocating from this vdev.
5676		 */
5677		metaslab_group_passivate(mg);
5678
5679		/*
5680		 * Wait for the youngest allocations and frees to sync,
5681		 * and then wait for the deferral of those frees to finish.
5682		 */
5683		spa_vdev_config_exit(spa, NULL,
5684		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5685
5686		/*
5687		 * Attempt to evacuate the vdev.
5688		 */
5689		error = spa_vdev_remove_evacuate(spa, vd);
5690
5691		txg = spa_vdev_config_enter(spa);
5692
5693		/*
5694		 * If we couldn't evacuate the vdev, unwind.
5695		 */
5696		if (error) {
5697			metaslab_group_activate(mg);
5698			return (spa_vdev_exit(spa, NULL, txg, error));
5699		}
5700
5701		/*
5702		 * Clean up the vdev namespace.
5703		 */
5704		spa_vdev_remove_from_namespace(spa, vd);
5705
5706	} else if (vd != NULL) {
5707		/*
5708		 * Normal vdevs cannot be removed (yet).
5709		 */
5710		error = SET_ERROR(ENOTSUP);
5711	} else {
5712		/*
5713		 * There is no vdev of any kind with the specified guid.
5714		 */
5715		error = SET_ERROR(ENOENT);
5716	}
5717
5718	if (!locked)
5719		return (spa_vdev_exit(spa, NULL, txg, error));
5720
5721	return (error);
5722}
5723
5724/*
5725 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5726 * currently spared, so we can detach it.
5727 */
5728static vdev_t *
5729spa_vdev_resilver_done_hunt(vdev_t *vd)
5730{
5731	vdev_t *newvd, *oldvd;
5732
5733	for (int c = 0; c < vd->vdev_children; c++) {
5734		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5735		if (oldvd != NULL)
5736			return (oldvd);
5737	}
5738
5739	/*
5740	 * Check for a completed replacement.  We always consider the first
5741	 * vdev in the list to be the oldest vdev, and the last one to be
5742	 * the newest (see spa_vdev_attach() for how that works).  In
5743	 * the case where the newest vdev is faulted, we will not automatically
5744	 * remove it after a resilver completes.  This is OK as it will require
5745	 * user intervention to determine which disk the admin wishes to keep.
5746	 */
5747	if (vd->vdev_ops == &vdev_replacing_ops) {
5748		ASSERT(vd->vdev_children > 1);
5749
5750		newvd = vd->vdev_child[vd->vdev_children - 1];
5751		oldvd = vd->vdev_child[0];
5752
5753		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5754		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5755		    !vdev_dtl_required(oldvd))
5756			return (oldvd);
5757	}
5758
5759	/*
5760	 * Check for a completed resilver with the 'unspare' flag set.
5761	 */
5762	if (vd->vdev_ops == &vdev_spare_ops) {
5763		vdev_t *first = vd->vdev_child[0];
5764		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5765
5766		if (last->vdev_unspare) {
5767			oldvd = first;
5768			newvd = last;
5769		} else if (first->vdev_unspare) {
5770			oldvd = last;
5771			newvd = first;
5772		} else {
5773			oldvd = NULL;
5774		}
5775
5776		if (oldvd != NULL &&
5777		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5778		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5779		    !vdev_dtl_required(oldvd))
5780			return (oldvd);
5781
5782		/*
5783		 * If there are more than two spares attached to a disk,
5784		 * and those spares are not required, then we want to
5785		 * attempt to free them up now so that they can be used
5786		 * by other pools.  Once we're back down to a single
5787		 * disk+spare, we stop removing them.
5788		 */
5789		if (vd->vdev_children > 2) {
5790			newvd = vd->vdev_child[1];
5791
5792			if (newvd->vdev_isspare && last->vdev_isspare &&
5793			    vdev_dtl_empty(last, DTL_MISSING) &&
5794			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5795			    !vdev_dtl_required(newvd))
5796				return (newvd);
5797		}
5798	}
5799
5800	return (NULL);
5801}
5802
5803static void
5804spa_vdev_resilver_done(spa_t *spa)
5805{
5806	vdev_t *vd, *pvd, *ppvd;
5807	uint64_t guid, sguid, pguid, ppguid;
5808
5809	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5810
5811	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5812		pvd = vd->vdev_parent;
5813		ppvd = pvd->vdev_parent;
5814		guid = vd->vdev_guid;
5815		pguid = pvd->vdev_guid;
5816		ppguid = ppvd->vdev_guid;
5817		sguid = 0;
5818		/*
5819		 * If we have just finished replacing a hot spared device, then
5820		 * we need to detach the parent's first child (the original hot
5821		 * spare) as well.
5822		 */
5823		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5824		    ppvd->vdev_children == 2) {
5825			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5826			sguid = ppvd->vdev_child[1]->vdev_guid;
5827		}
5828		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5829
5830		spa_config_exit(spa, SCL_ALL, FTAG);
5831		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5832			return;
5833		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5834			return;
5835		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5836	}
5837
5838	spa_config_exit(spa, SCL_ALL, FTAG);
5839}
5840
5841/*
5842 * Update the stored path or FRU for this vdev.
5843 */
5844int
5845spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5846    boolean_t ispath)
5847{
5848	vdev_t *vd;
5849	boolean_t sync = B_FALSE;
5850
5851	ASSERT(spa_writeable(spa));
5852
5853	spa_vdev_state_enter(spa, SCL_ALL);
5854
5855	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5856		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5857
5858	if (!vd->vdev_ops->vdev_op_leaf)
5859		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5860
5861	if (ispath) {
5862		if (strcmp(value, vd->vdev_path) != 0) {
5863			spa_strfree(vd->vdev_path);
5864			vd->vdev_path = spa_strdup(value);
5865			sync = B_TRUE;
5866		}
5867	} else {
5868		if (vd->vdev_fru == NULL) {
5869			vd->vdev_fru = spa_strdup(value);
5870			sync = B_TRUE;
5871		} else if (strcmp(value, vd->vdev_fru) != 0) {
5872			spa_strfree(vd->vdev_fru);
5873			vd->vdev_fru = spa_strdup(value);
5874			sync = B_TRUE;
5875		}
5876	}
5877
5878	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5879}
5880
5881int
5882spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5883{
5884	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5885}
5886
5887int
5888spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5889{
5890	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5891}
5892
5893/*
5894 * ==========================================================================
5895 * SPA Scanning
5896 * ==========================================================================
5897 */
5898
5899int
5900spa_scan_stop(spa_t *spa)
5901{
5902	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5903	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5904		return (SET_ERROR(EBUSY));
5905	return (dsl_scan_cancel(spa->spa_dsl_pool));
5906}
5907
5908int
5909spa_scan(spa_t *spa, pool_scan_func_t func)
5910{
5911	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5912
5913	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5914		return (SET_ERROR(ENOTSUP));
5915
5916	/*
5917	 * If a resilver was requested, but there is no DTL on a
5918	 * writeable leaf device, we have nothing to do.
5919	 */
5920	if (func == POOL_SCAN_RESILVER &&
5921	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5922		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5923		return (0);
5924	}
5925
5926	return (dsl_scan(spa->spa_dsl_pool, func));
5927}
5928
5929/*
5930 * ==========================================================================
5931 * SPA async task processing
5932 * ==========================================================================
5933 */
5934
5935static void
5936spa_async_remove(spa_t *spa, vdev_t *vd)
5937{
5938	if (vd->vdev_remove_wanted) {
5939		vd->vdev_remove_wanted = B_FALSE;
5940		vd->vdev_delayed_close = B_FALSE;
5941		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5942
5943		/*
5944		 * We want to clear the stats, but we don't want to do a full
5945		 * vdev_clear() as that will cause us to throw away
5946		 * degraded/faulted state as well as attempt to reopen the
5947		 * device, all of which is a waste.
5948		 */
5949		vd->vdev_stat.vs_read_errors = 0;
5950		vd->vdev_stat.vs_write_errors = 0;
5951		vd->vdev_stat.vs_checksum_errors = 0;
5952
5953		vdev_state_dirty(vd->vdev_top);
5954		/* Tell userspace that the vdev is gone. */
5955		zfs_post_remove(spa, vd);
5956	}
5957
5958	for (int c = 0; c < vd->vdev_children; c++)
5959		spa_async_remove(spa, vd->vdev_child[c]);
5960}
5961
5962static void
5963spa_async_probe(spa_t *spa, vdev_t *vd)
5964{
5965	if (vd->vdev_probe_wanted) {
5966		vd->vdev_probe_wanted = B_FALSE;
5967		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5968	}
5969
5970	for (int c = 0; c < vd->vdev_children; c++)
5971		spa_async_probe(spa, vd->vdev_child[c]);
5972}
5973
5974static void
5975spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5976{
5977	sysevent_id_t eid;
5978	nvlist_t *attr;
5979	char *physpath;
5980
5981	if (!spa->spa_autoexpand)
5982		return;
5983
5984	for (int c = 0; c < vd->vdev_children; c++) {
5985		vdev_t *cvd = vd->vdev_child[c];
5986		spa_async_autoexpand(spa, cvd);
5987	}
5988
5989	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5990		return;
5991
5992	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5993	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5994
5995	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5996	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5997
5998	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5999	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
6000
6001	nvlist_free(attr);
6002	kmem_free(physpath, MAXPATHLEN);
6003}
6004
6005static void
6006spa_async_thread(void *arg)
6007{
6008	spa_t *spa = arg;
6009	int tasks;
6010
6011	ASSERT(spa->spa_sync_on);
6012
6013	mutex_enter(&spa->spa_async_lock);
6014	tasks = spa->spa_async_tasks;
6015	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
6016	mutex_exit(&spa->spa_async_lock);
6017
6018	/*
6019	 * See if the config needs to be updated.
6020	 */
6021	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6022		uint64_t old_space, new_space;
6023
6024		mutex_enter(&spa_namespace_lock);
6025		old_space = metaslab_class_get_space(spa_normal_class(spa));
6026		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6027		new_space = metaslab_class_get_space(spa_normal_class(spa));
6028		mutex_exit(&spa_namespace_lock);
6029
6030		/*
6031		 * If the pool grew as a result of the config update,
6032		 * then log an internal history event.
6033		 */
6034		if (new_space != old_space) {
6035			spa_history_log_internal(spa, "vdev online", NULL,
6036			    "pool '%s' size: %llu(+%llu)",
6037			    spa_name(spa), new_space, new_space - old_space);
6038		}
6039	}
6040
6041	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6042		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6043		spa_async_autoexpand(spa, spa->spa_root_vdev);
6044		spa_config_exit(spa, SCL_CONFIG, FTAG);
6045	}
6046
6047	/*
6048	 * See if any devices need to be probed.
6049	 */
6050	if (tasks & SPA_ASYNC_PROBE) {
6051		spa_vdev_state_enter(spa, SCL_NONE);
6052		spa_async_probe(spa, spa->spa_root_vdev);
6053		(void) spa_vdev_state_exit(spa, NULL, 0);
6054	}
6055
6056	/*
6057	 * If any devices are done replacing, detach them.
6058	 */
6059	if (tasks & SPA_ASYNC_RESILVER_DONE)
6060		spa_vdev_resilver_done(spa);
6061
6062	/*
6063	 * Kick off a resilver.
6064	 */
6065	if (tasks & SPA_ASYNC_RESILVER)
6066		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6067
6068	/*
6069	 * Let the world know that we're done.
6070	 */
6071	mutex_enter(&spa->spa_async_lock);
6072	spa->spa_async_thread = NULL;
6073	cv_broadcast(&spa->spa_async_cv);
6074	mutex_exit(&spa->spa_async_lock);
6075	thread_exit();
6076}
6077
6078static void
6079spa_async_thread_vd(void *arg)
6080{
6081	spa_t *spa = arg;
6082	int tasks;
6083
6084	ASSERT(spa->spa_sync_on);
6085
6086	mutex_enter(&spa->spa_async_lock);
6087	tasks = spa->spa_async_tasks;
6088retry:
6089	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6090	mutex_exit(&spa->spa_async_lock);
6091
6092	/*
6093	 * See if any devices need to be marked REMOVED.
6094	 */
6095	if (tasks & SPA_ASYNC_REMOVE) {
6096		spa_vdev_state_enter(spa, SCL_NONE);
6097		spa_async_remove(spa, spa->spa_root_vdev);
6098		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6099			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6100		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6101			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6102		(void) spa_vdev_state_exit(spa, NULL, 0);
6103	}
6104
6105	/*
6106	 * Let the world know that we're done.
6107	 */
6108	mutex_enter(&spa->spa_async_lock);
6109	tasks = spa->spa_async_tasks;
6110	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6111		goto retry;
6112	spa->spa_async_thread_vd = NULL;
6113	cv_broadcast(&spa->spa_async_cv);
6114	mutex_exit(&spa->spa_async_lock);
6115	thread_exit();
6116}
6117
6118void
6119spa_async_suspend(spa_t *spa)
6120{
6121	mutex_enter(&spa->spa_async_lock);
6122	spa->spa_async_suspended++;
6123	while (spa->spa_async_thread != NULL &&
6124	    spa->spa_async_thread_vd != NULL)
6125		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6126	mutex_exit(&spa->spa_async_lock);
6127}
6128
6129void
6130spa_async_resume(spa_t *spa)
6131{
6132	mutex_enter(&spa->spa_async_lock);
6133	ASSERT(spa->spa_async_suspended != 0);
6134	spa->spa_async_suspended--;
6135	mutex_exit(&spa->spa_async_lock);
6136}
6137
6138static boolean_t
6139spa_async_tasks_pending(spa_t *spa)
6140{
6141	uint_t non_config_tasks;
6142	uint_t config_task;
6143	boolean_t config_task_suspended;
6144
6145	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6146	    SPA_ASYNC_REMOVE);
6147	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6148	if (spa->spa_ccw_fail_time == 0) {
6149		config_task_suspended = B_FALSE;
6150	} else {
6151		config_task_suspended =
6152		    (gethrtime() - spa->spa_ccw_fail_time) <
6153		    (zfs_ccw_retry_interval * NANOSEC);
6154	}
6155
6156	return (non_config_tasks || (config_task && !config_task_suspended));
6157}
6158
6159static void
6160spa_async_dispatch(spa_t *spa)
6161{
6162	mutex_enter(&spa->spa_async_lock);
6163	if (spa_async_tasks_pending(spa) &&
6164	    !spa->spa_async_suspended &&
6165	    spa->spa_async_thread == NULL &&
6166	    rootdir != NULL)
6167		spa->spa_async_thread = thread_create(NULL, 0,
6168		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6169	mutex_exit(&spa->spa_async_lock);
6170}
6171
6172static void
6173spa_async_dispatch_vd(spa_t *spa)
6174{
6175	mutex_enter(&spa->spa_async_lock);
6176	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6177	    !spa->spa_async_suspended &&
6178	    spa->spa_async_thread_vd == NULL &&
6179	    rootdir != NULL)
6180		spa->spa_async_thread_vd = thread_create(NULL, 0,
6181		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6182	mutex_exit(&spa->spa_async_lock);
6183}
6184
6185void
6186spa_async_request(spa_t *spa, int task)
6187{
6188	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6189	mutex_enter(&spa->spa_async_lock);
6190	spa->spa_async_tasks |= task;
6191	mutex_exit(&spa->spa_async_lock);
6192	spa_async_dispatch_vd(spa);
6193}
6194
6195/*
6196 * ==========================================================================
6197 * SPA syncing routines
6198 * ==========================================================================
6199 */
6200
6201static int
6202bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6203{
6204	bpobj_t *bpo = arg;
6205	bpobj_enqueue(bpo, bp, tx);
6206	return (0);
6207}
6208
6209static int
6210spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6211{
6212	zio_t *zio = arg;
6213
6214	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6215	    BP_GET_PSIZE(bp), zio->io_flags));
6216	return (0);
6217}
6218
6219/*
6220 * Note: this simple function is not inlined to make it easier to dtrace the
6221 * amount of time spent syncing frees.
6222 */
6223static void
6224spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6225{
6226	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6227	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6228	VERIFY(zio_wait(zio) == 0);
6229}
6230
6231/*
6232 * Note: this simple function is not inlined to make it easier to dtrace the
6233 * amount of time spent syncing deferred frees.
6234 */
6235static void
6236spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6237{
6238	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6239	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6240	    spa_free_sync_cb, zio, tx), ==, 0);
6241	VERIFY0(zio_wait(zio));
6242}
6243
6244
6245static void
6246spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6247{
6248	char *packed = NULL;
6249	size_t bufsize;
6250	size_t nvsize = 0;
6251	dmu_buf_t *db;
6252
6253	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6254
6255	/*
6256	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6257	 * information.  This avoids the dmu_buf_will_dirty() path and
6258	 * saves us a pre-read to get data we don't actually care about.
6259	 */
6260	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6261	packed = kmem_alloc(bufsize, KM_SLEEP);
6262
6263	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6264	    KM_SLEEP) == 0);
6265	bzero(packed + nvsize, bufsize - nvsize);
6266
6267	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6268
6269	kmem_free(packed, bufsize);
6270
6271	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6272	dmu_buf_will_dirty(db, tx);
6273	*(uint64_t *)db->db_data = nvsize;
6274	dmu_buf_rele(db, FTAG);
6275}
6276
6277static void
6278spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6279    const char *config, const char *entry)
6280{
6281	nvlist_t *nvroot;
6282	nvlist_t **list;
6283	int i;
6284
6285	if (!sav->sav_sync)
6286		return;
6287
6288	/*
6289	 * Update the MOS nvlist describing the list of available devices.
6290	 * spa_validate_aux() will have already made sure this nvlist is
6291	 * valid and the vdevs are labeled appropriately.
6292	 */
6293	if (sav->sav_object == 0) {
6294		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6295		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6296		    sizeof (uint64_t), tx);
6297		VERIFY(zap_update(spa->spa_meta_objset,
6298		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6299		    &sav->sav_object, tx) == 0);
6300	}
6301
6302	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6303	if (sav->sav_count == 0) {
6304		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6305	} else {
6306		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6307		for (i = 0; i < sav->sav_count; i++)
6308			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6309			    B_FALSE, VDEV_CONFIG_L2CACHE);
6310		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6311		    sav->sav_count) == 0);
6312		for (i = 0; i < sav->sav_count; i++)
6313			nvlist_free(list[i]);
6314		kmem_free(list, sav->sav_count * sizeof (void *));
6315	}
6316
6317	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6318	nvlist_free(nvroot);
6319
6320	sav->sav_sync = B_FALSE;
6321}
6322
6323static void
6324spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6325{
6326	nvlist_t *config;
6327
6328	if (list_is_empty(&spa->spa_config_dirty_list))
6329		return;
6330
6331	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6332
6333	config = spa_config_generate(spa, spa->spa_root_vdev,
6334	    dmu_tx_get_txg(tx), B_FALSE);
6335
6336	/*
6337	 * If we're upgrading the spa version then make sure that
6338	 * the config object gets updated with the correct version.
6339	 */
6340	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6341		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6342		    spa->spa_uberblock.ub_version);
6343
6344	spa_config_exit(spa, SCL_STATE, FTAG);
6345
6346	if (spa->spa_config_syncing)
6347		nvlist_free(spa->spa_config_syncing);
6348	spa->spa_config_syncing = config;
6349
6350	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6351}
6352
6353static void
6354spa_sync_version(void *arg, dmu_tx_t *tx)
6355{
6356	uint64_t *versionp = arg;
6357	uint64_t version = *versionp;
6358	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6359
6360	/*
6361	 * Setting the version is special cased when first creating the pool.
6362	 */
6363	ASSERT(tx->tx_txg != TXG_INITIAL);
6364
6365	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6366	ASSERT(version >= spa_version(spa));
6367
6368	spa->spa_uberblock.ub_version = version;
6369	vdev_config_dirty(spa->spa_root_vdev);
6370	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6371}
6372
6373/*
6374 * Set zpool properties.
6375 */
6376static void
6377spa_sync_props(void *arg, dmu_tx_t *tx)
6378{
6379	nvlist_t *nvp = arg;
6380	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6381	objset_t *mos = spa->spa_meta_objset;
6382	nvpair_t *elem = NULL;
6383
6384	mutex_enter(&spa->spa_props_lock);
6385
6386	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6387		uint64_t intval;
6388		char *strval, *fname;
6389		zpool_prop_t prop;
6390		const char *propname;
6391		zprop_type_t proptype;
6392		spa_feature_t fid;
6393
6394		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6395		case ZPROP_INVAL:
6396			/*
6397			 * We checked this earlier in spa_prop_validate().
6398			 */
6399			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6400
6401			fname = strchr(nvpair_name(elem), '@') + 1;
6402			VERIFY0(zfeature_lookup_name(fname, &fid));
6403
6404			spa_feature_enable(spa, fid, tx);
6405			spa_history_log_internal(spa, "set", tx,
6406			    "%s=enabled", nvpair_name(elem));
6407			break;
6408
6409		case ZPOOL_PROP_VERSION:
6410			intval = fnvpair_value_uint64(elem);
6411			/*
6412			 * The version is synced seperatly before other
6413			 * properties and should be correct by now.
6414			 */
6415			ASSERT3U(spa_version(spa), >=, intval);
6416			break;
6417
6418		case ZPOOL_PROP_ALTROOT:
6419			/*
6420			 * 'altroot' is a non-persistent property. It should
6421			 * have been set temporarily at creation or import time.
6422			 */
6423			ASSERT(spa->spa_root != NULL);
6424			break;
6425
6426		case ZPOOL_PROP_READONLY:
6427		case ZPOOL_PROP_CACHEFILE:
6428			/*
6429			 * 'readonly' and 'cachefile' are also non-persisitent
6430			 * properties.
6431			 */
6432			break;
6433		case ZPOOL_PROP_COMMENT:
6434			strval = fnvpair_value_string(elem);
6435			if (spa->spa_comment != NULL)
6436				spa_strfree(spa->spa_comment);
6437			spa->spa_comment = spa_strdup(strval);
6438			/*
6439			 * We need to dirty the configuration on all the vdevs
6440			 * so that their labels get updated.  It's unnecessary
6441			 * to do this for pool creation since the vdev's
6442			 * configuratoin has already been dirtied.
6443			 */
6444			if (tx->tx_txg != TXG_INITIAL)
6445				vdev_config_dirty(spa->spa_root_vdev);
6446			spa_history_log_internal(spa, "set", tx,
6447			    "%s=%s", nvpair_name(elem), strval);
6448			break;
6449		default:
6450			/*
6451			 * Set pool property values in the poolprops mos object.
6452			 */
6453			if (spa->spa_pool_props_object == 0) {
6454				spa->spa_pool_props_object =
6455				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6456				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6457				    tx);
6458			}
6459
6460			/* normalize the property name */
6461			propname = zpool_prop_to_name(prop);
6462			proptype = zpool_prop_get_type(prop);
6463
6464			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6465				ASSERT(proptype == PROP_TYPE_STRING);
6466				strval = fnvpair_value_string(elem);
6467				VERIFY0(zap_update(mos,
6468				    spa->spa_pool_props_object, propname,
6469				    1, strlen(strval) + 1, strval, tx));
6470				spa_history_log_internal(spa, "set", tx,
6471				    "%s=%s", nvpair_name(elem), strval);
6472			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6473				intval = fnvpair_value_uint64(elem);
6474
6475				if (proptype == PROP_TYPE_INDEX) {
6476					const char *unused;
6477					VERIFY0(zpool_prop_index_to_string(
6478					    prop, intval, &unused));
6479				}
6480				VERIFY0(zap_update(mos,
6481				    spa->spa_pool_props_object, propname,
6482				    8, 1, &intval, tx));
6483				spa_history_log_internal(spa, "set", tx,
6484				    "%s=%lld", nvpair_name(elem), intval);
6485			} else {
6486				ASSERT(0); /* not allowed */
6487			}
6488
6489			switch (prop) {
6490			case ZPOOL_PROP_DELEGATION:
6491				spa->spa_delegation = intval;
6492				break;
6493			case ZPOOL_PROP_BOOTFS:
6494				spa->spa_bootfs = intval;
6495				break;
6496			case ZPOOL_PROP_FAILUREMODE:
6497				spa->spa_failmode = intval;
6498				break;
6499			case ZPOOL_PROP_AUTOEXPAND:
6500				spa->spa_autoexpand = intval;
6501				if (tx->tx_txg != TXG_INITIAL)
6502					spa_async_request(spa,
6503					    SPA_ASYNC_AUTOEXPAND);
6504				break;
6505			case ZPOOL_PROP_DEDUPDITTO:
6506				spa->spa_dedup_ditto = intval;
6507				break;
6508			default:
6509				break;
6510			}
6511		}
6512
6513	}
6514
6515	mutex_exit(&spa->spa_props_lock);
6516}
6517
6518/*
6519 * Perform one-time upgrade on-disk changes.  spa_version() does not
6520 * reflect the new version this txg, so there must be no changes this
6521 * txg to anything that the upgrade code depends on after it executes.
6522 * Therefore this must be called after dsl_pool_sync() does the sync
6523 * tasks.
6524 */
6525static void
6526spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6527{
6528	dsl_pool_t *dp = spa->spa_dsl_pool;
6529
6530	ASSERT(spa->spa_sync_pass == 1);
6531
6532	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6533
6534	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6535	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6536		dsl_pool_create_origin(dp, tx);
6537
6538		/* Keeping the origin open increases spa_minref */
6539		spa->spa_minref += 3;
6540	}
6541
6542	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6543	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6544		dsl_pool_upgrade_clones(dp, tx);
6545	}
6546
6547	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6548	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6549		dsl_pool_upgrade_dir_clones(dp, tx);
6550
6551		/* Keeping the freedir open increases spa_minref */
6552		spa->spa_minref += 3;
6553	}
6554
6555	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6556	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6557		spa_feature_create_zap_objects(spa, tx);
6558	}
6559
6560	/*
6561	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6562	 * when possibility to use lz4 compression for metadata was added
6563	 * Old pools that have this feature enabled must be upgraded to have
6564	 * this feature active
6565	 */
6566	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6567		boolean_t lz4_en = spa_feature_is_enabled(spa,
6568		    SPA_FEATURE_LZ4_COMPRESS);
6569		boolean_t lz4_ac = spa_feature_is_active(spa,
6570		    SPA_FEATURE_LZ4_COMPRESS);
6571
6572		if (lz4_en && !lz4_ac)
6573			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6574	}
6575
6576	/*
6577	 * If we haven't written the salt, do so now.  Note that the
6578	 * feature may not be activated yet, but that's fine since
6579	 * the presence of this ZAP entry is backwards compatible.
6580	 */
6581	if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
6582	    DMU_POOL_CHECKSUM_SALT) == ENOENT) {
6583		VERIFY0(zap_add(spa->spa_meta_objset,
6584		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
6585		    sizeof (spa->spa_cksum_salt.zcs_bytes),
6586		    spa->spa_cksum_salt.zcs_bytes, tx));
6587	}
6588
6589	rrw_exit(&dp->dp_config_rwlock, FTAG);
6590}
6591
6592/*
6593 * Sync the specified transaction group.  New blocks may be dirtied as
6594 * part of the process, so we iterate until it converges.
6595 */
6596void
6597spa_sync(spa_t *spa, uint64_t txg)
6598{
6599	dsl_pool_t *dp = spa->spa_dsl_pool;
6600	objset_t *mos = spa->spa_meta_objset;
6601	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6602	vdev_t *rvd = spa->spa_root_vdev;
6603	vdev_t *vd;
6604	dmu_tx_t *tx;
6605	int error;
6606
6607	VERIFY(spa_writeable(spa));
6608
6609	/*
6610	 * Lock out configuration changes.
6611	 */
6612	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6613
6614	spa->spa_syncing_txg = txg;
6615	spa->spa_sync_pass = 0;
6616
6617	/*
6618	 * If there are any pending vdev state changes, convert them
6619	 * into config changes that go out with this transaction group.
6620	 */
6621	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6622	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6623		/*
6624		 * We need the write lock here because, for aux vdevs,
6625		 * calling vdev_config_dirty() modifies sav_config.
6626		 * This is ugly and will become unnecessary when we
6627		 * eliminate the aux vdev wart by integrating all vdevs
6628		 * into the root vdev tree.
6629		 */
6630		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6631		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6632		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6633			vdev_state_clean(vd);
6634			vdev_config_dirty(vd);
6635		}
6636		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6637		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6638	}
6639	spa_config_exit(spa, SCL_STATE, FTAG);
6640
6641	tx = dmu_tx_create_assigned(dp, txg);
6642
6643	spa->spa_sync_starttime = gethrtime();
6644#ifdef illumos
6645	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6646	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6647#else	/* !illumos */
6648#ifdef _KERNEL
6649	callout_reset(&spa->spa_deadman_cycid,
6650	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6651#endif
6652#endif	/* illumos */
6653
6654	/*
6655	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6656	 * set spa_deflate if we have no raid-z vdevs.
6657	 */
6658	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6659	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6660		int i;
6661
6662		for (i = 0; i < rvd->vdev_children; i++) {
6663			vd = rvd->vdev_child[i];
6664			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6665				break;
6666		}
6667		if (i == rvd->vdev_children) {
6668			spa->spa_deflate = TRUE;
6669			VERIFY(0 == zap_add(spa->spa_meta_objset,
6670			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6671			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6672		}
6673	}
6674
6675	/*
6676	 * Iterate to convergence.
6677	 */
6678	do {
6679		int pass = ++spa->spa_sync_pass;
6680
6681		spa_sync_config_object(spa, tx);
6682		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6683		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6684		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6685		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6686		spa_errlog_sync(spa, txg);
6687		dsl_pool_sync(dp, txg);
6688
6689		if (pass < zfs_sync_pass_deferred_free) {
6690			spa_sync_frees(spa, free_bpl, tx);
6691		} else {
6692			/*
6693			 * We can not defer frees in pass 1, because
6694			 * we sync the deferred frees later in pass 1.
6695			 */
6696			ASSERT3U(pass, >, 1);
6697			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6698			    &spa->spa_deferred_bpobj, tx);
6699		}
6700
6701		ddt_sync(spa, txg);
6702		dsl_scan_sync(dp, tx);
6703
6704		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6705			vdev_sync(vd, txg);
6706
6707		if (pass == 1) {
6708			spa_sync_upgrades(spa, tx);
6709			ASSERT3U(txg, >=,
6710			    spa->spa_uberblock.ub_rootbp.blk_birth);
6711			/*
6712			 * Note: We need to check if the MOS is dirty
6713			 * because we could have marked the MOS dirty
6714			 * without updating the uberblock (e.g. if we
6715			 * have sync tasks but no dirty user data).  We
6716			 * need to check the uberblock's rootbp because
6717			 * it is updated if we have synced out dirty
6718			 * data (though in this case the MOS will most
6719			 * likely also be dirty due to second order
6720			 * effects, we don't want to rely on that here).
6721			 */
6722			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6723			    !dmu_objset_is_dirty(mos, txg)) {
6724				/*
6725				 * Nothing changed on the first pass,
6726				 * therefore this TXG is a no-op.  Avoid
6727				 * syncing deferred frees, so that we
6728				 * can keep this TXG as a no-op.
6729				 */
6730				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6731				    txg));
6732				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6733				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6734				break;
6735			}
6736			spa_sync_deferred_frees(spa, tx);
6737		}
6738
6739	} while (dmu_objset_is_dirty(mos, txg));
6740
6741	/*
6742	 * Rewrite the vdev configuration (which includes the uberblock)
6743	 * to commit the transaction group.
6744	 *
6745	 * If there are no dirty vdevs, we sync the uberblock to a few
6746	 * random top-level vdevs that are known to be visible in the
6747	 * config cache (see spa_vdev_add() for a complete description).
6748	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6749	 */
6750	for (;;) {
6751		/*
6752		 * We hold SCL_STATE to prevent vdev open/close/etc.
6753		 * while we're attempting to write the vdev labels.
6754		 */
6755		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6756
6757		if (list_is_empty(&spa->spa_config_dirty_list)) {
6758			vdev_t *svd[SPA_DVAS_PER_BP];
6759			int svdcount = 0;
6760			int children = rvd->vdev_children;
6761			int c0 = spa_get_random(children);
6762
6763			for (int c = 0; c < children; c++) {
6764				vd = rvd->vdev_child[(c0 + c) % children];
6765				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6766					continue;
6767				svd[svdcount++] = vd;
6768				if (svdcount == SPA_DVAS_PER_BP)
6769					break;
6770			}
6771			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6772			if (error != 0)
6773				error = vdev_config_sync(svd, svdcount, txg,
6774				    B_TRUE);
6775		} else {
6776			error = vdev_config_sync(rvd->vdev_child,
6777			    rvd->vdev_children, txg, B_FALSE);
6778			if (error != 0)
6779				error = vdev_config_sync(rvd->vdev_child,
6780				    rvd->vdev_children, txg, B_TRUE);
6781		}
6782
6783		if (error == 0)
6784			spa->spa_last_synced_guid = rvd->vdev_guid;
6785
6786		spa_config_exit(spa, SCL_STATE, FTAG);
6787
6788		if (error == 0)
6789			break;
6790		zio_suspend(spa, NULL);
6791		zio_resume_wait(spa);
6792	}
6793	dmu_tx_commit(tx);
6794
6795#ifdef illumos
6796	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6797#else	/* !illumos */
6798#ifdef _KERNEL
6799	callout_drain(&spa->spa_deadman_cycid);
6800#endif
6801#endif	/* illumos */
6802
6803	/*
6804	 * Clear the dirty config list.
6805	 */
6806	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6807		vdev_config_clean(vd);
6808
6809	/*
6810	 * Now that the new config has synced transactionally,
6811	 * let it become visible to the config cache.
6812	 */
6813	if (spa->spa_config_syncing != NULL) {
6814		spa_config_set(spa, spa->spa_config_syncing);
6815		spa->spa_config_txg = txg;
6816		spa->spa_config_syncing = NULL;
6817	}
6818
6819	spa->spa_ubsync = spa->spa_uberblock;
6820
6821	dsl_pool_sync_done(dp, txg);
6822
6823	/*
6824	 * Update usable space statistics.
6825	 */
6826	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6827		vdev_sync_done(vd, txg);
6828
6829	spa_update_dspace(spa);
6830
6831	/*
6832	 * It had better be the case that we didn't dirty anything
6833	 * since vdev_config_sync().
6834	 */
6835	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6836	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6837	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6838
6839	spa->spa_sync_pass = 0;
6840
6841	spa_config_exit(spa, SCL_CONFIG, FTAG);
6842
6843	spa_handle_ignored_writes(spa);
6844
6845	/*
6846	 * If any async tasks have been requested, kick them off.
6847	 */
6848	spa_async_dispatch(spa);
6849	spa_async_dispatch_vd(spa);
6850}
6851
6852/*
6853 * Sync all pools.  We don't want to hold the namespace lock across these
6854 * operations, so we take a reference on the spa_t and drop the lock during the
6855 * sync.
6856 */
6857void
6858spa_sync_allpools(void)
6859{
6860	spa_t *spa = NULL;
6861	mutex_enter(&spa_namespace_lock);
6862	while ((spa = spa_next(spa)) != NULL) {
6863		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6864		    !spa_writeable(spa) || spa_suspended(spa))
6865			continue;
6866		spa_open_ref(spa, FTAG);
6867		mutex_exit(&spa_namespace_lock);
6868		txg_wait_synced(spa_get_dsl(spa), 0);
6869		mutex_enter(&spa_namespace_lock);
6870		spa_close(spa, FTAG);
6871	}
6872	mutex_exit(&spa_namespace_lock);
6873}
6874
6875/*
6876 * ==========================================================================
6877 * Miscellaneous routines
6878 * ==========================================================================
6879 */
6880
6881/*
6882 * Remove all pools in the system.
6883 */
6884void
6885spa_evict_all(void)
6886{
6887	spa_t *spa;
6888
6889	/*
6890	 * Remove all cached state.  All pools should be closed now,
6891	 * so every spa in the AVL tree should be unreferenced.
6892	 */
6893	mutex_enter(&spa_namespace_lock);
6894	while ((spa = spa_next(NULL)) != NULL) {
6895		/*
6896		 * Stop async tasks.  The async thread may need to detach
6897		 * a device that's been replaced, which requires grabbing
6898		 * spa_namespace_lock, so we must drop it here.
6899		 */
6900		spa_open_ref(spa, FTAG);
6901		mutex_exit(&spa_namespace_lock);
6902		spa_async_suspend(spa);
6903		mutex_enter(&spa_namespace_lock);
6904		spa_close(spa, FTAG);
6905
6906		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6907			spa_unload(spa);
6908			spa_deactivate(spa);
6909		}
6910		spa_remove(spa);
6911	}
6912	mutex_exit(&spa_namespace_lock);
6913}
6914
6915vdev_t *
6916spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6917{
6918	vdev_t *vd;
6919	int i;
6920
6921	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6922		return (vd);
6923
6924	if (aux) {
6925		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6926			vd = spa->spa_l2cache.sav_vdevs[i];
6927			if (vd->vdev_guid == guid)
6928				return (vd);
6929		}
6930
6931		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6932			vd = spa->spa_spares.sav_vdevs[i];
6933			if (vd->vdev_guid == guid)
6934				return (vd);
6935		}
6936	}
6937
6938	return (NULL);
6939}
6940
6941void
6942spa_upgrade(spa_t *spa, uint64_t version)
6943{
6944	ASSERT(spa_writeable(spa));
6945
6946	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6947
6948	/*
6949	 * This should only be called for a non-faulted pool, and since a
6950	 * future version would result in an unopenable pool, this shouldn't be
6951	 * possible.
6952	 */
6953	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6954	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6955
6956	spa->spa_uberblock.ub_version = version;
6957	vdev_config_dirty(spa->spa_root_vdev);
6958
6959	spa_config_exit(spa, SCL_ALL, FTAG);
6960
6961	txg_wait_synced(spa_get_dsl(spa), 0);
6962}
6963
6964boolean_t
6965spa_has_spare(spa_t *spa, uint64_t guid)
6966{
6967	int i;
6968	uint64_t spareguid;
6969	spa_aux_vdev_t *sav = &spa->spa_spares;
6970
6971	for (i = 0; i < sav->sav_count; i++)
6972		if (sav->sav_vdevs[i]->vdev_guid == guid)
6973			return (B_TRUE);
6974
6975	for (i = 0; i < sav->sav_npending; i++) {
6976		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6977		    &spareguid) == 0 && spareguid == guid)
6978			return (B_TRUE);
6979	}
6980
6981	return (B_FALSE);
6982}
6983
6984/*
6985 * Check if a pool has an active shared spare device.
6986 * Note: reference count of an active spare is 2, as a spare and as a replace
6987 */
6988static boolean_t
6989spa_has_active_shared_spare(spa_t *spa)
6990{
6991	int i, refcnt;
6992	uint64_t pool;
6993	spa_aux_vdev_t *sav = &spa->spa_spares;
6994
6995	for (i = 0; i < sav->sav_count; i++) {
6996		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6997		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6998		    refcnt > 2)
6999			return (B_TRUE);
7000	}
7001
7002	return (B_FALSE);
7003}
7004
7005/*
7006 * Post a sysevent corresponding to the given event.  The 'name' must be one of
7007 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
7008 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
7009 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7010 * or zdb as real changes.
7011 */
7012void
7013spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
7014{
7015#ifdef _KERNEL
7016	sysevent_t		*ev;
7017	sysevent_attr_list_t	*attr = NULL;
7018	sysevent_value_t	value;
7019	sysevent_id_t		eid;
7020
7021	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
7022	    SE_SLEEP);
7023
7024	value.value_type = SE_DATA_TYPE_STRING;
7025	value.value.sv_string = spa_name(spa);
7026	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
7027		goto done;
7028
7029	value.value_type = SE_DATA_TYPE_UINT64;
7030	value.value.sv_uint64 = spa_guid(spa);
7031	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
7032		goto done;
7033
7034	if (vd) {
7035		value.value_type = SE_DATA_TYPE_UINT64;
7036		value.value.sv_uint64 = vd->vdev_guid;
7037		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
7038		    SE_SLEEP) != 0)
7039			goto done;
7040
7041		if (vd->vdev_path) {
7042			value.value_type = SE_DATA_TYPE_STRING;
7043			value.value.sv_string = vd->vdev_path;
7044			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
7045			    &value, SE_SLEEP) != 0)
7046				goto done;
7047		}
7048	}
7049
7050	if (sysevent_attach_attributes(ev, attr) != 0)
7051		goto done;
7052	attr = NULL;
7053
7054	(void) log_sysevent(ev, SE_SLEEP, &eid);
7055
7056done:
7057	if (attr)
7058		sysevent_free_attr(attr);
7059	sysevent_free(ev);
7060#endif
7061}
7062