spa.c revision 277300
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86/*
87 * The interval, in seconds, at which failed configuration cache file writes
88 * should be retried.
89 */
90static int zfs_ccw_retry_interval = 300;
91
92SYSCTL_DECL(_vfs_zfs);
93SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RWTUN, &check_hostid, 0,
94    "Check hostid on import?");
95TUNABLE_INT("vfs.zfs.ccw_retry_interval", &zfs_ccw_retry_interval);
96SYSCTL_INT(_vfs_zfs, OID_AUTO, ccw_retry_interval, CTLFLAG_RW,
97    &zfs_ccw_retry_interval, 0,
98    "Configuration cache file write, retry after failure, interval (seconds)");
99
100typedef enum zti_modes {
101	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
102	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
103	ZTI_MODE_NULL,			/* don't create a taskq */
104	ZTI_NMODES
105} zti_modes_t;
106
107#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
108#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
109#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
110
111#define	ZTI_N(n)	ZTI_P(n, 1)
112#define	ZTI_ONE		ZTI_N(1)
113
114typedef struct zio_taskq_info {
115	zti_modes_t zti_mode;
116	uint_t zti_value;
117	uint_t zti_count;
118} zio_taskq_info_t;
119
120static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
121	"issue", "issue_high", "intr", "intr_high"
122};
123
124/*
125 * This table defines the taskq settings for each ZFS I/O type. When
126 * initializing a pool, we use this table to create an appropriately sized
127 * taskq. Some operations are low volume and therefore have a small, static
128 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
129 * macros. Other operations process a large amount of data; the ZTI_BATCH
130 * macro causes us to create a taskq oriented for throughput. Some operations
131 * are so high frequency and short-lived that the taskq itself can become a a
132 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
133 * additional degree of parallelism specified by the number of threads per-
134 * taskq and the number of taskqs; when dispatching an event in this case, the
135 * particular taskq is chosen at random.
136 *
137 * The different taskq priorities are to handle the different contexts (issue
138 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
139 * need to be handled with minimum delay.
140 */
141const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
142	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
143	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
144	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
145	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
146	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
147	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
148	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
149};
150
151static void spa_sync_version(void *arg, dmu_tx_t *tx);
152static void spa_sync_props(void *arg, dmu_tx_t *tx);
153static boolean_t spa_has_active_shared_spare(spa_t *spa);
154static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
155    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
156    char **ereport);
157static void spa_vdev_resilver_done(spa_t *spa);
158
159uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
160#ifdef PSRSET_BIND
161id_t		zio_taskq_psrset_bind = PS_NONE;
162#endif
163#ifdef SYSDC
164boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
165#endif
166uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
167
168boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
169extern int	zfs_sync_pass_deferred_free;
170
171#ifndef illumos
172extern void spa_deadman(void *arg);
173#endif
174
175/*
176 * This (illegal) pool name is used when temporarily importing a spa_t in order
177 * to get the vdev stats associated with the imported devices.
178 */
179#define	TRYIMPORT_NAME	"$import"
180
181/*
182 * ==========================================================================
183 * SPA properties routines
184 * ==========================================================================
185 */
186
187/*
188 * Add a (source=src, propname=propval) list to an nvlist.
189 */
190static void
191spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
192    uint64_t intval, zprop_source_t src)
193{
194	const char *propname = zpool_prop_to_name(prop);
195	nvlist_t *propval;
196
197	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
198	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
199
200	if (strval != NULL)
201		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
202	else
203		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
204
205	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
206	nvlist_free(propval);
207}
208
209/*
210 * Get property values from the spa configuration.
211 */
212static void
213spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
214{
215	vdev_t *rvd = spa->spa_root_vdev;
216	dsl_pool_t *pool = spa->spa_dsl_pool;
217	uint64_t size, alloc, cap, version;
218	zprop_source_t src = ZPROP_SRC_NONE;
219	spa_config_dirent_t *dp;
220	metaslab_class_t *mc = spa_normal_class(spa);
221
222	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
223
224	if (rvd != NULL) {
225		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
226		size = metaslab_class_get_space(spa_normal_class(spa));
227		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
230		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
231		    size - alloc, src);
232
233		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
234		    metaslab_class_fragmentation(mc), src);
235		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
236		    metaslab_class_expandable_space(mc), src);
237		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
238		    (spa_mode(spa) == FREAD), src);
239
240		cap = (size == 0) ? 0 : (alloc * 100 / size);
241		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
242
243		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
244		    ddt_get_pool_dedup_ratio(spa), src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
247		    rvd->vdev_state, src);
248
249		version = spa_version(spa);
250		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
251			src = ZPROP_SRC_DEFAULT;
252		else
253			src = ZPROP_SRC_LOCAL;
254		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
255	}
256
257	if (pool != NULL) {
258		/*
259		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
260		 * when opening pools before this version freedir will be NULL.
261		 */
262		if (pool->dp_free_dir != NULL) {
263			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
264			    dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
265			    src);
266		} else {
267			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
268			    NULL, 0, src);
269		}
270
271		if (pool->dp_leak_dir != NULL) {
272			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
273			    dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
274			    src);
275		} else {
276			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
277			    NULL, 0, src);
278		}
279	}
280
281	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
282
283	if (spa->spa_comment != NULL) {
284		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
285		    0, ZPROP_SRC_LOCAL);
286	}
287
288	if (spa->spa_root != NULL)
289		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
290		    0, ZPROP_SRC_LOCAL);
291
292	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
293		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
294		    MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
295	} else {
296		spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
297		    SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
298	}
299
300	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
301		if (dp->scd_path == NULL) {
302			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
303			    "none", 0, ZPROP_SRC_LOCAL);
304		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
305			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
306			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
307		}
308	}
309}
310
311/*
312 * Get zpool property values.
313 */
314int
315spa_prop_get(spa_t *spa, nvlist_t **nvp)
316{
317	objset_t *mos = spa->spa_meta_objset;
318	zap_cursor_t zc;
319	zap_attribute_t za;
320	int err;
321
322	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
323
324	mutex_enter(&spa->spa_props_lock);
325
326	/*
327	 * Get properties from the spa config.
328	 */
329	spa_prop_get_config(spa, nvp);
330
331	/* If no pool property object, no more prop to get. */
332	if (mos == NULL || spa->spa_pool_props_object == 0) {
333		mutex_exit(&spa->spa_props_lock);
334		return (0);
335	}
336
337	/*
338	 * Get properties from the MOS pool property object.
339	 */
340	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
341	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
342	    zap_cursor_advance(&zc)) {
343		uint64_t intval = 0;
344		char *strval = NULL;
345		zprop_source_t src = ZPROP_SRC_DEFAULT;
346		zpool_prop_t prop;
347
348		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
349			continue;
350
351		switch (za.za_integer_length) {
352		case 8:
353			/* integer property */
354			if (za.za_first_integer !=
355			    zpool_prop_default_numeric(prop))
356				src = ZPROP_SRC_LOCAL;
357
358			if (prop == ZPOOL_PROP_BOOTFS) {
359				dsl_pool_t *dp;
360				dsl_dataset_t *ds = NULL;
361
362				dp = spa_get_dsl(spa);
363				dsl_pool_config_enter(dp, FTAG);
364				if (err = dsl_dataset_hold_obj(dp,
365				    za.za_first_integer, FTAG, &ds)) {
366					dsl_pool_config_exit(dp, FTAG);
367					break;
368				}
369
370				strval = kmem_alloc(
371				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
372				    KM_SLEEP);
373				dsl_dataset_name(ds, strval);
374				dsl_dataset_rele(ds, FTAG);
375				dsl_pool_config_exit(dp, FTAG);
376			} else {
377				strval = NULL;
378				intval = za.za_first_integer;
379			}
380
381			spa_prop_add_list(*nvp, prop, strval, intval, src);
382
383			if (strval != NULL)
384				kmem_free(strval,
385				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
386
387			break;
388
389		case 1:
390			/* string property */
391			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
392			err = zap_lookup(mos, spa->spa_pool_props_object,
393			    za.za_name, 1, za.za_num_integers, strval);
394			if (err) {
395				kmem_free(strval, za.za_num_integers);
396				break;
397			}
398			spa_prop_add_list(*nvp, prop, strval, 0, src);
399			kmem_free(strval, za.za_num_integers);
400			break;
401
402		default:
403			break;
404		}
405	}
406	zap_cursor_fini(&zc);
407	mutex_exit(&spa->spa_props_lock);
408out:
409	if (err && err != ENOENT) {
410		nvlist_free(*nvp);
411		*nvp = NULL;
412		return (err);
413	}
414
415	return (0);
416}
417
418/*
419 * Validate the given pool properties nvlist and modify the list
420 * for the property values to be set.
421 */
422static int
423spa_prop_validate(spa_t *spa, nvlist_t *props)
424{
425	nvpair_t *elem;
426	int error = 0, reset_bootfs = 0;
427	uint64_t objnum = 0;
428	boolean_t has_feature = B_FALSE;
429
430	elem = NULL;
431	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
432		uint64_t intval;
433		char *strval, *slash, *check, *fname;
434		const char *propname = nvpair_name(elem);
435		zpool_prop_t prop = zpool_name_to_prop(propname);
436
437		switch (prop) {
438		case ZPROP_INVAL:
439			if (!zpool_prop_feature(propname)) {
440				error = SET_ERROR(EINVAL);
441				break;
442			}
443
444			/*
445			 * Sanitize the input.
446			 */
447			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
448				error = SET_ERROR(EINVAL);
449				break;
450			}
451
452			if (nvpair_value_uint64(elem, &intval) != 0) {
453				error = SET_ERROR(EINVAL);
454				break;
455			}
456
457			if (intval != 0) {
458				error = SET_ERROR(EINVAL);
459				break;
460			}
461
462			fname = strchr(propname, '@') + 1;
463			if (zfeature_lookup_name(fname, NULL) != 0) {
464				error = SET_ERROR(EINVAL);
465				break;
466			}
467
468			has_feature = B_TRUE;
469			break;
470
471		case ZPOOL_PROP_VERSION:
472			error = nvpair_value_uint64(elem, &intval);
473			if (!error &&
474			    (intval < spa_version(spa) ||
475			    intval > SPA_VERSION_BEFORE_FEATURES ||
476			    has_feature))
477				error = SET_ERROR(EINVAL);
478			break;
479
480		case ZPOOL_PROP_DELEGATION:
481		case ZPOOL_PROP_AUTOREPLACE:
482		case ZPOOL_PROP_LISTSNAPS:
483		case ZPOOL_PROP_AUTOEXPAND:
484			error = nvpair_value_uint64(elem, &intval);
485			if (!error && intval > 1)
486				error = SET_ERROR(EINVAL);
487			break;
488
489		case ZPOOL_PROP_BOOTFS:
490			/*
491			 * If the pool version is less than SPA_VERSION_BOOTFS,
492			 * or the pool is still being created (version == 0),
493			 * the bootfs property cannot be set.
494			 */
495			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
496				error = SET_ERROR(ENOTSUP);
497				break;
498			}
499
500			/*
501			 * Make sure the vdev config is bootable
502			 */
503			if (!vdev_is_bootable(spa->spa_root_vdev)) {
504				error = SET_ERROR(ENOTSUP);
505				break;
506			}
507
508			reset_bootfs = 1;
509
510			error = nvpair_value_string(elem, &strval);
511
512			if (!error) {
513				objset_t *os;
514				uint64_t propval;
515
516				if (strval == NULL || strval[0] == '\0') {
517					objnum = zpool_prop_default_numeric(
518					    ZPOOL_PROP_BOOTFS);
519					break;
520				}
521
522				if (error = dmu_objset_hold(strval, FTAG, &os))
523					break;
524
525				/*
526				 * Must be ZPL, and its property settings
527				 * must be supported by GRUB (compression
528				 * is not gzip, and large blocks are not used).
529				 */
530
531				if (dmu_objset_type(os) != DMU_OST_ZFS) {
532					error = SET_ERROR(ENOTSUP);
533				} else if ((error =
534				    dsl_prop_get_int_ds(dmu_objset_ds(os),
535				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
536				    &propval)) == 0 &&
537				    !BOOTFS_COMPRESS_VALID(propval)) {
538					error = SET_ERROR(ENOTSUP);
539				} else if ((error =
540				    dsl_prop_get_int_ds(dmu_objset_ds(os),
541				    zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
542				    &propval)) == 0 &&
543				    propval > SPA_OLD_MAXBLOCKSIZE) {
544					error = SET_ERROR(ENOTSUP);
545				} else {
546					objnum = dmu_objset_id(os);
547				}
548				dmu_objset_rele(os, FTAG);
549			}
550			break;
551
552		case ZPOOL_PROP_FAILUREMODE:
553			error = nvpair_value_uint64(elem, &intval);
554			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
555			    intval > ZIO_FAILURE_MODE_PANIC))
556				error = SET_ERROR(EINVAL);
557
558			/*
559			 * This is a special case which only occurs when
560			 * the pool has completely failed. This allows
561			 * the user to change the in-core failmode property
562			 * without syncing it out to disk (I/Os might
563			 * currently be blocked). We do this by returning
564			 * EIO to the caller (spa_prop_set) to trick it
565			 * into thinking we encountered a property validation
566			 * error.
567			 */
568			if (!error && spa_suspended(spa)) {
569				spa->spa_failmode = intval;
570				error = SET_ERROR(EIO);
571			}
572			break;
573
574		case ZPOOL_PROP_CACHEFILE:
575			if ((error = nvpair_value_string(elem, &strval)) != 0)
576				break;
577
578			if (strval[0] == '\0')
579				break;
580
581			if (strcmp(strval, "none") == 0)
582				break;
583
584			if (strval[0] != '/') {
585				error = SET_ERROR(EINVAL);
586				break;
587			}
588
589			slash = strrchr(strval, '/');
590			ASSERT(slash != NULL);
591
592			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
593			    strcmp(slash, "/..") == 0)
594				error = SET_ERROR(EINVAL);
595			break;
596
597		case ZPOOL_PROP_COMMENT:
598			if ((error = nvpair_value_string(elem, &strval)) != 0)
599				break;
600			for (check = strval; *check != '\0'; check++) {
601				/*
602				 * The kernel doesn't have an easy isprint()
603				 * check.  For this kernel check, we merely
604				 * check ASCII apart from DEL.  Fix this if
605				 * there is an easy-to-use kernel isprint().
606				 */
607				if (*check >= 0x7f) {
608					error = SET_ERROR(EINVAL);
609					break;
610				}
611				check++;
612			}
613			if (strlen(strval) > ZPROP_MAX_COMMENT)
614				error = E2BIG;
615			break;
616
617		case ZPOOL_PROP_DEDUPDITTO:
618			if (spa_version(spa) < SPA_VERSION_DEDUP)
619				error = SET_ERROR(ENOTSUP);
620			else
621				error = nvpair_value_uint64(elem, &intval);
622			if (error == 0 &&
623			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
624				error = SET_ERROR(EINVAL);
625			break;
626		}
627
628		if (error)
629			break;
630	}
631
632	if (!error && reset_bootfs) {
633		error = nvlist_remove(props,
634		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
635
636		if (!error) {
637			error = nvlist_add_uint64(props,
638			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
639		}
640	}
641
642	return (error);
643}
644
645void
646spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
647{
648	char *cachefile;
649	spa_config_dirent_t *dp;
650
651	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
652	    &cachefile) != 0)
653		return;
654
655	dp = kmem_alloc(sizeof (spa_config_dirent_t),
656	    KM_SLEEP);
657
658	if (cachefile[0] == '\0')
659		dp->scd_path = spa_strdup(spa_config_path);
660	else if (strcmp(cachefile, "none") == 0)
661		dp->scd_path = NULL;
662	else
663		dp->scd_path = spa_strdup(cachefile);
664
665	list_insert_head(&spa->spa_config_list, dp);
666	if (need_sync)
667		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
668}
669
670int
671spa_prop_set(spa_t *spa, nvlist_t *nvp)
672{
673	int error;
674	nvpair_t *elem = NULL;
675	boolean_t need_sync = B_FALSE;
676
677	if ((error = spa_prop_validate(spa, nvp)) != 0)
678		return (error);
679
680	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
681		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
682
683		if (prop == ZPOOL_PROP_CACHEFILE ||
684		    prop == ZPOOL_PROP_ALTROOT ||
685		    prop == ZPOOL_PROP_READONLY)
686			continue;
687
688		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
689			uint64_t ver;
690
691			if (prop == ZPOOL_PROP_VERSION) {
692				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
693			} else {
694				ASSERT(zpool_prop_feature(nvpair_name(elem)));
695				ver = SPA_VERSION_FEATURES;
696				need_sync = B_TRUE;
697			}
698
699			/* Save time if the version is already set. */
700			if (ver == spa_version(spa))
701				continue;
702
703			/*
704			 * In addition to the pool directory object, we might
705			 * create the pool properties object, the features for
706			 * read object, the features for write object, or the
707			 * feature descriptions object.
708			 */
709			error = dsl_sync_task(spa->spa_name, NULL,
710			    spa_sync_version, &ver,
711			    6, ZFS_SPACE_CHECK_RESERVED);
712			if (error)
713				return (error);
714			continue;
715		}
716
717		need_sync = B_TRUE;
718		break;
719	}
720
721	if (need_sync) {
722		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
723		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
724	}
725
726	return (0);
727}
728
729/*
730 * If the bootfs property value is dsobj, clear it.
731 */
732void
733spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
734{
735	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
736		VERIFY(zap_remove(spa->spa_meta_objset,
737		    spa->spa_pool_props_object,
738		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
739		spa->spa_bootfs = 0;
740	}
741}
742
743/*ARGSUSED*/
744static int
745spa_change_guid_check(void *arg, dmu_tx_t *tx)
746{
747	uint64_t *newguid = arg;
748	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
749	vdev_t *rvd = spa->spa_root_vdev;
750	uint64_t vdev_state;
751
752	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
753	vdev_state = rvd->vdev_state;
754	spa_config_exit(spa, SCL_STATE, FTAG);
755
756	if (vdev_state != VDEV_STATE_HEALTHY)
757		return (SET_ERROR(ENXIO));
758
759	ASSERT3U(spa_guid(spa), !=, *newguid);
760
761	return (0);
762}
763
764static void
765spa_change_guid_sync(void *arg, dmu_tx_t *tx)
766{
767	uint64_t *newguid = arg;
768	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
769	uint64_t oldguid;
770	vdev_t *rvd = spa->spa_root_vdev;
771
772	oldguid = spa_guid(spa);
773
774	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
775	rvd->vdev_guid = *newguid;
776	rvd->vdev_guid_sum += (*newguid - oldguid);
777	vdev_config_dirty(rvd);
778	spa_config_exit(spa, SCL_STATE, FTAG);
779
780	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
781	    oldguid, *newguid);
782}
783
784/*
785 * Change the GUID for the pool.  This is done so that we can later
786 * re-import a pool built from a clone of our own vdevs.  We will modify
787 * the root vdev's guid, our own pool guid, and then mark all of our
788 * vdevs dirty.  Note that we must make sure that all our vdevs are
789 * online when we do this, or else any vdevs that weren't present
790 * would be orphaned from our pool.  We are also going to issue a
791 * sysevent to update any watchers.
792 */
793int
794spa_change_guid(spa_t *spa)
795{
796	int error;
797	uint64_t guid;
798
799	mutex_enter(&spa->spa_vdev_top_lock);
800	mutex_enter(&spa_namespace_lock);
801	guid = spa_generate_guid(NULL);
802
803	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
804	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
805
806	if (error == 0) {
807		spa_config_sync(spa, B_FALSE, B_TRUE);
808		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
809	}
810
811	mutex_exit(&spa_namespace_lock);
812	mutex_exit(&spa->spa_vdev_top_lock);
813
814	return (error);
815}
816
817/*
818 * ==========================================================================
819 * SPA state manipulation (open/create/destroy/import/export)
820 * ==========================================================================
821 */
822
823static int
824spa_error_entry_compare(const void *a, const void *b)
825{
826	spa_error_entry_t *sa = (spa_error_entry_t *)a;
827	spa_error_entry_t *sb = (spa_error_entry_t *)b;
828	int ret;
829
830	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
831	    sizeof (zbookmark_phys_t));
832
833	if (ret < 0)
834		return (-1);
835	else if (ret > 0)
836		return (1);
837	else
838		return (0);
839}
840
841/*
842 * Utility function which retrieves copies of the current logs and
843 * re-initializes them in the process.
844 */
845void
846spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
847{
848	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
849
850	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
851	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
852
853	avl_create(&spa->spa_errlist_scrub,
854	    spa_error_entry_compare, sizeof (spa_error_entry_t),
855	    offsetof(spa_error_entry_t, se_avl));
856	avl_create(&spa->spa_errlist_last,
857	    spa_error_entry_compare, sizeof (spa_error_entry_t),
858	    offsetof(spa_error_entry_t, se_avl));
859}
860
861static void
862spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
863{
864	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
865	enum zti_modes mode = ztip->zti_mode;
866	uint_t value = ztip->zti_value;
867	uint_t count = ztip->zti_count;
868	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
869	char name[32];
870	uint_t flags = 0;
871	boolean_t batch = B_FALSE;
872
873	if (mode == ZTI_MODE_NULL) {
874		tqs->stqs_count = 0;
875		tqs->stqs_taskq = NULL;
876		return;
877	}
878
879	ASSERT3U(count, >, 0);
880
881	tqs->stqs_count = count;
882	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
883
884	switch (mode) {
885	case ZTI_MODE_FIXED:
886		ASSERT3U(value, >=, 1);
887		value = MAX(value, 1);
888		break;
889
890	case ZTI_MODE_BATCH:
891		batch = B_TRUE;
892		flags |= TASKQ_THREADS_CPU_PCT;
893		value = zio_taskq_batch_pct;
894		break;
895
896	default:
897		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
898		    "spa_activate()",
899		    zio_type_name[t], zio_taskq_types[q], mode, value);
900		break;
901	}
902
903	for (uint_t i = 0; i < count; i++) {
904		taskq_t *tq;
905
906		if (count > 1) {
907			(void) snprintf(name, sizeof (name), "%s_%s_%u",
908			    zio_type_name[t], zio_taskq_types[q], i);
909		} else {
910			(void) snprintf(name, sizeof (name), "%s_%s",
911			    zio_type_name[t], zio_taskq_types[q]);
912		}
913
914#ifdef SYSDC
915		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
916			if (batch)
917				flags |= TASKQ_DC_BATCH;
918
919			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
920			    spa->spa_proc, zio_taskq_basedc, flags);
921		} else {
922#endif
923			pri_t pri = maxclsyspri;
924			/*
925			 * The write issue taskq can be extremely CPU
926			 * intensive.  Run it at slightly lower priority
927			 * than the other taskqs.
928			 */
929			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
930				pri--;
931
932			tq = taskq_create_proc(name, value, pri, 50,
933			    INT_MAX, spa->spa_proc, flags);
934#ifdef SYSDC
935		}
936#endif
937
938		tqs->stqs_taskq[i] = tq;
939	}
940}
941
942static void
943spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
944{
945	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
946
947	if (tqs->stqs_taskq == NULL) {
948		ASSERT0(tqs->stqs_count);
949		return;
950	}
951
952	for (uint_t i = 0; i < tqs->stqs_count; i++) {
953		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
954		taskq_destroy(tqs->stqs_taskq[i]);
955	}
956
957	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
958	tqs->stqs_taskq = NULL;
959}
960
961/*
962 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
963 * Note that a type may have multiple discrete taskqs to avoid lock contention
964 * on the taskq itself. In that case we choose which taskq at random by using
965 * the low bits of gethrtime().
966 */
967void
968spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
969    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
970{
971	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
972	taskq_t *tq;
973
974	ASSERT3P(tqs->stqs_taskq, !=, NULL);
975	ASSERT3U(tqs->stqs_count, !=, 0);
976
977	if (tqs->stqs_count == 1) {
978		tq = tqs->stqs_taskq[0];
979	} else {
980#ifdef _KERNEL
981		tq = tqs->stqs_taskq[cpu_ticks() % tqs->stqs_count];
982#else
983		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
984#endif
985	}
986
987	taskq_dispatch_ent(tq, func, arg, flags, ent);
988}
989
990static void
991spa_create_zio_taskqs(spa_t *spa)
992{
993	for (int t = 0; t < ZIO_TYPES; t++) {
994		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
995			spa_taskqs_init(spa, t, q);
996		}
997	}
998}
999
1000#ifdef _KERNEL
1001#ifdef SPA_PROCESS
1002static void
1003spa_thread(void *arg)
1004{
1005	callb_cpr_t cprinfo;
1006
1007	spa_t *spa = arg;
1008	user_t *pu = PTOU(curproc);
1009
1010	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1011	    spa->spa_name);
1012
1013	ASSERT(curproc != &p0);
1014	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1015	    "zpool-%s", spa->spa_name);
1016	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1017
1018#ifdef PSRSET_BIND
1019	/* bind this thread to the requested psrset */
1020	if (zio_taskq_psrset_bind != PS_NONE) {
1021		pool_lock();
1022		mutex_enter(&cpu_lock);
1023		mutex_enter(&pidlock);
1024		mutex_enter(&curproc->p_lock);
1025
1026		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1027		    0, NULL, NULL) == 0)  {
1028			curthread->t_bind_pset = zio_taskq_psrset_bind;
1029		} else {
1030			cmn_err(CE_WARN,
1031			    "Couldn't bind process for zfs pool \"%s\" to "
1032			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1033		}
1034
1035		mutex_exit(&curproc->p_lock);
1036		mutex_exit(&pidlock);
1037		mutex_exit(&cpu_lock);
1038		pool_unlock();
1039	}
1040#endif
1041
1042#ifdef SYSDC
1043	if (zio_taskq_sysdc) {
1044		sysdc_thread_enter(curthread, 100, 0);
1045	}
1046#endif
1047
1048	spa->spa_proc = curproc;
1049	spa->spa_did = curthread->t_did;
1050
1051	spa_create_zio_taskqs(spa);
1052
1053	mutex_enter(&spa->spa_proc_lock);
1054	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1055
1056	spa->spa_proc_state = SPA_PROC_ACTIVE;
1057	cv_broadcast(&spa->spa_proc_cv);
1058
1059	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1060	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1061		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1062	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1063
1064	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1065	spa->spa_proc_state = SPA_PROC_GONE;
1066	spa->spa_proc = &p0;
1067	cv_broadcast(&spa->spa_proc_cv);
1068	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1069
1070	mutex_enter(&curproc->p_lock);
1071	lwp_exit();
1072}
1073#endif	/* SPA_PROCESS */
1074#endif
1075
1076/*
1077 * Activate an uninitialized pool.
1078 */
1079static void
1080spa_activate(spa_t *spa, int mode)
1081{
1082	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1083
1084	spa->spa_state = POOL_STATE_ACTIVE;
1085	spa->spa_mode = mode;
1086
1087	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1088	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1089
1090	/* Try to create a covering process */
1091	mutex_enter(&spa->spa_proc_lock);
1092	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1093	ASSERT(spa->spa_proc == &p0);
1094	spa->spa_did = 0;
1095
1096#ifdef SPA_PROCESS
1097	/* Only create a process if we're going to be around a while. */
1098	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1099		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1100		    NULL, 0) == 0) {
1101			spa->spa_proc_state = SPA_PROC_CREATED;
1102			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1103				cv_wait(&spa->spa_proc_cv,
1104				    &spa->spa_proc_lock);
1105			}
1106			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1107			ASSERT(spa->spa_proc != &p0);
1108			ASSERT(spa->spa_did != 0);
1109		} else {
1110#ifdef _KERNEL
1111			cmn_err(CE_WARN,
1112			    "Couldn't create process for zfs pool \"%s\"\n",
1113			    spa->spa_name);
1114#endif
1115		}
1116	}
1117#endif	/* SPA_PROCESS */
1118	mutex_exit(&spa->spa_proc_lock);
1119
1120	/* If we didn't create a process, we need to create our taskqs. */
1121	ASSERT(spa->spa_proc == &p0);
1122	if (spa->spa_proc == &p0) {
1123		spa_create_zio_taskqs(spa);
1124	}
1125
1126	/*
1127	 * Start TRIM thread.
1128	 */
1129	trim_thread_create(spa);
1130
1131	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1132	    offsetof(vdev_t, vdev_config_dirty_node));
1133	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1134	    offsetof(vdev_t, vdev_state_dirty_node));
1135
1136	txg_list_create(&spa->spa_vdev_txg_list,
1137	    offsetof(struct vdev, vdev_txg_node));
1138
1139	avl_create(&spa->spa_errlist_scrub,
1140	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1141	    offsetof(spa_error_entry_t, se_avl));
1142	avl_create(&spa->spa_errlist_last,
1143	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1144	    offsetof(spa_error_entry_t, se_avl));
1145}
1146
1147/*
1148 * Opposite of spa_activate().
1149 */
1150static void
1151spa_deactivate(spa_t *spa)
1152{
1153	ASSERT(spa->spa_sync_on == B_FALSE);
1154	ASSERT(spa->spa_dsl_pool == NULL);
1155	ASSERT(spa->spa_root_vdev == NULL);
1156	ASSERT(spa->spa_async_zio_root == NULL);
1157	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1158
1159	/*
1160	 * Stop TRIM thread in case spa_unload() wasn't called directly
1161	 * before spa_deactivate().
1162	 */
1163	trim_thread_destroy(spa);
1164
1165	txg_list_destroy(&spa->spa_vdev_txg_list);
1166
1167	list_destroy(&spa->spa_config_dirty_list);
1168	list_destroy(&spa->spa_state_dirty_list);
1169
1170	for (int t = 0; t < ZIO_TYPES; t++) {
1171		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1172			spa_taskqs_fini(spa, t, q);
1173		}
1174	}
1175
1176	metaslab_class_destroy(spa->spa_normal_class);
1177	spa->spa_normal_class = NULL;
1178
1179	metaslab_class_destroy(spa->spa_log_class);
1180	spa->spa_log_class = NULL;
1181
1182	/*
1183	 * If this was part of an import or the open otherwise failed, we may
1184	 * still have errors left in the queues.  Empty them just in case.
1185	 */
1186	spa_errlog_drain(spa);
1187
1188	avl_destroy(&spa->spa_errlist_scrub);
1189	avl_destroy(&spa->spa_errlist_last);
1190
1191	spa->spa_state = POOL_STATE_UNINITIALIZED;
1192
1193	mutex_enter(&spa->spa_proc_lock);
1194	if (spa->spa_proc_state != SPA_PROC_NONE) {
1195		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1196		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1197		cv_broadcast(&spa->spa_proc_cv);
1198		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1199			ASSERT(spa->spa_proc != &p0);
1200			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1201		}
1202		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1203		spa->spa_proc_state = SPA_PROC_NONE;
1204	}
1205	ASSERT(spa->spa_proc == &p0);
1206	mutex_exit(&spa->spa_proc_lock);
1207
1208#ifdef SPA_PROCESS
1209	/*
1210	 * We want to make sure spa_thread() has actually exited the ZFS
1211	 * module, so that the module can't be unloaded out from underneath
1212	 * it.
1213	 */
1214	if (spa->spa_did != 0) {
1215		thread_join(spa->spa_did);
1216		spa->spa_did = 0;
1217	}
1218#endif	/* SPA_PROCESS */
1219}
1220
1221/*
1222 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1223 * will create all the necessary vdevs in the appropriate layout, with each vdev
1224 * in the CLOSED state.  This will prep the pool before open/creation/import.
1225 * All vdev validation is done by the vdev_alloc() routine.
1226 */
1227static int
1228spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1229    uint_t id, int atype)
1230{
1231	nvlist_t **child;
1232	uint_t children;
1233	int error;
1234
1235	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1236		return (error);
1237
1238	if ((*vdp)->vdev_ops->vdev_op_leaf)
1239		return (0);
1240
1241	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1242	    &child, &children);
1243
1244	if (error == ENOENT)
1245		return (0);
1246
1247	if (error) {
1248		vdev_free(*vdp);
1249		*vdp = NULL;
1250		return (SET_ERROR(EINVAL));
1251	}
1252
1253	for (int c = 0; c < children; c++) {
1254		vdev_t *vd;
1255		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1256		    atype)) != 0) {
1257			vdev_free(*vdp);
1258			*vdp = NULL;
1259			return (error);
1260		}
1261	}
1262
1263	ASSERT(*vdp != NULL);
1264
1265	return (0);
1266}
1267
1268/*
1269 * Opposite of spa_load().
1270 */
1271static void
1272spa_unload(spa_t *spa)
1273{
1274	int i;
1275
1276	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1277
1278	/*
1279	 * Stop TRIM thread.
1280	 */
1281	trim_thread_destroy(spa);
1282
1283	/*
1284	 * Stop async tasks.
1285	 */
1286	spa_async_suspend(spa);
1287
1288	/*
1289	 * Stop syncing.
1290	 */
1291	if (spa->spa_sync_on) {
1292		txg_sync_stop(spa->spa_dsl_pool);
1293		spa->spa_sync_on = B_FALSE;
1294	}
1295
1296	/*
1297	 * Wait for any outstanding async I/O to complete.
1298	 */
1299	if (spa->spa_async_zio_root != NULL) {
1300		for (int i = 0; i < max_ncpus; i++)
1301			(void) zio_wait(spa->spa_async_zio_root[i]);
1302		kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1303		spa->spa_async_zio_root = NULL;
1304	}
1305
1306	bpobj_close(&spa->spa_deferred_bpobj);
1307
1308	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1309
1310	/*
1311	 * Close all vdevs.
1312	 */
1313	if (spa->spa_root_vdev)
1314		vdev_free(spa->spa_root_vdev);
1315	ASSERT(spa->spa_root_vdev == NULL);
1316
1317	/*
1318	 * Close the dsl pool.
1319	 */
1320	if (spa->spa_dsl_pool) {
1321		dsl_pool_close(spa->spa_dsl_pool);
1322		spa->spa_dsl_pool = NULL;
1323		spa->spa_meta_objset = NULL;
1324	}
1325
1326	ddt_unload(spa);
1327
1328
1329	/*
1330	 * Drop and purge level 2 cache
1331	 */
1332	spa_l2cache_drop(spa);
1333
1334	for (i = 0; i < spa->spa_spares.sav_count; i++)
1335		vdev_free(spa->spa_spares.sav_vdevs[i]);
1336	if (spa->spa_spares.sav_vdevs) {
1337		kmem_free(spa->spa_spares.sav_vdevs,
1338		    spa->spa_spares.sav_count * sizeof (void *));
1339		spa->spa_spares.sav_vdevs = NULL;
1340	}
1341	if (spa->spa_spares.sav_config) {
1342		nvlist_free(spa->spa_spares.sav_config);
1343		spa->spa_spares.sav_config = NULL;
1344	}
1345	spa->spa_spares.sav_count = 0;
1346
1347	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1348		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1349		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1350	}
1351	if (spa->spa_l2cache.sav_vdevs) {
1352		kmem_free(spa->spa_l2cache.sav_vdevs,
1353		    spa->spa_l2cache.sav_count * sizeof (void *));
1354		spa->spa_l2cache.sav_vdevs = NULL;
1355	}
1356	if (spa->spa_l2cache.sav_config) {
1357		nvlist_free(spa->spa_l2cache.sav_config);
1358		spa->spa_l2cache.sav_config = NULL;
1359	}
1360	spa->spa_l2cache.sav_count = 0;
1361
1362	spa->spa_async_suspended = 0;
1363
1364	if (spa->spa_comment != NULL) {
1365		spa_strfree(spa->spa_comment);
1366		spa->spa_comment = NULL;
1367	}
1368
1369	spa_config_exit(spa, SCL_ALL, FTAG);
1370}
1371
1372/*
1373 * Load (or re-load) the current list of vdevs describing the active spares for
1374 * this pool.  When this is called, we have some form of basic information in
1375 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1376 * then re-generate a more complete list including status information.
1377 */
1378static void
1379spa_load_spares(spa_t *spa)
1380{
1381	nvlist_t **spares;
1382	uint_t nspares;
1383	int i;
1384	vdev_t *vd, *tvd;
1385
1386	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1387
1388	/*
1389	 * First, close and free any existing spare vdevs.
1390	 */
1391	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1392		vd = spa->spa_spares.sav_vdevs[i];
1393
1394		/* Undo the call to spa_activate() below */
1395		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1396		    B_FALSE)) != NULL && tvd->vdev_isspare)
1397			spa_spare_remove(tvd);
1398		vdev_close(vd);
1399		vdev_free(vd);
1400	}
1401
1402	if (spa->spa_spares.sav_vdevs)
1403		kmem_free(spa->spa_spares.sav_vdevs,
1404		    spa->spa_spares.sav_count * sizeof (void *));
1405
1406	if (spa->spa_spares.sav_config == NULL)
1407		nspares = 0;
1408	else
1409		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1410		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1411
1412	spa->spa_spares.sav_count = (int)nspares;
1413	spa->spa_spares.sav_vdevs = NULL;
1414
1415	if (nspares == 0)
1416		return;
1417
1418	/*
1419	 * Construct the array of vdevs, opening them to get status in the
1420	 * process.   For each spare, there is potentially two different vdev_t
1421	 * structures associated with it: one in the list of spares (used only
1422	 * for basic validation purposes) and one in the active vdev
1423	 * configuration (if it's spared in).  During this phase we open and
1424	 * validate each vdev on the spare list.  If the vdev also exists in the
1425	 * active configuration, then we also mark this vdev as an active spare.
1426	 */
1427	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1428	    KM_SLEEP);
1429	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1430		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1431		    VDEV_ALLOC_SPARE) == 0);
1432		ASSERT(vd != NULL);
1433
1434		spa->spa_spares.sav_vdevs[i] = vd;
1435
1436		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1437		    B_FALSE)) != NULL) {
1438			if (!tvd->vdev_isspare)
1439				spa_spare_add(tvd);
1440
1441			/*
1442			 * We only mark the spare active if we were successfully
1443			 * able to load the vdev.  Otherwise, importing a pool
1444			 * with a bad active spare would result in strange
1445			 * behavior, because multiple pool would think the spare
1446			 * is actively in use.
1447			 *
1448			 * There is a vulnerability here to an equally bizarre
1449			 * circumstance, where a dead active spare is later
1450			 * brought back to life (onlined or otherwise).  Given
1451			 * the rarity of this scenario, and the extra complexity
1452			 * it adds, we ignore the possibility.
1453			 */
1454			if (!vdev_is_dead(tvd))
1455				spa_spare_activate(tvd);
1456		}
1457
1458		vd->vdev_top = vd;
1459		vd->vdev_aux = &spa->spa_spares;
1460
1461		if (vdev_open(vd) != 0)
1462			continue;
1463
1464		if (vdev_validate_aux(vd) == 0)
1465			spa_spare_add(vd);
1466	}
1467
1468	/*
1469	 * Recompute the stashed list of spares, with status information
1470	 * this time.
1471	 */
1472	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1473	    DATA_TYPE_NVLIST_ARRAY) == 0);
1474
1475	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1476	    KM_SLEEP);
1477	for (i = 0; i < spa->spa_spares.sav_count; i++)
1478		spares[i] = vdev_config_generate(spa,
1479		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1480	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1481	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1482	for (i = 0; i < spa->spa_spares.sav_count; i++)
1483		nvlist_free(spares[i]);
1484	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1485}
1486
1487/*
1488 * Load (or re-load) the current list of vdevs describing the active l2cache for
1489 * this pool.  When this is called, we have some form of basic information in
1490 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1491 * then re-generate a more complete list including status information.
1492 * Devices which are already active have their details maintained, and are
1493 * not re-opened.
1494 */
1495static void
1496spa_load_l2cache(spa_t *spa)
1497{
1498	nvlist_t **l2cache;
1499	uint_t nl2cache;
1500	int i, j, oldnvdevs;
1501	uint64_t guid;
1502	vdev_t *vd, **oldvdevs, **newvdevs;
1503	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1504
1505	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1506
1507	if (sav->sav_config != NULL) {
1508		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1509		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1510		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1511	} else {
1512		nl2cache = 0;
1513		newvdevs = NULL;
1514	}
1515
1516	oldvdevs = sav->sav_vdevs;
1517	oldnvdevs = sav->sav_count;
1518	sav->sav_vdevs = NULL;
1519	sav->sav_count = 0;
1520
1521	/*
1522	 * Process new nvlist of vdevs.
1523	 */
1524	for (i = 0; i < nl2cache; i++) {
1525		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1526		    &guid) == 0);
1527
1528		newvdevs[i] = NULL;
1529		for (j = 0; j < oldnvdevs; j++) {
1530			vd = oldvdevs[j];
1531			if (vd != NULL && guid == vd->vdev_guid) {
1532				/*
1533				 * Retain previous vdev for add/remove ops.
1534				 */
1535				newvdevs[i] = vd;
1536				oldvdevs[j] = NULL;
1537				break;
1538			}
1539		}
1540
1541		if (newvdevs[i] == NULL) {
1542			/*
1543			 * Create new vdev
1544			 */
1545			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1546			    VDEV_ALLOC_L2CACHE) == 0);
1547			ASSERT(vd != NULL);
1548			newvdevs[i] = vd;
1549
1550			/*
1551			 * Commit this vdev as an l2cache device,
1552			 * even if it fails to open.
1553			 */
1554			spa_l2cache_add(vd);
1555
1556			vd->vdev_top = vd;
1557			vd->vdev_aux = sav;
1558
1559			spa_l2cache_activate(vd);
1560
1561			if (vdev_open(vd) != 0)
1562				continue;
1563
1564			(void) vdev_validate_aux(vd);
1565
1566			if (!vdev_is_dead(vd))
1567				l2arc_add_vdev(spa, vd);
1568		}
1569	}
1570
1571	/*
1572	 * Purge vdevs that were dropped
1573	 */
1574	for (i = 0; i < oldnvdevs; i++) {
1575		uint64_t pool;
1576
1577		vd = oldvdevs[i];
1578		if (vd != NULL) {
1579			ASSERT(vd->vdev_isl2cache);
1580
1581			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1582			    pool != 0ULL && l2arc_vdev_present(vd))
1583				l2arc_remove_vdev(vd);
1584			vdev_clear_stats(vd);
1585			vdev_free(vd);
1586		}
1587	}
1588
1589	if (oldvdevs)
1590		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1591
1592	if (sav->sav_config == NULL)
1593		goto out;
1594
1595	sav->sav_vdevs = newvdevs;
1596	sav->sav_count = (int)nl2cache;
1597
1598	/*
1599	 * Recompute the stashed list of l2cache devices, with status
1600	 * information this time.
1601	 */
1602	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1603	    DATA_TYPE_NVLIST_ARRAY) == 0);
1604
1605	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1606	for (i = 0; i < sav->sav_count; i++)
1607		l2cache[i] = vdev_config_generate(spa,
1608		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1609	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1610	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1611out:
1612	for (i = 0; i < sav->sav_count; i++)
1613		nvlist_free(l2cache[i]);
1614	if (sav->sav_count)
1615		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1616}
1617
1618static int
1619load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1620{
1621	dmu_buf_t *db;
1622	char *packed = NULL;
1623	size_t nvsize = 0;
1624	int error;
1625	*value = NULL;
1626
1627	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1628	if (error != 0)
1629		return (error);
1630	nvsize = *(uint64_t *)db->db_data;
1631	dmu_buf_rele(db, FTAG);
1632
1633	packed = kmem_alloc(nvsize, KM_SLEEP);
1634	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1635	    DMU_READ_PREFETCH);
1636	if (error == 0)
1637		error = nvlist_unpack(packed, nvsize, value, 0);
1638	kmem_free(packed, nvsize);
1639
1640	return (error);
1641}
1642
1643/*
1644 * Checks to see if the given vdev could not be opened, in which case we post a
1645 * sysevent to notify the autoreplace code that the device has been removed.
1646 */
1647static void
1648spa_check_removed(vdev_t *vd)
1649{
1650	for (int c = 0; c < vd->vdev_children; c++)
1651		spa_check_removed(vd->vdev_child[c]);
1652
1653	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1654	    !vd->vdev_ishole) {
1655		zfs_post_autoreplace(vd->vdev_spa, vd);
1656		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1657	}
1658}
1659
1660/*
1661 * Validate the current config against the MOS config
1662 */
1663static boolean_t
1664spa_config_valid(spa_t *spa, nvlist_t *config)
1665{
1666	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1667	nvlist_t *nv;
1668
1669	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1670
1671	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1672	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1673
1674	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1675
1676	/*
1677	 * If we're doing a normal import, then build up any additional
1678	 * diagnostic information about missing devices in this config.
1679	 * We'll pass this up to the user for further processing.
1680	 */
1681	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1682		nvlist_t **child, *nv;
1683		uint64_t idx = 0;
1684
1685		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1686		    KM_SLEEP);
1687		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1688
1689		for (int c = 0; c < rvd->vdev_children; c++) {
1690			vdev_t *tvd = rvd->vdev_child[c];
1691			vdev_t *mtvd  = mrvd->vdev_child[c];
1692
1693			if (tvd->vdev_ops == &vdev_missing_ops &&
1694			    mtvd->vdev_ops != &vdev_missing_ops &&
1695			    mtvd->vdev_islog)
1696				child[idx++] = vdev_config_generate(spa, mtvd,
1697				    B_FALSE, 0);
1698		}
1699
1700		if (idx) {
1701			VERIFY(nvlist_add_nvlist_array(nv,
1702			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1703			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1704			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1705
1706			for (int i = 0; i < idx; i++)
1707				nvlist_free(child[i]);
1708		}
1709		nvlist_free(nv);
1710		kmem_free(child, rvd->vdev_children * sizeof (char **));
1711	}
1712
1713	/*
1714	 * Compare the root vdev tree with the information we have
1715	 * from the MOS config (mrvd). Check each top-level vdev
1716	 * with the corresponding MOS config top-level (mtvd).
1717	 */
1718	for (int c = 0; c < rvd->vdev_children; c++) {
1719		vdev_t *tvd = rvd->vdev_child[c];
1720		vdev_t *mtvd  = mrvd->vdev_child[c];
1721
1722		/*
1723		 * Resolve any "missing" vdevs in the current configuration.
1724		 * If we find that the MOS config has more accurate information
1725		 * about the top-level vdev then use that vdev instead.
1726		 */
1727		if (tvd->vdev_ops == &vdev_missing_ops &&
1728		    mtvd->vdev_ops != &vdev_missing_ops) {
1729
1730			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1731				continue;
1732
1733			/*
1734			 * Device specific actions.
1735			 */
1736			if (mtvd->vdev_islog) {
1737				spa_set_log_state(spa, SPA_LOG_CLEAR);
1738			} else {
1739				/*
1740				 * XXX - once we have 'readonly' pool
1741				 * support we should be able to handle
1742				 * missing data devices by transitioning
1743				 * the pool to readonly.
1744				 */
1745				continue;
1746			}
1747
1748			/*
1749			 * Swap the missing vdev with the data we were
1750			 * able to obtain from the MOS config.
1751			 */
1752			vdev_remove_child(rvd, tvd);
1753			vdev_remove_child(mrvd, mtvd);
1754
1755			vdev_add_child(rvd, mtvd);
1756			vdev_add_child(mrvd, tvd);
1757
1758			spa_config_exit(spa, SCL_ALL, FTAG);
1759			vdev_load(mtvd);
1760			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1761
1762			vdev_reopen(rvd);
1763		} else if (mtvd->vdev_islog) {
1764			/*
1765			 * Load the slog device's state from the MOS config
1766			 * since it's possible that the label does not
1767			 * contain the most up-to-date information.
1768			 */
1769			vdev_load_log_state(tvd, mtvd);
1770			vdev_reopen(tvd);
1771		}
1772	}
1773	vdev_free(mrvd);
1774	spa_config_exit(spa, SCL_ALL, FTAG);
1775
1776	/*
1777	 * Ensure we were able to validate the config.
1778	 */
1779	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1780}
1781
1782/*
1783 * Check for missing log devices
1784 */
1785static boolean_t
1786spa_check_logs(spa_t *spa)
1787{
1788	boolean_t rv = B_FALSE;
1789
1790	switch (spa->spa_log_state) {
1791	case SPA_LOG_MISSING:
1792		/* need to recheck in case slog has been restored */
1793	case SPA_LOG_UNKNOWN:
1794		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1795		    NULL, DS_FIND_CHILDREN) != 0);
1796		if (rv)
1797			spa_set_log_state(spa, SPA_LOG_MISSING);
1798		break;
1799	}
1800	return (rv);
1801}
1802
1803static boolean_t
1804spa_passivate_log(spa_t *spa)
1805{
1806	vdev_t *rvd = spa->spa_root_vdev;
1807	boolean_t slog_found = B_FALSE;
1808
1809	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1810
1811	if (!spa_has_slogs(spa))
1812		return (B_FALSE);
1813
1814	for (int c = 0; c < rvd->vdev_children; c++) {
1815		vdev_t *tvd = rvd->vdev_child[c];
1816		metaslab_group_t *mg = tvd->vdev_mg;
1817
1818		if (tvd->vdev_islog) {
1819			metaslab_group_passivate(mg);
1820			slog_found = B_TRUE;
1821		}
1822	}
1823
1824	return (slog_found);
1825}
1826
1827static void
1828spa_activate_log(spa_t *spa)
1829{
1830	vdev_t *rvd = spa->spa_root_vdev;
1831
1832	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1833
1834	for (int c = 0; c < rvd->vdev_children; c++) {
1835		vdev_t *tvd = rvd->vdev_child[c];
1836		metaslab_group_t *mg = tvd->vdev_mg;
1837
1838		if (tvd->vdev_islog)
1839			metaslab_group_activate(mg);
1840	}
1841}
1842
1843int
1844spa_offline_log(spa_t *spa)
1845{
1846	int error;
1847
1848	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1849	    NULL, DS_FIND_CHILDREN);
1850	if (error == 0) {
1851		/*
1852		 * We successfully offlined the log device, sync out the
1853		 * current txg so that the "stubby" block can be removed
1854		 * by zil_sync().
1855		 */
1856		txg_wait_synced(spa->spa_dsl_pool, 0);
1857	}
1858	return (error);
1859}
1860
1861static void
1862spa_aux_check_removed(spa_aux_vdev_t *sav)
1863{
1864	int i;
1865
1866	for (i = 0; i < sav->sav_count; i++)
1867		spa_check_removed(sav->sav_vdevs[i]);
1868}
1869
1870void
1871spa_claim_notify(zio_t *zio)
1872{
1873	spa_t *spa = zio->io_spa;
1874
1875	if (zio->io_error)
1876		return;
1877
1878	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1879	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1880		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1881	mutex_exit(&spa->spa_props_lock);
1882}
1883
1884typedef struct spa_load_error {
1885	uint64_t	sle_meta_count;
1886	uint64_t	sle_data_count;
1887} spa_load_error_t;
1888
1889static void
1890spa_load_verify_done(zio_t *zio)
1891{
1892	blkptr_t *bp = zio->io_bp;
1893	spa_load_error_t *sle = zio->io_private;
1894	dmu_object_type_t type = BP_GET_TYPE(bp);
1895	int error = zio->io_error;
1896	spa_t *spa = zio->io_spa;
1897
1898	if (error) {
1899		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1900		    type != DMU_OT_INTENT_LOG)
1901			atomic_inc_64(&sle->sle_meta_count);
1902		else
1903			atomic_inc_64(&sle->sle_data_count);
1904	}
1905	zio_data_buf_free(zio->io_data, zio->io_size);
1906
1907	mutex_enter(&spa->spa_scrub_lock);
1908	spa->spa_scrub_inflight--;
1909	cv_broadcast(&spa->spa_scrub_io_cv);
1910	mutex_exit(&spa->spa_scrub_lock);
1911}
1912
1913/*
1914 * Maximum number of concurrent scrub i/os to create while verifying
1915 * a pool while importing it.
1916 */
1917int spa_load_verify_maxinflight = 10000;
1918boolean_t spa_load_verify_metadata = B_TRUE;
1919boolean_t spa_load_verify_data = B_TRUE;
1920
1921SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_maxinflight, CTLFLAG_RWTUN,
1922    &spa_load_verify_maxinflight, 0,
1923    "Maximum number of concurrent scrub I/Os to create while verifying a "
1924    "pool while importing it");
1925
1926SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_metadata, CTLFLAG_RWTUN,
1927    &spa_load_verify_metadata, 0,
1928    "Check metadata on import?");
1929
1930SYSCTL_INT(_vfs_zfs, OID_AUTO, spa_load_verify_data, CTLFLAG_RWTUN,
1931    &spa_load_verify_data, 0,
1932    "Check user data on import?");
1933
1934/*ARGSUSED*/
1935static int
1936spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1937    const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1938{
1939	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1940		return (0);
1941	/*
1942	 * Note: normally this routine will not be called if
1943	 * spa_load_verify_metadata is not set.  However, it may be useful
1944	 * to manually set the flag after the traversal has begun.
1945	 */
1946	if (!spa_load_verify_metadata)
1947		return (0);
1948	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1949		return (0);
1950
1951	zio_t *rio = arg;
1952	size_t size = BP_GET_PSIZE(bp);
1953	void *data = zio_data_buf_alloc(size);
1954
1955	mutex_enter(&spa->spa_scrub_lock);
1956	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1957		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1958	spa->spa_scrub_inflight++;
1959	mutex_exit(&spa->spa_scrub_lock);
1960
1961	zio_nowait(zio_read(rio, spa, bp, data, size,
1962	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1963	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1964	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1965	return (0);
1966}
1967
1968static int
1969spa_load_verify(spa_t *spa)
1970{
1971	zio_t *rio;
1972	spa_load_error_t sle = { 0 };
1973	zpool_rewind_policy_t policy;
1974	boolean_t verify_ok = B_FALSE;
1975	int error = 0;
1976
1977	zpool_get_rewind_policy(spa->spa_config, &policy);
1978
1979	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1980		return (0);
1981
1982	rio = zio_root(spa, NULL, &sle,
1983	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1984
1985	if (spa_load_verify_metadata) {
1986		error = traverse_pool(spa, spa->spa_verify_min_txg,
1987		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1988		    spa_load_verify_cb, rio);
1989	}
1990
1991	(void) zio_wait(rio);
1992
1993	spa->spa_load_meta_errors = sle.sle_meta_count;
1994	spa->spa_load_data_errors = sle.sle_data_count;
1995
1996	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1997	    sle.sle_data_count <= policy.zrp_maxdata) {
1998		int64_t loss = 0;
1999
2000		verify_ok = B_TRUE;
2001		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2002		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2003
2004		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2005		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2006		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2007		VERIFY(nvlist_add_int64(spa->spa_load_info,
2008		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2009		VERIFY(nvlist_add_uint64(spa->spa_load_info,
2010		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2011	} else {
2012		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2013	}
2014
2015	if (error) {
2016		if (error != ENXIO && error != EIO)
2017			error = SET_ERROR(EIO);
2018		return (error);
2019	}
2020
2021	return (verify_ok ? 0 : EIO);
2022}
2023
2024/*
2025 * Find a value in the pool props object.
2026 */
2027static void
2028spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2029{
2030	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2031	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2032}
2033
2034/*
2035 * Find a value in the pool directory object.
2036 */
2037static int
2038spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2039{
2040	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2041	    name, sizeof (uint64_t), 1, val));
2042}
2043
2044static int
2045spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2046{
2047	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2048	return (err);
2049}
2050
2051/*
2052 * Fix up config after a partly-completed split.  This is done with the
2053 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
2054 * pool have that entry in their config, but only the splitting one contains
2055 * a list of all the guids of the vdevs that are being split off.
2056 *
2057 * This function determines what to do with that list: either rejoin
2058 * all the disks to the pool, or complete the splitting process.  To attempt
2059 * the rejoin, each disk that is offlined is marked online again, and
2060 * we do a reopen() call.  If the vdev label for every disk that was
2061 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2062 * then we call vdev_split() on each disk, and complete the split.
2063 *
2064 * Otherwise we leave the config alone, with all the vdevs in place in
2065 * the original pool.
2066 */
2067static void
2068spa_try_repair(spa_t *spa, nvlist_t *config)
2069{
2070	uint_t extracted;
2071	uint64_t *glist;
2072	uint_t i, gcount;
2073	nvlist_t *nvl;
2074	vdev_t **vd;
2075	boolean_t attempt_reopen;
2076
2077	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2078		return;
2079
2080	/* check that the config is complete */
2081	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2082	    &glist, &gcount) != 0)
2083		return;
2084
2085	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2086
2087	/* attempt to online all the vdevs & validate */
2088	attempt_reopen = B_TRUE;
2089	for (i = 0; i < gcount; i++) {
2090		if (glist[i] == 0)	/* vdev is hole */
2091			continue;
2092
2093		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2094		if (vd[i] == NULL) {
2095			/*
2096			 * Don't bother attempting to reopen the disks;
2097			 * just do the split.
2098			 */
2099			attempt_reopen = B_FALSE;
2100		} else {
2101			/* attempt to re-online it */
2102			vd[i]->vdev_offline = B_FALSE;
2103		}
2104	}
2105
2106	if (attempt_reopen) {
2107		vdev_reopen(spa->spa_root_vdev);
2108
2109		/* check each device to see what state it's in */
2110		for (extracted = 0, i = 0; i < gcount; i++) {
2111			if (vd[i] != NULL &&
2112			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2113				break;
2114			++extracted;
2115		}
2116	}
2117
2118	/*
2119	 * If every disk has been moved to the new pool, or if we never
2120	 * even attempted to look at them, then we split them off for
2121	 * good.
2122	 */
2123	if (!attempt_reopen || gcount == extracted) {
2124		for (i = 0; i < gcount; i++)
2125			if (vd[i] != NULL)
2126				vdev_split(vd[i]);
2127		vdev_reopen(spa->spa_root_vdev);
2128	}
2129
2130	kmem_free(vd, gcount * sizeof (vdev_t *));
2131}
2132
2133static int
2134spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2135    boolean_t mosconfig)
2136{
2137	nvlist_t *config = spa->spa_config;
2138	char *ereport = FM_EREPORT_ZFS_POOL;
2139	char *comment;
2140	int error;
2141	uint64_t pool_guid;
2142	nvlist_t *nvl;
2143
2144	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2145		return (SET_ERROR(EINVAL));
2146
2147	ASSERT(spa->spa_comment == NULL);
2148	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2149		spa->spa_comment = spa_strdup(comment);
2150
2151	/*
2152	 * Versioning wasn't explicitly added to the label until later, so if
2153	 * it's not present treat it as the initial version.
2154	 */
2155	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2156	    &spa->spa_ubsync.ub_version) != 0)
2157		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2158
2159	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2160	    &spa->spa_config_txg);
2161
2162	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2163	    spa_guid_exists(pool_guid, 0)) {
2164		error = SET_ERROR(EEXIST);
2165	} else {
2166		spa->spa_config_guid = pool_guid;
2167
2168		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2169		    &nvl) == 0) {
2170			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2171			    KM_SLEEP) == 0);
2172		}
2173
2174		nvlist_free(spa->spa_load_info);
2175		spa->spa_load_info = fnvlist_alloc();
2176
2177		gethrestime(&spa->spa_loaded_ts);
2178		error = spa_load_impl(spa, pool_guid, config, state, type,
2179		    mosconfig, &ereport);
2180	}
2181
2182	spa->spa_minref = refcount_count(&spa->spa_refcount);
2183	if (error) {
2184		if (error != EEXIST) {
2185			spa->spa_loaded_ts.tv_sec = 0;
2186			spa->spa_loaded_ts.tv_nsec = 0;
2187		}
2188		if (error != EBADF) {
2189			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2190		}
2191	}
2192	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2193	spa->spa_ena = 0;
2194
2195	return (error);
2196}
2197
2198/*
2199 * Load an existing storage pool, using the pool's builtin spa_config as a
2200 * source of configuration information.
2201 */
2202static int
2203spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2204    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2205    char **ereport)
2206{
2207	int error = 0;
2208	nvlist_t *nvroot = NULL;
2209	nvlist_t *label;
2210	vdev_t *rvd;
2211	uberblock_t *ub = &spa->spa_uberblock;
2212	uint64_t children, config_cache_txg = spa->spa_config_txg;
2213	int orig_mode = spa->spa_mode;
2214	int parse;
2215	uint64_t obj;
2216	boolean_t missing_feat_write = B_FALSE;
2217
2218	/*
2219	 * If this is an untrusted config, access the pool in read-only mode.
2220	 * This prevents things like resilvering recently removed devices.
2221	 */
2222	if (!mosconfig)
2223		spa->spa_mode = FREAD;
2224
2225	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2226
2227	spa->spa_load_state = state;
2228
2229	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2230		return (SET_ERROR(EINVAL));
2231
2232	parse = (type == SPA_IMPORT_EXISTING ?
2233	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2234
2235	/*
2236	 * Create "The Godfather" zio to hold all async IOs
2237	 */
2238	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2239	    KM_SLEEP);
2240	for (int i = 0; i < max_ncpus; i++) {
2241		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2242		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2243		    ZIO_FLAG_GODFATHER);
2244	}
2245
2246	/*
2247	 * Parse the configuration into a vdev tree.  We explicitly set the
2248	 * value that will be returned by spa_version() since parsing the
2249	 * configuration requires knowing the version number.
2250	 */
2251	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2252	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2253	spa_config_exit(spa, SCL_ALL, FTAG);
2254
2255	if (error != 0)
2256		return (error);
2257
2258	ASSERT(spa->spa_root_vdev == rvd);
2259
2260	if (type != SPA_IMPORT_ASSEMBLE) {
2261		ASSERT(spa_guid(spa) == pool_guid);
2262	}
2263
2264	/*
2265	 * Try to open all vdevs, loading each label in the process.
2266	 */
2267	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2268	error = vdev_open(rvd);
2269	spa_config_exit(spa, SCL_ALL, FTAG);
2270	if (error != 0)
2271		return (error);
2272
2273	/*
2274	 * We need to validate the vdev labels against the configuration that
2275	 * we have in hand, which is dependent on the setting of mosconfig. If
2276	 * mosconfig is true then we're validating the vdev labels based on
2277	 * that config.  Otherwise, we're validating against the cached config
2278	 * (zpool.cache) that was read when we loaded the zfs module, and then
2279	 * later we will recursively call spa_load() and validate against
2280	 * the vdev config.
2281	 *
2282	 * If we're assembling a new pool that's been split off from an
2283	 * existing pool, the labels haven't yet been updated so we skip
2284	 * validation for now.
2285	 */
2286	if (type != SPA_IMPORT_ASSEMBLE) {
2287		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2288		error = vdev_validate(rvd, mosconfig);
2289		spa_config_exit(spa, SCL_ALL, FTAG);
2290
2291		if (error != 0)
2292			return (error);
2293
2294		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2295			return (SET_ERROR(ENXIO));
2296	}
2297
2298	/*
2299	 * Find the best uberblock.
2300	 */
2301	vdev_uberblock_load(rvd, ub, &label);
2302
2303	/*
2304	 * If we weren't able to find a single valid uberblock, return failure.
2305	 */
2306	if (ub->ub_txg == 0) {
2307		nvlist_free(label);
2308		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2309	}
2310
2311	/*
2312	 * If the pool has an unsupported version we can't open it.
2313	 */
2314	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2315		nvlist_free(label);
2316		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2317	}
2318
2319	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2320		nvlist_t *features;
2321
2322		/*
2323		 * If we weren't able to find what's necessary for reading the
2324		 * MOS in the label, return failure.
2325		 */
2326		if (label == NULL || nvlist_lookup_nvlist(label,
2327		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2328			nvlist_free(label);
2329			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2330			    ENXIO));
2331		}
2332
2333		/*
2334		 * Update our in-core representation with the definitive values
2335		 * from the label.
2336		 */
2337		nvlist_free(spa->spa_label_features);
2338		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2339	}
2340
2341	nvlist_free(label);
2342
2343	/*
2344	 * Look through entries in the label nvlist's features_for_read. If
2345	 * there is a feature listed there which we don't understand then we
2346	 * cannot open a pool.
2347	 */
2348	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2349		nvlist_t *unsup_feat;
2350
2351		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2352		    0);
2353
2354		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2355		    NULL); nvp != NULL;
2356		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2357			if (!zfeature_is_supported(nvpair_name(nvp))) {
2358				VERIFY(nvlist_add_string(unsup_feat,
2359				    nvpair_name(nvp), "") == 0);
2360			}
2361		}
2362
2363		if (!nvlist_empty(unsup_feat)) {
2364			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2365			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2366			nvlist_free(unsup_feat);
2367			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2368			    ENOTSUP));
2369		}
2370
2371		nvlist_free(unsup_feat);
2372	}
2373
2374	/*
2375	 * If the vdev guid sum doesn't match the uberblock, we have an
2376	 * incomplete configuration.  We first check to see if the pool
2377	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2378	 * If it is, defer the vdev_guid_sum check till later so we
2379	 * can handle missing vdevs.
2380	 */
2381	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2382	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2383	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2384		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2385
2386	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2387		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2388		spa_try_repair(spa, config);
2389		spa_config_exit(spa, SCL_ALL, FTAG);
2390		nvlist_free(spa->spa_config_splitting);
2391		spa->spa_config_splitting = NULL;
2392	}
2393
2394	/*
2395	 * Initialize internal SPA structures.
2396	 */
2397	spa->spa_state = POOL_STATE_ACTIVE;
2398	spa->spa_ubsync = spa->spa_uberblock;
2399	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2400	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2401	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2402	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2403	spa->spa_claim_max_txg = spa->spa_first_txg;
2404	spa->spa_prev_software_version = ub->ub_software_version;
2405
2406	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2407	if (error)
2408		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2409	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2410
2411	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2412		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2413
2414	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2415		boolean_t missing_feat_read = B_FALSE;
2416		nvlist_t *unsup_feat, *enabled_feat;
2417
2418		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2419		    &spa->spa_feat_for_read_obj) != 0) {
2420			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421		}
2422
2423		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2424		    &spa->spa_feat_for_write_obj) != 0) {
2425			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426		}
2427
2428		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2429		    &spa->spa_feat_desc_obj) != 0) {
2430			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2431		}
2432
2433		enabled_feat = fnvlist_alloc();
2434		unsup_feat = fnvlist_alloc();
2435
2436		if (!spa_features_check(spa, B_FALSE,
2437		    unsup_feat, enabled_feat))
2438			missing_feat_read = B_TRUE;
2439
2440		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2441			if (!spa_features_check(spa, B_TRUE,
2442			    unsup_feat, enabled_feat)) {
2443				missing_feat_write = B_TRUE;
2444			}
2445		}
2446
2447		fnvlist_add_nvlist(spa->spa_load_info,
2448		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2449
2450		if (!nvlist_empty(unsup_feat)) {
2451			fnvlist_add_nvlist(spa->spa_load_info,
2452			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2453		}
2454
2455		fnvlist_free(enabled_feat);
2456		fnvlist_free(unsup_feat);
2457
2458		if (!missing_feat_read) {
2459			fnvlist_add_boolean(spa->spa_load_info,
2460			    ZPOOL_CONFIG_CAN_RDONLY);
2461		}
2462
2463		/*
2464		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2465		 * twofold: to determine whether the pool is available for
2466		 * import in read-write mode and (if it is not) whether the
2467		 * pool is available for import in read-only mode. If the pool
2468		 * is available for import in read-write mode, it is displayed
2469		 * as available in userland; if it is not available for import
2470		 * in read-only mode, it is displayed as unavailable in
2471		 * userland. If the pool is available for import in read-only
2472		 * mode but not read-write mode, it is displayed as unavailable
2473		 * in userland with a special note that the pool is actually
2474		 * available for open in read-only mode.
2475		 *
2476		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2477		 * missing a feature for write, we must first determine whether
2478		 * the pool can be opened read-only before returning to
2479		 * userland in order to know whether to display the
2480		 * abovementioned note.
2481		 */
2482		if (missing_feat_read || (missing_feat_write &&
2483		    spa_writeable(spa))) {
2484			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2485			    ENOTSUP));
2486		}
2487
2488		/*
2489		 * Load refcounts for ZFS features from disk into an in-memory
2490		 * cache during SPA initialization.
2491		 */
2492		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2493			uint64_t refcount;
2494
2495			error = feature_get_refcount_from_disk(spa,
2496			    &spa_feature_table[i], &refcount);
2497			if (error == 0) {
2498				spa->spa_feat_refcount_cache[i] = refcount;
2499			} else if (error == ENOTSUP) {
2500				spa->spa_feat_refcount_cache[i] =
2501				    SPA_FEATURE_DISABLED;
2502			} else {
2503				return (spa_vdev_err(rvd,
2504				    VDEV_AUX_CORRUPT_DATA, EIO));
2505			}
2506		}
2507	}
2508
2509	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2510		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2511		    &spa->spa_feat_enabled_txg_obj) != 0)
2512			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2513	}
2514
2515	spa->spa_is_initializing = B_TRUE;
2516	error = dsl_pool_open(spa->spa_dsl_pool);
2517	spa->spa_is_initializing = B_FALSE;
2518	if (error != 0)
2519		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2520
2521	if (!mosconfig) {
2522		uint64_t hostid;
2523		nvlist_t *policy = NULL, *nvconfig;
2524
2525		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2526			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2527
2528		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2529		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2530			char *hostname;
2531			unsigned long myhostid = 0;
2532
2533			VERIFY(nvlist_lookup_string(nvconfig,
2534			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2535
2536#ifdef	_KERNEL
2537			myhostid = zone_get_hostid(NULL);
2538#else	/* _KERNEL */
2539			/*
2540			 * We're emulating the system's hostid in userland, so
2541			 * we can't use zone_get_hostid().
2542			 */
2543			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2544#endif	/* _KERNEL */
2545			if (check_hostid && hostid != 0 && myhostid != 0 &&
2546			    hostid != myhostid) {
2547				nvlist_free(nvconfig);
2548				cmn_err(CE_WARN, "pool '%s' could not be "
2549				    "loaded as it was last accessed by "
2550				    "another system (host: %s hostid: 0x%lx). "
2551				    "See: http://illumos.org/msg/ZFS-8000-EY",
2552				    spa_name(spa), hostname,
2553				    (unsigned long)hostid);
2554				return (SET_ERROR(EBADF));
2555			}
2556		}
2557		if (nvlist_lookup_nvlist(spa->spa_config,
2558		    ZPOOL_REWIND_POLICY, &policy) == 0)
2559			VERIFY(nvlist_add_nvlist(nvconfig,
2560			    ZPOOL_REWIND_POLICY, policy) == 0);
2561
2562		spa_config_set(spa, nvconfig);
2563		spa_unload(spa);
2564		spa_deactivate(spa);
2565		spa_activate(spa, orig_mode);
2566
2567		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2568	}
2569
2570	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2571		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2572	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2573	if (error != 0)
2574		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2575
2576	/*
2577	 * Load the bit that tells us to use the new accounting function
2578	 * (raid-z deflation).  If we have an older pool, this will not
2579	 * be present.
2580	 */
2581	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2582	if (error != 0 && error != ENOENT)
2583		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2584
2585	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2586	    &spa->spa_creation_version);
2587	if (error != 0 && error != ENOENT)
2588		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2589
2590	/*
2591	 * Load the persistent error log.  If we have an older pool, this will
2592	 * not be present.
2593	 */
2594	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2595	if (error != 0 && error != ENOENT)
2596		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597
2598	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2599	    &spa->spa_errlog_scrub);
2600	if (error != 0 && error != ENOENT)
2601		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2602
2603	/*
2604	 * Load the history object.  If we have an older pool, this
2605	 * will not be present.
2606	 */
2607	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2608	if (error != 0 && error != ENOENT)
2609		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2610
2611	/*
2612	 * If we're assembling the pool from the split-off vdevs of
2613	 * an existing pool, we don't want to attach the spares & cache
2614	 * devices.
2615	 */
2616
2617	/*
2618	 * Load any hot spares for this pool.
2619	 */
2620	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2621	if (error != 0 && error != ENOENT)
2622		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2624		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2625		if (load_nvlist(spa, spa->spa_spares.sav_object,
2626		    &spa->spa_spares.sav_config) != 0)
2627			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2628
2629		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2630		spa_load_spares(spa);
2631		spa_config_exit(spa, SCL_ALL, FTAG);
2632	} else if (error == 0) {
2633		spa->spa_spares.sav_sync = B_TRUE;
2634	}
2635
2636	/*
2637	 * Load any level 2 ARC devices for this pool.
2638	 */
2639	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2640	    &spa->spa_l2cache.sav_object);
2641	if (error != 0 && error != ENOENT)
2642		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2643	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2644		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2645		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2646		    &spa->spa_l2cache.sav_config) != 0)
2647			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2648
2649		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2650		spa_load_l2cache(spa);
2651		spa_config_exit(spa, SCL_ALL, FTAG);
2652	} else if (error == 0) {
2653		spa->spa_l2cache.sav_sync = B_TRUE;
2654	}
2655
2656	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2657
2658	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2659	if (error && error != ENOENT)
2660		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2661
2662	if (error == 0) {
2663		uint64_t autoreplace;
2664
2665		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2666		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2667		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2668		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2669		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2670		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2671		    &spa->spa_dedup_ditto);
2672
2673		spa->spa_autoreplace = (autoreplace != 0);
2674	}
2675
2676	/*
2677	 * If the 'autoreplace' property is set, then post a resource notifying
2678	 * the ZFS DE that it should not issue any faults for unopenable
2679	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2680	 * unopenable vdevs so that the normal autoreplace handler can take
2681	 * over.
2682	 */
2683	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2684		spa_check_removed(spa->spa_root_vdev);
2685		/*
2686		 * For the import case, this is done in spa_import(), because
2687		 * at this point we're using the spare definitions from
2688		 * the MOS config, not necessarily from the userland config.
2689		 */
2690		if (state != SPA_LOAD_IMPORT) {
2691			spa_aux_check_removed(&spa->spa_spares);
2692			spa_aux_check_removed(&spa->spa_l2cache);
2693		}
2694	}
2695
2696	/*
2697	 * Load the vdev state for all toplevel vdevs.
2698	 */
2699	vdev_load(rvd);
2700
2701	/*
2702	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2703	 */
2704	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2705	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2706	spa_config_exit(spa, SCL_ALL, FTAG);
2707
2708	/*
2709	 * Load the DDTs (dedup tables).
2710	 */
2711	error = ddt_load(spa);
2712	if (error != 0)
2713		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2714
2715	spa_update_dspace(spa);
2716
2717	/*
2718	 * Validate the config, using the MOS config to fill in any
2719	 * information which might be missing.  If we fail to validate
2720	 * the config then declare the pool unfit for use. If we're
2721	 * assembling a pool from a split, the log is not transferred
2722	 * over.
2723	 */
2724	if (type != SPA_IMPORT_ASSEMBLE) {
2725		nvlist_t *nvconfig;
2726
2727		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2728			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2729
2730		if (!spa_config_valid(spa, nvconfig)) {
2731			nvlist_free(nvconfig);
2732			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2733			    ENXIO));
2734		}
2735		nvlist_free(nvconfig);
2736
2737		/*
2738		 * Now that we've validated the config, check the state of the
2739		 * root vdev.  If it can't be opened, it indicates one or
2740		 * more toplevel vdevs are faulted.
2741		 */
2742		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2743			return (SET_ERROR(ENXIO));
2744
2745		if (spa_check_logs(spa)) {
2746			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2747			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2748		}
2749	}
2750
2751	if (missing_feat_write) {
2752		ASSERT(state == SPA_LOAD_TRYIMPORT);
2753
2754		/*
2755		 * At this point, we know that we can open the pool in
2756		 * read-only mode but not read-write mode. We now have enough
2757		 * information and can return to userland.
2758		 */
2759		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2760	}
2761
2762	/*
2763	 * We've successfully opened the pool, verify that we're ready
2764	 * to start pushing transactions.
2765	 */
2766	if (state != SPA_LOAD_TRYIMPORT) {
2767		if (error = spa_load_verify(spa))
2768			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2769			    error));
2770	}
2771
2772	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2773	    spa->spa_load_max_txg == UINT64_MAX)) {
2774		dmu_tx_t *tx;
2775		int need_update = B_FALSE;
2776
2777		ASSERT(state != SPA_LOAD_TRYIMPORT);
2778
2779		/*
2780		 * Claim log blocks that haven't been committed yet.
2781		 * This must all happen in a single txg.
2782		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2783		 * invoked from zil_claim_log_block()'s i/o done callback.
2784		 * Price of rollback is that we abandon the log.
2785		 */
2786		spa->spa_claiming = B_TRUE;
2787
2788		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2789		    spa_first_txg(spa));
2790		(void) dmu_objset_find(spa_name(spa),
2791		    zil_claim, tx, DS_FIND_CHILDREN);
2792		dmu_tx_commit(tx);
2793
2794		spa->spa_claiming = B_FALSE;
2795
2796		spa_set_log_state(spa, SPA_LOG_GOOD);
2797		spa->spa_sync_on = B_TRUE;
2798		txg_sync_start(spa->spa_dsl_pool);
2799
2800		/*
2801		 * Wait for all claims to sync.  We sync up to the highest
2802		 * claimed log block birth time so that claimed log blocks
2803		 * don't appear to be from the future.  spa_claim_max_txg
2804		 * will have been set for us by either zil_check_log_chain()
2805		 * (invoked from spa_check_logs()) or zil_claim() above.
2806		 */
2807		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2808
2809		/*
2810		 * If the config cache is stale, or we have uninitialized
2811		 * metaslabs (see spa_vdev_add()), then update the config.
2812		 *
2813		 * If this is a verbatim import, trust the current
2814		 * in-core spa_config and update the disk labels.
2815		 */
2816		if (config_cache_txg != spa->spa_config_txg ||
2817		    state == SPA_LOAD_IMPORT ||
2818		    state == SPA_LOAD_RECOVER ||
2819		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2820			need_update = B_TRUE;
2821
2822		for (int c = 0; c < rvd->vdev_children; c++)
2823			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2824				need_update = B_TRUE;
2825
2826		/*
2827		 * Update the config cache asychronously in case we're the
2828		 * root pool, in which case the config cache isn't writable yet.
2829		 */
2830		if (need_update)
2831			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2832
2833		/*
2834		 * Check all DTLs to see if anything needs resilvering.
2835		 */
2836		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2837		    vdev_resilver_needed(rvd, NULL, NULL))
2838			spa_async_request(spa, SPA_ASYNC_RESILVER);
2839
2840		/*
2841		 * Log the fact that we booted up (so that we can detect if
2842		 * we rebooted in the middle of an operation).
2843		 */
2844		spa_history_log_version(spa, "open");
2845
2846		/*
2847		 * Delete any inconsistent datasets.
2848		 */
2849		(void) dmu_objset_find(spa_name(spa),
2850		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2851
2852		/*
2853		 * Clean up any stale temporary dataset userrefs.
2854		 */
2855		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2856	}
2857
2858	return (0);
2859}
2860
2861static int
2862spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2863{
2864	int mode = spa->spa_mode;
2865
2866	spa_unload(spa);
2867	spa_deactivate(spa);
2868
2869	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2870
2871	spa_activate(spa, mode);
2872	spa_async_suspend(spa);
2873
2874	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2875}
2876
2877/*
2878 * If spa_load() fails this function will try loading prior txg's. If
2879 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2880 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2881 * function will not rewind the pool and will return the same error as
2882 * spa_load().
2883 */
2884static int
2885spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2886    uint64_t max_request, int rewind_flags)
2887{
2888	nvlist_t *loadinfo = NULL;
2889	nvlist_t *config = NULL;
2890	int load_error, rewind_error;
2891	uint64_t safe_rewind_txg;
2892	uint64_t min_txg;
2893
2894	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2895		spa->spa_load_max_txg = spa->spa_load_txg;
2896		spa_set_log_state(spa, SPA_LOG_CLEAR);
2897	} else {
2898		spa->spa_load_max_txg = max_request;
2899		if (max_request != UINT64_MAX)
2900			spa->spa_extreme_rewind = B_TRUE;
2901	}
2902
2903	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2904	    mosconfig);
2905	if (load_error == 0)
2906		return (0);
2907
2908	if (spa->spa_root_vdev != NULL)
2909		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2910
2911	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2912	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2913
2914	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2915		nvlist_free(config);
2916		return (load_error);
2917	}
2918
2919	if (state == SPA_LOAD_RECOVER) {
2920		/* Price of rolling back is discarding txgs, including log */
2921		spa_set_log_state(spa, SPA_LOG_CLEAR);
2922	} else {
2923		/*
2924		 * If we aren't rolling back save the load info from our first
2925		 * import attempt so that we can restore it after attempting
2926		 * to rewind.
2927		 */
2928		loadinfo = spa->spa_load_info;
2929		spa->spa_load_info = fnvlist_alloc();
2930	}
2931
2932	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2933	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2934	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2935	    TXG_INITIAL : safe_rewind_txg;
2936
2937	/*
2938	 * Continue as long as we're finding errors, we're still within
2939	 * the acceptable rewind range, and we're still finding uberblocks
2940	 */
2941	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2942	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2943		if (spa->spa_load_max_txg < safe_rewind_txg)
2944			spa->spa_extreme_rewind = B_TRUE;
2945		rewind_error = spa_load_retry(spa, state, mosconfig);
2946	}
2947
2948	spa->spa_extreme_rewind = B_FALSE;
2949	spa->spa_load_max_txg = UINT64_MAX;
2950
2951	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2952		spa_config_set(spa, config);
2953
2954	if (state == SPA_LOAD_RECOVER) {
2955		ASSERT3P(loadinfo, ==, NULL);
2956		return (rewind_error);
2957	} else {
2958		/* Store the rewind info as part of the initial load info */
2959		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2960		    spa->spa_load_info);
2961
2962		/* Restore the initial load info */
2963		fnvlist_free(spa->spa_load_info);
2964		spa->spa_load_info = loadinfo;
2965
2966		return (load_error);
2967	}
2968}
2969
2970/*
2971 * Pool Open/Import
2972 *
2973 * The import case is identical to an open except that the configuration is sent
2974 * down from userland, instead of grabbed from the configuration cache.  For the
2975 * case of an open, the pool configuration will exist in the
2976 * POOL_STATE_UNINITIALIZED state.
2977 *
2978 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2979 * the same time open the pool, without having to keep around the spa_t in some
2980 * ambiguous state.
2981 */
2982static int
2983spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2984    nvlist_t **config)
2985{
2986	spa_t *spa;
2987	spa_load_state_t state = SPA_LOAD_OPEN;
2988	int error;
2989	int locked = B_FALSE;
2990	int firstopen = B_FALSE;
2991
2992	*spapp = NULL;
2993
2994	/*
2995	 * As disgusting as this is, we need to support recursive calls to this
2996	 * function because dsl_dir_open() is called during spa_load(), and ends
2997	 * up calling spa_open() again.  The real fix is to figure out how to
2998	 * avoid dsl_dir_open() calling this in the first place.
2999	 */
3000	if (mutex_owner(&spa_namespace_lock) != curthread) {
3001		mutex_enter(&spa_namespace_lock);
3002		locked = B_TRUE;
3003	}
3004
3005	if ((spa = spa_lookup(pool)) == NULL) {
3006		if (locked)
3007			mutex_exit(&spa_namespace_lock);
3008		return (SET_ERROR(ENOENT));
3009	}
3010
3011	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3012		zpool_rewind_policy_t policy;
3013
3014		firstopen = B_TRUE;
3015
3016		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3017		    &policy);
3018		if (policy.zrp_request & ZPOOL_DO_REWIND)
3019			state = SPA_LOAD_RECOVER;
3020
3021		spa_activate(spa, spa_mode_global);
3022
3023		if (state != SPA_LOAD_RECOVER)
3024			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3025
3026		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3027		    policy.zrp_request);
3028
3029		if (error == EBADF) {
3030			/*
3031			 * If vdev_validate() returns failure (indicated by
3032			 * EBADF), it indicates that one of the vdevs indicates
3033			 * that the pool has been exported or destroyed.  If
3034			 * this is the case, the config cache is out of sync and
3035			 * we should remove the pool from the namespace.
3036			 */
3037			spa_unload(spa);
3038			spa_deactivate(spa);
3039			spa_config_sync(spa, B_TRUE, B_TRUE);
3040			spa_remove(spa);
3041			if (locked)
3042				mutex_exit(&spa_namespace_lock);
3043			return (SET_ERROR(ENOENT));
3044		}
3045
3046		if (error) {
3047			/*
3048			 * We can't open the pool, but we still have useful
3049			 * information: the state of each vdev after the
3050			 * attempted vdev_open().  Return this to the user.
3051			 */
3052			if (config != NULL && spa->spa_config) {
3053				VERIFY(nvlist_dup(spa->spa_config, config,
3054				    KM_SLEEP) == 0);
3055				VERIFY(nvlist_add_nvlist(*config,
3056				    ZPOOL_CONFIG_LOAD_INFO,
3057				    spa->spa_load_info) == 0);
3058			}
3059			spa_unload(spa);
3060			spa_deactivate(spa);
3061			spa->spa_last_open_failed = error;
3062			if (locked)
3063				mutex_exit(&spa_namespace_lock);
3064			*spapp = NULL;
3065			return (error);
3066		}
3067	}
3068
3069	spa_open_ref(spa, tag);
3070
3071	if (config != NULL)
3072		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3073
3074	/*
3075	 * If we've recovered the pool, pass back any information we
3076	 * gathered while doing the load.
3077	 */
3078	if (state == SPA_LOAD_RECOVER) {
3079		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3080		    spa->spa_load_info) == 0);
3081	}
3082
3083	if (locked) {
3084		spa->spa_last_open_failed = 0;
3085		spa->spa_last_ubsync_txg = 0;
3086		spa->spa_load_txg = 0;
3087		mutex_exit(&spa_namespace_lock);
3088#ifdef __FreeBSD__
3089#ifdef _KERNEL
3090		if (firstopen)
3091			zvol_create_minors(spa->spa_name);
3092#endif
3093#endif
3094	}
3095
3096	*spapp = spa;
3097
3098	return (0);
3099}
3100
3101int
3102spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3103    nvlist_t **config)
3104{
3105	return (spa_open_common(name, spapp, tag, policy, config));
3106}
3107
3108int
3109spa_open(const char *name, spa_t **spapp, void *tag)
3110{
3111	return (spa_open_common(name, spapp, tag, NULL, NULL));
3112}
3113
3114/*
3115 * Lookup the given spa_t, incrementing the inject count in the process,
3116 * preventing it from being exported or destroyed.
3117 */
3118spa_t *
3119spa_inject_addref(char *name)
3120{
3121	spa_t *spa;
3122
3123	mutex_enter(&spa_namespace_lock);
3124	if ((spa = spa_lookup(name)) == NULL) {
3125		mutex_exit(&spa_namespace_lock);
3126		return (NULL);
3127	}
3128	spa->spa_inject_ref++;
3129	mutex_exit(&spa_namespace_lock);
3130
3131	return (spa);
3132}
3133
3134void
3135spa_inject_delref(spa_t *spa)
3136{
3137	mutex_enter(&spa_namespace_lock);
3138	spa->spa_inject_ref--;
3139	mutex_exit(&spa_namespace_lock);
3140}
3141
3142/*
3143 * Add spares device information to the nvlist.
3144 */
3145static void
3146spa_add_spares(spa_t *spa, nvlist_t *config)
3147{
3148	nvlist_t **spares;
3149	uint_t i, nspares;
3150	nvlist_t *nvroot;
3151	uint64_t guid;
3152	vdev_stat_t *vs;
3153	uint_t vsc;
3154	uint64_t pool;
3155
3156	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3157
3158	if (spa->spa_spares.sav_count == 0)
3159		return;
3160
3161	VERIFY(nvlist_lookup_nvlist(config,
3162	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3163	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3164	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3165	if (nspares != 0) {
3166		VERIFY(nvlist_add_nvlist_array(nvroot,
3167		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3168		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3169		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3170
3171		/*
3172		 * Go through and find any spares which have since been
3173		 * repurposed as an active spare.  If this is the case, update
3174		 * their status appropriately.
3175		 */
3176		for (i = 0; i < nspares; i++) {
3177			VERIFY(nvlist_lookup_uint64(spares[i],
3178			    ZPOOL_CONFIG_GUID, &guid) == 0);
3179			if (spa_spare_exists(guid, &pool, NULL) &&
3180			    pool != 0ULL) {
3181				VERIFY(nvlist_lookup_uint64_array(
3182				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3183				    (uint64_t **)&vs, &vsc) == 0);
3184				vs->vs_state = VDEV_STATE_CANT_OPEN;
3185				vs->vs_aux = VDEV_AUX_SPARED;
3186			}
3187		}
3188	}
3189}
3190
3191/*
3192 * Add l2cache device information to the nvlist, including vdev stats.
3193 */
3194static void
3195spa_add_l2cache(spa_t *spa, nvlist_t *config)
3196{
3197	nvlist_t **l2cache;
3198	uint_t i, j, nl2cache;
3199	nvlist_t *nvroot;
3200	uint64_t guid;
3201	vdev_t *vd;
3202	vdev_stat_t *vs;
3203	uint_t vsc;
3204
3205	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3206
3207	if (spa->spa_l2cache.sav_count == 0)
3208		return;
3209
3210	VERIFY(nvlist_lookup_nvlist(config,
3211	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3212	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3213	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3214	if (nl2cache != 0) {
3215		VERIFY(nvlist_add_nvlist_array(nvroot,
3216		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3217		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3218		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3219
3220		/*
3221		 * Update level 2 cache device stats.
3222		 */
3223
3224		for (i = 0; i < nl2cache; i++) {
3225			VERIFY(nvlist_lookup_uint64(l2cache[i],
3226			    ZPOOL_CONFIG_GUID, &guid) == 0);
3227
3228			vd = NULL;
3229			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3230				if (guid ==
3231				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3232					vd = spa->spa_l2cache.sav_vdevs[j];
3233					break;
3234				}
3235			}
3236			ASSERT(vd != NULL);
3237
3238			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3239			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3240			    == 0);
3241			vdev_get_stats(vd, vs);
3242		}
3243	}
3244}
3245
3246static void
3247spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3248{
3249	nvlist_t *features;
3250	zap_cursor_t zc;
3251	zap_attribute_t za;
3252
3253	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3254	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3255
3256	/* We may be unable to read features if pool is suspended. */
3257	if (spa_suspended(spa))
3258		goto out;
3259
3260	if (spa->spa_feat_for_read_obj != 0) {
3261		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3262		    spa->spa_feat_for_read_obj);
3263		    zap_cursor_retrieve(&zc, &za) == 0;
3264		    zap_cursor_advance(&zc)) {
3265			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3266			    za.za_num_integers == 1);
3267			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3268			    za.za_first_integer));
3269		}
3270		zap_cursor_fini(&zc);
3271	}
3272
3273	if (spa->spa_feat_for_write_obj != 0) {
3274		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3275		    spa->spa_feat_for_write_obj);
3276		    zap_cursor_retrieve(&zc, &za) == 0;
3277		    zap_cursor_advance(&zc)) {
3278			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3279			    za.za_num_integers == 1);
3280			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3281			    za.za_first_integer));
3282		}
3283		zap_cursor_fini(&zc);
3284	}
3285
3286out:
3287	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3288	    features) == 0);
3289	nvlist_free(features);
3290}
3291
3292int
3293spa_get_stats(const char *name, nvlist_t **config,
3294    char *altroot, size_t buflen)
3295{
3296	int error;
3297	spa_t *spa;
3298
3299	*config = NULL;
3300	error = spa_open_common(name, &spa, FTAG, NULL, config);
3301
3302	if (spa != NULL) {
3303		/*
3304		 * This still leaves a window of inconsistency where the spares
3305		 * or l2cache devices could change and the config would be
3306		 * self-inconsistent.
3307		 */
3308		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3309
3310		if (*config != NULL) {
3311			uint64_t loadtimes[2];
3312
3313			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3314			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3315			VERIFY(nvlist_add_uint64_array(*config,
3316			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3317
3318			VERIFY(nvlist_add_uint64(*config,
3319			    ZPOOL_CONFIG_ERRCOUNT,
3320			    spa_get_errlog_size(spa)) == 0);
3321
3322			if (spa_suspended(spa))
3323				VERIFY(nvlist_add_uint64(*config,
3324				    ZPOOL_CONFIG_SUSPENDED,
3325				    spa->spa_failmode) == 0);
3326
3327			spa_add_spares(spa, *config);
3328			spa_add_l2cache(spa, *config);
3329			spa_add_feature_stats(spa, *config);
3330		}
3331	}
3332
3333	/*
3334	 * We want to get the alternate root even for faulted pools, so we cheat
3335	 * and call spa_lookup() directly.
3336	 */
3337	if (altroot) {
3338		if (spa == NULL) {
3339			mutex_enter(&spa_namespace_lock);
3340			spa = spa_lookup(name);
3341			if (spa)
3342				spa_altroot(spa, altroot, buflen);
3343			else
3344				altroot[0] = '\0';
3345			spa = NULL;
3346			mutex_exit(&spa_namespace_lock);
3347		} else {
3348			spa_altroot(spa, altroot, buflen);
3349		}
3350	}
3351
3352	if (spa != NULL) {
3353		spa_config_exit(spa, SCL_CONFIG, FTAG);
3354		spa_close(spa, FTAG);
3355	}
3356
3357	return (error);
3358}
3359
3360/*
3361 * Validate that the auxiliary device array is well formed.  We must have an
3362 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3363 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3364 * specified, as long as they are well-formed.
3365 */
3366static int
3367spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3368    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3369    vdev_labeltype_t label)
3370{
3371	nvlist_t **dev;
3372	uint_t i, ndev;
3373	vdev_t *vd;
3374	int error;
3375
3376	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3377
3378	/*
3379	 * It's acceptable to have no devs specified.
3380	 */
3381	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3382		return (0);
3383
3384	if (ndev == 0)
3385		return (SET_ERROR(EINVAL));
3386
3387	/*
3388	 * Make sure the pool is formatted with a version that supports this
3389	 * device type.
3390	 */
3391	if (spa_version(spa) < version)
3392		return (SET_ERROR(ENOTSUP));
3393
3394	/*
3395	 * Set the pending device list so we correctly handle device in-use
3396	 * checking.
3397	 */
3398	sav->sav_pending = dev;
3399	sav->sav_npending = ndev;
3400
3401	for (i = 0; i < ndev; i++) {
3402		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3403		    mode)) != 0)
3404			goto out;
3405
3406		if (!vd->vdev_ops->vdev_op_leaf) {
3407			vdev_free(vd);
3408			error = SET_ERROR(EINVAL);
3409			goto out;
3410		}
3411
3412		/*
3413		 * The L2ARC currently only supports disk devices in
3414		 * kernel context.  For user-level testing, we allow it.
3415		 */
3416#ifdef _KERNEL
3417		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3418		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3419			error = SET_ERROR(ENOTBLK);
3420			vdev_free(vd);
3421			goto out;
3422		}
3423#endif
3424		vd->vdev_top = vd;
3425
3426		if ((error = vdev_open(vd)) == 0 &&
3427		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3428			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3429			    vd->vdev_guid) == 0);
3430		}
3431
3432		vdev_free(vd);
3433
3434		if (error &&
3435		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3436			goto out;
3437		else
3438			error = 0;
3439	}
3440
3441out:
3442	sav->sav_pending = NULL;
3443	sav->sav_npending = 0;
3444	return (error);
3445}
3446
3447static int
3448spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3449{
3450	int error;
3451
3452	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3453
3454	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3455	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3456	    VDEV_LABEL_SPARE)) != 0) {
3457		return (error);
3458	}
3459
3460	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3461	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3462	    VDEV_LABEL_L2CACHE));
3463}
3464
3465static void
3466spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3467    const char *config)
3468{
3469	int i;
3470
3471	if (sav->sav_config != NULL) {
3472		nvlist_t **olddevs;
3473		uint_t oldndevs;
3474		nvlist_t **newdevs;
3475
3476		/*
3477		 * Generate new dev list by concatentating with the
3478		 * current dev list.
3479		 */
3480		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3481		    &olddevs, &oldndevs) == 0);
3482
3483		newdevs = kmem_alloc(sizeof (void *) *
3484		    (ndevs + oldndevs), KM_SLEEP);
3485		for (i = 0; i < oldndevs; i++)
3486			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3487			    KM_SLEEP) == 0);
3488		for (i = 0; i < ndevs; i++)
3489			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3490			    KM_SLEEP) == 0);
3491
3492		VERIFY(nvlist_remove(sav->sav_config, config,
3493		    DATA_TYPE_NVLIST_ARRAY) == 0);
3494
3495		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3496		    config, newdevs, ndevs + oldndevs) == 0);
3497		for (i = 0; i < oldndevs + ndevs; i++)
3498			nvlist_free(newdevs[i]);
3499		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3500	} else {
3501		/*
3502		 * Generate a new dev list.
3503		 */
3504		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3505		    KM_SLEEP) == 0);
3506		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3507		    devs, ndevs) == 0);
3508	}
3509}
3510
3511/*
3512 * Stop and drop level 2 ARC devices
3513 */
3514void
3515spa_l2cache_drop(spa_t *spa)
3516{
3517	vdev_t *vd;
3518	int i;
3519	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3520
3521	for (i = 0; i < sav->sav_count; i++) {
3522		uint64_t pool;
3523
3524		vd = sav->sav_vdevs[i];
3525		ASSERT(vd != NULL);
3526
3527		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3528		    pool != 0ULL && l2arc_vdev_present(vd))
3529			l2arc_remove_vdev(vd);
3530	}
3531}
3532
3533/*
3534 * Pool Creation
3535 */
3536int
3537spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3538    nvlist_t *zplprops)
3539{
3540	spa_t *spa;
3541	char *altroot = NULL;
3542	vdev_t *rvd;
3543	dsl_pool_t *dp;
3544	dmu_tx_t *tx;
3545	int error = 0;
3546	uint64_t txg = TXG_INITIAL;
3547	nvlist_t **spares, **l2cache;
3548	uint_t nspares, nl2cache;
3549	uint64_t version, obj;
3550	boolean_t has_features;
3551
3552	/*
3553	 * If this pool already exists, return failure.
3554	 */
3555	mutex_enter(&spa_namespace_lock);
3556	if (spa_lookup(pool) != NULL) {
3557		mutex_exit(&spa_namespace_lock);
3558		return (SET_ERROR(EEXIST));
3559	}
3560
3561	/*
3562	 * Allocate a new spa_t structure.
3563	 */
3564	(void) nvlist_lookup_string(props,
3565	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3566	spa = spa_add(pool, NULL, altroot);
3567	spa_activate(spa, spa_mode_global);
3568
3569	if (props && (error = spa_prop_validate(spa, props))) {
3570		spa_deactivate(spa);
3571		spa_remove(spa);
3572		mutex_exit(&spa_namespace_lock);
3573		return (error);
3574	}
3575
3576	has_features = B_FALSE;
3577	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3578	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3579		if (zpool_prop_feature(nvpair_name(elem)))
3580			has_features = B_TRUE;
3581	}
3582
3583	if (has_features || nvlist_lookup_uint64(props,
3584	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3585		version = SPA_VERSION;
3586	}
3587	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3588
3589	spa->spa_first_txg = txg;
3590	spa->spa_uberblock.ub_txg = txg - 1;
3591	spa->spa_uberblock.ub_version = version;
3592	spa->spa_ubsync = spa->spa_uberblock;
3593
3594	/*
3595	 * Create "The Godfather" zio to hold all async IOs
3596	 */
3597	spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3598	    KM_SLEEP);
3599	for (int i = 0; i < max_ncpus; i++) {
3600		spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3601		    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3602		    ZIO_FLAG_GODFATHER);
3603	}
3604
3605	/*
3606	 * Create the root vdev.
3607	 */
3608	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3609
3610	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3611
3612	ASSERT(error != 0 || rvd != NULL);
3613	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3614
3615	if (error == 0 && !zfs_allocatable_devs(nvroot))
3616		error = SET_ERROR(EINVAL);
3617
3618	if (error == 0 &&
3619	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3620	    (error = spa_validate_aux(spa, nvroot, txg,
3621	    VDEV_ALLOC_ADD)) == 0) {
3622		for (int c = 0; c < rvd->vdev_children; c++) {
3623			vdev_ashift_optimize(rvd->vdev_child[c]);
3624			vdev_metaslab_set_size(rvd->vdev_child[c]);
3625			vdev_expand(rvd->vdev_child[c], txg);
3626		}
3627	}
3628
3629	spa_config_exit(spa, SCL_ALL, FTAG);
3630
3631	if (error != 0) {
3632		spa_unload(spa);
3633		spa_deactivate(spa);
3634		spa_remove(spa);
3635		mutex_exit(&spa_namespace_lock);
3636		return (error);
3637	}
3638
3639	/*
3640	 * Get the list of spares, if specified.
3641	 */
3642	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3643	    &spares, &nspares) == 0) {
3644		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3645		    KM_SLEEP) == 0);
3646		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3647		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3648		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3649		spa_load_spares(spa);
3650		spa_config_exit(spa, SCL_ALL, FTAG);
3651		spa->spa_spares.sav_sync = B_TRUE;
3652	}
3653
3654	/*
3655	 * Get the list of level 2 cache devices, if specified.
3656	 */
3657	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3658	    &l2cache, &nl2cache) == 0) {
3659		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3660		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3661		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3662		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3663		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3664		spa_load_l2cache(spa);
3665		spa_config_exit(spa, SCL_ALL, FTAG);
3666		spa->spa_l2cache.sav_sync = B_TRUE;
3667	}
3668
3669	spa->spa_is_initializing = B_TRUE;
3670	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3671	spa->spa_meta_objset = dp->dp_meta_objset;
3672	spa->spa_is_initializing = B_FALSE;
3673
3674	/*
3675	 * Create DDTs (dedup tables).
3676	 */
3677	ddt_create(spa);
3678
3679	spa_update_dspace(spa);
3680
3681	tx = dmu_tx_create_assigned(dp, txg);
3682
3683	/*
3684	 * Create the pool config object.
3685	 */
3686	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3687	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3688	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3689
3690	if (zap_add(spa->spa_meta_objset,
3691	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3692	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3693		cmn_err(CE_PANIC, "failed to add pool config");
3694	}
3695
3696	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3697		spa_feature_create_zap_objects(spa, tx);
3698
3699	if (zap_add(spa->spa_meta_objset,
3700	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3701	    sizeof (uint64_t), 1, &version, tx) != 0) {
3702		cmn_err(CE_PANIC, "failed to add pool version");
3703	}
3704
3705	/* Newly created pools with the right version are always deflated. */
3706	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3707		spa->spa_deflate = TRUE;
3708		if (zap_add(spa->spa_meta_objset,
3709		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3710		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3711			cmn_err(CE_PANIC, "failed to add deflate");
3712		}
3713	}
3714
3715	/*
3716	 * Create the deferred-free bpobj.  Turn off compression
3717	 * because sync-to-convergence takes longer if the blocksize
3718	 * keeps changing.
3719	 */
3720	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3721	dmu_object_set_compress(spa->spa_meta_objset, obj,
3722	    ZIO_COMPRESS_OFF, tx);
3723	if (zap_add(spa->spa_meta_objset,
3724	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3725	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3726		cmn_err(CE_PANIC, "failed to add bpobj");
3727	}
3728	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3729	    spa->spa_meta_objset, obj));
3730
3731	/*
3732	 * Create the pool's history object.
3733	 */
3734	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3735		spa_history_create_obj(spa, tx);
3736
3737	/*
3738	 * Set pool properties.
3739	 */
3740	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3741	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3742	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3743	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3744
3745	if (props != NULL) {
3746		spa_configfile_set(spa, props, B_FALSE);
3747		spa_sync_props(props, tx);
3748	}
3749
3750	dmu_tx_commit(tx);
3751
3752	spa->spa_sync_on = B_TRUE;
3753	txg_sync_start(spa->spa_dsl_pool);
3754
3755	/*
3756	 * We explicitly wait for the first transaction to complete so that our
3757	 * bean counters are appropriately updated.
3758	 */
3759	txg_wait_synced(spa->spa_dsl_pool, txg);
3760
3761	spa_config_sync(spa, B_FALSE, B_TRUE);
3762
3763	spa_history_log_version(spa, "create");
3764
3765	spa->spa_minref = refcount_count(&spa->spa_refcount);
3766
3767	mutex_exit(&spa_namespace_lock);
3768
3769	return (0);
3770}
3771
3772#ifdef _KERNEL
3773#ifdef illumos
3774/*
3775 * Get the root pool information from the root disk, then import the root pool
3776 * during the system boot up time.
3777 */
3778extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3779
3780static nvlist_t *
3781spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3782{
3783	nvlist_t *config;
3784	nvlist_t *nvtop, *nvroot;
3785	uint64_t pgid;
3786
3787	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3788		return (NULL);
3789
3790	/*
3791	 * Add this top-level vdev to the child array.
3792	 */
3793	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3794	    &nvtop) == 0);
3795	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3796	    &pgid) == 0);
3797	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3798
3799	/*
3800	 * Put this pool's top-level vdevs into a root vdev.
3801	 */
3802	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3803	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3804	    VDEV_TYPE_ROOT) == 0);
3805	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3806	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3807	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3808	    &nvtop, 1) == 0);
3809
3810	/*
3811	 * Replace the existing vdev_tree with the new root vdev in
3812	 * this pool's configuration (remove the old, add the new).
3813	 */
3814	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3815	nvlist_free(nvroot);
3816	return (config);
3817}
3818
3819/*
3820 * Walk the vdev tree and see if we can find a device with "better"
3821 * configuration. A configuration is "better" if the label on that
3822 * device has a more recent txg.
3823 */
3824static void
3825spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3826{
3827	for (int c = 0; c < vd->vdev_children; c++)
3828		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3829
3830	if (vd->vdev_ops->vdev_op_leaf) {
3831		nvlist_t *label;
3832		uint64_t label_txg;
3833
3834		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3835		    &label) != 0)
3836			return;
3837
3838		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3839		    &label_txg) == 0);
3840
3841		/*
3842		 * Do we have a better boot device?
3843		 */
3844		if (label_txg > *txg) {
3845			*txg = label_txg;
3846			*avd = vd;
3847		}
3848		nvlist_free(label);
3849	}
3850}
3851
3852/*
3853 * Import a root pool.
3854 *
3855 * For x86. devpath_list will consist of devid and/or physpath name of
3856 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3857 * The GRUB "findroot" command will return the vdev we should boot.
3858 *
3859 * For Sparc, devpath_list consists the physpath name of the booting device
3860 * no matter the rootpool is a single device pool or a mirrored pool.
3861 * e.g.
3862 *	"/pci@1f,0/ide@d/disk@0,0:a"
3863 */
3864int
3865spa_import_rootpool(char *devpath, char *devid)
3866{
3867	spa_t *spa;
3868	vdev_t *rvd, *bvd, *avd = NULL;
3869	nvlist_t *config, *nvtop;
3870	uint64_t guid, txg;
3871	char *pname;
3872	int error;
3873
3874	/*
3875	 * Read the label from the boot device and generate a configuration.
3876	 */
3877	config = spa_generate_rootconf(devpath, devid, &guid);
3878#if defined(_OBP) && defined(_KERNEL)
3879	if (config == NULL) {
3880		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3881			/* iscsi boot */
3882			get_iscsi_bootpath_phy(devpath);
3883			config = spa_generate_rootconf(devpath, devid, &guid);
3884		}
3885	}
3886#endif
3887	if (config == NULL) {
3888		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3889		    devpath);
3890		return (SET_ERROR(EIO));
3891	}
3892
3893	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3894	    &pname) == 0);
3895	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3896
3897	mutex_enter(&spa_namespace_lock);
3898	if ((spa = spa_lookup(pname)) != NULL) {
3899		/*
3900		 * Remove the existing root pool from the namespace so that we
3901		 * can replace it with the correct config we just read in.
3902		 */
3903		spa_remove(spa);
3904	}
3905
3906	spa = spa_add(pname, config, NULL);
3907	spa->spa_is_root = B_TRUE;
3908	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3909
3910	/*
3911	 * Build up a vdev tree based on the boot device's label config.
3912	 */
3913	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3914	    &nvtop) == 0);
3915	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3916	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3917	    VDEV_ALLOC_ROOTPOOL);
3918	spa_config_exit(spa, SCL_ALL, FTAG);
3919	if (error) {
3920		mutex_exit(&spa_namespace_lock);
3921		nvlist_free(config);
3922		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3923		    pname);
3924		return (error);
3925	}
3926
3927	/*
3928	 * Get the boot vdev.
3929	 */
3930	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3931		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3932		    (u_longlong_t)guid);
3933		error = SET_ERROR(ENOENT);
3934		goto out;
3935	}
3936
3937	/*
3938	 * Determine if there is a better boot device.
3939	 */
3940	avd = bvd;
3941	spa_alt_rootvdev(rvd, &avd, &txg);
3942	if (avd != bvd) {
3943		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3944		    "try booting from '%s'", avd->vdev_path);
3945		error = SET_ERROR(EINVAL);
3946		goto out;
3947	}
3948
3949	/*
3950	 * If the boot device is part of a spare vdev then ensure that
3951	 * we're booting off the active spare.
3952	 */
3953	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3954	    !bvd->vdev_isspare) {
3955		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3956		    "try booting from '%s'",
3957		    bvd->vdev_parent->
3958		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3959		error = SET_ERROR(EINVAL);
3960		goto out;
3961	}
3962
3963	error = 0;
3964out:
3965	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3966	vdev_free(rvd);
3967	spa_config_exit(spa, SCL_ALL, FTAG);
3968	mutex_exit(&spa_namespace_lock);
3969
3970	nvlist_free(config);
3971	return (error);
3972}
3973
3974#else	/* !illumos */
3975
3976extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3977    uint64_t *count);
3978
3979static nvlist_t *
3980spa_generate_rootconf(const char *name)
3981{
3982	nvlist_t **configs, **tops;
3983	nvlist_t *config;
3984	nvlist_t *best_cfg, *nvtop, *nvroot;
3985	uint64_t *holes;
3986	uint64_t best_txg;
3987	uint64_t nchildren;
3988	uint64_t pgid;
3989	uint64_t count;
3990	uint64_t i;
3991	uint_t   nholes;
3992
3993	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3994		return (NULL);
3995
3996	ASSERT3U(count, !=, 0);
3997	best_txg = 0;
3998	for (i = 0; i < count; i++) {
3999		uint64_t txg;
4000
4001		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
4002		    &txg) == 0);
4003		if (txg > best_txg) {
4004			best_txg = txg;
4005			best_cfg = configs[i];
4006		}
4007	}
4008
4009	nchildren = 1;
4010	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
4011	holes = NULL;
4012	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
4013	    &holes, &nholes);
4014
4015	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
4016	for (i = 0; i < nchildren; i++) {
4017		if (i >= count)
4018			break;
4019		if (configs[i] == NULL)
4020			continue;
4021		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
4022		    &nvtop) == 0);
4023		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
4024	}
4025	for (i = 0; holes != NULL && i < nholes; i++) {
4026		if (i >= nchildren)
4027			continue;
4028		if (tops[holes[i]] != NULL)
4029			continue;
4030		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
4031		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
4032		    VDEV_TYPE_HOLE) == 0);
4033		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
4034		    holes[i]) == 0);
4035		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
4036		    0) == 0);
4037	}
4038	for (i = 0; i < nchildren; i++) {
4039		if (tops[i] != NULL)
4040			continue;
4041		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
4042		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
4043		    VDEV_TYPE_MISSING) == 0);
4044		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
4045		    i) == 0);
4046		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
4047		    0) == 0);
4048	}
4049
4050	/*
4051	 * Create pool config based on the best vdev config.
4052	 */
4053	nvlist_dup(best_cfg, &config, KM_SLEEP);
4054
4055	/*
4056	 * Put this pool's top-level vdevs into a root vdev.
4057	 */
4058	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4059	    &pgid) == 0);
4060	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4061	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
4062	    VDEV_TYPE_ROOT) == 0);
4063	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
4064	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
4065	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
4066	    tops, nchildren) == 0);
4067
4068	/*
4069	 * Replace the existing vdev_tree with the new root vdev in
4070	 * this pool's configuration (remove the old, add the new).
4071	 */
4072	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
4073
4074	/*
4075	 * Drop vdev config elements that should not be present at pool level.
4076	 */
4077	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
4078	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
4079
4080	for (i = 0; i < count; i++)
4081		nvlist_free(configs[i]);
4082	kmem_free(configs, count * sizeof(void *));
4083	for (i = 0; i < nchildren; i++)
4084		nvlist_free(tops[i]);
4085	kmem_free(tops, nchildren * sizeof(void *));
4086	nvlist_free(nvroot);
4087	return (config);
4088}
4089
4090int
4091spa_import_rootpool(const char *name)
4092{
4093	spa_t *spa;
4094	vdev_t *rvd, *bvd, *avd = NULL;
4095	nvlist_t *config, *nvtop;
4096	uint64_t txg;
4097	char *pname;
4098	int error;
4099
4100	/*
4101	 * Read the label from the boot device and generate a configuration.
4102	 */
4103	config = spa_generate_rootconf(name);
4104
4105	mutex_enter(&spa_namespace_lock);
4106	if (config != NULL) {
4107		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4108		    &pname) == 0 && strcmp(name, pname) == 0);
4109		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4110		    == 0);
4111
4112		if ((spa = spa_lookup(pname)) != NULL) {
4113			/*
4114			 * Remove the existing root pool from the namespace so
4115			 * that we can replace it with the correct config
4116			 * we just read in.
4117			 */
4118			spa_remove(spa);
4119		}
4120		spa = spa_add(pname, config, NULL);
4121
4122		/*
4123		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4124		 * via spa_version().
4125		 */
4126		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4127		    &spa->spa_ubsync.ub_version) != 0)
4128			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4129	} else if ((spa = spa_lookup(name)) == NULL) {
4130		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4131		    name);
4132		return (EIO);
4133	} else {
4134		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4135	}
4136	spa->spa_is_root = B_TRUE;
4137	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4138
4139	/*
4140	 * Build up a vdev tree based on the boot device's label config.
4141	 */
4142	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4143	    &nvtop) == 0);
4144	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4145	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4146	    VDEV_ALLOC_ROOTPOOL);
4147	spa_config_exit(spa, SCL_ALL, FTAG);
4148	if (error) {
4149		mutex_exit(&spa_namespace_lock);
4150		nvlist_free(config);
4151		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4152		    pname);
4153		return (error);
4154	}
4155
4156	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4157	vdev_free(rvd);
4158	spa_config_exit(spa, SCL_ALL, FTAG);
4159	mutex_exit(&spa_namespace_lock);
4160
4161	nvlist_free(config);
4162	return (0);
4163}
4164
4165#endif	/* illumos */
4166#endif	/* _KERNEL */
4167
4168/*
4169 * Import a non-root pool into the system.
4170 */
4171int
4172spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4173{
4174	spa_t *spa;
4175	char *altroot = NULL;
4176	spa_load_state_t state = SPA_LOAD_IMPORT;
4177	zpool_rewind_policy_t policy;
4178	uint64_t mode = spa_mode_global;
4179	uint64_t readonly = B_FALSE;
4180	int error;
4181	nvlist_t *nvroot;
4182	nvlist_t **spares, **l2cache;
4183	uint_t nspares, nl2cache;
4184
4185	/*
4186	 * If a pool with this name exists, return failure.
4187	 */
4188	mutex_enter(&spa_namespace_lock);
4189	if (spa_lookup(pool) != NULL) {
4190		mutex_exit(&spa_namespace_lock);
4191		return (SET_ERROR(EEXIST));
4192	}
4193
4194	/*
4195	 * Create and initialize the spa structure.
4196	 */
4197	(void) nvlist_lookup_string(props,
4198	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4199	(void) nvlist_lookup_uint64(props,
4200	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4201	if (readonly)
4202		mode = FREAD;
4203	spa = spa_add(pool, config, altroot);
4204	spa->spa_import_flags = flags;
4205
4206	/*
4207	 * Verbatim import - Take a pool and insert it into the namespace
4208	 * as if it had been loaded at boot.
4209	 */
4210	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4211		if (props != NULL)
4212			spa_configfile_set(spa, props, B_FALSE);
4213
4214		spa_config_sync(spa, B_FALSE, B_TRUE);
4215
4216		mutex_exit(&spa_namespace_lock);
4217		return (0);
4218	}
4219
4220	spa_activate(spa, mode);
4221
4222	/*
4223	 * Don't start async tasks until we know everything is healthy.
4224	 */
4225	spa_async_suspend(spa);
4226
4227	zpool_get_rewind_policy(config, &policy);
4228	if (policy.zrp_request & ZPOOL_DO_REWIND)
4229		state = SPA_LOAD_RECOVER;
4230
4231	/*
4232	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4233	 * because the user-supplied config is actually the one to trust when
4234	 * doing an import.
4235	 */
4236	if (state != SPA_LOAD_RECOVER)
4237		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4238
4239	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4240	    policy.zrp_request);
4241
4242	/*
4243	 * Propagate anything learned while loading the pool and pass it
4244	 * back to caller (i.e. rewind info, missing devices, etc).
4245	 */
4246	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4247	    spa->spa_load_info) == 0);
4248
4249	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4250	/*
4251	 * Toss any existing sparelist, as it doesn't have any validity
4252	 * anymore, and conflicts with spa_has_spare().
4253	 */
4254	if (spa->spa_spares.sav_config) {
4255		nvlist_free(spa->spa_spares.sav_config);
4256		spa->spa_spares.sav_config = NULL;
4257		spa_load_spares(spa);
4258	}
4259	if (spa->spa_l2cache.sav_config) {
4260		nvlist_free(spa->spa_l2cache.sav_config);
4261		spa->spa_l2cache.sav_config = NULL;
4262		spa_load_l2cache(spa);
4263	}
4264
4265	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4266	    &nvroot) == 0);
4267	if (error == 0)
4268		error = spa_validate_aux(spa, nvroot, -1ULL,
4269		    VDEV_ALLOC_SPARE);
4270	if (error == 0)
4271		error = spa_validate_aux(spa, nvroot, -1ULL,
4272		    VDEV_ALLOC_L2CACHE);
4273	spa_config_exit(spa, SCL_ALL, FTAG);
4274
4275	if (props != NULL)
4276		spa_configfile_set(spa, props, B_FALSE);
4277
4278	if (error != 0 || (props && spa_writeable(spa) &&
4279	    (error = spa_prop_set(spa, props)))) {
4280		spa_unload(spa);
4281		spa_deactivate(spa);
4282		spa_remove(spa);
4283		mutex_exit(&spa_namespace_lock);
4284		return (error);
4285	}
4286
4287	spa_async_resume(spa);
4288
4289	/*
4290	 * Override any spares and level 2 cache devices as specified by
4291	 * the user, as these may have correct device names/devids, etc.
4292	 */
4293	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4294	    &spares, &nspares) == 0) {
4295		if (spa->spa_spares.sav_config)
4296			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4297			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4298		else
4299			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4300			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4301		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4302		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4303		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4304		spa_load_spares(spa);
4305		spa_config_exit(spa, SCL_ALL, FTAG);
4306		spa->spa_spares.sav_sync = B_TRUE;
4307	}
4308	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4309	    &l2cache, &nl2cache) == 0) {
4310		if (spa->spa_l2cache.sav_config)
4311			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4312			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4313		else
4314			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4315			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4316		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4317		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4318		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4319		spa_load_l2cache(spa);
4320		spa_config_exit(spa, SCL_ALL, FTAG);
4321		spa->spa_l2cache.sav_sync = B_TRUE;
4322	}
4323
4324	/*
4325	 * Check for any removed devices.
4326	 */
4327	if (spa->spa_autoreplace) {
4328		spa_aux_check_removed(&spa->spa_spares);
4329		spa_aux_check_removed(&spa->spa_l2cache);
4330	}
4331
4332	if (spa_writeable(spa)) {
4333		/*
4334		 * Update the config cache to include the newly-imported pool.
4335		 */
4336		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4337	}
4338
4339	/*
4340	 * It's possible that the pool was expanded while it was exported.
4341	 * We kick off an async task to handle this for us.
4342	 */
4343	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4344
4345	mutex_exit(&spa_namespace_lock);
4346	spa_history_log_version(spa, "import");
4347
4348#ifdef __FreeBSD__
4349#ifdef _KERNEL
4350	zvol_create_minors(pool);
4351#endif
4352#endif
4353	return (0);
4354}
4355
4356nvlist_t *
4357spa_tryimport(nvlist_t *tryconfig)
4358{
4359	nvlist_t *config = NULL;
4360	char *poolname;
4361	spa_t *spa;
4362	uint64_t state;
4363	int error;
4364
4365	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4366		return (NULL);
4367
4368	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4369		return (NULL);
4370
4371	/*
4372	 * Create and initialize the spa structure.
4373	 */
4374	mutex_enter(&spa_namespace_lock);
4375	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4376	spa_activate(spa, FREAD);
4377
4378	/*
4379	 * Pass off the heavy lifting to spa_load().
4380	 * Pass TRUE for mosconfig because the user-supplied config
4381	 * is actually the one to trust when doing an import.
4382	 */
4383	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4384
4385	/*
4386	 * If 'tryconfig' was at least parsable, return the current config.
4387	 */
4388	if (spa->spa_root_vdev != NULL) {
4389		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4390		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4391		    poolname) == 0);
4392		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4393		    state) == 0);
4394		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4395		    spa->spa_uberblock.ub_timestamp) == 0);
4396		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4397		    spa->spa_load_info) == 0);
4398
4399		/*
4400		 * If the bootfs property exists on this pool then we
4401		 * copy it out so that external consumers can tell which
4402		 * pools are bootable.
4403		 */
4404		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4405			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4406
4407			/*
4408			 * We have to play games with the name since the
4409			 * pool was opened as TRYIMPORT_NAME.
4410			 */
4411			if (dsl_dsobj_to_dsname(spa_name(spa),
4412			    spa->spa_bootfs, tmpname) == 0) {
4413				char *cp;
4414				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4415
4416				cp = strchr(tmpname, '/');
4417				if (cp == NULL) {
4418					(void) strlcpy(dsname, tmpname,
4419					    MAXPATHLEN);
4420				} else {
4421					(void) snprintf(dsname, MAXPATHLEN,
4422					    "%s/%s", poolname, ++cp);
4423				}
4424				VERIFY(nvlist_add_string(config,
4425				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4426				kmem_free(dsname, MAXPATHLEN);
4427			}
4428			kmem_free(tmpname, MAXPATHLEN);
4429		}
4430
4431		/*
4432		 * Add the list of hot spares and level 2 cache devices.
4433		 */
4434		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4435		spa_add_spares(spa, config);
4436		spa_add_l2cache(spa, config);
4437		spa_config_exit(spa, SCL_CONFIG, FTAG);
4438	}
4439
4440	spa_unload(spa);
4441	spa_deactivate(spa);
4442	spa_remove(spa);
4443	mutex_exit(&spa_namespace_lock);
4444
4445	return (config);
4446}
4447
4448/*
4449 * Pool export/destroy
4450 *
4451 * The act of destroying or exporting a pool is very simple.  We make sure there
4452 * is no more pending I/O and any references to the pool are gone.  Then, we
4453 * update the pool state and sync all the labels to disk, removing the
4454 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4455 * we don't sync the labels or remove the configuration cache.
4456 */
4457static int
4458spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4459    boolean_t force, boolean_t hardforce)
4460{
4461	spa_t *spa;
4462
4463	if (oldconfig)
4464		*oldconfig = NULL;
4465
4466	if (!(spa_mode_global & FWRITE))
4467		return (SET_ERROR(EROFS));
4468
4469	mutex_enter(&spa_namespace_lock);
4470	if ((spa = spa_lookup(pool)) == NULL) {
4471		mutex_exit(&spa_namespace_lock);
4472		return (SET_ERROR(ENOENT));
4473	}
4474
4475	/*
4476	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4477	 * reacquire the namespace lock, and see if we can export.
4478	 */
4479	spa_open_ref(spa, FTAG);
4480	mutex_exit(&spa_namespace_lock);
4481	spa_async_suspend(spa);
4482	mutex_enter(&spa_namespace_lock);
4483	spa_close(spa, FTAG);
4484
4485	/*
4486	 * The pool will be in core if it's openable,
4487	 * in which case we can modify its state.
4488	 */
4489	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4490		/*
4491		 * Objsets may be open only because they're dirty, so we
4492		 * have to force it to sync before checking spa_refcnt.
4493		 */
4494		txg_wait_synced(spa->spa_dsl_pool, 0);
4495
4496		/*
4497		 * A pool cannot be exported or destroyed if there are active
4498		 * references.  If we are resetting a pool, allow references by
4499		 * fault injection handlers.
4500		 */
4501		if (!spa_refcount_zero(spa) ||
4502		    (spa->spa_inject_ref != 0 &&
4503		    new_state != POOL_STATE_UNINITIALIZED)) {
4504			spa_async_resume(spa);
4505			mutex_exit(&spa_namespace_lock);
4506			return (SET_ERROR(EBUSY));
4507		}
4508
4509		/*
4510		 * A pool cannot be exported if it has an active shared spare.
4511		 * This is to prevent other pools stealing the active spare
4512		 * from an exported pool. At user's own will, such pool can
4513		 * be forcedly exported.
4514		 */
4515		if (!force && new_state == POOL_STATE_EXPORTED &&
4516		    spa_has_active_shared_spare(spa)) {
4517			spa_async_resume(spa);
4518			mutex_exit(&spa_namespace_lock);
4519			return (SET_ERROR(EXDEV));
4520		}
4521
4522		/*
4523		 * We want this to be reflected on every label,
4524		 * so mark them all dirty.  spa_unload() will do the
4525		 * final sync that pushes these changes out.
4526		 */
4527		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4528			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4529			spa->spa_state = new_state;
4530			spa->spa_final_txg = spa_last_synced_txg(spa) +
4531			    TXG_DEFER_SIZE + 1;
4532			vdev_config_dirty(spa->spa_root_vdev);
4533			spa_config_exit(spa, SCL_ALL, FTAG);
4534		}
4535	}
4536
4537	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4538
4539	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4540		spa_unload(spa);
4541		spa_deactivate(spa);
4542	}
4543
4544	if (oldconfig && spa->spa_config)
4545		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4546
4547	if (new_state != POOL_STATE_UNINITIALIZED) {
4548		if (!hardforce)
4549			spa_config_sync(spa, B_TRUE, B_TRUE);
4550		spa_remove(spa);
4551	}
4552	mutex_exit(&spa_namespace_lock);
4553
4554	return (0);
4555}
4556
4557/*
4558 * Destroy a storage pool.
4559 */
4560int
4561spa_destroy(char *pool)
4562{
4563	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4564	    B_FALSE, B_FALSE));
4565}
4566
4567/*
4568 * Export a storage pool.
4569 */
4570int
4571spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4572    boolean_t hardforce)
4573{
4574	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4575	    force, hardforce));
4576}
4577
4578/*
4579 * Similar to spa_export(), this unloads the spa_t without actually removing it
4580 * from the namespace in any way.
4581 */
4582int
4583spa_reset(char *pool)
4584{
4585	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4586	    B_FALSE, B_FALSE));
4587}
4588
4589/*
4590 * ==========================================================================
4591 * Device manipulation
4592 * ==========================================================================
4593 */
4594
4595/*
4596 * Add a device to a storage pool.
4597 */
4598int
4599spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4600{
4601	uint64_t txg, id;
4602	int error;
4603	vdev_t *rvd = spa->spa_root_vdev;
4604	vdev_t *vd, *tvd;
4605	nvlist_t **spares, **l2cache;
4606	uint_t nspares, nl2cache;
4607
4608	ASSERT(spa_writeable(spa));
4609
4610	txg = spa_vdev_enter(spa);
4611
4612	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4613	    VDEV_ALLOC_ADD)) != 0)
4614		return (spa_vdev_exit(spa, NULL, txg, error));
4615
4616	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4617
4618	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4619	    &nspares) != 0)
4620		nspares = 0;
4621
4622	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4623	    &nl2cache) != 0)
4624		nl2cache = 0;
4625
4626	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4627		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4628
4629	if (vd->vdev_children != 0 &&
4630	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4631		return (spa_vdev_exit(spa, vd, txg, error));
4632
4633	/*
4634	 * We must validate the spares and l2cache devices after checking the
4635	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4636	 */
4637	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4638		return (spa_vdev_exit(spa, vd, txg, error));
4639
4640	/*
4641	 * Transfer each new top-level vdev from vd to rvd.
4642	 */
4643	for (int c = 0; c < vd->vdev_children; c++) {
4644
4645		/*
4646		 * Set the vdev id to the first hole, if one exists.
4647		 */
4648		for (id = 0; id < rvd->vdev_children; id++) {
4649			if (rvd->vdev_child[id]->vdev_ishole) {
4650				vdev_free(rvd->vdev_child[id]);
4651				break;
4652			}
4653		}
4654		tvd = vd->vdev_child[c];
4655		vdev_remove_child(vd, tvd);
4656		tvd->vdev_id = id;
4657		vdev_add_child(rvd, tvd);
4658		vdev_config_dirty(tvd);
4659	}
4660
4661	if (nspares != 0) {
4662		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4663		    ZPOOL_CONFIG_SPARES);
4664		spa_load_spares(spa);
4665		spa->spa_spares.sav_sync = B_TRUE;
4666	}
4667
4668	if (nl2cache != 0) {
4669		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4670		    ZPOOL_CONFIG_L2CACHE);
4671		spa_load_l2cache(spa);
4672		spa->spa_l2cache.sav_sync = B_TRUE;
4673	}
4674
4675	/*
4676	 * We have to be careful when adding new vdevs to an existing pool.
4677	 * If other threads start allocating from these vdevs before we
4678	 * sync the config cache, and we lose power, then upon reboot we may
4679	 * fail to open the pool because there are DVAs that the config cache
4680	 * can't translate.  Therefore, we first add the vdevs without
4681	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4682	 * and then let spa_config_update() initialize the new metaslabs.
4683	 *
4684	 * spa_load() checks for added-but-not-initialized vdevs, so that
4685	 * if we lose power at any point in this sequence, the remaining
4686	 * steps will be completed the next time we load the pool.
4687	 */
4688	(void) spa_vdev_exit(spa, vd, txg, 0);
4689
4690	mutex_enter(&spa_namespace_lock);
4691	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4692	mutex_exit(&spa_namespace_lock);
4693
4694	return (0);
4695}
4696
4697/*
4698 * Attach a device to a mirror.  The arguments are the path to any device
4699 * in the mirror, and the nvroot for the new device.  If the path specifies
4700 * a device that is not mirrored, we automatically insert the mirror vdev.
4701 *
4702 * If 'replacing' is specified, the new device is intended to replace the
4703 * existing device; in this case the two devices are made into their own
4704 * mirror using the 'replacing' vdev, which is functionally identical to
4705 * the mirror vdev (it actually reuses all the same ops) but has a few
4706 * extra rules: you can't attach to it after it's been created, and upon
4707 * completion of resilvering, the first disk (the one being replaced)
4708 * is automatically detached.
4709 */
4710int
4711spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4712{
4713	uint64_t txg, dtl_max_txg;
4714	vdev_t *rvd = spa->spa_root_vdev;
4715	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4716	vdev_ops_t *pvops;
4717	char *oldvdpath, *newvdpath;
4718	int newvd_isspare;
4719	int error;
4720
4721	ASSERT(spa_writeable(spa));
4722
4723	txg = spa_vdev_enter(spa);
4724
4725	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4726
4727	if (oldvd == NULL)
4728		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4729
4730	if (!oldvd->vdev_ops->vdev_op_leaf)
4731		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4732
4733	pvd = oldvd->vdev_parent;
4734
4735	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4736	    VDEV_ALLOC_ATTACH)) != 0)
4737		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4738
4739	if (newrootvd->vdev_children != 1)
4740		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4741
4742	newvd = newrootvd->vdev_child[0];
4743
4744	if (!newvd->vdev_ops->vdev_op_leaf)
4745		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4746
4747	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4748		return (spa_vdev_exit(spa, newrootvd, txg, error));
4749
4750	/*
4751	 * Spares can't replace logs
4752	 */
4753	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4754		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4755
4756	if (!replacing) {
4757		/*
4758		 * For attach, the only allowable parent is a mirror or the root
4759		 * vdev.
4760		 */
4761		if (pvd->vdev_ops != &vdev_mirror_ops &&
4762		    pvd->vdev_ops != &vdev_root_ops)
4763			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4764
4765		pvops = &vdev_mirror_ops;
4766	} else {
4767		/*
4768		 * Active hot spares can only be replaced by inactive hot
4769		 * spares.
4770		 */
4771		if (pvd->vdev_ops == &vdev_spare_ops &&
4772		    oldvd->vdev_isspare &&
4773		    !spa_has_spare(spa, newvd->vdev_guid))
4774			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4775
4776		/*
4777		 * If the source is a hot spare, and the parent isn't already a
4778		 * spare, then we want to create a new hot spare.  Otherwise, we
4779		 * want to create a replacing vdev.  The user is not allowed to
4780		 * attach to a spared vdev child unless the 'isspare' state is
4781		 * the same (spare replaces spare, non-spare replaces
4782		 * non-spare).
4783		 */
4784		if (pvd->vdev_ops == &vdev_replacing_ops &&
4785		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4786			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4787		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4788		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4789			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4790		}
4791
4792		if (newvd->vdev_isspare)
4793			pvops = &vdev_spare_ops;
4794		else
4795			pvops = &vdev_replacing_ops;
4796	}
4797
4798	/*
4799	 * Make sure the new device is big enough.
4800	 */
4801	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4802		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4803
4804	/*
4805	 * The new device cannot have a higher alignment requirement
4806	 * than the top-level vdev.
4807	 */
4808	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4809		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4810
4811	/*
4812	 * If this is an in-place replacement, update oldvd's path and devid
4813	 * to make it distinguishable from newvd, and unopenable from now on.
4814	 */
4815	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4816		spa_strfree(oldvd->vdev_path);
4817		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4818		    KM_SLEEP);
4819		(void) sprintf(oldvd->vdev_path, "%s/%s",
4820		    newvd->vdev_path, "old");
4821		if (oldvd->vdev_devid != NULL) {
4822			spa_strfree(oldvd->vdev_devid);
4823			oldvd->vdev_devid = NULL;
4824		}
4825	}
4826
4827	/* mark the device being resilvered */
4828	newvd->vdev_resilver_txg = txg;
4829
4830	/*
4831	 * If the parent is not a mirror, or if we're replacing, insert the new
4832	 * mirror/replacing/spare vdev above oldvd.
4833	 */
4834	if (pvd->vdev_ops != pvops)
4835		pvd = vdev_add_parent(oldvd, pvops);
4836
4837	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4838	ASSERT(pvd->vdev_ops == pvops);
4839	ASSERT(oldvd->vdev_parent == pvd);
4840
4841	/*
4842	 * Extract the new device from its root and add it to pvd.
4843	 */
4844	vdev_remove_child(newrootvd, newvd);
4845	newvd->vdev_id = pvd->vdev_children;
4846	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4847	vdev_add_child(pvd, newvd);
4848
4849	tvd = newvd->vdev_top;
4850	ASSERT(pvd->vdev_top == tvd);
4851	ASSERT(tvd->vdev_parent == rvd);
4852
4853	vdev_config_dirty(tvd);
4854
4855	/*
4856	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4857	 * for any dmu_sync-ed blocks.  It will propagate upward when
4858	 * spa_vdev_exit() calls vdev_dtl_reassess().
4859	 */
4860	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4861
4862	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4863	    dtl_max_txg - TXG_INITIAL);
4864
4865	if (newvd->vdev_isspare) {
4866		spa_spare_activate(newvd);
4867		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4868	}
4869
4870	oldvdpath = spa_strdup(oldvd->vdev_path);
4871	newvdpath = spa_strdup(newvd->vdev_path);
4872	newvd_isspare = newvd->vdev_isspare;
4873
4874	/*
4875	 * Mark newvd's DTL dirty in this txg.
4876	 */
4877	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4878
4879	/*
4880	 * Schedule the resilver to restart in the future. We do this to
4881	 * ensure that dmu_sync-ed blocks have been stitched into the
4882	 * respective datasets.
4883	 */
4884	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4885
4886	/*
4887	 * Commit the config
4888	 */
4889	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4890
4891	spa_history_log_internal(spa, "vdev attach", NULL,
4892	    "%s vdev=%s %s vdev=%s",
4893	    replacing && newvd_isspare ? "spare in" :
4894	    replacing ? "replace" : "attach", newvdpath,
4895	    replacing ? "for" : "to", oldvdpath);
4896
4897	spa_strfree(oldvdpath);
4898	spa_strfree(newvdpath);
4899
4900	if (spa->spa_bootfs)
4901		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4902
4903	return (0);
4904}
4905
4906/*
4907 * Detach a device from a mirror or replacing vdev.
4908 *
4909 * If 'replace_done' is specified, only detach if the parent
4910 * is a replacing vdev.
4911 */
4912int
4913spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4914{
4915	uint64_t txg;
4916	int error;
4917	vdev_t *rvd = spa->spa_root_vdev;
4918	vdev_t *vd, *pvd, *cvd, *tvd;
4919	boolean_t unspare = B_FALSE;
4920	uint64_t unspare_guid = 0;
4921	char *vdpath;
4922
4923	ASSERT(spa_writeable(spa));
4924
4925	txg = spa_vdev_enter(spa);
4926
4927	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4928
4929	if (vd == NULL)
4930		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4931
4932	if (!vd->vdev_ops->vdev_op_leaf)
4933		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4934
4935	pvd = vd->vdev_parent;
4936
4937	/*
4938	 * If the parent/child relationship is not as expected, don't do it.
4939	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4940	 * vdev that's replacing B with C.  The user's intent in replacing
4941	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4942	 * the replace by detaching C, the expected behavior is to end up
4943	 * M(A,B).  But suppose that right after deciding to detach C,
4944	 * the replacement of B completes.  We would have M(A,C), and then
4945	 * ask to detach C, which would leave us with just A -- not what
4946	 * the user wanted.  To prevent this, we make sure that the
4947	 * parent/child relationship hasn't changed -- in this example,
4948	 * that C's parent is still the replacing vdev R.
4949	 */
4950	if (pvd->vdev_guid != pguid && pguid != 0)
4951		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4952
4953	/*
4954	 * Only 'replacing' or 'spare' vdevs can be replaced.
4955	 */
4956	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4957	    pvd->vdev_ops != &vdev_spare_ops)
4958		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4959
4960	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4961	    spa_version(spa) >= SPA_VERSION_SPARES);
4962
4963	/*
4964	 * Only mirror, replacing, and spare vdevs support detach.
4965	 */
4966	if (pvd->vdev_ops != &vdev_replacing_ops &&
4967	    pvd->vdev_ops != &vdev_mirror_ops &&
4968	    pvd->vdev_ops != &vdev_spare_ops)
4969		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4970
4971	/*
4972	 * If this device has the only valid copy of some data,
4973	 * we cannot safely detach it.
4974	 */
4975	if (vdev_dtl_required(vd))
4976		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4977
4978	ASSERT(pvd->vdev_children >= 2);
4979
4980	/*
4981	 * If we are detaching the second disk from a replacing vdev, then
4982	 * check to see if we changed the original vdev's path to have "/old"
4983	 * at the end in spa_vdev_attach().  If so, undo that change now.
4984	 */
4985	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4986	    vd->vdev_path != NULL) {
4987		size_t len = strlen(vd->vdev_path);
4988
4989		for (int c = 0; c < pvd->vdev_children; c++) {
4990			cvd = pvd->vdev_child[c];
4991
4992			if (cvd == vd || cvd->vdev_path == NULL)
4993				continue;
4994
4995			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4996			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4997				spa_strfree(cvd->vdev_path);
4998				cvd->vdev_path = spa_strdup(vd->vdev_path);
4999				break;
5000			}
5001		}
5002	}
5003
5004	/*
5005	 * If we are detaching the original disk from a spare, then it implies
5006	 * that the spare should become a real disk, and be removed from the
5007	 * active spare list for the pool.
5008	 */
5009	if (pvd->vdev_ops == &vdev_spare_ops &&
5010	    vd->vdev_id == 0 &&
5011	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5012		unspare = B_TRUE;
5013
5014	/*
5015	 * Erase the disk labels so the disk can be used for other things.
5016	 * This must be done after all other error cases are handled,
5017	 * but before we disembowel vd (so we can still do I/O to it).
5018	 * But if we can't do it, don't treat the error as fatal --
5019	 * it may be that the unwritability of the disk is the reason
5020	 * it's being detached!
5021	 */
5022	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5023
5024	/*
5025	 * Remove vd from its parent and compact the parent's children.
5026	 */
5027	vdev_remove_child(pvd, vd);
5028	vdev_compact_children(pvd);
5029
5030	/*
5031	 * Remember one of the remaining children so we can get tvd below.
5032	 */
5033	cvd = pvd->vdev_child[pvd->vdev_children - 1];
5034
5035	/*
5036	 * If we need to remove the remaining child from the list of hot spares,
5037	 * do it now, marking the vdev as no longer a spare in the process.
5038	 * We must do this before vdev_remove_parent(), because that can
5039	 * change the GUID if it creates a new toplevel GUID.  For a similar
5040	 * reason, we must remove the spare now, in the same txg as the detach;
5041	 * otherwise someone could attach a new sibling, change the GUID, and
5042	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5043	 */
5044	if (unspare) {
5045		ASSERT(cvd->vdev_isspare);
5046		spa_spare_remove(cvd);
5047		unspare_guid = cvd->vdev_guid;
5048		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5049		cvd->vdev_unspare = B_TRUE;
5050	}
5051
5052	/*
5053	 * If the parent mirror/replacing vdev only has one child,
5054	 * the parent is no longer needed.  Remove it from the tree.
5055	 */
5056	if (pvd->vdev_children == 1) {
5057		if (pvd->vdev_ops == &vdev_spare_ops)
5058			cvd->vdev_unspare = B_FALSE;
5059		vdev_remove_parent(cvd);
5060	}
5061
5062
5063	/*
5064	 * We don't set tvd until now because the parent we just removed
5065	 * may have been the previous top-level vdev.
5066	 */
5067	tvd = cvd->vdev_top;
5068	ASSERT(tvd->vdev_parent == rvd);
5069
5070	/*
5071	 * Reevaluate the parent vdev state.
5072	 */
5073	vdev_propagate_state(cvd);
5074
5075	/*
5076	 * If the 'autoexpand' property is set on the pool then automatically
5077	 * try to expand the size of the pool. For example if the device we
5078	 * just detached was smaller than the others, it may be possible to
5079	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5080	 * first so that we can obtain the updated sizes of the leaf vdevs.
5081	 */
5082	if (spa->spa_autoexpand) {
5083		vdev_reopen(tvd);
5084		vdev_expand(tvd, txg);
5085	}
5086
5087	vdev_config_dirty(tvd);
5088
5089	/*
5090	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5091	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5092	 * But first make sure we're not on any *other* txg's DTL list, to
5093	 * prevent vd from being accessed after it's freed.
5094	 */
5095	vdpath = spa_strdup(vd->vdev_path);
5096	for (int t = 0; t < TXG_SIZE; t++)
5097		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5098	vd->vdev_detached = B_TRUE;
5099	vdev_dirty(tvd, VDD_DTL, vd, txg);
5100
5101	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5102
5103	/* hang on to the spa before we release the lock */
5104	spa_open_ref(spa, FTAG);
5105
5106	error = spa_vdev_exit(spa, vd, txg, 0);
5107
5108	spa_history_log_internal(spa, "detach", NULL,
5109	    "vdev=%s", vdpath);
5110	spa_strfree(vdpath);
5111
5112	/*
5113	 * If this was the removal of the original device in a hot spare vdev,
5114	 * then we want to go through and remove the device from the hot spare
5115	 * list of every other pool.
5116	 */
5117	if (unspare) {
5118		spa_t *altspa = NULL;
5119
5120		mutex_enter(&spa_namespace_lock);
5121		while ((altspa = spa_next(altspa)) != NULL) {
5122			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5123			    altspa == spa)
5124				continue;
5125
5126			spa_open_ref(altspa, FTAG);
5127			mutex_exit(&spa_namespace_lock);
5128			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5129			mutex_enter(&spa_namespace_lock);
5130			spa_close(altspa, FTAG);
5131		}
5132		mutex_exit(&spa_namespace_lock);
5133
5134		/* search the rest of the vdevs for spares to remove */
5135		spa_vdev_resilver_done(spa);
5136	}
5137
5138	/* all done with the spa; OK to release */
5139	mutex_enter(&spa_namespace_lock);
5140	spa_close(spa, FTAG);
5141	mutex_exit(&spa_namespace_lock);
5142
5143	return (error);
5144}
5145
5146/*
5147 * Split a set of devices from their mirrors, and create a new pool from them.
5148 */
5149int
5150spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5151    nvlist_t *props, boolean_t exp)
5152{
5153	int error = 0;
5154	uint64_t txg, *glist;
5155	spa_t *newspa;
5156	uint_t c, children, lastlog;
5157	nvlist_t **child, *nvl, *tmp;
5158	dmu_tx_t *tx;
5159	char *altroot = NULL;
5160	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5161	boolean_t activate_slog;
5162
5163	ASSERT(spa_writeable(spa));
5164
5165	txg = spa_vdev_enter(spa);
5166
5167	/* clear the log and flush everything up to now */
5168	activate_slog = spa_passivate_log(spa);
5169	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5170	error = spa_offline_log(spa);
5171	txg = spa_vdev_config_enter(spa);
5172
5173	if (activate_slog)
5174		spa_activate_log(spa);
5175
5176	if (error != 0)
5177		return (spa_vdev_exit(spa, NULL, txg, error));
5178
5179	/* check new spa name before going any further */
5180	if (spa_lookup(newname) != NULL)
5181		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5182
5183	/*
5184	 * scan through all the children to ensure they're all mirrors
5185	 */
5186	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5187	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5188	    &children) != 0)
5189		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5190
5191	/* first, check to ensure we've got the right child count */
5192	rvd = spa->spa_root_vdev;
5193	lastlog = 0;
5194	for (c = 0; c < rvd->vdev_children; c++) {
5195		vdev_t *vd = rvd->vdev_child[c];
5196
5197		/* don't count the holes & logs as children */
5198		if (vd->vdev_islog || vd->vdev_ishole) {
5199			if (lastlog == 0)
5200				lastlog = c;
5201			continue;
5202		}
5203
5204		lastlog = 0;
5205	}
5206	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5207		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5208
5209	/* next, ensure no spare or cache devices are part of the split */
5210	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5211	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5212		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5213
5214	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5215	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5216
5217	/* then, loop over each vdev and validate it */
5218	for (c = 0; c < children; c++) {
5219		uint64_t is_hole = 0;
5220
5221		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5222		    &is_hole);
5223
5224		if (is_hole != 0) {
5225			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5226			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5227				continue;
5228			} else {
5229				error = SET_ERROR(EINVAL);
5230				break;
5231			}
5232		}
5233
5234		/* which disk is going to be split? */
5235		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5236		    &glist[c]) != 0) {
5237			error = SET_ERROR(EINVAL);
5238			break;
5239		}
5240
5241		/* look it up in the spa */
5242		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5243		if (vml[c] == NULL) {
5244			error = SET_ERROR(ENODEV);
5245			break;
5246		}
5247
5248		/* make sure there's nothing stopping the split */
5249		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5250		    vml[c]->vdev_islog ||
5251		    vml[c]->vdev_ishole ||
5252		    vml[c]->vdev_isspare ||
5253		    vml[c]->vdev_isl2cache ||
5254		    !vdev_writeable(vml[c]) ||
5255		    vml[c]->vdev_children != 0 ||
5256		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5257		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5258			error = SET_ERROR(EINVAL);
5259			break;
5260		}
5261
5262		if (vdev_dtl_required(vml[c])) {
5263			error = SET_ERROR(EBUSY);
5264			break;
5265		}
5266
5267		/* we need certain info from the top level */
5268		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5269		    vml[c]->vdev_top->vdev_ms_array) == 0);
5270		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5271		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5272		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5273		    vml[c]->vdev_top->vdev_asize) == 0);
5274		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5275		    vml[c]->vdev_top->vdev_ashift) == 0);
5276	}
5277
5278	if (error != 0) {
5279		kmem_free(vml, children * sizeof (vdev_t *));
5280		kmem_free(glist, children * sizeof (uint64_t));
5281		return (spa_vdev_exit(spa, NULL, txg, error));
5282	}
5283
5284	/* stop writers from using the disks */
5285	for (c = 0; c < children; c++) {
5286		if (vml[c] != NULL)
5287			vml[c]->vdev_offline = B_TRUE;
5288	}
5289	vdev_reopen(spa->spa_root_vdev);
5290
5291	/*
5292	 * Temporarily record the splitting vdevs in the spa config.  This
5293	 * will disappear once the config is regenerated.
5294	 */
5295	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5296	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5297	    glist, children) == 0);
5298	kmem_free(glist, children * sizeof (uint64_t));
5299
5300	mutex_enter(&spa->spa_props_lock);
5301	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5302	    nvl) == 0);
5303	mutex_exit(&spa->spa_props_lock);
5304	spa->spa_config_splitting = nvl;
5305	vdev_config_dirty(spa->spa_root_vdev);
5306
5307	/* configure and create the new pool */
5308	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5309	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5310	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5311	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5312	    spa_version(spa)) == 0);
5313	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5314	    spa->spa_config_txg) == 0);
5315	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5316	    spa_generate_guid(NULL)) == 0);
5317	(void) nvlist_lookup_string(props,
5318	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5319
5320	/* add the new pool to the namespace */
5321	newspa = spa_add(newname, config, altroot);
5322	newspa->spa_config_txg = spa->spa_config_txg;
5323	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5324
5325	/* release the spa config lock, retaining the namespace lock */
5326	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5327
5328	if (zio_injection_enabled)
5329		zio_handle_panic_injection(spa, FTAG, 1);
5330
5331	spa_activate(newspa, spa_mode_global);
5332	spa_async_suspend(newspa);
5333
5334#ifndef illumos
5335	/* mark that we are creating new spa by splitting */
5336	newspa->spa_splitting_newspa = B_TRUE;
5337#endif
5338	/* create the new pool from the disks of the original pool */
5339	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5340#ifndef illumos
5341	newspa->spa_splitting_newspa = B_FALSE;
5342#endif
5343	if (error)
5344		goto out;
5345
5346	/* if that worked, generate a real config for the new pool */
5347	if (newspa->spa_root_vdev != NULL) {
5348		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5349		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5350		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5351		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5352		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5353		    B_TRUE));
5354	}
5355
5356	/* set the props */
5357	if (props != NULL) {
5358		spa_configfile_set(newspa, props, B_FALSE);
5359		error = spa_prop_set(newspa, props);
5360		if (error)
5361			goto out;
5362	}
5363
5364	/* flush everything */
5365	txg = spa_vdev_config_enter(newspa);
5366	vdev_config_dirty(newspa->spa_root_vdev);
5367	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5368
5369	if (zio_injection_enabled)
5370		zio_handle_panic_injection(spa, FTAG, 2);
5371
5372	spa_async_resume(newspa);
5373
5374	/* finally, update the original pool's config */
5375	txg = spa_vdev_config_enter(spa);
5376	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5377	error = dmu_tx_assign(tx, TXG_WAIT);
5378	if (error != 0)
5379		dmu_tx_abort(tx);
5380	for (c = 0; c < children; c++) {
5381		if (vml[c] != NULL) {
5382			vdev_split(vml[c]);
5383			if (error == 0)
5384				spa_history_log_internal(spa, "detach", tx,
5385				    "vdev=%s", vml[c]->vdev_path);
5386			vdev_free(vml[c]);
5387		}
5388	}
5389	vdev_config_dirty(spa->spa_root_vdev);
5390	spa->spa_config_splitting = NULL;
5391	nvlist_free(nvl);
5392	if (error == 0)
5393		dmu_tx_commit(tx);
5394	(void) spa_vdev_exit(spa, NULL, txg, 0);
5395
5396	if (zio_injection_enabled)
5397		zio_handle_panic_injection(spa, FTAG, 3);
5398
5399	/* split is complete; log a history record */
5400	spa_history_log_internal(newspa, "split", NULL,
5401	    "from pool %s", spa_name(spa));
5402
5403	kmem_free(vml, children * sizeof (vdev_t *));
5404
5405	/* if we're not going to mount the filesystems in userland, export */
5406	if (exp)
5407		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5408		    B_FALSE, B_FALSE);
5409
5410	return (error);
5411
5412out:
5413	spa_unload(newspa);
5414	spa_deactivate(newspa);
5415	spa_remove(newspa);
5416
5417	txg = spa_vdev_config_enter(spa);
5418
5419	/* re-online all offlined disks */
5420	for (c = 0; c < children; c++) {
5421		if (vml[c] != NULL)
5422			vml[c]->vdev_offline = B_FALSE;
5423	}
5424	vdev_reopen(spa->spa_root_vdev);
5425
5426	nvlist_free(spa->spa_config_splitting);
5427	spa->spa_config_splitting = NULL;
5428	(void) spa_vdev_exit(spa, NULL, txg, error);
5429
5430	kmem_free(vml, children * sizeof (vdev_t *));
5431	return (error);
5432}
5433
5434static nvlist_t *
5435spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5436{
5437	for (int i = 0; i < count; i++) {
5438		uint64_t guid;
5439
5440		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5441		    &guid) == 0);
5442
5443		if (guid == target_guid)
5444			return (nvpp[i]);
5445	}
5446
5447	return (NULL);
5448}
5449
5450static void
5451spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5452	nvlist_t *dev_to_remove)
5453{
5454	nvlist_t **newdev = NULL;
5455
5456	if (count > 1)
5457		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5458
5459	for (int i = 0, j = 0; i < count; i++) {
5460		if (dev[i] == dev_to_remove)
5461			continue;
5462		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5463	}
5464
5465	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5466	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5467
5468	for (int i = 0; i < count - 1; i++)
5469		nvlist_free(newdev[i]);
5470
5471	if (count > 1)
5472		kmem_free(newdev, (count - 1) * sizeof (void *));
5473}
5474
5475/*
5476 * Evacuate the device.
5477 */
5478static int
5479spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5480{
5481	uint64_t txg;
5482	int error = 0;
5483
5484	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5485	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5486	ASSERT(vd == vd->vdev_top);
5487
5488	/*
5489	 * Evacuate the device.  We don't hold the config lock as writer
5490	 * since we need to do I/O but we do keep the
5491	 * spa_namespace_lock held.  Once this completes the device
5492	 * should no longer have any blocks allocated on it.
5493	 */
5494	if (vd->vdev_islog) {
5495		if (vd->vdev_stat.vs_alloc != 0)
5496			error = spa_offline_log(spa);
5497	} else {
5498		error = SET_ERROR(ENOTSUP);
5499	}
5500
5501	if (error)
5502		return (error);
5503
5504	/*
5505	 * The evacuation succeeded.  Remove any remaining MOS metadata
5506	 * associated with this vdev, and wait for these changes to sync.
5507	 */
5508	ASSERT0(vd->vdev_stat.vs_alloc);
5509	txg = spa_vdev_config_enter(spa);
5510	vd->vdev_removing = B_TRUE;
5511	vdev_dirty_leaves(vd, VDD_DTL, txg);
5512	vdev_config_dirty(vd);
5513	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5514
5515	return (0);
5516}
5517
5518/*
5519 * Complete the removal by cleaning up the namespace.
5520 */
5521static void
5522spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5523{
5524	vdev_t *rvd = spa->spa_root_vdev;
5525	uint64_t id = vd->vdev_id;
5526	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5527
5528	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5529	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5530	ASSERT(vd == vd->vdev_top);
5531
5532	/*
5533	 * Only remove any devices which are empty.
5534	 */
5535	if (vd->vdev_stat.vs_alloc != 0)
5536		return;
5537
5538	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5539
5540	if (list_link_active(&vd->vdev_state_dirty_node))
5541		vdev_state_clean(vd);
5542	if (list_link_active(&vd->vdev_config_dirty_node))
5543		vdev_config_clean(vd);
5544
5545	vdev_free(vd);
5546
5547	if (last_vdev) {
5548		vdev_compact_children(rvd);
5549	} else {
5550		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5551		vdev_add_child(rvd, vd);
5552	}
5553	vdev_config_dirty(rvd);
5554
5555	/*
5556	 * Reassess the health of our root vdev.
5557	 */
5558	vdev_reopen(rvd);
5559}
5560
5561/*
5562 * Remove a device from the pool -
5563 *
5564 * Removing a device from the vdev namespace requires several steps
5565 * and can take a significant amount of time.  As a result we use
5566 * the spa_vdev_config_[enter/exit] functions which allow us to
5567 * grab and release the spa_config_lock while still holding the namespace
5568 * lock.  During each step the configuration is synced out.
5569 *
5570 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5571 * devices.
5572 */
5573int
5574spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5575{
5576	vdev_t *vd;
5577	metaslab_group_t *mg;
5578	nvlist_t **spares, **l2cache, *nv;
5579	uint64_t txg = 0;
5580	uint_t nspares, nl2cache;
5581	int error = 0;
5582	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5583
5584	ASSERT(spa_writeable(spa));
5585
5586	if (!locked)
5587		txg = spa_vdev_enter(spa);
5588
5589	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5590
5591	if (spa->spa_spares.sav_vdevs != NULL &&
5592	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5593	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5594	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5595		/*
5596		 * Only remove the hot spare if it's not currently in use
5597		 * in this pool.
5598		 */
5599		if (vd == NULL || unspare) {
5600			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5601			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5602			spa_load_spares(spa);
5603			spa->spa_spares.sav_sync = B_TRUE;
5604		} else {
5605			error = SET_ERROR(EBUSY);
5606		}
5607	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5608	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5609	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5610	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5611		/*
5612		 * Cache devices can always be removed.
5613		 */
5614		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5615		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5616		spa_load_l2cache(spa);
5617		spa->spa_l2cache.sav_sync = B_TRUE;
5618	} else if (vd != NULL && vd->vdev_islog) {
5619		ASSERT(!locked);
5620		ASSERT(vd == vd->vdev_top);
5621
5622		mg = vd->vdev_mg;
5623
5624		/*
5625		 * Stop allocating from this vdev.
5626		 */
5627		metaslab_group_passivate(mg);
5628
5629		/*
5630		 * Wait for the youngest allocations and frees to sync,
5631		 * and then wait for the deferral of those frees to finish.
5632		 */
5633		spa_vdev_config_exit(spa, NULL,
5634		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5635
5636		/*
5637		 * Attempt to evacuate the vdev.
5638		 */
5639		error = spa_vdev_remove_evacuate(spa, vd);
5640
5641		txg = spa_vdev_config_enter(spa);
5642
5643		/*
5644		 * If we couldn't evacuate the vdev, unwind.
5645		 */
5646		if (error) {
5647			metaslab_group_activate(mg);
5648			return (spa_vdev_exit(spa, NULL, txg, error));
5649		}
5650
5651		/*
5652		 * Clean up the vdev namespace.
5653		 */
5654		spa_vdev_remove_from_namespace(spa, vd);
5655
5656	} else if (vd != NULL) {
5657		/*
5658		 * Normal vdevs cannot be removed (yet).
5659		 */
5660		error = SET_ERROR(ENOTSUP);
5661	} else {
5662		/*
5663		 * There is no vdev of any kind with the specified guid.
5664		 */
5665		error = SET_ERROR(ENOENT);
5666	}
5667
5668	if (!locked)
5669		return (spa_vdev_exit(spa, NULL, txg, error));
5670
5671	return (error);
5672}
5673
5674/*
5675 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5676 * currently spared, so we can detach it.
5677 */
5678static vdev_t *
5679spa_vdev_resilver_done_hunt(vdev_t *vd)
5680{
5681	vdev_t *newvd, *oldvd;
5682
5683	for (int c = 0; c < vd->vdev_children; c++) {
5684		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5685		if (oldvd != NULL)
5686			return (oldvd);
5687	}
5688
5689	/*
5690	 * Check for a completed replacement.  We always consider the first
5691	 * vdev in the list to be the oldest vdev, and the last one to be
5692	 * the newest (see spa_vdev_attach() for how that works).  In
5693	 * the case where the newest vdev is faulted, we will not automatically
5694	 * remove it after a resilver completes.  This is OK as it will require
5695	 * user intervention to determine which disk the admin wishes to keep.
5696	 */
5697	if (vd->vdev_ops == &vdev_replacing_ops) {
5698		ASSERT(vd->vdev_children > 1);
5699
5700		newvd = vd->vdev_child[vd->vdev_children - 1];
5701		oldvd = vd->vdev_child[0];
5702
5703		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5704		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5705		    !vdev_dtl_required(oldvd))
5706			return (oldvd);
5707	}
5708
5709	/*
5710	 * Check for a completed resilver with the 'unspare' flag set.
5711	 */
5712	if (vd->vdev_ops == &vdev_spare_ops) {
5713		vdev_t *first = vd->vdev_child[0];
5714		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5715
5716		if (last->vdev_unspare) {
5717			oldvd = first;
5718			newvd = last;
5719		} else if (first->vdev_unspare) {
5720			oldvd = last;
5721			newvd = first;
5722		} else {
5723			oldvd = NULL;
5724		}
5725
5726		if (oldvd != NULL &&
5727		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5728		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5729		    !vdev_dtl_required(oldvd))
5730			return (oldvd);
5731
5732		/*
5733		 * If there are more than two spares attached to a disk,
5734		 * and those spares are not required, then we want to
5735		 * attempt to free them up now so that they can be used
5736		 * by other pools.  Once we're back down to a single
5737		 * disk+spare, we stop removing them.
5738		 */
5739		if (vd->vdev_children > 2) {
5740			newvd = vd->vdev_child[1];
5741
5742			if (newvd->vdev_isspare && last->vdev_isspare &&
5743			    vdev_dtl_empty(last, DTL_MISSING) &&
5744			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5745			    !vdev_dtl_required(newvd))
5746				return (newvd);
5747		}
5748	}
5749
5750	return (NULL);
5751}
5752
5753static void
5754spa_vdev_resilver_done(spa_t *spa)
5755{
5756	vdev_t *vd, *pvd, *ppvd;
5757	uint64_t guid, sguid, pguid, ppguid;
5758
5759	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5760
5761	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5762		pvd = vd->vdev_parent;
5763		ppvd = pvd->vdev_parent;
5764		guid = vd->vdev_guid;
5765		pguid = pvd->vdev_guid;
5766		ppguid = ppvd->vdev_guid;
5767		sguid = 0;
5768		/*
5769		 * If we have just finished replacing a hot spared device, then
5770		 * we need to detach the parent's first child (the original hot
5771		 * spare) as well.
5772		 */
5773		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5774		    ppvd->vdev_children == 2) {
5775			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5776			sguid = ppvd->vdev_child[1]->vdev_guid;
5777		}
5778		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5779
5780		spa_config_exit(spa, SCL_ALL, FTAG);
5781		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5782			return;
5783		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5784			return;
5785		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5786	}
5787
5788	spa_config_exit(spa, SCL_ALL, FTAG);
5789}
5790
5791/*
5792 * Update the stored path or FRU for this vdev.
5793 */
5794int
5795spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5796    boolean_t ispath)
5797{
5798	vdev_t *vd;
5799	boolean_t sync = B_FALSE;
5800
5801	ASSERT(spa_writeable(spa));
5802
5803	spa_vdev_state_enter(spa, SCL_ALL);
5804
5805	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5806		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5807
5808	if (!vd->vdev_ops->vdev_op_leaf)
5809		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5810
5811	if (ispath) {
5812		if (strcmp(value, vd->vdev_path) != 0) {
5813			spa_strfree(vd->vdev_path);
5814			vd->vdev_path = spa_strdup(value);
5815			sync = B_TRUE;
5816		}
5817	} else {
5818		if (vd->vdev_fru == NULL) {
5819			vd->vdev_fru = spa_strdup(value);
5820			sync = B_TRUE;
5821		} else if (strcmp(value, vd->vdev_fru) != 0) {
5822			spa_strfree(vd->vdev_fru);
5823			vd->vdev_fru = spa_strdup(value);
5824			sync = B_TRUE;
5825		}
5826	}
5827
5828	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5829}
5830
5831int
5832spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5833{
5834	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5835}
5836
5837int
5838spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5839{
5840	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5841}
5842
5843/*
5844 * ==========================================================================
5845 * SPA Scanning
5846 * ==========================================================================
5847 */
5848
5849int
5850spa_scan_stop(spa_t *spa)
5851{
5852	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5853	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5854		return (SET_ERROR(EBUSY));
5855	return (dsl_scan_cancel(spa->spa_dsl_pool));
5856}
5857
5858int
5859spa_scan(spa_t *spa, pool_scan_func_t func)
5860{
5861	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5862
5863	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5864		return (SET_ERROR(ENOTSUP));
5865
5866	/*
5867	 * If a resilver was requested, but there is no DTL on a
5868	 * writeable leaf device, we have nothing to do.
5869	 */
5870	if (func == POOL_SCAN_RESILVER &&
5871	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5872		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5873		return (0);
5874	}
5875
5876	return (dsl_scan(spa->spa_dsl_pool, func));
5877}
5878
5879/*
5880 * ==========================================================================
5881 * SPA async task processing
5882 * ==========================================================================
5883 */
5884
5885static void
5886spa_async_remove(spa_t *spa, vdev_t *vd)
5887{
5888	if (vd->vdev_remove_wanted) {
5889		vd->vdev_remove_wanted = B_FALSE;
5890		vd->vdev_delayed_close = B_FALSE;
5891		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5892
5893		/*
5894		 * We want to clear the stats, but we don't want to do a full
5895		 * vdev_clear() as that will cause us to throw away
5896		 * degraded/faulted state as well as attempt to reopen the
5897		 * device, all of which is a waste.
5898		 */
5899		vd->vdev_stat.vs_read_errors = 0;
5900		vd->vdev_stat.vs_write_errors = 0;
5901		vd->vdev_stat.vs_checksum_errors = 0;
5902
5903		vdev_state_dirty(vd->vdev_top);
5904	}
5905
5906	for (int c = 0; c < vd->vdev_children; c++)
5907		spa_async_remove(spa, vd->vdev_child[c]);
5908}
5909
5910static void
5911spa_async_probe(spa_t *spa, vdev_t *vd)
5912{
5913	if (vd->vdev_probe_wanted) {
5914		vd->vdev_probe_wanted = B_FALSE;
5915		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5916	}
5917
5918	for (int c = 0; c < vd->vdev_children; c++)
5919		spa_async_probe(spa, vd->vdev_child[c]);
5920}
5921
5922static void
5923spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5924{
5925	sysevent_id_t eid;
5926	nvlist_t *attr;
5927	char *physpath;
5928
5929	if (!spa->spa_autoexpand)
5930		return;
5931
5932	for (int c = 0; c < vd->vdev_children; c++) {
5933		vdev_t *cvd = vd->vdev_child[c];
5934		spa_async_autoexpand(spa, cvd);
5935	}
5936
5937	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5938		return;
5939
5940	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5941	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5942
5943	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5944	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5945
5946	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5947	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5948
5949	nvlist_free(attr);
5950	kmem_free(physpath, MAXPATHLEN);
5951}
5952
5953static void
5954spa_async_thread(void *arg)
5955{
5956	spa_t *spa = arg;
5957	int tasks;
5958
5959	ASSERT(spa->spa_sync_on);
5960
5961	mutex_enter(&spa->spa_async_lock);
5962	tasks = spa->spa_async_tasks;
5963	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5964	mutex_exit(&spa->spa_async_lock);
5965
5966	/*
5967	 * See if the config needs to be updated.
5968	 */
5969	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5970		uint64_t old_space, new_space;
5971
5972		mutex_enter(&spa_namespace_lock);
5973		old_space = metaslab_class_get_space(spa_normal_class(spa));
5974		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5975		new_space = metaslab_class_get_space(spa_normal_class(spa));
5976		mutex_exit(&spa_namespace_lock);
5977
5978		/*
5979		 * If the pool grew as a result of the config update,
5980		 * then log an internal history event.
5981		 */
5982		if (new_space != old_space) {
5983			spa_history_log_internal(spa, "vdev online", NULL,
5984			    "pool '%s' size: %llu(+%llu)",
5985			    spa_name(spa), new_space, new_space - old_space);
5986		}
5987	}
5988
5989	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5990		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5991		spa_async_autoexpand(spa, spa->spa_root_vdev);
5992		spa_config_exit(spa, SCL_CONFIG, FTAG);
5993	}
5994
5995	/*
5996	 * See if any devices need to be probed.
5997	 */
5998	if (tasks & SPA_ASYNC_PROBE) {
5999		spa_vdev_state_enter(spa, SCL_NONE);
6000		spa_async_probe(spa, spa->spa_root_vdev);
6001		(void) spa_vdev_state_exit(spa, NULL, 0);
6002	}
6003
6004	/*
6005	 * If any devices are done replacing, detach them.
6006	 */
6007	if (tasks & SPA_ASYNC_RESILVER_DONE)
6008		spa_vdev_resilver_done(spa);
6009
6010	/*
6011	 * Kick off a resilver.
6012	 */
6013	if (tasks & SPA_ASYNC_RESILVER)
6014		dsl_resilver_restart(spa->spa_dsl_pool, 0);
6015
6016	/*
6017	 * Let the world know that we're done.
6018	 */
6019	mutex_enter(&spa->spa_async_lock);
6020	spa->spa_async_thread = NULL;
6021	cv_broadcast(&spa->spa_async_cv);
6022	mutex_exit(&spa->spa_async_lock);
6023	thread_exit();
6024}
6025
6026static void
6027spa_async_thread_vd(void *arg)
6028{
6029	spa_t *spa = arg;
6030	int tasks;
6031
6032	ASSERT(spa->spa_sync_on);
6033
6034	mutex_enter(&spa->spa_async_lock);
6035	tasks = spa->spa_async_tasks;
6036retry:
6037	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
6038	mutex_exit(&spa->spa_async_lock);
6039
6040	/*
6041	 * See if any devices need to be marked REMOVED.
6042	 */
6043	if (tasks & SPA_ASYNC_REMOVE) {
6044		spa_vdev_state_enter(spa, SCL_NONE);
6045		spa_async_remove(spa, spa->spa_root_vdev);
6046		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6047			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6048		for (int i = 0; i < spa->spa_spares.sav_count; i++)
6049			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6050		(void) spa_vdev_state_exit(spa, NULL, 0);
6051	}
6052
6053	/*
6054	 * Let the world know that we're done.
6055	 */
6056	mutex_enter(&spa->spa_async_lock);
6057	tasks = spa->spa_async_tasks;
6058	if ((tasks & SPA_ASYNC_REMOVE) != 0)
6059		goto retry;
6060	spa->spa_async_thread_vd = NULL;
6061	cv_broadcast(&spa->spa_async_cv);
6062	mutex_exit(&spa->spa_async_lock);
6063	thread_exit();
6064}
6065
6066void
6067spa_async_suspend(spa_t *spa)
6068{
6069	mutex_enter(&spa->spa_async_lock);
6070	spa->spa_async_suspended++;
6071	while (spa->spa_async_thread != NULL &&
6072	    spa->spa_async_thread_vd != NULL)
6073		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6074	mutex_exit(&spa->spa_async_lock);
6075}
6076
6077void
6078spa_async_resume(spa_t *spa)
6079{
6080	mutex_enter(&spa->spa_async_lock);
6081	ASSERT(spa->spa_async_suspended != 0);
6082	spa->spa_async_suspended--;
6083	mutex_exit(&spa->spa_async_lock);
6084}
6085
6086static boolean_t
6087spa_async_tasks_pending(spa_t *spa)
6088{
6089	uint_t non_config_tasks;
6090	uint_t config_task;
6091	boolean_t config_task_suspended;
6092
6093	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6094	    SPA_ASYNC_REMOVE);
6095	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6096	if (spa->spa_ccw_fail_time == 0) {
6097		config_task_suspended = B_FALSE;
6098	} else {
6099		config_task_suspended =
6100		    (gethrtime() - spa->spa_ccw_fail_time) <
6101		    (zfs_ccw_retry_interval * NANOSEC);
6102	}
6103
6104	return (non_config_tasks || (config_task && !config_task_suspended));
6105}
6106
6107static void
6108spa_async_dispatch(spa_t *spa)
6109{
6110	mutex_enter(&spa->spa_async_lock);
6111	if (spa_async_tasks_pending(spa) &&
6112	    !spa->spa_async_suspended &&
6113	    spa->spa_async_thread == NULL &&
6114	    rootdir != NULL)
6115		spa->spa_async_thread = thread_create(NULL, 0,
6116		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6117	mutex_exit(&spa->spa_async_lock);
6118}
6119
6120static void
6121spa_async_dispatch_vd(spa_t *spa)
6122{
6123	mutex_enter(&spa->spa_async_lock);
6124	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6125	    !spa->spa_async_suspended &&
6126	    spa->spa_async_thread_vd == NULL &&
6127	    rootdir != NULL)
6128		spa->spa_async_thread_vd = thread_create(NULL, 0,
6129		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6130	mutex_exit(&spa->spa_async_lock);
6131}
6132
6133void
6134spa_async_request(spa_t *spa, int task)
6135{
6136	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6137	mutex_enter(&spa->spa_async_lock);
6138	spa->spa_async_tasks |= task;
6139	mutex_exit(&spa->spa_async_lock);
6140	spa_async_dispatch_vd(spa);
6141}
6142
6143/*
6144 * ==========================================================================
6145 * SPA syncing routines
6146 * ==========================================================================
6147 */
6148
6149static int
6150bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6151{
6152	bpobj_t *bpo = arg;
6153	bpobj_enqueue(bpo, bp, tx);
6154	return (0);
6155}
6156
6157static int
6158spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6159{
6160	zio_t *zio = arg;
6161
6162	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6163	    BP_GET_PSIZE(bp), zio->io_flags));
6164	return (0);
6165}
6166
6167/*
6168 * Note: this simple function is not inlined to make it easier to dtrace the
6169 * amount of time spent syncing frees.
6170 */
6171static void
6172spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6173{
6174	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6175	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6176	VERIFY(zio_wait(zio) == 0);
6177}
6178
6179/*
6180 * Note: this simple function is not inlined to make it easier to dtrace the
6181 * amount of time spent syncing deferred frees.
6182 */
6183static void
6184spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6185{
6186	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6187	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6188	    spa_free_sync_cb, zio, tx), ==, 0);
6189	VERIFY0(zio_wait(zio));
6190}
6191
6192
6193static void
6194spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6195{
6196	char *packed = NULL;
6197	size_t bufsize;
6198	size_t nvsize = 0;
6199	dmu_buf_t *db;
6200
6201	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6202
6203	/*
6204	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6205	 * information.  This avoids the dmu_buf_will_dirty() path and
6206	 * saves us a pre-read to get data we don't actually care about.
6207	 */
6208	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6209	packed = kmem_alloc(bufsize, KM_SLEEP);
6210
6211	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6212	    KM_SLEEP) == 0);
6213	bzero(packed + nvsize, bufsize - nvsize);
6214
6215	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6216
6217	kmem_free(packed, bufsize);
6218
6219	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6220	dmu_buf_will_dirty(db, tx);
6221	*(uint64_t *)db->db_data = nvsize;
6222	dmu_buf_rele(db, FTAG);
6223}
6224
6225static void
6226spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6227    const char *config, const char *entry)
6228{
6229	nvlist_t *nvroot;
6230	nvlist_t **list;
6231	int i;
6232
6233	if (!sav->sav_sync)
6234		return;
6235
6236	/*
6237	 * Update the MOS nvlist describing the list of available devices.
6238	 * spa_validate_aux() will have already made sure this nvlist is
6239	 * valid and the vdevs are labeled appropriately.
6240	 */
6241	if (sav->sav_object == 0) {
6242		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6243		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6244		    sizeof (uint64_t), tx);
6245		VERIFY(zap_update(spa->spa_meta_objset,
6246		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6247		    &sav->sav_object, tx) == 0);
6248	}
6249
6250	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6251	if (sav->sav_count == 0) {
6252		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6253	} else {
6254		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6255		for (i = 0; i < sav->sav_count; i++)
6256			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6257			    B_FALSE, VDEV_CONFIG_L2CACHE);
6258		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6259		    sav->sav_count) == 0);
6260		for (i = 0; i < sav->sav_count; i++)
6261			nvlist_free(list[i]);
6262		kmem_free(list, sav->sav_count * sizeof (void *));
6263	}
6264
6265	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6266	nvlist_free(nvroot);
6267
6268	sav->sav_sync = B_FALSE;
6269}
6270
6271static void
6272spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6273{
6274	nvlist_t *config;
6275
6276	if (list_is_empty(&spa->spa_config_dirty_list))
6277		return;
6278
6279	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6280
6281	config = spa_config_generate(spa, spa->spa_root_vdev,
6282	    dmu_tx_get_txg(tx), B_FALSE);
6283
6284	/*
6285	 * If we're upgrading the spa version then make sure that
6286	 * the config object gets updated with the correct version.
6287	 */
6288	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6289		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6290		    spa->spa_uberblock.ub_version);
6291
6292	spa_config_exit(spa, SCL_STATE, FTAG);
6293
6294	if (spa->spa_config_syncing)
6295		nvlist_free(spa->spa_config_syncing);
6296	spa->spa_config_syncing = config;
6297
6298	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6299}
6300
6301static void
6302spa_sync_version(void *arg, dmu_tx_t *tx)
6303{
6304	uint64_t *versionp = arg;
6305	uint64_t version = *versionp;
6306	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6307
6308	/*
6309	 * Setting the version is special cased when first creating the pool.
6310	 */
6311	ASSERT(tx->tx_txg != TXG_INITIAL);
6312
6313	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6314	ASSERT(version >= spa_version(spa));
6315
6316	spa->spa_uberblock.ub_version = version;
6317	vdev_config_dirty(spa->spa_root_vdev);
6318	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6319}
6320
6321/*
6322 * Set zpool properties.
6323 */
6324static void
6325spa_sync_props(void *arg, dmu_tx_t *tx)
6326{
6327	nvlist_t *nvp = arg;
6328	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6329	objset_t *mos = spa->spa_meta_objset;
6330	nvpair_t *elem = NULL;
6331
6332	mutex_enter(&spa->spa_props_lock);
6333
6334	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6335		uint64_t intval;
6336		char *strval, *fname;
6337		zpool_prop_t prop;
6338		const char *propname;
6339		zprop_type_t proptype;
6340		spa_feature_t fid;
6341
6342		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6343		case ZPROP_INVAL:
6344			/*
6345			 * We checked this earlier in spa_prop_validate().
6346			 */
6347			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6348
6349			fname = strchr(nvpair_name(elem), '@') + 1;
6350			VERIFY0(zfeature_lookup_name(fname, &fid));
6351
6352			spa_feature_enable(spa, fid, tx);
6353			spa_history_log_internal(spa, "set", tx,
6354			    "%s=enabled", nvpair_name(elem));
6355			break;
6356
6357		case ZPOOL_PROP_VERSION:
6358			intval = fnvpair_value_uint64(elem);
6359			/*
6360			 * The version is synced seperatly before other
6361			 * properties and should be correct by now.
6362			 */
6363			ASSERT3U(spa_version(spa), >=, intval);
6364			break;
6365
6366		case ZPOOL_PROP_ALTROOT:
6367			/*
6368			 * 'altroot' is a non-persistent property. It should
6369			 * have been set temporarily at creation or import time.
6370			 */
6371			ASSERT(spa->spa_root != NULL);
6372			break;
6373
6374		case ZPOOL_PROP_READONLY:
6375		case ZPOOL_PROP_CACHEFILE:
6376			/*
6377			 * 'readonly' and 'cachefile' are also non-persisitent
6378			 * properties.
6379			 */
6380			break;
6381		case ZPOOL_PROP_COMMENT:
6382			strval = fnvpair_value_string(elem);
6383			if (spa->spa_comment != NULL)
6384				spa_strfree(spa->spa_comment);
6385			spa->spa_comment = spa_strdup(strval);
6386			/*
6387			 * We need to dirty the configuration on all the vdevs
6388			 * so that their labels get updated.  It's unnecessary
6389			 * to do this for pool creation since the vdev's
6390			 * configuratoin has already been dirtied.
6391			 */
6392			if (tx->tx_txg != TXG_INITIAL)
6393				vdev_config_dirty(spa->spa_root_vdev);
6394			spa_history_log_internal(spa, "set", tx,
6395			    "%s=%s", nvpair_name(elem), strval);
6396			break;
6397		default:
6398			/*
6399			 * Set pool property values in the poolprops mos object.
6400			 */
6401			if (spa->spa_pool_props_object == 0) {
6402				spa->spa_pool_props_object =
6403				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6404				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6405				    tx);
6406			}
6407
6408			/* normalize the property name */
6409			propname = zpool_prop_to_name(prop);
6410			proptype = zpool_prop_get_type(prop);
6411
6412			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6413				ASSERT(proptype == PROP_TYPE_STRING);
6414				strval = fnvpair_value_string(elem);
6415				VERIFY0(zap_update(mos,
6416				    spa->spa_pool_props_object, propname,
6417				    1, strlen(strval) + 1, strval, tx));
6418				spa_history_log_internal(spa, "set", tx,
6419				    "%s=%s", nvpair_name(elem), strval);
6420			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6421				intval = fnvpair_value_uint64(elem);
6422
6423				if (proptype == PROP_TYPE_INDEX) {
6424					const char *unused;
6425					VERIFY0(zpool_prop_index_to_string(
6426					    prop, intval, &unused));
6427				}
6428				VERIFY0(zap_update(mos,
6429				    spa->spa_pool_props_object, propname,
6430				    8, 1, &intval, tx));
6431				spa_history_log_internal(spa, "set", tx,
6432				    "%s=%lld", nvpair_name(elem), intval);
6433			} else {
6434				ASSERT(0); /* not allowed */
6435			}
6436
6437			switch (prop) {
6438			case ZPOOL_PROP_DELEGATION:
6439				spa->spa_delegation = intval;
6440				break;
6441			case ZPOOL_PROP_BOOTFS:
6442				spa->spa_bootfs = intval;
6443				break;
6444			case ZPOOL_PROP_FAILUREMODE:
6445				spa->spa_failmode = intval;
6446				break;
6447			case ZPOOL_PROP_AUTOEXPAND:
6448				spa->spa_autoexpand = intval;
6449				if (tx->tx_txg != TXG_INITIAL)
6450					spa_async_request(spa,
6451					    SPA_ASYNC_AUTOEXPAND);
6452				break;
6453			case ZPOOL_PROP_DEDUPDITTO:
6454				spa->spa_dedup_ditto = intval;
6455				break;
6456			default:
6457				break;
6458			}
6459		}
6460
6461	}
6462
6463	mutex_exit(&spa->spa_props_lock);
6464}
6465
6466/*
6467 * Perform one-time upgrade on-disk changes.  spa_version() does not
6468 * reflect the new version this txg, so there must be no changes this
6469 * txg to anything that the upgrade code depends on after it executes.
6470 * Therefore this must be called after dsl_pool_sync() does the sync
6471 * tasks.
6472 */
6473static void
6474spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6475{
6476	dsl_pool_t *dp = spa->spa_dsl_pool;
6477
6478	ASSERT(spa->spa_sync_pass == 1);
6479
6480	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6481
6482	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6483	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6484		dsl_pool_create_origin(dp, tx);
6485
6486		/* Keeping the origin open increases spa_minref */
6487		spa->spa_minref += 3;
6488	}
6489
6490	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6491	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6492		dsl_pool_upgrade_clones(dp, tx);
6493	}
6494
6495	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6496	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6497		dsl_pool_upgrade_dir_clones(dp, tx);
6498
6499		/* Keeping the freedir open increases spa_minref */
6500		spa->spa_minref += 3;
6501	}
6502
6503	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6504	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6505		spa_feature_create_zap_objects(spa, tx);
6506	}
6507
6508	/*
6509	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6510	 * when possibility to use lz4 compression for metadata was added
6511	 * Old pools that have this feature enabled must be upgraded to have
6512	 * this feature active
6513	 */
6514	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6515		boolean_t lz4_en = spa_feature_is_enabled(spa,
6516		    SPA_FEATURE_LZ4_COMPRESS);
6517		boolean_t lz4_ac = spa_feature_is_active(spa,
6518		    SPA_FEATURE_LZ4_COMPRESS);
6519
6520		if (lz4_en && !lz4_ac)
6521			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6522	}
6523	rrw_exit(&dp->dp_config_rwlock, FTAG);
6524}
6525
6526/*
6527 * Sync the specified transaction group.  New blocks may be dirtied as
6528 * part of the process, so we iterate until it converges.
6529 */
6530void
6531spa_sync(spa_t *spa, uint64_t txg)
6532{
6533	dsl_pool_t *dp = spa->spa_dsl_pool;
6534	objset_t *mos = spa->spa_meta_objset;
6535	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6536	vdev_t *rvd = spa->spa_root_vdev;
6537	vdev_t *vd;
6538	dmu_tx_t *tx;
6539	int error;
6540
6541	VERIFY(spa_writeable(spa));
6542
6543	/*
6544	 * Lock out configuration changes.
6545	 */
6546	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6547
6548	spa->spa_syncing_txg = txg;
6549	spa->spa_sync_pass = 0;
6550
6551	/*
6552	 * If there are any pending vdev state changes, convert them
6553	 * into config changes that go out with this transaction group.
6554	 */
6555	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6556	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6557		/*
6558		 * We need the write lock here because, for aux vdevs,
6559		 * calling vdev_config_dirty() modifies sav_config.
6560		 * This is ugly and will become unnecessary when we
6561		 * eliminate the aux vdev wart by integrating all vdevs
6562		 * into the root vdev tree.
6563		 */
6564		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6565		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6566		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6567			vdev_state_clean(vd);
6568			vdev_config_dirty(vd);
6569		}
6570		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6571		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6572	}
6573	spa_config_exit(spa, SCL_STATE, FTAG);
6574
6575	tx = dmu_tx_create_assigned(dp, txg);
6576
6577	spa->spa_sync_starttime = gethrtime();
6578#ifdef illumos
6579	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6580	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6581#else	/* !illumos */
6582#ifdef _KERNEL
6583	callout_reset(&spa->spa_deadman_cycid,
6584	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6585#endif
6586#endif	/* illumos */
6587
6588	/*
6589	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6590	 * set spa_deflate if we have no raid-z vdevs.
6591	 */
6592	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6593	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6594		int i;
6595
6596		for (i = 0; i < rvd->vdev_children; i++) {
6597			vd = rvd->vdev_child[i];
6598			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6599				break;
6600		}
6601		if (i == rvd->vdev_children) {
6602			spa->spa_deflate = TRUE;
6603			VERIFY(0 == zap_add(spa->spa_meta_objset,
6604			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6605			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6606		}
6607	}
6608
6609	/*
6610	 * Iterate to convergence.
6611	 */
6612	do {
6613		int pass = ++spa->spa_sync_pass;
6614
6615		spa_sync_config_object(spa, tx);
6616		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6617		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6618		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6619		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6620		spa_errlog_sync(spa, txg);
6621		dsl_pool_sync(dp, txg);
6622
6623		if (pass < zfs_sync_pass_deferred_free) {
6624			spa_sync_frees(spa, free_bpl, tx);
6625		} else {
6626			/*
6627			 * We can not defer frees in pass 1, because
6628			 * we sync the deferred frees later in pass 1.
6629			 */
6630			ASSERT3U(pass, >, 1);
6631			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6632			    &spa->spa_deferred_bpobj, tx);
6633		}
6634
6635		ddt_sync(spa, txg);
6636		dsl_scan_sync(dp, tx);
6637
6638		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6639			vdev_sync(vd, txg);
6640
6641		if (pass == 1) {
6642			spa_sync_upgrades(spa, tx);
6643			ASSERT3U(txg, >=,
6644			    spa->spa_uberblock.ub_rootbp.blk_birth);
6645			/*
6646			 * Note: We need to check if the MOS is dirty
6647			 * because we could have marked the MOS dirty
6648			 * without updating the uberblock (e.g. if we
6649			 * have sync tasks but no dirty user data).  We
6650			 * need to check the uberblock's rootbp because
6651			 * it is updated if we have synced out dirty
6652			 * data (though in this case the MOS will most
6653			 * likely also be dirty due to second order
6654			 * effects, we don't want to rely on that here).
6655			 */
6656			if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6657			    !dmu_objset_is_dirty(mos, txg)) {
6658				/*
6659				 * Nothing changed on the first pass,
6660				 * therefore this TXG is a no-op.  Avoid
6661				 * syncing deferred frees, so that we
6662				 * can keep this TXG as a no-op.
6663				 */
6664				ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6665				    txg));
6666				ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6667				ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6668				break;
6669			}
6670			spa_sync_deferred_frees(spa, tx);
6671		}
6672
6673	} while (dmu_objset_is_dirty(mos, txg));
6674
6675	/*
6676	 * Rewrite the vdev configuration (which includes the uberblock)
6677	 * to commit the transaction group.
6678	 *
6679	 * If there are no dirty vdevs, we sync the uberblock to a few
6680	 * random top-level vdevs that are known to be visible in the
6681	 * config cache (see spa_vdev_add() for a complete description).
6682	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6683	 */
6684	for (;;) {
6685		/*
6686		 * We hold SCL_STATE to prevent vdev open/close/etc.
6687		 * while we're attempting to write the vdev labels.
6688		 */
6689		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6690
6691		if (list_is_empty(&spa->spa_config_dirty_list)) {
6692			vdev_t *svd[SPA_DVAS_PER_BP];
6693			int svdcount = 0;
6694			int children = rvd->vdev_children;
6695			int c0 = spa_get_random(children);
6696
6697			for (int c = 0; c < children; c++) {
6698				vd = rvd->vdev_child[(c0 + c) % children];
6699				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6700					continue;
6701				svd[svdcount++] = vd;
6702				if (svdcount == SPA_DVAS_PER_BP)
6703					break;
6704			}
6705			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6706			if (error != 0)
6707				error = vdev_config_sync(svd, svdcount, txg,
6708				    B_TRUE);
6709		} else {
6710			error = vdev_config_sync(rvd->vdev_child,
6711			    rvd->vdev_children, txg, B_FALSE);
6712			if (error != 0)
6713				error = vdev_config_sync(rvd->vdev_child,
6714				    rvd->vdev_children, txg, B_TRUE);
6715		}
6716
6717		if (error == 0)
6718			spa->spa_last_synced_guid = rvd->vdev_guid;
6719
6720		spa_config_exit(spa, SCL_STATE, FTAG);
6721
6722		if (error == 0)
6723			break;
6724		zio_suspend(spa, NULL);
6725		zio_resume_wait(spa);
6726	}
6727	dmu_tx_commit(tx);
6728
6729#ifdef illumos
6730	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6731#else	/* !illumos */
6732#ifdef _KERNEL
6733	callout_drain(&spa->spa_deadman_cycid);
6734#endif
6735#endif	/* illumos */
6736
6737	/*
6738	 * Clear the dirty config list.
6739	 */
6740	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6741		vdev_config_clean(vd);
6742
6743	/*
6744	 * Now that the new config has synced transactionally,
6745	 * let it become visible to the config cache.
6746	 */
6747	if (spa->spa_config_syncing != NULL) {
6748		spa_config_set(spa, spa->spa_config_syncing);
6749		spa->spa_config_txg = txg;
6750		spa->spa_config_syncing = NULL;
6751	}
6752
6753	spa->spa_ubsync = spa->spa_uberblock;
6754
6755	dsl_pool_sync_done(dp, txg);
6756
6757	/*
6758	 * Update usable space statistics.
6759	 */
6760	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6761		vdev_sync_done(vd, txg);
6762
6763	spa_update_dspace(spa);
6764
6765	/*
6766	 * It had better be the case that we didn't dirty anything
6767	 * since vdev_config_sync().
6768	 */
6769	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6770	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6771	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6772
6773	spa->spa_sync_pass = 0;
6774
6775	spa_config_exit(spa, SCL_CONFIG, FTAG);
6776
6777	spa_handle_ignored_writes(spa);
6778
6779	/*
6780	 * If any async tasks have been requested, kick them off.
6781	 */
6782	spa_async_dispatch(spa);
6783	spa_async_dispatch_vd(spa);
6784}
6785
6786/*
6787 * Sync all pools.  We don't want to hold the namespace lock across these
6788 * operations, so we take a reference on the spa_t and drop the lock during the
6789 * sync.
6790 */
6791void
6792spa_sync_allpools(void)
6793{
6794	spa_t *spa = NULL;
6795	mutex_enter(&spa_namespace_lock);
6796	while ((spa = spa_next(spa)) != NULL) {
6797		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6798		    !spa_writeable(spa) || spa_suspended(spa))
6799			continue;
6800		spa_open_ref(spa, FTAG);
6801		mutex_exit(&spa_namespace_lock);
6802		txg_wait_synced(spa_get_dsl(spa), 0);
6803		mutex_enter(&spa_namespace_lock);
6804		spa_close(spa, FTAG);
6805	}
6806	mutex_exit(&spa_namespace_lock);
6807}
6808
6809/*
6810 * ==========================================================================
6811 * Miscellaneous routines
6812 * ==========================================================================
6813 */
6814
6815/*
6816 * Remove all pools in the system.
6817 */
6818void
6819spa_evict_all(void)
6820{
6821	spa_t *spa;
6822
6823	/*
6824	 * Remove all cached state.  All pools should be closed now,
6825	 * so every spa in the AVL tree should be unreferenced.
6826	 */
6827	mutex_enter(&spa_namespace_lock);
6828	while ((spa = spa_next(NULL)) != NULL) {
6829		/*
6830		 * Stop async tasks.  The async thread may need to detach
6831		 * a device that's been replaced, which requires grabbing
6832		 * spa_namespace_lock, so we must drop it here.
6833		 */
6834		spa_open_ref(spa, FTAG);
6835		mutex_exit(&spa_namespace_lock);
6836		spa_async_suspend(spa);
6837		mutex_enter(&spa_namespace_lock);
6838		spa_close(spa, FTAG);
6839
6840		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6841			spa_unload(spa);
6842			spa_deactivate(spa);
6843		}
6844		spa_remove(spa);
6845	}
6846	mutex_exit(&spa_namespace_lock);
6847}
6848
6849vdev_t *
6850spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6851{
6852	vdev_t *vd;
6853	int i;
6854
6855	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6856		return (vd);
6857
6858	if (aux) {
6859		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6860			vd = spa->spa_l2cache.sav_vdevs[i];
6861			if (vd->vdev_guid == guid)
6862				return (vd);
6863		}
6864
6865		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6866			vd = spa->spa_spares.sav_vdevs[i];
6867			if (vd->vdev_guid == guid)
6868				return (vd);
6869		}
6870	}
6871
6872	return (NULL);
6873}
6874
6875void
6876spa_upgrade(spa_t *spa, uint64_t version)
6877{
6878	ASSERT(spa_writeable(spa));
6879
6880	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6881
6882	/*
6883	 * This should only be called for a non-faulted pool, and since a
6884	 * future version would result in an unopenable pool, this shouldn't be
6885	 * possible.
6886	 */
6887	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6888	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6889
6890	spa->spa_uberblock.ub_version = version;
6891	vdev_config_dirty(spa->spa_root_vdev);
6892
6893	spa_config_exit(spa, SCL_ALL, FTAG);
6894
6895	txg_wait_synced(spa_get_dsl(spa), 0);
6896}
6897
6898boolean_t
6899spa_has_spare(spa_t *spa, uint64_t guid)
6900{
6901	int i;
6902	uint64_t spareguid;
6903	spa_aux_vdev_t *sav = &spa->spa_spares;
6904
6905	for (i = 0; i < sav->sav_count; i++)
6906		if (sav->sav_vdevs[i]->vdev_guid == guid)
6907			return (B_TRUE);
6908
6909	for (i = 0; i < sav->sav_npending; i++) {
6910		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6911		    &spareguid) == 0 && spareguid == guid)
6912			return (B_TRUE);
6913	}
6914
6915	return (B_FALSE);
6916}
6917
6918/*
6919 * Check if a pool has an active shared spare device.
6920 * Note: reference count of an active spare is 2, as a spare and as a replace
6921 */
6922static boolean_t
6923spa_has_active_shared_spare(spa_t *spa)
6924{
6925	int i, refcnt;
6926	uint64_t pool;
6927	spa_aux_vdev_t *sav = &spa->spa_spares;
6928
6929	for (i = 0; i < sav->sav_count; i++) {
6930		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6931		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6932		    refcnt > 2)
6933			return (B_TRUE);
6934	}
6935
6936	return (B_FALSE);
6937}
6938
6939/*
6940 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6941 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6942 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6943 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6944 * or zdb as real changes.
6945 */
6946void
6947spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6948{
6949#ifdef _KERNEL
6950	sysevent_t		*ev;
6951	sysevent_attr_list_t	*attr = NULL;
6952	sysevent_value_t	value;
6953	sysevent_id_t		eid;
6954
6955	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6956	    SE_SLEEP);
6957
6958	value.value_type = SE_DATA_TYPE_STRING;
6959	value.value.sv_string = spa_name(spa);
6960	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6961		goto done;
6962
6963	value.value_type = SE_DATA_TYPE_UINT64;
6964	value.value.sv_uint64 = spa_guid(spa);
6965	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6966		goto done;
6967
6968	if (vd) {
6969		value.value_type = SE_DATA_TYPE_UINT64;
6970		value.value.sv_uint64 = vd->vdev_guid;
6971		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6972		    SE_SLEEP) != 0)
6973			goto done;
6974
6975		if (vd->vdev_path) {
6976			value.value_type = SE_DATA_TYPE_STRING;
6977			value.value.sv_string = vd->vdev_path;
6978			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6979			    &value, SE_SLEEP) != 0)
6980				goto done;
6981		}
6982	}
6983
6984	if (sysevent_attach_attributes(ev, attr) != 0)
6985		goto done;
6986	attr = NULL;
6987
6988	(void) log_sysevent(ev, SE_SLEEP, &eid);
6989
6990done:
6991	if (attr)
6992		sysevent_free_attr(attr);
6993	sysevent_free(ev);
6994#endif
6995}
6996