spa.c revision 264670
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
99	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
100	ZTI_MODE_NULL,			/* don't create a taskq */
101	ZTI_NMODES
102} zti_modes_t;
103
104#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
105#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
106#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
107
108#define	ZTI_N(n)	ZTI_P(n, 1)
109#define	ZTI_ONE		ZTI_N(1)
110
111typedef struct zio_taskq_info {
112	zti_modes_t zti_mode;
113	uint_t zti_value;
114	uint_t zti_count;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * This table defines the taskq settings for each ZFS I/O type. When
123 * initializing a pool, we use this table to create an appropriately sized
124 * taskq. Some operations are low volume and therefore have a small, static
125 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
126 * macros. Other operations process a large amount of data; the ZTI_BATCH
127 * macro causes us to create a taskq oriented for throughput. Some operations
128 * are so high frequency and short-lived that the taskq itself can become a a
129 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
130 * additional degree of parallelism specified by the number of threads per-
131 * taskq and the number of taskqs; when dispatching an event in this case, the
132 * particular taskq is chosen at random.
133 *
134 * The different taskq priorities are to handle the different contexts (issue
135 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
136 * need to be handled with minimum delay.
137 */
138const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
139	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
140	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
141	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
142	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
143	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
146};
147
148static void spa_sync_version(void *arg, dmu_tx_t *tx);
149static void spa_sync_props(void *arg, dmu_tx_t *tx);
150static boolean_t spa_has_active_shared_spare(spa_t *spa);
151static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
152    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
153    char **ereport);
154static void spa_vdev_resilver_done(spa_t *spa);
155
156uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
157#ifdef PSRSET_BIND
158id_t		zio_taskq_psrset_bind = PS_NONE;
159#endif
160#ifdef SYSDC
161boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162#endif
163uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
164
165boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
166extern int	zfs_sync_pass_deferred_free;
167
168#ifndef illumos
169extern void spa_deadman(void *arg);
170#endif
171
172/*
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
175 */
176#define	TRYIMPORT_NAME	"$import"
177
178/*
179 * ==========================================================================
180 * SPA properties routines
181 * ==========================================================================
182 */
183
184/*
185 * Add a (source=src, propname=propval) list to an nvlist.
186 */
187static void
188spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
189    uint64_t intval, zprop_source_t src)
190{
191	const char *propname = zpool_prop_to_name(prop);
192	nvlist_t *propval;
193
194	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
195	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
196
197	if (strval != NULL)
198		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
199	else
200		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
201
202	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
203	nvlist_free(propval);
204}
205
206/*
207 * Get property values from the spa configuration.
208 */
209static void
210spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
211{
212	vdev_t *rvd = spa->spa_root_vdev;
213	dsl_pool_t *pool = spa->spa_dsl_pool;
214	uint64_t size;
215	uint64_t alloc;
216	uint64_t space;
217	uint64_t cap, version;
218	zprop_source_t src = ZPROP_SRC_NONE;
219	spa_config_dirent_t *dp;
220
221	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
222
223	if (rvd != NULL) {
224		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
225		size = metaslab_class_get_space(spa_normal_class(spa));
226		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
230		    size - alloc, src);
231
232		space = 0;
233		for (int c = 0; c < rvd->vdev_children; c++) {
234			vdev_t *tvd = rvd->vdev_child[c];
235			space += tvd->vdev_max_asize - tvd->vdev_asize;
236		}
237		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
238		    src);
239
240		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
241		    (spa_mode(spa) == FREAD), src);
242
243		cap = (size == 0) ? 0 : (alloc * 100 / size);
244		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
247		    ddt_get_pool_dedup_ratio(spa), src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
250		    rvd->vdev_state, src);
251
252		version = spa_version(spa);
253		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
254			src = ZPROP_SRC_DEFAULT;
255		else
256			src = ZPROP_SRC_LOCAL;
257		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
258	}
259
260	if (pool != NULL) {
261		dsl_dir_t *freedir = pool->dp_free_dir;
262
263		/*
264		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
265		 * when opening pools before this version freedir will be NULL.
266		 */
267		if (freedir != NULL) {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
269			    freedir->dd_phys->dd_used_bytes, src);
270		} else {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
272			    NULL, 0, src);
273		}
274	}
275
276	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
277
278	if (spa->spa_comment != NULL) {
279		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
280		    0, ZPROP_SRC_LOCAL);
281	}
282
283	if (spa->spa_root != NULL)
284		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
285		    0, ZPROP_SRC_LOCAL);
286
287	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
288		if (dp->scd_path == NULL) {
289			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
290			    "none", 0, ZPROP_SRC_LOCAL);
291		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
292			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
293			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
294		}
295	}
296}
297
298/*
299 * Get zpool property values.
300 */
301int
302spa_prop_get(spa_t *spa, nvlist_t **nvp)
303{
304	objset_t *mos = spa->spa_meta_objset;
305	zap_cursor_t zc;
306	zap_attribute_t za;
307	int err;
308
309	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
310
311	mutex_enter(&spa->spa_props_lock);
312
313	/*
314	 * Get properties from the spa config.
315	 */
316	spa_prop_get_config(spa, nvp);
317
318	/* If no pool property object, no more prop to get. */
319	if (mos == NULL || spa->spa_pool_props_object == 0) {
320		mutex_exit(&spa->spa_props_lock);
321		return (0);
322	}
323
324	/*
325	 * Get properties from the MOS pool property object.
326	 */
327	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
328	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
329	    zap_cursor_advance(&zc)) {
330		uint64_t intval = 0;
331		char *strval = NULL;
332		zprop_source_t src = ZPROP_SRC_DEFAULT;
333		zpool_prop_t prop;
334
335		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
336			continue;
337
338		switch (za.za_integer_length) {
339		case 8:
340			/* integer property */
341			if (za.za_first_integer !=
342			    zpool_prop_default_numeric(prop))
343				src = ZPROP_SRC_LOCAL;
344
345			if (prop == ZPOOL_PROP_BOOTFS) {
346				dsl_pool_t *dp;
347				dsl_dataset_t *ds = NULL;
348
349				dp = spa_get_dsl(spa);
350				dsl_pool_config_enter(dp, FTAG);
351				if (err = dsl_dataset_hold_obj(dp,
352				    za.za_first_integer, FTAG, &ds)) {
353					dsl_pool_config_exit(dp, FTAG);
354					break;
355				}
356
357				strval = kmem_alloc(
358				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
359				    KM_SLEEP);
360				dsl_dataset_name(ds, strval);
361				dsl_dataset_rele(ds, FTAG);
362				dsl_pool_config_exit(dp, FTAG);
363			} else {
364				strval = NULL;
365				intval = za.za_first_integer;
366			}
367
368			spa_prop_add_list(*nvp, prop, strval, intval, src);
369
370			if (strval != NULL)
371				kmem_free(strval,
372				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
373
374			break;
375
376		case 1:
377			/* string property */
378			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
379			err = zap_lookup(mos, spa->spa_pool_props_object,
380			    za.za_name, 1, za.za_num_integers, strval);
381			if (err) {
382				kmem_free(strval, za.za_num_integers);
383				break;
384			}
385			spa_prop_add_list(*nvp, prop, strval, 0, src);
386			kmem_free(strval, za.za_num_integers);
387			break;
388
389		default:
390			break;
391		}
392	}
393	zap_cursor_fini(&zc);
394	mutex_exit(&spa->spa_props_lock);
395out:
396	if (err && err != ENOENT) {
397		nvlist_free(*nvp);
398		*nvp = NULL;
399		return (err);
400	}
401
402	return (0);
403}
404
405/*
406 * Validate the given pool properties nvlist and modify the list
407 * for the property values to be set.
408 */
409static int
410spa_prop_validate(spa_t *spa, nvlist_t *props)
411{
412	nvpair_t *elem;
413	int error = 0, reset_bootfs = 0;
414	uint64_t objnum = 0;
415	boolean_t has_feature = B_FALSE;
416
417	elem = NULL;
418	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
419		uint64_t intval;
420		char *strval, *slash, *check, *fname;
421		const char *propname = nvpair_name(elem);
422		zpool_prop_t prop = zpool_name_to_prop(propname);
423
424		switch (prop) {
425		case ZPROP_INVAL:
426			if (!zpool_prop_feature(propname)) {
427				error = SET_ERROR(EINVAL);
428				break;
429			}
430
431			/*
432			 * Sanitize the input.
433			 */
434			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
435				error = SET_ERROR(EINVAL);
436				break;
437			}
438
439			if (nvpair_value_uint64(elem, &intval) != 0) {
440				error = SET_ERROR(EINVAL);
441				break;
442			}
443
444			if (intval != 0) {
445				error = SET_ERROR(EINVAL);
446				break;
447			}
448
449			fname = strchr(propname, '@') + 1;
450			if (zfeature_lookup_name(fname, NULL) != 0) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			has_feature = B_TRUE;
456			break;
457
458		case ZPOOL_PROP_VERSION:
459			error = nvpair_value_uint64(elem, &intval);
460			if (!error &&
461			    (intval < spa_version(spa) ||
462			    intval > SPA_VERSION_BEFORE_FEATURES ||
463			    has_feature))
464				error = SET_ERROR(EINVAL);
465			break;
466
467		case ZPOOL_PROP_DELEGATION:
468		case ZPOOL_PROP_AUTOREPLACE:
469		case ZPOOL_PROP_LISTSNAPS:
470		case ZPOOL_PROP_AUTOEXPAND:
471			error = nvpair_value_uint64(elem, &intval);
472			if (!error && intval > 1)
473				error = SET_ERROR(EINVAL);
474			break;
475
476		case ZPOOL_PROP_BOOTFS:
477			/*
478			 * If the pool version is less than SPA_VERSION_BOOTFS,
479			 * or the pool is still being created (version == 0),
480			 * the bootfs property cannot be set.
481			 */
482			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
483				error = SET_ERROR(ENOTSUP);
484				break;
485			}
486
487			/*
488			 * Make sure the vdev config is bootable
489			 */
490			if (!vdev_is_bootable(spa->spa_root_vdev)) {
491				error = SET_ERROR(ENOTSUP);
492				break;
493			}
494
495			reset_bootfs = 1;
496
497			error = nvpair_value_string(elem, &strval);
498
499			if (!error) {
500				objset_t *os;
501				uint64_t compress;
502
503				if (strval == NULL || strval[0] == '\0') {
504					objnum = zpool_prop_default_numeric(
505					    ZPOOL_PROP_BOOTFS);
506					break;
507				}
508
509				if (error = dmu_objset_hold(strval, FTAG, &os))
510					break;
511
512				/* Must be ZPL and not gzip compressed. */
513
514				if (dmu_objset_type(os) != DMU_OST_ZFS) {
515					error = SET_ERROR(ENOTSUP);
516				} else if ((error =
517				    dsl_prop_get_int_ds(dmu_objset_ds(os),
518				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
519				    &compress)) == 0 &&
520				    !BOOTFS_COMPRESS_VALID(compress)) {
521					error = SET_ERROR(ENOTSUP);
522				} else {
523					objnum = dmu_objset_id(os);
524				}
525				dmu_objset_rele(os, FTAG);
526			}
527			break;
528
529		case ZPOOL_PROP_FAILUREMODE:
530			error = nvpair_value_uint64(elem, &intval);
531			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
532			    intval > ZIO_FAILURE_MODE_PANIC))
533				error = SET_ERROR(EINVAL);
534
535			/*
536			 * This is a special case which only occurs when
537			 * the pool has completely failed. This allows
538			 * the user to change the in-core failmode property
539			 * without syncing it out to disk (I/Os might
540			 * currently be blocked). We do this by returning
541			 * EIO to the caller (spa_prop_set) to trick it
542			 * into thinking we encountered a property validation
543			 * error.
544			 */
545			if (!error && spa_suspended(spa)) {
546				spa->spa_failmode = intval;
547				error = SET_ERROR(EIO);
548			}
549			break;
550
551		case ZPOOL_PROP_CACHEFILE:
552			if ((error = nvpair_value_string(elem, &strval)) != 0)
553				break;
554
555			if (strval[0] == '\0')
556				break;
557
558			if (strcmp(strval, "none") == 0)
559				break;
560
561			if (strval[0] != '/') {
562				error = SET_ERROR(EINVAL);
563				break;
564			}
565
566			slash = strrchr(strval, '/');
567			ASSERT(slash != NULL);
568
569			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
570			    strcmp(slash, "/..") == 0)
571				error = SET_ERROR(EINVAL);
572			break;
573
574		case ZPOOL_PROP_COMMENT:
575			if ((error = nvpair_value_string(elem, &strval)) != 0)
576				break;
577			for (check = strval; *check != '\0'; check++) {
578				/*
579				 * The kernel doesn't have an easy isprint()
580				 * check.  For this kernel check, we merely
581				 * check ASCII apart from DEL.  Fix this if
582				 * there is an easy-to-use kernel isprint().
583				 */
584				if (*check >= 0x7f) {
585					error = SET_ERROR(EINVAL);
586					break;
587				}
588				check++;
589			}
590			if (strlen(strval) > ZPROP_MAX_COMMENT)
591				error = E2BIG;
592			break;
593
594		case ZPOOL_PROP_DEDUPDITTO:
595			if (spa_version(spa) < SPA_VERSION_DEDUP)
596				error = SET_ERROR(ENOTSUP);
597			else
598				error = nvpair_value_uint64(elem, &intval);
599			if (error == 0 &&
600			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
601				error = SET_ERROR(EINVAL);
602			break;
603		}
604
605		if (error)
606			break;
607	}
608
609	if (!error && reset_bootfs) {
610		error = nvlist_remove(props,
611		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
612
613		if (!error) {
614			error = nvlist_add_uint64(props,
615			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
616		}
617	}
618
619	return (error);
620}
621
622void
623spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
624{
625	char *cachefile;
626	spa_config_dirent_t *dp;
627
628	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
629	    &cachefile) != 0)
630		return;
631
632	dp = kmem_alloc(sizeof (spa_config_dirent_t),
633	    KM_SLEEP);
634
635	if (cachefile[0] == '\0')
636		dp->scd_path = spa_strdup(spa_config_path);
637	else if (strcmp(cachefile, "none") == 0)
638		dp->scd_path = NULL;
639	else
640		dp->scd_path = spa_strdup(cachefile);
641
642	list_insert_head(&spa->spa_config_list, dp);
643	if (need_sync)
644		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
645}
646
647int
648spa_prop_set(spa_t *spa, nvlist_t *nvp)
649{
650	int error;
651	nvpair_t *elem = NULL;
652	boolean_t need_sync = B_FALSE;
653
654	if ((error = spa_prop_validate(spa, nvp)) != 0)
655		return (error);
656
657	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
658		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
659
660		if (prop == ZPOOL_PROP_CACHEFILE ||
661		    prop == ZPOOL_PROP_ALTROOT ||
662		    prop == ZPOOL_PROP_READONLY)
663			continue;
664
665		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
666			uint64_t ver;
667
668			if (prop == ZPOOL_PROP_VERSION) {
669				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
670			} else {
671				ASSERT(zpool_prop_feature(nvpair_name(elem)));
672				ver = SPA_VERSION_FEATURES;
673				need_sync = B_TRUE;
674			}
675
676			/* Save time if the version is already set. */
677			if (ver == spa_version(spa))
678				continue;
679
680			/*
681			 * In addition to the pool directory object, we might
682			 * create the pool properties object, the features for
683			 * read object, the features for write object, or the
684			 * feature descriptions object.
685			 */
686			error = dsl_sync_task(spa->spa_name, NULL,
687			    spa_sync_version, &ver, 6);
688			if (error)
689				return (error);
690			continue;
691		}
692
693		need_sync = B_TRUE;
694		break;
695	}
696
697	if (need_sync) {
698		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
699		    nvp, 6));
700	}
701
702	return (0);
703}
704
705/*
706 * If the bootfs property value is dsobj, clear it.
707 */
708void
709spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
710{
711	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
712		VERIFY(zap_remove(spa->spa_meta_objset,
713		    spa->spa_pool_props_object,
714		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
715		spa->spa_bootfs = 0;
716	}
717}
718
719/*ARGSUSED*/
720static int
721spa_change_guid_check(void *arg, dmu_tx_t *tx)
722{
723	uint64_t *newguid = arg;
724	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
725	vdev_t *rvd = spa->spa_root_vdev;
726	uint64_t vdev_state;
727
728	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
729	vdev_state = rvd->vdev_state;
730	spa_config_exit(spa, SCL_STATE, FTAG);
731
732	if (vdev_state != VDEV_STATE_HEALTHY)
733		return (SET_ERROR(ENXIO));
734
735	ASSERT3U(spa_guid(spa), !=, *newguid);
736
737	return (0);
738}
739
740static void
741spa_change_guid_sync(void *arg, dmu_tx_t *tx)
742{
743	uint64_t *newguid = arg;
744	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
745	uint64_t oldguid;
746	vdev_t *rvd = spa->spa_root_vdev;
747
748	oldguid = spa_guid(spa);
749
750	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
751	rvd->vdev_guid = *newguid;
752	rvd->vdev_guid_sum += (*newguid - oldguid);
753	vdev_config_dirty(rvd);
754	spa_config_exit(spa, SCL_STATE, FTAG);
755
756	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
757	    oldguid, *newguid);
758}
759
760/*
761 * Change the GUID for the pool.  This is done so that we can later
762 * re-import a pool built from a clone of our own vdevs.  We will modify
763 * the root vdev's guid, our own pool guid, and then mark all of our
764 * vdevs dirty.  Note that we must make sure that all our vdevs are
765 * online when we do this, or else any vdevs that weren't present
766 * would be orphaned from our pool.  We are also going to issue a
767 * sysevent to update any watchers.
768 */
769int
770spa_change_guid(spa_t *spa)
771{
772	int error;
773	uint64_t guid;
774
775	mutex_enter(&spa->spa_vdev_top_lock);
776	mutex_enter(&spa_namespace_lock);
777	guid = spa_generate_guid(NULL);
778
779	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
780	    spa_change_guid_sync, &guid, 5);
781
782	if (error == 0) {
783		spa_config_sync(spa, B_FALSE, B_TRUE);
784		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
785	}
786
787	mutex_exit(&spa_namespace_lock);
788	mutex_exit(&spa->spa_vdev_top_lock);
789
790	return (error);
791}
792
793/*
794 * ==========================================================================
795 * SPA state manipulation (open/create/destroy/import/export)
796 * ==========================================================================
797 */
798
799static int
800spa_error_entry_compare(const void *a, const void *b)
801{
802	spa_error_entry_t *sa = (spa_error_entry_t *)a;
803	spa_error_entry_t *sb = (spa_error_entry_t *)b;
804	int ret;
805
806	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
807	    sizeof (zbookmark_t));
808
809	if (ret < 0)
810		return (-1);
811	else if (ret > 0)
812		return (1);
813	else
814		return (0);
815}
816
817/*
818 * Utility function which retrieves copies of the current logs and
819 * re-initializes them in the process.
820 */
821void
822spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
823{
824	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
825
826	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
827	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
828
829	avl_create(&spa->spa_errlist_scrub,
830	    spa_error_entry_compare, sizeof (spa_error_entry_t),
831	    offsetof(spa_error_entry_t, se_avl));
832	avl_create(&spa->spa_errlist_last,
833	    spa_error_entry_compare, sizeof (spa_error_entry_t),
834	    offsetof(spa_error_entry_t, se_avl));
835}
836
837static void
838spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
839{
840	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
841	enum zti_modes mode = ztip->zti_mode;
842	uint_t value = ztip->zti_value;
843	uint_t count = ztip->zti_count;
844	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
845	char name[32];
846	uint_t flags = 0;
847	boolean_t batch = B_FALSE;
848
849	if (mode == ZTI_MODE_NULL) {
850		tqs->stqs_count = 0;
851		tqs->stqs_taskq = NULL;
852		return;
853	}
854
855	ASSERT3U(count, >, 0);
856
857	tqs->stqs_count = count;
858	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
859
860	switch (mode) {
861	case ZTI_MODE_FIXED:
862		ASSERT3U(value, >=, 1);
863		value = MAX(value, 1);
864		break;
865
866	case ZTI_MODE_BATCH:
867		batch = B_TRUE;
868		flags |= TASKQ_THREADS_CPU_PCT;
869		value = zio_taskq_batch_pct;
870		break;
871
872	default:
873		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
874		    "spa_activate()",
875		    zio_type_name[t], zio_taskq_types[q], mode, value);
876		break;
877	}
878
879	for (uint_t i = 0; i < count; i++) {
880		taskq_t *tq;
881
882		if (count > 1) {
883			(void) snprintf(name, sizeof (name), "%s_%s_%u",
884			    zio_type_name[t], zio_taskq_types[q], i);
885		} else {
886			(void) snprintf(name, sizeof (name), "%s_%s",
887			    zio_type_name[t], zio_taskq_types[q]);
888		}
889
890#ifdef SYSDC
891		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
892			if (batch)
893				flags |= TASKQ_DC_BATCH;
894
895			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
896			    spa->spa_proc, zio_taskq_basedc, flags);
897		} else {
898#endif
899			pri_t pri = maxclsyspri;
900			/*
901			 * The write issue taskq can be extremely CPU
902			 * intensive.  Run it at slightly lower priority
903			 * than the other taskqs.
904			 */
905			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
906				pri--;
907
908			tq = taskq_create_proc(name, value, pri, 50,
909			    INT_MAX, spa->spa_proc, flags);
910#ifdef SYSDC
911		}
912#endif
913
914		tqs->stqs_taskq[i] = tq;
915	}
916}
917
918static void
919spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920{
921	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922
923	if (tqs->stqs_taskq == NULL) {
924		ASSERT0(tqs->stqs_count);
925		return;
926	}
927
928	for (uint_t i = 0; i < tqs->stqs_count; i++) {
929		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930		taskq_destroy(tqs->stqs_taskq[i]);
931	}
932
933	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934	tqs->stqs_taskq = NULL;
935}
936
937/*
938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939 * Note that a type may have multiple discrete taskqs to avoid lock contention
940 * on the taskq itself. In that case we choose which taskq at random by using
941 * the low bits of gethrtime().
942 */
943void
944spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948	taskq_t *tq;
949
950	ASSERT3P(tqs->stqs_taskq, !=, NULL);
951	ASSERT3U(tqs->stqs_count, !=, 0);
952
953	if (tqs->stqs_count == 1) {
954		tq = tqs->stqs_taskq[0];
955	} else {
956		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
957	}
958
959	taskq_dispatch_ent(tq, func, arg, flags, ent);
960}
961
962static void
963spa_create_zio_taskqs(spa_t *spa)
964{
965	for (int t = 0; t < ZIO_TYPES; t++) {
966		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
967			spa_taskqs_init(spa, t, q);
968		}
969	}
970}
971
972#ifdef _KERNEL
973#ifdef SPA_PROCESS
974static void
975spa_thread(void *arg)
976{
977	callb_cpr_t cprinfo;
978
979	spa_t *spa = arg;
980	user_t *pu = PTOU(curproc);
981
982	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983	    spa->spa_name);
984
985	ASSERT(curproc != &p0);
986	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987	    "zpool-%s", spa->spa_name);
988	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
989
990#ifdef PSRSET_BIND
991	/* bind this thread to the requested psrset */
992	if (zio_taskq_psrset_bind != PS_NONE) {
993		pool_lock();
994		mutex_enter(&cpu_lock);
995		mutex_enter(&pidlock);
996		mutex_enter(&curproc->p_lock);
997
998		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
999		    0, NULL, NULL) == 0)  {
1000			curthread->t_bind_pset = zio_taskq_psrset_bind;
1001		} else {
1002			cmn_err(CE_WARN,
1003			    "Couldn't bind process for zfs pool \"%s\" to "
1004			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1005		}
1006
1007		mutex_exit(&curproc->p_lock);
1008		mutex_exit(&pidlock);
1009		mutex_exit(&cpu_lock);
1010		pool_unlock();
1011	}
1012#endif
1013
1014#ifdef SYSDC
1015	if (zio_taskq_sysdc) {
1016		sysdc_thread_enter(curthread, 100, 0);
1017	}
1018#endif
1019
1020	spa->spa_proc = curproc;
1021	spa->spa_did = curthread->t_did;
1022
1023	spa_create_zio_taskqs(spa);
1024
1025	mutex_enter(&spa->spa_proc_lock);
1026	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1027
1028	spa->spa_proc_state = SPA_PROC_ACTIVE;
1029	cv_broadcast(&spa->spa_proc_cv);
1030
1031	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1032	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1033		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1034	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1035
1036	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1037	spa->spa_proc_state = SPA_PROC_GONE;
1038	spa->spa_proc = &p0;
1039	cv_broadcast(&spa->spa_proc_cv);
1040	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1041
1042	mutex_enter(&curproc->p_lock);
1043	lwp_exit();
1044}
1045#endif	/* SPA_PROCESS */
1046#endif
1047
1048/*
1049 * Activate an uninitialized pool.
1050 */
1051static void
1052spa_activate(spa_t *spa, int mode)
1053{
1054	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1055
1056	spa->spa_state = POOL_STATE_ACTIVE;
1057	spa->spa_mode = mode;
1058
1059	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1060	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1061
1062	/* Try to create a covering process */
1063	mutex_enter(&spa->spa_proc_lock);
1064	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1065	ASSERT(spa->spa_proc == &p0);
1066	spa->spa_did = 0;
1067
1068#ifdef SPA_PROCESS
1069	/* Only create a process if we're going to be around a while. */
1070	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1071		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1072		    NULL, 0) == 0) {
1073			spa->spa_proc_state = SPA_PROC_CREATED;
1074			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1075				cv_wait(&spa->spa_proc_cv,
1076				    &spa->spa_proc_lock);
1077			}
1078			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1079			ASSERT(spa->spa_proc != &p0);
1080			ASSERT(spa->spa_did != 0);
1081		} else {
1082#ifdef _KERNEL
1083			cmn_err(CE_WARN,
1084			    "Couldn't create process for zfs pool \"%s\"\n",
1085			    spa->spa_name);
1086#endif
1087		}
1088	}
1089#endif	/* SPA_PROCESS */
1090	mutex_exit(&spa->spa_proc_lock);
1091
1092	/* If we didn't create a process, we need to create our taskqs. */
1093	ASSERT(spa->spa_proc == &p0);
1094	if (spa->spa_proc == &p0) {
1095		spa_create_zio_taskqs(spa);
1096	}
1097
1098	/*
1099	 * Start TRIM thread.
1100	 */
1101	trim_thread_create(spa);
1102
1103	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1104	    offsetof(vdev_t, vdev_config_dirty_node));
1105	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1106	    offsetof(vdev_t, vdev_state_dirty_node));
1107
1108	txg_list_create(&spa->spa_vdev_txg_list,
1109	    offsetof(struct vdev, vdev_txg_node));
1110
1111	avl_create(&spa->spa_errlist_scrub,
1112	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1113	    offsetof(spa_error_entry_t, se_avl));
1114	avl_create(&spa->spa_errlist_last,
1115	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1116	    offsetof(spa_error_entry_t, se_avl));
1117}
1118
1119/*
1120 * Opposite of spa_activate().
1121 */
1122static void
1123spa_deactivate(spa_t *spa)
1124{
1125	ASSERT(spa->spa_sync_on == B_FALSE);
1126	ASSERT(spa->spa_dsl_pool == NULL);
1127	ASSERT(spa->spa_root_vdev == NULL);
1128	ASSERT(spa->spa_async_zio_root == NULL);
1129	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1130
1131	/*
1132	 * Stop TRIM thread in case spa_unload() wasn't called directly
1133	 * before spa_deactivate().
1134	 */
1135	trim_thread_destroy(spa);
1136
1137	txg_list_destroy(&spa->spa_vdev_txg_list);
1138
1139	list_destroy(&spa->spa_config_dirty_list);
1140	list_destroy(&spa->spa_state_dirty_list);
1141
1142	for (int t = 0; t < ZIO_TYPES; t++) {
1143		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1144			spa_taskqs_fini(spa, t, q);
1145		}
1146	}
1147
1148	metaslab_class_destroy(spa->spa_normal_class);
1149	spa->spa_normal_class = NULL;
1150
1151	metaslab_class_destroy(spa->spa_log_class);
1152	spa->spa_log_class = NULL;
1153
1154	/*
1155	 * If this was part of an import or the open otherwise failed, we may
1156	 * still have errors left in the queues.  Empty them just in case.
1157	 */
1158	spa_errlog_drain(spa);
1159
1160	avl_destroy(&spa->spa_errlist_scrub);
1161	avl_destroy(&spa->spa_errlist_last);
1162
1163	spa->spa_state = POOL_STATE_UNINITIALIZED;
1164
1165	mutex_enter(&spa->spa_proc_lock);
1166	if (spa->spa_proc_state != SPA_PROC_NONE) {
1167		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1168		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1169		cv_broadcast(&spa->spa_proc_cv);
1170		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1171			ASSERT(spa->spa_proc != &p0);
1172			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1173		}
1174		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1175		spa->spa_proc_state = SPA_PROC_NONE;
1176	}
1177	ASSERT(spa->spa_proc == &p0);
1178	mutex_exit(&spa->spa_proc_lock);
1179
1180#ifdef SPA_PROCESS
1181	/*
1182	 * We want to make sure spa_thread() has actually exited the ZFS
1183	 * module, so that the module can't be unloaded out from underneath
1184	 * it.
1185	 */
1186	if (spa->spa_did != 0) {
1187		thread_join(spa->spa_did);
1188		spa->spa_did = 0;
1189	}
1190#endif	/* SPA_PROCESS */
1191}
1192
1193/*
1194 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1195 * will create all the necessary vdevs in the appropriate layout, with each vdev
1196 * in the CLOSED state.  This will prep the pool before open/creation/import.
1197 * All vdev validation is done by the vdev_alloc() routine.
1198 */
1199static int
1200spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1201    uint_t id, int atype)
1202{
1203	nvlist_t **child;
1204	uint_t children;
1205	int error;
1206
1207	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1208		return (error);
1209
1210	if ((*vdp)->vdev_ops->vdev_op_leaf)
1211		return (0);
1212
1213	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1214	    &child, &children);
1215
1216	if (error == ENOENT)
1217		return (0);
1218
1219	if (error) {
1220		vdev_free(*vdp);
1221		*vdp = NULL;
1222		return (SET_ERROR(EINVAL));
1223	}
1224
1225	for (int c = 0; c < children; c++) {
1226		vdev_t *vd;
1227		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1228		    atype)) != 0) {
1229			vdev_free(*vdp);
1230			*vdp = NULL;
1231			return (error);
1232		}
1233	}
1234
1235	ASSERT(*vdp != NULL);
1236
1237	return (0);
1238}
1239
1240/*
1241 * Opposite of spa_load().
1242 */
1243static void
1244spa_unload(spa_t *spa)
1245{
1246	int i;
1247
1248	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1249
1250	/*
1251	 * Stop TRIM thread.
1252	 */
1253	trim_thread_destroy(spa);
1254
1255	/*
1256	 * Stop async tasks.
1257	 */
1258	spa_async_suspend(spa);
1259
1260	/*
1261	 * Stop syncing.
1262	 */
1263	if (spa->spa_sync_on) {
1264		txg_sync_stop(spa->spa_dsl_pool);
1265		spa->spa_sync_on = B_FALSE;
1266	}
1267
1268	/*
1269	 * Wait for any outstanding async I/O to complete.
1270	 */
1271	if (spa->spa_async_zio_root != NULL) {
1272		(void) zio_wait(spa->spa_async_zio_root);
1273		spa->spa_async_zio_root = NULL;
1274	}
1275
1276	bpobj_close(&spa->spa_deferred_bpobj);
1277
1278	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1279
1280	/*
1281	 * Close all vdevs.
1282	 */
1283	if (spa->spa_root_vdev)
1284		vdev_free(spa->spa_root_vdev);
1285	ASSERT(spa->spa_root_vdev == NULL);
1286
1287	/*
1288	 * Close the dsl pool.
1289	 */
1290	if (spa->spa_dsl_pool) {
1291		dsl_pool_close(spa->spa_dsl_pool);
1292		spa->spa_dsl_pool = NULL;
1293		spa->spa_meta_objset = NULL;
1294	}
1295
1296	ddt_unload(spa);
1297
1298
1299	/*
1300	 * Drop and purge level 2 cache
1301	 */
1302	spa_l2cache_drop(spa);
1303
1304	for (i = 0; i < spa->spa_spares.sav_count; i++)
1305		vdev_free(spa->spa_spares.sav_vdevs[i]);
1306	if (spa->spa_spares.sav_vdevs) {
1307		kmem_free(spa->spa_spares.sav_vdevs,
1308		    spa->spa_spares.sav_count * sizeof (void *));
1309		spa->spa_spares.sav_vdevs = NULL;
1310	}
1311	if (spa->spa_spares.sav_config) {
1312		nvlist_free(spa->spa_spares.sav_config);
1313		spa->spa_spares.sav_config = NULL;
1314	}
1315	spa->spa_spares.sav_count = 0;
1316
1317	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1318		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1319		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1320	}
1321	if (spa->spa_l2cache.sav_vdevs) {
1322		kmem_free(spa->spa_l2cache.sav_vdevs,
1323		    spa->spa_l2cache.sav_count * sizeof (void *));
1324		spa->spa_l2cache.sav_vdevs = NULL;
1325	}
1326	if (spa->spa_l2cache.sav_config) {
1327		nvlist_free(spa->spa_l2cache.sav_config);
1328		spa->spa_l2cache.sav_config = NULL;
1329	}
1330	spa->spa_l2cache.sav_count = 0;
1331
1332	spa->spa_async_suspended = 0;
1333
1334	if (spa->spa_comment != NULL) {
1335		spa_strfree(spa->spa_comment);
1336		spa->spa_comment = NULL;
1337	}
1338
1339	spa_config_exit(spa, SCL_ALL, FTAG);
1340}
1341
1342/*
1343 * Load (or re-load) the current list of vdevs describing the active spares for
1344 * this pool.  When this is called, we have some form of basic information in
1345 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1346 * then re-generate a more complete list including status information.
1347 */
1348static void
1349spa_load_spares(spa_t *spa)
1350{
1351	nvlist_t **spares;
1352	uint_t nspares;
1353	int i;
1354	vdev_t *vd, *tvd;
1355
1356	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1357
1358	/*
1359	 * First, close and free any existing spare vdevs.
1360	 */
1361	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1362		vd = spa->spa_spares.sav_vdevs[i];
1363
1364		/* Undo the call to spa_activate() below */
1365		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1366		    B_FALSE)) != NULL && tvd->vdev_isspare)
1367			spa_spare_remove(tvd);
1368		vdev_close(vd);
1369		vdev_free(vd);
1370	}
1371
1372	if (spa->spa_spares.sav_vdevs)
1373		kmem_free(spa->spa_spares.sav_vdevs,
1374		    spa->spa_spares.sav_count * sizeof (void *));
1375
1376	if (spa->spa_spares.sav_config == NULL)
1377		nspares = 0;
1378	else
1379		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1380		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1381
1382	spa->spa_spares.sav_count = (int)nspares;
1383	spa->spa_spares.sav_vdevs = NULL;
1384
1385	if (nspares == 0)
1386		return;
1387
1388	/*
1389	 * Construct the array of vdevs, opening them to get status in the
1390	 * process.   For each spare, there is potentially two different vdev_t
1391	 * structures associated with it: one in the list of spares (used only
1392	 * for basic validation purposes) and one in the active vdev
1393	 * configuration (if it's spared in).  During this phase we open and
1394	 * validate each vdev on the spare list.  If the vdev also exists in the
1395	 * active configuration, then we also mark this vdev as an active spare.
1396	 */
1397	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1398	    KM_SLEEP);
1399	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1400		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1401		    VDEV_ALLOC_SPARE) == 0);
1402		ASSERT(vd != NULL);
1403
1404		spa->spa_spares.sav_vdevs[i] = vd;
1405
1406		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1407		    B_FALSE)) != NULL) {
1408			if (!tvd->vdev_isspare)
1409				spa_spare_add(tvd);
1410
1411			/*
1412			 * We only mark the spare active if we were successfully
1413			 * able to load the vdev.  Otherwise, importing a pool
1414			 * with a bad active spare would result in strange
1415			 * behavior, because multiple pool would think the spare
1416			 * is actively in use.
1417			 *
1418			 * There is a vulnerability here to an equally bizarre
1419			 * circumstance, where a dead active spare is later
1420			 * brought back to life (onlined or otherwise).  Given
1421			 * the rarity of this scenario, and the extra complexity
1422			 * it adds, we ignore the possibility.
1423			 */
1424			if (!vdev_is_dead(tvd))
1425				spa_spare_activate(tvd);
1426		}
1427
1428		vd->vdev_top = vd;
1429		vd->vdev_aux = &spa->spa_spares;
1430
1431		if (vdev_open(vd) != 0)
1432			continue;
1433
1434		if (vdev_validate_aux(vd) == 0)
1435			spa_spare_add(vd);
1436	}
1437
1438	/*
1439	 * Recompute the stashed list of spares, with status information
1440	 * this time.
1441	 */
1442	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1443	    DATA_TYPE_NVLIST_ARRAY) == 0);
1444
1445	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1446	    KM_SLEEP);
1447	for (i = 0; i < spa->spa_spares.sav_count; i++)
1448		spares[i] = vdev_config_generate(spa,
1449		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1450	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1451	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1452	for (i = 0; i < spa->spa_spares.sav_count; i++)
1453		nvlist_free(spares[i]);
1454	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1455}
1456
1457/*
1458 * Load (or re-load) the current list of vdevs describing the active l2cache for
1459 * this pool.  When this is called, we have some form of basic information in
1460 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1461 * then re-generate a more complete list including status information.
1462 * Devices which are already active have their details maintained, and are
1463 * not re-opened.
1464 */
1465static void
1466spa_load_l2cache(spa_t *spa)
1467{
1468	nvlist_t **l2cache;
1469	uint_t nl2cache;
1470	int i, j, oldnvdevs;
1471	uint64_t guid;
1472	vdev_t *vd, **oldvdevs, **newvdevs;
1473	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1474
1475	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1476
1477	if (sav->sav_config != NULL) {
1478		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1479		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1480		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1481	} else {
1482		nl2cache = 0;
1483		newvdevs = NULL;
1484	}
1485
1486	oldvdevs = sav->sav_vdevs;
1487	oldnvdevs = sav->sav_count;
1488	sav->sav_vdevs = NULL;
1489	sav->sav_count = 0;
1490
1491	/*
1492	 * Process new nvlist of vdevs.
1493	 */
1494	for (i = 0; i < nl2cache; i++) {
1495		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1496		    &guid) == 0);
1497
1498		newvdevs[i] = NULL;
1499		for (j = 0; j < oldnvdevs; j++) {
1500			vd = oldvdevs[j];
1501			if (vd != NULL && guid == vd->vdev_guid) {
1502				/*
1503				 * Retain previous vdev for add/remove ops.
1504				 */
1505				newvdevs[i] = vd;
1506				oldvdevs[j] = NULL;
1507				break;
1508			}
1509		}
1510
1511		if (newvdevs[i] == NULL) {
1512			/*
1513			 * Create new vdev
1514			 */
1515			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1516			    VDEV_ALLOC_L2CACHE) == 0);
1517			ASSERT(vd != NULL);
1518			newvdevs[i] = vd;
1519
1520			/*
1521			 * Commit this vdev as an l2cache device,
1522			 * even if it fails to open.
1523			 */
1524			spa_l2cache_add(vd);
1525
1526			vd->vdev_top = vd;
1527			vd->vdev_aux = sav;
1528
1529			spa_l2cache_activate(vd);
1530
1531			if (vdev_open(vd) != 0)
1532				continue;
1533
1534			(void) vdev_validate_aux(vd);
1535
1536			if (!vdev_is_dead(vd))
1537				l2arc_add_vdev(spa, vd);
1538		}
1539	}
1540
1541	/*
1542	 * Purge vdevs that were dropped
1543	 */
1544	for (i = 0; i < oldnvdevs; i++) {
1545		uint64_t pool;
1546
1547		vd = oldvdevs[i];
1548		if (vd != NULL) {
1549			ASSERT(vd->vdev_isl2cache);
1550
1551			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1552			    pool != 0ULL && l2arc_vdev_present(vd))
1553				l2arc_remove_vdev(vd);
1554			vdev_clear_stats(vd);
1555			vdev_free(vd);
1556		}
1557	}
1558
1559	if (oldvdevs)
1560		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1561
1562	if (sav->sav_config == NULL)
1563		goto out;
1564
1565	sav->sav_vdevs = newvdevs;
1566	sav->sav_count = (int)nl2cache;
1567
1568	/*
1569	 * Recompute the stashed list of l2cache devices, with status
1570	 * information this time.
1571	 */
1572	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1573	    DATA_TYPE_NVLIST_ARRAY) == 0);
1574
1575	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1576	for (i = 0; i < sav->sav_count; i++)
1577		l2cache[i] = vdev_config_generate(spa,
1578		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1579	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1580	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1581out:
1582	for (i = 0; i < sav->sav_count; i++)
1583		nvlist_free(l2cache[i]);
1584	if (sav->sav_count)
1585		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1586}
1587
1588static int
1589load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1590{
1591	dmu_buf_t *db;
1592	char *packed = NULL;
1593	size_t nvsize = 0;
1594	int error;
1595	*value = NULL;
1596
1597	error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1598	if (error != 0)
1599		return (error);
1600	nvsize = *(uint64_t *)db->db_data;
1601	dmu_buf_rele(db, FTAG);
1602
1603	packed = kmem_alloc(nvsize, KM_SLEEP);
1604	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1605	    DMU_READ_PREFETCH);
1606	if (error == 0)
1607		error = nvlist_unpack(packed, nvsize, value, 0);
1608	kmem_free(packed, nvsize);
1609
1610	return (error);
1611}
1612
1613/*
1614 * Checks to see if the given vdev could not be opened, in which case we post a
1615 * sysevent to notify the autoreplace code that the device has been removed.
1616 */
1617static void
1618spa_check_removed(vdev_t *vd)
1619{
1620	for (int c = 0; c < vd->vdev_children; c++)
1621		spa_check_removed(vd->vdev_child[c]);
1622
1623	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1624	    !vd->vdev_ishole) {
1625		zfs_post_autoreplace(vd->vdev_spa, vd);
1626		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1627	}
1628}
1629
1630/*
1631 * Validate the current config against the MOS config
1632 */
1633static boolean_t
1634spa_config_valid(spa_t *spa, nvlist_t *config)
1635{
1636	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1637	nvlist_t *nv;
1638
1639	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1640
1641	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1642	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1643
1644	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1645
1646	/*
1647	 * If we're doing a normal import, then build up any additional
1648	 * diagnostic information about missing devices in this config.
1649	 * We'll pass this up to the user for further processing.
1650	 */
1651	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1652		nvlist_t **child, *nv;
1653		uint64_t idx = 0;
1654
1655		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1656		    KM_SLEEP);
1657		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1658
1659		for (int c = 0; c < rvd->vdev_children; c++) {
1660			vdev_t *tvd = rvd->vdev_child[c];
1661			vdev_t *mtvd  = mrvd->vdev_child[c];
1662
1663			if (tvd->vdev_ops == &vdev_missing_ops &&
1664			    mtvd->vdev_ops != &vdev_missing_ops &&
1665			    mtvd->vdev_islog)
1666				child[idx++] = vdev_config_generate(spa, mtvd,
1667				    B_FALSE, 0);
1668		}
1669
1670		if (idx) {
1671			VERIFY(nvlist_add_nvlist_array(nv,
1672			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1673			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1674			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1675
1676			for (int i = 0; i < idx; i++)
1677				nvlist_free(child[i]);
1678		}
1679		nvlist_free(nv);
1680		kmem_free(child, rvd->vdev_children * sizeof (char **));
1681	}
1682
1683	/*
1684	 * Compare the root vdev tree with the information we have
1685	 * from the MOS config (mrvd). Check each top-level vdev
1686	 * with the corresponding MOS config top-level (mtvd).
1687	 */
1688	for (int c = 0; c < rvd->vdev_children; c++) {
1689		vdev_t *tvd = rvd->vdev_child[c];
1690		vdev_t *mtvd  = mrvd->vdev_child[c];
1691
1692		/*
1693		 * Resolve any "missing" vdevs in the current configuration.
1694		 * If we find that the MOS config has more accurate information
1695		 * about the top-level vdev then use that vdev instead.
1696		 */
1697		if (tvd->vdev_ops == &vdev_missing_ops &&
1698		    mtvd->vdev_ops != &vdev_missing_ops) {
1699
1700			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1701				continue;
1702
1703			/*
1704			 * Device specific actions.
1705			 */
1706			if (mtvd->vdev_islog) {
1707				spa_set_log_state(spa, SPA_LOG_CLEAR);
1708			} else {
1709				/*
1710				 * XXX - once we have 'readonly' pool
1711				 * support we should be able to handle
1712				 * missing data devices by transitioning
1713				 * the pool to readonly.
1714				 */
1715				continue;
1716			}
1717
1718			/*
1719			 * Swap the missing vdev with the data we were
1720			 * able to obtain from the MOS config.
1721			 */
1722			vdev_remove_child(rvd, tvd);
1723			vdev_remove_child(mrvd, mtvd);
1724
1725			vdev_add_child(rvd, mtvd);
1726			vdev_add_child(mrvd, tvd);
1727
1728			spa_config_exit(spa, SCL_ALL, FTAG);
1729			vdev_load(mtvd);
1730			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1731
1732			vdev_reopen(rvd);
1733		} else if (mtvd->vdev_islog) {
1734			/*
1735			 * Load the slog device's state from the MOS config
1736			 * since it's possible that the label does not
1737			 * contain the most up-to-date information.
1738			 */
1739			vdev_load_log_state(tvd, mtvd);
1740			vdev_reopen(tvd);
1741		}
1742	}
1743	vdev_free(mrvd);
1744	spa_config_exit(spa, SCL_ALL, FTAG);
1745
1746	/*
1747	 * Ensure we were able to validate the config.
1748	 */
1749	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1750}
1751
1752/*
1753 * Check for missing log devices
1754 */
1755static boolean_t
1756spa_check_logs(spa_t *spa)
1757{
1758	boolean_t rv = B_FALSE;
1759
1760	switch (spa->spa_log_state) {
1761	case SPA_LOG_MISSING:
1762		/* need to recheck in case slog has been restored */
1763	case SPA_LOG_UNKNOWN:
1764		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1765		    NULL, DS_FIND_CHILDREN) != 0);
1766		if (rv)
1767			spa_set_log_state(spa, SPA_LOG_MISSING);
1768		break;
1769	}
1770	return (rv);
1771}
1772
1773static boolean_t
1774spa_passivate_log(spa_t *spa)
1775{
1776	vdev_t *rvd = spa->spa_root_vdev;
1777	boolean_t slog_found = B_FALSE;
1778
1779	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1780
1781	if (!spa_has_slogs(spa))
1782		return (B_FALSE);
1783
1784	for (int c = 0; c < rvd->vdev_children; c++) {
1785		vdev_t *tvd = rvd->vdev_child[c];
1786		metaslab_group_t *mg = tvd->vdev_mg;
1787
1788		if (tvd->vdev_islog) {
1789			metaslab_group_passivate(mg);
1790			slog_found = B_TRUE;
1791		}
1792	}
1793
1794	return (slog_found);
1795}
1796
1797static void
1798spa_activate_log(spa_t *spa)
1799{
1800	vdev_t *rvd = spa->spa_root_vdev;
1801
1802	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1803
1804	for (int c = 0; c < rvd->vdev_children; c++) {
1805		vdev_t *tvd = rvd->vdev_child[c];
1806		metaslab_group_t *mg = tvd->vdev_mg;
1807
1808		if (tvd->vdev_islog)
1809			metaslab_group_activate(mg);
1810	}
1811}
1812
1813int
1814spa_offline_log(spa_t *spa)
1815{
1816	int error;
1817
1818	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1819	    NULL, DS_FIND_CHILDREN);
1820	if (error == 0) {
1821		/*
1822		 * We successfully offlined the log device, sync out the
1823		 * current txg so that the "stubby" block can be removed
1824		 * by zil_sync().
1825		 */
1826		txg_wait_synced(spa->spa_dsl_pool, 0);
1827	}
1828	return (error);
1829}
1830
1831static void
1832spa_aux_check_removed(spa_aux_vdev_t *sav)
1833{
1834	int i;
1835
1836	for (i = 0; i < sav->sav_count; i++)
1837		spa_check_removed(sav->sav_vdevs[i]);
1838}
1839
1840void
1841spa_claim_notify(zio_t *zio)
1842{
1843	spa_t *spa = zio->io_spa;
1844
1845	if (zio->io_error)
1846		return;
1847
1848	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1849	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1850		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1851	mutex_exit(&spa->spa_props_lock);
1852}
1853
1854typedef struct spa_load_error {
1855	uint64_t	sle_meta_count;
1856	uint64_t	sle_data_count;
1857} spa_load_error_t;
1858
1859static void
1860spa_load_verify_done(zio_t *zio)
1861{
1862	blkptr_t *bp = zio->io_bp;
1863	spa_load_error_t *sle = zio->io_private;
1864	dmu_object_type_t type = BP_GET_TYPE(bp);
1865	int error = zio->io_error;
1866
1867	if (error) {
1868		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1869		    type != DMU_OT_INTENT_LOG)
1870			atomic_add_64(&sle->sle_meta_count, 1);
1871		else
1872			atomic_add_64(&sle->sle_data_count, 1);
1873	}
1874	zio_data_buf_free(zio->io_data, zio->io_size);
1875}
1876
1877/*ARGSUSED*/
1878static int
1879spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1880    const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1881{
1882	if (!BP_IS_HOLE(bp)) {
1883		zio_t *rio = arg;
1884		size_t size = BP_GET_PSIZE(bp);
1885		void *data = zio_data_buf_alloc(size);
1886
1887		zio_nowait(zio_read(rio, spa, bp, data, size,
1888		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1889		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1890		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1891	}
1892	return (0);
1893}
1894
1895static int
1896spa_load_verify(spa_t *spa)
1897{
1898	zio_t *rio;
1899	spa_load_error_t sle = { 0 };
1900	zpool_rewind_policy_t policy;
1901	boolean_t verify_ok = B_FALSE;
1902	int error;
1903
1904	zpool_get_rewind_policy(spa->spa_config, &policy);
1905
1906	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1907		return (0);
1908
1909	rio = zio_root(spa, NULL, &sle,
1910	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1911
1912	error = traverse_pool(spa, spa->spa_verify_min_txg,
1913	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1914
1915	(void) zio_wait(rio);
1916
1917	spa->spa_load_meta_errors = sle.sle_meta_count;
1918	spa->spa_load_data_errors = sle.sle_data_count;
1919
1920	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1921	    sle.sle_data_count <= policy.zrp_maxdata) {
1922		int64_t loss = 0;
1923
1924		verify_ok = B_TRUE;
1925		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1926		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1927
1928		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1929		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1930		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1931		VERIFY(nvlist_add_int64(spa->spa_load_info,
1932		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1933		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1934		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1935	} else {
1936		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1937	}
1938
1939	if (error) {
1940		if (error != ENXIO && error != EIO)
1941			error = SET_ERROR(EIO);
1942		return (error);
1943	}
1944
1945	return (verify_ok ? 0 : EIO);
1946}
1947
1948/*
1949 * Find a value in the pool props object.
1950 */
1951static void
1952spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1953{
1954	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1955	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1956}
1957
1958/*
1959 * Find a value in the pool directory object.
1960 */
1961static int
1962spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1963{
1964	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1965	    name, sizeof (uint64_t), 1, val));
1966}
1967
1968static int
1969spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1970{
1971	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1972	return (err);
1973}
1974
1975/*
1976 * Fix up config after a partly-completed split.  This is done with the
1977 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1978 * pool have that entry in their config, but only the splitting one contains
1979 * a list of all the guids of the vdevs that are being split off.
1980 *
1981 * This function determines what to do with that list: either rejoin
1982 * all the disks to the pool, or complete the splitting process.  To attempt
1983 * the rejoin, each disk that is offlined is marked online again, and
1984 * we do a reopen() call.  If the vdev label for every disk that was
1985 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1986 * then we call vdev_split() on each disk, and complete the split.
1987 *
1988 * Otherwise we leave the config alone, with all the vdevs in place in
1989 * the original pool.
1990 */
1991static void
1992spa_try_repair(spa_t *spa, nvlist_t *config)
1993{
1994	uint_t extracted;
1995	uint64_t *glist;
1996	uint_t i, gcount;
1997	nvlist_t *nvl;
1998	vdev_t **vd;
1999	boolean_t attempt_reopen;
2000
2001	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2002		return;
2003
2004	/* check that the config is complete */
2005	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2006	    &glist, &gcount) != 0)
2007		return;
2008
2009	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2010
2011	/* attempt to online all the vdevs & validate */
2012	attempt_reopen = B_TRUE;
2013	for (i = 0; i < gcount; i++) {
2014		if (glist[i] == 0)	/* vdev is hole */
2015			continue;
2016
2017		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2018		if (vd[i] == NULL) {
2019			/*
2020			 * Don't bother attempting to reopen the disks;
2021			 * just do the split.
2022			 */
2023			attempt_reopen = B_FALSE;
2024		} else {
2025			/* attempt to re-online it */
2026			vd[i]->vdev_offline = B_FALSE;
2027		}
2028	}
2029
2030	if (attempt_reopen) {
2031		vdev_reopen(spa->spa_root_vdev);
2032
2033		/* check each device to see what state it's in */
2034		for (extracted = 0, i = 0; i < gcount; i++) {
2035			if (vd[i] != NULL &&
2036			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2037				break;
2038			++extracted;
2039		}
2040	}
2041
2042	/*
2043	 * If every disk has been moved to the new pool, or if we never
2044	 * even attempted to look at them, then we split them off for
2045	 * good.
2046	 */
2047	if (!attempt_reopen || gcount == extracted) {
2048		for (i = 0; i < gcount; i++)
2049			if (vd[i] != NULL)
2050				vdev_split(vd[i]);
2051		vdev_reopen(spa->spa_root_vdev);
2052	}
2053
2054	kmem_free(vd, gcount * sizeof (vdev_t *));
2055}
2056
2057static int
2058spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2059    boolean_t mosconfig)
2060{
2061	nvlist_t *config = spa->spa_config;
2062	char *ereport = FM_EREPORT_ZFS_POOL;
2063	char *comment;
2064	int error;
2065	uint64_t pool_guid;
2066	nvlist_t *nvl;
2067
2068	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2069		return (SET_ERROR(EINVAL));
2070
2071	ASSERT(spa->spa_comment == NULL);
2072	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2073		spa->spa_comment = spa_strdup(comment);
2074
2075	/*
2076	 * Versioning wasn't explicitly added to the label until later, so if
2077	 * it's not present treat it as the initial version.
2078	 */
2079	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2080	    &spa->spa_ubsync.ub_version) != 0)
2081		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2082
2083	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2084	    &spa->spa_config_txg);
2085
2086	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2087	    spa_guid_exists(pool_guid, 0)) {
2088		error = SET_ERROR(EEXIST);
2089	} else {
2090		spa->spa_config_guid = pool_guid;
2091
2092		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2093		    &nvl) == 0) {
2094			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2095			    KM_SLEEP) == 0);
2096		}
2097
2098		nvlist_free(spa->spa_load_info);
2099		spa->spa_load_info = fnvlist_alloc();
2100
2101		gethrestime(&spa->spa_loaded_ts);
2102		error = spa_load_impl(spa, pool_guid, config, state, type,
2103		    mosconfig, &ereport);
2104	}
2105
2106	spa->spa_minref = refcount_count(&spa->spa_refcount);
2107	if (error) {
2108		if (error != EEXIST) {
2109			spa->spa_loaded_ts.tv_sec = 0;
2110			spa->spa_loaded_ts.tv_nsec = 0;
2111		}
2112		if (error != EBADF) {
2113			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2114		}
2115	}
2116	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2117	spa->spa_ena = 0;
2118
2119	return (error);
2120}
2121
2122/*
2123 * Load an existing storage pool, using the pool's builtin spa_config as a
2124 * source of configuration information.
2125 */
2126static int
2127spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2128    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2129    char **ereport)
2130{
2131	int error = 0;
2132	nvlist_t *nvroot = NULL;
2133	nvlist_t *label;
2134	vdev_t *rvd;
2135	uberblock_t *ub = &spa->spa_uberblock;
2136	uint64_t children, config_cache_txg = spa->spa_config_txg;
2137	int orig_mode = spa->spa_mode;
2138	int parse;
2139	uint64_t obj;
2140	boolean_t missing_feat_write = B_FALSE;
2141
2142	/*
2143	 * If this is an untrusted config, access the pool in read-only mode.
2144	 * This prevents things like resilvering recently removed devices.
2145	 */
2146	if (!mosconfig)
2147		spa->spa_mode = FREAD;
2148
2149	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2150
2151	spa->spa_load_state = state;
2152
2153	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2154		return (SET_ERROR(EINVAL));
2155
2156	parse = (type == SPA_IMPORT_EXISTING ?
2157	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2158
2159	/*
2160	 * Create "The Godfather" zio to hold all async IOs
2161	 */
2162	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2163	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2164
2165	/*
2166	 * Parse the configuration into a vdev tree.  We explicitly set the
2167	 * value that will be returned by spa_version() since parsing the
2168	 * configuration requires knowing the version number.
2169	 */
2170	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2171	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2172	spa_config_exit(spa, SCL_ALL, FTAG);
2173
2174	if (error != 0)
2175		return (error);
2176
2177	ASSERT(spa->spa_root_vdev == rvd);
2178
2179	if (type != SPA_IMPORT_ASSEMBLE) {
2180		ASSERT(spa_guid(spa) == pool_guid);
2181	}
2182
2183	/*
2184	 * Try to open all vdevs, loading each label in the process.
2185	 */
2186	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2187	error = vdev_open(rvd);
2188	spa_config_exit(spa, SCL_ALL, FTAG);
2189	if (error != 0)
2190		return (error);
2191
2192	/*
2193	 * We need to validate the vdev labels against the configuration that
2194	 * we have in hand, which is dependent on the setting of mosconfig. If
2195	 * mosconfig is true then we're validating the vdev labels based on
2196	 * that config.  Otherwise, we're validating against the cached config
2197	 * (zpool.cache) that was read when we loaded the zfs module, and then
2198	 * later we will recursively call spa_load() and validate against
2199	 * the vdev config.
2200	 *
2201	 * If we're assembling a new pool that's been split off from an
2202	 * existing pool, the labels haven't yet been updated so we skip
2203	 * validation for now.
2204	 */
2205	if (type != SPA_IMPORT_ASSEMBLE) {
2206		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2207		error = vdev_validate(rvd, mosconfig);
2208		spa_config_exit(spa, SCL_ALL, FTAG);
2209
2210		if (error != 0)
2211			return (error);
2212
2213		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2214			return (SET_ERROR(ENXIO));
2215	}
2216
2217	/*
2218	 * Find the best uberblock.
2219	 */
2220	vdev_uberblock_load(rvd, ub, &label);
2221
2222	/*
2223	 * If we weren't able to find a single valid uberblock, return failure.
2224	 */
2225	if (ub->ub_txg == 0) {
2226		nvlist_free(label);
2227		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2228	}
2229
2230	/*
2231	 * If the pool has an unsupported version we can't open it.
2232	 */
2233	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2234		nvlist_free(label);
2235		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2236	}
2237
2238	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2239		nvlist_t *features;
2240
2241		/*
2242		 * If we weren't able to find what's necessary for reading the
2243		 * MOS in the label, return failure.
2244		 */
2245		if (label == NULL || nvlist_lookup_nvlist(label,
2246		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2247			nvlist_free(label);
2248			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2249			    ENXIO));
2250		}
2251
2252		/*
2253		 * Update our in-core representation with the definitive values
2254		 * from the label.
2255		 */
2256		nvlist_free(spa->spa_label_features);
2257		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2258	}
2259
2260	nvlist_free(label);
2261
2262	/*
2263	 * Look through entries in the label nvlist's features_for_read. If
2264	 * there is a feature listed there which we don't understand then we
2265	 * cannot open a pool.
2266	 */
2267	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2268		nvlist_t *unsup_feat;
2269
2270		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2271		    0);
2272
2273		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2274		    NULL); nvp != NULL;
2275		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2276			if (!zfeature_is_supported(nvpair_name(nvp))) {
2277				VERIFY(nvlist_add_string(unsup_feat,
2278				    nvpair_name(nvp), "") == 0);
2279			}
2280		}
2281
2282		if (!nvlist_empty(unsup_feat)) {
2283			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2284			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2285			nvlist_free(unsup_feat);
2286			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2287			    ENOTSUP));
2288		}
2289
2290		nvlist_free(unsup_feat);
2291	}
2292
2293	/*
2294	 * If the vdev guid sum doesn't match the uberblock, we have an
2295	 * incomplete configuration.  We first check to see if the pool
2296	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2297	 * If it is, defer the vdev_guid_sum check till later so we
2298	 * can handle missing vdevs.
2299	 */
2300	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2301	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2302	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2303		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2304
2305	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2306		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2307		spa_try_repair(spa, config);
2308		spa_config_exit(spa, SCL_ALL, FTAG);
2309		nvlist_free(spa->spa_config_splitting);
2310		spa->spa_config_splitting = NULL;
2311	}
2312
2313	/*
2314	 * Initialize internal SPA structures.
2315	 */
2316	spa->spa_state = POOL_STATE_ACTIVE;
2317	spa->spa_ubsync = spa->spa_uberblock;
2318	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2319	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2320	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2321	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2322	spa->spa_claim_max_txg = spa->spa_first_txg;
2323	spa->spa_prev_software_version = ub->ub_software_version;
2324
2325	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2326	if (error)
2327		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2328	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2329
2330	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2331		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2332
2333	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2334		boolean_t missing_feat_read = B_FALSE;
2335		nvlist_t *unsup_feat, *enabled_feat;
2336
2337		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2338		    &spa->spa_feat_for_read_obj) != 0) {
2339			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2340		}
2341
2342		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2343		    &spa->spa_feat_for_write_obj) != 0) {
2344			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2345		}
2346
2347		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2348		    &spa->spa_feat_desc_obj) != 0) {
2349			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2350		}
2351
2352		enabled_feat = fnvlist_alloc();
2353		unsup_feat = fnvlist_alloc();
2354
2355		if (!spa_features_check(spa, B_FALSE,
2356		    unsup_feat, enabled_feat))
2357			missing_feat_read = B_TRUE;
2358
2359		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2360			if (!spa_features_check(spa, B_TRUE,
2361			    unsup_feat, enabled_feat)) {
2362				missing_feat_write = B_TRUE;
2363			}
2364		}
2365
2366		fnvlist_add_nvlist(spa->spa_load_info,
2367		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2368
2369		if (!nvlist_empty(unsup_feat)) {
2370			fnvlist_add_nvlist(spa->spa_load_info,
2371			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2372		}
2373
2374		fnvlist_free(enabled_feat);
2375		fnvlist_free(unsup_feat);
2376
2377		if (!missing_feat_read) {
2378			fnvlist_add_boolean(spa->spa_load_info,
2379			    ZPOOL_CONFIG_CAN_RDONLY);
2380		}
2381
2382		/*
2383		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2384		 * twofold: to determine whether the pool is available for
2385		 * import in read-write mode and (if it is not) whether the
2386		 * pool is available for import in read-only mode. If the pool
2387		 * is available for import in read-write mode, it is displayed
2388		 * as available in userland; if it is not available for import
2389		 * in read-only mode, it is displayed as unavailable in
2390		 * userland. If the pool is available for import in read-only
2391		 * mode but not read-write mode, it is displayed as unavailable
2392		 * in userland with a special note that the pool is actually
2393		 * available for open in read-only mode.
2394		 *
2395		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2396		 * missing a feature for write, we must first determine whether
2397		 * the pool can be opened read-only before returning to
2398		 * userland in order to know whether to display the
2399		 * abovementioned note.
2400		 */
2401		if (missing_feat_read || (missing_feat_write &&
2402		    spa_writeable(spa))) {
2403			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2404			    ENOTSUP));
2405		}
2406
2407		/*
2408		 * Load refcounts for ZFS features from disk into an in-memory
2409		 * cache during SPA initialization.
2410		 */
2411		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2412			uint64_t refcount;
2413
2414			error = feature_get_refcount_from_disk(spa,
2415			    &spa_feature_table[i], &refcount);
2416			if (error == 0) {
2417				spa->spa_feat_refcount_cache[i] = refcount;
2418			} else if (error == ENOTSUP) {
2419				spa->spa_feat_refcount_cache[i] =
2420				    SPA_FEATURE_DISABLED;
2421			} else {
2422				return (spa_vdev_err(rvd,
2423				    VDEV_AUX_CORRUPT_DATA, EIO));
2424			}
2425		}
2426	}
2427
2428	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2429		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2430		    &spa->spa_feat_enabled_txg_obj) != 0) {
2431			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2432		}
2433	}
2434
2435	spa->spa_is_initializing = B_TRUE;
2436	error = dsl_pool_open(spa->spa_dsl_pool);
2437	spa->spa_is_initializing = B_FALSE;
2438	if (error != 0)
2439		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2440
2441	if (!mosconfig) {
2442		uint64_t hostid;
2443		nvlist_t *policy = NULL, *nvconfig;
2444
2445		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2446			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2447
2448		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2449		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2450			char *hostname;
2451			unsigned long myhostid = 0;
2452
2453			VERIFY(nvlist_lookup_string(nvconfig,
2454			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2455
2456#ifdef	_KERNEL
2457			myhostid = zone_get_hostid(NULL);
2458#else	/* _KERNEL */
2459			/*
2460			 * We're emulating the system's hostid in userland, so
2461			 * we can't use zone_get_hostid().
2462			 */
2463			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2464#endif	/* _KERNEL */
2465			if (check_hostid && hostid != 0 && myhostid != 0 &&
2466			    hostid != myhostid) {
2467				nvlist_free(nvconfig);
2468				cmn_err(CE_WARN, "pool '%s' could not be "
2469				    "loaded as it was last accessed by "
2470				    "another system (host: %s hostid: 0x%lx). "
2471				    "See: http://illumos.org/msg/ZFS-8000-EY",
2472				    spa_name(spa), hostname,
2473				    (unsigned long)hostid);
2474				return (SET_ERROR(EBADF));
2475			}
2476		}
2477		if (nvlist_lookup_nvlist(spa->spa_config,
2478		    ZPOOL_REWIND_POLICY, &policy) == 0)
2479			VERIFY(nvlist_add_nvlist(nvconfig,
2480			    ZPOOL_REWIND_POLICY, policy) == 0);
2481
2482		spa_config_set(spa, nvconfig);
2483		spa_unload(spa);
2484		spa_deactivate(spa);
2485		spa_activate(spa, orig_mode);
2486
2487		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2488	}
2489
2490	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2491		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2492	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2493	if (error != 0)
2494		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2495
2496	/*
2497	 * Load the bit that tells us to use the new accounting function
2498	 * (raid-z deflation).  If we have an older pool, this will not
2499	 * be present.
2500	 */
2501	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2502	if (error != 0 && error != ENOENT)
2503		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2504
2505	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2506	    &spa->spa_creation_version);
2507	if (error != 0 && error != ENOENT)
2508		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2509
2510	/*
2511	 * Load the persistent error log.  If we have an older pool, this will
2512	 * not be present.
2513	 */
2514	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2515	if (error != 0 && error != ENOENT)
2516		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2517
2518	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2519	    &spa->spa_errlog_scrub);
2520	if (error != 0 && error != ENOENT)
2521		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2522
2523	/*
2524	 * Load the history object.  If we have an older pool, this
2525	 * will not be present.
2526	 */
2527	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2528	if (error != 0 && error != ENOENT)
2529		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2530
2531	/*
2532	 * If we're assembling the pool from the split-off vdevs of
2533	 * an existing pool, we don't want to attach the spares & cache
2534	 * devices.
2535	 */
2536
2537	/*
2538	 * Load any hot spares for this pool.
2539	 */
2540	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2541	if (error != 0 && error != ENOENT)
2542		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2543	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2544		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2545		if (load_nvlist(spa, spa->spa_spares.sav_object,
2546		    &spa->spa_spares.sav_config) != 0)
2547			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2548
2549		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2550		spa_load_spares(spa);
2551		spa_config_exit(spa, SCL_ALL, FTAG);
2552	} else if (error == 0) {
2553		spa->spa_spares.sav_sync = B_TRUE;
2554	}
2555
2556	/*
2557	 * Load any level 2 ARC devices for this pool.
2558	 */
2559	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2560	    &spa->spa_l2cache.sav_object);
2561	if (error != 0 && error != ENOENT)
2562		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2563	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2564		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2565		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2566		    &spa->spa_l2cache.sav_config) != 0)
2567			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2568
2569		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2570		spa_load_l2cache(spa);
2571		spa_config_exit(spa, SCL_ALL, FTAG);
2572	} else if (error == 0) {
2573		spa->spa_l2cache.sav_sync = B_TRUE;
2574	}
2575
2576	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2577
2578	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2579	if (error && error != ENOENT)
2580		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2581
2582	if (error == 0) {
2583		uint64_t autoreplace;
2584
2585		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2586		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2587		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2588		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2589		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2590		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2591		    &spa->spa_dedup_ditto);
2592
2593		spa->spa_autoreplace = (autoreplace != 0);
2594	}
2595
2596	/*
2597	 * If the 'autoreplace' property is set, then post a resource notifying
2598	 * the ZFS DE that it should not issue any faults for unopenable
2599	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2600	 * unopenable vdevs so that the normal autoreplace handler can take
2601	 * over.
2602	 */
2603	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2604		spa_check_removed(spa->spa_root_vdev);
2605		/*
2606		 * For the import case, this is done in spa_import(), because
2607		 * at this point we're using the spare definitions from
2608		 * the MOS config, not necessarily from the userland config.
2609		 */
2610		if (state != SPA_LOAD_IMPORT) {
2611			spa_aux_check_removed(&spa->spa_spares);
2612			spa_aux_check_removed(&spa->spa_l2cache);
2613		}
2614	}
2615
2616	/*
2617	 * Load the vdev state for all toplevel vdevs.
2618	 */
2619	vdev_load(rvd);
2620
2621	/*
2622	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2623	 */
2624	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2625	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2626	spa_config_exit(spa, SCL_ALL, FTAG);
2627
2628	/*
2629	 * Load the DDTs (dedup tables).
2630	 */
2631	error = ddt_load(spa);
2632	if (error != 0)
2633		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2634
2635	spa_update_dspace(spa);
2636
2637	/*
2638	 * Validate the config, using the MOS config to fill in any
2639	 * information which might be missing.  If we fail to validate
2640	 * the config then declare the pool unfit for use. If we're
2641	 * assembling a pool from a split, the log is not transferred
2642	 * over.
2643	 */
2644	if (type != SPA_IMPORT_ASSEMBLE) {
2645		nvlist_t *nvconfig;
2646
2647		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2648			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2649
2650		if (!spa_config_valid(spa, nvconfig)) {
2651			nvlist_free(nvconfig);
2652			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2653			    ENXIO));
2654		}
2655		nvlist_free(nvconfig);
2656
2657		/*
2658		 * Now that we've validated the config, check the state of the
2659		 * root vdev.  If it can't be opened, it indicates one or
2660		 * more toplevel vdevs are faulted.
2661		 */
2662		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2663			return (SET_ERROR(ENXIO));
2664
2665		if (spa_check_logs(spa)) {
2666			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2667			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2668		}
2669	}
2670
2671	if (missing_feat_write) {
2672		ASSERT(state == SPA_LOAD_TRYIMPORT);
2673
2674		/*
2675		 * At this point, we know that we can open the pool in
2676		 * read-only mode but not read-write mode. We now have enough
2677		 * information and can return to userland.
2678		 */
2679		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2680	}
2681
2682	/*
2683	 * We've successfully opened the pool, verify that we're ready
2684	 * to start pushing transactions.
2685	 */
2686	if (state != SPA_LOAD_TRYIMPORT) {
2687		if (error = spa_load_verify(spa))
2688			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2689			    error));
2690	}
2691
2692	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2693	    spa->spa_load_max_txg == UINT64_MAX)) {
2694		dmu_tx_t *tx;
2695		int need_update = B_FALSE;
2696
2697		ASSERT(state != SPA_LOAD_TRYIMPORT);
2698
2699		/*
2700		 * Claim log blocks that haven't been committed yet.
2701		 * This must all happen in a single txg.
2702		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2703		 * invoked from zil_claim_log_block()'s i/o done callback.
2704		 * Price of rollback is that we abandon the log.
2705		 */
2706		spa->spa_claiming = B_TRUE;
2707
2708		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2709		    spa_first_txg(spa));
2710		(void) dmu_objset_find(spa_name(spa),
2711		    zil_claim, tx, DS_FIND_CHILDREN);
2712		dmu_tx_commit(tx);
2713
2714		spa->spa_claiming = B_FALSE;
2715
2716		spa_set_log_state(spa, SPA_LOG_GOOD);
2717		spa->spa_sync_on = B_TRUE;
2718		txg_sync_start(spa->spa_dsl_pool);
2719
2720		/*
2721		 * Wait for all claims to sync.  We sync up to the highest
2722		 * claimed log block birth time so that claimed log blocks
2723		 * don't appear to be from the future.  spa_claim_max_txg
2724		 * will have been set for us by either zil_check_log_chain()
2725		 * (invoked from spa_check_logs()) or zil_claim() above.
2726		 */
2727		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2728
2729		/*
2730		 * If the config cache is stale, or we have uninitialized
2731		 * metaslabs (see spa_vdev_add()), then update the config.
2732		 *
2733		 * If this is a verbatim import, trust the current
2734		 * in-core spa_config and update the disk labels.
2735		 */
2736		if (config_cache_txg != spa->spa_config_txg ||
2737		    state == SPA_LOAD_IMPORT ||
2738		    state == SPA_LOAD_RECOVER ||
2739		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2740			need_update = B_TRUE;
2741
2742		for (int c = 0; c < rvd->vdev_children; c++)
2743			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2744				need_update = B_TRUE;
2745
2746		/*
2747		 * Update the config cache asychronously in case we're the
2748		 * root pool, in which case the config cache isn't writable yet.
2749		 */
2750		if (need_update)
2751			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2752
2753		/*
2754		 * Check all DTLs to see if anything needs resilvering.
2755		 */
2756		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2757		    vdev_resilver_needed(rvd, NULL, NULL))
2758			spa_async_request(spa, SPA_ASYNC_RESILVER);
2759
2760		/*
2761		 * Log the fact that we booted up (so that we can detect if
2762		 * we rebooted in the middle of an operation).
2763		 */
2764		spa_history_log_version(spa, "open");
2765
2766		/*
2767		 * Delete any inconsistent datasets.
2768		 */
2769		(void) dmu_objset_find(spa_name(spa),
2770		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2771
2772		/*
2773		 * Clean up any stale temporary dataset userrefs.
2774		 */
2775		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2776	}
2777
2778	return (0);
2779}
2780
2781static int
2782spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2783{
2784	int mode = spa->spa_mode;
2785
2786	spa_unload(spa);
2787	spa_deactivate(spa);
2788
2789	spa->spa_load_max_txg--;
2790
2791	spa_activate(spa, mode);
2792	spa_async_suspend(spa);
2793
2794	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2795}
2796
2797/*
2798 * If spa_load() fails this function will try loading prior txg's. If
2799 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2800 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2801 * function will not rewind the pool and will return the same error as
2802 * spa_load().
2803 */
2804static int
2805spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2806    uint64_t max_request, int rewind_flags)
2807{
2808	nvlist_t *loadinfo = NULL;
2809	nvlist_t *config = NULL;
2810	int load_error, rewind_error;
2811	uint64_t safe_rewind_txg;
2812	uint64_t min_txg;
2813
2814	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2815		spa->spa_load_max_txg = spa->spa_load_txg;
2816		spa_set_log_state(spa, SPA_LOG_CLEAR);
2817	} else {
2818		spa->spa_load_max_txg = max_request;
2819	}
2820
2821	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2822	    mosconfig);
2823	if (load_error == 0)
2824		return (0);
2825
2826	if (spa->spa_root_vdev != NULL)
2827		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2828
2829	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2830	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2831
2832	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2833		nvlist_free(config);
2834		return (load_error);
2835	}
2836
2837	if (state == SPA_LOAD_RECOVER) {
2838		/* Price of rolling back is discarding txgs, including log */
2839		spa_set_log_state(spa, SPA_LOG_CLEAR);
2840	} else {
2841		/*
2842		 * If we aren't rolling back save the load info from our first
2843		 * import attempt so that we can restore it after attempting
2844		 * to rewind.
2845		 */
2846		loadinfo = spa->spa_load_info;
2847		spa->spa_load_info = fnvlist_alloc();
2848	}
2849
2850	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2851	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2852	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2853	    TXG_INITIAL : safe_rewind_txg;
2854
2855	/*
2856	 * Continue as long as we're finding errors, we're still within
2857	 * the acceptable rewind range, and we're still finding uberblocks
2858	 */
2859	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2860	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2861		if (spa->spa_load_max_txg < safe_rewind_txg)
2862			spa->spa_extreme_rewind = B_TRUE;
2863		rewind_error = spa_load_retry(spa, state, mosconfig);
2864	}
2865
2866	spa->spa_extreme_rewind = B_FALSE;
2867	spa->spa_load_max_txg = UINT64_MAX;
2868
2869	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2870		spa_config_set(spa, config);
2871
2872	if (state == SPA_LOAD_RECOVER) {
2873		ASSERT3P(loadinfo, ==, NULL);
2874		return (rewind_error);
2875	} else {
2876		/* Store the rewind info as part of the initial load info */
2877		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2878		    spa->spa_load_info);
2879
2880		/* Restore the initial load info */
2881		fnvlist_free(spa->spa_load_info);
2882		spa->spa_load_info = loadinfo;
2883
2884		return (load_error);
2885	}
2886}
2887
2888/*
2889 * Pool Open/Import
2890 *
2891 * The import case is identical to an open except that the configuration is sent
2892 * down from userland, instead of grabbed from the configuration cache.  For the
2893 * case of an open, the pool configuration will exist in the
2894 * POOL_STATE_UNINITIALIZED state.
2895 *
2896 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2897 * the same time open the pool, without having to keep around the spa_t in some
2898 * ambiguous state.
2899 */
2900static int
2901spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2902    nvlist_t **config)
2903{
2904	spa_t *spa;
2905	spa_load_state_t state = SPA_LOAD_OPEN;
2906	int error;
2907	int locked = B_FALSE;
2908	int firstopen = B_FALSE;
2909
2910	*spapp = NULL;
2911
2912	/*
2913	 * As disgusting as this is, we need to support recursive calls to this
2914	 * function because dsl_dir_open() is called during spa_load(), and ends
2915	 * up calling spa_open() again.  The real fix is to figure out how to
2916	 * avoid dsl_dir_open() calling this in the first place.
2917	 */
2918	if (mutex_owner(&spa_namespace_lock) != curthread) {
2919		mutex_enter(&spa_namespace_lock);
2920		locked = B_TRUE;
2921	}
2922
2923	if ((spa = spa_lookup(pool)) == NULL) {
2924		if (locked)
2925			mutex_exit(&spa_namespace_lock);
2926		return (SET_ERROR(ENOENT));
2927	}
2928
2929	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2930		zpool_rewind_policy_t policy;
2931
2932		firstopen = B_TRUE;
2933
2934		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2935		    &policy);
2936		if (policy.zrp_request & ZPOOL_DO_REWIND)
2937			state = SPA_LOAD_RECOVER;
2938
2939		spa_activate(spa, spa_mode_global);
2940
2941		if (state != SPA_LOAD_RECOVER)
2942			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2943
2944		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2945		    policy.zrp_request);
2946
2947		if (error == EBADF) {
2948			/*
2949			 * If vdev_validate() returns failure (indicated by
2950			 * EBADF), it indicates that one of the vdevs indicates
2951			 * that the pool has been exported or destroyed.  If
2952			 * this is the case, the config cache is out of sync and
2953			 * we should remove the pool from the namespace.
2954			 */
2955			spa_unload(spa);
2956			spa_deactivate(spa);
2957			spa_config_sync(spa, B_TRUE, B_TRUE);
2958			spa_remove(spa);
2959			if (locked)
2960				mutex_exit(&spa_namespace_lock);
2961			return (SET_ERROR(ENOENT));
2962		}
2963
2964		if (error) {
2965			/*
2966			 * We can't open the pool, but we still have useful
2967			 * information: the state of each vdev after the
2968			 * attempted vdev_open().  Return this to the user.
2969			 */
2970			if (config != NULL && spa->spa_config) {
2971				VERIFY(nvlist_dup(spa->spa_config, config,
2972				    KM_SLEEP) == 0);
2973				VERIFY(nvlist_add_nvlist(*config,
2974				    ZPOOL_CONFIG_LOAD_INFO,
2975				    spa->spa_load_info) == 0);
2976			}
2977			spa_unload(spa);
2978			spa_deactivate(spa);
2979			spa->spa_last_open_failed = error;
2980			if (locked)
2981				mutex_exit(&spa_namespace_lock);
2982			*spapp = NULL;
2983			return (error);
2984		}
2985	}
2986
2987	spa_open_ref(spa, tag);
2988
2989	if (config != NULL)
2990		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2991
2992	/*
2993	 * If we've recovered the pool, pass back any information we
2994	 * gathered while doing the load.
2995	 */
2996	if (state == SPA_LOAD_RECOVER) {
2997		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2998		    spa->spa_load_info) == 0);
2999	}
3000
3001	if (locked) {
3002		spa->spa_last_open_failed = 0;
3003		spa->spa_last_ubsync_txg = 0;
3004		spa->spa_load_txg = 0;
3005		mutex_exit(&spa_namespace_lock);
3006#ifdef __FreeBSD__
3007#ifdef _KERNEL
3008		if (firstopen)
3009			zvol_create_minors(spa->spa_name);
3010#endif
3011#endif
3012	}
3013
3014	*spapp = spa;
3015
3016	return (0);
3017}
3018
3019int
3020spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3021    nvlist_t **config)
3022{
3023	return (spa_open_common(name, spapp, tag, policy, config));
3024}
3025
3026int
3027spa_open(const char *name, spa_t **spapp, void *tag)
3028{
3029	return (spa_open_common(name, spapp, tag, NULL, NULL));
3030}
3031
3032/*
3033 * Lookup the given spa_t, incrementing the inject count in the process,
3034 * preventing it from being exported or destroyed.
3035 */
3036spa_t *
3037spa_inject_addref(char *name)
3038{
3039	spa_t *spa;
3040
3041	mutex_enter(&spa_namespace_lock);
3042	if ((spa = spa_lookup(name)) == NULL) {
3043		mutex_exit(&spa_namespace_lock);
3044		return (NULL);
3045	}
3046	spa->spa_inject_ref++;
3047	mutex_exit(&spa_namespace_lock);
3048
3049	return (spa);
3050}
3051
3052void
3053spa_inject_delref(spa_t *spa)
3054{
3055	mutex_enter(&spa_namespace_lock);
3056	spa->spa_inject_ref--;
3057	mutex_exit(&spa_namespace_lock);
3058}
3059
3060/*
3061 * Add spares device information to the nvlist.
3062 */
3063static void
3064spa_add_spares(spa_t *spa, nvlist_t *config)
3065{
3066	nvlist_t **spares;
3067	uint_t i, nspares;
3068	nvlist_t *nvroot;
3069	uint64_t guid;
3070	vdev_stat_t *vs;
3071	uint_t vsc;
3072	uint64_t pool;
3073
3074	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3075
3076	if (spa->spa_spares.sav_count == 0)
3077		return;
3078
3079	VERIFY(nvlist_lookup_nvlist(config,
3080	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3081	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3082	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3083	if (nspares != 0) {
3084		VERIFY(nvlist_add_nvlist_array(nvroot,
3085		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3086		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3087		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3088
3089		/*
3090		 * Go through and find any spares which have since been
3091		 * repurposed as an active spare.  If this is the case, update
3092		 * their status appropriately.
3093		 */
3094		for (i = 0; i < nspares; i++) {
3095			VERIFY(nvlist_lookup_uint64(spares[i],
3096			    ZPOOL_CONFIG_GUID, &guid) == 0);
3097			if (spa_spare_exists(guid, &pool, NULL) &&
3098			    pool != 0ULL) {
3099				VERIFY(nvlist_lookup_uint64_array(
3100				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3101				    (uint64_t **)&vs, &vsc) == 0);
3102				vs->vs_state = VDEV_STATE_CANT_OPEN;
3103				vs->vs_aux = VDEV_AUX_SPARED;
3104			}
3105		}
3106	}
3107}
3108
3109/*
3110 * Add l2cache device information to the nvlist, including vdev stats.
3111 */
3112static void
3113spa_add_l2cache(spa_t *spa, nvlist_t *config)
3114{
3115	nvlist_t **l2cache;
3116	uint_t i, j, nl2cache;
3117	nvlist_t *nvroot;
3118	uint64_t guid;
3119	vdev_t *vd;
3120	vdev_stat_t *vs;
3121	uint_t vsc;
3122
3123	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3124
3125	if (spa->spa_l2cache.sav_count == 0)
3126		return;
3127
3128	VERIFY(nvlist_lookup_nvlist(config,
3129	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3130	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3131	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3132	if (nl2cache != 0) {
3133		VERIFY(nvlist_add_nvlist_array(nvroot,
3134		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3135		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3136		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3137
3138		/*
3139		 * Update level 2 cache device stats.
3140		 */
3141
3142		for (i = 0; i < nl2cache; i++) {
3143			VERIFY(nvlist_lookup_uint64(l2cache[i],
3144			    ZPOOL_CONFIG_GUID, &guid) == 0);
3145
3146			vd = NULL;
3147			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3148				if (guid ==
3149				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3150					vd = spa->spa_l2cache.sav_vdevs[j];
3151					break;
3152				}
3153			}
3154			ASSERT(vd != NULL);
3155
3156			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3157			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3158			    == 0);
3159			vdev_get_stats(vd, vs);
3160		}
3161	}
3162}
3163
3164static void
3165spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3166{
3167	nvlist_t *features;
3168	zap_cursor_t zc;
3169	zap_attribute_t za;
3170
3171	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3172	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3173
3174	/* We may be unable to read features if pool is suspended. */
3175	if (spa_suspended(spa))
3176		goto out;
3177
3178	if (spa->spa_feat_for_read_obj != 0) {
3179		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3180		    spa->spa_feat_for_read_obj);
3181		    zap_cursor_retrieve(&zc, &za) == 0;
3182		    zap_cursor_advance(&zc)) {
3183			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3184			    za.za_num_integers == 1);
3185			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3186			    za.za_first_integer));
3187		}
3188		zap_cursor_fini(&zc);
3189	}
3190
3191	if (spa->spa_feat_for_write_obj != 0) {
3192		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3193		    spa->spa_feat_for_write_obj);
3194		    zap_cursor_retrieve(&zc, &za) == 0;
3195		    zap_cursor_advance(&zc)) {
3196			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3197			    za.za_num_integers == 1);
3198			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3199			    za.za_first_integer));
3200		}
3201		zap_cursor_fini(&zc);
3202	}
3203
3204out:
3205	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3206	    features) == 0);
3207	nvlist_free(features);
3208}
3209
3210int
3211spa_get_stats(const char *name, nvlist_t **config,
3212    char *altroot, size_t buflen)
3213{
3214	int error;
3215	spa_t *spa;
3216
3217	*config = NULL;
3218	error = spa_open_common(name, &spa, FTAG, NULL, config);
3219
3220	if (spa != NULL) {
3221		/*
3222		 * This still leaves a window of inconsistency where the spares
3223		 * or l2cache devices could change and the config would be
3224		 * self-inconsistent.
3225		 */
3226		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3227
3228		if (*config != NULL) {
3229			uint64_t loadtimes[2];
3230
3231			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3232			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3233			VERIFY(nvlist_add_uint64_array(*config,
3234			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3235
3236			VERIFY(nvlist_add_uint64(*config,
3237			    ZPOOL_CONFIG_ERRCOUNT,
3238			    spa_get_errlog_size(spa)) == 0);
3239
3240			if (spa_suspended(spa))
3241				VERIFY(nvlist_add_uint64(*config,
3242				    ZPOOL_CONFIG_SUSPENDED,
3243				    spa->spa_failmode) == 0);
3244
3245			spa_add_spares(spa, *config);
3246			spa_add_l2cache(spa, *config);
3247			spa_add_feature_stats(spa, *config);
3248		}
3249	}
3250
3251	/*
3252	 * We want to get the alternate root even for faulted pools, so we cheat
3253	 * and call spa_lookup() directly.
3254	 */
3255	if (altroot) {
3256		if (spa == NULL) {
3257			mutex_enter(&spa_namespace_lock);
3258			spa = spa_lookup(name);
3259			if (spa)
3260				spa_altroot(spa, altroot, buflen);
3261			else
3262				altroot[0] = '\0';
3263			spa = NULL;
3264			mutex_exit(&spa_namespace_lock);
3265		} else {
3266			spa_altroot(spa, altroot, buflen);
3267		}
3268	}
3269
3270	if (spa != NULL) {
3271		spa_config_exit(spa, SCL_CONFIG, FTAG);
3272		spa_close(spa, FTAG);
3273	}
3274
3275	return (error);
3276}
3277
3278/*
3279 * Validate that the auxiliary device array is well formed.  We must have an
3280 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3281 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3282 * specified, as long as they are well-formed.
3283 */
3284static int
3285spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3286    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3287    vdev_labeltype_t label)
3288{
3289	nvlist_t **dev;
3290	uint_t i, ndev;
3291	vdev_t *vd;
3292	int error;
3293
3294	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3295
3296	/*
3297	 * It's acceptable to have no devs specified.
3298	 */
3299	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3300		return (0);
3301
3302	if (ndev == 0)
3303		return (SET_ERROR(EINVAL));
3304
3305	/*
3306	 * Make sure the pool is formatted with a version that supports this
3307	 * device type.
3308	 */
3309	if (spa_version(spa) < version)
3310		return (SET_ERROR(ENOTSUP));
3311
3312	/*
3313	 * Set the pending device list so we correctly handle device in-use
3314	 * checking.
3315	 */
3316	sav->sav_pending = dev;
3317	sav->sav_npending = ndev;
3318
3319	for (i = 0; i < ndev; i++) {
3320		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3321		    mode)) != 0)
3322			goto out;
3323
3324		if (!vd->vdev_ops->vdev_op_leaf) {
3325			vdev_free(vd);
3326			error = SET_ERROR(EINVAL);
3327			goto out;
3328		}
3329
3330		/*
3331		 * The L2ARC currently only supports disk devices in
3332		 * kernel context.  For user-level testing, we allow it.
3333		 */
3334#ifdef _KERNEL
3335		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3336		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3337			error = SET_ERROR(ENOTBLK);
3338			vdev_free(vd);
3339			goto out;
3340		}
3341#endif
3342		vd->vdev_top = vd;
3343
3344		if ((error = vdev_open(vd)) == 0 &&
3345		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3346			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3347			    vd->vdev_guid) == 0);
3348		}
3349
3350		vdev_free(vd);
3351
3352		if (error &&
3353		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3354			goto out;
3355		else
3356			error = 0;
3357	}
3358
3359out:
3360	sav->sav_pending = NULL;
3361	sav->sav_npending = 0;
3362	return (error);
3363}
3364
3365static int
3366spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3367{
3368	int error;
3369
3370	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3371
3372	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3373	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3374	    VDEV_LABEL_SPARE)) != 0) {
3375		return (error);
3376	}
3377
3378	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3379	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3380	    VDEV_LABEL_L2CACHE));
3381}
3382
3383static void
3384spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3385    const char *config)
3386{
3387	int i;
3388
3389	if (sav->sav_config != NULL) {
3390		nvlist_t **olddevs;
3391		uint_t oldndevs;
3392		nvlist_t **newdevs;
3393
3394		/*
3395		 * Generate new dev list by concatentating with the
3396		 * current dev list.
3397		 */
3398		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3399		    &olddevs, &oldndevs) == 0);
3400
3401		newdevs = kmem_alloc(sizeof (void *) *
3402		    (ndevs + oldndevs), KM_SLEEP);
3403		for (i = 0; i < oldndevs; i++)
3404			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3405			    KM_SLEEP) == 0);
3406		for (i = 0; i < ndevs; i++)
3407			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3408			    KM_SLEEP) == 0);
3409
3410		VERIFY(nvlist_remove(sav->sav_config, config,
3411		    DATA_TYPE_NVLIST_ARRAY) == 0);
3412
3413		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3414		    config, newdevs, ndevs + oldndevs) == 0);
3415		for (i = 0; i < oldndevs + ndevs; i++)
3416			nvlist_free(newdevs[i]);
3417		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3418	} else {
3419		/*
3420		 * Generate a new dev list.
3421		 */
3422		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3423		    KM_SLEEP) == 0);
3424		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3425		    devs, ndevs) == 0);
3426	}
3427}
3428
3429/*
3430 * Stop and drop level 2 ARC devices
3431 */
3432void
3433spa_l2cache_drop(spa_t *spa)
3434{
3435	vdev_t *vd;
3436	int i;
3437	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3438
3439	for (i = 0; i < sav->sav_count; i++) {
3440		uint64_t pool;
3441
3442		vd = sav->sav_vdevs[i];
3443		ASSERT(vd != NULL);
3444
3445		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3446		    pool != 0ULL && l2arc_vdev_present(vd))
3447			l2arc_remove_vdev(vd);
3448	}
3449}
3450
3451/*
3452 * Pool Creation
3453 */
3454int
3455spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3456    nvlist_t *zplprops)
3457{
3458	spa_t *spa;
3459	char *altroot = NULL;
3460	vdev_t *rvd;
3461	dsl_pool_t *dp;
3462	dmu_tx_t *tx;
3463	int error = 0;
3464	uint64_t txg = TXG_INITIAL;
3465	nvlist_t **spares, **l2cache;
3466	uint_t nspares, nl2cache;
3467	uint64_t version, obj;
3468	boolean_t has_features;
3469
3470	/*
3471	 * If this pool already exists, return failure.
3472	 */
3473	mutex_enter(&spa_namespace_lock);
3474	if (spa_lookup(pool) != NULL) {
3475		mutex_exit(&spa_namespace_lock);
3476		return (SET_ERROR(EEXIST));
3477	}
3478
3479	/*
3480	 * Allocate a new spa_t structure.
3481	 */
3482	(void) nvlist_lookup_string(props,
3483	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3484	spa = spa_add(pool, NULL, altroot);
3485	spa_activate(spa, spa_mode_global);
3486
3487	if (props && (error = spa_prop_validate(spa, props))) {
3488		spa_deactivate(spa);
3489		spa_remove(spa);
3490		mutex_exit(&spa_namespace_lock);
3491		return (error);
3492	}
3493
3494	has_features = B_FALSE;
3495	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3496	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3497		if (zpool_prop_feature(nvpair_name(elem)))
3498			has_features = B_TRUE;
3499	}
3500
3501	if (has_features || nvlist_lookup_uint64(props,
3502	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3503		version = SPA_VERSION;
3504	}
3505	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3506
3507	spa->spa_first_txg = txg;
3508	spa->spa_uberblock.ub_txg = txg - 1;
3509	spa->spa_uberblock.ub_version = version;
3510	spa->spa_ubsync = spa->spa_uberblock;
3511
3512	/*
3513	 * Create "The Godfather" zio to hold all async IOs
3514	 */
3515	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3516	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3517
3518	/*
3519	 * Create the root vdev.
3520	 */
3521	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3522
3523	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3524
3525	ASSERT(error != 0 || rvd != NULL);
3526	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3527
3528	if (error == 0 && !zfs_allocatable_devs(nvroot))
3529		error = SET_ERROR(EINVAL);
3530
3531	if (error == 0 &&
3532	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3533	    (error = spa_validate_aux(spa, nvroot, txg,
3534	    VDEV_ALLOC_ADD)) == 0) {
3535		for (int c = 0; c < rvd->vdev_children; c++) {
3536			vdev_ashift_optimize(rvd->vdev_child[c]);
3537			vdev_metaslab_set_size(rvd->vdev_child[c]);
3538			vdev_expand(rvd->vdev_child[c], txg);
3539		}
3540	}
3541
3542	spa_config_exit(spa, SCL_ALL, FTAG);
3543
3544	if (error != 0) {
3545		spa_unload(spa);
3546		spa_deactivate(spa);
3547		spa_remove(spa);
3548		mutex_exit(&spa_namespace_lock);
3549		return (error);
3550	}
3551
3552	/*
3553	 * Get the list of spares, if specified.
3554	 */
3555	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3556	    &spares, &nspares) == 0) {
3557		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3558		    KM_SLEEP) == 0);
3559		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3560		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3561		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3562		spa_load_spares(spa);
3563		spa_config_exit(spa, SCL_ALL, FTAG);
3564		spa->spa_spares.sav_sync = B_TRUE;
3565	}
3566
3567	/*
3568	 * Get the list of level 2 cache devices, if specified.
3569	 */
3570	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3571	    &l2cache, &nl2cache) == 0) {
3572		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3573		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3574		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3575		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3576		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3577		spa_load_l2cache(spa);
3578		spa_config_exit(spa, SCL_ALL, FTAG);
3579		spa->spa_l2cache.sav_sync = B_TRUE;
3580	}
3581
3582	spa->spa_is_initializing = B_TRUE;
3583	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3584	spa->spa_meta_objset = dp->dp_meta_objset;
3585	spa->spa_is_initializing = B_FALSE;
3586
3587	/*
3588	 * Create DDTs (dedup tables).
3589	 */
3590	ddt_create(spa);
3591
3592	spa_update_dspace(spa);
3593
3594	tx = dmu_tx_create_assigned(dp, txg);
3595
3596	/*
3597	 * Create the pool config object.
3598	 */
3599	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3600	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3601	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3602
3603	if (zap_add(spa->spa_meta_objset,
3604	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3605	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3606		cmn_err(CE_PANIC, "failed to add pool config");
3607	}
3608
3609	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3610		spa_feature_create_zap_objects(spa, tx);
3611
3612	if (zap_add(spa->spa_meta_objset,
3613	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3614	    sizeof (uint64_t), 1, &version, tx) != 0) {
3615		cmn_err(CE_PANIC, "failed to add pool version");
3616	}
3617
3618	/* Newly created pools with the right version are always deflated. */
3619	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3620		spa->spa_deflate = TRUE;
3621		if (zap_add(spa->spa_meta_objset,
3622		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3623		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3624			cmn_err(CE_PANIC, "failed to add deflate");
3625		}
3626	}
3627
3628	/*
3629	 * Create the deferred-free bpobj.  Turn off compression
3630	 * because sync-to-convergence takes longer if the blocksize
3631	 * keeps changing.
3632	 */
3633	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3634	dmu_object_set_compress(spa->spa_meta_objset, obj,
3635	    ZIO_COMPRESS_OFF, tx);
3636	if (zap_add(spa->spa_meta_objset,
3637	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3638	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3639		cmn_err(CE_PANIC, "failed to add bpobj");
3640	}
3641	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3642	    spa->spa_meta_objset, obj));
3643
3644	/*
3645	 * Create the pool's history object.
3646	 */
3647	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3648		spa_history_create_obj(spa, tx);
3649
3650	/*
3651	 * Set pool properties.
3652	 */
3653	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3654	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3655	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3656	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3657
3658	if (props != NULL) {
3659		spa_configfile_set(spa, props, B_FALSE);
3660		spa_sync_props(props, tx);
3661	}
3662
3663	dmu_tx_commit(tx);
3664
3665	spa->spa_sync_on = B_TRUE;
3666	txg_sync_start(spa->spa_dsl_pool);
3667
3668	/*
3669	 * We explicitly wait for the first transaction to complete so that our
3670	 * bean counters are appropriately updated.
3671	 */
3672	txg_wait_synced(spa->spa_dsl_pool, txg);
3673
3674	spa_config_sync(spa, B_FALSE, B_TRUE);
3675
3676	spa_history_log_version(spa, "create");
3677
3678	spa->spa_minref = refcount_count(&spa->spa_refcount);
3679
3680	mutex_exit(&spa_namespace_lock);
3681
3682	return (0);
3683}
3684
3685#ifdef _KERNEL
3686#if defined(sun)
3687/*
3688 * Get the root pool information from the root disk, then import the root pool
3689 * during the system boot up time.
3690 */
3691extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3692
3693static nvlist_t *
3694spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3695{
3696	nvlist_t *config;
3697	nvlist_t *nvtop, *nvroot;
3698	uint64_t pgid;
3699
3700	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3701		return (NULL);
3702
3703	/*
3704	 * Add this top-level vdev to the child array.
3705	 */
3706	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3707	    &nvtop) == 0);
3708	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3709	    &pgid) == 0);
3710	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3711
3712	/*
3713	 * Put this pool's top-level vdevs into a root vdev.
3714	 */
3715	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3716	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3717	    VDEV_TYPE_ROOT) == 0);
3718	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3719	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3720	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3721	    &nvtop, 1) == 0);
3722
3723	/*
3724	 * Replace the existing vdev_tree with the new root vdev in
3725	 * this pool's configuration (remove the old, add the new).
3726	 */
3727	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3728	nvlist_free(nvroot);
3729	return (config);
3730}
3731
3732/*
3733 * Walk the vdev tree and see if we can find a device with "better"
3734 * configuration. A configuration is "better" if the label on that
3735 * device has a more recent txg.
3736 */
3737static void
3738spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3739{
3740	for (int c = 0; c < vd->vdev_children; c++)
3741		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3742
3743	if (vd->vdev_ops->vdev_op_leaf) {
3744		nvlist_t *label;
3745		uint64_t label_txg;
3746
3747		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3748		    &label) != 0)
3749			return;
3750
3751		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3752		    &label_txg) == 0);
3753
3754		/*
3755		 * Do we have a better boot device?
3756		 */
3757		if (label_txg > *txg) {
3758			*txg = label_txg;
3759			*avd = vd;
3760		}
3761		nvlist_free(label);
3762	}
3763}
3764
3765/*
3766 * Import a root pool.
3767 *
3768 * For x86. devpath_list will consist of devid and/or physpath name of
3769 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3770 * The GRUB "findroot" command will return the vdev we should boot.
3771 *
3772 * For Sparc, devpath_list consists the physpath name of the booting device
3773 * no matter the rootpool is a single device pool or a mirrored pool.
3774 * e.g.
3775 *	"/pci@1f,0/ide@d/disk@0,0:a"
3776 */
3777int
3778spa_import_rootpool(char *devpath, char *devid)
3779{
3780	spa_t *spa;
3781	vdev_t *rvd, *bvd, *avd = NULL;
3782	nvlist_t *config, *nvtop;
3783	uint64_t guid, txg;
3784	char *pname;
3785	int error;
3786
3787	/*
3788	 * Read the label from the boot device and generate a configuration.
3789	 */
3790	config = spa_generate_rootconf(devpath, devid, &guid);
3791#if defined(_OBP) && defined(_KERNEL)
3792	if (config == NULL) {
3793		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3794			/* iscsi boot */
3795			get_iscsi_bootpath_phy(devpath);
3796			config = spa_generate_rootconf(devpath, devid, &guid);
3797		}
3798	}
3799#endif
3800	if (config == NULL) {
3801		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3802		    devpath);
3803		return (SET_ERROR(EIO));
3804	}
3805
3806	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3807	    &pname) == 0);
3808	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3809
3810	mutex_enter(&spa_namespace_lock);
3811	if ((spa = spa_lookup(pname)) != NULL) {
3812		/*
3813		 * Remove the existing root pool from the namespace so that we
3814		 * can replace it with the correct config we just read in.
3815		 */
3816		spa_remove(spa);
3817	}
3818
3819	spa = spa_add(pname, config, NULL);
3820	spa->spa_is_root = B_TRUE;
3821	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3822
3823	/*
3824	 * Build up a vdev tree based on the boot device's label config.
3825	 */
3826	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3827	    &nvtop) == 0);
3828	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3829	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3830	    VDEV_ALLOC_ROOTPOOL);
3831	spa_config_exit(spa, SCL_ALL, FTAG);
3832	if (error) {
3833		mutex_exit(&spa_namespace_lock);
3834		nvlist_free(config);
3835		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3836		    pname);
3837		return (error);
3838	}
3839
3840	/*
3841	 * Get the boot vdev.
3842	 */
3843	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3844		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3845		    (u_longlong_t)guid);
3846		error = SET_ERROR(ENOENT);
3847		goto out;
3848	}
3849
3850	/*
3851	 * Determine if there is a better boot device.
3852	 */
3853	avd = bvd;
3854	spa_alt_rootvdev(rvd, &avd, &txg);
3855	if (avd != bvd) {
3856		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3857		    "try booting from '%s'", avd->vdev_path);
3858		error = SET_ERROR(EINVAL);
3859		goto out;
3860	}
3861
3862	/*
3863	 * If the boot device is part of a spare vdev then ensure that
3864	 * we're booting off the active spare.
3865	 */
3866	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3867	    !bvd->vdev_isspare) {
3868		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3869		    "try booting from '%s'",
3870		    bvd->vdev_parent->
3871		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3872		error = SET_ERROR(EINVAL);
3873		goto out;
3874	}
3875
3876	error = 0;
3877out:
3878	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3879	vdev_free(rvd);
3880	spa_config_exit(spa, SCL_ALL, FTAG);
3881	mutex_exit(&spa_namespace_lock);
3882
3883	nvlist_free(config);
3884	return (error);
3885}
3886
3887#else
3888
3889extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3890    uint64_t *count);
3891
3892static nvlist_t *
3893spa_generate_rootconf(const char *name)
3894{
3895	nvlist_t **configs, **tops;
3896	nvlist_t *config;
3897	nvlist_t *best_cfg, *nvtop, *nvroot;
3898	uint64_t *holes;
3899	uint64_t best_txg;
3900	uint64_t nchildren;
3901	uint64_t pgid;
3902	uint64_t count;
3903	uint64_t i;
3904	uint_t   nholes;
3905
3906	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3907		return (NULL);
3908
3909	ASSERT3U(count, !=, 0);
3910	best_txg = 0;
3911	for (i = 0; i < count; i++) {
3912		uint64_t txg;
3913
3914		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3915		    &txg) == 0);
3916		if (txg > best_txg) {
3917			best_txg = txg;
3918			best_cfg = configs[i];
3919		}
3920	}
3921
3922	/*
3923	 * Multi-vdev root pool configuration discovery is not supported yet.
3924	 */
3925	nchildren = 1;
3926	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3927	holes = NULL;
3928	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3929	    &holes, &nholes);
3930
3931	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3932	for (i = 0; i < nchildren; i++) {
3933		if (i >= count)
3934			break;
3935		if (configs[i] == NULL)
3936			continue;
3937		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3938		    &nvtop) == 0);
3939		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3940	}
3941	for (i = 0; holes != NULL && i < nholes; i++) {
3942		if (i >= nchildren)
3943			continue;
3944		if (tops[holes[i]] != NULL)
3945			continue;
3946		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3947		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3948		    VDEV_TYPE_HOLE) == 0);
3949		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3950		    holes[i]) == 0);
3951		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3952		    0) == 0);
3953	}
3954	for (i = 0; i < nchildren; i++) {
3955		if (tops[i] != NULL)
3956			continue;
3957		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3958		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3959		    VDEV_TYPE_MISSING) == 0);
3960		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3961		    i) == 0);
3962		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3963		    0) == 0);
3964	}
3965
3966	/*
3967	 * Create pool config based on the best vdev config.
3968	 */
3969	nvlist_dup(best_cfg, &config, KM_SLEEP);
3970
3971	/*
3972	 * Put this pool's top-level vdevs into a root vdev.
3973	 */
3974	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3975	    &pgid) == 0);
3976	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3977	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3978	    VDEV_TYPE_ROOT) == 0);
3979	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3980	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3981	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3982	    tops, nchildren) == 0);
3983
3984	/*
3985	 * Replace the existing vdev_tree with the new root vdev in
3986	 * this pool's configuration (remove the old, add the new).
3987	 */
3988	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3989
3990	/*
3991	 * Drop vdev config elements that should not be present at pool level.
3992	 */
3993	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3994	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
3995
3996	for (i = 0; i < count; i++)
3997		nvlist_free(configs[i]);
3998	kmem_free(configs, count * sizeof(void *));
3999	for (i = 0; i < nchildren; i++)
4000		nvlist_free(tops[i]);
4001	kmem_free(tops, nchildren * sizeof(void *));
4002	nvlist_free(nvroot);
4003	return (config);
4004}
4005
4006int
4007spa_import_rootpool(const char *name)
4008{
4009	spa_t *spa;
4010	vdev_t *rvd, *bvd, *avd = NULL;
4011	nvlist_t *config, *nvtop;
4012	uint64_t txg;
4013	char *pname;
4014	int error;
4015
4016	/*
4017	 * Read the label from the boot device and generate a configuration.
4018	 */
4019	config = spa_generate_rootconf(name);
4020
4021	mutex_enter(&spa_namespace_lock);
4022	if (config != NULL) {
4023		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
4024		    &pname) == 0 && strcmp(name, pname) == 0);
4025		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
4026		    == 0);
4027
4028		if ((spa = spa_lookup(pname)) != NULL) {
4029			/*
4030			 * Remove the existing root pool from the namespace so
4031			 * that we can replace it with the correct config
4032			 * we just read in.
4033			 */
4034			spa_remove(spa);
4035		}
4036		spa = spa_add(pname, config, NULL);
4037
4038		/*
4039		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4040		 * via spa_version().
4041		 */
4042		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4043		    &spa->spa_ubsync.ub_version) != 0)
4044			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4045	} else if ((spa = spa_lookup(name)) == NULL) {
4046		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4047		    name);
4048		return (EIO);
4049	} else {
4050		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4051	}
4052	spa->spa_is_root = B_TRUE;
4053	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4054
4055	/*
4056	 * Build up a vdev tree based on the boot device's label config.
4057	 */
4058	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4059	    &nvtop) == 0);
4060	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4061	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4062	    VDEV_ALLOC_ROOTPOOL);
4063	spa_config_exit(spa, SCL_ALL, FTAG);
4064	if (error) {
4065		mutex_exit(&spa_namespace_lock);
4066		nvlist_free(config);
4067		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4068		    pname);
4069		return (error);
4070	}
4071
4072	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4073	vdev_free(rvd);
4074	spa_config_exit(spa, SCL_ALL, FTAG);
4075	mutex_exit(&spa_namespace_lock);
4076
4077	nvlist_free(config);
4078	return (0);
4079}
4080
4081#endif	/* sun */
4082#endif
4083
4084/*
4085 * Import a non-root pool into the system.
4086 */
4087int
4088spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4089{
4090	spa_t *spa;
4091	char *altroot = NULL;
4092	spa_load_state_t state = SPA_LOAD_IMPORT;
4093	zpool_rewind_policy_t policy;
4094	uint64_t mode = spa_mode_global;
4095	uint64_t readonly = B_FALSE;
4096	int error;
4097	nvlist_t *nvroot;
4098	nvlist_t **spares, **l2cache;
4099	uint_t nspares, nl2cache;
4100
4101	/*
4102	 * If a pool with this name exists, return failure.
4103	 */
4104	mutex_enter(&spa_namespace_lock);
4105	if (spa_lookup(pool) != NULL) {
4106		mutex_exit(&spa_namespace_lock);
4107		return (SET_ERROR(EEXIST));
4108	}
4109
4110	/*
4111	 * Create and initialize the spa structure.
4112	 */
4113	(void) nvlist_lookup_string(props,
4114	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4115	(void) nvlist_lookup_uint64(props,
4116	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4117	if (readonly)
4118		mode = FREAD;
4119	spa = spa_add(pool, config, altroot);
4120	spa->spa_import_flags = flags;
4121
4122	/*
4123	 * Verbatim import - Take a pool and insert it into the namespace
4124	 * as if it had been loaded at boot.
4125	 */
4126	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4127		if (props != NULL)
4128			spa_configfile_set(spa, props, B_FALSE);
4129
4130		spa_config_sync(spa, B_FALSE, B_TRUE);
4131
4132		mutex_exit(&spa_namespace_lock);
4133		return (0);
4134	}
4135
4136	spa_activate(spa, mode);
4137
4138	/*
4139	 * Don't start async tasks until we know everything is healthy.
4140	 */
4141	spa_async_suspend(spa);
4142
4143	zpool_get_rewind_policy(config, &policy);
4144	if (policy.zrp_request & ZPOOL_DO_REWIND)
4145		state = SPA_LOAD_RECOVER;
4146
4147	/*
4148	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4149	 * because the user-supplied config is actually the one to trust when
4150	 * doing an import.
4151	 */
4152	if (state != SPA_LOAD_RECOVER)
4153		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4154
4155	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4156	    policy.zrp_request);
4157
4158	/*
4159	 * Propagate anything learned while loading the pool and pass it
4160	 * back to caller (i.e. rewind info, missing devices, etc).
4161	 */
4162	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4163	    spa->spa_load_info) == 0);
4164
4165	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4166	/*
4167	 * Toss any existing sparelist, as it doesn't have any validity
4168	 * anymore, and conflicts with spa_has_spare().
4169	 */
4170	if (spa->spa_spares.sav_config) {
4171		nvlist_free(spa->spa_spares.sav_config);
4172		spa->spa_spares.sav_config = NULL;
4173		spa_load_spares(spa);
4174	}
4175	if (spa->spa_l2cache.sav_config) {
4176		nvlist_free(spa->spa_l2cache.sav_config);
4177		spa->spa_l2cache.sav_config = NULL;
4178		spa_load_l2cache(spa);
4179	}
4180
4181	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4182	    &nvroot) == 0);
4183	if (error == 0)
4184		error = spa_validate_aux(spa, nvroot, -1ULL,
4185		    VDEV_ALLOC_SPARE);
4186	if (error == 0)
4187		error = spa_validate_aux(spa, nvroot, -1ULL,
4188		    VDEV_ALLOC_L2CACHE);
4189	spa_config_exit(spa, SCL_ALL, FTAG);
4190
4191	if (props != NULL)
4192		spa_configfile_set(spa, props, B_FALSE);
4193
4194	if (error != 0 || (props && spa_writeable(spa) &&
4195	    (error = spa_prop_set(spa, props)))) {
4196		spa_unload(spa);
4197		spa_deactivate(spa);
4198		spa_remove(spa);
4199		mutex_exit(&spa_namespace_lock);
4200		return (error);
4201	}
4202
4203	spa_async_resume(spa);
4204
4205	/*
4206	 * Override any spares and level 2 cache devices as specified by
4207	 * the user, as these may have correct device names/devids, etc.
4208	 */
4209	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4210	    &spares, &nspares) == 0) {
4211		if (spa->spa_spares.sav_config)
4212			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4213			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4214		else
4215			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4216			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4217		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4218		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4219		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4220		spa_load_spares(spa);
4221		spa_config_exit(spa, SCL_ALL, FTAG);
4222		spa->spa_spares.sav_sync = B_TRUE;
4223	}
4224	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4225	    &l2cache, &nl2cache) == 0) {
4226		if (spa->spa_l2cache.sav_config)
4227			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4228			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4229		else
4230			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4231			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4232		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4233		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4234		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4235		spa_load_l2cache(spa);
4236		spa_config_exit(spa, SCL_ALL, FTAG);
4237		spa->spa_l2cache.sav_sync = B_TRUE;
4238	}
4239
4240	/*
4241	 * Check for any removed devices.
4242	 */
4243	if (spa->spa_autoreplace) {
4244		spa_aux_check_removed(&spa->spa_spares);
4245		spa_aux_check_removed(&spa->spa_l2cache);
4246	}
4247
4248	if (spa_writeable(spa)) {
4249		/*
4250		 * Update the config cache to include the newly-imported pool.
4251		 */
4252		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4253	}
4254
4255	/*
4256	 * It's possible that the pool was expanded while it was exported.
4257	 * We kick off an async task to handle this for us.
4258	 */
4259	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4260
4261	mutex_exit(&spa_namespace_lock);
4262	spa_history_log_version(spa, "import");
4263
4264#ifdef __FreeBSD__
4265#ifdef _KERNEL
4266	zvol_create_minors(pool);
4267#endif
4268#endif
4269	return (0);
4270}
4271
4272nvlist_t *
4273spa_tryimport(nvlist_t *tryconfig)
4274{
4275	nvlist_t *config = NULL;
4276	char *poolname;
4277	spa_t *spa;
4278	uint64_t state;
4279	int error;
4280
4281	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4282		return (NULL);
4283
4284	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4285		return (NULL);
4286
4287	/*
4288	 * Create and initialize the spa structure.
4289	 */
4290	mutex_enter(&spa_namespace_lock);
4291	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4292	spa_activate(spa, FREAD);
4293
4294	/*
4295	 * Pass off the heavy lifting to spa_load().
4296	 * Pass TRUE for mosconfig because the user-supplied config
4297	 * is actually the one to trust when doing an import.
4298	 */
4299	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4300
4301	/*
4302	 * If 'tryconfig' was at least parsable, return the current config.
4303	 */
4304	if (spa->spa_root_vdev != NULL) {
4305		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4306		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4307		    poolname) == 0);
4308		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4309		    state) == 0);
4310		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4311		    spa->spa_uberblock.ub_timestamp) == 0);
4312		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4313		    spa->spa_load_info) == 0);
4314
4315		/*
4316		 * If the bootfs property exists on this pool then we
4317		 * copy it out so that external consumers can tell which
4318		 * pools are bootable.
4319		 */
4320		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4321			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4322
4323			/*
4324			 * We have to play games with the name since the
4325			 * pool was opened as TRYIMPORT_NAME.
4326			 */
4327			if (dsl_dsobj_to_dsname(spa_name(spa),
4328			    spa->spa_bootfs, tmpname) == 0) {
4329				char *cp;
4330				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4331
4332				cp = strchr(tmpname, '/');
4333				if (cp == NULL) {
4334					(void) strlcpy(dsname, tmpname,
4335					    MAXPATHLEN);
4336				} else {
4337					(void) snprintf(dsname, MAXPATHLEN,
4338					    "%s/%s", poolname, ++cp);
4339				}
4340				VERIFY(nvlist_add_string(config,
4341				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4342				kmem_free(dsname, MAXPATHLEN);
4343			}
4344			kmem_free(tmpname, MAXPATHLEN);
4345		}
4346
4347		/*
4348		 * Add the list of hot spares and level 2 cache devices.
4349		 */
4350		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4351		spa_add_spares(spa, config);
4352		spa_add_l2cache(spa, config);
4353		spa_config_exit(spa, SCL_CONFIG, FTAG);
4354	}
4355
4356	spa_unload(spa);
4357	spa_deactivate(spa);
4358	spa_remove(spa);
4359	mutex_exit(&spa_namespace_lock);
4360
4361	return (config);
4362}
4363
4364/*
4365 * Pool export/destroy
4366 *
4367 * The act of destroying or exporting a pool is very simple.  We make sure there
4368 * is no more pending I/O and any references to the pool are gone.  Then, we
4369 * update the pool state and sync all the labels to disk, removing the
4370 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4371 * we don't sync the labels or remove the configuration cache.
4372 */
4373static int
4374spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4375    boolean_t force, boolean_t hardforce)
4376{
4377	spa_t *spa;
4378
4379	if (oldconfig)
4380		*oldconfig = NULL;
4381
4382	if (!(spa_mode_global & FWRITE))
4383		return (SET_ERROR(EROFS));
4384
4385	mutex_enter(&spa_namespace_lock);
4386	if ((spa = spa_lookup(pool)) == NULL) {
4387		mutex_exit(&spa_namespace_lock);
4388		return (SET_ERROR(ENOENT));
4389	}
4390
4391	/*
4392	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4393	 * reacquire the namespace lock, and see if we can export.
4394	 */
4395	spa_open_ref(spa, FTAG);
4396	mutex_exit(&spa_namespace_lock);
4397	spa_async_suspend(spa);
4398	mutex_enter(&spa_namespace_lock);
4399	spa_close(spa, FTAG);
4400
4401	/*
4402	 * The pool will be in core if it's openable,
4403	 * in which case we can modify its state.
4404	 */
4405	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4406		/*
4407		 * Objsets may be open only because they're dirty, so we
4408		 * have to force it to sync before checking spa_refcnt.
4409		 */
4410		txg_wait_synced(spa->spa_dsl_pool, 0);
4411
4412		/*
4413		 * A pool cannot be exported or destroyed if there are active
4414		 * references.  If we are resetting a pool, allow references by
4415		 * fault injection handlers.
4416		 */
4417		if (!spa_refcount_zero(spa) ||
4418		    (spa->spa_inject_ref != 0 &&
4419		    new_state != POOL_STATE_UNINITIALIZED)) {
4420			spa_async_resume(spa);
4421			mutex_exit(&spa_namespace_lock);
4422			return (SET_ERROR(EBUSY));
4423		}
4424
4425		/*
4426		 * A pool cannot be exported if it has an active shared spare.
4427		 * This is to prevent other pools stealing the active spare
4428		 * from an exported pool. At user's own will, such pool can
4429		 * be forcedly exported.
4430		 */
4431		if (!force && new_state == POOL_STATE_EXPORTED &&
4432		    spa_has_active_shared_spare(spa)) {
4433			spa_async_resume(spa);
4434			mutex_exit(&spa_namespace_lock);
4435			return (SET_ERROR(EXDEV));
4436		}
4437
4438		/*
4439		 * We want this to be reflected on every label,
4440		 * so mark them all dirty.  spa_unload() will do the
4441		 * final sync that pushes these changes out.
4442		 */
4443		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4444			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4445			spa->spa_state = new_state;
4446			spa->spa_final_txg = spa_last_synced_txg(spa) +
4447			    TXG_DEFER_SIZE + 1;
4448			vdev_config_dirty(spa->spa_root_vdev);
4449			spa_config_exit(spa, SCL_ALL, FTAG);
4450		}
4451	}
4452
4453	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4454
4455	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4456		spa_unload(spa);
4457		spa_deactivate(spa);
4458	}
4459
4460	if (oldconfig && spa->spa_config)
4461		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4462
4463	if (new_state != POOL_STATE_UNINITIALIZED) {
4464		if (!hardforce)
4465			spa_config_sync(spa, B_TRUE, B_TRUE);
4466		spa_remove(spa);
4467	}
4468	mutex_exit(&spa_namespace_lock);
4469
4470	return (0);
4471}
4472
4473/*
4474 * Destroy a storage pool.
4475 */
4476int
4477spa_destroy(char *pool)
4478{
4479	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4480	    B_FALSE, B_FALSE));
4481}
4482
4483/*
4484 * Export a storage pool.
4485 */
4486int
4487spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4488    boolean_t hardforce)
4489{
4490	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4491	    force, hardforce));
4492}
4493
4494/*
4495 * Similar to spa_export(), this unloads the spa_t without actually removing it
4496 * from the namespace in any way.
4497 */
4498int
4499spa_reset(char *pool)
4500{
4501	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4502	    B_FALSE, B_FALSE));
4503}
4504
4505/*
4506 * ==========================================================================
4507 * Device manipulation
4508 * ==========================================================================
4509 */
4510
4511/*
4512 * Add a device to a storage pool.
4513 */
4514int
4515spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4516{
4517	uint64_t txg, id;
4518	int error;
4519	vdev_t *rvd = spa->spa_root_vdev;
4520	vdev_t *vd, *tvd;
4521	nvlist_t **spares, **l2cache;
4522	uint_t nspares, nl2cache;
4523
4524	ASSERT(spa_writeable(spa));
4525
4526	txg = spa_vdev_enter(spa);
4527
4528	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4529	    VDEV_ALLOC_ADD)) != 0)
4530		return (spa_vdev_exit(spa, NULL, txg, error));
4531
4532	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4533
4534	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4535	    &nspares) != 0)
4536		nspares = 0;
4537
4538	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4539	    &nl2cache) != 0)
4540		nl2cache = 0;
4541
4542	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4543		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4544
4545	if (vd->vdev_children != 0 &&
4546	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4547		return (spa_vdev_exit(spa, vd, txg, error));
4548
4549	/*
4550	 * We must validate the spares and l2cache devices after checking the
4551	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4552	 */
4553	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4554		return (spa_vdev_exit(spa, vd, txg, error));
4555
4556	/*
4557	 * Transfer each new top-level vdev from vd to rvd.
4558	 */
4559	for (int c = 0; c < vd->vdev_children; c++) {
4560
4561		/*
4562		 * Set the vdev id to the first hole, if one exists.
4563		 */
4564		for (id = 0; id < rvd->vdev_children; id++) {
4565			if (rvd->vdev_child[id]->vdev_ishole) {
4566				vdev_free(rvd->vdev_child[id]);
4567				break;
4568			}
4569		}
4570		tvd = vd->vdev_child[c];
4571		vdev_remove_child(vd, tvd);
4572		tvd->vdev_id = id;
4573		vdev_add_child(rvd, tvd);
4574		vdev_config_dirty(tvd);
4575	}
4576
4577	if (nspares != 0) {
4578		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4579		    ZPOOL_CONFIG_SPARES);
4580		spa_load_spares(spa);
4581		spa->spa_spares.sav_sync = B_TRUE;
4582	}
4583
4584	if (nl2cache != 0) {
4585		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4586		    ZPOOL_CONFIG_L2CACHE);
4587		spa_load_l2cache(spa);
4588		spa->spa_l2cache.sav_sync = B_TRUE;
4589	}
4590
4591	/*
4592	 * We have to be careful when adding new vdevs to an existing pool.
4593	 * If other threads start allocating from these vdevs before we
4594	 * sync the config cache, and we lose power, then upon reboot we may
4595	 * fail to open the pool because there are DVAs that the config cache
4596	 * can't translate.  Therefore, we first add the vdevs without
4597	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4598	 * and then let spa_config_update() initialize the new metaslabs.
4599	 *
4600	 * spa_load() checks for added-but-not-initialized vdevs, so that
4601	 * if we lose power at any point in this sequence, the remaining
4602	 * steps will be completed the next time we load the pool.
4603	 */
4604	(void) spa_vdev_exit(spa, vd, txg, 0);
4605
4606	mutex_enter(&spa_namespace_lock);
4607	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4608	mutex_exit(&spa_namespace_lock);
4609
4610	return (0);
4611}
4612
4613/*
4614 * Attach a device to a mirror.  The arguments are the path to any device
4615 * in the mirror, and the nvroot for the new device.  If the path specifies
4616 * a device that is not mirrored, we automatically insert the mirror vdev.
4617 *
4618 * If 'replacing' is specified, the new device is intended to replace the
4619 * existing device; in this case the two devices are made into their own
4620 * mirror using the 'replacing' vdev, which is functionally identical to
4621 * the mirror vdev (it actually reuses all the same ops) but has a few
4622 * extra rules: you can't attach to it after it's been created, and upon
4623 * completion of resilvering, the first disk (the one being replaced)
4624 * is automatically detached.
4625 */
4626int
4627spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4628{
4629	uint64_t txg, dtl_max_txg;
4630	vdev_t *rvd = spa->spa_root_vdev;
4631	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4632	vdev_ops_t *pvops;
4633	char *oldvdpath, *newvdpath;
4634	int newvd_isspare;
4635	int error;
4636
4637	ASSERT(spa_writeable(spa));
4638
4639	txg = spa_vdev_enter(spa);
4640
4641	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4642
4643	if (oldvd == NULL)
4644		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4645
4646	if (!oldvd->vdev_ops->vdev_op_leaf)
4647		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4648
4649	pvd = oldvd->vdev_parent;
4650
4651	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4652	    VDEV_ALLOC_ATTACH)) != 0)
4653		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4654
4655	if (newrootvd->vdev_children != 1)
4656		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4657
4658	newvd = newrootvd->vdev_child[0];
4659
4660	if (!newvd->vdev_ops->vdev_op_leaf)
4661		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4662
4663	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4664		return (spa_vdev_exit(spa, newrootvd, txg, error));
4665
4666	/*
4667	 * Spares can't replace logs
4668	 */
4669	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4670		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4671
4672	if (!replacing) {
4673		/*
4674		 * For attach, the only allowable parent is a mirror or the root
4675		 * vdev.
4676		 */
4677		if (pvd->vdev_ops != &vdev_mirror_ops &&
4678		    pvd->vdev_ops != &vdev_root_ops)
4679			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4680
4681		pvops = &vdev_mirror_ops;
4682	} else {
4683		/*
4684		 * Active hot spares can only be replaced by inactive hot
4685		 * spares.
4686		 */
4687		if (pvd->vdev_ops == &vdev_spare_ops &&
4688		    oldvd->vdev_isspare &&
4689		    !spa_has_spare(spa, newvd->vdev_guid))
4690			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4691
4692		/*
4693		 * If the source is a hot spare, and the parent isn't already a
4694		 * spare, then we want to create a new hot spare.  Otherwise, we
4695		 * want to create a replacing vdev.  The user is not allowed to
4696		 * attach to a spared vdev child unless the 'isspare' state is
4697		 * the same (spare replaces spare, non-spare replaces
4698		 * non-spare).
4699		 */
4700		if (pvd->vdev_ops == &vdev_replacing_ops &&
4701		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4702			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4703		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4704		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4705			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4706		}
4707
4708		if (newvd->vdev_isspare)
4709			pvops = &vdev_spare_ops;
4710		else
4711			pvops = &vdev_replacing_ops;
4712	}
4713
4714	/*
4715	 * Make sure the new device is big enough.
4716	 */
4717	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4718		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4719
4720	/*
4721	 * The new device cannot have a higher alignment requirement
4722	 * than the top-level vdev.
4723	 */
4724	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4725		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4726
4727	/*
4728	 * If this is an in-place replacement, update oldvd's path and devid
4729	 * to make it distinguishable from newvd, and unopenable from now on.
4730	 */
4731	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4732		spa_strfree(oldvd->vdev_path);
4733		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4734		    KM_SLEEP);
4735		(void) sprintf(oldvd->vdev_path, "%s/%s",
4736		    newvd->vdev_path, "old");
4737		if (oldvd->vdev_devid != NULL) {
4738			spa_strfree(oldvd->vdev_devid);
4739			oldvd->vdev_devid = NULL;
4740		}
4741	}
4742
4743	/* mark the device being resilvered */
4744	newvd->vdev_resilver_txg = txg;
4745
4746	/*
4747	 * If the parent is not a mirror, or if we're replacing, insert the new
4748	 * mirror/replacing/spare vdev above oldvd.
4749	 */
4750	if (pvd->vdev_ops != pvops)
4751		pvd = vdev_add_parent(oldvd, pvops);
4752
4753	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4754	ASSERT(pvd->vdev_ops == pvops);
4755	ASSERT(oldvd->vdev_parent == pvd);
4756
4757	/*
4758	 * Extract the new device from its root and add it to pvd.
4759	 */
4760	vdev_remove_child(newrootvd, newvd);
4761	newvd->vdev_id = pvd->vdev_children;
4762	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4763	vdev_add_child(pvd, newvd);
4764
4765	tvd = newvd->vdev_top;
4766	ASSERT(pvd->vdev_top == tvd);
4767	ASSERT(tvd->vdev_parent == rvd);
4768
4769	vdev_config_dirty(tvd);
4770
4771	/*
4772	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4773	 * for any dmu_sync-ed blocks.  It will propagate upward when
4774	 * spa_vdev_exit() calls vdev_dtl_reassess().
4775	 */
4776	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4777
4778	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4779	    dtl_max_txg - TXG_INITIAL);
4780
4781	if (newvd->vdev_isspare) {
4782		spa_spare_activate(newvd);
4783		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4784	}
4785
4786	oldvdpath = spa_strdup(oldvd->vdev_path);
4787	newvdpath = spa_strdup(newvd->vdev_path);
4788	newvd_isspare = newvd->vdev_isspare;
4789
4790	/*
4791	 * Mark newvd's DTL dirty in this txg.
4792	 */
4793	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4794
4795	/*
4796	 * Schedule the resilver to restart in the future. We do this to
4797	 * ensure that dmu_sync-ed blocks have been stitched into the
4798	 * respective datasets.
4799	 */
4800	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4801
4802	/*
4803	 * Commit the config
4804	 */
4805	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4806
4807	spa_history_log_internal(spa, "vdev attach", NULL,
4808	    "%s vdev=%s %s vdev=%s",
4809	    replacing && newvd_isspare ? "spare in" :
4810	    replacing ? "replace" : "attach", newvdpath,
4811	    replacing ? "for" : "to", oldvdpath);
4812
4813	spa_strfree(oldvdpath);
4814	spa_strfree(newvdpath);
4815
4816	if (spa->spa_bootfs)
4817		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4818
4819	return (0);
4820}
4821
4822/*
4823 * Detach a device from a mirror or replacing vdev.
4824 *
4825 * If 'replace_done' is specified, only detach if the parent
4826 * is a replacing vdev.
4827 */
4828int
4829spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4830{
4831	uint64_t txg;
4832	int error;
4833	vdev_t *rvd = spa->spa_root_vdev;
4834	vdev_t *vd, *pvd, *cvd, *tvd;
4835	boolean_t unspare = B_FALSE;
4836	uint64_t unspare_guid = 0;
4837	char *vdpath;
4838
4839	ASSERT(spa_writeable(spa));
4840
4841	txg = spa_vdev_enter(spa);
4842
4843	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4844
4845	if (vd == NULL)
4846		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4847
4848	if (!vd->vdev_ops->vdev_op_leaf)
4849		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4850
4851	pvd = vd->vdev_parent;
4852
4853	/*
4854	 * If the parent/child relationship is not as expected, don't do it.
4855	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4856	 * vdev that's replacing B with C.  The user's intent in replacing
4857	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4858	 * the replace by detaching C, the expected behavior is to end up
4859	 * M(A,B).  But suppose that right after deciding to detach C,
4860	 * the replacement of B completes.  We would have M(A,C), and then
4861	 * ask to detach C, which would leave us with just A -- not what
4862	 * the user wanted.  To prevent this, we make sure that the
4863	 * parent/child relationship hasn't changed -- in this example,
4864	 * that C's parent is still the replacing vdev R.
4865	 */
4866	if (pvd->vdev_guid != pguid && pguid != 0)
4867		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4868
4869	/*
4870	 * Only 'replacing' or 'spare' vdevs can be replaced.
4871	 */
4872	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4873	    pvd->vdev_ops != &vdev_spare_ops)
4874		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4875
4876	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4877	    spa_version(spa) >= SPA_VERSION_SPARES);
4878
4879	/*
4880	 * Only mirror, replacing, and spare vdevs support detach.
4881	 */
4882	if (pvd->vdev_ops != &vdev_replacing_ops &&
4883	    pvd->vdev_ops != &vdev_mirror_ops &&
4884	    pvd->vdev_ops != &vdev_spare_ops)
4885		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4886
4887	/*
4888	 * If this device has the only valid copy of some data,
4889	 * we cannot safely detach it.
4890	 */
4891	if (vdev_dtl_required(vd))
4892		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4893
4894	ASSERT(pvd->vdev_children >= 2);
4895
4896	/*
4897	 * If we are detaching the second disk from a replacing vdev, then
4898	 * check to see if we changed the original vdev's path to have "/old"
4899	 * at the end in spa_vdev_attach().  If so, undo that change now.
4900	 */
4901	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4902	    vd->vdev_path != NULL) {
4903		size_t len = strlen(vd->vdev_path);
4904
4905		for (int c = 0; c < pvd->vdev_children; c++) {
4906			cvd = pvd->vdev_child[c];
4907
4908			if (cvd == vd || cvd->vdev_path == NULL)
4909				continue;
4910
4911			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4912			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4913				spa_strfree(cvd->vdev_path);
4914				cvd->vdev_path = spa_strdup(vd->vdev_path);
4915				break;
4916			}
4917		}
4918	}
4919
4920	/*
4921	 * If we are detaching the original disk from a spare, then it implies
4922	 * that the spare should become a real disk, and be removed from the
4923	 * active spare list for the pool.
4924	 */
4925	if (pvd->vdev_ops == &vdev_spare_ops &&
4926	    vd->vdev_id == 0 &&
4927	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4928		unspare = B_TRUE;
4929
4930	/*
4931	 * Erase the disk labels so the disk can be used for other things.
4932	 * This must be done after all other error cases are handled,
4933	 * but before we disembowel vd (so we can still do I/O to it).
4934	 * But if we can't do it, don't treat the error as fatal --
4935	 * it may be that the unwritability of the disk is the reason
4936	 * it's being detached!
4937	 */
4938	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4939
4940	/*
4941	 * Remove vd from its parent and compact the parent's children.
4942	 */
4943	vdev_remove_child(pvd, vd);
4944	vdev_compact_children(pvd);
4945
4946	/*
4947	 * Remember one of the remaining children so we can get tvd below.
4948	 */
4949	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4950
4951	/*
4952	 * If we need to remove the remaining child from the list of hot spares,
4953	 * do it now, marking the vdev as no longer a spare in the process.
4954	 * We must do this before vdev_remove_parent(), because that can
4955	 * change the GUID if it creates a new toplevel GUID.  For a similar
4956	 * reason, we must remove the spare now, in the same txg as the detach;
4957	 * otherwise someone could attach a new sibling, change the GUID, and
4958	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4959	 */
4960	if (unspare) {
4961		ASSERT(cvd->vdev_isspare);
4962		spa_spare_remove(cvd);
4963		unspare_guid = cvd->vdev_guid;
4964		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4965		cvd->vdev_unspare = B_TRUE;
4966	}
4967
4968	/*
4969	 * If the parent mirror/replacing vdev only has one child,
4970	 * the parent is no longer needed.  Remove it from the tree.
4971	 */
4972	if (pvd->vdev_children == 1) {
4973		if (pvd->vdev_ops == &vdev_spare_ops)
4974			cvd->vdev_unspare = B_FALSE;
4975		vdev_remove_parent(cvd);
4976	}
4977
4978
4979	/*
4980	 * We don't set tvd until now because the parent we just removed
4981	 * may have been the previous top-level vdev.
4982	 */
4983	tvd = cvd->vdev_top;
4984	ASSERT(tvd->vdev_parent == rvd);
4985
4986	/*
4987	 * Reevaluate the parent vdev state.
4988	 */
4989	vdev_propagate_state(cvd);
4990
4991	/*
4992	 * If the 'autoexpand' property is set on the pool then automatically
4993	 * try to expand the size of the pool. For example if the device we
4994	 * just detached was smaller than the others, it may be possible to
4995	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4996	 * first so that we can obtain the updated sizes of the leaf vdevs.
4997	 */
4998	if (spa->spa_autoexpand) {
4999		vdev_reopen(tvd);
5000		vdev_expand(tvd, txg);
5001	}
5002
5003	vdev_config_dirty(tvd);
5004
5005	/*
5006	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
5007	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5008	 * But first make sure we're not on any *other* txg's DTL list, to
5009	 * prevent vd from being accessed after it's freed.
5010	 */
5011	vdpath = spa_strdup(vd->vdev_path);
5012	for (int t = 0; t < TXG_SIZE; t++)
5013		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5014	vd->vdev_detached = B_TRUE;
5015	vdev_dirty(tvd, VDD_DTL, vd, txg);
5016
5017	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
5018
5019	/* hang on to the spa before we release the lock */
5020	spa_open_ref(spa, FTAG);
5021
5022	error = spa_vdev_exit(spa, vd, txg, 0);
5023
5024	spa_history_log_internal(spa, "detach", NULL,
5025	    "vdev=%s", vdpath);
5026	spa_strfree(vdpath);
5027
5028	/*
5029	 * If this was the removal of the original device in a hot spare vdev,
5030	 * then we want to go through and remove the device from the hot spare
5031	 * list of every other pool.
5032	 */
5033	if (unspare) {
5034		spa_t *altspa = NULL;
5035
5036		mutex_enter(&spa_namespace_lock);
5037		while ((altspa = spa_next(altspa)) != NULL) {
5038			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5039			    altspa == spa)
5040				continue;
5041
5042			spa_open_ref(altspa, FTAG);
5043			mutex_exit(&spa_namespace_lock);
5044			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5045			mutex_enter(&spa_namespace_lock);
5046			spa_close(altspa, FTAG);
5047		}
5048		mutex_exit(&spa_namespace_lock);
5049
5050		/* search the rest of the vdevs for spares to remove */
5051		spa_vdev_resilver_done(spa);
5052	}
5053
5054	/* all done with the spa; OK to release */
5055	mutex_enter(&spa_namespace_lock);
5056	spa_close(spa, FTAG);
5057	mutex_exit(&spa_namespace_lock);
5058
5059	return (error);
5060}
5061
5062/*
5063 * Split a set of devices from their mirrors, and create a new pool from them.
5064 */
5065int
5066spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5067    nvlist_t *props, boolean_t exp)
5068{
5069	int error = 0;
5070	uint64_t txg, *glist;
5071	spa_t *newspa;
5072	uint_t c, children, lastlog;
5073	nvlist_t **child, *nvl, *tmp;
5074	dmu_tx_t *tx;
5075	char *altroot = NULL;
5076	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5077	boolean_t activate_slog;
5078
5079	ASSERT(spa_writeable(spa));
5080
5081	txg = spa_vdev_enter(spa);
5082
5083	/* clear the log and flush everything up to now */
5084	activate_slog = spa_passivate_log(spa);
5085	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5086	error = spa_offline_log(spa);
5087	txg = spa_vdev_config_enter(spa);
5088
5089	if (activate_slog)
5090		spa_activate_log(spa);
5091
5092	if (error != 0)
5093		return (spa_vdev_exit(spa, NULL, txg, error));
5094
5095	/* check new spa name before going any further */
5096	if (spa_lookup(newname) != NULL)
5097		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5098
5099	/*
5100	 * scan through all the children to ensure they're all mirrors
5101	 */
5102	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5103	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5104	    &children) != 0)
5105		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5106
5107	/* first, check to ensure we've got the right child count */
5108	rvd = spa->spa_root_vdev;
5109	lastlog = 0;
5110	for (c = 0; c < rvd->vdev_children; c++) {
5111		vdev_t *vd = rvd->vdev_child[c];
5112
5113		/* don't count the holes & logs as children */
5114		if (vd->vdev_islog || vd->vdev_ishole) {
5115			if (lastlog == 0)
5116				lastlog = c;
5117			continue;
5118		}
5119
5120		lastlog = 0;
5121	}
5122	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5123		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5124
5125	/* next, ensure no spare or cache devices are part of the split */
5126	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5127	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5128		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5129
5130	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5131	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5132
5133	/* then, loop over each vdev and validate it */
5134	for (c = 0; c < children; c++) {
5135		uint64_t is_hole = 0;
5136
5137		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5138		    &is_hole);
5139
5140		if (is_hole != 0) {
5141			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5142			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5143				continue;
5144			} else {
5145				error = SET_ERROR(EINVAL);
5146				break;
5147			}
5148		}
5149
5150		/* which disk is going to be split? */
5151		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5152		    &glist[c]) != 0) {
5153			error = SET_ERROR(EINVAL);
5154			break;
5155		}
5156
5157		/* look it up in the spa */
5158		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5159		if (vml[c] == NULL) {
5160			error = SET_ERROR(ENODEV);
5161			break;
5162		}
5163
5164		/* make sure there's nothing stopping the split */
5165		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5166		    vml[c]->vdev_islog ||
5167		    vml[c]->vdev_ishole ||
5168		    vml[c]->vdev_isspare ||
5169		    vml[c]->vdev_isl2cache ||
5170		    !vdev_writeable(vml[c]) ||
5171		    vml[c]->vdev_children != 0 ||
5172		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5173		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5174			error = SET_ERROR(EINVAL);
5175			break;
5176		}
5177
5178		if (vdev_dtl_required(vml[c])) {
5179			error = SET_ERROR(EBUSY);
5180			break;
5181		}
5182
5183		/* we need certain info from the top level */
5184		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5185		    vml[c]->vdev_top->vdev_ms_array) == 0);
5186		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5187		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5188		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5189		    vml[c]->vdev_top->vdev_asize) == 0);
5190		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5191		    vml[c]->vdev_top->vdev_ashift) == 0);
5192	}
5193
5194	if (error != 0) {
5195		kmem_free(vml, children * sizeof (vdev_t *));
5196		kmem_free(glist, children * sizeof (uint64_t));
5197		return (spa_vdev_exit(spa, NULL, txg, error));
5198	}
5199
5200	/* stop writers from using the disks */
5201	for (c = 0; c < children; c++) {
5202		if (vml[c] != NULL)
5203			vml[c]->vdev_offline = B_TRUE;
5204	}
5205	vdev_reopen(spa->spa_root_vdev);
5206
5207	/*
5208	 * Temporarily record the splitting vdevs in the spa config.  This
5209	 * will disappear once the config is regenerated.
5210	 */
5211	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5212	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5213	    glist, children) == 0);
5214	kmem_free(glist, children * sizeof (uint64_t));
5215
5216	mutex_enter(&spa->spa_props_lock);
5217	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5218	    nvl) == 0);
5219	mutex_exit(&spa->spa_props_lock);
5220	spa->spa_config_splitting = nvl;
5221	vdev_config_dirty(spa->spa_root_vdev);
5222
5223	/* configure and create the new pool */
5224	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5225	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5226	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5227	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5228	    spa_version(spa)) == 0);
5229	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5230	    spa->spa_config_txg) == 0);
5231	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5232	    spa_generate_guid(NULL)) == 0);
5233	(void) nvlist_lookup_string(props,
5234	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5235
5236	/* add the new pool to the namespace */
5237	newspa = spa_add(newname, config, altroot);
5238	newspa->spa_config_txg = spa->spa_config_txg;
5239	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5240
5241	/* release the spa config lock, retaining the namespace lock */
5242	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5243
5244	if (zio_injection_enabled)
5245		zio_handle_panic_injection(spa, FTAG, 1);
5246
5247	spa_activate(newspa, spa_mode_global);
5248	spa_async_suspend(newspa);
5249
5250#ifndef sun
5251	/* mark that we are creating new spa by splitting */
5252	newspa->spa_splitting_newspa = B_TRUE;
5253#endif
5254	/* create the new pool from the disks of the original pool */
5255	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5256#ifndef sun
5257	newspa->spa_splitting_newspa = B_FALSE;
5258#endif
5259	if (error)
5260		goto out;
5261
5262	/* if that worked, generate a real config for the new pool */
5263	if (newspa->spa_root_vdev != NULL) {
5264		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5265		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5266		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5267		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5268		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5269		    B_TRUE));
5270	}
5271
5272	/* set the props */
5273	if (props != NULL) {
5274		spa_configfile_set(newspa, props, B_FALSE);
5275		error = spa_prop_set(newspa, props);
5276		if (error)
5277			goto out;
5278	}
5279
5280	/* flush everything */
5281	txg = spa_vdev_config_enter(newspa);
5282	vdev_config_dirty(newspa->spa_root_vdev);
5283	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5284
5285	if (zio_injection_enabled)
5286		zio_handle_panic_injection(spa, FTAG, 2);
5287
5288	spa_async_resume(newspa);
5289
5290	/* finally, update the original pool's config */
5291	txg = spa_vdev_config_enter(spa);
5292	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5293	error = dmu_tx_assign(tx, TXG_WAIT);
5294	if (error != 0)
5295		dmu_tx_abort(tx);
5296	for (c = 0; c < children; c++) {
5297		if (vml[c] != NULL) {
5298			vdev_split(vml[c]);
5299			if (error == 0)
5300				spa_history_log_internal(spa, "detach", tx,
5301				    "vdev=%s", vml[c]->vdev_path);
5302			vdev_free(vml[c]);
5303		}
5304	}
5305	vdev_config_dirty(spa->spa_root_vdev);
5306	spa->spa_config_splitting = NULL;
5307	nvlist_free(nvl);
5308	if (error == 0)
5309		dmu_tx_commit(tx);
5310	(void) spa_vdev_exit(spa, NULL, txg, 0);
5311
5312	if (zio_injection_enabled)
5313		zio_handle_panic_injection(spa, FTAG, 3);
5314
5315	/* split is complete; log a history record */
5316	spa_history_log_internal(newspa, "split", NULL,
5317	    "from pool %s", spa_name(spa));
5318
5319	kmem_free(vml, children * sizeof (vdev_t *));
5320
5321	/* if we're not going to mount the filesystems in userland, export */
5322	if (exp)
5323		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5324		    B_FALSE, B_FALSE);
5325
5326	return (error);
5327
5328out:
5329	spa_unload(newspa);
5330	spa_deactivate(newspa);
5331	spa_remove(newspa);
5332
5333	txg = spa_vdev_config_enter(spa);
5334
5335	/* re-online all offlined disks */
5336	for (c = 0; c < children; c++) {
5337		if (vml[c] != NULL)
5338			vml[c]->vdev_offline = B_FALSE;
5339	}
5340	vdev_reopen(spa->spa_root_vdev);
5341
5342	nvlist_free(spa->spa_config_splitting);
5343	spa->spa_config_splitting = NULL;
5344	(void) spa_vdev_exit(spa, NULL, txg, error);
5345
5346	kmem_free(vml, children * sizeof (vdev_t *));
5347	return (error);
5348}
5349
5350static nvlist_t *
5351spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5352{
5353	for (int i = 0; i < count; i++) {
5354		uint64_t guid;
5355
5356		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5357		    &guid) == 0);
5358
5359		if (guid == target_guid)
5360			return (nvpp[i]);
5361	}
5362
5363	return (NULL);
5364}
5365
5366static void
5367spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5368	nvlist_t *dev_to_remove)
5369{
5370	nvlist_t **newdev = NULL;
5371
5372	if (count > 1)
5373		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5374
5375	for (int i = 0, j = 0; i < count; i++) {
5376		if (dev[i] == dev_to_remove)
5377			continue;
5378		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5379	}
5380
5381	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5382	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5383
5384	for (int i = 0; i < count - 1; i++)
5385		nvlist_free(newdev[i]);
5386
5387	if (count > 1)
5388		kmem_free(newdev, (count - 1) * sizeof (void *));
5389}
5390
5391/*
5392 * Evacuate the device.
5393 */
5394static int
5395spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5396{
5397	uint64_t txg;
5398	int error = 0;
5399
5400	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5401	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5402	ASSERT(vd == vd->vdev_top);
5403
5404	/*
5405	 * Evacuate the device.  We don't hold the config lock as writer
5406	 * since we need to do I/O but we do keep the
5407	 * spa_namespace_lock held.  Once this completes the device
5408	 * should no longer have any blocks allocated on it.
5409	 */
5410	if (vd->vdev_islog) {
5411		if (vd->vdev_stat.vs_alloc != 0)
5412			error = spa_offline_log(spa);
5413	} else {
5414		error = SET_ERROR(ENOTSUP);
5415	}
5416
5417	if (error)
5418		return (error);
5419
5420	/*
5421	 * The evacuation succeeded.  Remove any remaining MOS metadata
5422	 * associated with this vdev, and wait for these changes to sync.
5423	 */
5424	ASSERT0(vd->vdev_stat.vs_alloc);
5425	txg = spa_vdev_config_enter(spa);
5426	vd->vdev_removing = B_TRUE;
5427	vdev_dirty_leaves(vd, VDD_DTL, txg);
5428	vdev_config_dirty(vd);
5429	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5430
5431	return (0);
5432}
5433
5434/*
5435 * Complete the removal by cleaning up the namespace.
5436 */
5437static void
5438spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5439{
5440	vdev_t *rvd = spa->spa_root_vdev;
5441	uint64_t id = vd->vdev_id;
5442	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5443
5444	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5445	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5446	ASSERT(vd == vd->vdev_top);
5447
5448	/*
5449	 * Only remove any devices which are empty.
5450	 */
5451	if (vd->vdev_stat.vs_alloc != 0)
5452		return;
5453
5454	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5455
5456	if (list_link_active(&vd->vdev_state_dirty_node))
5457		vdev_state_clean(vd);
5458	if (list_link_active(&vd->vdev_config_dirty_node))
5459		vdev_config_clean(vd);
5460
5461	vdev_free(vd);
5462
5463	if (last_vdev) {
5464		vdev_compact_children(rvd);
5465	} else {
5466		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5467		vdev_add_child(rvd, vd);
5468	}
5469	vdev_config_dirty(rvd);
5470
5471	/*
5472	 * Reassess the health of our root vdev.
5473	 */
5474	vdev_reopen(rvd);
5475}
5476
5477/*
5478 * Remove a device from the pool -
5479 *
5480 * Removing a device from the vdev namespace requires several steps
5481 * and can take a significant amount of time.  As a result we use
5482 * the spa_vdev_config_[enter/exit] functions which allow us to
5483 * grab and release the spa_config_lock while still holding the namespace
5484 * lock.  During each step the configuration is synced out.
5485 *
5486 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5487 * devices.
5488 */
5489int
5490spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5491{
5492	vdev_t *vd;
5493	metaslab_group_t *mg;
5494	nvlist_t **spares, **l2cache, *nv;
5495	uint64_t txg = 0;
5496	uint_t nspares, nl2cache;
5497	int error = 0;
5498	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5499
5500	ASSERT(spa_writeable(spa));
5501
5502	if (!locked)
5503		txg = spa_vdev_enter(spa);
5504
5505	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5506
5507	if (spa->spa_spares.sav_vdevs != NULL &&
5508	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5509	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5510	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5511		/*
5512		 * Only remove the hot spare if it's not currently in use
5513		 * in this pool.
5514		 */
5515		if (vd == NULL || unspare) {
5516			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5517			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5518			spa_load_spares(spa);
5519			spa->spa_spares.sav_sync = B_TRUE;
5520		} else {
5521			error = SET_ERROR(EBUSY);
5522		}
5523	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5524	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5525	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5526	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5527		/*
5528		 * Cache devices can always be removed.
5529		 */
5530		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5531		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5532		spa_load_l2cache(spa);
5533		spa->spa_l2cache.sav_sync = B_TRUE;
5534	} else if (vd != NULL && vd->vdev_islog) {
5535		ASSERT(!locked);
5536		ASSERT(vd == vd->vdev_top);
5537
5538		/*
5539		 * XXX - Once we have bp-rewrite this should
5540		 * become the common case.
5541		 */
5542
5543		mg = vd->vdev_mg;
5544
5545		/*
5546		 * Stop allocating from this vdev.
5547		 */
5548		metaslab_group_passivate(mg);
5549
5550		/*
5551		 * Wait for the youngest allocations and frees to sync,
5552		 * and then wait for the deferral of those frees to finish.
5553		 */
5554		spa_vdev_config_exit(spa, NULL,
5555		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5556
5557		/*
5558		 * Attempt to evacuate the vdev.
5559		 */
5560		error = spa_vdev_remove_evacuate(spa, vd);
5561
5562		txg = spa_vdev_config_enter(spa);
5563
5564		/*
5565		 * If we couldn't evacuate the vdev, unwind.
5566		 */
5567		if (error) {
5568			metaslab_group_activate(mg);
5569			return (spa_vdev_exit(spa, NULL, txg, error));
5570		}
5571
5572		/*
5573		 * Clean up the vdev namespace.
5574		 */
5575		spa_vdev_remove_from_namespace(spa, vd);
5576
5577	} else if (vd != NULL) {
5578		/*
5579		 * Normal vdevs cannot be removed (yet).
5580		 */
5581		error = SET_ERROR(ENOTSUP);
5582	} else {
5583		/*
5584		 * There is no vdev of any kind with the specified guid.
5585		 */
5586		error = SET_ERROR(ENOENT);
5587	}
5588
5589	if (!locked)
5590		return (spa_vdev_exit(spa, NULL, txg, error));
5591
5592	return (error);
5593}
5594
5595/*
5596 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5597 * currently spared, so we can detach it.
5598 */
5599static vdev_t *
5600spa_vdev_resilver_done_hunt(vdev_t *vd)
5601{
5602	vdev_t *newvd, *oldvd;
5603
5604	for (int c = 0; c < vd->vdev_children; c++) {
5605		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5606		if (oldvd != NULL)
5607			return (oldvd);
5608	}
5609
5610	/*
5611	 * Check for a completed replacement.  We always consider the first
5612	 * vdev in the list to be the oldest vdev, and the last one to be
5613	 * the newest (see spa_vdev_attach() for how that works).  In
5614	 * the case where the newest vdev is faulted, we will not automatically
5615	 * remove it after a resilver completes.  This is OK as it will require
5616	 * user intervention to determine which disk the admin wishes to keep.
5617	 */
5618	if (vd->vdev_ops == &vdev_replacing_ops) {
5619		ASSERT(vd->vdev_children > 1);
5620
5621		newvd = vd->vdev_child[vd->vdev_children - 1];
5622		oldvd = vd->vdev_child[0];
5623
5624		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5625		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5626		    !vdev_dtl_required(oldvd))
5627			return (oldvd);
5628	}
5629
5630	/*
5631	 * Check for a completed resilver with the 'unspare' flag set.
5632	 */
5633	if (vd->vdev_ops == &vdev_spare_ops) {
5634		vdev_t *first = vd->vdev_child[0];
5635		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5636
5637		if (last->vdev_unspare) {
5638			oldvd = first;
5639			newvd = last;
5640		} else if (first->vdev_unspare) {
5641			oldvd = last;
5642			newvd = first;
5643		} else {
5644			oldvd = NULL;
5645		}
5646
5647		if (oldvd != NULL &&
5648		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5649		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5650		    !vdev_dtl_required(oldvd))
5651			return (oldvd);
5652
5653		/*
5654		 * If there are more than two spares attached to a disk,
5655		 * and those spares are not required, then we want to
5656		 * attempt to free them up now so that they can be used
5657		 * by other pools.  Once we're back down to a single
5658		 * disk+spare, we stop removing them.
5659		 */
5660		if (vd->vdev_children > 2) {
5661			newvd = vd->vdev_child[1];
5662
5663			if (newvd->vdev_isspare && last->vdev_isspare &&
5664			    vdev_dtl_empty(last, DTL_MISSING) &&
5665			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5666			    !vdev_dtl_required(newvd))
5667				return (newvd);
5668		}
5669	}
5670
5671	return (NULL);
5672}
5673
5674static void
5675spa_vdev_resilver_done(spa_t *spa)
5676{
5677	vdev_t *vd, *pvd, *ppvd;
5678	uint64_t guid, sguid, pguid, ppguid;
5679
5680	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5681
5682	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5683		pvd = vd->vdev_parent;
5684		ppvd = pvd->vdev_parent;
5685		guid = vd->vdev_guid;
5686		pguid = pvd->vdev_guid;
5687		ppguid = ppvd->vdev_guid;
5688		sguid = 0;
5689		/*
5690		 * If we have just finished replacing a hot spared device, then
5691		 * we need to detach the parent's first child (the original hot
5692		 * spare) as well.
5693		 */
5694		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5695		    ppvd->vdev_children == 2) {
5696			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5697			sguid = ppvd->vdev_child[1]->vdev_guid;
5698		}
5699		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5700
5701		spa_config_exit(spa, SCL_ALL, FTAG);
5702		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5703			return;
5704		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5705			return;
5706		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5707	}
5708
5709	spa_config_exit(spa, SCL_ALL, FTAG);
5710}
5711
5712/*
5713 * Update the stored path or FRU for this vdev.
5714 */
5715int
5716spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5717    boolean_t ispath)
5718{
5719	vdev_t *vd;
5720	boolean_t sync = B_FALSE;
5721
5722	ASSERT(spa_writeable(spa));
5723
5724	spa_vdev_state_enter(spa, SCL_ALL);
5725
5726	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5727		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5728
5729	if (!vd->vdev_ops->vdev_op_leaf)
5730		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5731
5732	if (ispath) {
5733		if (strcmp(value, vd->vdev_path) != 0) {
5734			spa_strfree(vd->vdev_path);
5735			vd->vdev_path = spa_strdup(value);
5736			sync = B_TRUE;
5737		}
5738	} else {
5739		if (vd->vdev_fru == NULL) {
5740			vd->vdev_fru = spa_strdup(value);
5741			sync = B_TRUE;
5742		} else if (strcmp(value, vd->vdev_fru) != 0) {
5743			spa_strfree(vd->vdev_fru);
5744			vd->vdev_fru = spa_strdup(value);
5745			sync = B_TRUE;
5746		}
5747	}
5748
5749	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5750}
5751
5752int
5753spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5754{
5755	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5756}
5757
5758int
5759spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5760{
5761	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5762}
5763
5764/*
5765 * ==========================================================================
5766 * SPA Scanning
5767 * ==========================================================================
5768 */
5769
5770int
5771spa_scan_stop(spa_t *spa)
5772{
5773	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5774	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5775		return (SET_ERROR(EBUSY));
5776	return (dsl_scan_cancel(spa->spa_dsl_pool));
5777}
5778
5779int
5780spa_scan(spa_t *spa, pool_scan_func_t func)
5781{
5782	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5783
5784	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5785		return (SET_ERROR(ENOTSUP));
5786
5787	/*
5788	 * If a resilver was requested, but there is no DTL on a
5789	 * writeable leaf device, we have nothing to do.
5790	 */
5791	if (func == POOL_SCAN_RESILVER &&
5792	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5793		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5794		return (0);
5795	}
5796
5797	return (dsl_scan(spa->spa_dsl_pool, func));
5798}
5799
5800/*
5801 * ==========================================================================
5802 * SPA async task processing
5803 * ==========================================================================
5804 */
5805
5806static void
5807spa_async_remove(spa_t *spa, vdev_t *vd)
5808{
5809	if (vd->vdev_remove_wanted) {
5810		vd->vdev_remove_wanted = B_FALSE;
5811		vd->vdev_delayed_close = B_FALSE;
5812		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5813
5814		/*
5815		 * We want to clear the stats, but we don't want to do a full
5816		 * vdev_clear() as that will cause us to throw away
5817		 * degraded/faulted state as well as attempt to reopen the
5818		 * device, all of which is a waste.
5819		 */
5820		vd->vdev_stat.vs_read_errors = 0;
5821		vd->vdev_stat.vs_write_errors = 0;
5822		vd->vdev_stat.vs_checksum_errors = 0;
5823
5824		vdev_state_dirty(vd->vdev_top);
5825	}
5826
5827	for (int c = 0; c < vd->vdev_children; c++)
5828		spa_async_remove(spa, vd->vdev_child[c]);
5829}
5830
5831static void
5832spa_async_probe(spa_t *spa, vdev_t *vd)
5833{
5834	if (vd->vdev_probe_wanted) {
5835		vd->vdev_probe_wanted = B_FALSE;
5836		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5837	}
5838
5839	for (int c = 0; c < vd->vdev_children; c++)
5840		spa_async_probe(spa, vd->vdev_child[c]);
5841}
5842
5843static void
5844spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5845{
5846	sysevent_id_t eid;
5847	nvlist_t *attr;
5848	char *physpath;
5849
5850	if (!spa->spa_autoexpand)
5851		return;
5852
5853	for (int c = 0; c < vd->vdev_children; c++) {
5854		vdev_t *cvd = vd->vdev_child[c];
5855		spa_async_autoexpand(spa, cvd);
5856	}
5857
5858	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5859		return;
5860
5861	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5862	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5863
5864	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5865	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5866
5867	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5868	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5869
5870	nvlist_free(attr);
5871	kmem_free(physpath, MAXPATHLEN);
5872}
5873
5874static void
5875spa_async_thread(void *arg)
5876{
5877	spa_t *spa = arg;
5878	int tasks;
5879
5880	ASSERT(spa->spa_sync_on);
5881
5882	mutex_enter(&spa->spa_async_lock);
5883	tasks = spa->spa_async_tasks;
5884	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5885	mutex_exit(&spa->spa_async_lock);
5886
5887	/*
5888	 * See if the config needs to be updated.
5889	 */
5890	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5891		uint64_t old_space, new_space;
5892
5893		mutex_enter(&spa_namespace_lock);
5894		old_space = metaslab_class_get_space(spa_normal_class(spa));
5895		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5896		new_space = metaslab_class_get_space(spa_normal_class(spa));
5897		mutex_exit(&spa_namespace_lock);
5898
5899		/*
5900		 * If the pool grew as a result of the config update,
5901		 * then log an internal history event.
5902		 */
5903		if (new_space != old_space) {
5904			spa_history_log_internal(spa, "vdev online", NULL,
5905			    "pool '%s' size: %llu(+%llu)",
5906			    spa_name(spa), new_space, new_space - old_space);
5907		}
5908	}
5909
5910	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5911		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5912		spa_async_autoexpand(spa, spa->spa_root_vdev);
5913		spa_config_exit(spa, SCL_CONFIG, FTAG);
5914	}
5915
5916	/*
5917	 * See if any devices need to be probed.
5918	 */
5919	if (tasks & SPA_ASYNC_PROBE) {
5920		spa_vdev_state_enter(spa, SCL_NONE);
5921		spa_async_probe(spa, spa->spa_root_vdev);
5922		(void) spa_vdev_state_exit(spa, NULL, 0);
5923	}
5924
5925	/*
5926	 * If any devices are done replacing, detach them.
5927	 */
5928	if (tasks & SPA_ASYNC_RESILVER_DONE)
5929		spa_vdev_resilver_done(spa);
5930
5931	/*
5932	 * Kick off a resilver.
5933	 */
5934	if (tasks & SPA_ASYNC_RESILVER)
5935		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5936
5937	/*
5938	 * Let the world know that we're done.
5939	 */
5940	mutex_enter(&spa->spa_async_lock);
5941	spa->spa_async_thread = NULL;
5942	cv_broadcast(&spa->spa_async_cv);
5943	mutex_exit(&spa->spa_async_lock);
5944	thread_exit();
5945}
5946
5947static void
5948spa_async_thread_vd(void *arg)
5949{
5950	spa_t *spa = arg;
5951	int tasks;
5952
5953	ASSERT(spa->spa_sync_on);
5954
5955	mutex_enter(&spa->spa_async_lock);
5956	tasks = spa->spa_async_tasks;
5957retry:
5958	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
5959	mutex_exit(&spa->spa_async_lock);
5960
5961	/*
5962	 * See if any devices need to be marked REMOVED.
5963	 */
5964	if (tasks & SPA_ASYNC_REMOVE) {
5965		spa_vdev_state_enter(spa, SCL_NONE);
5966		spa_async_remove(spa, spa->spa_root_vdev);
5967		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5968			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5969		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5970			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5971		(void) spa_vdev_state_exit(spa, NULL, 0);
5972	}
5973
5974	/*
5975	 * Let the world know that we're done.
5976	 */
5977	mutex_enter(&spa->spa_async_lock);
5978	tasks = spa->spa_async_tasks;
5979	if ((tasks & SPA_ASYNC_REMOVE) != 0)
5980		goto retry;
5981	spa->spa_async_thread_vd = NULL;
5982	cv_broadcast(&spa->spa_async_cv);
5983	mutex_exit(&spa->spa_async_lock);
5984	thread_exit();
5985}
5986
5987void
5988spa_async_suspend(spa_t *spa)
5989{
5990	mutex_enter(&spa->spa_async_lock);
5991	spa->spa_async_suspended++;
5992	while (spa->spa_async_thread != NULL &&
5993	    spa->spa_async_thread_vd != NULL)
5994		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5995	mutex_exit(&spa->spa_async_lock);
5996}
5997
5998void
5999spa_async_resume(spa_t *spa)
6000{
6001	mutex_enter(&spa->spa_async_lock);
6002	ASSERT(spa->spa_async_suspended != 0);
6003	spa->spa_async_suspended--;
6004	mutex_exit(&spa->spa_async_lock);
6005}
6006
6007static boolean_t
6008spa_async_tasks_pending(spa_t *spa)
6009{
6010	uint_t non_config_tasks;
6011	uint_t config_task;
6012	boolean_t config_task_suspended;
6013
6014	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
6015	    SPA_ASYNC_REMOVE);
6016	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6017	if (spa->spa_ccw_fail_time == 0) {
6018		config_task_suspended = B_FALSE;
6019	} else {
6020		config_task_suspended =
6021		    (gethrtime() - spa->spa_ccw_fail_time) <
6022		    (zfs_ccw_retry_interval * NANOSEC);
6023	}
6024
6025	return (non_config_tasks || (config_task && !config_task_suspended));
6026}
6027
6028static void
6029spa_async_dispatch(spa_t *spa)
6030{
6031	mutex_enter(&spa->spa_async_lock);
6032	if (spa_async_tasks_pending(spa) &&
6033	    !spa->spa_async_suspended &&
6034	    spa->spa_async_thread == NULL &&
6035	    rootdir != NULL)
6036		spa->spa_async_thread = thread_create(NULL, 0,
6037		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6038	mutex_exit(&spa->spa_async_lock);
6039}
6040
6041static void
6042spa_async_dispatch_vd(spa_t *spa)
6043{
6044	mutex_enter(&spa->spa_async_lock);
6045	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6046	    !spa->spa_async_suspended &&
6047	    spa->spa_async_thread_vd == NULL &&
6048	    rootdir != NULL)
6049		spa->spa_async_thread_vd = thread_create(NULL, 0,
6050		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6051	mutex_exit(&spa->spa_async_lock);
6052}
6053
6054void
6055spa_async_request(spa_t *spa, int task)
6056{
6057	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6058	mutex_enter(&spa->spa_async_lock);
6059	spa->spa_async_tasks |= task;
6060	mutex_exit(&spa->spa_async_lock);
6061	spa_async_dispatch_vd(spa);
6062}
6063
6064/*
6065 * ==========================================================================
6066 * SPA syncing routines
6067 * ==========================================================================
6068 */
6069
6070static int
6071bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6072{
6073	bpobj_t *bpo = arg;
6074	bpobj_enqueue(bpo, bp, tx);
6075	return (0);
6076}
6077
6078static int
6079spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6080{
6081	zio_t *zio = arg;
6082
6083	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6084	    BP_GET_PSIZE(bp), zio->io_flags));
6085	return (0);
6086}
6087
6088/*
6089 * Note: this simple function is not inlined to make it easier to dtrace the
6090 * amount of time spent syncing frees.
6091 */
6092static void
6093spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6094{
6095	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6096	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6097	VERIFY(zio_wait(zio) == 0);
6098}
6099
6100/*
6101 * Note: this simple function is not inlined to make it easier to dtrace the
6102 * amount of time spent syncing deferred frees.
6103 */
6104static void
6105spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6106{
6107	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6108	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6109	    spa_free_sync_cb, zio, tx), ==, 0);
6110	VERIFY0(zio_wait(zio));
6111}
6112
6113
6114static void
6115spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6116{
6117	char *packed = NULL;
6118	size_t bufsize;
6119	size_t nvsize = 0;
6120	dmu_buf_t *db;
6121
6122	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6123
6124	/*
6125	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6126	 * information.  This avoids the dmu_buf_will_dirty() path and
6127	 * saves us a pre-read to get data we don't actually care about.
6128	 */
6129	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6130	packed = kmem_alloc(bufsize, KM_SLEEP);
6131
6132	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6133	    KM_SLEEP) == 0);
6134	bzero(packed + nvsize, bufsize - nvsize);
6135
6136	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6137
6138	kmem_free(packed, bufsize);
6139
6140	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6141	dmu_buf_will_dirty(db, tx);
6142	*(uint64_t *)db->db_data = nvsize;
6143	dmu_buf_rele(db, FTAG);
6144}
6145
6146static void
6147spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6148    const char *config, const char *entry)
6149{
6150	nvlist_t *nvroot;
6151	nvlist_t **list;
6152	int i;
6153
6154	if (!sav->sav_sync)
6155		return;
6156
6157	/*
6158	 * Update the MOS nvlist describing the list of available devices.
6159	 * spa_validate_aux() will have already made sure this nvlist is
6160	 * valid and the vdevs are labeled appropriately.
6161	 */
6162	if (sav->sav_object == 0) {
6163		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6164		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6165		    sizeof (uint64_t), tx);
6166		VERIFY(zap_update(spa->spa_meta_objset,
6167		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6168		    &sav->sav_object, tx) == 0);
6169	}
6170
6171	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6172	if (sav->sav_count == 0) {
6173		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6174	} else {
6175		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6176		for (i = 0; i < sav->sav_count; i++)
6177			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6178			    B_FALSE, VDEV_CONFIG_L2CACHE);
6179		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6180		    sav->sav_count) == 0);
6181		for (i = 0; i < sav->sav_count; i++)
6182			nvlist_free(list[i]);
6183		kmem_free(list, sav->sav_count * sizeof (void *));
6184	}
6185
6186	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6187	nvlist_free(nvroot);
6188
6189	sav->sav_sync = B_FALSE;
6190}
6191
6192static void
6193spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6194{
6195	nvlist_t *config;
6196
6197	if (list_is_empty(&spa->spa_config_dirty_list))
6198		return;
6199
6200	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6201
6202	config = spa_config_generate(spa, spa->spa_root_vdev,
6203	    dmu_tx_get_txg(tx), B_FALSE);
6204
6205	/*
6206	 * If we're upgrading the spa version then make sure that
6207	 * the config object gets updated with the correct version.
6208	 */
6209	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6210		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6211		    spa->spa_uberblock.ub_version);
6212
6213	spa_config_exit(spa, SCL_STATE, FTAG);
6214
6215	if (spa->spa_config_syncing)
6216		nvlist_free(spa->spa_config_syncing);
6217	spa->spa_config_syncing = config;
6218
6219	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6220}
6221
6222static void
6223spa_sync_version(void *arg, dmu_tx_t *tx)
6224{
6225	uint64_t *versionp = arg;
6226	uint64_t version = *versionp;
6227	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6228
6229	/*
6230	 * Setting the version is special cased when first creating the pool.
6231	 */
6232	ASSERT(tx->tx_txg != TXG_INITIAL);
6233
6234	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6235	ASSERT(version >= spa_version(spa));
6236
6237	spa->spa_uberblock.ub_version = version;
6238	vdev_config_dirty(spa->spa_root_vdev);
6239	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6240}
6241
6242/*
6243 * Set zpool properties.
6244 */
6245static void
6246spa_sync_props(void *arg, dmu_tx_t *tx)
6247{
6248	nvlist_t *nvp = arg;
6249	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6250	objset_t *mos = spa->spa_meta_objset;
6251	nvpair_t *elem = NULL;
6252
6253	mutex_enter(&spa->spa_props_lock);
6254
6255	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6256		uint64_t intval;
6257		char *strval, *fname;
6258		zpool_prop_t prop;
6259		const char *propname;
6260		zprop_type_t proptype;
6261		spa_feature_t fid;
6262
6263		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6264		case ZPROP_INVAL:
6265			/*
6266			 * We checked this earlier in spa_prop_validate().
6267			 */
6268			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6269
6270			fname = strchr(nvpair_name(elem), '@') + 1;
6271			VERIFY0(zfeature_lookup_name(fname, &fid));
6272
6273			spa_feature_enable(spa, fid, tx);
6274			spa_history_log_internal(spa, "set", tx,
6275			    "%s=enabled", nvpair_name(elem));
6276			break;
6277
6278		case ZPOOL_PROP_VERSION:
6279			intval = fnvpair_value_uint64(elem);
6280			/*
6281			 * The version is synced seperatly before other
6282			 * properties and should be correct by now.
6283			 */
6284			ASSERT3U(spa_version(spa), >=, intval);
6285			break;
6286
6287		case ZPOOL_PROP_ALTROOT:
6288			/*
6289			 * 'altroot' is a non-persistent property. It should
6290			 * have been set temporarily at creation or import time.
6291			 */
6292			ASSERT(spa->spa_root != NULL);
6293			break;
6294
6295		case ZPOOL_PROP_READONLY:
6296		case ZPOOL_PROP_CACHEFILE:
6297			/*
6298			 * 'readonly' and 'cachefile' are also non-persisitent
6299			 * properties.
6300			 */
6301			break;
6302		case ZPOOL_PROP_COMMENT:
6303			strval = fnvpair_value_string(elem);
6304			if (spa->spa_comment != NULL)
6305				spa_strfree(spa->spa_comment);
6306			spa->spa_comment = spa_strdup(strval);
6307			/*
6308			 * We need to dirty the configuration on all the vdevs
6309			 * so that their labels get updated.  It's unnecessary
6310			 * to do this for pool creation since the vdev's
6311			 * configuratoin has already been dirtied.
6312			 */
6313			if (tx->tx_txg != TXG_INITIAL)
6314				vdev_config_dirty(spa->spa_root_vdev);
6315			spa_history_log_internal(spa, "set", tx,
6316			    "%s=%s", nvpair_name(elem), strval);
6317			break;
6318		default:
6319			/*
6320			 * Set pool property values in the poolprops mos object.
6321			 */
6322			if (spa->spa_pool_props_object == 0) {
6323				spa->spa_pool_props_object =
6324				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6325				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6326				    tx);
6327			}
6328
6329			/* normalize the property name */
6330			propname = zpool_prop_to_name(prop);
6331			proptype = zpool_prop_get_type(prop);
6332
6333			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6334				ASSERT(proptype == PROP_TYPE_STRING);
6335				strval = fnvpair_value_string(elem);
6336				VERIFY0(zap_update(mos,
6337				    spa->spa_pool_props_object, propname,
6338				    1, strlen(strval) + 1, strval, tx));
6339				spa_history_log_internal(spa, "set", tx,
6340				    "%s=%s", nvpair_name(elem), strval);
6341			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6342				intval = fnvpair_value_uint64(elem);
6343
6344				if (proptype == PROP_TYPE_INDEX) {
6345					const char *unused;
6346					VERIFY0(zpool_prop_index_to_string(
6347					    prop, intval, &unused));
6348				}
6349				VERIFY0(zap_update(mos,
6350				    spa->spa_pool_props_object, propname,
6351				    8, 1, &intval, tx));
6352				spa_history_log_internal(spa, "set", tx,
6353				    "%s=%lld", nvpair_name(elem), intval);
6354			} else {
6355				ASSERT(0); /* not allowed */
6356			}
6357
6358			switch (prop) {
6359			case ZPOOL_PROP_DELEGATION:
6360				spa->spa_delegation = intval;
6361				break;
6362			case ZPOOL_PROP_BOOTFS:
6363				spa->spa_bootfs = intval;
6364				break;
6365			case ZPOOL_PROP_FAILUREMODE:
6366				spa->spa_failmode = intval;
6367				break;
6368			case ZPOOL_PROP_AUTOEXPAND:
6369				spa->spa_autoexpand = intval;
6370				if (tx->tx_txg != TXG_INITIAL)
6371					spa_async_request(spa,
6372					    SPA_ASYNC_AUTOEXPAND);
6373				break;
6374			case ZPOOL_PROP_DEDUPDITTO:
6375				spa->spa_dedup_ditto = intval;
6376				break;
6377			default:
6378				break;
6379			}
6380		}
6381
6382	}
6383
6384	mutex_exit(&spa->spa_props_lock);
6385}
6386
6387/*
6388 * Perform one-time upgrade on-disk changes.  spa_version() does not
6389 * reflect the new version this txg, so there must be no changes this
6390 * txg to anything that the upgrade code depends on after it executes.
6391 * Therefore this must be called after dsl_pool_sync() does the sync
6392 * tasks.
6393 */
6394static void
6395spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6396{
6397	dsl_pool_t *dp = spa->spa_dsl_pool;
6398
6399	ASSERT(spa->spa_sync_pass == 1);
6400
6401	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6402
6403	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6404	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6405		dsl_pool_create_origin(dp, tx);
6406
6407		/* Keeping the origin open increases spa_minref */
6408		spa->spa_minref += 3;
6409	}
6410
6411	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6412	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6413		dsl_pool_upgrade_clones(dp, tx);
6414	}
6415
6416	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6417	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6418		dsl_pool_upgrade_dir_clones(dp, tx);
6419
6420		/* Keeping the freedir open increases spa_minref */
6421		spa->spa_minref += 3;
6422	}
6423
6424	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6425	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6426		spa_feature_create_zap_objects(spa, tx);
6427	}
6428	rrw_exit(&dp->dp_config_rwlock, FTAG);
6429}
6430
6431/*
6432 * Sync the specified transaction group.  New blocks may be dirtied as
6433 * part of the process, so we iterate until it converges.
6434 */
6435void
6436spa_sync(spa_t *spa, uint64_t txg)
6437{
6438	dsl_pool_t *dp = spa->spa_dsl_pool;
6439	objset_t *mos = spa->spa_meta_objset;
6440	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6441	vdev_t *rvd = spa->spa_root_vdev;
6442	vdev_t *vd;
6443	dmu_tx_t *tx;
6444	int error;
6445
6446	VERIFY(spa_writeable(spa));
6447
6448	/*
6449	 * Lock out configuration changes.
6450	 */
6451	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6452
6453	spa->spa_syncing_txg = txg;
6454	spa->spa_sync_pass = 0;
6455
6456	/*
6457	 * If there are any pending vdev state changes, convert them
6458	 * into config changes that go out with this transaction group.
6459	 */
6460	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6461	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6462		/*
6463		 * We need the write lock here because, for aux vdevs,
6464		 * calling vdev_config_dirty() modifies sav_config.
6465		 * This is ugly and will become unnecessary when we
6466		 * eliminate the aux vdev wart by integrating all vdevs
6467		 * into the root vdev tree.
6468		 */
6469		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6470		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6471		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6472			vdev_state_clean(vd);
6473			vdev_config_dirty(vd);
6474		}
6475		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6476		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6477	}
6478	spa_config_exit(spa, SCL_STATE, FTAG);
6479
6480	tx = dmu_tx_create_assigned(dp, txg);
6481
6482	spa->spa_sync_starttime = gethrtime();
6483#ifdef illumos
6484	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6485	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6486#else	/* FreeBSD */
6487#ifdef _KERNEL
6488	callout_reset(&spa->spa_deadman_cycid,
6489	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6490#endif
6491#endif
6492
6493	/*
6494	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6495	 * set spa_deflate if we have no raid-z vdevs.
6496	 */
6497	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6498	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6499		int i;
6500
6501		for (i = 0; i < rvd->vdev_children; i++) {
6502			vd = rvd->vdev_child[i];
6503			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6504				break;
6505		}
6506		if (i == rvd->vdev_children) {
6507			spa->spa_deflate = TRUE;
6508			VERIFY(0 == zap_add(spa->spa_meta_objset,
6509			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6510			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6511		}
6512	}
6513
6514	/*
6515	 * If anything has changed in this txg, or if someone is waiting
6516	 * for this txg to sync (eg, spa_vdev_remove()), push the
6517	 * deferred frees from the previous txg.  If not, leave them
6518	 * alone so that we don't generate work on an otherwise idle
6519	 * system.
6520	 */
6521	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6522	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6523	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6524	    ((dsl_scan_active(dp->dp_scan) ||
6525	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6526		spa_sync_deferred_frees(spa, tx);
6527	}
6528
6529	/*
6530	 * Iterate to convergence.
6531	 */
6532	do {
6533		int pass = ++spa->spa_sync_pass;
6534
6535		spa_sync_config_object(spa, tx);
6536		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6537		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6538		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6539		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6540		spa_errlog_sync(spa, txg);
6541		dsl_pool_sync(dp, txg);
6542
6543		if (pass < zfs_sync_pass_deferred_free) {
6544			spa_sync_frees(spa, free_bpl, tx);
6545		} else {
6546			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6547			    &spa->spa_deferred_bpobj, tx);
6548		}
6549
6550		ddt_sync(spa, txg);
6551		dsl_scan_sync(dp, tx);
6552
6553		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6554			vdev_sync(vd, txg);
6555
6556		if (pass == 1)
6557			spa_sync_upgrades(spa, tx);
6558
6559	} while (dmu_objset_is_dirty(mos, txg));
6560
6561	/*
6562	 * Rewrite the vdev configuration (which includes the uberblock)
6563	 * to commit the transaction group.
6564	 *
6565	 * If there are no dirty vdevs, we sync the uberblock to a few
6566	 * random top-level vdevs that are known to be visible in the
6567	 * config cache (see spa_vdev_add() for a complete description).
6568	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6569	 */
6570	for (;;) {
6571		/*
6572		 * We hold SCL_STATE to prevent vdev open/close/etc.
6573		 * while we're attempting to write the vdev labels.
6574		 */
6575		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6576
6577		if (list_is_empty(&spa->spa_config_dirty_list)) {
6578			vdev_t *svd[SPA_DVAS_PER_BP];
6579			int svdcount = 0;
6580			int children = rvd->vdev_children;
6581			int c0 = spa_get_random(children);
6582
6583			for (int c = 0; c < children; c++) {
6584				vd = rvd->vdev_child[(c0 + c) % children];
6585				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6586					continue;
6587				svd[svdcount++] = vd;
6588				if (svdcount == SPA_DVAS_PER_BP)
6589					break;
6590			}
6591			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6592			if (error != 0)
6593				error = vdev_config_sync(svd, svdcount, txg,
6594				    B_TRUE);
6595		} else {
6596			error = vdev_config_sync(rvd->vdev_child,
6597			    rvd->vdev_children, txg, B_FALSE);
6598			if (error != 0)
6599				error = vdev_config_sync(rvd->vdev_child,
6600				    rvd->vdev_children, txg, B_TRUE);
6601		}
6602
6603		if (error == 0)
6604			spa->spa_last_synced_guid = rvd->vdev_guid;
6605
6606		spa_config_exit(spa, SCL_STATE, FTAG);
6607
6608		if (error == 0)
6609			break;
6610		zio_suspend(spa, NULL);
6611		zio_resume_wait(spa);
6612	}
6613	dmu_tx_commit(tx);
6614
6615#ifdef illumos
6616	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6617#else	/* FreeBSD */
6618#ifdef _KERNEL
6619	callout_drain(&spa->spa_deadman_cycid);
6620#endif
6621#endif
6622
6623	/*
6624	 * Clear the dirty config list.
6625	 */
6626	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6627		vdev_config_clean(vd);
6628
6629	/*
6630	 * Now that the new config has synced transactionally,
6631	 * let it become visible to the config cache.
6632	 */
6633	if (spa->spa_config_syncing != NULL) {
6634		spa_config_set(spa, spa->spa_config_syncing);
6635		spa->spa_config_txg = txg;
6636		spa->spa_config_syncing = NULL;
6637	}
6638
6639	spa->spa_ubsync = spa->spa_uberblock;
6640
6641	dsl_pool_sync_done(dp, txg);
6642
6643	/*
6644	 * Update usable space statistics.
6645	 */
6646	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6647		vdev_sync_done(vd, txg);
6648
6649	spa_update_dspace(spa);
6650
6651	/*
6652	 * It had better be the case that we didn't dirty anything
6653	 * since vdev_config_sync().
6654	 */
6655	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6656	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6657	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6658
6659	spa->spa_sync_pass = 0;
6660
6661	spa_config_exit(spa, SCL_CONFIG, FTAG);
6662
6663	spa_handle_ignored_writes(spa);
6664
6665	/*
6666	 * If any async tasks have been requested, kick them off.
6667	 */
6668	spa_async_dispatch(spa);
6669	spa_async_dispatch_vd(spa);
6670}
6671
6672/*
6673 * Sync all pools.  We don't want to hold the namespace lock across these
6674 * operations, so we take a reference on the spa_t and drop the lock during the
6675 * sync.
6676 */
6677void
6678spa_sync_allpools(void)
6679{
6680	spa_t *spa = NULL;
6681	mutex_enter(&spa_namespace_lock);
6682	while ((spa = spa_next(spa)) != NULL) {
6683		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6684		    !spa_writeable(spa) || spa_suspended(spa))
6685			continue;
6686		spa_open_ref(spa, FTAG);
6687		mutex_exit(&spa_namespace_lock);
6688		txg_wait_synced(spa_get_dsl(spa), 0);
6689		mutex_enter(&spa_namespace_lock);
6690		spa_close(spa, FTAG);
6691	}
6692	mutex_exit(&spa_namespace_lock);
6693}
6694
6695/*
6696 * ==========================================================================
6697 * Miscellaneous routines
6698 * ==========================================================================
6699 */
6700
6701/*
6702 * Remove all pools in the system.
6703 */
6704void
6705spa_evict_all(void)
6706{
6707	spa_t *spa;
6708
6709	/*
6710	 * Remove all cached state.  All pools should be closed now,
6711	 * so every spa in the AVL tree should be unreferenced.
6712	 */
6713	mutex_enter(&spa_namespace_lock);
6714	while ((spa = spa_next(NULL)) != NULL) {
6715		/*
6716		 * Stop async tasks.  The async thread may need to detach
6717		 * a device that's been replaced, which requires grabbing
6718		 * spa_namespace_lock, so we must drop it here.
6719		 */
6720		spa_open_ref(spa, FTAG);
6721		mutex_exit(&spa_namespace_lock);
6722		spa_async_suspend(spa);
6723		mutex_enter(&spa_namespace_lock);
6724		spa_close(spa, FTAG);
6725
6726		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6727			spa_unload(spa);
6728			spa_deactivate(spa);
6729		}
6730		spa_remove(spa);
6731	}
6732	mutex_exit(&spa_namespace_lock);
6733}
6734
6735vdev_t *
6736spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6737{
6738	vdev_t *vd;
6739	int i;
6740
6741	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6742		return (vd);
6743
6744	if (aux) {
6745		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6746			vd = spa->spa_l2cache.sav_vdevs[i];
6747			if (vd->vdev_guid == guid)
6748				return (vd);
6749		}
6750
6751		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6752			vd = spa->spa_spares.sav_vdevs[i];
6753			if (vd->vdev_guid == guid)
6754				return (vd);
6755		}
6756	}
6757
6758	return (NULL);
6759}
6760
6761void
6762spa_upgrade(spa_t *spa, uint64_t version)
6763{
6764	ASSERT(spa_writeable(spa));
6765
6766	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6767
6768	/*
6769	 * This should only be called for a non-faulted pool, and since a
6770	 * future version would result in an unopenable pool, this shouldn't be
6771	 * possible.
6772	 */
6773	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6774	ASSERT(version >= spa->spa_uberblock.ub_version);
6775
6776	spa->spa_uberblock.ub_version = version;
6777	vdev_config_dirty(spa->spa_root_vdev);
6778
6779	spa_config_exit(spa, SCL_ALL, FTAG);
6780
6781	txg_wait_synced(spa_get_dsl(spa), 0);
6782}
6783
6784boolean_t
6785spa_has_spare(spa_t *spa, uint64_t guid)
6786{
6787	int i;
6788	uint64_t spareguid;
6789	spa_aux_vdev_t *sav = &spa->spa_spares;
6790
6791	for (i = 0; i < sav->sav_count; i++)
6792		if (sav->sav_vdevs[i]->vdev_guid == guid)
6793			return (B_TRUE);
6794
6795	for (i = 0; i < sav->sav_npending; i++) {
6796		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6797		    &spareguid) == 0 && spareguid == guid)
6798			return (B_TRUE);
6799	}
6800
6801	return (B_FALSE);
6802}
6803
6804/*
6805 * Check if a pool has an active shared spare device.
6806 * Note: reference count of an active spare is 2, as a spare and as a replace
6807 */
6808static boolean_t
6809spa_has_active_shared_spare(spa_t *spa)
6810{
6811	int i, refcnt;
6812	uint64_t pool;
6813	spa_aux_vdev_t *sav = &spa->spa_spares;
6814
6815	for (i = 0; i < sav->sav_count; i++) {
6816		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6817		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6818		    refcnt > 2)
6819			return (B_TRUE);
6820	}
6821
6822	return (B_FALSE);
6823}
6824
6825/*
6826 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6827 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6828 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6829 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6830 * or zdb as real changes.
6831 */
6832void
6833spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6834{
6835#ifdef _KERNEL
6836	sysevent_t		*ev;
6837	sysevent_attr_list_t	*attr = NULL;
6838	sysevent_value_t	value;
6839	sysevent_id_t		eid;
6840
6841	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6842	    SE_SLEEP);
6843
6844	value.value_type = SE_DATA_TYPE_STRING;
6845	value.value.sv_string = spa_name(spa);
6846	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6847		goto done;
6848
6849	value.value_type = SE_DATA_TYPE_UINT64;
6850	value.value.sv_uint64 = spa_guid(spa);
6851	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6852		goto done;
6853
6854	if (vd) {
6855		value.value_type = SE_DATA_TYPE_UINT64;
6856		value.value.sv_uint64 = vd->vdev_guid;
6857		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6858		    SE_SLEEP) != 0)
6859			goto done;
6860
6861		if (vd->vdev_path) {
6862			value.value_type = SE_DATA_TYPE_STRING;
6863			value.value.sv_string = vd->vdev_path;
6864			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6865			    &value, SE_SLEEP) != 0)
6866				goto done;
6867		}
6868	}
6869
6870	if (sysevent_attach_attributes(ev, attr) != 0)
6871		goto done;
6872	attr = NULL;
6873
6874	(void) log_sysevent(ev, SE_SLEEP, &eid);
6875
6876done:
6877	if (attr)
6878		sysevent_free_attr(attr);
6879	sysevent_free(ev);
6880#endif
6881}
6882