spa.c revision 259813
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright 2013 Nexenta Systems, Inc.  All rights reserved.
26 * Copyright (c) 2013 Martin Matuska <mm@FreeBSD.org>. All rights reserved.
27 */
28
29/*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37#include <sys/zfs_context.h>
38#include <sys/fm/fs/zfs.h>
39#include <sys/spa_impl.h>
40#include <sys/zio.h>
41#include <sys/zio_checksum.h>
42#include <sys/dmu.h>
43#include <sys/dmu_tx.h>
44#include <sys/zap.h>
45#include <sys/zil.h>
46#include <sys/ddt.h>
47#include <sys/vdev_impl.h>
48#include <sys/metaslab.h>
49#include <sys/metaslab_impl.h>
50#include <sys/uberblock_impl.h>
51#include <sys/txg.h>
52#include <sys/avl.h>
53#include <sys/dmu_traverse.h>
54#include <sys/dmu_objset.h>
55#include <sys/unique.h>
56#include <sys/dsl_pool.h>
57#include <sys/dsl_dataset.h>
58#include <sys/dsl_dir.h>
59#include <sys/dsl_prop.h>
60#include <sys/dsl_synctask.h>
61#include <sys/fs/zfs.h>
62#include <sys/arc.h>
63#include <sys/callb.h>
64#include <sys/spa_boot.h>
65#include <sys/zfs_ioctl.h>
66#include <sys/dsl_scan.h>
67#include <sys/dmu_send.h>
68#include <sys/dsl_destroy.h>
69#include <sys/dsl_userhold.h>
70#include <sys/zfeature.h>
71#include <sys/zvol.h>
72#include <sys/trim_map.h>
73
74#ifdef	_KERNEL
75#include <sys/callb.h>
76#include <sys/cpupart.h>
77#include <sys/zone.h>
78#endif	/* _KERNEL */
79
80#include "zfs_prop.h"
81#include "zfs_comutil.h"
82
83/* Check hostid on import? */
84static int check_hostid = 1;
85
86SYSCTL_DECL(_vfs_zfs);
87TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
88SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
89    "Check hostid on import?");
90
91/*
92 * The interval, in seconds, at which failed configuration cache file writes
93 * should be retried.
94 */
95static int zfs_ccw_retry_interval = 300;
96
97typedef enum zti_modes {
98	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
99	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
100	ZTI_MODE_NULL,			/* don't create a taskq */
101	ZTI_NMODES
102} zti_modes_t;
103
104#define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
105#define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
106#define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
107
108#define	ZTI_N(n)	ZTI_P(n, 1)
109#define	ZTI_ONE		ZTI_N(1)
110
111typedef struct zio_taskq_info {
112	zti_modes_t zti_mode;
113	uint_t zti_value;
114	uint_t zti_count;
115} zio_taskq_info_t;
116
117static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
118	"issue", "issue_high", "intr", "intr_high"
119};
120
121/*
122 * This table defines the taskq settings for each ZFS I/O type. When
123 * initializing a pool, we use this table to create an appropriately sized
124 * taskq. Some operations are low volume and therefore have a small, static
125 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
126 * macros. Other operations process a large amount of data; the ZTI_BATCH
127 * macro causes us to create a taskq oriented for throughput. Some operations
128 * are so high frequency and short-lived that the taskq itself can become a a
129 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
130 * additional degree of parallelism specified by the number of threads per-
131 * taskq and the number of taskqs; when dispatching an event in this case, the
132 * particular taskq is chosen at random.
133 *
134 * The different taskq priorities are to handle the different contexts (issue
135 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
136 * need to be handled with minimum delay.
137 */
138const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
139	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
140	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
141	{ ZTI_N(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL }, /* READ */
142	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
143	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
144	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
145	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
146};
147
148static void spa_sync_version(void *arg, dmu_tx_t *tx);
149static void spa_sync_props(void *arg, dmu_tx_t *tx);
150static boolean_t spa_has_active_shared_spare(spa_t *spa);
151static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
152    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
153    char **ereport);
154static void spa_vdev_resilver_done(spa_t *spa);
155
156uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
157#ifdef PSRSET_BIND
158id_t		zio_taskq_psrset_bind = PS_NONE;
159#endif
160#ifdef SYSDC
161boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
162#endif
163uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
164
165boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
166extern int	zfs_sync_pass_deferred_free;
167
168#ifndef illumos
169extern void spa_deadman(void *arg);
170#endif
171
172/*
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
175 */
176#define	TRYIMPORT_NAME	"$import"
177
178/*
179 * ==========================================================================
180 * SPA properties routines
181 * ==========================================================================
182 */
183
184/*
185 * Add a (source=src, propname=propval) list to an nvlist.
186 */
187static void
188spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
189    uint64_t intval, zprop_source_t src)
190{
191	const char *propname = zpool_prop_to_name(prop);
192	nvlist_t *propval;
193
194	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
195	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
196
197	if (strval != NULL)
198		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
199	else
200		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
201
202	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
203	nvlist_free(propval);
204}
205
206/*
207 * Get property values from the spa configuration.
208 */
209static void
210spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
211{
212	vdev_t *rvd = spa->spa_root_vdev;
213	dsl_pool_t *pool = spa->spa_dsl_pool;
214	uint64_t size;
215	uint64_t alloc;
216	uint64_t space;
217	uint64_t cap, version;
218	zprop_source_t src = ZPROP_SRC_NONE;
219	spa_config_dirent_t *dp;
220
221	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
222
223	if (rvd != NULL) {
224		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
225		size = metaslab_class_get_space(spa_normal_class(spa));
226		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
227		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
228		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
229		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
230		    size - alloc, src);
231
232		space = 0;
233		for (int c = 0; c < rvd->vdev_children; c++) {
234			vdev_t *tvd = rvd->vdev_child[c];
235			space += tvd->vdev_max_asize - tvd->vdev_asize;
236		}
237		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
238		    src);
239
240		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
241		    (spa_mode(spa) == FREAD), src);
242
243		cap = (size == 0) ? 0 : (alloc * 100 / size);
244		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
245
246		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
247		    ddt_get_pool_dedup_ratio(spa), src);
248
249		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
250		    rvd->vdev_state, src);
251
252		version = spa_version(spa);
253		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
254			src = ZPROP_SRC_DEFAULT;
255		else
256			src = ZPROP_SRC_LOCAL;
257		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
258	}
259
260	if (pool != NULL) {
261		dsl_dir_t *freedir = pool->dp_free_dir;
262
263		/*
264		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
265		 * when opening pools before this version freedir will be NULL.
266		 */
267		if (freedir != NULL) {
268			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
269			    freedir->dd_phys->dd_used_bytes, src);
270		} else {
271			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
272			    NULL, 0, src);
273		}
274	}
275
276	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
277
278	if (spa->spa_comment != NULL) {
279		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
280		    0, ZPROP_SRC_LOCAL);
281	}
282
283	if (spa->spa_root != NULL)
284		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
285		    0, ZPROP_SRC_LOCAL);
286
287	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
288		if (dp->scd_path == NULL) {
289			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
290			    "none", 0, ZPROP_SRC_LOCAL);
291		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
292			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
293			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
294		}
295	}
296}
297
298/*
299 * Get zpool property values.
300 */
301int
302spa_prop_get(spa_t *spa, nvlist_t **nvp)
303{
304	objset_t *mos = spa->spa_meta_objset;
305	zap_cursor_t zc;
306	zap_attribute_t za;
307	int err;
308
309	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
310
311	mutex_enter(&spa->spa_props_lock);
312
313	/*
314	 * Get properties from the spa config.
315	 */
316	spa_prop_get_config(spa, nvp);
317
318	/* If no pool property object, no more prop to get. */
319	if (mos == NULL || spa->spa_pool_props_object == 0) {
320		mutex_exit(&spa->spa_props_lock);
321		return (0);
322	}
323
324	/*
325	 * Get properties from the MOS pool property object.
326	 */
327	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
328	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
329	    zap_cursor_advance(&zc)) {
330		uint64_t intval = 0;
331		char *strval = NULL;
332		zprop_source_t src = ZPROP_SRC_DEFAULT;
333		zpool_prop_t prop;
334
335		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
336			continue;
337
338		switch (za.za_integer_length) {
339		case 8:
340			/* integer property */
341			if (za.za_first_integer !=
342			    zpool_prop_default_numeric(prop))
343				src = ZPROP_SRC_LOCAL;
344
345			if (prop == ZPOOL_PROP_BOOTFS) {
346				dsl_pool_t *dp;
347				dsl_dataset_t *ds = NULL;
348
349				dp = spa_get_dsl(spa);
350				dsl_pool_config_enter(dp, FTAG);
351				if (err = dsl_dataset_hold_obj(dp,
352				    za.za_first_integer, FTAG, &ds)) {
353					dsl_pool_config_exit(dp, FTAG);
354					break;
355				}
356
357				strval = kmem_alloc(
358				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
359				    KM_SLEEP);
360				dsl_dataset_name(ds, strval);
361				dsl_dataset_rele(ds, FTAG);
362				dsl_pool_config_exit(dp, FTAG);
363			} else {
364				strval = NULL;
365				intval = za.za_first_integer;
366			}
367
368			spa_prop_add_list(*nvp, prop, strval, intval, src);
369
370			if (strval != NULL)
371				kmem_free(strval,
372				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
373
374			break;
375
376		case 1:
377			/* string property */
378			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
379			err = zap_lookup(mos, spa->spa_pool_props_object,
380			    za.za_name, 1, za.za_num_integers, strval);
381			if (err) {
382				kmem_free(strval, za.za_num_integers);
383				break;
384			}
385			spa_prop_add_list(*nvp, prop, strval, 0, src);
386			kmem_free(strval, za.za_num_integers);
387			break;
388
389		default:
390			break;
391		}
392	}
393	zap_cursor_fini(&zc);
394	mutex_exit(&spa->spa_props_lock);
395out:
396	if (err && err != ENOENT) {
397		nvlist_free(*nvp);
398		*nvp = NULL;
399		return (err);
400	}
401
402	return (0);
403}
404
405/*
406 * Validate the given pool properties nvlist and modify the list
407 * for the property values to be set.
408 */
409static int
410spa_prop_validate(spa_t *spa, nvlist_t *props)
411{
412	nvpair_t *elem;
413	int error = 0, reset_bootfs = 0;
414	uint64_t objnum = 0;
415	boolean_t has_feature = B_FALSE;
416
417	elem = NULL;
418	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
419		uint64_t intval;
420		char *strval, *slash, *check, *fname;
421		const char *propname = nvpair_name(elem);
422		zpool_prop_t prop = zpool_name_to_prop(propname);
423
424		switch (prop) {
425		case ZPROP_INVAL:
426			if (!zpool_prop_feature(propname)) {
427				error = SET_ERROR(EINVAL);
428				break;
429			}
430
431			/*
432			 * Sanitize the input.
433			 */
434			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
435				error = SET_ERROR(EINVAL);
436				break;
437			}
438
439			if (nvpair_value_uint64(elem, &intval) != 0) {
440				error = SET_ERROR(EINVAL);
441				break;
442			}
443
444			if (intval != 0) {
445				error = SET_ERROR(EINVAL);
446				break;
447			}
448
449			fname = strchr(propname, '@') + 1;
450			if (zfeature_lookup_name(fname, NULL) != 0) {
451				error = SET_ERROR(EINVAL);
452				break;
453			}
454
455			has_feature = B_TRUE;
456			break;
457
458		case ZPOOL_PROP_VERSION:
459			error = nvpair_value_uint64(elem, &intval);
460			if (!error &&
461			    (intval < spa_version(spa) ||
462			    intval > SPA_VERSION_BEFORE_FEATURES ||
463			    has_feature))
464				error = SET_ERROR(EINVAL);
465			break;
466
467		case ZPOOL_PROP_DELEGATION:
468		case ZPOOL_PROP_AUTOREPLACE:
469		case ZPOOL_PROP_LISTSNAPS:
470		case ZPOOL_PROP_AUTOEXPAND:
471			error = nvpair_value_uint64(elem, &intval);
472			if (!error && intval > 1)
473				error = SET_ERROR(EINVAL);
474			break;
475
476		case ZPOOL_PROP_BOOTFS:
477			/*
478			 * If the pool version is less than SPA_VERSION_BOOTFS,
479			 * or the pool is still being created (version == 0),
480			 * the bootfs property cannot be set.
481			 */
482			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
483				error = SET_ERROR(ENOTSUP);
484				break;
485			}
486
487			/*
488			 * Make sure the vdev config is bootable
489			 */
490			if (!vdev_is_bootable(spa->spa_root_vdev)) {
491				error = SET_ERROR(ENOTSUP);
492				break;
493			}
494
495			reset_bootfs = 1;
496
497			error = nvpair_value_string(elem, &strval);
498
499			if (!error) {
500				objset_t *os;
501				uint64_t compress;
502
503				if (strval == NULL || strval[0] == '\0') {
504					objnum = zpool_prop_default_numeric(
505					    ZPOOL_PROP_BOOTFS);
506					break;
507				}
508
509				if (error = dmu_objset_hold(strval, FTAG, &os))
510					break;
511
512				/* Must be ZPL and not gzip compressed. */
513
514				if (dmu_objset_type(os) != DMU_OST_ZFS) {
515					error = SET_ERROR(ENOTSUP);
516				} else if ((error =
517				    dsl_prop_get_int_ds(dmu_objset_ds(os),
518				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
519				    &compress)) == 0 &&
520				    !BOOTFS_COMPRESS_VALID(compress)) {
521					error = SET_ERROR(ENOTSUP);
522				} else {
523					objnum = dmu_objset_id(os);
524				}
525				dmu_objset_rele(os, FTAG);
526			}
527			break;
528
529		case ZPOOL_PROP_FAILUREMODE:
530			error = nvpair_value_uint64(elem, &intval);
531			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
532			    intval > ZIO_FAILURE_MODE_PANIC))
533				error = SET_ERROR(EINVAL);
534
535			/*
536			 * This is a special case which only occurs when
537			 * the pool has completely failed. This allows
538			 * the user to change the in-core failmode property
539			 * without syncing it out to disk (I/Os might
540			 * currently be blocked). We do this by returning
541			 * EIO to the caller (spa_prop_set) to trick it
542			 * into thinking we encountered a property validation
543			 * error.
544			 */
545			if (!error && spa_suspended(spa)) {
546				spa->spa_failmode = intval;
547				error = SET_ERROR(EIO);
548			}
549			break;
550
551		case ZPOOL_PROP_CACHEFILE:
552			if ((error = nvpair_value_string(elem, &strval)) != 0)
553				break;
554
555			if (strval[0] == '\0')
556				break;
557
558			if (strcmp(strval, "none") == 0)
559				break;
560
561			if (strval[0] != '/') {
562				error = SET_ERROR(EINVAL);
563				break;
564			}
565
566			slash = strrchr(strval, '/');
567			ASSERT(slash != NULL);
568
569			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
570			    strcmp(slash, "/..") == 0)
571				error = SET_ERROR(EINVAL);
572			break;
573
574		case ZPOOL_PROP_COMMENT:
575			if ((error = nvpair_value_string(elem, &strval)) != 0)
576				break;
577			for (check = strval; *check != '\0'; check++) {
578				/*
579				 * The kernel doesn't have an easy isprint()
580				 * check.  For this kernel check, we merely
581				 * check ASCII apart from DEL.  Fix this if
582				 * there is an easy-to-use kernel isprint().
583				 */
584				if (*check >= 0x7f) {
585					error = SET_ERROR(EINVAL);
586					break;
587				}
588				check++;
589			}
590			if (strlen(strval) > ZPROP_MAX_COMMENT)
591				error = E2BIG;
592			break;
593
594		case ZPOOL_PROP_DEDUPDITTO:
595			if (spa_version(spa) < SPA_VERSION_DEDUP)
596				error = SET_ERROR(ENOTSUP);
597			else
598				error = nvpair_value_uint64(elem, &intval);
599			if (error == 0 &&
600			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
601				error = SET_ERROR(EINVAL);
602			break;
603		}
604
605		if (error)
606			break;
607	}
608
609	if (!error && reset_bootfs) {
610		error = nvlist_remove(props,
611		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
612
613		if (!error) {
614			error = nvlist_add_uint64(props,
615			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
616		}
617	}
618
619	return (error);
620}
621
622void
623spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
624{
625	char *cachefile;
626	spa_config_dirent_t *dp;
627
628	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
629	    &cachefile) != 0)
630		return;
631
632	dp = kmem_alloc(sizeof (spa_config_dirent_t),
633	    KM_SLEEP);
634
635	if (cachefile[0] == '\0')
636		dp->scd_path = spa_strdup(spa_config_path);
637	else if (strcmp(cachefile, "none") == 0)
638		dp->scd_path = NULL;
639	else
640		dp->scd_path = spa_strdup(cachefile);
641
642	list_insert_head(&spa->spa_config_list, dp);
643	if (need_sync)
644		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
645}
646
647int
648spa_prop_set(spa_t *spa, nvlist_t *nvp)
649{
650	int error;
651	nvpair_t *elem = NULL;
652	boolean_t need_sync = B_FALSE;
653
654	if ((error = spa_prop_validate(spa, nvp)) != 0)
655		return (error);
656
657	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
658		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
659
660		if (prop == ZPOOL_PROP_CACHEFILE ||
661		    prop == ZPOOL_PROP_ALTROOT ||
662		    prop == ZPOOL_PROP_READONLY)
663			continue;
664
665		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
666			uint64_t ver;
667
668			if (prop == ZPOOL_PROP_VERSION) {
669				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
670			} else {
671				ASSERT(zpool_prop_feature(nvpair_name(elem)));
672				ver = SPA_VERSION_FEATURES;
673				need_sync = B_TRUE;
674			}
675
676			/* Save time if the version is already set. */
677			if (ver == spa_version(spa))
678				continue;
679
680			/*
681			 * In addition to the pool directory object, we might
682			 * create the pool properties object, the features for
683			 * read object, the features for write object, or the
684			 * feature descriptions object.
685			 */
686			error = dsl_sync_task(spa->spa_name, NULL,
687			    spa_sync_version, &ver, 6);
688			if (error)
689				return (error);
690			continue;
691		}
692
693		need_sync = B_TRUE;
694		break;
695	}
696
697	if (need_sync) {
698		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
699		    nvp, 6));
700	}
701
702	return (0);
703}
704
705/*
706 * If the bootfs property value is dsobj, clear it.
707 */
708void
709spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
710{
711	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
712		VERIFY(zap_remove(spa->spa_meta_objset,
713		    spa->spa_pool_props_object,
714		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
715		spa->spa_bootfs = 0;
716	}
717}
718
719/*ARGSUSED*/
720static int
721spa_change_guid_check(void *arg, dmu_tx_t *tx)
722{
723	uint64_t *newguid = arg;
724	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
725	vdev_t *rvd = spa->spa_root_vdev;
726	uint64_t vdev_state;
727
728	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
729	vdev_state = rvd->vdev_state;
730	spa_config_exit(spa, SCL_STATE, FTAG);
731
732	if (vdev_state != VDEV_STATE_HEALTHY)
733		return (SET_ERROR(ENXIO));
734
735	ASSERT3U(spa_guid(spa), !=, *newguid);
736
737	return (0);
738}
739
740static void
741spa_change_guid_sync(void *arg, dmu_tx_t *tx)
742{
743	uint64_t *newguid = arg;
744	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
745	uint64_t oldguid;
746	vdev_t *rvd = spa->spa_root_vdev;
747
748	oldguid = spa_guid(spa);
749
750	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
751	rvd->vdev_guid = *newguid;
752	rvd->vdev_guid_sum += (*newguid - oldguid);
753	vdev_config_dirty(rvd);
754	spa_config_exit(spa, SCL_STATE, FTAG);
755
756	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
757	    oldguid, *newguid);
758}
759
760/*
761 * Change the GUID for the pool.  This is done so that we can later
762 * re-import a pool built from a clone of our own vdevs.  We will modify
763 * the root vdev's guid, our own pool guid, and then mark all of our
764 * vdevs dirty.  Note that we must make sure that all our vdevs are
765 * online when we do this, or else any vdevs that weren't present
766 * would be orphaned from our pool.  We are also going to issue a
767 * sysevent to update any watchers.
768 */
769int
770spa_change_guid(spa_t *spa)
771{
772	int error;
773	uint64_t guid;
774
775	mutex_enter(&spa->spa_vdev_top_lock);
776	mutex_enter(&spa_namespace_lock);
777	guid = spa_generate_guid(NULL);
778
779	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
780	    spa_change_guid_sync, &guid, 5);
781
782	if (error == 0) {
783		spa_config_sync(spa, B_FALSE, B_TRUE);
784		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
785	}
786
787	mutex_exit(&spa_namespace_lock);
788	mutex_exit(&spa->spa_vdev_top_lock);
789
790	return (error);
791}
792
793/*
794 * ==========================================================================
795 * SPA state manipulation (open/create/destroy/import/export)
796 * ==========================================================================
797 */
798
799static int
800spa_error_entry_compare(const void *a, const void *b)
801{
802	spa_error_entry_t *sa = (spa_error_entry_t *)a;
803	spa_error_entry_t *sb = (spa_error_entry_t *)b;
804	int ret;
805
806	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
807	    sizeof (zbookmark_t));
808
809	if (ret < 0)
810		return (-1);
811	else if (ret > 0)
812		return (1);
813	else
814		return (0);
815}
816
817/*
818 * Utility function which retrieves copies of the current logs and
819 * re-initializes them in the process.
820 */
821void
822spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
823{
824	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
825
826	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
827	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
828
829	avl_create(&spa->spa_errlist_scrub,
830	    spa_error_entry_compare, sizeof (spa_error_entry_t),
831	    offsetof(spa_error_entry_t, se_avl));
832	avl_create(&spa->spa_errlist_last,
833	    spa_error_entry_compare, sizeof (spa_error_entry_t),
834	    offsetof(spa_error_entry_t, se_avl));
835}
836
837static void
838spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
839{
840	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
841	enum zti_modes mode = ztip->zti_mode;
842	uint_t value = ztip->zti_value;
843	uint_t count = ztip->zti_count;
844	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
845	char name[32];
846	uint_t flags = 0;
847	boolean_t batch = B_FALSE;
848
849	if (mode == ZTI_MODE_NULL) {
850		tqs->stqs_count = 0;
851		tqs->stqs_taskq = NULL;
852		return;
853	}
854
855	ASSERT3U(count, >, 0);
856
857	tqs->stqs_count = count;
858	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
859
860	switch (mode) {
861	case ZTI_MODE_FIXED:
862		ASSERT3U(value, >=, 1);
863		value = MAX(value, 1);
864		break;
865
866	case ZTI_MODE_BATCH:
867		batch = B_TRUE;
868		flags |= TASKQ_THREADS_CPU_PCT;
869		value = zio_taskq_batch_pct;
870		break;
871
872	default:
873		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
874		    "spa_activate()",
875		    zio_type_name[t], zio_taskq_types[q], mode, value);
876		break;
877	}
878
879	for (uint_t i = 0; i < count; i++) {
880		taskq_t *tq;
881
882		if (count > 1) {
883			(void) snprintf(name, sizeof (name), "%s_%s_%u",
884			    zio_type_name[t], zio_taskq_types[q], i);
885		} else {
886			(void) snprintf(name, sizeof (name), "%s_%s",
887			    zio_type_name[t], zio_taskq_types[q]);
888		}
889
890#ifdef SYSDC
891		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
892			if (batch)
893				flags |= TASKQ_DC_BATCH;
894
895			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
896			    spa->spa_proc, zio_taskq_basedc, flags);
897		} else {
898#endif
899			pri_t pri = maxclsyspri;
900			/*
901			 * The write issue taskq can be extremely CPU
902			 * intensive.  Run it at slightly lower priority
903			 * than the other taskqs.
904			 */
905			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
906				pri--;
907
908			tq = taskq_create_proc(name, value, pri, 50,
909			    INT_MAX, spa->spa_proc, flags);
910#ifdef SYSDC
911		}
912#endif
913
914		tqs->stqs_taskq[i] = tq;
915	}
916}
917
918static void
919spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920{
921	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
922
923	if (tqs->stqs_taskq == NULL) {
924		ASSERT0(tqs->stqs_count);
925		return;
926	}
927
928	for (uint_t i = 0; i < tqs->stqs_count; i++) {
929		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930		taskq_destroy(tqs->stqs_taskq[i]);
931	}
932
933	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934	tqs->stqs_taskq = NULL;
935}
936
937/*
938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939 * Note that a type may have multiple discrete taskqs to avoid lock contention
940 * on the taskq itself. In that case we choose which taskq at random by using
941 * the low bits of gethrtime().
942 */
943void
944spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945    task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946{
947	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948	taskq_t *tq;
949
950	ASSERT3P(tqs->stqs_taskq, !=, NULL);
951	ASSERT3U(tqs->stqs_count, !=, 0);
952
953	if (tqs->stqs_count == 1) {
954		tq = tqs->stqs_taskq[0];
955	} else {
956		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
957	}
958
959	taskq_dispatch_ent(tq, func, arg, flags, ent);
960}
961
962static void
963spa_create_zio_taskqs(spa_t *spa)
964{
965	for (int t = 0; t < ZIO_TYPES; t++) {
966		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
967			spa_taskqs_init(spa, t, q);
968		}
969	}
970}
971
972#ifdef _KERNEL
973#ifdef SPA_PROCESS
974static void
975spa_thread(void *arg)
976{
977	callb_cpr_t cprinfo;
978
979	spa_t *spa = arg;
980	user_t *pu = PTOU(curproc);
981
982	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
983	    spa->spa_name);
984
985	ASSERT(curproc != &p0);
986	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
987	    "zpool-%s", spa->spa_name);
988	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
989
990#ifdef PSRSET_BIND
991	/* bind this thread to the requested psrset */
992	if (zio_taskq_psrset_bind != PS_NONE) {
993		pool_lock();
994		mutex_enter(&cpu_lock);
995		mutex_enter(&pidlock);
996		mutex_enter(&curproc->p_lock);
997
998		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
999		    0, NULL, NULL) == 0)  {
1000			curthread->t_bind_pset = zio_taskq_psrset_bind;
1001		} else {
1002			cmn_err(CE_WARN,
1003			    "Couldn't bind process for zfs pool \"%s\" to "
1004			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1005		}
1006
1007		mutex_exit(&curproc->p_lock);
1008		mutex_exit(&pidlock);
1009		mutex_exit(&cpu_lock);
1010		pool_unlock();
1011	}
1012#endif
1013
1014#ifdef SYSDC
1015	if (zio_taskq_sysdc) {
1016		sysdc_thread_enter(curthread, 100, 0);
1017	}
1018#endif
1019
1020	spa->spa_proc = curproc;
1021	spa->spa_did = curthread->t_did;
1022
1023	spa_create_zio_taskqs(spa);
1024
1025	mutex_enter(&spa->spa_proc_lock);
1026	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1027
1028	spa->spa_proc_state = SPA_PROC_ACTIVE;
1029	cv_broadcast(&spa->spa_proc_cv);
1030
1031	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1032	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1033		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1034	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1035
1036	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1037	spa->spa_proc_state = SPA_PROC_GONE;
1038	spa->spa_proc = &p0;
1039	cv_broadcast(&spa->spa_proc_cv);
1040	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1041
1042	mutex_enter(&curproc->p_lock);
1043	lwp_exit();
1044}
1045#endif	/* SPA_PROCESS */
1046#endif
1047
1048/*
1049 * Activate an uninitialized pool.
1050 */
1051static void
1052spa_activate(spa_t *spa, int mode)
1053{
1054	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1055
1056	spa->spa_state = POOL_STATE_ACTIVE;
1057	spa->spa_mode = mode;
1058
1059	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1060	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1061
1062	/* Try to create a covering process */
1063	mutex_enter(&spa->spa_proc_lock);
1064	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1065	ASSERT(spa->spa_proc == &p0);
1066	spa->spa_did = 0;
1067
1068#ifdef SPA_PROCESS
1069	/* Only create a process if we're going to be around a while. */
1070	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1071		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1072		    NULL, 0) == 0) {
1073			spa->spa_proc_state = SPA_PROC_CREATED;
1074			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1075				cv_wait(&spa->spa_proc_cv,
1076				    &spa->spa_proc_lock);
1077			}
1078			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1079			ASSERT(spa->spa_proc != &p0);
1080			ASSERT(spa->spa_did != 0);
1081		} else {
1082#ifdef _KERNEL
1083			cmn_err(CE_WARN,
1084			    "Couldn't create process for zfs pool \"%s\"\n",
1085			    spa->spa_name);
1086#endif
1087		}
1088	}
1089#endif	/* SPA_PROCESS */
1090	mutex_exit(&spa->spa_proc_lock);
1091
1092	/* If we didn't create a process, we need to create our taskqs. */
1093	ASSERT(spa->spa_proc == &p0);
1094	if (spa->spa_proc == &p0) {
1095		spa_create_zio_taskqs(spa);
1096	}
1097
1098	/*
1099	 * Start TRIM thread.
1100	 */
1101	trim_thread_create(spa);
1102
1103	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1104	    offsetof(vdev_t, vdev_config_dirty_node));
1105	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1106	    offsetof(vdev_t, vdev_state_dirty_node));
1107
1108	txg_list_create(&spa->spa_vdev_txg_list,
1109	    offsetof(struct vdev, vdev_txg_node));
1110
1111	avl_create(&spa->spa_errlist_scrub,
1112	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1113	    offsetof(spa_error_entry_t, se_avl));
1114	avl_create(&spa->spa_errlist_last,
1115	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1116	    offsetof(spa_error_entry_t, se_avl));
1117}
1118
1119/*
1120 * Opposite of spa_activate().
1121 */
1122static void
1123spa_deactivate(spa_t *spa)
1124{
1125	ASSERT(spa->spa_sync_on == B_FALSE);
1126	ASSERT(spa->spa_dsl_pool == NULL);
1127	ASSERT(spa->spa_root_vdev == NULL);
1128	ASSERT(spa->spa_async_zio_root == NULL);
1129	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1130
1131	/*
1132	 * Stop TRIM thread in case spa_unload() wasn't called directly
1133	 * before spa_deactivate().
1134	 */
1135	trim_thread_destroy(spa);
1136
1137	txg_list_destroy(&spa->spa_vdev_txg_list);
1138
1139	list_destroy(&spa->spa_config_dirty_list);
1140	list_destroy(&spa->spa_state_dirty_list);
1141
1142	for (int t = 0; t < ZIO_TYPES; t++) {
1143		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1144			spa_taskqs_fini(spa, t, q);
1145		}
1146	}
1147
1148	metaslab_class_destroy(spa->spa_normal_class);
1149	spa->spa_normal_class = NULL;
1150
1151	metaslab_class_destroy(spa->spa_log_class);
1152	spa->spa_log_class = NULL;
1153
1154	/*
1155	 * If this was part of an import or the open otherwise failed, we may
1156	 * still have errors left in the queues.  Empty them just in case.
1157	 */
1158	spa_errlog_drain(spa);
1159
1160	avl_destroy(&spa->spa_errlist_scrub);
1161	avl_destroy(&spa->spa_errlist_last);
1162
1163	spa->spa_state = POOL_STATE_UNINITIALIZED;
1164
1165	mutex_enter(&spa->spa_proc_lock);
1166	if (spa->spa_proc_state != SPA_PROC_NONE) {
1167		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1168		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1169		cv_broadcast(&spa->spa_proc_cv);
1170		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1171			ASSERT(spa->spa_proc != &p0);
1172			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1173		}
1174		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1175		spa->spa_proc_state = SPA_PROC_NONE;
1176	}
1177	ASSERT(spa->spa_proc == &p0);
1178	mutex_exit(&spa->spa_proc_lock);
1179
1180#ifdef SPA_PROCESS
1181	/*
1182	 * We want to make sure spa_thread() has actually exited the ZFS
1183	 * module, so that the module can't be unloaded out from underneath
1184	 * it.
1185	 */
1186	if (spa->spa_did != 0) {
1187		thread_join(spa->spa_did);
1188		spa->spa_did = 0;
1189	}
1190#endif	/* SPA_PROCESS */
1191}
1192
1193/*
1194 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1195 * will create all the necessary vdevs in the appropriate layout, with each vdev
1196 * in the CLOSED state.  This will prep the pool before open/creation/import.
1197 * All vdev validation is done by the vdev_alloc() routine.
1198 */
1199static int
1200spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1201    uint_t id, int atype)
1202{
1203	nvlist_t **child;
1204	uint_t children;
1205	int error;
1206
1207	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1208		return (error);
1209
1210	if ((*vdp)->vdev_ops->vdev_op_leaf)
1211		return (0);
1212
1213	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1214	    &child, &children);
1215
1216	if (error == ENOENT)
1217		return (0);
1218
1219	if (error) {
1220		vdev_free(*vdp);
1221		*vdp = NULL;
1222		return (SET_ERROR(EINVAL));
1223	}
1224
1225	for (int c = 0; c < children; c++) {
1226		vdev_t *vd;
1227		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1228		    atype)) != 0) {
1229			vdev_free(*vdp);
1230			*vdp = NULL;
1231			return (error);
1232		}
1233	}
1234
1235	ASSERT(*vdp != NULL);
1236
1237	return (0);
1238}
1239
1240/*
1241 * Opposite of spa_load().
1242 */
1243static void
1244spa_unload(spa_t *spa)
1245{
1246	int i;
1247
1248	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1249
1250	/*
1251	 * Stop TRIM thread.
1252	 */
1253	trim_thread_destroy(spa);
1254
1255	/*
1256	 * Stop async tasks.
1257	 */
1258	spa_async_suspend(spa);
1259
1260	/*
1261	 * Stop syncing.
1262	 */
1263	if (spa->spa_sync_on) {
1264		txg_sync_stop(spa->spa_dsl_pool);
1265		spa->spa_sync_on = B_FALSE;
1266	}
1267
1268	/*
1269	 * Wait for any outstanding async I/O to complete.
1270	 */
1271	if (spa->spa_async_zio_root != NULL) {
1272		(void) zio_wait(spa->spa_async_zio_root);
1273		spa->spa_async_zio_root = NULL;
1274	}
1275
1276	bpobj_close(&spa->spa_deferred_bpobj);
1277
1278	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1279
1280	/*
1281	 * Close all vdevs.
1282	 */
1283	if (spa->spa_root_vdev)
1284		vdev_free(spa->spa_root_vdev);
1285	ASSERT(spa->spa_root_vdev == NULL);
1286
1287	/*
1288	 * Close the dsl pool.
1289	 */
1290	if (spa->spa_dsl_pool) {
1291		dsl_pool_close(spa->spa_dsl_pool);
1292		spa->spa_dsl_pool = NULL;
1293		spa->spa_meta_objset = NULL;
1294	}
1295
1296	ddt_unload(spa);
1297
1298
1299	/*
1300	 * Drop and purge level 2 cache
1301	 */
1302	spa_l2cache_drop(spa);
1303
1304	for (i = 0; i < spa->spa_spares.sav_count; i++)
1305		vdev_free(spa->spa_spares.sav_vdevs[i]);
1306	if (spa->spa_spares.sav_vdevs) {
1307		kmem_free(spa->spa_spares.sav_vdevs,
1308		    spa->spa_spares.sav_count * sizeof (void *));
1309		spa->spa_spares.sav_vdevs = NULL;
1310	}
1311	if (spa->spa_spares.sav_config) {
1312		nvlist_free(spa->spa_spares.sav_config);
1313		spa->spa_spares.sav_config = NULL;
1314	}
1315	spa->spa_spares.sav_count = 0;
1316
1317	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1318		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1319		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1320	}
1321	if (spa->spa_l2cache.sav_vdevs) {
1322		kmem_free(spa->spa_l2cache.sav_vdevs,
1323		    spa->spa_l2cache.sav_count * sizeof (void *));
1324		spa->spa_l2cache.sav_vdevs = NULL;
1325	}
1326	if (spa->spa_l2cache.sav_config) {
1327		nvlist_free(spa->spa_l2cache.sav_config);
1328		spa->spa_l2cache.sav_config = NULL;
1329	}
1330	spa->spa_l2cache.sav_count = 0;
1331
1332	spa->spa_async_suspended = 0;
1333
1334	if (spa->spa_comment != NULL) {
1335		spa_strfree(spa->spa_comment);
1336		spa->spa_comment = NULL;
1337	}
1338
1339	spa_config_exit(spa, SCL_ALL, FTAG);
1340}
1341
1342/*
1343 * Load (or re-load) the current list of vdevs describing the active spares for
1344 * this pool.  When this is called, we have some form of basic information in
1345 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1346 * then re-generate a more complete list including status information.
1347 */
1348static void
1349spa_load_spares(spa_t *spa)
1350{
1351	nvlist_t **spares;
1352	uint_t nspares;
1353	int i;
1354	vdev_t *vd, *tvd;
1355
1356	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1357
1358	/*
1359	 * First, close and free any existing spare vdevs.
1360	 */
1361	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1362		vd = spa->spa_spares.sav_vdevs[i];
1363
1364		/* Undo the call to spa_activate() below */
1365		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1366		    B_FALSE)) != NULL && tvd->vdev_isspare)
1367			spa_spare_remove(tvd);
1368		vdev_close(vd);
1369		vdev_free(vd);
1370	}
1371
1372	if (spa->spa_spares.sav_vdevs)
1373		kmem_free(spa->spa_spares.sav_vdevs,
1374		    spa->spa_spares.sav_count * sizeof (void *));
1375
1376	if (spa->spa_spares.sav_config == NULL)
1377		nspares = 0;
1378	else
1379		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1380		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1381
1382	spa->spa_spares.sav_count = (int)nspares;
1383	spa->spa_spares.sav_vdevs = NULL;
1384
1385	if (nspares == 0)
1386		return;
1387
1388	/*
1389	 * Construct the array of vdevs, opening them to get status in the
1390	 * process.   For each spare, there is potentially two different vdev_t
1391	 * structures associated with it: one in the list of spares (used only
1392	 * for basic validation purposes) and one in the active vdev
1393	 * configuration (if it's spared in).  During this phase we open and
1394	 * validate each vdev on the spare list.  If the vdev also exists in the
1395	 * active configuration, then we also mark this vdev as an active spare.
1396	 */
1397	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1398	    KM_SLEEP);
1399	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1400		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1401		    VDEV_ALLOC_SPARE) == 0);
1402		ASSERT(vd != NULL);
1403
1404		spa->spa_spares.sav_vdevs[i] = vd;
1405
1406		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1407		    B_FALSE)) != NULL) {
1408			if (!tvd->vdev_isspare)
1409				spa_spare_add(tvd);
1410
1411			/*
1412			 * We only mark the spare active if we were successfully
1413			 * able to load the vdev.  Otherwise, importing a pool
1414			 * with a bad active spare would result in strange
1415			 * behavior, because multiple pool would think the spare
1416			 * is actively in use.
1417			 *
1418			 * There is a vulnerability here to an equally bizarre
1419			 * circumstance, where a dead active spare is later
1420			 * brought back to life (onlined or otherwise).  Given
1421			 * the rarity of this scenario, and the extra complexity
1422			 * it adds, we ignore the possibility.
1423			 */
1424			if (!vdev_is_dead(tvd))
1425				spa_spare_activate(tvd);
1426		}
1427
1428		vd->vdev_top = vd;
1429		vd->vdev_aux = &spa->spa_spares;
1430
1431		if (vdev_open(vd) != 0)
1432			continue;
1433
1434		if (vdev_validate_aux(vd) == 0)
1435			spa_spare_add(vd);
1436	}
1437
1438	/*
1439	 * Recompute the stashed list of spares, with status information
1440	 * this time.
1441	 */
1442	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1443	    DATA_TYPE_NVLIST_ARRAY) == 0);
1444
1445	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1446	    KM_SLEEP);
1447	for (i = 0; i < spa->spa_spares.sav_count; i++)
1448		spares[i] = vdev_config_generate(spa,
1449		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1450	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1451	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1452	for (i = 0; i < spa->spa_spares.sav_count; i++)
1453		nvlist_free(spares[i]);
1454	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1455}
1456
1457/*
1458 * Load (or re-load) the current list of vdevs describing the active l2cache for
1459 * this pool.  When this is called, we have some form of basic information in
1460 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1461 * then re-generate a more complete list including status information.
1462 * Devices which are already active have their details maintained, and are
1463 * not re-opened.
1464 */
1465static void
1466spa_load_l2cache(spa_t *spa)
1467{
1468	nvlist_t **l2cache;
1469	uint_t nl2cache;
1470	int i, j, oldnvdevs;
1471	uint64_t guid;
1472	vdev_t *vd, **oldvdevs, **newvdevs;
1473	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1474
1475	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1476
1477	if (sav->sav_config != NULL) {
1478		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1479		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1480		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1481	} else {
1482		nl2cache = 0;
1483		newvdevs = NULL;
1484	}
1485
1486	oldvdevs = sav->sav_vdevs;
1487	oldnvdevs = sav->sav_count;
1488	sav->sav_vdevs = NULL;
1489	sav->sav_count = 0;
1490
1491	/*
1492	 * Process new nvlist of vdevs.
1493	 */
1494	for (i = 0; i < nl2cache; i++) {
1495		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1496		    &guid) == 0);
1497
1498		newvdevs[i] = NULL;
1499		for (j = 0; j < oldnvdevs; j++) {
1500			vd = oldvdevs[j];
1501			if (vd != NULL && guid == vd->vdev_guid) {
1502				/*
1503				 * Retain previous vdev for add/remove ops.
1504				 */
1505				newvdevs[i] = vd;
1506				oldvdevs[j] = NULL;
1507				break;
1508			}
1509		}
1510
1511		if (newvdevs[i] == NULL) {
1512			/*
1513			 * Create new vdev
1514			 */
1515			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1516			    VDEV_ALLOC_L2CACHE) == 0);
1517			ASSERT(vd != NULL);
1518			newvdevs[i] = vd;
1519
1520			/*
1521			 * Commit this vdev as an l2cache device,
1522			 * even if it fails to open.
1523			 */
1524			spa_l2cache_add(vd);
1525
1526			vd->vdev_top = vd;
1527			vd->vdev_aux = sav;
1528
1529			spa_l2cache_activate(vd);
1530
1531			if (vdev_open(vd) != 0)
1532				continue;
1533
1534			(void) vdev_validate_aux(vd);
1535
1536			if (!vdev_is_dead(vd))
1537				l2arc_add_vdev(spa, vd);
1538		}
1539	}
1540
1541	/*
1542	 * Purge vdevs that were dropped
1543	 */
1544	for (i = 0; i < oldnvdevs; i++) {
1545		uint64_t pool;
1546
1547		vd = oldvdevs[i];
1548		if (vd != NULL) {
1549			ASSERT(vd->vdev_isl2cache);
1550
1551			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1552			    pool != 0ULL && l2arc_vdev_present(vd))
1553				l2arc_remove_vdev(vd);
1554			vdev_clear_stats(vd);
1555			vdev_free(vd);
1556		}
1557	}
1558
1559	if (oldvdevs)
1560		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1561
1562	if (sav->sav_config == NULL)
1563		goto out;
1564
1565	sav->sav_vdevs = newvdevs;
1566	sav->sav_count = (int)nl2cache;
1567
1568	/*
1569	 * Recompute the stashed list of l2cache devices, with status
1570	 * information this time.
1571	 */
1572	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1573	    DATA_TYPE_NVLIST_ARRAY) == 0);
1574
1575	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1576	for (i = 0; i < sav->sav_count; i++)
1577		l2cache[i] = vdev_config_generate(spa,
1578		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1579	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1580	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1581out:
1582	for (i = 0; i < sav->sav_count; i++)
1583		nvlist_free(l2cache[i]);
1584	if (sav->sav_count)
1585		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1586}
1587
1588static int
1589load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1590{
1591	dmu_buf_t *db;
1592	char *packed = NULL;
1593	size_t nvsize = 0;
1594	int error;
1595	*value = NULL;
1596
1597	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1598	nvsize = *(uint64_t *)db->db_data;
1599	dmu_buf_rele(db, FTAG);
1600
1601	packed = kmem_alloc(nvsize, KM_SLEEP);
1602	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1603	    DMU_READ_PREFETCH);
1604	if (error == 0)
1605		error = nvlist_unpack(packed, nvsize, value, 0);
1606	kmem_free(packed, nvsize);
1607
1608	return (error);
1609}
1610
1611/*
1612 * Checks to see if the given vdev could not be opened, in which case we post a
1613 * sysevent to notify the autoreplace code that the device has been removed.
1614 */
1615static void
1616spa_check_removed(vdev_t *vd)
1617{
1618	for (int c = 0; c < vd->vdev_children; c++)
1619		spa_check_removed(vd->vdev_child[c]);
1620
1621	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1622	    !vd->vdev_ishole) {
1623		zfs_post_autoreplace(vd->vdev_spa, vd);
1624		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1625	}
1626}
1627
1628/*
1629 * Validate the current config against the MOS config
1630 */
1631static boolean_t
1632spa_config_valid(spa_t *spa, nvlist_t *config)
1633{
1634	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1635	nvlist_t *nv;
1636
1637	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1638
1639	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1640	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1641
1642	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1643
1644	/*
1645	 * If we're doing a normal import, then build up any additional
1646	 * diagnostic information about missing devices in this config.
1647	 * We'll pass this up to the user for further processing.
1648	 */
1649	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1650		nvlist_t **child, *nv;
1651		uint64_t idx = 0;
1652
1653		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1654		    KM_SLEEP);
1655		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1656
1657		for (int c = 0; c < rvd->vdev_children; c++) {
1658			vdev_t *tvd = rvd->vdev_child[c];
1659			vdev_t *mtvd  = mrvd->vdev_child[c];
1660
1661			if (tvd->vdev_ops == &vdev_missing_ops &&
1662			    mtvd->vdev_ops != &vdev_missing_ops &&
1663			    mtvd->vdev_islog)
1664				child[idx++] = vdev_config_generate(spa, mtvd,
1665				    B_FALSE, 0);
1666		}
1667
1668		if (idx) {
1669			VERIFY(nvlist_add_nvlist_array(nv,
1670			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1671			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1672			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1673
1674			for (int i = 0; i < idx; i++)
1675				nvlist_free(child[i]);
1676		}
1677		nvlist_free(nv);
1678		kmem_free(child, rvd->vdev_children * sizeof (char **));
1679	}
1680
1681	/*
1682	 * Compare the root vdev tree with the information we have
1683	 * from the MOS config (mrvd). Check each top-level vdev
1684	 * with the corresponding MOS config top-level (mtvd).
1685	 */
1686	for (int c = 0; c < rvd->vdev_children; c++) {
1687		vdev_t *tvd = rvd->vdev_child[c];
1688		vdev_t *mtvd  = mrvd->vdev_child[c];
1689
1690		/*
1691		 * Resolve any "missing" vdevs in the current configuration.
1692		 * If we find that the MOS config has more accurate information
1693		 * about the top-level vdev then use that vdev instead.
1694		 */
1695		if (tvd->vdev_ops == &vdev_missing_ops &&
1696		    mtvd->vdev_ops != &vdev_missing_ops) {
1697
1698			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1699				continue;
1700
1701			/*
1702			 * Device specific actions.
1703			 */
1704			if (mtvd->vdev_islog) {
1705				spa_set_log_state(spa, SPA_LOG_CLEAR);
1706			} else {
1707				/*
1708				 * XXX - once we have 'readonly' pool
1709				 * support we should be able to handle
1710				 * missing data devices by transitioning
1711				 * the pool to readonly.
1712				 */
1713				continue;
1714			}
1715
1716			/*
1717			 * Swap the missing vdev with the data we were
1718			 * able to obtain from the MOS config.
1719			 */
1720			vdev_remove_child(rvd, tvd);
1721			vdev_remove_child(mrvd, mtvd);
1722
1723			vdev_add_child(rvd, mtvd);
1724			vdev_add_child(mrvd, tvd);
1725
1726			spa_config_exit(spa, SCL_ALL, FTAG);
1727			vdev_load(mtvd);
1728			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1729
1730			vdev_reopen(rvd);
1731		} else if (mtvd->vdev_islog) {
1732			/*
1733			 * Load the slog device's state from the MOS config
1734			 * since it's possible that the label does not
1735			 * contain the most up-to-date information.
1736			 */
1737			vdev_load_log_state(tvd, mtvd);
1738			vdev_reopen(tvd);
1739		}
1740	}
1741	vdev_free(mrvd);
1742	spa_config_exit(spa, SCL_ALL, FTAG);
1743
1744	/*
1745	 * Ensure we were able to validate the config.
1746	 */
1747	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1748}
1749
1750/*
1751 * Check for missing log devices
1752 */
1753static boolean_t
1754spa_check_logs(spa_t *spa)
1755{
1756	boolean_t rv = B_FALSE;
1757
1758	switch (spa->spa_log_state) {
1759	case SPA_LOG_MISSING:
1760		/* need to recheck in case slog has been restored */
1761	case SPA_LOG_UNKNOWN:
1762		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1763		    NULL, DS_FIND_CHILDREN) != 0);
1764		if (rv)
1765			spa_set_log_state(spa, SPA_LOG_MISSING);
1766		break;
1767	}
1768	return (rv);
1769}
1770
1771static boolean_t
1772spa_passivate_log(spa_t *spa)
1773{
1774	vdev_t *rvd = spa->spa_root_vdev;
1775	boolean_t slog_found = B_FALSE;
1776
1777	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1778
1779	if (!spa_has_slogs(spa))
1780		return (B_FALSE);
1781
1782	for (int c = 0; c < rvd->vdev_children; c++) {
1783		vdev_t *tvd = rvd->vdev_child[c];
1784		metaslab_group_t *mg = tvd->vdev_mg;
1785
1786		if (tvd->vdev_islog) {
1787			metaslab_group_passivate(mg);
1788			slog_found = B_TRUE;
1789		}
1790	}
1791
1792	return (slog_found);
1793}
1794
1795static void
1796spa_activate_log(spa_t *spa)
1797{
1798	vdev_t *rvd = spa->spa_root_vdev;
1799
1800	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1801
1802	for (int c = 0; c < rvd->vdev_children; c++) {
1803		vdev_t *tvd = rvd->vdev_child[c];
1804		metaslab_group_t *mg = tvd->vdev_mg;
1805
1806		if (tvd->vdev_islog)
1807			metaslab_group_activate(mg);
1808	}
1809}
1810
1811int
1812spa_offline_log(spa_t *spa)
1813{
1814	int error;
1815
1816	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1817	    NULL, DS_FIND_CHILDREN);
1818	if (error == 0) {
1819		/*
1820		 * We successfully offlined the log device, sync out the
1821		 * current txg so that the "stubby" block can be removed
1822		 * by zil_sync().
1823		 */
1824		txg_wait_synced(spa->spa_dsl_pool, 0);
1825	}
1826	return (error);
1827}
1828
1829static void
1830spa_aux_check_removed(spa_aux_vdev_t *sav)
1831{
1832	int i;
1833
1834	for (i = 0; i < sav->sav_count; i++)
1835		spa_check_removed(sav->sav_vdevs[i]);
1836}
1837
1838void
1839spa_claim_notify(zio_t *zio)
1840{
1841	spa_t *spa = zio->io_spa;
1842
1843	if (zio->io_error)
1844		return;
1845
1846	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1847	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1848		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1849	mutex_exit(&spa->spa_props_lock);
1850}
1851
1852typedef struct spa_load_error {
1853	uint64_t	sle_meta_count;
1854	uint64_t	sle_data_count;
1855} spa_load_error_t;
1856
1857static void
1858spa_load_verify_done(zio_t *zio)
1859{
1860	blkptr_t *bp = zio->io_bp;
1861	spa_load_error_t *sle = zio->io_private;
1862	dmu_object_type_t type = BP_GET_TYPE(bp);
1863	int error = zio->io_error;
1864
1865	if (error) {
1866		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1867		    type != DMU_OT_INTENT_LOG)
1868			atomic_add_64(&sle->sle_meta_count, 1);
1869		else
1870			atomic_add_64(&sle->sle_data_count, 1);
1871	}
1872	zio_data_buf_free(zio->io_data, zio->io_size);
1873}
1874
1875/*ARGSUSED*/
1876static int
1877spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1878    const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1879{
1880	if (bp != NULL) {
1881		zio_t *rio = arg;
1882		size_t size = BP_GET_PSIZE(bp);
1883		void *data = zio_data_buf_alloc(size);
1884
1885		zio_nowait(zio_read(rio, spa, bp, data, size,
1886		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1887		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1888		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1889	}
1890	return (0);
1891}
1892
1893static int
1894spa_load_verify(spa_t *spa)
1895{
1896	zio_t *rio;
1897	spa_load_error_t sle = { 0 };
1898	zpool_rewind_policy_t policy;
1899	boolean_t verify_ok = B_FALSE;
1900	int error;
1901
1902	zpool_get_rewind_policy(spa->spa_config, &policy);
1903
1904	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1905		return (0);
1906
1907	rio = zio_root(spa, NULL, &sle,
1908	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1909
1910	error = traverse_pool(spa, spa->spa_verify_min_txg,
1911	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1912
1913	(void) zio_wait(rio);
1914
1915	spa->spa_load_meta_errors = sle.sle_meta_count;
1916	spa->spa_load_data_errors = sle.sle_data_count;
1917
1918	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1919	    sle.sle_data_count <= policy.zrp_maxdata) {
1920		int64_t loss = 0;
1921
1922		verify_ok = B_TRUE;
1923		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1924		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1925
1926		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1927		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1928		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1929		VERIFY(nvlist_add_int64(spa->spa_load_info,
1930		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1931		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1932		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1933	} else {
1934		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1935	}
1936
1937	if (error) {
1938		if (error != ENXIO && error != EIO)
1939			error = SET_ERROR(EIO);
1940		return (error);
1941	}
1942
1943	return (verify_ok ? 0 : EIO);
1944}
1945
1946/*
1947 * Find a value in the pool props object.
1948 */
1949static void
1950spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1951{
1952	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1953	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1954}
1955
1956/*
1957 * Find a value in the pool directory object.
1958 */
1959static int
1960spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1961{
1962	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1963	    name, sizeof (uint64_t), 1, val));
1964}
1965
1966static int
1967spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1968{
1969	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1970	return (err);
1971}
1972
1973/*
1974 * Fix up config after a partly-completed split.  This is done with the
1975 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1976 * pool have that entry in their config, but only the splitting one contains
1977 * a list of all the guids of the vdevs that are being split off.
1978 *
1979 * This function determines what to do with that list: either rejoin
1980 * all the disks to the pool, or complete the splitting process.  To attempt
1981 * the rejoin, each disk that is offlined is marked online again, and
1982 * we do a reopen() call.  If the vdev label for every disk that was
1983 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1984 * then we call vdev_split() on each disk, and complete the split.
1985 *
1986 * Otherwise we leave the config alone, with all the vdevs in place in
1987 * the original pool.
1988 */
1989static void
1990spa_try_repair(spa_t *spa, nvlist_t *config)
1991{
1992	uint_t extracted;
1993	uint64_t *glist;
1994	uint_t i, gcount;
1995	nvlist_t *nvl;
1996	vdev_t **vd;
1997	boolean_t attempt_reopen;
1998
1999	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2000		return;
2001
2002	/* check that the config is complete */
2003	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2004	    &glist, &gcount) != 0)
2005		return;
2006
2007	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2008
2009	/* attempt to online all the vdevs & validate */
2010	attempt_reopen = B_TRUE;
2011	for (i = 0; i < gcount; i++) {
2012		if (glist[i] == 0)	/* vdev is hole */
2013			continue;
2014
2015		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2016		if (vd[i] == NULL) {
2017			/*
2018			 * Don't bother attempting to reopen the disks;
2019			 * just do the split.
2020			 */
2021			attempt_reopen = B_FALSE;
2022		} else {
2023			/* attempt to re-online it */
2024			vd[i]->vdev_offline = B_FALSE;
2025		}
2026	}
2027
2028	if (attempt_reopen) {
2029		vdev_reopen(spa->spa_root_vdev);
2030
2031		/* check each device to see what state it's in */
2032		for (extracted = 0, i = 0; i < gcount; i++) {
2033			if (vd[i] != NULL &&
2034			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2035				break;
2036			++extracted;
2037		}
2038	}
2039
2040	/*
2041	 * If every disk has been moved to the new pool, or if we never
2042	 * even attempted to look at them, then we split them off for
2043	 * good.
2044	 */
2045	if (!attempt_reopen || gcount == extracted) {
2046		for (i = 0; i < gcount; i++)
2047			if (vd[i] != NULL)
2048				vdev_split(vd[i]);
2049		vdev_reopen(spa->spa_root_vdev);
2050	}
2051
2052	kmem_free(vd, gcount * sizeof (vdev_t *));
2053}
2054
2055static int
2056spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2057    boolean_t mosconfig)
2058{
2059	nvlist_t *config = spa->spa_config;
2060	char *ereport = FM_EREPORT_ZFS_POOL;
2061	char *comment;
2062	int error;
2063	uint64_t pool_guid;
2064	nvlist_t *nvl;
2065
2066	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2067		return (SET_ERROR(EINVAL));
2068
2069	ASSERT(spa->spa_comment == NULL);
2070	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2071		spa->spa_comment = spa_strdup(comment);
2072
2073	/*
2074	 * Versioning wasn't explicitly added to the label until later, so if
2075	 * it's not present treat it as the initial version.
2076	 */
2077	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2078	    &spa->spa_ubsync.ub_version) != 0)
2079		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2080
2081	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2082	    &spa->spa_config_txg);
2083
2084	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2085	    spa_guid_exists(pool_guid, 0)) {
2086		error = SET_ERROR(EEXIST);
2087	} else {
2088		spa->spa_config_guid = pool_guid;
2089
2090		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2091		    &nvl) == 0) {
2092			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2093			    KM_SLEEP) == 0);
2094		}
2095
2096		nvlist_free(spa->spa_load_info);
2097		spa->spa_load_info = fnvlist_alloc();
2098
2099		gethrestime(&spa->spa_loaded_ts);
2100		error = spa_load_impl(spa, pool_guid, config, state, type,
2101		    mosconfig, &ereport);
2102	}
2103
2104	spa->spa_minref = refcount_count(&spa->spa_refcount);
2105	if (error) {
2106		if (error != EEXIST) {
2107			spa->spa_loaded_ts.tv_sec = 0;
2108			spa->spa_loaded_ts.tv_nsec = 0;
2109		}
2110		if (error != EBADF) {
2111			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2112		}
2113	}
2114	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2115	spa->spa_ena = 0;
2116
2117	return (error);
2118}
2119
2120/*
2121 * Load an existing storage pool, using the pool's builtin spa_config as a
2122 * source of configuration information.
2123 */
2124static int
2125spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2126    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2127    char **ereport)
2128{
2129	int error = 0;
2130	nvlist_t *nvroot = NULL;
2131	nvlist_t *label;
2132	vdev_t *rvd;
2133	uberblock_t *ub = &spa->spa_uberblock;
2134	uint64_t children, config_cache_txg = spa->spa_config_txg;
2135	int orig_mode = spa->spa_mode;
2136	int parse;
2137	uint64_t obj;
2138	boolean_t missing_feat_write = B_FALSE;
2139
2140	/*
2141	 * If this is an untrusted config, access the pool in read-only mode.
2142	 * This prevents things like resilvering recently removed devices.
2143	 */
2144	if (!mosconfig)
2145		spa->spa_mode = FREAD;
2146
2147	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2148
2149	spa->spa_load_state = state;
2150
2151	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2152		return (SET_ERROR(EINVAL));
2153
2154	parse = (type == SPA_IMPORT_EXISTING ?
2155	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2156
2157	/*
2158	 * Create "The Godfather" zio to hold all async IOs
2159	 */
2160	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2161	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2162
2163	/*
2164	 * Parse the configuration into a vdev tree.  We explicitly set the
2165	 * value that will be returned by spa_version() since parsing the
2166	 * configuration requires knowing the version number.
2167	 */
2168	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2169	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2170	spa_config_exit(spa, SCL_ALL, FTAG);
2171
2172	if (error != 0)
2173		return (error);
2174
2175	ASSERT(spa->spa_root_vdev == rvd);
2176
2177	if (type != SPA_IMPORT_ASSEMBLE) {
2178		ASSERT(spa_guid(spa) == pool_guid);
2179	}
2180
2181	/*
2182	 * Try to open all vdevs, loading each label in the process.
2183	 */
2184	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2185	error = vdev_open(rvd);
2186	spa_config_exit(spa, SCL_ALL, FTAG);
2187	if (error != 0)
2188		return (error);
2189
2190	/*
2191	 * We need to validate the vdev labels against the configuration that
2192	 * we have in hand, which is dependent on the setting of mosconfig. If
2193	 * mosconfig is true then we're validating the vdev labels based on
2194	 * that config.  Otherwise, we're validating against the cached config
2195	 * (zpool.cache) that was read when we loaded the zfs module, and then
2196	 * later we will recursively call spa_load() and validate against
2197	 * the vdev config.
2198	 *
2199	 * If we're assembling a new pool that's been split off from an
2200	 * existing pool, the labels haven't yet been updated so we skip
2201	 * validation for now.
2202	 */
2203	if (type != SPA_IMPORT_ASSEMBLE) {
2204		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2205		error = vdev_validate(rvd, mosconfig);
2206		spa_config_exit(spa, SCL_ALL, FTAG);
2207
2208		if (error != 0)
2209			return (error);
2210
2211		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2212			return (SET_ERROR(ENXIO));
2213	}
2214
2215	/*
2216	 * Find the best uberblock.
2217	 */
2218	vdev_uberblock_load(rvd, ub, &label);
2219
2220	/*
2221	 * If we weren't able to find a single valid uberblock, return failure.
2222	 */
2223	if (ub->ub_txg == 0) {
2224		nvlist_free(label);
2225		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2226	}
2227
2228	/*
2229	 * If the pool has an unsupported version we can't open it.
2230	 */
2231	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2232		nvlist_free(label);
2233		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2234	}
2235
2236	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2237		nvlist_t *features;
2238
2239		/*
2240		 * If we weren't able to find what's necessary for reading the
2241		 * MOS in the label, return failure.
2242		 */
2243		if (label == NULL || nvlist_lookup_nvlist(label,
2244		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2245			nvlist_free(label);
2246			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2247			    ENXIO));
2248		}
2249
2250		/*
2251		 * Update our in-core representation with the definitive values
2252		 * from the label.
2253		 */
2254		nvlist_free(spa->spa_label_features);
2255		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2256	}
2257
2258	nvlist_free(label);
2259
2260	/*
2261	 * Look through entries in the label nvlist's features_for_read. If
2262	 * there is a feature listed there which we don't understand then we
2263	 * cannot open a pool.
2264	 */
2265	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2266		nvlist_t *unsup_feat;
2267
2268		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2269		    0);
2270
2271		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2272		    NULL); nvp != NULL;
2273		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2274			if (!zfeature_is_supported(nvpair_name(nvp))) {
2275				VERIFY(nvlist_add_string(unsup_feat,
2276				    nvpair_name(nvp), "") == 0);
2277			}
2278		}
2279
2280		if (!nvlist_empty(unsup_feat)) {
2281			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2282			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2283			nvlist_free(unsup_feat);
2284			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2285			    ENOTSUP));
2286		}
2287
2288		nvlist_free(unsup_feat);
2289	}
2290
2291	/*
2292	 * If the vdev guid sum doesn't match the uberblock, we have an
2293	 * incomplete configuration.  We first check to see if the pool
2294	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2295	 * If it is, defer the vdev_guid_sum check till later so we
2296	 * can handle missing vdevs.
2297	 */
2298	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2299	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2300	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2301		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2302
2303	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2304		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2305		spa_try_repair(spa, config);
2306		spa_config_exit(spa, SCL_ALL, FTAG);
2307		nvlist_free(spa->spa_config_splitting);
2308		spa->spa_config_splitting = NULL;
2309	}
2310
2311	/*
2312	 * Initialize internal SPA structures.
2313	 */
2314	spa->spa_state = POOL_STATE_ACTIVE;
2315	spa->spa_ubsync = spa->spa_uberblock;
2316	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2317	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2318	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2319	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2320	spa->spa_claim_max_txg = spa->spa_first_txg;
2321	spa->spa_prev_software_version = ub->ub_software_version;
2322
2323	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2324	if (error)
2325		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2326	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2327
2328	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2329		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2330
2331	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2332		boolean_t missing_feat_read = B_FALSE;
2333		nvlist_t *unsup_feat, *enabled_feat;
2334
2335		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2336		    &spa->spa_feat_for_read_obj) != 0) {
2337			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2338		}
2339
2340		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2341		    &spa->spa_feat_for_write_obj) != 0) {
2342			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2343		}
2344
2345		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2346		    &spa->spa_feat_desc_obj) != 0) {
2347			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2348		}
2349
2350		enabled_feat = fnvlist_alloc();
2351		unsup_feat = fnvlist_alloc();
2352
2353		if (!spa_features_check(spa, B_FALSE,
2354		    unsup_feat, enabled_feat))
2355			missing_feat_read = B_TRUE;
2356
2357		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2358			if (!spa_features_check(spa, B_TRUE,
2359			    unsup_feat, enabled_feat)) {
2360				missing_feat_write = B_TRUE;
2361			}
2362		}
2363
2364		fnvlist_add_nvlist(spa->spa_load_info,
2365		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2366
2367		if (!nvlist_empty(unsup_feat)) {
2368			fnvlist_add_nvlist(spa->spa_load_info,
2369			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2370		}
2371
2372		fnvlist_free(enabled_feat);
2373		fnvlist_free(unsup_feat);
2374
2375		if (!missing_feat_read) {
2376			fnvlist_add_boolean(spa->spa_load_info,
2377			    ZPOOL_CONFIG_CAN_RDONLY);
2378		}
2379
2380		/*
2381		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2382		 * twofold: to determine whether the pool is available for
2383		 * import in read-write mode and (if it is not) whether the
2384		 * pool is available for import in read-only mode. If the pool
2385		 * is available for import in read-write mode, it is displayed
2386		 * as available in userland; if it is not available for import
2387		 * in read-only mode, it is displayed as unavailable in
2388		 * userland. If the pool is available for import in read-only
2389		 * mode but not read-write mode, it is displayed as unavailable
2390		 * in userland with a special note that the pool is actually
2391		 * available for open in read-only mode.
2392		 *
2393		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2394		 * missing a feature for write, we must first determine whether
2395		 * the pool can be opened read-only before returning to
2396		 * userland in order to know whether to display the
2397		 * abovementioned note.
2398		 */
2399		if (missing_feat_read || (missing_feat_write &&
2400		    spa_writeable(spa))) {
2401			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2402			    ENOTSUP));
2403		}
2404	}
2405
2406	spa->spa_is_initializing = B_TRUE;
2407	error = dsl_pool_open(spa->spa_dsl_pool);
2408	spa->spa_is_initializing = B_FALSE;
2409	if (error != 0)
2410		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2411
2412	if (!mosconfig) {
2413		uint64_t hostid;
2414		nvlist_t *policy = NULL, *nvconfig;
2415
2416		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2417			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2418
2419		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2420		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2421			char *hostname;
2422			unsigned long myhostid = 0;
2423
2424			VERIFY(nvlist_lookup_string(nvconfig,
2425			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2426
2427#ifdef	_KERNEL
2428			myhostid = zone_get_hostid(NULL);
2429#else	/* _KERNEL */
2430			/*
2431			 * We're emulating the system's hostid in userland, so
2432			 * we can't use zone_get_hostid().
2433			 */
2434			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2435#endif	/* _KERNEL */
2436			if (check_hostid && hostid != 0 && myhostid != 0 &&
2437			    hostid != myhostid) {
2438				nvlist_free(nvconfig);
2439				cmn_err(CE_WARN, "pool '%s' could not be "
2440				    "loaded as it was last accessed by "
2441				    "another system (host: %s hostid: 0x%lx). "
2442				    "See: http://illumos.org/msg/ZFS-8000-EY",
2443				    spa_name(spa), hostname,
2444				    (unsigned long)hostid);
2445				return (SET_ERROR(EBADF));
2446			}
2447		}
2448		if (nvlist_lookup_nvlist(spa->spa_config,
2449		    ZPOOL_REWIND_POLICY, &policy) == 0)
2450			VERIFY(nvlist_add_nvlist(nvconfig,
2451			    ZPOOL_REWIND_POLICY, policy) == 0);
2452
2453		spa_config_set(spa, nvconfig);
2454		spa_unload(spa);
2455		spa_deactivate(spa);
2456		spa_activate(spa, orig_mode);
2457
2458		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2459	}
2460
2461	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2462		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2463	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2464	if (error != 0)
2465		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2466
2467	/*
2468	 * Load the bit that tells us to use the new accounting function
2469	 * (raid-z deflation).  If we have an older pool, this will not
2470	 * be present.
2471	 */
2472	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2473	if (error != 0 && error != ENOENT)
2474		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2475
2476	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2477	    &spa->spa_creation_version);
2478	if (error != 0 && error != ENOENT)
2479		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2480
2481	/*
2482	 * Load the persistent error log.  If we have an older pool, this will
2483	 * not be present.
2484	 */
2485	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2486	if (error != 0 && error != ENOENT)
2487		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2488
2489	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2490	    &spa->spa_errlog_scrub);
2491	if (error != 0 && error != ENOENT)
2492		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2493
2494	/*
2495	 * Load the history object.  If we have an older pool, this
2496	 * will not be present.
2497	 */
2498	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2499	if (error != 0 && error != ENOENT)
2500		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2501
2502	/*
2503	 * If we're assembling the pool from the split-off vdevs of
2504	 * an existing pool, we don't want to attach the spares & cache
2505	 * devices.
2506	 */
2507
2508	/*
2509	 * Load any hot spares for this pool.
2510	 */
2511	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2512	if (error != 0 && error != ENOENT)
2513		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2514	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2515		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2516		if (load_nvlist(spa, spa->spa_spares.sav_object,
2517		    &spa->spa_spares.sav_config) != 0)
2518			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2519
2520		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2521		spa_load_spares(spa);
2522		spa_config_exit(spa, SCL_ALL, FTAG);
2523	} else if (error == 0) {
2524		spa->spa_spares.sav_sync = B_TRUE;
2525	}
2526
2527	/*
2528	 * Load any level 2 ARC devices for this pool.
2529	 */
2530	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2531	    &spa->spa_l2cache.sav_object);
2532	if (error != 0 && error != ENOENT)
2533		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2534	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2535		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2536		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2537		    &spa->spa_l2cache.sav_config) != 0)
2538			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2539
2540		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2541		spa_load_l2cache(spa);
2542		spa_config_exit(spa, SCL_ALL, FTAG);
2543	} else if (error == 0) {
2544		spa->spa_l2cache.sav_sync = B_TRUE;
2545	}
2546
2547	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2548
2549	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2550	if (error && error != ENOENT)
2551		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2552
2553	if (error == 0) {
2554		uint64_t autoreplace;
2555
2556		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2557		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2558		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2559		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2560		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2561		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2562		    &spa->spa_dedup_ditto);
2563
2564		spa->spa_autoreplace = (autoreplace != 0);
2565	}
2566
2567	/*
2568	 * If the 'autoreplace' property is set, then post a resource notifying
2569	 * the ZFS DE that it should not issue any faults for unopenable
2570	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2571	 * unopenable vdevs so that the normal autoreplace handler can take
2572	 * over.
2573	 */
2574	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2575		spa_check_removed(spa->spa_root_vdev);
2576		/*
2577		 * For the import case, this is done in spa_import(), because
2578		 * at this point we're using the spare definitions from
2579		 * the MOS config, not necessarily from the userland config.
2580		 */
2581		if (state != SPA_LOAD_IMPORT) {
2582			spa_aux_check_removed(&spa->spa_spares);
2583			spa_aux_check_removed(&spa->spa_l2cache);
2584		}
2585	}
2586
2587	/*
2588	 * Load the vdev state for all toplevel vdevs.
2589	 */
2590	vdev_load(rvd);
2591
2592	/*
2593	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2594	 */
2595	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2596	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2597	spa_config_exit(spa, SCL_ALL, FTAG);
2598
2599	/*
2600	 * Load the DDTs (dedup tables).
2601	 */
2602	error = ddt_load(spa);
2603	if (error != 0)
2604		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2605
2606	spa_update_dspace(spa);
2607
2608	/*
2609	 * Validate the config, using the MOS config to fill in any
2610	 * information which might be missing.  If we fail to validate
2611	 * the config then declare the pool unfit for use. If we're
2612	 * assembling a pool from a split, the log is not transferred
2613	 * over.
2614	 */
2615	if (type != SPA_IMPORT_ASSEMBLE) {
2616		nvlist_t *nvconfig;
2617
2618		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2619			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2620
2621		if (!spa_config_valid(spa, nvconfig)) {
2622			nvlist_free(nvconfig);
2623			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2624			    ENXIO));
2625		}
2626		nvlist_free(nvconfig);
2627
2628		/*
2629		 * Now that we've validated the config, check the state of the
2630		 * root vdev.  If it can't be opened, it indicates one or
2631		 * more toplevel vdevs are faulted.
2632		 */
2633		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2634			return (SET_ERROR(ENXIO));
2635
2636		if (spa_check_logs(spa)) {
2637			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2638			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2639		}
2640	}
2641
2642	if (missing_feat_write) {
2643		ASSERT(state == SPA_LOAD_TRYIMPORT);
2644
2645		/*
2646		 * At this point, we know that we can open the pool in
2647		 * read-only mode but not read-write mode. We now have enough
2648		 * information and can return to userland.
2649		 */
2650		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2651	}
2652
2653	/*
2654	 * We've successfully opened the pool, verify that we're ready
2655	 * to start pushing transactions.
2656	 */
2657	if (state != SPA_LOAD_TRYIMPORT) {
2658		if (error = spa_load_verify(spa))
2659			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2660			    error));
2661	}
2662
2663	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2664	    spa->spa_load_max_txg == UINT64_MAX)) {
2665		dmu_tx_t *tx;
2666		int need_update = B_FALSE;
2667
2668		ASSERT(state != SPA_LOAD_TRYIMPORT);
2669
2670		/*
2671		 * Claim log blocks that haven't been committed yet.
2672		 * This must all happen in a single txg.
2673		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2674		 * invoked from zil_claim_log_block()'s i/o done callback.
2675		 * Price of rollback is that we abandon the log.
2676		 */
2677		spa->spa_claiming = B_TRUE;
2678
2679		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2680		    spa_first_txg(spa));
2681		(void) dmu_objset_find(spa_name(spa),
2682		    zil_claim, tx, DS_FIND_CHILDREN);
2683		dmu_tx_commit(tx);
2684
2685		spa->spa_claiming = B_FALSE;
2686
2687		spa_set_log_state(spa, SPA_LOG_GOOD);
2688		spa->spa_sync_on = B_TRUE;
2689		txg_sync_start(spa->spa_dsl_pool);
2690
2691		/*
2692		 * Wait for all claims to sync.  We sync up to the highest
2693		 * claimed log block birth time so that claimed log blocks
2694		 * don't appear to be from the future.  spa_claim_max_txg
2695		 * will have been set for us by either zil_check_log_chain()
2696		 * (invoked from spa_check_logs()) or zil_claim() above.
2697		 */
2698		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2699
2700		/*
2701		 * If the config cache is stale, or we have uninitialized
2702		 * metaslabs (see spa_vdev_add()), then update the config.
2703		 *
2704		 * If this is a verbatim import, trust the current
2705		 * in-core spa_config and update the disk labels.
2706		 */
2707		if (config_cache_txg != spa->spa_config_txg ||
2708		    state == SPA_LOAD_IMPORT ||
2709		    state == SPA_LOAD_RECOVER ||
2710		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2711			need_update = B_TRUE;
2712
2713		for (int c = 0; c < rvd->vdev_children; c++)
2714			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2715				need_update = B_TRUE;
2716
2717		/*
2718		 * Update the config cache asychronously in case we're the
2719		 * root pool, in which case the config cache isn't writable yet.
2720		 */
2721		if (need_update)
2722			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2723
2724		/*
2725		 * Check all DTLs to see if anything needs resilvering.
2726		 */
2727		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2728		    vdev_resilver_needed(rvd, NULL, NULL))
2729			spa_async_request(spa, SPA_ASYNC_RESILVER);
2730
2731		/*
2732		 * Log the fact that we booted up (so that we can detect if
2733		 * we rebooted in the middle of an operation).
2734		 */
2735		spa_history_log_version(spa, "open");
2736
2737		/*
2738		 * Delete any inconsistent datasets.
2739		 */
2740		(void) dmu_objset_find(spa_name(spa),
2741		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2742
2743		/*
2744		 * Clean up any stale temporary dataset userrefs.
2745		 */
2746		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2747	}
2748
2749	return (0);
2750}
2751
2752static int
2753spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2754{
2755	int mode = spa->spa_mode;
2756
2757	spa_unload(spa);
2758	spa_deactivate(spa);
2759
2760	spa->spa_load_max_txg--;
2761
2762	spa_activate(spa, mode);
2763	spa_async_suspend(spa);
2764
2765	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2766}
2767
2768/*
2769 * If spa_load() fails this function will try loading prior txg's. If
2770 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2771 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2772 * function will not rewind the pool and will return the same error as
2773 * spa_load().
2774 */
2775static int
2776spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2777    uint64_t max_request, int rewind_flags)
2778{
2779	nvlist_t *loadinfo = NULL;
2780	nvlist_t *config = NULL;
2781	int load_error, rewind_error;
2782	uint64_t safe_rewind_txg;
2783	uint64_t min_txg;
2784
2785	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2786		spa->spa_load_max_txg = spa->spa_load_txg;
2787		spa_set_log_state(spa, SPA_LOG_CLEAR);
2788	} else {
2789		spa->spa_load_max_txg = max_request;
2790	}
2791
2792	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2793	    mosconfig);
2794	if (load_error == 0)
2795		return (0);
2796
2797	if (spa->spa_root_vdev != NULL)
2798		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2799
2800	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2801	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2802
2803	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2804		nvlist_free(config);
2805		return (load_error);
2806	}
2807
2808	if (state == SPA_LOAD_RECOVER) {
2809		/* Price of rolling back is discarding txgs, including log */
2810		spa_set_log_state(spa, SPA_LOG_CLEAR);
2811	} else {
2812		/*
2813		 * If we aren't rolling back save the load info from our first
2814		 * import attempt so that we can restore it after attempting
2815		 * to rewind.
2816		 */
2817		loadinfo = spa->spa_load_info;
2818		spa->spa_load_info = fnvlist_alloc();
2819	}
2820
2821	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2822	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2823	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2824	    TXG_INITIAL : safe_rewind_txg;
2825
2826	/*
2827	 * Continue as long as we're finding errors, we're still within
2828	 * the acceptable rewind range, and we're still finding uberblocks
2829	 */
2830	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2831	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2832		if (spa->spa_load_max_txg < safe_rewind_txg)
2833			spa->spa_extreme_rewind = B_TRUE;
2834		rewind_error = spa_load_retry(spa, state, mosconfig);
2835	}
2836
2837	spa->spa_extreme_rewind = B_FALSE;
2838	spa->spa_load_max_txg = UINT64_MAX;
2839
2840	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2841		spa_config_set(spa, config);
2842
2843	if (state == SPA_LOAD_RECOVER) {
2844		ASSERT3P(loadinfo, ==, NULL);
2845		return (rewind_error);
2846	} else {
2847		/* Store the rewind info as part of the initial load info */
2848		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2849		    spa->spa_load_info);
2850
2851		/* Restore the initial load info */
2852		fnvlist_free(spa->spa_load_info);
2853		spa->spa_load_info = loadinfo;
2854
2855		return (load_error);
2856	}
2857}
2858
2859/*
2860 * Pool Open/Import
2861 *
2862 * The import case is identical to an open except that the configuration is sent
2863 * down from userland, instead of grabbed from the configuration cache.  For the
2864 * case of an open, the pool configuration will exist in the
2865 * POOL_STATE_UNINITIALIZED state.
2866 *
2867 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2868 * the same time open the pool, without having to keep around the spa_t in some
2869 * ambiguous state.
2870 */
2871static int
2872spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2873    nvlist_t **config)
2874{
2875	spa_t *spa;
2876	spa_load_state_t state = SPA_LOAD_OPEN;
2877	int error;
2878	int locked = B_FALSE;
2879	int firstopen = B_FALSE;
2880
2881	*spapp = NULL;
2882
2883	/*
2884	 * As disgusting as this is, we need to support recursive calls to this
2885	 * function because dsl_dir_open() is called during spa_load(), and ends
2886	 * up calling spa_open() again.  The real fix is to figure out how to
2887	 * avoid dsl_dir_open() calling this in the first place.
2888	 */
2889	if (mutex_owner(&spa_namespace_lock) != curthread) {
2890		mutex_enter(&spa_namespace_lock);
2891		locked = B_TRUE;
2892	}
2893
2894	if ((spa = spa_lookup(pool)) == NULL) {
2895		if (locked)
2896			mutex_exit(&spa_namespace_lock);
2897		return (SET_ERROR(ENOENT));
2898	}
2899
2900	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2901		zpool_rewind_policy_t policy;
2902
2903		firstopen = B_TRUE;
2904
2905		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2906		    &policy);
2907		if (policy.zrp_request & ZPOOL_DO_REWIND)
2908			state = SPA_LOAD_RECOVER;
2909
2910		spa_activate(spa, spa_mode_global);
2911
2912		if (state != SPA_LOAD_RECOVER)
2913			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2914
2915		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2916		    policy.zrp_request);
2917
2918		if (error == EBADF) {
2919			/*
2920			 * If vdev_validate() returns failure (indicated by
2921			 * EBADF), it indicates that one of the vdevs indicates
2922			 * that the pool has been exported or destroyed.  If
2923			 * this is the case, the config cache is out of sync and
2924			 * we should remove the pool from the namespace.
2925			 */
2926			spa_unload(spa);
2927			spa_deactivate(spa);
2928			spa_config_sync(spa, B_TRUE, B_TRUE);
2929			spa_remove(spa);
2930			if (locked)
2931				mutex_exit(&spa_namespace_lock);
2932			return (SET_ERROR(ENOENT));
2933		}
2934
2935		if (error) {
2936			/*
2937			 * We can't open the pool, but we still have useful
2938			 * information: the state of each vdev after the
2939			 * attempted vdev_open().  Return this to the user.
2940			 */
2941			if (config != NULL && spa->spa_config) {
2942				VERIFY(nvlist_dup(spa->spa_config, config,
2943				    KM_SLEEP) == 0);
2944				VERIFY(nvlist_add_nvlist(*config,
2945				    ZPOOL_CONFIG_LOAD_INFO,
2946				    spa->spa_load_info) == 0);
2947			}
2948			spa_unload(spa);
2949			spa_deactivate(spa);
2950			spa->spa_last_open_failed = error;
2951			if (locked)
2952				mutex_exit(&spa_namespace_lock);
2953			*spapp = NULL;
2954			return (error);
2955		}
2956	}
2957
2958	spa_open_ref(spa, tag);
2959
2960	if (config != NULL)
2961		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2962
2963	/*
2964	 * If we've recovered the pool, pass back any information we
2965	 * gathered while doing the load.
2966	 */
2967	if (state == SPA_LOAD_RECOVER) {
2968		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2969		    spa->spa_load_info) == 0);
2970	}
2971
2972	if (locked) {
2973		spa->spa_last_open_failed = 0;
2974		spa->spa_last_ubsync_txg = 0;
2975		spa->spa_load_txg = 0;
2976		mutex_exit(&spa_namespace_lock);
2977#ifdef __FreeBSD__
2978#ifdef _KERNEL
2979		if (firstopen)
2980			zvol_create_minors(spa->spa_name);
2981#endif
2982#endif
2983	}
2984
2985	*spapp = spa;
2986
2987	return (0);
2988}
2989
2990int
2991spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2992    nvlist_t **config)
2993{
2994	return (spa_open_common(name, spapp, tag, policy, config));
2995}
2996
2997int
2998spa_open(const char *name, spa_t **spapp, void *tag)
2999{
3000	return (spa_open_common(name, spapp, tag, NULL, NULL));
3001}
3002
3003/*
3004 * Lookup the given spa_t, incrementing the inject count in the process,
3005 * preventing it from being exported or destroyed.
3006 */
3007spa_t *
3008spa_inject_addref(char *name)
3009{
3010	spa_t *spa;
3011
3012	mutex_enter(&spa_namespace_lock);
3013	if ((spa = spa_lookup(name)) == NULL) {
3014		mutex_exit(&spa_namespace_lock);
3015		return (NULL);
3016	}
3017	spa->spa_inject_ref++;
3018	mutex_exit(&spa_namespace_lock);
3019
3020	return (spa);
3021}
3022
3023void
3024spa_inject_delref(spa_t *spa)
3025{
3026	mutex_enter(&spa_namespace_lock);
3027	spa->spa_inject_ref--;
3028	mutex_exit(&spa_namespace_lock);
3029}
3030
3031/*
3032 * Add spares device information to the nvlist.
3033 */
3034static void
3035spa_add_spares(spa_t *spa, nvlist_t *config)
3036{
3037	nvlist_t **spares;
3038	uint_t i, nspares;
3039	nvlist_t *nvroot;
3040	uint64_t guid;
3041	vdev_stat_t *vs;
3042	uint_t vsc;
3043	uint64_t pool;
3044
3045	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3046
3047	if (spa->spa_spares.sav_count == 0)
3048		return;
3049
3050	VERIFY(nvlist_lookup_nvlist(config,
3051	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3052	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3053	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3054	if (nspares != 0) {
3055		VERIFY(nvlist_add_nvlist_array(nvroot,
3056		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3057		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3058		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3059
3060		/*
3061		 * Go through and find any spares which have since been
3062		 * repurposed as an active spare.  If this is the case, update
3063		 * their status appropriately.
3064		 */
3065		for (i = 0; i < nspares; i++) {
3066			VERIFY(nvlist_lookup_uint64(spares[i],
3067			    ZPOOL_CONFIG_GUID, &guid) == 0);
3068			if (spa_spare_exists(guid, &pool, NULL) &&
3069			    pool != 0ULL) {
3070				VERIFY(nvlist_lookup_uint64_array(
3071				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3072				    (uint64_t **)&vs, &vsc) == 0);
3073				vs->vs_state = VDEV_STATE_CANT_OPEN;
3074				vs->vs_aux = VDEV_AUX_SPARED;
3075			}
3076		}
3077	}
3078}
3079
3080/*
3081 * Add l2cache device information to the nvlist, including vdev stats.
3082 */
3083static void
3084spa_add_l2cache(spa_t *spa, nvlist_t *config)
3085{
3086	nvlist_t **l2cache;
3087	uint_t i, j, nl2cache;
3088	nvlist_t *nvroot;
3089	uint64_t guid;
3090	vdev_t *vd;
3091	vdev_stat_t *vs;
3092	uint_t vsc;
3093
3094	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3095
3096	if (spa->spa_l2cache.sav_count == 0)
3097		return;
3098
3099	VERIFY(nvlist_lookup_nvlist(config,
3100	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3101	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3102	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3103	if (nl2cache != 0) {
3104		VERIFY(nvlist_add_nvlist_array(nvroot,
3105		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3106		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3107		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3108
3109		/*
3110		 * Update level 2 cache device stats.
3111		 */
3112
3113		for (i = 0; i < nl2cache; i++) {
3114			VERIFY(nvlist_lookup_uint64(l2cache[i],
3115			    ZPOOL_CONFIG_GUID, &guid) == 0);
3116
3117			vd = NULL;
3118			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3119				if (guid ==
3120				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3121					vd = spa->spa_l2cache.sav_vdevs[j];
3122					break;
3123				}
3124			}
3125			ASSERT(vd != NULL);
3126
3127			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3128			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3129			    == 0);
3130			vdev_get_stats(vd, vs);
3131		}
3132	}
3133}
3134
3135static void
3136spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3137{
3138	nvlist_t *features;
3139	zap_cursor_t zc;
3140	zap_attribute_t za;
3141
3142	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3143	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3144
3145	/* We may be unable to read features if pool is suspended. */
3146	if (spa_suspended(spa))
3147		goto out;
3148
3149	if (spa->spa_feat_for_read_obj != 0) {
3150		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3151		    spa->spa_feat_for_read_obj);
3152		    zap_cursor_retrieve(&zc, &za) == 0;
3153		    zap_cursor_advance(&zc)) {
3154			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3155			    za.za_num_integers == 1);
3156			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3157			    za.za_first_integer));
3158		}
3159		zap_cursor_fini(&zc);
3160	}
3161
3162	if (spa->spa_feat_for_write_obj != 0) {
3163		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3164		    spa->spa_feat_for_write_obj);
3165		    zap_cursor_retrieve(&zc, &za) == 0;
3166		    zap_cursor_advance(&zc)) {
3167			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3168			    za.za_num_integers == 1);
3169			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3170			    za.za_first_integer));
3171		}
3172		zap_cursor_fini(&zc);
3173	}
3174
3175out:
3176	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3177	    features) == 0);
3178	nvlist_free(features);
3179}
3180
3181int
3182spa_get_stats(const char *name, nvlist_t **config,
3183    char *altroot, size_t buflen)
3184{
3185	int error;
3186	spa_t *spa;
3187
3188	*config = NULL;
3189	error = spa_open_common(name, &spa, FTAG, NULL, config);
3190
3191	if (spa != NULL) {
3192		/*
3193		 * This still leaves a window of inconsistency where the spares
3194		 * or l2cache devices could change and the config would be
3195		 * self-inconsistent.
3196		 */
3197		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3198
3199		if (*config != NULL) {
3200			uint64_t loadtimes[2];
3201
3202			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3203			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3204			VERIFY(nvlist_add_uint64_array(*config,
3205			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3206
3207			VERIFY(nvlist_add_uint64(*config,
3208			    ZPOOL_CONFIG_ERRCOUNT,
3209			    spa_get_errlog_size(spa)) == 0);
3210
3211			if (spa_suspended(spa))
3212				VERIFY(nvlist_add_uint64(*config,
3213				    ZPOOL_CONFIG_SUSPENDED,
3214				    spa->spa_failmode) == 0);
3215
3216			spa_add_spares(spa, *config);
3217			spa_add_l2cache(spa, *config);
3218			spa_add_feature_stats(spa, *config);
3219		}
3220	}
3221
3222	/*
3223	 * We want to get the alternate root even for faulted pools, so we cheat
3224	 * and call spa_lookup() directly.
3225	 */
3226	if (altroot) {
3227		if (spa == NULL) {
3228			mutex_enter(&spa_namespace_lock);
3229			spa = spa_lookup(name);
3230			if (spa)
3231				spa_altroot(spa, altroot, buflen);
3232			else
3233				altroot[0] = '\0';
3234			spa = NULL;
3235			mutex_exit(&spa_namespace_lock);
3236		} else {
3237			spa_altroot(spa, altroot, buflen);
3238		}
3239	}
3240
3241	if (spa != NULL) {
3242		spa_config_exit(spa, SCL_CONFIG, FTAG);
3243		spa_close(spa, FTAG);
3244	}
3245
3246	return (error);
3247}
3248
3249/*
3250 * Validate that the auxiliary device array is well formed.  We must have an
3251 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3252 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3253 * specified, as long as they are well-formed.
3254 */
3255static int
3256spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3257    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3258    vdev_labeltype_t label)
3259{
3260	nvlist_t **dev;
3261	uint_t i, ndev;
3262	vdev_t *vd;
3263	int error;
3264
3265	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3266
3267	/*
3268	 * It's acceptable to have no devs specified.
3269	 */
3270	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3271		return (0);
3272
3273	if (ndev == 0)
3274		return (SET_ERROR(EINVAL));
3275
3276	/*
3277	 * Make sure the pool is formatted with a version that supports this
3278	 * device type.
3279	 */
3280	if (spa_version(spa) < version)
3281		return (SET_ERROR(ENOTSUP));
3282
3283	/*
3284	 * Set the pending device list so we correctly handle device in-use
3285	 * checking.
3286	 */
3287	sav->sav_pending = dev;
3288	sav->sav_npending = ndev;
3289
3290	for (i = 0; i < ndev; i++) {
3291		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3292		    mode)) != 0)
3293			goto out;
3294
3295		if (!vd->vdev_ops->vdev_op_leaf) {
3296			vdev_free(vd);
3297			error = SET_ERROR(EINVAL);
3298			goto out;
3299		}
3300
3301		/*
3302		 * The L2ARC currently only supports disk devices in
3303		 * kernel context.  For user-level testing, we allow it.
3304		 */
3305#ifdef _KERNEL
3306		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3307		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3308			error = SET_ERROR(ENOTBLK);
3309			vdev_free(vd);
3310			goto out;
3311		}
3312#endif
3313		vd->vdev_top = vd;
3314
3315		if ((error = vdev_open(vd)) == 0 &&
3316		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3317			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3318			    vd->vdev_guid) == 0);
3319		}
3320
3321		vdev_free(vd);
3322
3323		if (error &&
3324		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3325			goto out;
3326		else
3327			error = 0;
3328	}
3329
3330out:
3331	sav->sav_pending = NULL;
3332	sav->sav_npending = 0;
3333	return (error);
3334}
3335
3336static int
3337spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3338{
3339	int error;
3340
3341	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3342
3343	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3344	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3345	    VDEV_LABEL_SPARE)) != 0) {
3346		return (error);
3347	}
3348
3349	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3350	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3351	    VDEV_LABEL_L2CACHE));
3352}
3353
3354static void
3355spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3356    const char *config)
3357{
3358	int i;
3359
3360	if (sav->sav_config != NULL) {
3361		nvlist_t **olddevs;
3362		uint_t oldndevs;
3363		nvlist_t **newdevs;
3364
3365		/*
3366		 * Generate new dev list by concatentating with the
3367		 * current dev list.
3368		 */
3369		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3370		    &olddevs, &oldndevs) == 0);
3371
3372		newdevs = kmem_alloc(sizeof (void *) *
3373		    (ndevs + oldndevs), KM_SLEEP);
3374		for (i = 0; i < oldndevs; i++)
3375			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3376			    KM_SLEEP) == 0);
3377		for (i = 0; i < ndevs; i++)
3378			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3379			    KM_SLEEP) == 0);
3380
3381		VERIFY(nvlist_remove(sav->sav_config, config,
3382		    DATA_TYPE_NVLIST_ARRAY) == 0);
3383
3384		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3385		    config, newdevs, ndevs + oldndevs) == 0);
3386		for (i = 0; i < oldndevs + ndevs; i++)
3387			nvlist_free(newdevs[i]);
3388		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3389	} else {
3390		/*
3391		 * Generate a new dev list.
3392		 */
3393		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3394		    KM_SLEEP) == 0);
3395		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3396		    devs, ndevs) == 0);
3397	}
3398}
3399
3400/*
3401 * Stop and drop level 2 ARC devices
3402 */
3403void
3404spa_l2cache_drop(spa_t *spa)
3405{
3406	vdev_t *vd;
3407	int i;
3408	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3409
3410	for (i = 0; i < sav->sav_count; i++) {
3411		uint64_t pool;
3412
3413		vd = sav->sav_vdevs[i];
3414		ASSERT(vd != NULL);
3415
3416		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3417		    pool != 0ULL && l2arc_vdev_present(vd))
3418			l2arc_remove_vdev(vd);
3419	}
3420}
3421
3422/*
3423 * Pool Creation
3424 */
3425int
3426spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3427    nvlist_t *zplprops)
3428{
3429	spa_t *spa;
3430	char *altroot = NULL;
3431	vdev_t *rvd;
3432	dsl_pool_t *dp;
3433	dmu_tx_t *tx;
3434	int error = 0;
3435	uint64_t txg = TXG_INITIAL;
3436	nvlist_t **spares, **l2cache;
3437	uint_t nspares, nl2cache;
3438	uint64_t version, obj;
3439	boolean_t has_features;
3440
3441	/*
3442	 * If this pool already exists, return failure.
3443	 */
3444	mutex_enter(&spa_namespace_lock);
3445	if (spa_lookup(pool) != NULL) {
3446		mutex_exit(&spa_namespace_lock);
3447		return (SET_ERROR(EEXIST));
3448	}
3449
3450	/*
3451	 * Allocate a new spa_t structure.
3452	 */
3453	(void) nvlist_lookup_string(props,
3454	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3455	spa = spa_add(pool, NULL, altroot);
3456	spa_activate(spa, spa_mode_global);
3457
3458	if (props && (error = spa_prop_validate(spa, props))) {
3459		spa_deactivate(spa);
3460		spa_remove(spa);
3461		mutex_exit(&spa_namespace_lock);
3462		return (error);
3463	}
3464
3465	has_features = B_FALSE;
3466	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3467	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3468		if (zpool_prop_feature(nvpair_name(elem)))
3469			has_features = B_TRUE;
3470	}
3471
3472	if (has_features || nvlist_lookup_uint64(props,
3473	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3474		version = SPA_VERSION;
3475	}
3476	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3477
3478	spa->spa_first_txg = txg;
3479	spa->spa_uberblock.ub_txg = txg - 1;
3480	spa->spa_uberblock.ub_version = version;
3481	spa->spa_ubsync = spa->spa_uberblock;
3482
3483	/*
3484	 * Create "The Godfather" zio to hold all async IOs
3485	 */
3486	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3487	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3488
3489	/*
3490	 * Create the root vdev.
3491	 */
3492	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3493
3494	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3495
3496	ASSERT(error != 0 || rvd != NULL);
3497	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3498
3499	if (error == 0 && !zfs_allocatable_devs(nvroot))
3500		error = SET_ERROR(EINVAL);
3501
3502	if (error == 0 &&
3503	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3504	    (error = spa_validate_aux(spa, nvroot, txg,
3505	    VDEV_ALLOC_ADD)) == 0) {
3506		for (int c = 0; c < rvd->vdev_children; c++) {
3507			vdev_ashift_optimize(rvd->vdev_child[c]);
3508			vdev_metaslab_set_size(rvd->vdev_child[c]);
3509			vdev_expand(rvd->vdev_child[c], txg);
3510		}
3511	}
3512
3513	spa_config_exit(spa, SCL_ALL, FTAG);
3514
3515	if (error != 0) {
3516		spa_unload(spa);
3517		spa_deactivate(spa);
3518		spa_remove(spa);
3519		mutex_exit(&spa_namespace_lock);
3520		return (error);
3521	}
3522
3523	/*
3524	 * Get the list of spares, if specified.
3525	 */
3526	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3527	    &spares, &nspares) == 0) {
3528		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3529		    KM_SLEEP) == 0);
3530		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3531		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3532		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3533		spa_load_spares(spa);
3534		spa_config_exit(spa, SCL_ALL, FTAG);
3535		spa->spa_spares.sav_sync = B_TRUE;
3536	}
3537
3538	/*
3539	 * Get the list of level 2 cache devices, if specified.
3540	 */
3541	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3542	    &l2cache, &nl2cache) == 0) {
3543		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3544		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3545		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3546		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3547		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3548		spa_load_l2cache(spa);
3549		spa_config_exit(spa, SCL_ALL, FTAG);
3550		spa->spa_l2cache.sav_sync = B_TRUE;
3551	}
3552
3553	spa->spa_is_initializing = B_TRUE;
3554	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3555	spa->spa_meta_objset = dp->dp_meta_objset;
3556	spa->spa_is_initializing = B_FALSE;
3557
3558	/*
3559	 * Create DDTs (dedup tables).
3560	 */
3561	ddt_create(spa);
3562
3563	spa_update_dspace(spa);
3564
3565	tx = dmu_tx_create_assigned(dp, txg);
3566
3567	/*
3568	 * Create the pool config object.
3569	 */
3570	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3571	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3572	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3573
3574	if (zap_add(spa->spa_meta_objset,
3575	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3576	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3577		cmn_err(CE_PANIC, "failed to add pool config");
3578	}
3579
3580	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3581		spa_feature_create_zap_objects(spa, tx);
3582
3583	if (zap_add(spa->spa_meta_objset,
3584	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3585	    sizeof (uint64_t), 1, &version, tx) != 0) {
3586		cmn_err(CE_PANIC, "failed to add pool version");
3587	}
3588
3589	/* Newly created pools with the right version are always deflated. */
3590	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3591		spa->spa_deflate = TRUE;
3592		if (zap_add(spa->spa_meta_objset,
3593		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3594		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3595			cmn_err(CE_PANIC, "failed to add deflate");
3596		}
3597	}
3598
3599	/*
3600	 * Create the deferred-free bpobj.  Turn off compression
3601	 * because sync-to-convergence takes longer if the blocksize
3602	 * keeps changing.
3603	 */
3604	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3605	dmu_object_set_compress(spa->spa_meta_objset, obj,
3606	    ZIO_COMPRESS_OFF, tx);
3607	if (zap_add(spa->spa_meta_objset,
3608	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3609	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3610		cmn_err(CE_PANIC, "failed to add bpobj");
3611	}
3612	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3613	    spa->spa_meta_objset, obj));
3614
3615	/*
3616	 * Create the pool's history object.
3617	 */
3618	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3619		spa_history_create_obj(spa, tx);
3620
3621	/*
3622	 * Set pool properties.
3623	 */
3624	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3625	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3626	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3627	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3628
3629	if (props != NULL) {
3630		spa_configfile_set(spa, props, B_FALSE);
3631		spa_sync_props(props, tx);
3632	}
3633
3634	dmu_tx_commit(tx);
3635
3636	spa->spa_sync_on = B_TRUE;
3637	txg_sync_start(spa->spa_dsl_pool);
3638
3639	/*
3640	 * We explicitly wait for the first transaction to complete so that our
3641	 * bean counters are appropriately updated.
3642	 */
3643	txg_wait_synced(spa->spa_dsl_pool, txg);
3644
3645	spa_config_sync(spa, B_FALSE, B_TRUE);
3646
3647	spa_history_log_version(spa, "create");
3648
3649	spa->spa_minref = refcount_count(&spa->spa_refcount);
3650
3651	mutex_exit(&spa_namespace_lock);
3652
3653	return (0);
3654}
3655
3656#ifdef _KERNEL
3657#if defined(sun)
3658/*
3659 * Get the root pool information from the root disk, then import the root pool
3660 * during the system boot up time.
3661 */
3662extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3663
3664static nvlist_t *
3665spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3666{
3667	nvlist_t *config;
3668	nvlist_t *nvtop, *nvroot;
3669	uint64_t pgid;
3670
3671	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3672		return (NULL);
3673
3674	/*
3675	 * Add this top-level vdev to the child array.
3676	 */
3677	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3678	    &nvtop) == 0);
3679	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3680	    &pgid) == 0);
3681	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3682
3683	/*
3684	 * Put this pool's top-level vdevs into a root vdev.
3685	 */
3686	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3687	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3688	    VDEV_TYPE_ROOT) == 0);
3689	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3690	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3691	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3692	    &nvtop, 1) == 0);
3693
3694	/*
3695	 * Replace the existing vdev_tree with the new root vdev in
3696	 * this pool's configuration (remove the old, add the new).
3697	 */
3698	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3699	nvlist_free(nvroot);
3700	return (config);
3701}
3702
3703/*
3704 * Walk the vdev tree and see if we can find a device with "better"
3705 * configuration. A configuration is "better" if the label on that
3706 * device has a more recent txg.
3707 */
3708static void
3709spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3710{
3711	for (int c = 0; c < vd->vdev_children; c++)
3712		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3713
3714	if (vd->vdev_ops->vdev_op_leaf) {
3715		nvlist_t *label;
3716		uint64_t label_txg;
3717
3718		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3719		    &label) != 0)
3720			return;
3721
3722		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3723		    &label_txg) == 0);
3724
3725		/*
3726		 * Do we have a better boot device?
3727		 */
3728		if (label_txg > *txg) {
3729			*txg = label_txg;
3730			*avd = vd;
3731		}
3732		nvlist_free(label);
3733	}
3734}
3735
3736/*
3737 * Import a root pool.
3738 *
3739 * For x86. devpath_list will consist of devid and/or physpath name of
3740 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3741 * The GRUB "findroot" command will return the vdev we should boot.
3742 *
3743 * For Sparc, devpath_list consists the physpath name of the booting device
3744 * no matter the rootpool is a single device pool or a mirrored pool.
3745 * e.g.
3746 *	"/pci@1f,0/ide@d/disk@0,0:a"
3747 */
3748int
3749spa_import_rootpool(char *devpath, char *devid)
3750{
3751	spa_t *spa;
3752	vdev_t *rvd, *bvd, *avd = NULL;
3753	nvlist_t *config, *nvtop;
3754	uint64_t guid, txg;
3755	char *pname;
3756	int error;
3757
3758	/*
3759	 * Read the label from the boot device and generate a configuration.
3760	 */
3761	config = spa_generate_rootconf(devpath, devid, &guid);
3762#if defined(_OBP) && defined(_KERNEL)
3763	if (config == NULL) {
3764		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3765			/* iscsi boot */
3766			get_iscsi_bootpath_phy(devpath);
3767			config = spa_generate_rootconf(devpath, devid, &guid);
3768		}
3769	}
3770#endif
3771	if (config == NULL) {
3772		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3773		    devpath);
3774		return (SET_ERROR(EIO));
3775	}
3776
3777	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3778	    &pname) == 0);
3779	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3780
3781	mutex_enter(&spa_namespace_lock);
3782	if ((spa = spa_lookup(pname)) != NULL) {
3783		/*
3784		 * Remove the existing root pool from the namespace so that we
3785		 * can replace it with the correct config we just read in.
3786		 */
3787		spa_remove(spa);
3788	}
3789
3790	spa = spa_add(pname, config, NULL);
3791	spa->spa_is_root = B_TRUE;
3792	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3793
3794	/*
3795	 * Build up a vdev tree based on the boot device's label config.
3796	 */
3797	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3798	    &nvtop) == 0);
3799	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3800	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3801	    VDEV_ALLOC_ROOTPOOL);
3802	spa_config_exit(spa, SCL_ALL, FTAG);
3803	if (error) {
3804		mutex_exit(&spa_namespace_lock);
3805		nvlist_free(config);
3806		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3807		    pname);
3808		return (error);
3809	}
3810
3811	/*
3812	 * Get the boot vdev.
3813	 */
3814	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3815		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3816		    (u_longlong_t)guid);
3817		error = SET_ERROR(ENOENT);
3818		goto out;
3819	}
3820
3821	/*
3822	 * Determine if there is a better boot device.
3823	 */
3824	avd = bvd;
3825	spa_alt_rootvdev(rvd, &avd, &txg);
3826	if (avd != bvd) {
3827		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3828		    "try booting from '%s'", avd->vdev_path);
3829		error = SET_ERROR(EINVAL);
3830		goto out;
3831	}
3832
3833	/*
3834	 * If the boot device is part of a spare vdev then ensure that
3835	 * we're booting off the active spare.
3836	 */
3837	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3838	    !bvd->vdev_isspare) {
3839		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3840		    "try booting from '%s'",
3841		    bvd->vdev_parent->
3842		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3843		error = SET_ERROR(EINVAL);
3844		goto out;
3845	}
3846
3847	error = 0;
3848out:
3849	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3850	vdev_free(rvd);
3851	spa_config_exit(spa, SCL_ALL, FTAG);
3852	mutex_exit(&spa_namespace_lock);
3853
3854	nvlist_free(config);
3855	return (error);
3856}
3857
3858#else
3859
3860extern int vdev_geom_read_pool_label(const char *name, nvlist_t ***configs,
3861    uint64_t *count);
3862
3863static nvlist_t *
3864spa_generate_rootconf(const char *name)
3865{
3866	nvlist_t **configs, **tops;
3867	nvlist_t *config;
3868	nvlist_t *best_cfg, *nvtop, *nvroot;
3869	uint64_t *holes;
3870	uint64_t best_txg;
3871	uint64_t nchildren;
3872	uint64_t pgid;
3873	uint64_t count;
3874	uint64_t i;
3875	uint_t   nholes;
3876
3877	if (vdev_geom_read_pool_label(name, &configs, &count) != 0)
3878		return (NULL);
3879
3880	ASSERT3U(count, !=, 0);
3881	best_txg = 0;
3882	for (i = 0; i < count; i++) {
3883		uint64_t txg;
3884
3885		VERIFY(nvlist_lookup_uint64(configs[i], ZPOOL_CONFIG_POOL_TXG,
3886		    &txg) == 0);
3887		if (txg > best_txg) {
3888			best_txg = txg;
3889			best_cfg = configs[i];
3890		}
3891	}
3892
3893	/*
3894	 * Multi-vdev root pool configuration discovery is not supported yet.
3895	 */
3896	nchildren = 1;
3897	nvlist_lookup_uint64(best_cfg, ZPOOL_CONFIG_VDEV_CHILDREN, &nchildren);
3898	holes = NULL;
3899	nvlist_lookup_uint64_array(best_cfg, ZPOOL_CONFIG_HOLE_ARRAY,
3900	    &holes, &nholes);
3901
3902	tops = kmem_zalloc(nchildren * sizeof(void *), KM_SLEEP);
3903	for (i = 0; i < nchildren; i++) {
3904		if (i >= count)
3905			break;
3906		if (configs[i] == NULL)
3907			continue;
3908		VERIFY(nvlist_lookup_nvlist(configs[i], ZPOOL_CONFIG_VDEV_TREE,
3909		    &nvtop) == 0);
3910		nvlist_dup(nvtop, &tops[i], KM_SLEEP);
3911	}
3912	for (i = 0; holes != NULL && i < nholes; i++) {
3913		if (i >= nchildren)
3914			continue;
3915		if (tops[holes[i]] != NULL)
3916			continue;
3917		nvlist_alloc(&tops[holes[i]], NV_UNIQUE_NAME, KM_SLEEP);
3918		VERIFY(nvlist_add_string(tops[holes[i]], ZPOOL_CONFIG_TYPE,
3919		    VDEV_TYPE_HOLE) == 0);
3920		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_ID,
3921		    holes[i]) == 0);
3922		VERIFY(nvlist_add_uint64(tops[holes[i]], ZPOOL_CONFIG_GUID,
3923		    0) == 0);
3924	}
3925	for (i = 0; i < nchildren; i++) {
3926		if (tops[i] != NULL)
3927			continue;
3928		nvlist_alloc(&tops[i], NV_UNIQUE_NAME, KM_SLEEP);
3929		VERIFY(nvlist_add_string(tops[i], ZPOOL_CONFIG_TYPE,
3930		    VDEV_TYPE_MISSING) == 0);
3931		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_ID,
3932		    i) == 0);
3933		VERIFY(nvlist_add_uint64(tops[i], ZPOOL_CONFIG_GUID,
3934		    0) == 0);
3935	}
3936
3937	/*
3938	 * Create pool config based on the best vdev config.
3939	 */
3940	nvlist_dup(best_cfg, &config, KM_SLEEP);
3941
3942	/*
3943	 * Put this pool's top-level vdevs into a root vdev.
3944	 */
3945	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3946	    &pgid) == 0);
3947	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3948	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3949	    VDEV_TYPE_ROOT) == 0);
3950	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3951	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3952	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3953	    tops, nchildren) == 0);
3954
3955	/*
3956	 * Replace the existing vdev_tree with the new root vdev in
3957	 * this pool's configuration (remove the old, add the new).
3958	 */
3959	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3960
3961	/*
3962	 * Drop vdev config elements that should not be present at pool level.
3963	 */
3964	nvlist_remove(config, ZPOOL_CONFIG_GUID, DATA_TYPE_UINT64);
3965	nvlist_remove(config, ZPOOL_CONFIG_TOP_GUID, DATA_TYPE_UINT64);
3966
3967	for (i = 0; i < count; i++)
3968		nvlist_free(configs[i]);
3969	kmem_free(configs, count * sizeof(void *));
3970	for (i = 0; i < nchildren; i++)
3971		nvlist_free(tops[i]);
3972	kmem_free(tops, nchildren * sizeof(void *));
3973	nvlist_free(nvroot);
3974	return (config);
3975}
3976
3977int
3978spa_import_rootpool(const char *name)
3979{
3980	spa_t *spa;
3981	vdev_t *rvd, *bvd, *avd = NULL;
3982	nvlist_t *config, *nvtop;
3983	uint64_t txg;
3984	char *pname;
3985	int error;
3986
3987	/*
3988	 * Read the label from the boot device and generate a configuration.
3989	 */
3990	config = spa_generate_rootconf(name);
3991
3992	mutex_enter(&spa_namespace_lock);
3993	if (config != NULL) {
3994		VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3995		    &pname) == 0 && strcmp(name, pname) == 0);
3996		VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg)
3997		    == 0);
3998
3999		if ((spa = spa_lookup(pname)) != NULL) {
4000			/*
4001			 * Remove the existing root pool from the namespace so
4002			 * that we can replace it with the correct config
4003			 * we just read in.
4004			 */
4005			spa_remove(spa);
4006		}
4007		spa = spa_add(pname, config, NULL);
4008
4009		/*
4010		 * Set spa_ubsync.ub_version as it can be used in vdev_alloc()
4011		 * via spa_version().
4012		 */
4013		if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
4014		    &spa->spa_ubsync.ub_version) != 0)
4015			spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
4016	} else if ((spa = spa_lookup(name)) == NULL) {
4017		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
4018		    name);
4019		return (EIO);
4020	} else {
4021		VERIFY(nvlist_dup(spa->spa_config, &config, KM_SLEEP) == 0);
4022	}
4023	spa->spa_is_root = B_TRUE;
4024	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
4025
4026	/*
4027	 * Build up a vdev tree based on the boot device's label config.
4028	 */
4029	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4030	    &nvtop) == 0);
4031	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4032	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
4033	    VDEV_ALLOC_ROOTPOOL);
4034	spa_config_exit(spa, SCL_ALL, FTAG);
4035	if (error) {
4036		mutex_exit(&spa_namespace_lock);
4037		nvlist_free(config);
4038		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
4039		    pname);
4040		return (error);
4041	}
4042
4043	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4044	vdev_free(rvd);
4045	spa_config_exit(spa, SCL_ALL, FTAG);
4046	mutex_exit(&spa_namespace_lock);
4047
4048	nvlist_free(config);
4049	return (0);
4050}
4051
4052#endif	/* sun */
4053#endif
4054
4055/*
4056 * Import a non-root pool into the system.
4057 */
4058int
4059spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4060{
4061	spa_t *spa;
4062	char *altroot = NULL;
4063	spa_load_state_t state = SPA_LOAD_IMPORT;
4064	zpool_rewind_policy_t policy;
4065	uint64_t mode = spa_mode_global;
4066	uint64_t readonly = B_FALSE;
4067	int error;
4068	nvlist_t *nvroot;
4069	nvlist_t **spares, **l2cache;
4070	uint_t nspares, nl2cache;
4071
4072	/*
4073	 * If a pool with this name exists, return failure.
4074	 */
4075	mutex_enter(&spa_namespace_lock);
4076	if (spa_lookup(pool) != NULL) {
4077		mutex_exit(&spa_namespace_lock);
4078		return (SET_ERROR(EEXIST));
4079	}
4080
4081	/*
4082	 * Create and initialize the spa structure.
4083	 */
4084	(void) nvlist_lookup_string(props,
4085	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4086	(void) nvlist_lookup_uint64(props,
4087	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4088	if (readonly)
4089		mode = FREAD;
4090	spa = spa_add(pool, config, altroot);
4091	spa->spa_import_flags = flags;
4092
4093	/*
4094	 * Verbatim import - Take a pool and insert it into the namespace
4095	 * as if it had been loaded at boot.
4096	 */
4097	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4098		if (props != NULL)
4099			spa_configfile_set(spa, props, B_FALSE);
4100
4101		spa_config_sync(spa, B_FALSE, B_TRUE);
4102
4103		mutex_exit(&spa_namespace_lock);
4104		return (0);
4105	}
4106
4107	spa_activate(spa, mode);
4108
4109	/*
4110	 * Don't start async tasks until we know everything is healthy.
4111	 */
4112	spa_async_suspend(spa);
4113
4114	zpool_get_rewind_policy(config, &policy);
4115	if (policy.zrp_request & ZPOOL_DO_REWIND)
4116		state = SPA_LOAD_RECOVER;
4117
4118	/*
4119	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
4120	 * because the user-supplied config is actually the one to trust when
4121	 * doing an import.
4122	 */
4123	if (state != SPA_LOAD_RECOVER)
4124		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4125
4126	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4127	    policy.zrp_request);
4128
4129	/*
4130	 * Propagate anything learned while loading the pool and pass it
4131	 * back to caller (i.e. rewind info, missing devices, etc).
4132	 */
4133	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4134	    spa->spa_load_info) == 0);
4135
4136	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4137	/*
4138	 * Toss any existing sparelist, as it doesn't have any validity
4139	 * anymore, and conflicts with spa_has_spare().
4140	 */
4141	if (spa->spa_spares.sav_config) {
4142		nvlist_free(spa->spa_spares.sav_config);
4143		spa->spa_spares.sav_config = NULL;
4144		spa_load_spares(spa);
4145	}
4146	if (spa->spa_l2cache.sav_config) {
4147		nvlist_free(spa->spa_l2cache.sav_config);
4148		spa->spa_l2cache.sav_config = NULL;
4149		spa_load_l2cache(spa);
4150	}
4151
4152	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4153	    &nvroot) == 0);
4154	if (error == 0)
4155		error = spa_validate_aux(spa, nvroot, -1ULL,
4156		    VDEV_ALLOC_SPARE);
4157	if (error == 0)
4158		error = spa_validate_aux(spa, nvroot, -1ULL,
4159		    VDEV_ALLOC_L2CACHE);
4160	spa_config_exit(spa, SCL_ALL, FTAG);
4161
4162	if (props != NULL)
4163		spa_configfile_set(spa, props, B_FALSE);
4164
4165	if (error != 0 || (props && spa_writeable(spa) &&
4166	    (error = spa_prop_set(spa, props)))) {
4167		spa_unload(spa);
4168		spa_deactivate(spa);
4169		spa_remove(spa);
4170		mutex_exit(&spa_namespace_lock);
4171		return (error);
4172	}
4173
4174	spa_async_resume(spa);
4175
4176	/*
4177	 * Override any spares and level 2 cache devices as specified by
4178	 * the user, as these may have correct device names/devids, etc.
4179	 */
4180	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4181	    &spares, &nspares) == 0) {
4182		if (spa->spa_spares.sav_config)
4183			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4184			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4185		else
4186			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4187			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4188		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4189		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4190		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4191		spa_load_spares(spa);
4192		spa_config_exit(spa, SCL_ALL, FTAG);
4193		spa->spa_spares.sav_sync = B_TRUE;
4194	}
4195	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4196	    &l2cache, &nl2cache) == 0) {
4197		if (spa->spa_l2cache.sav_config)
4198			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4199			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4200		else
4201			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4202			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4203		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4204		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4205		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4206		spa_load_l2cache(spa);
4207		spa_config_exit(spa, SCL_ALL, FTAG);
4208		spa->spa_l2cache.sav_sync = B_TRUE;
4209	}
4210
4211	/*
4212	 * Check for any removed devices.
4213	 */
4214	if (spa->spa_autoreplace) {
4215		spa_aux_check_removed(&spa->spa_spares);
4216		spa_aux_check_removed(&spa->spa_l2cache);
4217	}
4218
4219	if (spa_writeable(spa)) {
4220		/*
4221		 * Update the config cache to include the newly-imported pool.
4222		 */
4223		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4224	}
4225
4226	/*
4227	 * It's possible that the pool was expanded while it was exported.
4228	 * We kick off an async task to handle this for us.
4229	 */
4230	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4231
4232	mutex_exit(&spa_namespace_lock);
4233	spa_history_log_version(spa, "import");
4234
4235#ifdef __FreeBSD__
4236#ifdef _KERNEL
4237	zvol_create_minors(pool);
4238#endif
4239#endif
4240	return (0);
4241}
4242
4243nvlist_t *
4244spa_tryimport(nvlist_t *tryconfig)
4245{
4246	nvlist_t *config = NULL;
4247	char *poolname;
4248	spa_t *spa;
4249	uint64_t state;
4250	int error;
4251
4252	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4253		return (NULL);
4254
4255	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4256		return (NULL);
4257
4258	/*
4259	 * Create and initialize the spa structure.
4260	 */
4261	mutex_enter(&spa_namespace_lock);
4262	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4263	spa_activate(spa, FREAD);
4264
4265	/*
4266	 * Pass off the heavy lifting to spa_load().
4267	 * Pass TRUE for mosconfig because the user-supplied config
4268	 * is actually the one to trust when doing an import.
4269	 */
4270	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4271
4272	/*
4273	 * If 'tryconfig' was at least parsable, return the current config.
4274	 */
4275	if (spa->spa_root_vdev != NULL) {
4276		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4277		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4278		    poolname) == 0);
4279		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4280		    state) == 0);
4281		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4282		    spa->spa_uberblock.ub_timestamp) == 0);
4283		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4284		    spa->spa_load_info) == 0);
4285
4286		/*
4287		 * If the bootfs property exists on this pool then we
4288		 * copy it out so that external consumers can tell which
4289		 * pools are bootable.
4290		 */
4291		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4292			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4293
4294			/*
4295			 * We have to play games with the name since the
4296			 * pool was opened as TRYIMPORT_NAME.
4297			 */
4298			if (dsl_dsobj_to_dsname(spa_name(spa),
4299			    spa->spa_bootfs, tmpname) == 0) {
4300				char *cp;
4301				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4302
4303				cp = strchr(tmpname, '/');
4304				if (cp == NULL) {
4305					(void) strlcpy(dsname, tmpname,
4306					    MAXPATHLEN);
4307				} else {
4308					(void) snprintf(dsname, MAXPATHLEN,
4309					    "%s/%s", poolname, ++cp);
4310				}
4311				VERIFY(nvlist_add_string(config,
4312				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4313				kmem_free(dsname, MAXPATHLEN);
4314			}
4315			kmem_free(tmpname, MAXPATHLEN);
4316		}
4317
4318		/*
4319		 * Add the list of hot spares and level 2 cache devices.
4320		 */
4321		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4322		spa_add_spares(spa, config);
4323		spa_add_l2cache(spa, config);
4324		spa_config_exit(spa, SCL_CONFIG, FTAG);
4325	}
4326
4327	spa_unload(spa);
4328	spa_deactivate(spa);
4329	spa_remove(spa);
4330	mutex_exit(&spa_namespace_lock);
4331
4332	return (config);
4333}
4334
4335/*
4336 * Pool export/destroy
4337 *
4338 * The act of destroying or exporting a pool is very simple.  We make sure there
4339 * is no more pending I/O and any references to the pool are gone.  Then, we
4340 * update the pool state and sync all the labels to disk, removing the
4341 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4342 * we don't sync the labels or remove the configuration cache.
4343 */
4344static int
4345spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4346    boolean_t force, boolean_t hardforce)
4347{
4348	spa_t *spa;
4349
4350	if (oldconfig)
4351		*oldconfig = NULL;
4352
4353	if (!(spa_mode_global & FWRITE))
4354		return (SET_ERROR(EROFS));
4355
4356	mutex_enter(&spa_namespace_lock);
4357	if ((spa = spa_lookup(pool)) == NULL) {
4358		mutex_exit(&spa_namespace_lock);
4359		return (SET_ERROR(ENOENT));
4360	}
4361
4362	/*
4363	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4364	 * reacquire the namespace lock, and see if we can export.
4365	 */
4366	spa_open_ref(spa, FTAG);
4367	mutex_exit(&spa_namespace_lock);
4368	spa_async_suspend(spa);
4369	mutex_enter(&spa_namespace_lock);
4370	spa_close(spa, FTAG);
4371
4372	/*
4373	 * The pool will be in core if it's openable,
4374	 * in which case we can modify its state.
4375	 */
4376	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4377		/*
4378		 * Objsets may be open only because they're dirty, so we
4379		 * have to force it to sync before checking spa_refcnt.
4380		 */
4381		txg_wait_synced(spa->spa_dsl_pool, 0);
4382
4383		/*
4384		 * A pool cannot be exported or destroyed if there are active
4385		 * references.  If we are resetting a pool, allow references by
4386		 * fault injection handlers.
4387		 */
4388		if (!spa_refcount_zero(spa) ||
4389		    (spa->spa_inject_ref != 0 &&
4390		    new_state != POOL_STATE_UNINITIALIZED)) {
4391			spa_async_resume(spa);
4392			mutex_exit(&spa_namespace_lock);
4393			return (SET_ERROR(EBUSY));
4394		}
4395
4396		/*
4397		 * A pool cannot be exported if it has an active shared spare.
4398		 * This is to prevent other pools stealing the active spare
4399		 * from an exported pool. At user's own will, such pool can
4400		 * be forcedly exported.
4401		 */
4402		if (!force && new_state == POOL_STATE_EXPORTED &&
4403		    spa_has_active_shared_spare(spa)) {
4404			spa_async_resume(spa);
4405			mutex_exit(&spa_namespace_lock);
4406			return (SET_ERROR(EXDEV));
4407		}
4408
4409		/*
4410		 * We want this to be reflected on every label,
4411		 * so mark them all dirty.  spa_unload() will do the
4412		 * final sync that pushes these changes out.
4413		 */
4414		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4415			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4416			spa->spa_state = new_state;
4417			spa->spa_final_txg = spa_last_synced_txg(spa) +
4418			    TXG_DEFER_SIZE + 1;
4419			vdev_config_dirty(spa->spa_root_vdev);
4420			spa_config_exit(spa, SCL_ALL, FTAG);
4421		}
4422	}
4423
4424	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4425
4426	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4427		spa_unload(spa);
4428		spa_deactivate(spa);
4429	}
4430
4431	if (oldconfig && spa->spa_config)
4432		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4433
4434	if (new_state != POOL_STATE_UNINITIALIZED) {
4435		if (!hardforce)
4436			spa_config_sync(spa, B_TRUE, B_TRUE);
4437		spa_remove(spa);
4438	}
4439	mutex_exit(&spa_namespace_lock);
4440
4441	return (0);
4442}
4443
4444/*
4445 * Destroy a storage pool.
4446 */
4447int
4448spa_destroy(char *pool)
4449{
4450	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4451	    B_FALSE, B_FALSE));
4452}
4453
4454/*
4455 * Export a storage pool.
4456 */
4457int
4458spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4459    boolean_t hardforce)
4460{
4461	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4462	    force, hardforce));
4463}
4464
4465/*
4466 * Similar to spa_export(), this unloads the spa_t without actually removing it
4467 * from the namespace in any way.
4468 */
4469int
4470spa_reset(char *pool)
4471{
4472	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4473	    B_FALSE, B_FALSE));
4474}
4475
4476/*
4477 * ==========================================================================
4478 * Device manipulation
4479 * ==========================================================================
4480 */
4481
4482/*
4483 * Add a device to a storage pool.
4484 */
4485int
4486spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4487{
4488	uint64_t txg, id;
4489	int error;
4490	vdev_t *rvd = spa->spa_root_vdev;
4491	vdev_t *vd, *tvd;
4492	nvlist_t **spares, **l2cache;
4493	uint_t nspares, nl2cache;
4494
4495	ASSERT(spa_writeable(spa));
4496
4497	txg = spa_vdev_enter(spa);
4498
4499	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4500	    VDEV_ALLOC_ADD)) != 0)
4501		return (spa_vdev_exit(spa, NULL, txg, error));
4502
4503	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4504
4505	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4506	    &nspares) != 0)
4507		nspares = 0;
4508
4509	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4510	    &nl2cache) != 0)
4511		nl2cache = 0;
4512
4513	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4514		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4515
4516	if (vd->vdev_children != 0 &&
4517	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4518		return (spa_vdev_exit(spa, vd, txg, error));
4519
4520	/*
4521	 * We must validate the spares and l2cache devices after checking the
4522	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4523	 */
4524	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4525		return (spa_vdev_exit(spa, vd, txg, error));
4526
4527	/*
4528	 * Transfer each new top-level vdev from vd to rvd.
4529	 */
4530	for (int c = 0; c < vd->vdev_children; c++) {
4531
4532		/*
4533		 * Set the vdev id to the first hole, if one exists.
4534		 */
4535		for (id = 0; id < rvd->vdev_children; id++) {
4536			if (rvd->vdev_child[id]->vdev_ishole) {
4537				vdev_free(rvd->vdev_child[id]);
4538				break;
4539			}
4540		}
4541		tvd = vd->vdev_child[c];
4542		vdev_remove_child(vd, tvd);
4543		tvd->vdev_id = id;
4544		vdev_add_child(rvd, tvd);
4545		vdev_config_dirty(tvd);
4546	}
4547
4548	if (nspares != 0) {
4549		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4550		    ZPOOL_CONFIG_SPARES);
4551		spa_load_spares(spa);
4552		spa->spa_spares.sav_sync = B_TRUE;
4553	}
4554
4555	if (nl2cache != 0) {
4556		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4557		    ZPOOL_CONFIG_L2CACHE);
4558		spa_load_l2cache(spa);
4559		spa->spa_l2cache.sav_sync = B_TRUE;
4560	}
4561
4562	/*
4563	 * We have to be careful when adding new vdevs to an existing pool.
4564	 * If other threads start allocating from these vdevs before we
4565	 * sync the config cache, and we lose power, then upon reboot we may
4566	 * fail to open the pool because there are DVAs that the config cache
4567	 * can't translate.  Therefore, we first add the vdevs without
4568	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4569	 * and then let spa_config_update() initialize the new metaslabs.
4570	 *
4571	 * spa_load() checks for added-but-not-initialized vdevs, so that
4572	 * if we lose power at any point in this sequence, the remaining
4573	 * steps will be completed the next time we load the pool.
4574	 */
4575	(void) spa_vdev_exit(spa, vd, txg, 0);
4576
4577	mutex_enter(&spa_namespace_lock);
4578	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4579	mutex_exit(&spa_namespace_lock);
4580
4581	return (0);
4582}
4583
4584/*
4585 * Attach a device to a mirror.  The arguments are the path to any device
4586 * in the mirror, and the nvroot for the new device.  If the path specifies
4587 * a device that is not mirrored, we automatically insert the mirror vdev.
4588 *
4589 * If 'replacing' is specified, the new device is intended to replace the
4590 * existing device; in this case the two devices are made into their own
4591 * mirror using the 'replacing' vdev, which is functionally identical to
4592 * the mirror vdev (it actually reuses all the same ops) but has a few
4593 * extra rules: you can't attach to it after it's been created, and upon
4594 * completion of resilvering, the first disk (the one being replaced)
4595 * is automatically detached.
4596 */
4597int
4598spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4599{
4600	uint64_t txg, dtl_max_txg;
4601	vdev_t *rvd = spa->spa_root_vdev;
4602	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4603	vdev_ops_t *pvops;
4604	char *oldvdpath, *newvdpath;
4605	int newvd_isspare;
4606	int error;
4607
4608	ASSERT(spa_writeable(spa));
4609
4610	txg = spa_vdev_enter(spa);
4611
4612	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4613
4614	if (oldvd == NULL)
4615		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4616
4617	if (!oldvd->vdev_ops->vdev_op_leaf)
4618		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4619
4620	pvd = oldvd->vdev_parent;
4621
4622	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4623	    VDEV_ALLOC_ATTACH)) != 0)
4624		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4625
4626	if (newrootvd->vdev_children != 1)
4627		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4628
4629	newvd = newrootvd->vdev_child[0];
4630
4631	if (!newvd->vdev_ops->vdev_op_leaf)
4632		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4633
4634	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4635		return (spa_vdev_exit(spa, newrootvd, txg, error));
4636
4637	/*
4638	 * Spares can't replace logs
4639	 */
4640	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4641		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4642
4643	if (!replacing) {
4644		/*
4645		 * For attach, the only allowable parent is a mirror or the root
4646		 * vdev.
4647		 */
4648		if (pvd->vdev_ops != &vdev_mirror_ops &&
4649		    pvd->vdev_ops != &vdev_root_ops)
4650			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4651
4652		pvops = &vdev_mirror_ops;
4653	} else {
4654		/*
4655		 * Active hot spares can only be replaced by inactive hot
4656		 * spares.
4657		 */
4658		if (pvd->vdev_ops == &vdev_spare_ops &&
4659		    oldvd->vdev_isspare &&
4660		    !spa_has_spare(spa, newvd->vdev_guid))
4661			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4662
4663		/*
4664		 * If the source is a hot spare, and the parent isn't already a
4665		 * spare, then we want to create a new hot spare.  Otherwise, we
4666		 * want to create a replacing vdev.  The user is not allowed to
4667		 * attach to a spared vdev child unless the 'isspare' state is
4668		 * the same (spare replaces spare, non-spare replaces
4669		 * non-spare).
4670		 */
4671		if (pvd->vdev_ops == &vdev_replacing_ops &&
4672		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4673			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4674		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4675		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4676			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4677		}
4678
4679		if (newvd->vdev_isspare)
4680			pvops = &vdev_spare_ops;
4681		else
4682			pvops = &vdev_replacing_ops;
4683	}
4684
4685	/*
4686	 * Make sure the new device is big enough.
4687	 */
4688	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4689		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4690
4691	/*
4692	 * The new device cannot have a higher alignment requirement
4693	 * than the top-level vdev.
4694	 */
4695	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4696		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4697
4698	/*
4699	 * If this is an in-place replacement, update oldvd's path and devid
4700	 * to make it distinguishable from newvd, and unopenable from now on.
4701	 */
4702	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4703		spa_strfree(oldvd->vdev_path);
4704		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4705		    KM_SLEEP);
4706		(void) sprintf(oldvd->vdev_path, "%s/%s",
4707		    newvd->vdev_path, "old");
4708		if (oldvd->vdev_devid != NULL) {
4709			spa_strfree(oldvd->vdev_devid);
4710			oldvd->vdev_devid = NULL;
4711		}
4712	}
4713
4714	/* mark the device being resilvered */
4715	newvd->vdev_resilver_txg = txg;
4716
4717	/*
4718	 * If the parent is not a mirror, or if we're replacing, insert the new
4719	 * mirror/replacing/spare vdev above oldvd.
4720	 */
4721	if (pvd->vdev_ops != pvops)
4722		pvd = vdev_add_parent(oldvd, pvops);
4723
4724	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4725	ASSERT(pvd->vdev_ops == pvops);
4726	ASSERT(oldvd->vdev_parent == pvd);
4727
4728	/*
4729	 * Extract the new device from its root and add it to pvd.
4730	 */
4731	vdev_remove_child(newrootvd, newvd);
4732	newvd->vdev_id = pvd->vdev_children;
4733	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4734	vdev_add_child(pvd, newvd);
4735
4736	tvd = newvd->vdev_top;
4737	ASSERT(pvd->vdev_top == tvd);
4738	ASSERT(tvd->vdev_parent == rvd);
4739
4740	vdev_config_dirty(tvd);
4741
4742	/*
4743	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4744	 * for any dmu_sync-ed blocks.  It will propagate upward when
4745	 * spa_vdev_exit() calls vdev_dtl_reassess().
4746	 */
4747	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4748
4749	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4750	    dtl_max_txg - TXG_INITIAL);
4751
4752	if (newvd->vdev_isspare) {
4753		spa_spare_activate(newvd);
4754		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4755	}
4756
4757	oldvdpath = spa_strdup(oldvd->vdev_path);
4758	newvdpath = spa_strdup(newvd->vdev_path);
4759	newvd_isspare = newvd->vdev_isspare;
4760
4761	/*
4762	 * Mark newvd's DTL dirty in this txg.
4763	 */
4764	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4765
4766	/*
4767	 * Schedule the resilver to restart in the future. We do this to
4768	 * ensure that dmu_sync-ed blocks have been stitched into the
4769	 * respective datasets.
4770	 */
4771	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4772
4773	/*
4774	 * Commit the config
4775	 */
4776	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4777
4778	spa_history_log_internal(spa, "vdev attach", NULL,
4779	    "%s vdev=%s %s vdev=%s",
4780	    replacing && newvd_isspare ? "spare in" :
4781	    replacing ? "replace" : "attach", newvdpath,
4782	    replacing ? "for" : "to", oldvdpath);
4783
4784	spa_strfree(oldvdpath);
4785	spa_strfree(newvdpath);
4786
4787	if (spa->spa_bootfs)
4788		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4789
4790	return (0);
4791}
4792
4793/*
4794 * Detach a device from a mirror or replacing vdev.
4795 *
4796 * If 'replace_done' is specified, only detach if the parent
4797 * is a replacing vdev.
4798 */
4799int
4800spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4801{
4802	uint64_t txg;
4803	int error;
4804	vdev_t *rvd = spa->spa_root_vdev;
4805	vdev_t *vd, *pvd, *cvd, *tvd;
4806	boolean_t unspare = B_FALSE;
4807	uint64_t unspare_guid = 0;
4808	char *vdpath;
4809
4810	ASSERT(spa_writeable(spa));
4811
4812	txg = spa_vdev_enter(spa);
4813
4814	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4815
4816	if (vd == NULL)
4817		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4818
4819	if (!vd->vdev_ops->vdev_op_leaf)
4820		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4821
4822	pvd = vd->vdev_parent;
4823
4824	/*
4825	 * If the parent/child relationship is not as expected, don't do it.
4826	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4827	 * vdev that's replacing B with C.  The user's intent in replacing
4828	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4829	 * the replace by detaching C, the expected behavior is to end up
4830	 * M(A,B).  But suppose that right after deciding to detach C,
4831	 * the replacement of B completes.  We would have M(A,C), and then
4832	 * ask to detach C, which would leave us with just A -- not what
4833	 * the user wanted.  To prevent this, we make sure that the
4834	 * parent/child relationship hasn't changed -- in this example,
4835	 * that C's parent is still the replacing vdev R.
4836	 */
4837	if (pvd->vdev_guid != pguid && pguid != 0)
4838		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4839
4840	/*
4841	 * Only 'replacing' or 'spare' vdevs can be replaced.
4842	 */
4843	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4844	    pvd->vdev_ops != &vdev_spare_ops)
4845		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4846
4847	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4848	    spa_version(spa) >= SPA_VERSION_SPARES);
4849
4850	/*
4851	 * Only mirror, replacing, and spare vdevs support detach.
4852	 */
4853	if (pvd->vdev_ops != &vdev_replacing_ops &&
4854	    pvd->vdev_ops != &vdev_mirror_ops &&
4855	    pvd->vdev_ops != &vdev_spare_ops)
4856		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4857
4858	/*
4859	 * If this device has the only valid copy of some data,
4860	 * we cannot safely detach it.
4861	 */
4862	if (vdev_dtl_required(vd))
4863		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4864
4865	ASSERT(pvd->vdev_children >= 2);
4866
4867	/*
4868	 * If we are detaching the second disk from a replacing vdev, then
4869	 * check to see if we changed the original vdev's path to have "/old"
4870	 * at the end in spa_vdev_attach().  If so, undo that change now.
4871	 */
4872	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4873	    vd->vdev_path != NULL) {
4874		size_t len = strlen(vd->vdev_path);
4875
4876		for (int c = 0; c < pvd->vdev_children; c++) {
4877			cvd = pvd->vdev_child[c];
4878
4879			if (cvd == vd || cvd->vdev_path == NULL)
4880				continue;
4881
4882			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4883			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4884				spa_strfree(cvd->vdev_path);
4885				cvd->vdev_path = spa_strdup(vd->vdev_path);
4886				break;
4887			}
4888		}
4889	}
4890
4891	/*
4892	 * If we are detaching the original disk from a spare, then it implies
4893	 * that the spare should become a real disk, and be removed from the
4894	 * active spare list for the pool.
4895	 */
4896	if (pvd->vdev_ops == &vdev_spare_ops &&
4897	    vd->vdev_id == 0 &&
4898	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4899		unspare = B_TRUE;
4900
4901	/*
4902	 * Erase the disk labels so the disk can be used for other things.
4903	 * This must be done after all other error cases are handled,
4904	 * but before we disembowel vd (so we can still do I/O to it).
4905	 * But if we can't do it, don't treat the error as fatal --
4906	 * it may be that the unwritability of the disk is the reason
4907	 * it's being detached!
4908	 */
4909	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4910
4911	/*
4912	 * Remove vd from its parent and compact the parent's children.
4913	 */
4914	vdev_remove_child(pvd, vd);
4915	vdev_compact_children(pvd);
4916
4917	/*
4918	 * Remember one of the remaining children so we can get tvd below.
4919	 */
4920	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4921
4922	/*
4923	 * If we need to remove the remaining child from the list of hot spares,
4924	 * do it now, marking the vdev as no longer a spare in the process.
4925	 * We must do this before vdev_remove_parent(), because that can
4926	 * change the GUID if it creates a new toplevel GUID.  For a similar
4927	 * reason, we must remove the spare now, in the same txg as the detach;
4928	 * otherwise someone could attach a new sibling, change the GUID, and
4929	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4930	 */
4931	if (unspare) {
4932		ASSERT(cvd->vdev_isspare);
4933		spa_spare_remove(cvd);
4934		unspare_guid = cvd->vdev_guid;
4935		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4936		cvd->vdev_unspare = B_TRUE;
4937	}
4938
4939	/*
4940	 * If the parent mirror/replacing vdev only has one child,
4941	 * the parent is no longer needed.  Remove it from the tree.
4942	 */
4943	if (pvd->vdev_children == 1) {
4944		if (pvd->vdev_ops == &vdev_spare_ops)
4945			cvd->vdev_unspare = B_FALSE;
4946		vdev_remove_parent(cvd);
4947	}
4948
4949
4950	/*
4951	 * We don't set tvd until now because the parent we just removed
4952	 * may have been the previous top-level vdev.
4953	 */
4954	tvd = cvd->vdev_top;
4955	ASSERT(tvd->vdev_parent == rvd);
4956
4957	/*
4958	 * Reevaluate the parent vdev state.
4959	 */
4960	vdev_propagate_state(cvd);
4961
4962	/*
4963	 * If the 'autoexpand' property is set on the pool then automatically
4964	 * try to expand the size of the pool. For example if the device we
4965	 * just detached was smaller than the others, it may be possible to
4966	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4967	 * first so that we can obtain the updated sizes of the leaf vdevs.
4968	 */
4969	if (spa->spa_autoexpand) {
4970		vdev_reopen(tvd);
4971		vdev_expand(tvd, txg);
4972	}
4973
4974	vdev_config_dirty(tvd);
4975
4976	/*
4977	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4978	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4979	 * But first make sure we're not on any *other* txg's DTL list, to
4980	 * prevent vd from being accessed after it's freed.
4981	 */
4982	vdpath = spa_strdup(vd->vdev_path);
4983	for (int t = 0; t < TXG_SIZE; t++)
4984		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4985	vd->vdev_detached = B_TRUE;
4986	vdev_dirty(tvd, VDD_DTL, vd, txg);
4987
4988	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4989
4990	/* hang on to the spa before we release the lock */
4991	spa_open_ref(spa, FTAG);
4992
4993	error = spa_vdev_exit(spa, vd, txg, 0);
4994
4995	spa_history_log_internal(spa, "detach", NULL,
4996	    "vdev=%s", vdpath);
4997	spa_strfree(vdpath);
4998
4999	/*
5000	 * If this was the removal of the original device in a hot spare vdev,
5001	 * then we want to go through and remove the device from the hot spare
5002	 * list of every other pool.
5003	 */
5004	if (unspare) {
5005		spa_t *altspa = NULL;
5006
5007		mutex_enter(&spa_namespace_lock);
5008		while ((altspa = spa_next(altspa)) != NULL) {
5009			if (altspa->spa_state != POOL_STATE_ACTIVE ||
5010			    altspa == spa)
5011				continue;
5012
5013			spa_open_ref(altspa, FTAG);
5014			mutex_exit(&spa_namespace_lock);
5015			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5016			mutex_enter(&spa_namespace_lock);
5017			spa_close(altspa, FTAG);
5018		}
5019		mutex_exit(&spa_namespace_lock);
5020
5021		/* search the rest of the vdevs for spares to remove */
5022		spa_vdev_resilver_done(spa);
5023	}
5024
5025	/* all done with the spa; OK to release */
5026	mutex_enter(&spa_namespace_lock);
5027	spa_close(spa, FTAG);
5028	mutex_exit(&spa_namespace_lock);
5029
5030	return (error);
5031}
5032
5033/*
5034 * Split a set of devices from their mirrors, and create a new pool from them.
5035 */
5036int
5037spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5038    nvlist_t *props, boolean_t exp)
5039{
5040	int error = 0;
5041	uint64_t txg, *glist;
5042	spa_t *newspa;
5043	uint_t c, children, lastlog;
5044	nvlist_t **child, *nvl, *tmp;
5045	dmu_tx_t *tx;
5046	char *altroot = NULL;
5047	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
5048	boolean_t activate_slog;
5049
5050	ASSERT(spa_writeable(spa));
5051
5052	txg = spa_vdev_enter(spa);
5053
5054	/* clear the log and flush everything up to now */
5055	activate_slog = spa_passivate_log(spa);
5056	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5057	error = spa_offline_log(spa);
5058	txg = spa_vdev_config_enter(spa);
5059
5060	if (activate_slog)
5061		spa_activate_log(spa);
5062
5063	if (error != 0)
5064		return (spa_vdev_exit(spa, NULL, txg, error));
5065
5066	/* check new spa name before going any further */
5067	if (spa_lookup(newname) != NULL)
5068		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5069
5070	/*
5071	 * scan through all the children to ensure they're all mirrors
5072	 */
5073	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5074	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5075	    &children) != 0)
5076		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5077
5078	/* first, check to ensure we've got the right child count */
5079	rvd = spa->spa_root_vdev;
5080	lastlog = 0;
5081	for (c = 0; c < rvd->vdev_children; c++) {
5082		vdev_t *vd = rvd->vdev_child[c];
5083
5084		/* don't count the holes & logs as children */
5085		if (vd->vdev_islog || vd->vdev_ishole) {
5086			if (lastlog == 0)
5087				lastlog = c;
5088			continue;
5089		}
5090
5091		lastlog = 0;
5092	}
5093	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5094		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5095
5096	/* next, ensure no spare or cache devices are part of the split */
5097	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5098	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5099		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5100
5101	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5102	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5103
5104	/* then, loop over each vdev and validate it */
5105	for (c = 0; c < children; c++) {
5106		uint64_t is_hole = 0;
5107
5108		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5109		    &is_hole);
5110
5111		if (is_hole != 0) {
5112			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5113			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5114				continue;
5115			} else {
5116				error = SET_ERROR(EINVAL);
5117				break;
5118			}
5119		}
5120
5121		/* which disk is going to be split? */
5122		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5123		    &glist[c]) != 0) {
5124			error = SET_ERROR(EINVAL);
5125			break;
5126		}
5127
5128		/* look it up in the spa */
5129		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5130		if (vml[c] == NULL) {
5131			error = SET_ERROR(ENODEV);
5132			break;
5133		}
5134
5135		/* make sure there's nothing stopping the split */
5136		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5137		    vml[c]->vdev_islog ||
5138		    vml[c]->vdev_ishole ||
5139		    vml[c]->vdev_isspare ||
5140		    vml[c]->vdev_isl2cache ||
5141		    !vdev_writeable(vml[c]) ||
5142		    vml[c]->vdev_children != 0 ||
5143		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5144		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5145			error = SET_ERROR(EINVAL);
5146			break;
5147		}
5148
5149		if (vdev_dtl_required(vml[c])) {
5150			error = SET_ERROR(EBUSY);
5151			break;
5152		}
5153
5154		/* we need certain info from the top level */
5155		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5156		    vml[c]->vdev_top->vdev_ms_array) == 0);
5157		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5158		    vml[c]->vdev_top->vdev_ms_shift) == 0);
5159		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5160		    vml[c]->vdev_top->vdev_asize) == 0);
5161		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5162		    vml[c]->vdev_top->vdev_ashift) == 0);
5163	}
5164
5165	if (error != 0) {
5166		kmem_free(vml, children * sizeof (vdev_t *));
5167		kmem_free(glist, children * sizeof (uint64_t));
5168		return (spa_vdev_exit(spa, NULL, txg, error));
5169	}
5170
5171	/* stop writers from using the disks */
5172	for (c = 0; c < children; c++) {
5173		if (vml[c] != NULL)
5174			vml[c]->vdev_offline = B_TRUE;
5175	}
5176	vdev_reopen(spa->spa_root_vdev);
5177
5178	/*
5179	 * Temporarily record the splitting vdevs in the spa config.  This
5180	 * will disappear once the config is regenerated.
5181	 */
5182	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5183	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5184	    glist, children) == 0);
5185	kmem_free(glist, children * sizeof (uint64_t));
5186
5187	mutex_enter(&spa->spa_props_lock);
5188	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5189	    nvl) == 0);
5190	mutex_exit(&spa->spa_props_lock);
5191	spa->spa_config_splitting = nvl;
5192	vdev_config_dirty(spa->spa_root_vdev);
5193
5194	/* configure and create the new pool */
5195	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5196	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5197	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5198	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5199	    spa_version(spa)) == 0);
5200	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5201	    spa->spa_config_txg) == 0);
5202	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5203	    spa_generate_guid(NULL)) == 0);
5204	(void) nvlist_lookup_string(props,
5205	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5206
5207	/* add the new pool to the namespace */
5208	newspa = spa_add(newname, config, altroot);
5209	newspa->spa_config_txg = spa->spa_config_txg;
5210	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5211
5212	/* release the spa config lock, retaining the namespace lock */
5213	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5214
5215	if (zio_injection_enabled)
5216		zio_handle_panic_injection(spa, FTAG, 1);
5217
5218	spa_activate(newspa, spa_mode_global);
5219	spa_async_suspend(newspa);
5220
5221#ifndef sun
5222	/* mark that we are creating new spa by splitting */
5223	newspa->spa_splitting_newspa = B_TRUE;
5224#endif
5225	/* create the new pool from the disks of the original pool */
5226	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5227#ifndef sun
5228	newspa->spa_splitting_newspa = B_FALSE;
5229#endif
5230	if (error)
5231		goto out;
5232
5233	/* if that worked, generate a real config for the new pool */
5234	if (newspa->spa_root_vdev != NULL) {
5235		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5236		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5237		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5238		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5239		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5240		    B_TRUE));
5241	}
5242
5243	/* set the props */
5244	if (props != NULL) {
5245		spa_configfile_set(newspa, props, B_FALSE);
5246		error = spa_prop_set(newspa, props);
5247		if (error)
5248			goto out;
5249	}
5250
5251	/* flush everything */
5252	txg = spa_vdev_config_enter(newspa);
5253	vdev_config_dirty(newspa->spa_root_vdev);
5254	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5255
5256	if (zio_injection_enabled)
5257		zio_handle_panic_injection(spa, FTAG, 2);
5258
5259	spa_async_resume(newspa);
5260
5261	/* finally, update the original pool's config */
5262	txg = spa_vdev_config_enter(spa);
5263	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5264	error = dmu_tx_assign(tx, TXG_WAIT);
5265	if (error != 0)
5266		dmu_tx_abort(tx);
5267	for (c = 0; c < children; c++) {
5268		if (vml[c] != NULL) {
5269			vdev_split(vml[c]);
5270			if (error == 0)
5271				spa_history_log_internal(spa, "detach", tx,
5272				    "vdev=%s", vml[c]->vdev_path);
5273			vdev_free(vml[c]);
5274		}
5275	}
5276	vdev_config_dirty(spa->spa_root_vdev);
5277	spa->spa_config_splitting = NULL;
5278	nvlist_free(nvl);
5279	if (error == 0)
5280		dmu_tx_commit(tx);
5281	(void) spa_vdev_exit(spa, NULL, txg, 0);
5282
5283	if (zio_injection_enabled)
5284		zio_handle_panic_injection(spa, FTAG, 3);
5285
5286	/* split is complete; log a history record */
5287	spa_history_log_internal(newspa, "split", NULL,
5288	    "from pool %s", spa_name(spa));
5289
5290	kmem_free(vml, children * sizeof (vdev_t *));
5291
5292	/* if we're not going to mount the filesystems in userland, export */
5293	if (exp)
5294		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5295		    B_FALSE, B_FALSE);
5296
5297	return (error);
5298
5299out:
5300	spa_unload(newspa);
5301	spa_deactivate(newspa);
5302	spa_remove(newspa);
5303
5304	txg = spa_vdev_config_enter(spa);
5305
5306	/* re-online all offlined disks */
5307	for (c = 0; c < children; c++) {
5308		if (vml[c] != NULL)
5309			vml[c]->vdev_offline = B_FALSE;
5310	}
5311	vdev_reopen(spa->spa_root_vdev);
5312
5313	nvlist_free(spa->spa_config_splitting);
5314	spa->spa_config_splitting = NULL;
5315	(void) spa_vdev_exit(spa, NULL, txg, error);
5316
5317	kmem_free(vml, children * sizeof (vdev_t *));
5318	return (error);
5319}
5320
5321static nvlist_t *
5322spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5323{
5324	for (int i = 0; i < count; i++) {
5325		uint64_t guid;
5326
5327		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5328		    &guid) == 0);
5329
5330		if (guid == target_guid)
5331			return (nvpp[i]);
5332	}
5333
5334	return (NULL);
5335}
5336
5337static void
5338spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5339	nvlist_t *dev_to_remove)
5340{
5341	nvlist_t **newdev = NULL;
5342
5343	if (count > 1)
5344		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5345
5346	for (int i = 0, j = 0; i < count; i++) {
5347		if (dev[i] == dev_to_remove)
5348			continue;
5349		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5350	}
5351
5352	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5353	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5354
5355	for (int i = 0; i < count - 1; i++)
5356		nvlist_free(newdev[i]);
5357
5358	if (count > 1)
5359		kmem_free(newdev, (count - 1) * sizeof (void *));
5360}
5361
5362/*
5363 * Evacuate the device.
5364 */
5365static int
5366spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5367{
5368	uint64_t txg;
5369	int error = 0;
5370
5371	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5372	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5373	ASSERT(vd == vd->vdev_top);
5374
5375	/*
5376	 * Evacuate the device.  We don't hold the config lock as writer
5377	 * since we need to do I/O but we do keep the
5378	 * spa_namespace_lock held.  Once this completes the device
5379	 * should no longer have any blocks allocated on it.
5380	 */
5381	if (vd->vdev_islog) {
5382		if (vd->vdev_stat.vs_alloc != 0)
5383			error = spa_offline_log(spa);
5384	} else {
5385		error = SET_ERROR(ENOTSUP);
5386	}
5387
5388	if (error)
5389		return (error);
5390
5391	/*
5392	 * The evacuation succeeded.  Remove any remaining MOS metadata
5393	 * associated with this vdev, and wait for these changes to sync.
5394	 */
5395	ASSERT0(vd->vdev_stat.vs_alloc);
5396	txg = spa_vdev_config_enter(spa);
5397	vd->vdev_removing = B_TRUE;
5398	vdev_dirty_leaves(vd, VDD_DTL, txg);
5399	vdev_config_dirty(vd);
5400	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5401
5402	return (0);
5403}
5404
5405/*
5406 * Complete the removal by cleaning up the namespace.
5407 */
5408static void
5409spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5410{
5411	vdev_t *rvd = spa->spa_root_vdev;
5412	uint64_t id = vd->vdev_id;
5413	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5414
5415	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5416	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5417	ASSERT(vd == vd->vdev_top);
5418
5419	/*
5420	 * Only remove any devices which are empty.
5421	 */
5422	if (vd->vdev_stat.vs_alloc != 0)
5423		return;
5424
5425	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5426
5427	if (list_link_active(&vd->vdev_state_dirty_node))
5428		vdev_state_clean(vd);
5429	if (list_link_active(&vd->vdev_config_dirty_node))
5430		vdev_config_clean(vd);
5431
5432	vdev_free(vd);
5433
5434	if (last_vdev) {
5435		vdev_compact_children(rvd);
5436	} else {
5437		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5438		vdev_add_child(rvd, vd);
5439	}
5440	vdev_config_dirty(rvd);
5441
5442	/*
5443	 * Reassess the health of our root vdev.
5444	 */
5445	vdev_reopen(rvd);
5446}
5447
5448/*
5449 * Remove a device from the pool -
5450 *
5451 * Removing a device from the vdev namespace requires several steps
5452 * and can take a significant amount of time.  As a result we use
5453 * the spa_vdev_config_[enter/exit] functions which allow us to
5454 * grab and release the spa_config_lock while still holding the namespace
5455 * lock.  During each step the configuration is synced out.
5456 *
5457 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5458 * devices.
5459 */
5460int
5461spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5462{
5463	vdev_t *vd;
5464	metaslab_group_t *mg;
5465	nvlist_t **spares, **l2cache, *nv;
5466	uint64_t txg = 0;
5467	uint_t nspares, nl2cache;
5468	int error = 0;
5469	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5470
5471	ASSERT(spa_writeable(spa));
5472
5473	if (!locked)
5474		txg = spa_vdev_enter(spa);
5475
5476	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5477
5478	if (spa->spa_spares.sav_vdevs != NULL &&
5479	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5480	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5481	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5482		/*
5483		 * Only remove the hot spare if it's not currently in use
5484		 * in this pool.
5485		 */
5486		if (vd == NULL || unspare) {
5487			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5488			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5489			spa_load_spares(spa);
5490			spa->spa_spares.sav_sync = B_TRUE;
5491		} else {
5492			error = SET_ERROR(EBUSY);
5493		}
5494	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5495	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5496	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5497	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5498		/*
5499		 * Cache devices can always be removed.
5500		 */
5501		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5502		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5503		spa_load_l2cache(spa);
5504		spa->spa_l2cache.sav_sync = B_TRUE;
5505	} else if (vd != NULL && vd->vdev_islog) {
5506		ASSERT(!locked);
5507		ASSERT(vd == vd->vdev_top);
5508
5509		/*
5510		 * XXX - Once we have bp-rewrite this should
5511		 * become the common case.
5512		 */
5513
5514		mg = vd->vdev_mg;
5515
5516		/*
5517		 * Stop allocating from this vdev.
5518		 */
5519		metaslab_group_passivate(mg);
5520
5521		/*
5522		 * Wait for the youngest allocations and frees to sync,
5523		 * and then wait for the deferral of those frees to finish.
5524		 */
5525		spa_vdev_config_exit(spa, NULL,
5526		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5527
5528		/*
5529		 * Attempt to evacuate the vdev.
5530		 */
5531		error = spa_vdev_remove_evacuate(spa, vd);
5532
5533		txg = spa_vdev_config_enter(spa);
5534
5535		/*
5536		 * If we couldn't evacuate the vdev, unwind.
5537		 */
5538		if (error) {
5539			metaslab_group_activate(mg);
5540			return (spa_vdev_exit(spa, NULL, txg, error));
5541		}
5542
5543		/*
5544		 * Clean up the vdev namespace.
5545		 */
5546		spa_vdev_remove_from_namespace(spa, vd);
5547
5548	} else if (vd != NULL) {
5549		/*
5550		 * Normal vdevs cannot be removed (yet).
5551		 */
5552		error = SET_ERROR(ENOTSUP);
5553	} else {
5554		/*
5555		 * There is no vdev of any kind with the specified guid.
5556		 */
5557		error = SET_ERROR(ENOENT);
5558	}
5559
5560	if (!locked)
5561		return (spa_vdev_exit(spa, NULL, txg, error));
5562
5563	return (error);
5564}
5565
5566/*
5567 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5568 * currently spared, so we can detach it.
5569 */
5570static vdev_t *
5571spa_vdev_resilver_done_hunt(vdev_t *vd)
5572{
5573	vdev_t *newvd, *oldvd;
5574
5575	for (int c = 0; c < vd->vdev_children; c++) {
5576		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5577		if (oldvd != NULL)
5578			return (oldvd);
5579	}
5580
5581	/*
5582	 * Check for a completed replacement.  We always consider the first
5583	 * vdev in the list to be the oldest vdev, and the last one to be
5584	 * the newest (see spa_vdev_attach() for how that works).  In
5585	 * the case where the newest vdev is faulted, we will not automatically
5586	 * remove it after a resilver completes.  This is OK as it will require
5587	 * user intervention to determine which disk the admin wishes to keep.
5588	 */
5589	if (vd->vdev_ops == &vdev_replacing_ops) {
5590		ASSERT(vd->vdev_children > 1);
5591
5592		newvd = vd->vdev_child[vd->vdev_children - 1];
5593		oldvd = vd->vdev_child[0];
5594
5595		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5596		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5597		    !vdev_dtl_required(oldvd))
5598			return (oldvd);
5599	}
5600
5601	/*
5602	 * Check for a completed resilver with the 'unspare' flag set.
5603	 */
5604	if (vd->vdev_ops == &vdev_spare_ops) {
5605		vdev_t *first = vd->vdev_child[0];
5606		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5607
5608		if (last->vdev_unspare) {
5609			oldvd = first;
5610			newvd = last;
5611		} else if (first->vdev_unspare) {
5612			oldvd = last;
5613			newvd = first;
5614		} else {
5615			oldvd = NULL;
5616		}
5617
5618		if (oldvd != NULL &&
5619		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5620		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5621		    !vdev_dtl_required(oldvd))
5622			return (oldvd);
5623
5624		/*
5625		 * If there are more than two spares attached to a disk,
5626		 * and those spares are not required, then we want to
5627		 * attempt to free them up now so that they can be used
5628		 * by other pools.  Once we're back down to a single
5629		 * disk+spare, we stop removing them.
5630		 */
5631		if (vd->vdev_children > 2) {
5632			newvd = vd->vdev_child[1];
5633
5634			if (newvd->vdev_isspare && last->vdev_isspare &&
5635			    vdev_dtl_empty(last, DTL_MISSING) &&
5636			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5637			    !vdev_dtl_required(newvd))
5638				return (newvd);
5639		}
5640	}
5641
5642	return (NULL);
5643}
5644
5645static void
5646spa_vdev_resilver_done(spa_t *spa)
5647{
5648	vdev_t *vd, *pvd, *ppvd;
5649	uint64_t guid, sguid, pguid, ppguid;
5650
5651	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5652
5653	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5654		pvd = vd->vdev_parent;
5655		ppvd = pvd->vdev_parent;
5656		guid = vd->vdev_guid;
5657		pguid = pvd->vdev_guid;
5658		ppguid = ppvd->vdev_guid;
5659		sguid = 0;
5660		/*
5661		 * If we have just finished replacing a hot spared device, then
5662		 * we need to detach the parent's first child (the original hot
5663		 * spare) as well.
5664		 */
5665		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5666		    ppvd->vdev_children == 2) {
5667			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5668			sguid = ppvd->vdev_child[1]->vdev_guid;
5669		}
5670		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5671
5672		spa_config_exit(spa, SCL_ALL, FTAG);
5673		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5674			return;
5675		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5676			return;
5677		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5678	}
5679
5680	spa_config_exit(spa, SCL_ALL, FTAG);
5681}
5682
5683/*
5684 * Update the stored path or FRU for this vdev.
5685 */
5686int
5687spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5688    boolean_t ispath)
5689{
5690	vdev_t *vd;
5691	boolean_t sync = B_FALSE;
5692
5693	ASSERT(spa_writeable(spa));
5694
5695	spa_vdev_state_enter(spa, SCL_ALL);
5696
5697	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5698		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5699
5700	if (!vd->vdev_ops->vdev_op_leaf)
5701		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5702
5703	if (ispath) {
5704		if (strcmp(value, vd->vdev_path) != 0) {
5705			spa_strfree(vd->vdev_path);
5706			vd->vdev_path = spa_strdup(value);
5707			sync = B_TRUE;
5708		}
5709	} else {
5710		if (vd->vdev_fru == NULL) {
5711			vd->vdev_fru = spa_strdup(value);
5712			sync = B_TRUE;
5713		} else if (strcmp(value, vd->vdev_fru) != 0) {
5714			spa_strfree(vd->vdev_fru);
5715			vd->vdev_fru = spa_strdup(value);
5716			sync = B_TRUE;
5717		}
5718	}
5719
5720	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5721}
5722
5723int
5724spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5725{
5726	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5727}
5728
5729int
5730spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5731{
5732	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5733}
5734
5735/*
5736 * ==========================================================================
5737 * SPA Scanning
5738 * ==========================================================================
5739 */
5740
5741int
5742spa_scan_stop(spa_t *spa)
5743{
5744	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5745	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5746		return (SET_ERROR(EBUSY));
5747	return (dsl_scan_cancel(spa->spa_dsl_pool));
5748}
5749
5750int
5751spa_scan(spa_t *spa, pool_scan_func_t func)
5752{
5753	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5754
5755	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5756		return (SET_ERROR(ENOTSUP));
5757
5758	/*
5759	 * If a resilver was requested, but there is no DTL on a
5760	 * writeable leaf device, we have nothing to do.
5761	 */
5762	if (func == POOL_SCAN_RESILVER &&
5763	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5764		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5765		return (0);
5766	}
5767
5768	return (dsl_scan(spa->spa_dsl_pool, func));
5769}
5770
5771/*
5772 * ==========================================================================
5773 * SPA async task processing
5774 * ==========================================================================
5775 */
5776
5777static void
5778spa_async_remove(spa_t *spa, vdev_t *vd)
5779{
5780	if (vd->vdev_remove_wanted) {
5781		vd->vdev_remove_wanted = B_FALSE;
5782		vd->vdev_delayed_close = B_FALSE;
5783		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5784
5785		/*
5786		 * We want to clear the stats, but we don't want to do a full
5787		 * vdev_clear() as that will cause us to throw away
5788		 * degraded/faulted state as well as attempt to reopen the
5789		 * device, all of which is a waste.
5790		 */
5791		vd->vdev_stat.vs_read_errors = 0;
5792		vd->vdev_stat.vs_write_errors = 0;
5793		vd->vdev_stat.vs_checksum_errors = 0;
5794
5795		vdev_state_dirty(vd->vdev_top);
5796	}
5797
5798	for (int c = 0; c < vd->vdev_children; c++)
5799		spa_async_remove(spa, vd->vdev_child[c]);
5800}
5801
5802static void
5803spa_async_probe(spa_t *spa, vdev_t *vd)
5804{
5805	if (vd->vdev_probe_wanted) {
5806		vd->vdev_probe_wanted = B_FALSE;
5807		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5808	}
5809
5810	for (int c = 0; c < vd->vdev_children; c++)
5811		spa_async_probe(spa, vd->vdev_child[c]);
5812}
5813
5814static void
5815spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5816{
5817	sysevent_id_t eid;
5818	nvlist_t *attr;
5819	char *physpath;
5820
5821	if (!spa->spa_autoexpand)
5822		return;
5823
5824	for (int c = 0; c < vd->vdev_children; c++) {
5825		vdev_t *cvd = vd->vdev_child[c];
5826		spa_async_autoexpand(spa, cvd);
5827	}
5828
5829	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5830		return;
5831
5832	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5833	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5834
5835	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5836	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5837
5838	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5839	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5840
5841	nvlist_free(attr);
5842	kmem_free(physpath, MAXPATHLEN);
5843}
5844
5845static void
5846spa_async_thread(void *arg)
5847{
5848	spa_t *spa = arg;
5849	int tasks;
5850
5851	ASSERT(spa->spa_sync_on);
5852
5853	mutex_enter(&spa->spa_async_lock);
5854	tasks = spa->spa_async_tasks;
5855	spa->spa_async_tasks &= SPA_ASYNC_REMOVE;
5856	mutex_exit(&spa->spa_async_lock);
5857
5858	/*
5859	 * See if the config needs to be updated.
5860	 */
5861	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5862		uint64_t old_space, new_space;
5863
5864		mutex_enter(&spa_namespace_lock);
5865		old_space = metaslab_class_get_space(spa_normal_class(spa));
5866		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5867		new_space = metaslab_class_get_space(spa_normal_class(spa));
5868		mutex_exit(&spa_namespace_lock);
5869
5870		/*
5871		 * If the pool grew as a result of the config update,
5872		 * then log an internal history event.
5873		 */
5874		if (new_space != old_space) {
5875			spa_history_log_internal(spa, "vdev online", NULL,
5876			    "pool '%s' size: %llu(+%llu)",
5877			    spa_name(spa), new_space, new_space - old_space);
5878		}
5879	}
5880
5881	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5882		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5883		spa_async_autoexpand(spa, spa->spa_root_vdev);
5884		spa_config_exit(spa, SCL_CONFIG, FTAG);
5885	}
5886
5887	/*
5888	 * See if any devices need to be probed.
5889	 */
5890	if (tasks & SPA_ASYNC_PROBE) {
5891		spa_vdev_state_enter(spa, SCL_NONE);
5892		spa_async_probe(spa, spa->spa_root_vdev);
5893		(void) spa_vdev_state_exit(spa, NULL, 0);
5894	}
5895
5896	/*
5897	 * If any devices are done replacing, detach them.
5898	 */
5899	if (tasks & SPA_ASYNC_RESILVER_DONE)
5900		spa_vdev_resilver_done(spa);
5901
5902	/*
5903	 * Kick off a resilver.
5904	 */
5905	if (tasks & SPA_ASYNC_RESILVER)
5906		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5907
5908	/*
5909	 * Let the world know that we're done.
5910	 */
5911	mutex_enter(&spa->spa_async_lock);
5912	spa->spa_async_thread = NULL;
5913	cv_broadcast(&spa->spa_async_cv);
5914	mutex_exit(&spa->spa_async_lock);
5915	thread_exit();
5916}
5917
5918static void
5919spa_async_thread_vd(void *arg)
5920{
5921	spa_t *spa = arg;
5922	int tasks;
5923
5924	ASSERT(spa->spa_sync_on);
5925
5926	mutex_enter(&spa->spa_async_lock);
5927	tasks = spa->spa_async_tasks;
5928retry:
5929	spa->spa_async_tasks &= ~SPA_ASYNC_REMOVE;
5930	mutex_exit(&spa->spa_async_lock);
5931
5932	/*
5933	 * See if any devices need to be marked REMOVED.
5934	 */
5935	if (tasks & SPA_ASYNC_REMOVE) {
5936		spa_vdev_state_enter(spa, SCL_NONE);
5937		spa_async_remove(spa, spa->spa_root_vdev);
5938		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5939			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5940		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5941			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5942		(void) spa_vdev_state_exit(spa, NULL, 0);
5943	}
5944
5945	/*
5946	 * Let the world know that we're done.
5947	 */
5948	mutex_enter(&spa->spa_async_lock);
5949	tasks = spa->spa_async_tasks;
5950	if ((tasks & SPA_ASYNC_REMOVE) != 0)
5951		goto retry;
5952	spa->spa_async_thread_vd = NULL;
5953	cv_broadcast(&spa->spa_async_cv);
5954	mutex_exit(&spa->spa_async_lock);
5955	thread_exit();
5956}
5957
5958void
5959spa_async_suspend(spa_t *spa)
5960{
5961	mutex_enter(&spa->spa_async_lock);
5962	spa->spa_async_suspended++;
5963	while (spa->spa_async_thread != NULL &&
5964	    spa->spa_async_thread_vd != NULL)
5965		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5966	mutex_exit(&spa->spa_async_lock);
5967}
5968
5969void
5970spa_async_resume(spa_t *spa)
5971{
5972	mutex_enter(&spa->spa_async_lock);
5973	ASSERT(spa->spa_async_suspended != 0);
5974	spa->spa_async_suspended--;
5975	mutex_exit(&spa->spa_async_lock);
5976}
5977
5978static boolean_t
5979spa_async_tasks_pending(spa_t *spa)
5980{
5981	uint_t non_config_tasks;
5982	uint_t config_task;
5983	boolean_t config_task_suspended;
5984
5985	non_config_tasks = spa->spa_async_tasks & ~(SPA_ASYNC_CONFIG_UPDATE |
5986	    SPA_ASYNC_REMOVE);
5987	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5988	if (spa->spa_ccw_fail_time == 0) {
5989		config_task_suspended = B_FALSE;
5990	} else {
5991		config_task_suspended =
5992		    (gethrtime() - spa->spa_ccw_fail_time) <
5993		    (zfs_ccw_retry_interval * NANOSEC);
5994	}
5995
5996	return (non_config_tasks || (config_task && !config_task_suspended));
5997}
5998
5999static void
6000spa_async_dispatch(spa_t *spa)
6001{
6002	mutex_enter(&spa->spa_async_lock);
6003	if (spa_async_tasks_pending(spa) &&
6004	    !spa->spa_async_suspended &&
6005	    spa->spa_async_thread == NULL &&
6006	    rootdir != NULL)
6007		spa->spa_async_thread = thread_create(NULL, 0,
6008		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6009	mutex_exit(&spa->spa_async_lock);
6010}
6011
6012static void
6013spa_async_dispatch_vd(spa_t *spa)
6014{
6015	mutex_enter(&spa->spa_async_lock);
6016	if ((spa->spa_async_tasks & SPA_ASYNC_REMOVE) != 0 &&
6017	    !spa->spa_async_suspended &&
6018	    spa->spa_async_thread_vd == NULL &&
6019	    rootdir != NULL)
6020		spa->spa_async_thread_vd = thread_create(NULL, 0,
6021		    spa_async_thread_vd, spa, 0, &p0, TS_RUN, maxclsyspri);
6022	mutex_exit(&spa->spa_async_lock);
6023}
6024
6025void
6026spa_async_request(spa_t *spa, int task)
6027{
6028	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6029	mutex_enter(&spa->spa_async_lock);
6030	spa->spa_async_tasks |= task;
6031	mutex_exit(&spa->spa_async_lock);
6032	spa_async_dispatch_vd(spa);
6033}
6034
6035/*
6036 * ==========================================================================
6037 * SPA syncing routines
6038 * ==========================================================================
6039 */
6040
6041static int
6042bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6043{
6044	bpobj_t *bpo = arg;
6045	bpobj_enqueue(bpo, bp, tx);
6046	return (0);
6047}
6048
6049static int
6050spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6051{
6052	zio_t *zio = arg;
6053
6054	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6055	    BP_GET_PSIZE(bp), zio->io_flags));
6056	return (0);
6057}
6058
6059/*
6060 * Note: this simple function is not inlined to make it easier to dtrace the
6061 * amount of time spent syncing frees.
6062 */
6063static void
6064spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6065{
6066	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6067	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6068	VERIFY(zio_wait(zio) == 0);
6069}
6070
6071/*
6072 * Note: this simple function is not inlined to make it easier to dtrace the
6073 * amount of time spent syncing deferred frees.
6074 */
6075static void
6076spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6077{
6078	zio_t *zio = zio_root(spa, NULL, NULL, 0);
6079	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6080	    spa_free_sync_cb, zio, tx), ==, 0);
6081	VERIFY0(zio_wait(zio));
6082}
6083
6084
6085static void
6086spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6087{
6088	char *packed = NULL;
6089	size_t bufsize;
6090	size_t nvsize = 0;
6091	dmu_buf_t *db;
6092
6093	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6094
6095	/*
6096	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6097	 * information.  This avoids the dbuf_will_dirty() path and
6098	 * saves us a pre-read to get data we don't actually care about.
6099	 */
6100	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6101	packed = kmem_alloc(bufsize, KM_SLEEP);
6102
6103	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6104	    KM_SLEEP) == 0);
6105	bzero(packed + nvsize, bufsize - nvsize);
6106
6107	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6108
6109	kmem_free(packed, bufsize);
6110
6111	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6112	dmu_buf_will_dirty(db, tx);
6113	*(uint64_t *)db->db_data = nvsize;
6114	dmu_buf_rele(db, FTAG);
6115}
6116
6117static void
6118spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6119    const char *config, const char *entry)
6120{
6121	nvlist_t *nvroot;
6122	nvlist_t **list;
6123	int i;
6124
6125	if (!sav->sav_sync)
6126		return;
6127
6128	/*
6129	 * Update the MOS nvlist describing the list of available devices.
6130	 * spa_validate_aux() will have already made sure this nvlist is
6131	 * valid and the vdevs are labeled appropriately.
6132	 */
6133	if (sav->sav_object == 0) {
6134		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6135		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6136		    sizeof (uint64_t), tx);
6137		VERIFY(zap_update(spa->spa_meta_objset,
6138		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6139		    &sav->sav_object, tx) == 0);
6140	}
6141
6142	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6143	if (sav->sav_count == 0) {
6144		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6145	} else {
6146		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
6147		for (i = 0; i < sav->sav_count; i++)
6148			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6149			    B_FALSE, VDEV_CONFIG_L2CACHE);
6150		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6151		    sav->sav_count) == 0);
6152		for (i = 0; i < sav->sav_count; i++)
6153			nvlist_free(list[i]);
6154		kmem_free(list, sav->sav_count * sizeof (void *));
6155	}
6156
6157	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6158	nvlist_free(nvroot);
6159
6160	sav->sav_sync = B_FALSE;
6161}
6162
6163static void
6164spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6165{
6166	nvlist_t *config;
6167
6168	if (list_is_empty(&spa->spa_config_dirty_list))
6169		return;
6170
6171	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6172
6173	config = spa_config_generate(spa, spa->spa_root_vdev,
6174	    dmu_tx_get_txg(tx), B_FALSE);
6175
6176	/*
6177	 * If we're upgrading the spa version then make sure that
6178	 * the config object gets updated with the correct version.
6179	 */
6180	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6181		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6182		    spa->spa_uberblock.ub_version);
6183
6184	spa_config_exit(spa, SCL_STATE, FTAG);
6185
6186	if (spa->spa_config_syncing)
6187		nvlist_free(spa->spa_config_syncing);
6188	spa->spa_config_syncing = config;
6189
6190	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6191}
6192
6193static void
6194spa_sync_version(void *arg, dmu_tx_t *tx)
6195{
6196	uint64_t *versionp = arg;
6197	uint64_t version = *versionp;
6198	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6199
6200	/*
6201	 * Setting the version is special cased when first creating the pool.
6202	 */
6203	ASSERT(tx->tx_txg != TXG_INITIAL);
6204
6205	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6206	ASSERT(version >= spa_version(spa));
6207
6208	spa->spa_uberblock.ub_version = version;
6209	vdev_config_dirty(spa->spa_root_vdev);
6210	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6211}
6212
6213/*
6214 * Set zpool properties.
6215 */
6216static void
6217spa_sync_props(void *arg, dmu_tx_t *tx)
6218{
6219	nvlist_t *nvp = arg;
6220	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6221	objset_t *mos = spa->spa_meta_objset;
6222	nvpair_t *elem = NULL;
6223
6224	mutex_enter(&spa->spa_props_lock);
6225
6226	while ((elem = nvlist_next_nvpair(nvp, elem))) {
6227		uint64_t intval;
6228		char *strval, *fname;
6229		zpool_prop_t prop;
6230		const char *propname;
6231		zprop_type_t proptype;
6232		spa_feature_t fid;
6233
6234		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
6235		case ZPROP_INVAL:
6236			/*
6237			 * We checked this earlier in spa_prop_validate().
6238			 */
6239			ASSERT(zpool_prop_feature(nvpair_name(elem)));
6240
6241			fname = strchr(nvpair_name(elem), '@') + 1;
6242			VERIFY0(zfeature_lookup_name(fname, &fid));
6243
6244			spa_feature_enable(spa, fid, tx);
6245			spa_history_log_internal(spa, "set", tx,
6246			    "%s=enabled", nvpair_name(elem));
6247			break;
6248
6249		case ZPOOL_PROP_VERSION:
6250			intval = fnvpair_value_uint64(elem);
6251			/*
6252			 * The version is synced seperatly before other
6253			 * properties and should be correct by now.
6254			 */
6255			ASSERT3U(spa_version(spa), >=, intval);
6256			break;
6257
6258		case ZPOOL_PROP_ALTROOT:
6259			/*
6260			 * 'altroot' is a non-persistent property. It should
6261			 * have been set temporarily at creation or import time.
6262			 */
6263			ASSERT(spa->spa_root != NULL);
6264			break;
6265
6266		case ZPOOL_PROP_READONLY:
6267		case ZPOOL_PROP_CACHEFILE:
6268			/*
6269			 * 'readonly' and 'cachefile' are also non-persisitent
6270			 * properties.
6271			 */
6272			break;
6273		case ZPOOL_PROP_COMMENT:
6274			strval = fnvpair_value_string(elem);
6275			if (spa->spa_comment != NULL)
6276				spa_strfree(spa->spa_comment);
6277			spa->spa_comment = spa_strdup(strval);
6278			/*
6279			 * We need to dirty the configuration on all the vdevs
6280			 * so that their labels get updated.  It's unnecessary
6281			 * to do this for pool creation since the vdev's
6282			 * configuratoin has already been dirtied.
6283			 */
6284			if (tx->tx_txg != TXG_INITIAL)
6285				vdev_config_dirty(spa->spa_root_vdev);
6286			spa_history_log_internal(spa, "set", tx,
6287			    "%s=%s", nvpair_name(elem), strval);
6288			break;
6289		default:
6290			/*
6291			 * Set pool property values in the poolprops mos object.
6292			 */
6293			if (spa->spa_pool_props_object == 0) {
6294				spa->spa_pool_props_object =
6295				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6296				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6297				    tx);
6298			}
6299
6300			/* normalize the property name */
6301			propname = zpool_prop_to_name(prop);
6302			proptype = zpool_prop_get_type(prop);
6303
6304			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6305				ASSERT(proptype == PROP_TYPE_STRING);
6306				strval = fnvpair_value_string(elem);
6307				VERIFY0(zap_update(mos,
6308				    spa->spa_pool_props_object, propname,
6309				    1, strlen(strval) + 1, strval, tx));
6310				spa_history_log_internal(spa, "set", tx,
6311				    "%s=%s", nvpair_name(elem), strval);
6312			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6313				intval = fnvpair_value_uint64(elem);
6314
6315				if (proptype == PROP_TYPE_INDEX) {
6316					const char *unused;
6317					VERIFY0(zpool_prop_index_to_string(
6318					    prop, intval, &unused));
6319				}
6320				VERIFY0(zap_update(mos,
6321				    spa->spa_pool_props_object, propname,
6322				    8, 1, &intval, tx));
6323				spa_history_log_internal(spa, "set", tx,
6324				    "%s=%lld", nvpair_name(elem), intval);
6325			} else {
6326				ASSERT(0); /* not allowed */
6327			}
6328
6329			switch (prop) {
6330			case ZPOOL_PROP_DELEGATION:
6331				spa->spa_delegation = intval;
6332				break;
6333			case ZPOOL_PROP_BOOTFS:
6334				spa->spa_bootfs = intval;
6335				break;
6336			case ZPOOL_PROP_FAILUREMODE:
6337				spa->spa_failmode = intval;
6338				break;
6339			case ZPOOL_PROP_AUTOEXPAND:
6340				spa->spa_autoexpand = intval;
6341				if (tx->tx_txg != TXG_INITIAL)
6342					spa_async_request(spa,
6343					    SPA_ASYNC_AUTOEXPAND);
6344				break;
6345			case ZPOOL_PROP_DEDUPDITTO:
6346				spa->spa_dedup_ditto = intval;
6347				break;
6348			default:
6349				break;
6350			}
6351		}
6352
6353	}
6354
6355	mutex_exit(&spa->spa_props_lock);
6356}
6357
6358/*
6359 * Perform one-time upgrade on-disk changes.  spa_version() does not
6360 * reflect the new version this txg, so there must be no changes this
6361 * txg to anything that the upgrade code depends on after it executes.
6362 * Therefore this must be called after dsl_pool_sync() does the sync
6363 * tasks.
6364 */
6365static void
6366spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6367{
6368	dsl_pool_t *dp = spa->spa_dsl_pool;
6369
6370	ASSERT(spa->spa_sync_pass == 1);
6371
6372	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6373
6374	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6375	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6376		dsl_pool_create_origin(dp, tx);
6377
6378		/* Keeping the origin open increases spa_minref */
6379		spa->spa_minref += 3;
6380	}
6381
6382	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6383	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6384		dsl_pool_upgrade_clones(dp, tx);
6385	}
6386
6387	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6388	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6389		dsl_pool_upgrade_dir_clones(dp, tx);
6390
6391		/* Keeping the freedir open increases spa_minref */
6392		spa->spa_minref += 3;
6393	}
6394
6395	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6396	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6397		spa_feature_create_zap_objects(spa, tx);
6398	}
6399	rrw_exit(&dp->dp_config_rwlock, FTAG);
6400}
6401
6402/*
6403 * Sync the specified transaction group.  New blocks may be dirtied as
6404 * part of the process, so we iterate until it converges.
6405 */
6406void
6407spa_sync(spa_t *spa, uint64_t txg)
6408{
6409	dsl_pool_t *dp = spa->spa_dsl_pool;
6410	objset_t *mos = spa->spa_meta_objset;
6411	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6412	vdev_t *rvd = spa->spa_root_vdev;
6413	vdev_t *vd;
6414	dmu_tx_t *tx;
6415	int error;
6416
6417	VERIFY(spa_writeable(spa));
6418
6419	/*
6420	 * Lock out configuration changes.
6421	 */
6422	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6423
6424	spa->spa_syncing_txg = txg;
6425	spa->spa_sync_pass = 0;
6426
6427	/*
6428	 * If there are any pending vdev state changes, convert them
6429	 * into config changes that go out with this transaction group.
6430	 */
6431	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6432	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6433		/*
6434		 * We need the write lock here because, for aux vdevs,
6435		 * calling vdev_config_dirty() modifies sav_config.
6436		 * This is ugly and will become unnecessary when we
6437		 * eliminate the aux vdev wart by integrating all vdevs
6438		 * into the root vdev tree.
6439		 */
6440		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6441		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6442		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6443			vdev_state_clean(vd);
6444			vdev_config_dirty(vd);
6445		}
6446		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6447		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6448	}
6449	spa_config_exit(spa, SCL_STATE, FTAG);
6450
6451	tx = dmu_tx_create_assigned(dp, txg);
6452
6453	spa->spa_sync_starttime = gethrtime();
6454#ifdef illumos
6455	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6456	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6457#else	/* FreeBSD */
6458#ifdef _KERNEL
6459	callout_reset(&spa->spa_deadman_cycid,
6460	    hz * spa->spa_deadman_synctime / NANOSEC, spa_deadman, spa);
6461#endif
6462#endif
6463
6464	/*
6465	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6466	 * set spa_deflate if we have no raid-z vdevs.
6467	 */
6468	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6469	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6470		int i;
6471
6472		for (i = 0; i < rvd->vdev_children; i++) {
6473			vd = rvd->vdev_child[i];
6474			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6475				break;
6476		}
6477		if (i == rvd->vdev_children) {
6478			spa->spa_deflate = TRUE;
6479			VERIFY(0 == zap_add(spa->spa_meta_objset,
6480			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6481			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6482		}
6483	}
6484
6485	/*
6486	 * If anything has changed in this txg, or if someone is waiting
6487	 * for this txg to sync (eg, spa_vdev_remove()), push the
6488	 * deferred frees from the previous txg.  If not, leave them
6489	 * alone so that we don't generate work on an otherwise idle
6490	 * system.
6491	 */
6492	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6493	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6494	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6495	    ((dsl_scan_active(dp->dp_scan) ||
6496	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6497		spa_sync_deferred_frees(spa, tx);
6498	}
6499
6500	/*
6501	 * Iterate to convergence.
6502	 */
6503	do {
6504		int pass = ++spa->spa_sync_pass;
6505
6506		spa_sync_config_object(spa, tx);
6507		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6508		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6509		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6510		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6511		spa_errlog_sync(spa, txg);
6512		dsl_pool_sync(dp, txg);
6513
6514		if (pass < zfs_sync_pass_deferred_free) {
6515			spa_sync_frees(spa, free_bpl, tx);
6516		} else {
6517			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6518			    &spa->spa_deferred_bpobj, tx);
6519		}
6520
6521		ddt_sync(spa, txg);
6522		dsl_scan_sync(dp, tx);
6523
6524		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6525			vdev_sync(vd, txg);
6526
6527		if (pass == 1)
6528			spa_sync_upgrades(spa, tx);
6529
6530	} while (dmu_objset_is_dirty(mos, txg));
6531
6532	/*
6533	 * Rewrite the vdev configuration (which includes the uberblock)
6534	 * to commit the transaction group.
6535	 *
6536	 * If there are no dirty vdevs, we sync the uberblock to a few
6537	 * random top-level vdevs that are known to be visible in the
6538	 * config cache (see spa_vdev_add() for a complete description).
6539	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6540	 */
6541	for (;;) {
6542		/*
6543		 * We hold SCL_STATE to prevent vdev open/close/etc.
6544		 * while we're attempting to write the vdev labels.
6545		 */
6546		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6547
6548		if (list_is_empty(&spa->spa_config_dirty_list)) {
6549			vdev_t *svd[SPA_DVAS_PER_BP];
6550			int svdcount = 0;
6551			int children = rvd->vdev_children;
6552			int c0 = spa_get_random(children);
6553
6554			for (int c = 0; c < children; c++) {
6555				vd = rvd->vdev_child[(c0 + c) % children];
6556				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6557					continue;
6558				svd[svdcount++] = vd;
6559				if (svdcount == SPA_DVAS_PER_BP)
6560					break;
6561			}
6562			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6563			if (error != 0)
6564				error = vdev_config_sync(svd, svdcount, txg,
6565				    B_TRUE);
6566		} else {
6567			error = vdev_config_sync(rvd->vdev_child,
6568			    rvd->vdev_children, txg, B_FALSE);
6569			if (error != 0)
6570				error = vdev_config_sync(rvd->vdev_child,
6571				    rvd->vdev_children, txg, B_TRUE);
6572		}
6573
6574		if (error == 0)
6575			spa->spa_last_synced_guid = rvd->vdev_guid;
6576
6577		spa_config_exit(spa, SCL_STATE, FTAG);
6578
6579		if (error == 0)
6580			break;
6581		zio_suspend(spa, NULL);
6582		zio_resume_wait(spa);
6583	}
6584	dmu_tx_commit(tx);
6585
6586#ifdef illumos
6587	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6588#else	/* FreeBSD */
6589#ifdef _KERNEL
6590	callout_drain(&spa->spa_deadman_cycid);
6591#endif
6592#endif
6593
6594	/*
6595	 * Clear the dirty config list.
6596	 */
6597	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6598		vdev_config_clean(vd);
6599
6600	/*
6601	 * Now that the new config has synced transactionally,
6602	 * let it become visible to the config cache.
6603	 */
6604	if (spa->spa_config_syncing != NULL) {
6605		spa_config_set(spa, spa->spa_config_syncing);
6606		spa->spa_config_txg = txg;
6607		spa->spa_config_syncing = NULL;
6608	}
6609
6610	spa->spa_ubsync = spa->spa_uberblock;
6611
6612	dsl_pool_sync_done(dp, txg);
6613
6614	/*
6615	 * Update usable space statistics.
6616	 */
6617	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6618		vdev_sync_done(vd, txg);
6619
6620	spa_update_dspace(spa);
6621
6622	/*
6623	 * It had better be the case that we didn't dirty anything
6624	 * since vdev_config_sync().
6625	 */
6626	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6627	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6628	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6629
6630	spa->spa_sync_pass = 0;
6631
6632	spa_config_exit(spa, SCL_CONFIG, FTAG);
6633
6634	spa_handle_ignored_writes(spa);
6635
6636	/*
6637	 * If any async tasks have been requested, kick them off.
6638	 */
6639	spa_async_dispatch(spa);
6640	spa_async_dispatch_vd(spa);
6641}
6642
6643/*
6644 * Sync all pools.  We don't want to hold the namespace lock across these
6645 * operations, so we take a reference on the spa_t and drop the lock during the
6646 * sync.
6647 */
6648void
6649spa_sync_allpools(void)
6650{
6651	spa_t *spa = NULL;
6652	mutex_enter(&spa_namespace_lock);
6653	while ((spa = spa_next(spa)) != NULL) {
6654		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6655		    !spa_writeable(spa) || spa_suspended(spa))
6656			continue;
6657		spa_open_ref(spa, FTAG);
6658		mutex_exit(&spa_namespace_lock);
6659		txg_wait_synced(spa_get_dsl(spa), 0);
6660		mutex_enter(&spa_namespace_lock);
6661		spa_close(spa, FTAG);
6662	}
6663	mutex_exit(&spa_namespace_lock);
6664}
6665
6666/*
6667 * ==========================================================================
6668 * Miscellaneous routines
6669 * ==========================================================================
6670 */
6671
6672/*
6673 * Remove all pools in the system.
6674 */
6675void
6676spa_evict_all(void)
6677{
6678	spa_t *spa;
6679
6680	/*
6681	 * Remove all cached state.  All pools should be closed now,
6682	 * so every spa in the AVL tree should be unreferenced.
6683	 */
6684	mutex_enter(&spa_namespace_lock);
6685	while ((spa = spa_next(NULL)) != NULL) {
6686		/*
6687		 * Stop async tasks.  The async thread may need to detach
6688		 * a device that's been replaced, which requires grabbing
6689		 * spa_namespace_lock, so we must drop it here.
6690		 */
6691		spa_open_ref(spa, FTAG);
6692		mutex_exit(&spa_namespace_lock);
6693		spa_async_suspend(spa);
6694		mutex_enter(&spa_namespace_lock);
6695		spa_close(spa, FTAG);
6696
6697		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6698			spa_unload(spa);
6699			spa_deactivate(spa);
6700		}
6701		spa_remove(spa);
6702	}
6703	mutex_exit(&spa_namespace_lock);
6704}
6705
6706vdev_t *
6707spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6708{
6709	vdev_t *vd;
6710	int i;
6711
6712	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6713		return (vd);
6714
6715	if (aux) {
6716		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6717			vd = spa->spa_l2cache.sav_vdevs[i];
6718			if (vd->vdev_guid == guid)
6719				return (vd);
6720		}
6721
6722		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6723			vd = spa->spa_spares.sav_vdevs[i];
6724			if (vd->vdev_guid == guid)
6725				return (vd);
6726		}
6727	}
6728
6729	return (NULL);
6730}
6731
6732void
6733spa_upgrade(spa_t *spa, uint64_t version)
6734{
6735	ASSERT(spa_writeable(spa));
6736
6737	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6738
6739	/*
6740	 * This should only be called for a non-faulted pool, and since a
6741	 * future version would result in an unopenable pool, this shouldn't be
6742	 * possible.
6743	 */
6744	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6745	ASSERT(version >= spa->spa_uberblock.ub_version);
6746
6747	spa->spa_uberblock.ub_version = version;
6748	vdev_config_dirty(spa->spa_root_vdev);
6749
6750	spa_config_exit(spa, SCL_ALL, FTAG);
6751
6752	txg_wait_synced(spa_get_dsl(spa), 0);
6753}
6754
6755boolean_t
6756spa_has_spare(spa_t *spa, uint64_t guid)
6757{
6758	int i;
6759	uint64_t spareguid;
6760	spa_aux_vdev_t *sav = &spa->spa_spares;
6761
6762	for (i = 0; i < sav->sav_count; i++)
6763		if (sav->sav_vdevs[i]->vdev_guid == guid)
6764			return (B_TRUE);
6765
6766	for (i = 0; i < sav->sav_npending; i++) {
6767		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6768		    &spareguid) == 0 && spareguid == guid)
6769			return (B_TRUE);
6770	}
6771
6772	return (B_FALSE);
6773}
6774
6775/*
6776 * Check if a pool has an active shared spare device.
6777 * Note: reference count of an active spare is 2, as a spare and as a replace
6778 */
6779static boolean_t
6780spa_has_active_shared_spare(spa_t *spa)
6781{
6782	int i, refcnt;
6783	uint64_t pool;
6784	spa_aux_vdev_t *sav = &spa->spa_spares;
6785
6786	for (i = 0; i < sav->sav_count; i++) {
6787		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6788		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6789		    refcnt > 2)
6790			return (B_TRUE);
6791	}
6792
6793	return (B_FALSE);
6794}
6795
6796/*
6797 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6798 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6799 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6800 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6801 * or zdb as real changes.
6802 */
6803void
6804spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6805{
6806#ifdef _KERNEL
6807	sysevent_t		*ev;
6808	sysevent_attr_list_t	*attr = NULL;
6809	sysevent_value_t	value;
6810	sysevent_id_t		eid;
6811
6812	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6813	    SE_SLEEP);
6814
6815	value.value_type = SE_DATA_TYPE_STRING;
6816	value.value.sv_string = spa_name(spa);
6817	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6818		goto done;
6819
6820	value.value_type = SE_DATA_TYPE_UINT64;
6821	value.value.sv_uint64 = spa_guid(spa);
6822	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6823		goto done;
6824
6825	if (vd) {
6826		value.value_type = SE_DATA_TYPE_UINT64;
6827		value.value.sv_uint64 = vd->vdev_guid;
6828		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6829		    SE_SLEEP) != 0)
6830			goto done;
6831
6832		if (vd->vdev_path) {
6833			value.value_type = SE_DATA_TYPE_STRING;
6834			value.value.sv_string = vd->vdev_path;
6835			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6836			    &value, SE_SLEEP) != 0)
6837				goto done;
6838		}
6839	}
6840
6841	if (sysevent_attach_attributes(ev, attr) != 0)
6842		goto done;
6843	attr = NULL;
6844
6845	(void) log_sysevent(ev, SE_SLEEP, &eid);
6846
6847done:
6848	if (attr)
6849		sysevent_free_attr(attr);
6850	sysevent_free(ev);
6851#endif
6852}
6853