spa.c revision 241286
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22/*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */
26
27/*
28 * This file contains all the routines used when modifying on-disk SPA state.
29 * This includes opening, importing, destroying, exporting a pool, and syncing a
30 * pool.
31 */
32
33#include <sys/zfs_context.h>
34#include <sys/fm/fs/zfs.h>
35#include <sys/spa_impl.h>
36#include <sys/zio.h>
37#include <sys/zio_checksum.h>
38#include <sys/dmu.h>
39#include <sys/dmu_tx.h>
40#include <sys/zap.h>
41#include <sys/zil.h>
42#include <sys/ddt.h>
43#include <sys/vdev_impl.h>
44#include <sys/metaslab.h>
45#include <sys/metaslab_impl.h>
46#include <sys/uberblock_impl.h>
47#include <sys/txg.h>
48#include <sys/avl.h>
49#include <sys/dmu_traverse.h>
50#include <sys/dmu_objset.h>
51#include <sys/unique.h>
52#include <sys/dsl_pool.h>
53#include <sys/dsl_dataset.h>
54#include <sys/dsl_dir.h>
55#include <sys/dsl_prop.h>
56#include <sys/dsl_synctask.h>
57#include <sys/fs/zfs.h>
58#include <sys/arc.h>
59#include <sys/callb.h>
60#include <sys/spa_boot.h>
61#include <sys/zfs_ioctl.h>
62#include <sys/dsl_scan.h>
63#include <sys/zfeature.h>
64#include <sys/zvol.h>
65#include <sys/trim_map.h>
66
67#ifdef	_KERNEL
68#include <sys/callb.h>
69#include <sys/cpupart.h>
70#include <sys/zone.h>
71#endif	/* _KERNEL */
72
73#include "zfs_prop.h"
74#include "zfs_comutil.h"
75
76/* Check hostid on import? */
77static int check_hostid = 1;
78
79SYSCTL_DECL(_vfs_zfs);
80TUNABLE_INT("vfs.zfs.check_hostid", &check_hostid);
81SYSCTL_INT(_vfs_zfs, OID_AUTO, check_hostid, CTLFLAG_RW, &check_hostid, 0,
82    "Check hostid on import?");
83
84typedef enum zti_modes {
85	zti_mode_fixed,			/* value is # of threads (min 1) */
86	zti_mode_online_percent,	/* value is % of online CPUs */
87	zti_mode_batch,			/* cpu-intensive; value is ignored */
88	zti_mode_null,			/* don't create a taskq */
89	zti_nmodes
90} zti_modes_t;
91
92#define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
93#define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
94#define	ZTI_BATCH	{ zti_mode_batch, 0 }
95#define	ZTI_NULL	{ zti_mode_null, 0 }
96
97#define	ZTI_ONE		ZTI_FIX(1)
98
99typedef struct zio_taskq_info {
100	enum zti_modes zti_mode;
101	uint_t zti_value;
102} zio_taskq_info_t;
103
104static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
105	"issue", "issue_high", "intr", "intr_high"
106};
107
108/*
109 * Define the taskq threads for the following I/O types:
110 * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
111 */
112const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
113	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
114	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
115	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
116	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
117	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
118	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
119	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
120};
121
122static dsl_syncfunc_t spa_sync_version;
123static dsl_syncfunc_t spa_sync_props;
124static dsl_checkfunc_t spa_change_guid_check;
125static dsl_syncfunc_t spa_change_guid_sync;
126static boolean_t spa_has_active_shared_spare(spa_t *spa);
127static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
128    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
129    char **ereport);
130static void spa_vdev_resilver_done(spa_t *spa);
131
132uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
133#ifdef PSRSET_BIND
134id_t		zio_taskq_psrset_bind = PS_NONE;
135#endif
136#ifdef SYSDC
137boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
138#endif
139uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
140
141boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
142
143/*
144 * This (illegal) pool name is used when temporarily importing a spa_t in order
145 * to get the vdev stats associated with the imported devices.
146 */
147#define	TRYIMPORT_NAME	"$import"
148
149/*
150 * ==========================================================================
151 * SPA properties routines
152 * ==========================================================================
153 */
154
155/*
156 * Add a (source=src, propname=propval) list to an nvlist.
157 */
158static void
159spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
160    uint64_t intval, zprop_source_t src)
161{
162	const char *propname = zpool_prop_to_name(prop);
163	nvlist_t *propval;
164
165	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
166	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
167
168	if (strval != NULL)
169		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
170	else
171		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
172
173	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
174	nvlist_free(propval);
175}
176
177/*
178 * Get property values from the spa configuration.
179 */
180static void
181spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
182{
183	vdev_t *rvd = spa->spa_root_vdev;
184	dsl_pool_t *pool = spa->spa_dsl_pool;
185	uint64_t size;
186	uint64_t alloc;
187	uint64_t space;
188	uint64_t cap, version;
189	zprop_source_t src = ZPROP_SRC_NONE;
190	spa_config_dirent_t *dp;
191
192	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
193
194	if (rvd != NULL) {
195		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
196		size = metaslab_class_get_space(spa_normal_class(spa));
197		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
198		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
199		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
200		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
201		    size - alloc, src);
202
203		space = 0;
204		for (int c = 0; c < rvd->vdev_children; c++) {
205			vdev_t *tvd = rvd->vdev_child[c];
206			space += tvd->vdev_max_asize - tvd->vdev_asize;
207		}
208		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
209		    src);
210
211		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
212		    (spa_mode(spa) == FREAD), src);
213
214		cap = (size == 0) ? 0 : (alloc * 100 / size);
215		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
216
217		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
218		    ddt_get_pool_dedup_ratio(spa), src);
219
220		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
221		    rvd->vdev_state, src);
222
223		version = spa_version(spa);
224		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
225			src = ZPROP_SRC_DEFAULT;
226		else
227			src = ZPROP_SRC_LOCAL;
228		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
229	}
230
231	if (pool != NULL) {
232		dsl_dir_t *freedir = pool->dp_free_dir;
233
234		/*
235		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
236		 * when opening pools before this version freedir will be NULL.
237		 */
238		if (freedir != NULL) {
239			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
240			    freedir->dd_phys->dd_used_bytes, src);
241		} else {
242			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
243			    NULL, 0, src);
244		}
245	}
246
247	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
248
249	if (spa->spa_comment != NULL) {
250		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
251		    0, ZPROP_SRC_LOCAL);
252	}
253
254	if (spa->spa_root != NULL)
255		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
256		    0, ZPROP_SRC_LOCAL);
257
258	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
259		if (dp->scd_path == NULL) {
260			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
261			    "none", 0, ZPROP_SRC_LOCAL);
262		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
263			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
264			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
265		}
266	}
267}
268
269/*
270 * Get zpool property values.
271 */
272int
273spa_prop_get(spa_t *spa, nvlist_t **nvp)
274{
275	objset_t *mos = spa->spa_meta_objset;
276	zap_cursor_t zc;
277	zap_attribute_t za;
278	int err;
279
280	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
281
282	mutex_enter(&spa->spa_props_lock);
283
284	/*
285	 * Get properties from the spa config.
286	 */
287	spa_prop_get_config(spa, nvp);
288
289	/* If no pool property object, no more prop to get. */
290	if (mos == NULL || spa->spa_pool_props_object == 0) {
291		mutex_exit(&spa->spa_props_lock);
292		return (0);
293	}
294
295	/*
296	 * Get properties from the MOS pool property object.
297	 */
298	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
299	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
300	    zap_cursor_advance(&zc)) {
301		uint64_t intval = 0;
302		char *strval = NULL;
303		zprop_source_t src = ZPROP_SRC_DEFAULT;
304		zpool_prop_t prop;
305
306		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
307			continue;
308
309		switch (za.za_integer_length) {
310		case 8:
311			/* integer property */
312			if (za.za_first_integer !=
313			    zpool_prop_default_numeric(prop))
314				src = ZPROP_SRC_LOCAL;
315
316			if (prop == ZPOOL_PROP_BOOTFS) {
317				dsl_pool_t *dp;
318				dsl_dataset_t *ds = NULL;
319
320				dp = spa_get_dsl(spa);
321				rw_enter(&dp->dp_config_rwlock, RW_READER);
322				if (err = dsl_dataset_hold_obj(dp,
323				    za.za_first_integer, FTAG, &ds)) {
324					rw_exit(&dp->dp_config_rwlock);
325					break;
326				}
327
328				strval = kmem_alloc(
329				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
330				    KM_SLEEP);
331				dsl_dataset_name(ds, strval);
332				dsl_dataset_rele(ds, FTAG);
333				rw_exit(&dp->dp_config_rwlock);
334			} else {
335				strval = NULL;
336				intval = za.za_first_integer;
337			}
338
339			spa_prop_add_list(*nvp, prop, strval, intval, src);
340
341			if (strval != NULL)
342				kmem_free(strval,
343				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
344
345			break;
346
347		case 1:
348			/* string property */
349			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
350			err = zap_lookup(mos, spa->spa_pool_props_object,
351			    za.za_name, 1, za.za_num_integers, strval);
352			if (err) {
353				kmem_free(strval, za.za_num_integers);
354				break;
355			}
356			spa_prop_add_list(*nvp, prop, strval, 0, src);
357			kmem_free(strval, za.za_num_integers);
358			break;
359
360		default:
361			break;
362		}
363	}
364	zap_cursor_fini(&zc);
365	mutex_exit(&spa->spa_props_lock);
366out:
367	if (err && err != ENOENT) {
368		nvlist_free(*nvp);
369		*nvp = NULL;
370		return (err);
371	}
372
373	return (0);
374}
375
376/*
377 * Validate the given pool properties nvlist and modify the list
378 * for the property values to be set.
379 */
380static int
381spa_prop_validate(spa_t *spa, nvlist_t *props)
382{
383	nvpair_t *elem;
384	int error = 0, reset_bootfs = 0;
385	uint64_t objnum;
386	boolean_t has_feature = B_FALSE;
387
388	elem = NULL;
389	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
390		uint64_t intval;
391		char *strval, *slash, *check, *fname;
392		const char *propname = nvpair_name(elem);
393		zpool_prop_t prop = zpool_name_to_prop(propname);
394
395		switch (prop) {
396		case ZPROP_INVAL:
397			if (!zpool_prop_feature(propname)) {
398				error = EINVAL;
399				break;
400			}
401
402			/*
403			 * Sanitize the input.
404			 */
405			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
406				error = EINVAL;
407				break;
408			}
409
410			if (nvpair_value_uint64(elem, &intval) != 0) {
411				error = EINVAL;
412				break;
413			}
414
415			if (intval != 0) {
416				error = EINVAL;
417				break;
418			}
419
420			fname = strchr(propname, '@') + 1;
421			if (zfeature_lookup_name(fname, NULL) != 0) {
422				error = EINVAL;
423				break;
424			}
425
426			has_feature = B_TRUE;
427			break;
428
429		case ZPOOL_PROP_VERSION:
430			error = nvpair_value_uint64(elem, &intval);
431			if (!error &&
432			    (intval < spa_version(spa) ||
433			    intval > SPA_VERSION_BEFORE_FEATURES ||
434			    has_feature))
435				error = EINVAL;
436			break;
437
438		case ZPOOL_PROP_DELEGATION:
439		case ZPOOL_PROP_AUTOREPLACE:
440		case ZPOOL_PROP_LISTSNAPS:
441		case ZPOOL_PROP_AUTOEXPAND:
442			error = nvpair_value_uint64(elem, &intval);
443			if (!error && intval > 1)
444				error = EINVAL;
445			break;
446
447		case ZPOOL_PROP_BOOTFS:
448			/*
449			 * If the pool version is less than SPA_VERSION_BOOTFS,
450			 * or the pool is still being created (version == 0),
451			 * the bootfs property cannot be set.
452			 */
453			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
454				error = ENOTSUP;
455				break;
456			}
457
458			/*
459			 * Make sure the vdev config is bootable
460			 */
461			if (!vdev_is_bootable(spa->spa_root_vdev)) {
462				error = ENOTSUP;
463				break;
464			}
465
466			reset_bootfs = 1;
467
468			error = nvpair_value_string(elem, &strval);
469
470			if (!error) {
471				objset_t *os;
472				uint64_t compress;
473
474				if (strval == NULL || strval[0] == '\0') {
475					objnum = zpool_prop_default_numeric(
476					    ZPOOL_PROP_BOOTFS);
477					break;
478				}
479
480				if (error = dmu_objset_hold(strval, FTAG, &os))
481					break;
482
483				/* Must be ZPL and not gzip compressed. */
484
485				if (dmu_objset_type(os) != DMU_OST_ZFS) {
486					error = ENOTSUP;
487				} else if ((error = dsl_prop_get_integer(strval,
488				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
489				    &compress, NULL)) == 0 &&
490				    !BOOTFS_COMPRESS_VALID(compress)) {
491					error = ENOTSUP;
492				} else {
493					objnum = dmu_objset_id(os);
494				}
495				dmu_objset_rele(os, FTAG);
496			}
497			break;
498
499		case ZPOOL_PROP_FAILUREMODE:
500			error = nvpair_value_uint64(elem, &intval);
501			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
502			    intval > ZIO_FAILURE_MODE_PANIC))
503				error = EINVAL;
504
505			/*
506			 * This is a special case which only occurs when
507			 * the pool has completely failed. This allows
508			 * the user to change the in-core failmode property
509			 * without syncing it out to disk (I/Os might
510			 * currently be blocked). We do this by returning
511			 * EIO to the caller (spa_prop_set) to trick it
512			 * into thinking we encountered a property validation
513			 * error.
514			 */
515			if (!error && spa_suspended(spa)) {
516				spa->spa_failmode = intval;
517				error = EIO;
518			}
519			break;
520
521		case ZPOOL_PROP_CACHEFILE:
522			if ((error = nvpair_value_string(elem, &strval)) != 0)
523				break;
524
525			if (strval[0] == '\0')
526				break;
527
528			if (strcmp(strval, "none") == 0)
529				break;
530
531			if (strval[0] != '/') {
532				error = EINVAL;
533				break;
534			}
535
536			slash = strrchr(strval, '/');
537			ASSERT(slash != NULL);
538
539			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
540			    strcmp(slash, "/..") == 0)
541				error = EINVAL;
542			break;
543
544		case ZPOOL_PROP_COMMENT:
545			if ((error = nvpair_value_string(elem, &strval)) != 0)
546				break;
547			for (check = strval; *check != '\0'; check++) {
548				/*
549				 * The kernel doesn't have an easy isprint()
550				 * check.  For this kernel check, we merely
551				 * check ASCII apart from DEL.  Fix this if
552				 * there is an easy-to-use kernel isprint().
553				 */
554				if (*check >= 0x7f) {
555					error = EINVAL;
556					break;
557				}
558				check++;
559			}
560			if (strlen(strval) > ZPROP_MAX_COMMENT)
561				error = E2BIG;
562			break;
563
564		case ZPOOL_PROP_DEDUPDITTO:
565			if (spa_version(spa) < SPA_VERSION_DEDUP)
566				error = ENOTSUP;
567			else
568				error = nvpair_value_uint64(elem, &intval);
569			if (error == 0 &&
570			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
571				error = EINVAL;
572			break;
573		}
574
575		if (error)
576			break;
577	}
578
579	if (!error && reset_bootfs) {
580		error = nvlist_remove(props,
581		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
582
583		if (!error) {
584			error = nvlist_add_uint64(props,
585			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
586		}
587	}
588
589	return (error);
590}
591
592void
593spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
594{
595	char *cachefile;
596	spa_config_dirent_t *dp;
597
598	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
599	    &cachefile) != 0)
600		return;
601
602	dp = kmem_alloc(sizeof (spa_config_dirent_t),
603	    KM_SLEEP);
604
605	if (cachefile[0] == '\0')
606		dp->scd_path = spa_strdup(spa_config_path);
607	else if (strcmp(cachefile, "none") == 0)
608		dp->scd_path = NULL;
609	else
610		dp->scd_path = spa_strdup(cachefile);
611
612	list_insert_head(&spa->spa_config_list, dp);
613	if (need_sync)
614		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
615}
616
617int
618spa_prop_set(spa_t *spa, nvlist_t *nvp)
619{
620	int error;
621	nvpair_t *elem = NULL;
622	boolean_t need_sync = B_FALSE;
623
624	if ((error = spa_prop_validate(spa, nvp)) != 0)
625		return (error);
626
627	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
628		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
629
630		if (prop == ZPOOL_PROP_CACHEFILE ||
631		    prop == ZPOOL_PROP_ALTROOT ||
632		    prop == ZPOOL_PROP_READONLY)
633			continue;
634
635		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
636			uint64_t ver;
637
638			if (prop == ZPOOL_PROP_VERSION) {
639				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
640			} else {
641				ASSERT(zpool_prop_feature(nvpair_name(elem)));
642				ver = SPA_VERSION_FEATURES;
643				need_sync = B_TRUE;
644			}
645
646			/* Save time if the version is already set. */
647			if (ver == spa_version(spa))
648				continue;
649
650			/*
651			 * In addition to the pool directory object, we might
652			 * create the pool properties object, the features for
653			 * read object, the features for write object, or the
654			 * feature descriptions object.
655			 */
656			error = dsl_sync_task_do(spa_get_dsl(spa), NULL,
657			    spa_sync_version, spa, &ver, 6);
658			if (error)
659				return (error);
660			continue;
661		}
662
663		need_sync = B_TRUE;
664		break;
665	}
666
667	if (need_sync) {
668		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
669		    spa, nvp, 6));
670	}
671
672	return (0);
673}
674
675/*
676 * If the bootfs property value is dsobj, clear it.
677 */
678void
679spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
680{
681	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
682		VERIFY(zap_remove(spa->spa_meta_objset,
683		    spa->spa_pool_props_object,
684		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
685		spa->spa_bootfs = 0;
686	}
687}
688
689/*ARGSUSED*/
690static int
691spa_change_guid_check(void *arg1, void *arg2, dmu_tx_t *tx)
692{
693	spa_t *spa = arg1;
694	uint64_t *newguid = arg2;
695	vdev_t *rvd = spa->spa_root_vdev;
696	uint64_t vdev_state;
697
698	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
699	vdev_state = rvd->vdev_state;
700	spa_config_exit(spa, SCL_STATE, FTAG);
701
702	if (vdev_state != VDEV_STATE_HEALTHY)
703		return (ENXIO);
704
705	ASSERT3U(spa_guid(spa), !=, *newguid);
706
707	return (0);
708}
709
710static void
711spa_change_guid_sync(void *arg1, void *arg2, dmu_tx_t *tx)
712{
713	spa_t *spa = arg1;
714	uint64_t *newguid = arg2;
715	uint64_t oldguid;
716	vdev_t *rvd = spa->spa_root_vdev;
717
718	oldguid = spa_guid(spa);
719
720	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
721	rvd->vdev_guid = *newguid;
722	rvd->vdev_guid_sum += (*newguid - oldguid);
723	vdev_config_dirty(rvd);
724	spa_config_exit(spa, SCL_STATE, FTAG);
725
726#ifdef __FreeBSD__
727	/*
728	 * TODO: until recent illumos logging changes are merged
729	 *       log reguid as pool property change
730	 */
731	spa_history_log_internal(LOG_POOL_PROPSET, spa, tx,
732	    "guid change old=%llu new=%llu", oldguid, *newguid);
733#else
734	spa_history_log_internal(spa, "guid change", tx, "old=%lld new=%lld",
735	    oldguid, *newguid);
736#endif
737}
738
739/*
740 * Change the GUID for the pool.  This is done so that we can later
741 * re-import a pool built from a clone of our own vdevs.  We will modify
742 * the root vdev's guid, our own pool guid, and then mark all of our
743 * vdevs dirty.  Note that we must make sure that all our vdevs are
744 * online when we do this, or else any vdevs that weren't present
745 * would be orphaned from our pool.  We are also going to issue a
746 * sysevent to update any watchers.
747 */
748int
749spa_change_guid(spa_t *spa)
750{
751	int error;
752	uint64_t guid;
753
754	mutex_enter(&spa_namespace_lock);
755	guid = spa_generate_guid(NULL);
756
757	error = dsl_sync_task_do(spa_get_dsl(spa), spa_change_guid_check,
758	    spa_change_guid_sync, spa, &guid, 5);
759
760	if (error == 0) {
761		spa_config_sync(spa, B_FALSE, B_TRUE);
762		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
763	}
764
765	mutex_exit(&spa_namespace_lock);
766
767	return (error);
768}
769
770/*
771 * ==========================================================================
772 * SPA state manipulation (open/create/destroy/import/export)
773 * ==========================================================================
774 */
775
776static int
777spa_error_entry_compare(const void *a, const void *b)
778{
779	spa_error_entry_t *sa = (spa_error_entry_t *)a;
780	spa_error_entry_t *sb = (spa_error_entry_t *)b;
781	int ret;
782
783	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
784	    sizeof (zbookmark_t));
785
786	if (ret < 0)
787		return (-1);
788	else if (ret > 0)
789		return (1);
790	else
791		return (0);
792}
793
794/*
795 * Utility function which retrieves copies of the current logs and
796 * re-initializes them in the process.
797 */
798void
799spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
800{
801	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
802
803	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
804	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
805
806	avl_create(&spa->spa_errlist_scrub,
807	    spa_error_entry_compare, sizeof (spa_error_entry_t),
808	    offsetof(spa_error_entry_t, se_avl));
809	avl_create(&spa->spa_errlist_last,
810	    spa_error_entry_compare, sizeof (spa_error_entry_t),
811	    offsetof(spa_error_entry_t, se_avl));
812}
813
814static taskq_t *
815spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
816    uint_t value)
817{
818	uint_t flags = TASKQ_PREPOPULATE;
819	boolean_t batch = B_FALSE;
820
821	switch (mode) {
822	case zti_mode_null:
823		return (NULL);		/* no taskq needed */
824
825	case zti_mode_fixed:
826		ASSERT3U(value, >=, 1);
827		value = MAX(value, 1);
828		break;
829
830	case zti_mode_batch:
831		batch = B_TRUE;
832		flags |= TASKQ_THREADS_CPU_PCT;
833		value = zio_taskq_batch_pct;
834		break;
835
836	case zti_mode_online_percent:
837		flags |= TASKQ_THREADS_CPU_PCT;
838		break;
839
840	default:
841		panic("unrecognized mode for %s taskq (%u:%u) in "
842		    "spa_activate()",
843		    name, mode, value);
844		break;
845	}
846
847#ifdef SYSDC
848	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
849		if (batch)
850			flags |= TASKQ_DC_BATCH;
851
852		return (taskq_create_sysdc(name, value, 50, INT_MAX,
853		    spa->spa_proc, zio_taskq_basedc, flags));
854	}
855#endif
856	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
857	    spa->spa_proc, flags));
858}
859
860static void
861spa_create_zio_taskqs(spa_t *spa)
862{
863	for (int t = 0; t < ZIO_TYPES; t++) {
864		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
865			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
866			enum zti_modes mode = ztip->zti_mode;
867			uint_t value = ztip->zti_value;
868			char name[32];
869
870			(void) snprintf(name, sizeof (name),
871			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
872
873			spa->spa_zio_taskq[t][q] =
874			    spa_taskq_create(spa, name, mode, value);
875		}
876	}
877}
878
879#ifdef _KERNEL
880#ifdef SPA_PROCESS
881static void
882spa_thread(void *arg)
883{
884	callb_cpr_t cprinfo;
885
886	spa_t *spa = arg;
887	user_t *pu = PTOU(curproc);
888
889	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
890	    spa->spa_name);
891
892	ASSERT(curproc != &p0);
893	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
894	    "zpool-%s", spa->spa_name);
895	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
896
897#ifdef PSRSET_BIND
898	/* bind this thread to the requested psrset */
899	if (zio_taskq_psrset_bind != PS_NONE) {
900		pool_lock();
901		mutex_enter(&cpu_lock);
902		mutex_enter(&pidlock);
903		mutex_enter(&curproc->p_lock);
904
905		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
906		    0, NULL, NULL) == 0)  {
907			curthread->t_bind_pset = zio_taskq_psrset_bind;
908		} else {
909			cmn_err(CE_WARN,
910			    "Couldn't bind process for zfs pool \"%s\" to "
911			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
912		}
913
914		mutex_exit(&curproc->p_lock);
915		mutex_exit(&pidlock);
916		mutex_exit(&cpu_lock);
917		pool_unlock();
918	}
919#endif
920
921#ifdef SYSDC
922	if (zio_taskq_sysdc) {
923		sysdc_thread_enter(curthread, 100, 0);
924	}
925#endif
926
927	spa->spa_proc = curproc;
928	spa->spa_did = curthread->t_did;
929
930	spa_create_zio_taskqs(spa);
931
932	mutex_enter(&spa->spa_proc_lock);
933	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
934
935	spa->spa_proc_state = SPA_PROC_ACTIVE;
936	cv_broadcast(&spa->spa_proc_cv);
937
938	CALLB_CPR_SAFE_BEGIN(&cprinfo);
939	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
940		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
941	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
942
943	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
944	spa->spa_proc_state = SPA_PROC_GONE;
945	spa->spa_proc = &p0;
946	cv_broadcast(&spa->spa_proc_cv);
947	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
948
949	mutex_enter(&curproc->p_lock);
950	lwp_exit();
951}
952#endif	/* SPA_PROCESS */
953#endif
954
955/*
956 * Activate an uninitialized pool.
957 */
958static void
959spa_activate(spa_t *spa, int mode)
960{
961	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
962
963	spa->spa_state = POOL_STATE_ACTIVE;
964	spa->spa_mode = mode;
965
966	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
967	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
968
969	/* Try to create a covering process */
970	mutex_enter(&spa->spa_proc_lock);
971	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
972	ASSERT(spa->spa_proc == &p0);
973	spa->spa_did = 0;
974
975#ifdef SPA_PROCESS
976	/* Only create a process if we're going to be around a while. */
977	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
978		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
979		    NULL, 0) == 0) {
980			spa->spa_proc_state = SPA_PROC_CREATED;
981			while (spa->spa_proc_state == SPA_PROC_CREATED) {
982				cv_wait(&spa->spa_proc_cv,
983				    &spa->spa_proc_lock);
984			}
985			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
986			ASSERT(spa->spa_proc != &p0);
987			ASSERT(spa->spa_did != 0);
988		} else {
989#ifdef _KERNEL
990			cmn_err(CE_WARN,
991			    "Couldn't create process for zfs pool \"%s\"\n",
992			    spa->spa_name);
993#endif
994		}
995	}
996#endif	/* SPA_PROCESS */
997	mutex_exit(&spa->spa_proc_lock);
998
999	/* If we didn't create a process, we need to create our taskqs. */
1000	ASSERT(spa->spa_proc == &p0);
1001	if (spa->spa_proc == &p0) {
1002		spa_create_zio_taskqs(spa);
1003	}
1004
1005	/*
1006	 * Start TRIM thread.
1007	 */
1008	trim_thread_create(spa);
1009
1010	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1011	    offsetof(vdev_t, vdev_config_dirty_node));
1012	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1013	    offsetof(vdev_t, vdev_state_dirty_node));
1014
1015	txg_list_create(&spa->spa_vdev_txg_list,
1016	    offsetof(struct vdev, vdev_txg_node));
1017
1018	avl_create(&spa->spa_errlist_scrub,
1019	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1020	    offsetof(spa_error_entry_t, se_avl));
1021	avl_create(&spa->spa_errlist_last,
1022	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1023	    offsetof(spa_error_entry_t, se_avl));
1024}
1025
1026/*
1027 * Opposite of spa_activate().
1028 */
1029static void
1030spa_deactivate(spa_t *spa)
1031{
1032	ASSERT(spa->spa_sync_on == B_FALSE);
1033	ASSERT(spa->spa_dsl_pool == NULL);
1034	ASSERT(spa->spa_root_vdev == NULL);
1035	ASSERT(spa->spa_async_zio_root == NULL);
1036	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1037
1038	/*
1039	 * Stop TRIM thread in case spa_unload() wasn't called directly
1040	 * before spa_deactivate().
1041	 */
1042	trim_thread_destroy(spa);
1043
1044	txg_list_destroy(&spa->spa_vdev_txg_list);
1045
1046	list_destroy(&spa->spa_config_dirty_list);
1047	list_destroy(&spa->spa_state_dirty_list);
1048
1049	for (int t = 0; t < ZIO_TYPES; t++) {
1050		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1051			if (spa->spa_zio_taskq[t][q] != NULL)
1052				taskq_destroy(spa->spa_zio_taskq[t][q]);
1053			spa->spa_zio_taskq[t][q] = NULL;
1054		}
1055	}
1056
1057	metaslab_class_destroy(spa->spa_normal_class);
1058	spa->spa_normal_class = NULL;
1059
1060	metaslab_class_destroy(spa->spa_log_class);
1061	spa->spa_log_class = NULL;
1062
1063	/*
1064	 * If this was part of an import or the open otherwise failed, we may
1065	 * still have errors left in the queues.  Empty them just in case.
1066	 */
1067	spa_errlog_drain(spa);
1068
1069	avl_destroy(&spa->spa_errlist_scrub);
1070	avl_destroy(&spa->spa_errlist_last);
1071
1072	spa->spa_state = POOL_STATE_UNINITIALIZED;
1073
1074	mutex_enter(&spa->spa_proc_lock);
1075	if (spa->spa_proc_state != SPA_PROC_NONE) {
1076		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1077		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1078		cv_broadcast(&spa->spa_proc_cv);
1079		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1080			ASSERT(spa->spa_proc != &p0);
1081			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1082		}
1083		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1084		spa->spa_proc_state = SPA_PROC_NONE;
1085	}
1086	ASSERT(spa->spa_proc == &p0);
1087	mutex_exit(&spa->spa_proc_lock);
1088
1089#ifdef SPA_PROCESS
1090	/*
1091	 * We want to make sure spa_thread() has actually exited the ZFS
1092	 * module, so that the module can't be unloaded out from underneath
1093	 * it.
1094	 */
1095	if (spa->spa_did != 0) {
1096		thread_join(spa->spa_did);
1097		spa->spa_did = 0;
1098	}
1099#endif	/* SPA_PROCESS */
1100}
1101
1102/*
1103 * Verify a pool configuration, and construct the vdev tree appropriately.  This
1104 * will create all the necessary vdevs in the appropriate layout, with each vdev
1105 * in the CLOSED state.  This will prep the pool before open/creation/import.
1106 * All vdev validation is done by the vdev_alloc() routine.
1107 */
1108static int
1109spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1110    uint_t id, int atype)
1111{
1112	nvlist_t **child;
1113	uint_t children;
1114	int error;
1115
1116	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1117		return (error);
1118
1119	if ((*vdp)->vdev_ops->vdev_op_leaf)
1120		return (0);
1121
1122	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1123	    &child, &children);
1124
1125	if (error == ENOENT)
1126		return (0);
1127
1128	if (error) {
1129		vdev_free(*vdp);
1130		*vdp = NULL;
1131		return (EINVAL);
1132	}
1133
1134	for (int c = 0; c < children; c++) {
1135		vdev_t *vd;
1136		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1137		    atype)) != 0) {
1138			vdev_free(*vdp);
1139			*vdp = NULL;
1140			return (error);
1141		}
1142	}
1143
1144	ASSERT(*vdp != NULL);
1145
1146	return (0);
1147}
1148
1149/*
1150 * Opposite of spa_load().
1151 */
1152static void
1153spa_unload(spa_t *spa)
1154{
1155	int i;
1156
1157	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1158
1159	/*
1160	 * Stop TRIM thread.
1161	 */
1162	trim_thread_destroy(spa);
1163
1164	/*
1165	 * Stop async tasks.
1166	 */
1167	spa_async_suspend(spa);
1168
1169	/*
1170	 * Stop syncing.
1171	 */
1172	if (spa->spa_sync_on) {
1173		txg_sync_stop(spa->spa_dsl_pool);
1174		spa->spa_sync_on = B_FALSE;
1175	}
1176
1177	/*
1178	 * Wait for any outstanding async I/O to complete.
1179	 */
1180	if (spa->spa_async_zio_root != NULL) {
1181		(void) zio_wait(spa->spa_async_zio_root);
1182		spa->spa_async_zio_root = NULL;
1183	}
1184
1185	bpobj_close(&spa->spa_deferred_bpobj);
1186
1187	/*
1188	 * Close the dsl pool.
1189	 */
1190	if (spa->spa_dsl_pool) {
1191		dsl_pool_close(spa->spa_dsl_pool);
1192		spa->spa_dsl_pool = NULL;
1193		spa->spa_meta_objset = NULL;
1194	}
1195
1196	ddt_unload(spa);
1197
1198	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1199
1200	/*
1201	 * Drop and purge level 2 cache
1202	 */
1203	spa_l2cache_drop(spa);
1204
1205	/*
1206	 * Close all vdevs.
1207	 */
1208	if (spa->spa_root_vdev)
1209		vdev_free(spa->spa_root_vdev);
1210	ASSERT(spa->spa_root_vdev == NULL);
1211
1212	for (i = 0; i < spa->spa_spares.sav_count; i++)
1213		vdev_free(spa->spa_spares.sav_vdevs[i]);
1214	if (spa->spa_spares.sav_vdevs) {
1215		kmem_free(spa->spa_spares.sav_vdevs,
1216		    spa->spa_spares.sav_count * sizeof (void *));
1217		spa->spa_spares.sav_vdevs = NULL;
1218	}
1219	if (spa->spa_spares.sav_config) {
1220		nvlist_free(spa->spa_spares.sav_config);
1221		spa->spa_spares.sav_config = NULL;
1222	}
1223	spa->spa_spares.sav_count = 0;
1224
1225	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1226		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1227		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1228	}
1229	if (spa->spa_l2cache.sav_vdevs) {
1230		kmem_free(spa->spa_l2cache.sav_vdevs,
1231		    spa->spa_l2cache.sav_count * sizeof (void *));
1232		spa->spa_l2cache.sav_vdevs = NULL;
1233	}
1234	if (spa->spa_l2cache.sav_config) {
1235		nvlist_free(spa->spa_l2cache.sav_config);
1236		spa->spa_l2cache.sav_config = NULL;
1237	}
1238	spa->spa_l2cache.sav_count = 0;
1239
1240	spa->spa_async_suspended = 0;
1241
1242	if (spa->spa_comment != NULL) {
1243		spa_strfree(spa->spa_comment);
1244		spa->spa_comment = NULL;
1245	}
1246
1247	spa_config_exit(spa, SCL_ALL, FTAG);
1248}
1249
1250/*
1251 * Load (or re-load) the current list of vdevs describing the active spares for
1252 * this pool.  When this is called, we have some form of basic information in
1253 * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1254 * then re-generate a more complete list including status information.
1255 */
1256static void
1257spa_load_spares(spa_t *spa)
1258{
1259	nvlist_t **spares;
1260	uint_t nspares;
1261	int i;
1262	vdev_t *vd, *tvd;
1263
1264	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1265
1266	/*
1267	 * First, close and free any existing spare vdevs.
1268	 */
1269	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1270		vd = spa->spa_spares.sav_vdevs[i];
1271
1272		/* Undo the call to spa_activate() below */
1273		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1274		    B_FALSE)) != NULL && tvd->vdev_isspare)
1275			spa_spare_remove(tvd);
1276		vdev_close(vd);
1277		vdev_free(vd);
1278	}
1279
1280	if (spa->spa_spares.sav_vdevs)
1281		kmem_free(spa->spa_spares.sav_vdevs,
1282		    spa->spa_spares.sav_count * sizeof (void *));
1283
1284	if (spa->spa_spares.sav_config == NULL)
1285		nspares = 0;
1286	else
1287		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1288		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1289
1290	spa->spa_spares.sav_count = (int)nspares;
1291	spa->spa_spares.sav_vdevs = NULL;
1292
1293	if (nspares == 0)
1294		return;
1295
1296	/*
1297	 * Construct the array of vdevs, opening them to get status in the
1298	 * process.   For each spare, there is potentially two different vdev_t
1299	 * structures associated with it: one in the list of spares (used only
1300	 * for basic validation purposes) and one in the active vdev
1301	 * configuration (if it's spared in).  During this phase we open and
1302	 * validate each vdev on the spare list.  If the vdev also exists in the
1303	 * active configuration, then we also mark this vdev as an active spare.
1304	 */
1305	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1306	    KM_SLEEP);
1307	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1308		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1309		    VDEV_ALLOC_SPARE) == 0);
1310		ASSERT(vd != NULL);
1311
1312		spa->spa_spares.sav_vdevs[i] = vd;
1313
1314		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1315		    B_FALSE)) != NULL) {
1316			if (!tvd->vdev_isspare)
1317				spa_spare_add(tvd);
1318
1319			/*
1320			 * We only mark the spare active if we were successfully
1321			 * able to load the vdev.  Otherwise, importing a pool
1322			 * with a bad active spare would result in strange
1323			 * behavior, because multiple pool would think the spare
1324			 * is actively in use.
1325			 *
1326			 * There is a vulnerability here to an equally bizarre
1327			 * circumstance, where a dead active spare is later
1328			 * brought back to life (onlined or otherwise).  Given
1329			 * the rarity of this scenario, and the extra complexity
1330			 * it adds, we ignore the possibility.
1331			 */
1332			if (!vdev_is_dead(tvd))
1333				spa_spare_activate(tvd);
1334		}
1335
1336		vd->vdev_top = vd;
1337		vd->vdev_aux = &spa->spa_spares;
1338
1339		if (vdev_open(vd) != 0)
1340			continue;
1341
1342		if (vdev_validate_aux(vd) == 0)
1343			spa_spare_add(vd);
1344	}
1345
1346	/*
1347	 * Recompute the stashed list of spares, with status information
1348	 * this time.
1349	 */
1350	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1351	    DATA_TYPE_NVLIST_ARRAY) == 0);
1352
1353	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1354	    KM_SLEEP);
1355	for (i = 0; i < spa->spa_spares.sav_count; i++)
1356		spares[i] = vdev_config_generate(spa,
1357		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1358	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1359	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1360	for (i = 0; i < spa->spa_spares.sav_count; i++)
1361		nvlist_free(spares[i]);
1362	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1363}
1364
1365/*
1366 * Load (or re-load) the current list of vdevs describing the active l2cache for
1367 * this pool.  When this is called, we have some form of basic information in
1368 * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1369 * then re-generate a more complete list including status information.
1370 * Devices which are already active have their details maintained, and are
1371 * not re-opened.
1372 */
1373static void
1374spa_load_l2cache(spa_t *spa)
1375{
1376	nvlist_t **l2cache;
1377	uint_t nl2cache;
1378	int i, j, oldnvdevs;
1379	uint64_t guid;
1380	vdev_t *vd, **oldvdevs, **newvdevs;
1381	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1382
1383	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1384
1385	if (sav->sav_config != NULL) {
1386		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1387		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1388		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1389	} else {
1390		nl2cache = 0;
1391	}
1392
1393	oldvdevs = sav->sav_vdevs;
1394	oldnvdevs = sav->sav_count;
1395	sav->sav_vdevs = NULL;
1396	sav->sav_count = 0;
1397
1398	/*
1399	 * Process new nvlist of vdevs.
1400	 */
1401	for (i = 0; i < nl2cache; i++) {
1402		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1403		    &guid) == 0);
1404
1405		newvdevs[i] = NULL;
1406		for (j = 0; j < oldnvdevs; j++) {
1407			vd = oldvdevs[j];
1408			if (vd != NULL && guid == vd->vdev_guid) {
1409				/*
1410				 * Retain previous vdev for add/remove ops.
1411				 */
1412				newvdevs[i] = vd;
1413				oldvdevs[j] = NULL;
1414				break;
1415			}
1416		}
1417
1418		if (newvdevs[i] == NULL) {
1419			/*
1420			 * Create new vdev
1421			 */
1422			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1423			    VDEV_ALLOC_L2CACHE) == 0);
1424			ASSERT(vd != NULL);
1425			newvdevs[i] = vd;
1426
1427			/*
1428			 * Commit this vdev as an l2cache device,
1429			 * even if it fails to open.
1430			 */
1431			spa_l2cache_add(vd);
1432
1433			vd->vdev_top = vd;
1434			vd->vdev_aux = sav;
1435
1436			spa_l2cache_activate(vd);
1437
1438			if (vdev_open(vd) != 0)
1439				continue;
1440
1441			(void) vdev_validate_aux(vd);
1442
1443			if (!vdev_is_dead(vd))
1444				l2arc_add_vdev(spa, vd);
1445		}
1446	}
1447
1448	/*
1449	 * Purge vdevs that were dropped
1450	 */
1451	for (i = 0; i < oldnvdevs; i++) {
1452		uint64_t pool;
1453
1454		vd = oldvdevs[i];
1455		if (vd != NULL) {
1456			ASSERT(vd->vdev_isl2cache);
1457
1458			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1459			    pool != 0ULL && l2arc_vdev_present(vd))
1460				l2arc_remove_vdev(vd);
1461			vdev_clear_stats(vd);
1462			vdev_free(vd);
1463		}
1464	}
1465
1466	if (oldvdevs)
1467		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1468
1469	if (sav->sav_config == NULL)
1470		goto out;
1471
1472	sav->sav_vdevs = newvdevs;
1473	sav->sav_count = (int)nl2cache;
1474
1475	/*
1476	 * Recompute the stashed list of l2cache devices, with status
1477	 * information this time.
1478	 */
1479	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1480	    DATA_TYPE_NVLIST_ARRAY) == 0);
1481
1482	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1483	for (i = 0; i < sav->sav_count; i++)
1484		l2cache[i] = vdev_config_generate(spa,
1485		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1486	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1487	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1488out:
1489	for (i = 0; i < sav->sav_count; i++)
1490		nvlist_free(l2cache[i]);
1491	if (sav->sav_count)
1492		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1493}
1494
1495static int
1496load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1497{
1498	dmu_buf_t *db;
1499	char *packed = NULL;
1500	size_t nvsize = 0;
1501	int error;
1502	*value = NULL;
1503
1504	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1505	nvsize = *(uint64_t *)db->db_data;
1506	dmu_buf_rele(db, FTAG);
1507
1508	packed = kmem_alloc(nvsize, KM_SLEEP);
1509	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1510	    DMU_READ_PREFETCH);
1511	if (error == 0)
1512		error = nvlist_unpack(packed, nvsize, value, 0);
1513	kmem_free(packed, nvsize);
1514
1515	return (error);
1516}
1517
1518/*
1519 * Checks to see if the given vdev could not be opened, in which case we post a
1520 * sysevent to notify the autoreplace code that the device has been removed.
1521 */
1522static void
1523spa_check_removed(vdev_t *vd)
1524{
1525	for (int c = 0; c < vd->vdev_children; c++)
1526		spa_check_removed(vd->vdev_child[c]);
1527
1528	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1529		zfs_post_autoreplace(vd->vdev_spa, vd);
1530		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1531	}
1532}
1533
1534/*
1535 * Validate the current config against the MOS config
1536 */
1537static boolean_t
1538spa_config_valid(spa_t *spa, nvlist_t *config)
1539{
1540	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1541	nvlist_t *nv;
1542
1543	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1544
1545	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1546	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1547
1548	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1549
1550	/*
1551	 * If we're doing a normal import, then build up any additional
1552	 * diagnostic information about missing devices in this config.
1553	 * We'll pass this up to the user for further processing.
1554	 */
1555	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1556		nvlist_t **child, *nv;
1557		uint64_t idx = 0;
1558
1559		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1560		    KM_SLEEP);
1561		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1562
1563		for (int c = 0; c < rvd->vdev_children; c++) {
1564			vdev_t *tvd = rvd->vdev_child[c];
1565			vdev_t *mtvd  = mrvd->vdev_child[c];
1566
1567			if (tvd->vdev_ops == &vdev_missing_ops &&
1568			    mtvd->vdev_ops != &vdev_missing_ops &&
1569			    mtvd->vdev_islog)
1570				child[idx++] = vdev_config_generate(spa, mtvd,
1571				    B_FALSE, 0);
1572		}
1573
1574		if (idx) {
1575			VERIFY(nvlist_add_nvlist_array(nv,
1576			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1577			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1578			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1579
1580			for (int i = 0; i < idx; i++)
1581				nvlist_free(child[i]);
1582		}
1583		nvlist_free(nv);
1584		kmem_free(child, rvd->vdev_children * sizeof (char **));
1585	}
1586
1587	/*
1588	 * Compare the root vdev tree with the information we have
1589	 * from the MOS config (mrvd). Check each top-level vdev
1590	 * with the corresponding MOS config top-level (mtvd).
1591	 */
1592	for (int c = 0; c < rvd->vdev_children; c++) {
1593		vdev_t *tvd = rvd->vdev_child[c];
1594		vdev_t *mtvd  = mrvd->vdev_child[c];
1595
1596		/*
1597		 * Resolve any "missing" vdevs in the current configuration.
1598		 * If we find that the MOS config has more accurate information
1599		 * about the top-level vdev then use that vdev instead.
1600		 */
1601		if (tvd->vdev_ops == &vdev_missing_ops &&
1602		    mtvd->vdev_ops != &vdev_missing_ops) {
1603
1604			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1605				continue;
1606
1607			/*
1608			 * Device specific actions.
1609			 */
1610			if (mtvd->vdev_islog) {
1611				spa_set_log_state(spa, SPA_LOG_CLEAR);
1612			} else {
1613				/*
1614				 * XXX - once we have 'readonly' pool
1615				 * support we should be able to handle
1616				 * missing data devices by transitioning
1617				 * the pool to readonly.
1618				 */
1619				continue;
1620			}
1621
1622			/*
1623			 * Swap the missing vdev with the data we were
1624			 * able to obtain from the MOS config.
1625			 */
1626			vdev_remove_child(rvd, tvd);
1627			vdev_remove_child(mrvd, mtvd);
1628
1629			vdev_add_child(rvd, mtvd);
1630			vdev_add_child(mrvd, tvd);
1631
1632			spa_config_exit(spa, SCL_ALL, FTAG);
1633			vdev_load(mtvd);
1634			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1635
1636			vdev_reopen(rvd);
1637		} else if (mtvd->vdev_islog) {
1638			/*
1639			 * Load the slog device's state from the MOS config
1640			 * since it's possible that the label does not
1641			 * contain the most up-to-date information.
1642			 */
1643			vdev_load_log_state(tvd, mtvd);
1644			vdev_reopen(tvd);
1645		}
1646	}
1647	vdev_free(mrvd);
1648	spa_config_exit(spa, SCL_ALL, FTAG);
1649
1650	/*
1651	 * Ensure we were able to validate the config.
1652	 */
1653	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1654}
1655
1656/*
1657 * Check for missing log devices
1658 */
1659static int
1660spa_check_logs(spa_t *spa)
1661{
1662	switch (spa->spa_log_state) {
1663	case SPA_LOG_MISSING:
1664		/* need to recheck in case slog has been restored */
1665	case SPA_LOG_UNKNOWN:
1666		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1667		    DS_FIND_CHILDREN)) {
1668			spa_set_log_state(spa, SPA_LOG_MISSING);
1669			return (1);
1670		}
1671		break;
1672	}
1673	return (0);
1674}
1675
1676static boolean_t
1677spa_passivate_log(spa_t *spa)
1678{
1679	vdev_t *rvd = spa->spa_root_vdev;
1680	boolean_t slog_found = B_FALSE;
1681
1682	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1683
1684	if (!spa_has_slogs(spa))
1685		return (B_FALSE);
1686
1687	for (int c = 0; c < rvd->vdev_children; c++) {
1688		vdev_t *tvd = rvd->vdev_child[c];
1689		metaslab_group_t *mg = tvd->vdev_mg;
1690
1691		if (tvd->vdev_islog) {
1692			metaslab_group_passivate(mg);
1693			slog_found = B_TRUE;
1694		}
1695	}
1696
1697	return (slog_found);
1698}
1699
1700static void
1701spa_activate_log(spa_t *spa)
1702{
1703	vdev_t *rvd = spa->spa_root_vdev;
1704
1705	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1706
1707	for (int c = 0; c < rvd->vdev_children; c++) {
1708		vdev_t *tvd = rvd->vdev_child[c];
1709		metaslab_group_t *mg = tvd->vdev_mg;
1710
1711		if (tvd->vdev_islog)
1712			metaslab_group_activate(mg);
1713	}
1714}
1715
1716int
1717spa_offline_log(spa_t *spa)
1718{
1719	int error = 0;
1720
1721	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1722	    NULL, DS_FIND_CHILDREN)) == 0) {
1723
1724		/*
1725		 * We successfully offlined the log device, sync out the
1726		 * current txg so that the "stubby" block can be removed
1727		 * by zil_sync().
1728		 */
1729		txg_wait_synced(spa->spa_dsl_pool, 0);
1730	}
1731	return (error);
1732}
1733
1734static void
1735spa_aux_check_removed(spa_aux_vdev_t *sav)
1736{
1737	int i;
1738
1739	for (i = 0; i < sav->sav_count; i++)
1740		spa_check_removed(sav->sav_vdevs[i]);
1741}
1742
1743void
1744spa_claim_notify(zio_t *zio)
1745{
1746	spa_t *spa = zio->io_spa;
1747
1748	if (zio->io_error)
1749		return;
1750
1751	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1752	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1753		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1754	mutex_exit(&spa->spa_props_lock);
1755}
1756
1757typedef struct spa_load_error {
1758	uint64_t	sle_meta_count;
1759	uint64_t	sle_data_count;
1760} spa_load_error_t;
1761
1762static void
1763spa_load_verify_done(zio_t *zio)
1764{
1765	blkptr_t *bp = zio->io_bp;
1766	spa_load_error_t *sle = zio->io_private;
1767	dmu_object_type_t type = BP_GET_TYPE(bp);
1768	int error = zio->io_error;
1769
1770	if (error) {
1771		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1772		    type != DMU_OT_INTENT_LOG)
1773			atomic_add_64(&sle->sle_meta_count, 1);
1774		else
1775			atomic_add_64(&sle->sle_data_count, 1);
1776	}
1777	zio_data_buf_free(zio->io_data, zio->io_size);
1778}
1779
1780/*ARGSUSED*/
1781static int
1782spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1783    arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1784{
1785	if (bp != NULL) {
1786		zio_t *rio = arg;
1787		size_t size = BP_GET_PSIZE(bp);
1788		void *data = zio_data_buf_alloc(size);
1789
1790		zio_nowait(zio_read(rio, spa, bp, data, size,
1791		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1792		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1793		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1794	}
1795	return (0);
1796}
1797
1798static int
1799spa_load_verify(spa_t *spa)
1800{
1801	zio_t *rio;
1802	spa_load_error_t sle = { 0 };
1803	zpool_rewind_policy_t policy;
1804	boolean_t verify_ok = B_FALSE;
1805	int error;
1806
1807	zpool_get_rewind_policy(spa->spa_config, &policy);
1808
1809	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1810		return (0);
1811
1812	rio = zio_root(spa, NULL, &sle,
1813	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1814
1815	error = traverse_pool(spa, spa->spa_verify_min_txg,
1816	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1817
1818	(void) zio_wait(rio);
1819
1820	spa->spa_load_meta_errors = sle.sle_meta_count;
1821	spa->spa_load_data_errors = sle.sle_data_count;
1822
1823	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1824	    sle.sle_data_count <= policy.zrp_maxdata) {
1825		int64_t loss = 0;
1826
1827		verify_ok = B_TRUE;
1828		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1829		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1830
1831		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1832		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1833		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1834		VERIFY(nvlist_add_int64(spa->spa_load_info,
1835		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1836		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1837		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1838	} else {
1839		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1840	}
1841
1842	if (error) {
1843		if (error != ENXIO && error != EIO)
1844			error = EIO;
1845		return (error);
1846	}
1847
1848	return (verify_ok ? 0 : EIO);
1849}
1850
1851/*
1852 * Find a value in the pool props object.
1853 */
1854static void
1855spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1856{
1857	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1858	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1859}
1860
1861/*
1862 * Find a value in the pool directory object.
1863 */
1864static int
1865spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1866{
1867	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1868	    name, sizeof (uint64_t), 1, val));
1869}
1870
1871static int
1872spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1873{
1874	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1875	return (err);
1876}
1877
1878/*
1879 * Fix up config after a partly-completed split.  This is done with the
1880 * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1881 * pool have that entry in their config, but only the splitting one contains
1882 * a list of all the guids of the vdevs that are being split off.
1883 *
1884 * This function determines what to do with that list: either rejoin
1885 * all the disks to the pool, or complete the splitting process.  To attempt
1886 * the rejoin, each disk that is offlined is marked online again, and
1887 * we do a reopen() call.  If the vdev label for every disk that was
1888 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1889 * then we call vdev_split() on each disk, and complete the split.
1890 *
1891 * Otherwise we leave the config alone, with all the vdevs in place in
1892 * the original pool.
1893 */
1894static void
1895spa_try_repair(spa_t *spa, nvlist_t *config)
1896{
1897	uint_t extracted;
1898	uint64_t *glist;
1899	uint_t i, gcount;
1900	nvlist_t *nvl;
1901	vdev_t **vd;
1902	boolean_t attempt_reopen;
1903
1904	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1905		return;
1906
1907	/* check that the config is complete */
1908	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1909	    &glist, &gcount) != 0)
1910		return;
1911
1912	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1913
1914	/* attempt to online all the vdevs & validate */
1915	attempt_reopen = B_TRUE;
1916	for (i = 0; i < gcount; i++) {
1917		if (glist[i] == 0)	/* vdev is hole */
1918			continue;
1919
1920		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1921		if (vd[i] == NULL) {
1922			/*
1923			 * Don't bother attempting to reopen the disks;
1924			 * just do the split.
1925			 */
1926			attempt_reopen = B_FALSE;
1927		} else {
1928			/* attempt to re-online it */
1929			vd[i]->vdev_offline = B_FALSE;
1930		}
1931	}
1932
1933	if (attempt_reopen) {
1934		vdev_reopen(spa->spa_root_vdev);
1935
1936		/* check each device to see what state it's in */
1937		for (extracted = 0, i = 0; i < gcount; i++) {
1938			if (vd[i] != NULL &&
1939			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1940				break;
1941			++extracted;
1942		}
1943	}
1944
1945	/*
1946	 * If every disk has been moved to the new pool, or if we never
1947	 * even attempted to look at them, then we split them off for
1948	 * good.
1949	 */
1950	if (!attempt_reopen || gcount == extracted) {
1951		for (i = 0; i < gcount; i++)
1952			if (vd[i] != NULL)
1953				vdev_split(vd[i]);
1954		vdev_reopen(spa->spa_root_vdev);
1955	}
1956
1957	kmem_free(vd, gcount * sizeof (vdev_t *));
1958}
1959
1960static int
1961spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1962    boolean_t mosconfig)
1963{
1964	nvlist_t *config = spa->spa_config;
1965	char *ereport = FM_EREPORT_ZFS_POOL;
1966	char *comment;
1967	int error;
1968	uint64_t pool_guid;
1969	nvlist_t *nvl;
1970
1971	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1972		return (EINVAL);
1973
1974	ASSERT(spa->spa_comment == NULL);
1975	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
1976		spa->spa_comment = spa_strdup(comment);
1977
1978	/*
1979	 * Versioning wasn't explicitly added to the label until later, so if
1980	 * it's not present treat it as the initial version.
1981	 */
1982	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1983	    &spa->spa_ubsync.ub_version) != 0)
1984		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1985
1986	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1987	    &spa->spa_config_txg);
1988
1989	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1990	    spa_guid_exists(pool_guid, 0)) {
1991		error = EEXIST;
1992	} else {
1993		spa->spa_config_guid = pool_guid;
1994
1995		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1996		    &nvl) == 0) {
1997			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1998			    KM_SLEEP) == 0);
1999		}
2000
2001		nvlist_free(spa->spa_load_info);
2002		spa->spa_load_info = fnvlist_alloc();
2003
2004		gethrestime(&spa->spa_loaded_ts);
2005		error = spa_load_impl(spa, pool_guid, config, state, type,
2006		    mosconfig, &ereport);
2007	}
2008
2009	spa->spa_minref = refcount_count(&spa->spa_refcount);
2010	if (error) {
2011		if (error != EEXIST) {
2012			spa->spa_loaded_ts.tv_sec = 0;
2013			spa->spa_loaded_ts.tv_nsec = 0;
2014		}
2015		if (error != EBADF) {
2016			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2017		}
2018	}
2019	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2020	spa->spa_ena = 0;
2021
2022	return (error);
2023}
2024
2025/*
2026 * Load an existing storage pool, using the pool's builtin spa_config as a
2027 * source of configuration information.
2028 */
2029static int
2030spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2031    spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2032    char **ereport)
2033{
2034	int error = 0;
2035	nvlist_t *nvroot = NULL;
2036	nvlist_t *label;
2037	vdev_t *rvd;
2038	uberblock_t *ub = &spa->spa_uberblock;
2039	uint64_t children, config_cache_txg = spa->spa_config_txg;
2040	int orig_mode = spa->spa_mode;
2041	int parse;
2042	uint64_t obj;
2043	boolean_t missing_feat_write = B_FALSE;
2044
2045	/*
2046	 * If this is an untrusted config, access the pool in read-only mode.
2047	 * This prevents things like resilvering recently removed devices.
2048	 */
2049	if (!mosconfig)
2050		spa->spa_mode = FREAD;
2051
2052	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2053
2054	spa->spa_load_state = state;
2055
2056	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2057		return (EINVAL);
2058
2059	parse = (type == SPA_IMPORT_EXISTING ?
2060	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2061
2062	/*
2063	 * Create "The Godfather" zio to hold all async IOs
2064	 */
2065	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2066	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2067
2068	/*
2069	 * Parse the configuration into a vdev tree.  We explicitly set the
2070	 * value that will be returned by spa_version() since parsing the
2071	 * configuration requires knowing the version number.
2072	 */
2073	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2074	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2075	spa_config_exit(spa, SCL_ALL, FTAG);
2076
2077	if (error != 0)
2078		return (error);
2079
2080	ASSERT(spa->spa_root_vdev == rvd);
2081
2082	if (type != SPA_IMPORT_ASSEMBLE) {
2083		ASSERT(spa_guid(spa) == pool_guid);
2084	}
2085
2086	/*
2087	 * Try to open all vdevs, loading each label in the process.
2088	 */
2089	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2090	error = vdev_open(rvd);
2091	spa_config_exit(spa, SCL_ALL, FTAG);
2092	if (error != 0)
2093		return (error);
2094
2095	/*
2096	 * We need to validate the vdev labels against the configuration that
2097	 * we have in hand, which is dependent on the setting of mosconfig. If
2098	 * mosconfig is true then we're validating the vdev labels based on
2099	 * that config.  Otherwise, we're validating against the cached config
2100	 * (zpool.cache) that was read when we loaded the zfs module, and then
2101	 * later we will recursively call spa_load() and validate against
2102	 * the vdev config.
2103	 *
2104	 * If we're assembling a new pool that's been split off from an
2105	 * existing pool, the labels haven't yet been updated so we skip
2106	 * validation for now.
2107	 */
2108	if (type != SPA_IMPORT_ASSEMBLE) {
2109		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2110		error = vdev_validate(rvd, mosconfig);
2111		spa_config_exit(spa, SCL_ALL, FTAG);
2112
2113		if (error != 0)
2114			return (error);
2115
2116		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2117			return (ENXIO);
2118	}
2119
2120	/*
2121	 * Find the best uberblock.
2122	 */
2123	vdev_uberblock_load(rvd, ub, &label);
2124
2125	/*
2126	 * If we weren't able to find a single valid uberblock, return failure.
2127	 */
2128	if (ub->ub_txg == 0) {
2129		nvlist_free(label);
2130		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2131	}
2132
2133	/*
2134	 * If the pool has an unsupported version we can't open it.
2135	 */
2136	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2137		nvlist_free(label);
2138		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2139	}
2140
2141	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2142		nvlist_t *features;
2143
2144		/*
2145		 * If we weren't able to find what's necessary for reading the
2146		 * MOS in the label, return failure.
2147		 */
2148		if (label == NULL || nvlist_lookup_nvlist(label,
2149		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2150			nvlist_free(label);
2151			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2152			    ENXIO));
2153		}
2154
2155		/*
2156		 * Update our in-core representation with the definitive values
2157		 * from the label.
2158		 */
2159		nvlist_free(spa->spa_label_features);
2160		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2161	}
2162
2163	nvlist_free(label);
2164
2165	/*
2166	 * Look through entries in the label nvlist's features_for_read. If
2167	 * there is a feature listed there which we don't understand then we
2168	 * cannot open a pool.
2169	 */
2170	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2171		nvlist_t *unsup_feat;
2172
2173		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2174		    0);
2175
2176		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2177		    NULL); nvp != NULL;
2178		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2179			if (!zfeature_is_supported(nvpair_name(nvp))) {
2180				VERIFY(nvlist_add_string(unsup_feat,
2181				    nvpair_name(nvp), "") == 0);
2182			}
2183		}
2184
2185		if (!nvlist_empty(unsup_feat)) {
2186			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2187			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2188			nvlist_free(unsup_feat);
2189			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2190			    ENOTSUP));
2191		}
2192
2193		nvlist_free(unsup_feat);
2194	}
2195
2196	/*
2197	 * If the vdev guid sum doesn't match the uberblock, we have an
2198	 * incomplete configuration.  We first check to see if the pool
2199	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2200	 * If it is, defer the vdev_guid_sum check till later so we
2201	 * can handle missing vdevs.
2202	 */
2203	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2204	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2205	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2206		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2207
2208	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2209		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2210		spa_try_repair(spa, config);
2211		spa_config_exit(spa, SCL_ALL, FTAG);
2212		nvlist_free(spa->spa_config_splitting);
2213		spa->spa_config_splitting = NULL;
2214	}
2215
2216	/*
2217	 * Initialize internal SPA structures.
2218	 */
2219	spa->spa_state = POOL_STATE_ACTIVE;
2220	spa->spa_ubsync = spa->spa_uberblock;
2221	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2222	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2223	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2224	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2225	spa->spa_claim_max_txg = spa->spa_first_txg;
2226	spa->spa_prev_software_version = ub->ub_software_version;
2227
2228	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2229	if (error)
2230		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2231	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2232
2233	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2234		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2235
2236	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2237		boolean_t missing_feat_read = B_FALSE;
2238		nvlist_t *unsup_feat, *enabled_feat;
2239
2240		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2241		    &spa->spa_feat_for_read_obj) != 0) {
2242			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2243		}
2244
2245		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2246		    &spa->spa_feat_for_write_obj) != 0) {
2247			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2248		}
2249
2250		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2251		    &spa->spa_feat_desc_obj) != 0) {
2252			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2253		}
2254
2255		enabled_feat = fnvlist_alloc();
2256		unsup_feat = fnvlist_alloc();
2257
2258		if (!feature_is_supported(spa->spa_meta_objset,
2259		    spa->spa_feat_for_read_obj, spa->spa_feat_desc_obj,
2260		    unsup_feat, enabled_feat))
2261			missing_feat_read = B_TRUE;
2262
2263		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2264			if (!feature_is_supported(spa->spa_meta_objset,
2265			    spa->spa_feat_for_write_obj, spa->spa_feat_desc_obj,
2266			    unsup_feat, enabled_feat)) {
2267				missing_feat_write = B_TRUE;
2268			}
2269		}
2270
2271		fnvlist_add_nvlist(spa->spa_load_info,
2272		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2273
2274		if (!nvlist_empty(unsup_feat)) {
2275			fnvlist_add_nvlist(spa->spa_load_info,
2276			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2277		}
2278
2279		fnvlist_free(enabled_feat);
2280		fnvlist_free(unsup_feat);
2281
2282		if (!missing_feat_read) {
2283			fnvlist_add_boolean(spa->spa_load_info,
2284			    ZPOOL_CONFIG_CAN_RDONLY);
2285		}
2286
2287		/*
2288		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2289		 * twofold: to determine whether the pool is available for
2290		 * import in read-write mode and (if it is not) whether the
2291		 * pool is available for import in read-only mode. If the pool
2292		 * is available for import in read-write mode, it is displayed
2293		 * as available in userland; if it is not available for import
2294		 * in read-only mode, it is displayed as unavailable in
2295		 * userland. If the pool is available for import in read-only
2296		 * mode but not read-write mode, it is displayed as unavailable
2297		 * in userland with a special note that the pool is actually
2298		 * available for open in read-only mode.
2299		 *
2300		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2301		 * missing a feature for write, we must first determine whether
2302		 * the pool can be opened read-only before returning to
2303		 * userland in order to know whether to display the
2304		 * abovementioned note.
2305		 */
2306		if (missing_feat_read || (missing_feat_write &&
2307		    spa_writeable(spa))) {
2308			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2309			    ENOTSUP));
2310		}
2311	}
2312
2313	spa->spa_is_initializing = B_TRUE;
2314	error = dsl_pool_open(spa->spa_dsl_pool);
2315	spa->spa_is_initializing = B_FALSE;
2316	if (error != 0)
2317		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2318
2319	if (!mosconfig) {
2320		uint64_t hostid;
2321		nvlist_t *policy = NULL, *nvconfig;
2322
2323		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2324			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2325
2326		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2327		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2328			char *hostname;
2329			unsigned long myhostid = 0;
2330
2331			VERIFY(nvlist_lookup_string(nvconfig,
2332			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2333
2334#ifdef	_KERNEL
2335			myhostid = zone_get_hostid(NULL);
2336#else	/* _KERNEL */
2337			/*
2338			 * We're emulating the system's hostid in userland, so
2339			 * we can't use zone_get_hostid().
2340			 */
2341			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2342#endif	/* _KERNEL */
2343			if (check_hostid && hostid != 0 && myhostid != 0 &&
2344			    hostid != myhostid) {
2345				nvlist_free(nvconfig);
2346				cmn_err(CE_WARN, "pool '%s' could not be "
2347				    "loaded as it was last accessed by "
2348				    "another system (host: %s hostid: 0x%lx). "
2349				    "See: http://illumos.org/msg/ZFS-8000-EY",
2350				    spa_name(spa), hostname,
2351				    (unsigned long)hostid);
2352				return (EBADF);
2353			}
2354		}
2355		if (nvlist_lookup_nvlist(spa->spa_config,
2356		    ZPOOL_REWIND_POLICY, &policy) == 0)
2357			VERIFY(nvlist_add_nvlist(nvconfig,
2358			    ZPOOL_REWIND_POLICY, policy) == 0);
2359
2360		spa_config_set(spa, nvconfig);
2361		spa_unload(spa);
2362		spa_deactivate(spa);
2363		spa_activate(spa, orig_mode);
2364
2365		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2366	}
2367
2368	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2369		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2370	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2371	if (error != 0)
2372		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2373
2374	/*
2375	 * Load the bit that tells us to use the new accounting function
2376	 * (raid-z deflation).  If we have an older pool, this will not
2377	 * be present.
2378	 */
2379	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2380	if (error != 0 && error != ENOENT)
2381		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2382
2383	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2384	    &spa->spa_creation_version);
2385	if (error != 0 && error != ENOENT)
2386		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2387
2388	/*
2389	 * Load the persistent error log.  If we have an older pool, this will
2390	 * not be present.
2391	 */
2392	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2393	if (error != 0 && error != ENOENT)
2394		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2395
2396	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2397	    &spa->spa_errlog_scrub);
2398	if (error != 0 && error != ENOENT)
2399		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2400
2401	/*
2402	 * Load the history object.  If we have an older pool, this
2403	 * will not be present.
2404	 */
2405	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2406	if (error != 0 && error != ENOENT)
2407		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2408
2409	/*
2410	 * If we're assembling the pool from the split-off vdevs of
2411	 * an existing pool, we don't want to attach the spares & cache
2412	 * devices.
2413	 */
2414
2415	/*
2416	 * Load any hot spares for this pool.
2417	 */
2418	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2419	if (error != 0 && error != ENOENT)
2420		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2422		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2423		if (load_nvlist(spa, spa->spa_spares.sav_object,
2424		    &spa->spa_spares.sav_config) != 0)
2425			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426
2427		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2428		spa_load_spares(spa);
2429		spa_config_exit(spa, SCL_ALL, FTAG);
2430	} else if (error == 0) {
2431		spa->spa_spares.sav_sync = B_TRUE;
2432	}
2433
2434	/*
2435	 * Load any level 2 ARC devices for this pool.
2436	 */
2437	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2438	    &spa->spa_l2cache.sav_object);
2439	if (error != 0 && error != ENOENT)
2440		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2441	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2442		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2443		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2444		    &spa->spa_l2cache.sav_config) != 0)
2445			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2446
2447		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2448		spa_load_l2cache(spa);
2449		spa_config_exit(spa, SCL_ALL, FTAG);
2450	} else if (error == 0) {
2451		spa->spa_l2cache.sav_sync = B_TRUE;
2452	}
2453
2454	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2455
2456	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2457	if (error && error != ENOENT)
2458		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2459
2460	if (error == 0) {
2461		uint64_t autoreplace;
2462
2463		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2464		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2465		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2466		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2467		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2468		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2469		    &spa->spa_dedup_ditto);
2470
2471		spa->spa_autoreplace = (autoreplace != 0);
2472	}
2473
2474	/*
2475	 * If the 'autoreplace' property is set, then post a resource notifying
2476	 * the ZFS DE that it should not issue any faults for unopenable
2477	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2478	 * unopenable vdevs so that the normal autoreplace handler can take
2479	 * over.
2480	 */
2481	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2482		spa_check_removed(spa->spa_root_vdev);
2483		/*
2484		 * For the import case, this is done in spa_import(), because
2485		 * at this point we're using the spare definitions from
2486		 * the MOS config, not necessarily from the userland config.
2487		 */
2488		if (state != SPA_LOAD_IMPORT) {
2489			spa_aux_check_removed(&spa->spa_spares);
2490			spa_aux_check_removed(&spa->spa_l2cache);
2491		}
2492	}
2493
2494	/*
2495	 * Load the vdev state for all toplevel vdevs.
2496	 */
2497	vdev_load(rvd);
2498
2499	/*
2500	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2501	 */
2502	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2503	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2504	spa_config_exit(spa, SCL_ALL, FTAG);
2505
2506	/*
2507	 * Load the DDTs (dedup tables).
2508	 */
2509	error = ddt_load(spa);
2510	if (error != 0)
2511		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2512
2513	spa_update_dspace(spa);
2514
2515	/*
2516	 * Validate the config, using the MOS config to fill in any
2517	 * information which might be missing.  If we fail to validate
2518	 * the config then declare the pool unfit for use. If we're
2519	 * assembling a pool from a split, the log is not transferred
2520	 * over.
2521	 */
2522	if (type != SPA_IMPORT_ASSEMBLE) {
2523		nvlist_t *nvconfig;
2524
2525		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2526			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2527
2528		if (!spa_config_valid(spa, nvconfig)) {
2529			nvlist_free(nvconfig);
2530			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2531			    ENXIO));
2532		}
2533		nvlist_free(nvconfig);
2534
2535		/*
2536		 * Now that we've validated the config, check the state of the
2537		 * root vdev.  If it can't be opened, it indicates one or
2538		 * more toplevel vdevs are faulted.
2539		 */
2540		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2541			return (ENXIO);
2542
2543		if (spa_check_logs(spa)) {
2544			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2545			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2546		}
2547	}
2548
2549	if (missing_feat_write) {
2550		ASSERT(state == SPA_LOAD_TRYIMPORT);
2551
2552		/*
2553		 * At this point, we know that we can open the pool in
2554		 * read-only mode but not read-write mode. We now have enough
2555		 * information and can return to userland.
2556		 */
2557		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2558	}
2559
2560	/*
2561	 * We've successfully opened the pool, verify that we're ready
2562	 * to start pushing transactions.
2563	 */
2564	if (state != SPA_LOAD_TRYIMPORT) {
2565		if (error = spa_load_verify(spa))
2566			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2567			    error));
2568	}
2569
2570	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2571	    spa->spa_load_max_txg == UINT64_MAX)) {
2572		dmu_tx_t *tx;
2573		int need_update = B_FALSE;
2574
2575		ASSERT(state != SPA_LOAD_TRYIMPORT);
2576
2577		/*
2578		 * Claim log blocks that haven't been committed yet.
2579		 * This must all happen in a single txg.
2580		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2581		 * invoked from zil_claim_log_block()'s i/o done callback.
2582		 * Price of rollback is that we abandon the log.
2583		 */
2584		spa->spa_claiming = B_TRUE;
2585
2586		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2587		    spa_first_txg(spa));
2588		(void) dmu_objset_find(spa_name(spa),
2589		    zil_claim, tx, DS_FIND_CHILDREN);
2590		dmu_tx_commit(tx);
2591
2592		spa->spa_claiming = B_FALSE;
2593
2594		spa_set_log_state(spa, SPA_LOG_GOOD);
2595		spa->spa_sync_on = B_TRUE;
2596		txg_sync_start(spa->spa_dsl_pool);
2597
2598		/*
2599		 * Wait for all claims to sync.  We sync up to the highest
2600		 * claimed log block birth time so that claimed log blocks
2601		 * don't appear to be from the future.  spa_claim_max_txg
2602		 * will have been set for us by either zil_check_log_chain()
2603		 * (invoked from spa_check_logs()) or zil_claim() above.
2604		 */
2605		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2606
2607		/*
2608		 * If the config cache is stale, or we have uninitialized
2609		 * metaslabs (see spa_vdev_add()), then update the config.
2610		 *
2611		 * If this is a verbatim import, trust the current
2612		 * in-core spa_config and update the disk labels.
2613		 */
2614		if (config_cache_txg != spa->spa_config_txg ||
2615		    state == SPA_LOAD_IMPORT ||
2616		    state == SPA_LOAD_RECOVER ||
2617		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2618			need_update = B_TRUE;
2619
2620		for (int c = 0; c < rvd->vdev_children; c++)
2621			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2622				need_update = B_TRUE;
2623
2624		/*
2625		 * Update the config cache asychronously in case we're the
2626		 * root pool, in which case the config cache isn't writable yet.
2627		 */
2628		if (need_update)
2629			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2630
2631		/*
2632		 * Check all DTLs to see if anything needs resilvering.
2633		 */
2634		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2635		    vdev_resilver_needed(rvd, NULL, NULL))
2636			spa_async_request(spa, SPA_ASYNC_RESILVER);
2637
2638		/*
2639		 * Delete any inconsistent datasets.
2640		 */
2641		(void) dmu_objset_find(spa_name(spa),
2642		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2643
2644		/*
2645		 * Clean up any stale temporary dataset userrefs.
2646		 */
2647		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2648	}
2649
2650	return (0);
2651}
2652
2653static int
2654spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2655{
2656	int mode = spa->spa_mode;
2657
2658	spa_unload(spa);
2659	spa_deactivate(spa);
2660
2661	spa->spa_load_max_txg--;
2662
2663	spa_activate(spa, mode);
2664	spa_async_suspend(spa);
2665
2666	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2667}
2668
2669/*
2670 * If spa_load() fails this function will try loading prior txg's. If
2671 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2672 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2673 * function will not rewind the pool and will return the same error as
2674 * spa_load().
2675 */
2676static int
2677spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2678    uint64_t max_request, int rewind_flags)
2679{
2680	nvlist_t *loadinfo = NULL;
2681	nvlist_t *config = NULL;
2682	int load_error, rewind_error;
2683	uint64_t safe_rewind_txg;
2684	uint64_t min_txg;
2685
2686	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2687		spa->spa_load_max_txg = spa->spa_load_txg;
2688		spa_set_log_state(spa, SPA_LOG_CLEAR);
2689	} else {
2690		spa->spa_load_max_txg = max_request;
2691	}
2692
2693	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2694	    mosconfig);
2695	if (load_error == 0)
2696		return (0);
2697
2698	if (spa->spa_root_vdev != NULL)
2699		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2700
2701	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2702	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2703
2704	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2705		nvlist_free(config);
2706		return (load_error);
2707	}
2708
2709	if (state == SPA_LOAD_RECOVER) {
2710		/* Price of rolling back is discarding txgs, including log */
2711		spa_set_log_state(spa, SPA_LOG_CLEAR);
2712	} else {
2713		/*
2714		 * If we aren't rolling back save the load info from our first
2715		 * import attempt so that we can restore it after attempting
2716		 * to rewind.
2717		 */
2718		loadinfo = spa->spa_load_info;
2719		spa->spa_load_info = fnvlist_alloc();
2720	}
2721
2722	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2723	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2724	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2725	    TXG_INITIAL : safe_rewind_txg;
2726
2727	/*
2728	 * Continue as long as we're finding errors, we're still within
2729	 * the acceptable rewind range, and we're still finding uberblocks
2730	 */
2731	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2732	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2733		if (spa->spa_load_max_txg < safe_rewind_txg)
2734			spa->spa_extreme_rewind = B_TRUE;
2735		rewind_error = spa_load_retry(spa, state, mosconfig);
2736	}
2737
2738	spa->spa_extreme_rewind = B_FALSE;
2739	spa->spa_load_max_txg = UINT64_MAX;
2740
2741	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2742		spa_config_set(spa, config);
2743
2744	if (state == SPA_LOAD_RECOVER) {
2745		ASSERT3P(loadinfo, ==, NULL);
2746		return (rewind_error);
2747	} else {
2748		/* Store the rewind info as part of the initial load info */
2749		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2750		    spa->spa_load_info);
2751
2752		/* Restore the initial load info */
2753		fnvlist_free(spa->spa_load_info);
2754		spa->spa_load_info = loadinfo;
2755
2756		return (load_error);
2757	}
2758}
2759
2760/*
2761 * Pool Open/Import
2762 *
2763 * The import case is identical to an open except that the configuration is sent
2764 * down from userland, instead of grabbed from the configuration cache.  For the
2765 * case of an open, the pool configuration will exist in the
2766 * POOL_STATE_UNINITIALIZED state.
2767 *
2768 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2769 * the same time open the pool, without having to keep around the spa_t in some
2770 * ambiguous state.
2771 */
2772static int
2773spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2774    nvlist_t **config)
2775{
2776	spa_t *spa;
2777	spa_load_state_t state = SPA_LOAD_OPEN;
2778	int error;
2779	int locked = B_FALSE;
2780	int firstopen = B_FALSE;
2781
2782	*spapp = NULL;
2783
2784	/*
2785	 * As disgusting as this is, we need to support recursive calls to this
2786	 * function because dsl_dir_open() is called during spa_load(), and ends
2787	 * up calling spa_open() again.  The real fix is to figure out how to
2788	 * avoid dsl_dir_open() calling this in the first place.
2789	 */
2790	if (mutex_owner(&spa_namespace_lock) != curthread) {
2791		mutex_enter(&spa_namespace_lock);
2792		locked = B_TRUE;
2793	}
2794
2795	if ((spa = spa_lookup(pool)) == NULL) {
2796		if (locked)
2797			mutex_exit(&spa_namespace_lock);
2798		return (ENOENT);
2799	}
2800
2801	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2802		zpool_rewind_policy_t policy;
2803
2804		firstopen = B_TRUE;
2805
2806		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2807		    &policy);
2808		if (policy.zrp_request & ZPOOL_DO_REWIND)
2809			state = SPA_LOAD_RECOVER;
2810
2811		spa_activate(spa, spa_mode_global);
2812
2813		if (state != SPA_LOAD_RECOVER)
2814			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2815
2816		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2817		    policy.zrp_request);
2818
2819		if (error == EBADF) {
2820			/*
2821			 * If vdev_validate() returns failure (indicated by
2822			 * EBADF), it indicates that one of the vdevs indicates
2823			 * that the pool has been exported or destroyed.  If
2824			 * this is the case, the config cache is out of sync and
2825			 * we should remove the pool from the namespace.
2826			 */
2827			spa_unload(spa);
2828			spa_deactivate(spa);
2829			spa_config_sync(spa, B_TRUE, B_TRUE);
2830			spa_remove(spa);
2831			if (locked)
2832				mutex_exit(&spa_namespace_lock);
2833			return (ENOENT);
2834		}
2835
2836		if (error) {
2837			/*
2838			 * We can't open the pool, but we still have useful
2839			 * information: the state of each vdev after the
2840			 * attempted vdev_open().  Return this to the user.
2841			 */
2842			if (config != NULL && spa->spa_config) {
2843				VERIFY(nvlist_dup(spa->spa_config, config,
2844				    KM_SLEEP) == 0);
2845				VERIFY(nvlist_add_nvlist(*config,
2846				    ZPOOL_CONFIG_LOAD_INFO,
2847				    spa->spa_load_info) == 0);
2848			}
2849			spa_unload(spa);
2850			spa_deactivate(spa);
2851			spa->spa_last_open_failed = error;
2852			if (locked)
2853				mutex_exit(&spa_namespace_lock);
2854			*spapp = NULL;
2855			return (error);
2856		}
2857	}
2858
2859	spa_open_ref(spa, tag);
2860
2861	if (config != NULL)
2862		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2863
2864	/*
2865	 * If we've recovered the pool, pass back any information we
2866	 * gathered while doing the load.
2867	 */
2868	if (state == SPA_LOAD_RECOVER) {
2869		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2870		    spa->spa_load_info) == 0);
2871	}
2872
2873	if (locked) {
2874		spa->spa_last_open_failed = 0;
2875		spa->spa_last_ubsync_txg = 0;
2876		spa->spa_load_txg = 0;
2877		mutex_exit(&spa_namespace_lock);
2878#ifdef __FreeBSD__
2879#ifdef _KERNEL
2880		if (firstopen)
2881			zvol_create_minors(pool);
2882#endif
2883#endif
2884	}
2885
2886	*spapp = spa;
2887
2888	return (0);
2889}
2890
2891int
2892spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2893    nvlist_t **config)
2894{
2895	return (spa_open_common(name, spapp, tag, policy, config));
2896}
2897
2898int
2899spa_open(const char *name, spa_t **spapp, void *tag)
2900{
2901	return (spa_open_common(name, spapp, tag, NULL, NULL));
2902}
2903
2904/*
2905 * Lookup the given spa_t, incrementing the inject count in the process,
2906 * preventing it from being exported or destroyed.
2907 */
2908spa_t *
2909spa_inject_addref(char *name)
2910{
2911	spa_t *spa;
2912
2913	mutex_enter(&spa_namespace_lock);
2914	if ((spa = spa_lookup(name)) == NULL) {
2915		mutex_exit(&spa_namespace_lock);
2916		return (NULL);
2917	}
2918	spa->spa_inject_ref++;
2919	mutex_exit(&spa_namespace_lock);
2920
2921	return (spa);
2922}
2923
2924void
2925spa_inject_delref(spa_t *spa)
2926{
2927	mutex_enter(&spa_namespace_lock);
2928	spa->spa_inject_ref--;
2929	mutex_exit(&spa_namespace_lock);
2930}
2931
2932/*
2933 * Add spares device information to the nvlist.
2934 */
2935static void
2936spa_add_spares(spa_t *spa, nvlist_t *config)
2937{
2938	nvlist_t **spares;
2939	uint_t i, nspares;
2940	nvlist_t *nvroot;
2941	uint64_t guid;
2942	vdev_stat_t *vs;
2943	uint_t vsc;
2944	uint64_t pool;
2945
2946	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2947
2948	if (spa->spa_spares.sav_count == 0)
2949		return;
2950
2951	VERIFY(nvlist_lookup_nvlist(config,
2952	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2953	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2954	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2955	if (nspares != 0) {
2956		VERIFY(nvlist_add_nvlist_array(nvroot,
2957		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2958		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2959		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2960
2961		/*
2962		 * Go through and find any spares which have since been
2963		 * repurposed as an active spare.  If this is the case, update
2964		 * their status appropriately.
2965		 */
2966		for (i = 0; i < nspares; i++) {
2967			VERIFY(nvlist_lookup_uint64(spares[i],
2968			    ZPOOL_CONFIG_GUID, &guid) == 0);
2969			if (spa_spare_exists(guid, &pool, NULL) &&
2970			    pool != 0ULL) {
2971				VERIFY(nvlist_lookup_uint64_array(
2972				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2973				    (uint64_t **)&vs, &vsc) == 0);
2974				vs->vs_state = VDEV_STATE_CANT_OPEN;
2975				vs->vs_aux = VDEV_AUX_SPARED;
2976			}
2977		}
2978	}
2979}
2980
2981/*
2982 * Add l2cache device information to the nvlist, including vdev stats.
2983 */
2984static void
2985spa_add_l2cache(spa_t *spa, nvlist_t *config)
2986{
2987	nvlist_t **l2cache;
2988	uint_t i, j, nl2cache;
2989	nvlist_t *nvroot;
2990	uint64_t guid;
2991	vdev_t *vd;
2992	vdev_stat_t *vs;
2993	uint_t vsc;
2994
2995	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2996
2997	if (spa->spa_l2cache.sav_count == 0)
2998		return;
2999
3000	VERIFY(nvlist_lookup_nvlist(config,
3001	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3002	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3003	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3004	if (nl2cache != 0) {
3005		VERIFY(nvlist_add_nvlist_array(nvroot,
3006		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3007		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3008		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3009
3010		/*
3011		 * Update level 2 cache device stats.
3012		 */
3013
3014		for (i = 0; i < nl2cache; i++) {
3015			VERIFY(nvlist_lookup_uint64(l2cache[i],
3016			    ZPOOL_CONFIG_GUID, &guid) == 0);
3017
3018			vd = NULL;
3019			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3020				if (guid ==
3021				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3022					vd = spa->spa_l2cache.sav_vdevs[j];
3023					break;
3024				}
3025			}
3026			ASSERT(vd != NULL);
3027
3028			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3029			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3030			    == 0);
3031			vdev_get_stats(vd, vs);
3032		}
3033	}
3034}
3035
3036static void
3037spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3038{
3039	nvlist_t *features;
3040	zap_cursor_t zc;
3041	zap_attribute_t za;
3042
3043	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3044	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3045
3046	if (spa->spa_feat_for_read_obj != 0) {
3047		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3048		    spa->spa_feat_for_read_obj);
3049		    zap_cursor_retrieve(&zc, &za) == 0;
3050		    zap_cursor_advance(&zc)) {
3051			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3052			    za.za_num_integers == 1);
3053			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3054			    za.za_first_integer));
3055		}
3056		zap_cursor_fini(&zc);
3057	}
3058
3059	if (spa->spa_feat_for_write_obj != 0) {
3060		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3061		    spa->spa_feat_for_write_obj);
3062		    zap_cursor_retrieve(&zc, &za) == 0;
3063		    zap_cursor_advance(&zc)) {
3064			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3065			    za.za_num_integers == 1);
3066			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3067			    za.za_first_integer));
3068		}
3069		zap_cursor_fini(&zc);
3070	}
3071
3072	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3073	    features) == 0);
3074	nvlist_free(features);
3075}
3076
3077int
3078spa_get_stats(const char *name, nvlist_t **config,
3079    char *altroot, size_t buflen)
3080{
3081	int error;
3082	spa_t *spa;
3083
3084	*config = NULL;
3085	error = spa_open_common(name, &spa, FTAG, NULL, config);
3086
3087	if (spa != NULL) {
3088		/*
3089		 * This still leaves a window of inconsistency where the spares
3090		 * or l2cache devices could change and the config would be
3091		 * self-inconsistent.
3092		 */
3093		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3094
3095		if (*config != NULL) {
3096			uint64_t loadtimes[2];
3097
3098			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3099			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3100			VERIFY(nvlist_add_uint64_array(*config,
3101			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3102
3103			VERIFY(nvlist_add_uint64(*config,
3104			    ZPOOL_CONFIG_ERRCOUNT,
3105			    spa_get_errlog_size(spa)) == 0);
3106
3107			if (spa_suspended(spa))
3108				VERIFY(nvlist_add_uint64(*config,
3109				    ZPOOL_CONFIG_SUSPENDED,
3110				    spa->spa_failmode) == 0);
3111
3112			spa_add_spares(spa, *config);
3113			spa_add_l2cache(spa, *config);
3114			spa_add_feature_stats(spa, *config);
3115		}
3116	}
3117
3118	/*
3119	 * We want to get the alternate root even for faulted pools, so we cheat
3120	 * and call spa_lookup() directly.
3121	 */
3122	if (altroot) {
3123		if (spa == NULL) {
3124			mutex_enter(&spa_namespace_lock);
3125			spa = spa_lookup(name);
3126			if (spa)
3127				spa_altroot(spa, altroot, buflen);
3128			else
3129				altroot[0] = '\0';
3130			spa = NULL;
3131			mutex_exit(&spa_namespace_lock);
3132		} else {
3133			spa_altroot(spa, altroot, buflen);
3134		}
3135	}
3136
3137	if (spa != NULL) {
3138		spa_config_exit(spa, SCL_CONFIG, FTAG);
3139		spa_close(spa, FTAG);
3140	}
3141
3142	return (error);
3143}
3144
3145/*
3146 * Validate that the auxiliary device array is well formed.  We must have an
3147 * array of nvlists, each which describes a valid leaf vdev.  If this is an
3148 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3149 * specified, as long as they are well-formed.
3150 */
3151static int
3152spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3153    spa_aux_vdev_t *sav, const char *config, uint64_t version,
3154    vdev_labeltype_t label)
3155{
3156	nvlist_t **dev;
3157	uint_t i, ndev;
3158	vdev_t *vd;
3159	int error;
3160
3161	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3162
3163	/*
3164	 * It's acceptable to have no devs specified.
3165	 */
3166	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3167		return (0);
3168
3169	if (ndev == 0)
3170		return (EINVAL);
3171
3172	/*
3173	 * Make sure the pool is formatted with a version that supports this
3174	 * device type.
3175	 */
3176	if (spa_version(spa) < version)
3177		return (ENOTSUP);
3178
3179	/*
3180	 * Set the pending device list so we correctly handle device in-use
3181	 * checking.
3182	 */
3183	sav->sav_pending = dev;
3184	sav->sav_npending = ndev;
3185
3186	for (i = 0; i < ndev; i++) {
3187		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3188		    mode)) != 0)
3189			goto out;
3190
3191		if (!vd->vdev_ops->vdev_op_leaf) {
3192			vdev_free(vd);
3193			error = EINVAL;
3194			goto out;
3195		}
3196
3197		/*
3198		 * The L2ARC currently only supports disk devices in
3199		 * kernel context.  For user-level testing, we allow it.
3200		 */
3201#ifdef _KERNEL
3202		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3203		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3204			error = ENOTBLK;
3205			vdev_free(vd);
3206			goto out;
3207		}
3208#endif
3209		vd->vdev_top = vd;
3210
3211		if ((error = vdev_open(vd)) == 0 &&
3212		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3213			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3214			    vd->vdev_guid) == 0);
3215		}
3216
3217		vdev_free(vd);
3218
3219		if (error &&
3220		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3221			goto out;
3222		else
3223			error = 0;
3224	}
3225
3226out:
3227	sav->sav_pending = NULL;
3228	sav->sav_npending = 0;
3229	return (error);
3230}
3231
3232static int
3233spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3234{
3235	int error;
3236
3237	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3238
3239	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3240	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3241	    VDEV_LABEL_SPARE)) != 0) {
3242		return (error);
3243	}
3244
3245	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3246	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3247	    VDEV_LABEL_L2CACHE));
3248}
3249
3250static void
3251spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3252    const char *config)
3253{
3254	int i;
3255
3256	if (sav->sav_config != NULL) {
3257		nvlist_t **olddevs;
3258		uint_t oldndevs;
3259		nvlist_t **newdevs;
3260
3261		/*
3262		 * Generate new dev list by concatentating with the
3263		 * current dev list.
3264		 */
3265		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3266		    &olddevs, &oldndevs) == 0);
3267
3268		newdevs = kmem_alloc(sizeof (void *) *
3269		    (ndevs + oldndevs), KM_SLEEP);
3270		for (i = 0; i < oldndevs; i++)
3271			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3272			    KM_SLEEP) == 0);
3273		for (i = 0; i < ndevs; i++)
3274			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3275			    KM_SLEEP) == 0);
3276
3277		VERIFY(nvlist_remove(sav->sav_config, config,
3278		    DATA_TYPE_NVLIST_ARRAY) == 0);
3279
3280		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3281		    config, newdevs, ndevs + oldndevs) == 0);
3282		for (i = 0; i < oldndevs + ndevs; i++)
3283			nvlist_free(newdevs[i]);
3284		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3285	} else {
3286		/*
3287		 * Generate a new dev list.
3288		 */
3289		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3290		    KM_SLEEP) == 0);
3291		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3292		    devs, ndevs) == 0);
3293	}
3294}
3295
3296/*
3297 * Stop and drop level 2 ARC devices
3298 */
3299void
3300spa_l2cache_drop(spa_t *spa)
3301{
3302	vdev_t *vd;
3303	int i;
3304	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3305
3306	for (i = 0; i < sav->sav_count; i++) {
3307		uint64_t pool;
3308
3309		vd = sav->sav_vdevs[i];
3310		ASSERT(vd != NULL);
3311
3312		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3313		    pool != 0ULL && l2arc_vdev_present(vd))
3314			l2arc_remove_vdev(vd);
3315	}
3316}
3317
3318/*
3319 * Pool Creation
3320 */
3321int
3322spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3323    const char *history_str, nvlist_t *zplprops)
3324{
3325	spa_t *spa;
3326	char *altroot = NULL;
3327	vdev_t *rvd;
3328	dsl_pool_t *dp;
3329	dmu_tx_t *tx;
3330	int error = 0;
3331	uint64_t txg = TXG_INITIAL;
3332	nvlist_t **spares, **l2cache;
3333	uint_t nspares, nl2cache;
3334	uint64_t version, obj;
3335	boolean_t has_features;
3336
3337	/*
3338	 * If this pool already exists, return failure.
3339	 */
3340	mutex_enter(&spa_namespace_lock);
3341	if (spa_lookup(pool) != NULL) {
3342		mutex_exit(&spa_namespace_lock);
3343		return (EEXIST);
3344	}
3345
3346	/*
3347	 * Allocate a new spa_t structure.
3348	 */
3349	(void) nvlist_lookup_string(props,
3350	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3351	spa = spa_add(pool, NULL, altroot);
3352	spa_activate(spa, spa_mode_global);
3353
3354	if (props && (error = spa_prop_validate(spa, props))) {
3355		spa_deactivate(spa);
3356		spa_remove(spa);
3357		mutex_exit(&spa_namespace_lock);
3358		return (error);
3359	}
3360
3361	has_features = B_FALSE;
3362	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3363	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3364		if (zpool_prop_feature(nvpair_name(elem)))
3365			has_features = B_TRUE;
3366	}
3367
3368	if (has_features || nvlist_lookup_uint64(props,
3369	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3370		version = SPA_VERSION;
3371	}
3372	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3373
3374	spa->spa_first_txg = txg;
3375	spa->spa_uberblock.ub_txg = txg - 1;
3376	spa->spa_uberblock.ub_version = version;
3377	spa->spa_ubsync = spa->spa_uberblock;
3378
3379	/*
3380	 * Create "The Godfather" zio to hold all async IOs
3381	 */
3382	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3383	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3384
3385	/*
3386	 * Create the root vdev.
3387	 */
3388	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3389
3390	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3391
3392	ASSERT(error != 0 || rvd != NULL);
3393	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3394
3395	if (error == 0 && !zfs_allocatable_devs(nvroot))
3396		error = EINVAL;
3397
3398	if (error == 0 &&
3399	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3400	    (error = spa_validate_aux(spa, nvroot, txg,
3401	    VDEV_ALLOC_ADD)) == 0) {
3402		for (int c = 0; c < rvd->vdev_children; c++) {
3403			vdev_metaslab_set_size(rvd->vdev_child[c]);
3404			vdev_expand(rvd->vdev_child[c], txg);
3405		}
3406	}
3407
3408	spa_config_exit(spa, SCL_ALL, FTAG);
3409
3410	if (error != 0) {
3411		spa_unload(spa);
3412		spa_deactivate(spa);
3413		spa_remove(spa);
3414		mutex_exit(&spa_namespace_lock);
3415		return (error);
3416	}
3417
3418	/*
3419	 * Get the list of spares, if specified.
3420	 */
3421	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3422	    &spares, &nspares) == 0) {
3423		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3424		    KM_SLEEP) == 0);
3425		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3426		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3427		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3428		spa_load_spares(spa);
3429		spa_config_exit(spa, SCL_ALL, FTAG);
3430		spa->spa_spares.sav_sync = B_TRUE;
3431	}
3432
3433	/*
3434	 * Get the list of level 2 cache devices, if specified.
3435	 */
3436	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3437	    &l2cache, &nl2cache) == 0) {
3438		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3439		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3440		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3441		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3442		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3443		spa_load_l2cache(spa);
3444		spa_config_exit(spa, SCL_ALL, FTAG);
3445		spa->spa_l2cache.sav_sync = B_TRUE;
3446	}
3447
3448	spa->spa_is_initializing = B_TRUE;
3449	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3450	spa->spa_meta_objset = dp->dp_meta_objset;
3451	spa->spa_is_initializing = B_FALSE;
3452
3453	/*
3454	 * Create DDTs (dedup tables).
3455	 */
3456	ddt_create(spa);
3457
3458	spa_update_dspace(spa);
3459
3460	tx = dmu_tx_create_assigned(dp, txg);
3461
3462	/*
3463	 * Create the pool config object.
3464	 */
3465	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3466	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3467	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3468
3469	if (zap_add(spa->spa_meta_objset,
3470	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3471	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3472		cmn_err(CE_PANIC, "failed to add pool config");
3473	}
3474
3475	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3476		spa_feature_create_zap_objects(spa, tx);
3477
3478	if (zap_add(spa->spa_meta_objset,
3479	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3480	    sizeof (uint64_t), 1, &version, tx) != 0) {
3481		cmn_err(CE_PANIC, "failed to add pool version");
3482	}
3483
3484	/* Newly created pools with the right version are always deflated. */
3485	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3486		spa->spa_deflate = TRUE;
3487		if (zap_add(spa->spa_meta_objset,
3488		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3489		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3490			cmn_err(CE_PANIC, "failed to add deflate");
3491		}
3492	}
3493
3494	/*
3495	 * Create the deferred-free bpobj.  Turn off compression
3496	 * because sync-to-convergence takes longer if the blocksize
3497	 * keeps changing.
3498	 */
3499	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3500	dmu_object_set_compress(spa->spa_meta_objset, obj,
3501	    ZIO_COMPRESS_OFF, tx);
3502	if (zap_add(spa->spa_meta_objset,
3503	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3504	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3505		cmn_err(CE_PANIC, "failed to add bpobj");
3506	}
3507	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3508	    spa->spa_meta_objset, obj));
3509
3510	/*
3511	 * Create the pool's history object.
3512	 */
3513	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3514		spa_history_create_obj(spa, tx);
3515
3516	/*
3517	 * Set pool properties.
3518	 */
3519	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3520	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3521	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3522	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3523
3524	if (props != NULL) {
3525		spa_configfile_set(spa, props, B_FALSE);
3526		spa_sync_props(spa, props, tx);
3527	}
3528
3529	dmu_tx_commit(tx);
3530
3531	spa->spa_sync_on = B_TRUE;
3532	txg_sync_start(spa->spa_dsl_pool);
3533
3534	/*
3535	 * We explicitly wait for the first transaction to complete so that our
3536	 * bean counters are appropriately updated.
3537	 */
3538	txg_wait_synced(spa->spa_dsl_pool, txg);
3539
3540	spa_config_sync(spa, B_FALSE, B_TRUE);
3541
3542	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
3543		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
3544	spa_history_log_version(spa, LOG_POOL_CREATE);
3545
3546	spa->spa_minref = refcount_count(&spa->spa_refcount);
3547
3548	mutex_exit(&spa_namespace_lock);
3549
3550	return (0);
3551}
3552
3553#ifdef _KERNEL
3554#if defined(sun)
3555/*
3556 * Get the root pool information from the root disk, then import the root pool
3557 * during the system boot up time.
3558 */
3559extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3560
3561static nvlist_t *
3562spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3563{
3564	nvlist_t *config;
3565	nvlist_t *nvtop, *nvroot;
3566	uint64_t pgid;
3567
3568	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3569		return (NULL);
3570
3571	/*
3572	 * Add this top-level vdev to the child array.
3573	 */
3574	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3575	    &nvtop) == 0);
3576	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3577	    &pgid) == 0);
3578	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3579
3580	/*
3581	 * Put this pool's top-level vdevs into a root vdev.
3582	 */
3583	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3584	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3585	    VDEV_TYPE_ROOT) == 0);
3586	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3587	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3588	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3589	    &nvtop, 1) == 0);
3590
3591	/*
3592	 * Replace the existing vdev_tree with the new root vdev in
3593	 * this pool's configuration (remove the old, add the new).
3594	 */
3595	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3596	nvlist_free(nvroot);
3597	return (config);
3598}
3599
3600/*
3601 * Walk the vdev tree and see if we can find a device with "better"
3602 * configuration. A configuration is "better" if the label on that
3603 * device has a more recent txg.
3604 */
3605static void
3606spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3607{
3608	for (int c = 0; c < vd->vdev_children; c++)
3609		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3610
3611	if (vd->vdev_ops->vdev_op_leaf) {
3612		nvlist_t *label;
3613		uint64_t label_txg;
3614
3615		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3616		    &label) != 0)
3617			return;
3618
3619		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3620		    &label_txg) == 0);
3621
3622		/*
3623		 * Do we have a better boot device?
3624		 */
3625		if (label_txg > *txg) {
3626			*txg = label_txg;
3627			*avd = vd;
3628		}
3629		nvlist_free(label);
3630	}
3631}
3632
3633/*
3634 * Import a root pool.
3635 *
3636 * For x86. devpath_list will consist of devid and/or physpath name of
3637 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3638 * The GRUB "findroot" command will return the vdev we should boot.
3639 *
3640 * For Sparc, devpath_list consists the physpath name of the booting device
3641 * no matter the rootpool is a single device pool or a mirrored pool.
3642 * e.g.
3643 *	"/pci@1f,0/ide@d/disk@0,0:a"
3644 */
3645int
3646spa_import_rootpool(char *devpath, char *devid)
3647{
3648	spa_t *spa;
3649	vdev_t *rvd, *bvd, *avd = NULL;
3650	nvlist_t *config, *nvtop;
3651	uint64_t guid, txg;
3652	char *pname;
3653	int error;
3654
3655	/*
3656	 * Read the label from the boot device and generate a configuration.
3657	 */
3658	config = spa_generate_rootconf(devpath, devid, &guid);
3659#if defined(_OBP) && defined(_KERNEL)
3660	if (config == NULL) {
3661		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3662			/* iscsi boot */
3663			get_iscsi_bootpath_phy(devpath);
3664			config = spa_generate_rootconf(devpath, devid, &guid);
3665		}
3666	}
3667#endif
3668	if (config == NULL) {
3669		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3670		    devpath);
3671		return (EIO);
3672	}
3673
3674	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3675	    &pname) == 0);
3676	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3677
3678	mutex_enter(&spa_namespace_lock);
3679	if ((spa = spa_lookup(pname)) != NULL) {
3680		/*
3681		 * Remove the existing root pool from the namespace so that we
3682		 * can replace it with the correct config we just read in.
3683		 */
3684		spa_remove(spa);
3685	}
3686
3687	spa = spa_add(pname, config, NULL);
3688	spa->spa_is_root = B_TRUE;
3689	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3690
3691	/*
3692	 * Build up a vdev tree based on the boot device's label config.
3693	 */
3694	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3695	    &nvtop) == 0);
3696	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3697	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3698	    VDEV_ALLOC_ROOTPOOL);
3699	spa_config_exit(spa, SCL_ALL, FTAG);
3700	if (error) {
3701		mutex_exit(&spa_namespace_lock);
3702		nvlist_free(config);
3703		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3704		    pname);
3705		return (error);
3706	}
3707
3708	/*
3709	 * Get the boot vdev.
3710	 */
3711	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3712		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3713		    (u_longlong_t)guid);
3714		error = ENOENT;
3715		goto out;
3716	}
3717
3718	/*
3719	 * Determine if there is a better boot device.
3720	 */
3721	avd = bvd;
3722	spa_alt_rootvdev(rvd, &avd, &txg);
3723	if (avd != bvd) {
3724		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3725		    "try booting from '%s'", avd->vdev_path);
3726		error = EINVAL;
3727		goto out;
3728	}
3729
3730	/*
3731	 * If the boot device is part of a spare vdev then ensure that
3732	 * we're booting off the active spare.
3733	 */
3734	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3735	    !bvd->vdev_isspare) {
3736		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3737		    "try booting from '%s'",
3738		    bvd->vdev_parent->
3739		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3740		error = EINVAL;
3741		goto out;
3742	}
3743
3744	error = 0;
3745	spa_history_log_version(spa, LOG_POOL_IMPORT);
3746out:
3747	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3748	vdev_free(rvd);
3749	spa_config_exit(spa, SCL_ALL, FTAG);
3750	mutex_exit(&spa_namespace_lock);
3751
3752	nvlist_free(config);
3753	return (error);
3754}
3755
3756#else
3757
3758extern int
3759vdev_geom_read_pool_label(const char *name, nvlist_t **config);
3760
3761static nvlist_t *
3762spa_generate_rootconf(const char *name)
3763{
3764	nvlist_t *config;
3765	nvlist_t *nvtop, *nvroot;
3766	uint64_t pgid;
3767
3768	if (vdev_geom_read_pool_label(name, &config) != 0)
3769		return (NULL);
3770
3771	/*
3772	 * Add this top-level vdev to the child array.
3773	 */
3774	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3775	    &nvtop) == 0);
3776	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3777	    &pgid) == 0);
3778
3779	/*
3780	 * Put this pool's top-level vdevs into a root vdev.
3781	 */
3782	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3783	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3784	    VDEV_TYPE_ROOT) == 0);
3785	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3786	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3787	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3788	    &nvtop, 1) == 0);
3789
3790	/*
3791	 * Replace the existing vdev_tree with the new root vdev in
3792	 * this pool's configuration (remove the old, add the new).
3793	 */
3794	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3795	nvlist_free(nvroot);
3796	return (config);
3797}
3798
3799int
3800spa_import_rootpool(const char *name)
3801{
3802	spa_t *spa;
3803	vdev_t *rvd, *bvd, *avd = NULL;
3804	nvlist_t *config, *nvtop;
3805	uint64_t txg;
3806	char *pname;
3807	int error;
3808
3809	/*
3810	 * Read the label from the boot device and generate a configuration.
3811	 */
3812	config = spa_generate_rootconf(name);
3813	if (config == NULL) {
3814		cmn_err(CE_NOTE, "Cannot find the pool label for '%s'",
3815		    name);
3816		return (EIO);
3817	}
3818
3819	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3820	    &pname) == 0 && strcmp(name, pname) == 0);
3821	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3822
3823	mutex_enter(&spa_namespace_lock);
3824	if ((spa = spa_lookup(pname)) != NULL) {
3825		/*
3826		 * Remove the existing root pool from the namespace so that we
3827		 * can replace it with the correct config we just read in.
3828		 */
3829		spa_remove(spa);
3830	}
3831	spa = spa_add(pname, config, NULL);
3832	spa->spa_is_root = B_TRUE;
3833	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3834
3835	/*
3836	 * Build up a vdev tree based on the boot device's label config.
3837	 */
3838	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3839	    &nvtop) == 0);
3840	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3841	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3842	    VDEV_ALLOC_ROOTPOOL);
3843	spa_config_exit(spa, SCL_ALL, FTAG);
3844	if (error) {
3845		mutex_exit(&spa_namespace_lock);
3846		nvlist_free(config);
3847		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3848		    pname);
3849		return (error);
3850	}
3851
3852	error = 0;
3853	spa_history_log_version(spa, LOG_POOL_IMPORT);
3854out:
3855	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3856	vdev_free(rvd);
3857	spa_config_exit(spa, SCL_ALL, FTAG);
3858	mutex_exit(&spa_namespace_lock);
3859
3860	return (error);
3861}
3862
3863#endif	/* sun */
3864#endif
3865
3866/*
3867 * Import a non-root pool into the system.
3868 */
3869int
3870spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3871{
3872	spa_t *spa;
3873	char *altroot = NULL;
3874	spa_load_state_t state = SPA_LOAD_IMPORT;
3875	zpool_rewind_policy_t policy;
3876	uint64_t mode = spa_mode_global;
3877	uint64_t readonly = B_FALSE;
3878	int error;
3879	nvlist_t *nvroot;
3880	nvlist_t **spares, **l2cache;
3881	uint_t nspares, nl2cache;
3882
3883	/*
3884	 * If a pool with this name exists, return failure.
3885	 */
3886	mutex_enter(&spa_namespace_lock);
3887	if (spa_lookup(pool) != NULL) {
3888		mutex_exit(&spa_namespace_lock);
3889		return (EEXIST);
3890	}
3891
3892	/*
3893	 * Create and initialize the spa structure.
3894	 */
3895	(void) nvlist_lookup_string(props,
3896	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3897	(void) nvlist_lookup_uint64(props,
3898	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3899	if (readonly)
3900		mode = FREAD;
3901	spa = spa_add(pool, config, altroot);
3902	spa->spa_import_flags = flags;
3903
3904	/*
3905	 * Verbatim import - Take a pool and insert it into the namespace
3906	 * as if it had been loaded at boot.
3907	 */
3908	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3909		if (props != NULL)
3910			spa_configfile_set(spa, props, B_FALSE);
3911
3912		spa_config_sync(spa, B_FALSE, B_TRUE);
3913
3914		mutex_exit(&spa_namespace_lock);
3915		spa_history_log_version(spa, LOG_POOL_IMPORT);
3916
3917		return (0);
3918	}
3919
3920	spa_activate(spa, mode);
3921
3922	/*
3923	 * Don't start async tasks until we know everything is healthy.
3924	 */
3925	spa_async_suspend(spa);
3926
3927	zpool_get_rewind_policy(config, &policy);
3928	if (policy.zrp_request & ZPOOL_DO_REWIND)
3929		state = SPA_LOAD_RECOVER;
3930
3931	/*
3932	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3933	 * because the user-supplied config is actually the one to trust when
3934	 * doing an import.
3935	 */
3936	if (state != SPA_LOAD_RECOVER)
3937		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3938
3939	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3940	    policy.zrp_request);
3941
3942	/*
3943	 * Propagate anything learned while loading the pool and pass it
3944	 * back to caller (i.e. rewind info, missing devices, etc).
3945	 */
3946	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3947	    spa->spa_load_info) == 0);
3948
3949	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3950	/*
3951	 * Toss any existing sparelist, as it doesn't have any validity
3952	 * anymore, and conflicts with spa_has_spare().
3953	 */
3954	if (spa->spa_spares.sav_config) {
3955		nvlist_free(spa->spa_spares.sav_config);
3956		spa->spa_spares.sav_config = NULL;
3957		spa_load_spares(spa);
3958	}
3959	if (spa->spa_l2cache.sav_config) {
3960		nvlist_free(spa->spa_l2cache.sav_config);
3961		spa->spa_l2cache.sav_config = NULL;
3962		spa_load_l2cache(spa);
3963	}
3964
3965	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3966	    &nvroot) == 0);
3967	if (error == 0)
3968		error = spa_validate_aux(spa, nvroot, -1ULL,
3969		    VDEV_ALLOC_SPARE);
3970	if (error == 0)
3971		error = spa_validate_aux(spa, nvroot, -1ULL,
3972		    VDEV_ALLOC_L2CACHE);
3973	spa_config_exit(spa, SCL_ALL, FTAG);
3974
3975	if (props != NULL)
3976		spa_configfile_set(spa, props, B_FALSE);
3977
3978	if (error != 0 || (props && spa_writeable(spa) &&
3979	    (error = spa_prop_set(spa, props)))) {
3980		spa_unload(spa);
3981		spa_deactivate(spa);
3982		spa_remove(spa);
3983		mutex_exit(&spa_namespace_lock);
3984		return (error);
3985	}
3986
3987	spa_async_resume(spa);
3988
3989	/*
3990	 * Override any spares and level 2 cache devices as specified by
3991	 * the user, as these may have correct device names/devids, etc.
3992	 */
3993	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3994	    &spares, &nspares) == 0) {
3995		if (spa->spa_spares.sav_config)
3996			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3997			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3998		else
3999			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4000			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4001		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4002		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4003		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4004		spa_load_spares(spa);
4005		spa_config_exit(spa, SCL_ALL, FTAG);
4006		spa->spa_spares.sav_sync = B_TRUE;
4007	}
4008	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4009	    &l2cache, &nl2cache) == 0) {
4010		if (spa->spa_l2cache.sav_config)
4011			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4012			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4013		else
4014			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4015			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4016		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4017		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4018		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4019		spa_load_l2cache(spa);
4020		spa_config_exit(spa, SCL_ALL, FTAG);
4021		spa->spa_l2cache.sav_sync = B_TRUE;
4022	}
4023
4024	/*
4025	 * Check for any removed devices.
4026	 */
4027	if (spa->spa_autoreplace) {
4028		spa_aux_check_removed(&spa->spa_spares);
4029		spa_aux_check_removed(&spa->spa_l2cache);
4030	}
4031
4032	if (spa_writeable(spa)) {
4033		/*
4034		 * Update the config cache to include the newly-imported pool.
4035		 */
4036		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4037	}
4038
4039	/*
4040	 * It's possible that the pool was expanded while it was exported.
4041	 * We kick off an async task to handle this for us.
4042	 */
4043	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4044
4045	mutex_exit(&spa_namespace_lock);
4046	spa_history_log_version(spa, LOG_POOL_IMPORT);
4047
4048#ifdef __FreeBSD__
4049#ifdef _KERNEL
4050	zvol_create_minors(pool);
4051#endif
4052#endif
4053	return (0);
4054}
4055
4056nvlist_t *
4057spa_tryimport(nvlist_t *tryconfig)
4058{
4059	nvlist_t *config = NULL;
4060	char *poolname;
4061	spa_t *spa;
4062	uint64_t state;
4063	int error;
4064
4065	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4066		return (NULL);
4067
4068	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4069		return (NULL);
4070
4071	/*
4072	 * Create and initialize the spa structure.
4073	 */
4074	mutex_enter(&spa_namespace_lock);
4075	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4076	spa_activate(spa, FREAD);
4077
4078	/*
4079	 * Pass off the heavy lifting to spa_load().
4080	 * Pass TRUE for mosconfig because the user-supplied config
4081	 * is actually the one to trust when doing an import.
4082	 */
4083	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4084
4085	/*
4086	 * If 'tryconfig' was at least parsable, return the current config.
4087	 */
4088	if (spa->spa_root_vdev != NULL) {
4089		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4090		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4091		    poolname) == 0);
4092		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4093		    state) == 0);
4094		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4095		    spa->spa_uberblock.ub_timestamp) == 0);
4096		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4097		    spa->spa_load_info) == 0);
4098
4099		/*
4100		 * If the bootfs property exists on this pool then we
4101		 * copy it out so that external consumers can tell which
4102		 * pools are bootable.
4103		 */
4104		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4105			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4106
4107			/*
4108			 * We have to play games with the name since the
4109			 * pool was opened as TRYIMPORT_NAME.
4110			 */
4111			if (dsl_dsobj_to_dsname(spa_name(spa),
4112			    spa->spa_bootfs, tmpname) == 0) {
4113				char *cp;
4114				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4115
4116				cp = strchr(tmpname, '/');
4117				if (cp == NULL) {
4118					(void) strlcpy(dsname, tmpname,
4119					    MAXPATHLEN);
4120				} else {
4121					(void) snprintf(dsname, MAXPATHLEN,
4122					    "%s/%s", poolname, ++cp);
4123				}
4124				VERIFY(nvlist_add_string(config,
4125				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4126				kmem_free(dsname, MAXPATHLEN);
4127			}
4128			kmem_free(tmpname, MAXPATHLEN);
4129		}
4130
4131		/*
4132		 * Add the list of hot spares and level 2 cache devices.
4133		 */
4134		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4135		spa_add_spares(spa, config);
4136		spa_add_l2cache(spa, config);
4137		spa_config_exit(spa, SCL_CONFIG, FTAG);
4138	}
4139
4140	spa_unload(spa);
4141	spa_deactivate(spa);
4142	spa_remove(spa);
4143	mutex_exit(&spa_namespace_lock);
4144
4145	return (config);
4146}
4147
4148/*
4149 * Pool export/destroy
4150 *
4151 * The act of destroying or exporting a pool is very simple.  We make sure there
4152 * is no more pending I/O and any references to the pool are gone.  Then, we
4153 * update the pool state and sync all the labels to disk, removing the
4154 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4155 * we don't sync the labels or remove the configuration cache.
4156 */
4157static int
4158spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4159    boolean_t force, boolean_t hardforce)
4160{
4161	spa_t *spa;
4162
4163	if (oldconfig)
4164		*oldconfig = NULL;
4165
4166	if (!(spa_mode_global & FWRITE))
4167		return (EROFS);
4168
4169	mutex_enter(&spa_namespace_lock);
4170	if ((spa = spa_lookup(pool)) == NULL) {
4171		mutex_exit(&spa_namespace_lock);
4172		return (ENOENT);
4173	}
4174
4175	/*
4176	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4177	 * reacquire the namespace lock, and see if we can export.
4178	 */
4179	spa_open_ref(spa, FTAG);
4180	mutex_exit(&spa_namespace_lock);
4181	spa_async_suspend(spa);
4182	mutex_enter(&spa_namespace_lock);
4183	spa_close(spa, FTAG);
4184
4185	/*
4186	 * The pool will be in core if it's openable,
4187	 * in which case we can modify its state.
4188	 */
4189	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4190		/*
4191		 * Objsets may be open only because they're dirty, so we
4192		 * have to force it to sync before checking spa_refcnt.
4193		 */
4194		txg_wait_synced(spa->spa_dsl_pool, 0);
4195
4196		/*
4197		 * A pool cannot be exported or destroyed if there are active
4198		 * references.  If we are resetting a pool, allow references by
4199		 * fault injection handlers.
4200		 */
4201		if (!spa_refcount_zero(spa) ||
4202		    (spa->spa_inject_ref != 0 &&
4203		    new_state != POOL_STATE_UNINITIALIZED)) {
4204			spa_async_resume(spa);
4205			mutex_exit(&spa_namespace_lock);
4206			return (EBUSY);
4207		}
4208
4209		/*
4210		 * A pool cannot be exported if it has an active shared spare.
4211		 * This is to prevent other pools stealing the active spare
4212		 * from an exported pool. At user's own will, such pool can
4213		 * be forcedly exported.
4214		 */
4215		if (!force && new_state == POOL_STATE_EXPORTED &&
4216		    spa_has_active_shared_spare(spa)) {
4217			spa_async_resume(spa);
4218			mutex_exit(&spa_namespace_lock);
4219			return (EXDEV);
4220		}
4221
4222		/*
4223		 * We want this to be reflected on every label,
4224		 * so mark them all dirty.  spa_unload() will do the
4225		 * final sync that pushes these changes out.
4226		 */
4227		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4228			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4229			spa->spa_state = new_state;
4230			spa->spa_final_txg = spa_last_synced_txg(spa) +
4231			    TXG_DEFER_SIZE + 1;
4232			vdev_config_dirty(spa->spa_root_vdev);
4233			spa_config_exit(spa, SCL_ALL, FTAG);
4234		}
4235	}
4236
4237	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4238
4239	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4240		spa_unload(spa);
4241		spa_deactivate(spa);
4242	}
4243
4244	if (oldconfig && spa->spa_config)
4245		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4246
4247	if (new_state != POOL_STATE_UNINITIALIZED) {
4248		if (!hardforce)
4249			spa_config_sync(spa, B_TRUE, B_TRUE);
4250		spa_remove(spa);
4251	}
4252	mutex_exit(&spa_namespace_lock);
4253
4254	return (0);
4255}
4256
4257/*
4258 * Destroy a storage pool.
4259 */
4260int
4261spa_destroy(char *pool)
4262{
4263	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4264	    B_FALSE, B_FALSE));
4265}
4266
4267/*
4268 * Export a storage pool.
4269 */
4270int
4271spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4272    boolean_t hardforce)
4273{
4274	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4275	    force, hardforce));
4276}
4277
4278/*
4279 * Similar to spa_export(), this unloads the spa_t without actually removing it
4280 * from the namespace in any way.
4281 */
4282int
4283spa_reset(char *pool)
4284{
4285	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4286	    B_FALSE, B_FALSE));
4287}
4288
4289/*
4290 * ==========================================================================
4291 * Device manipulation
4292 * ==========================================================================
4293 */
4294
4295/*
4296 * Add a device to a storage pool.
4297 */
4298int
4299spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4300{
4301	uint64_t txg, id;
4302	int error;
4303	vdev_t *rvd = spa->spa_root_vdev;
4304	vdev_t *vd, *tvd;
4305	nvlist_t **spares, **l2cache;
4306	uint_t nspares, nl2cache;
4307
4308	ASSERT(spa_writeable(spa));
4309
4310	txg = spa_vdev_enter(spa);
4311
4312	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4313	    VDEV_ALLOC_ADD)) != 0)
4314		return (spa_vdev_exit(spa, NULL, txg, error));
4315
4316	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4317
4318	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4319	    &nspares) != 0)
4320		nspares = 0;
4321
4322	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4323	    &nl2cache) != 0)
4324		nl2cache = 0;
4325
4326	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4327		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4328
4329	if (vd->vdev_children != 0 &&
4330	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4331		return (spa_vdev_exit(spa, vd, txg, error));
4332
4333	/*
4334	 * We must validate the spares and l2cache devices after checking the
4335	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4336	 */
4337	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4338		return (spa_vdev_exit(spa, vd, txg, error));
4339
4340	/*
4341	 * Transfer each new top-level vdev from vd to rvd.
4342	 */
4343	for (int c = 0; c < vd->vdev_children; c++) {
4344
4345		/*
4346		 * Set the vdev id to the first hole, if one exists.
4347		 */
4348		for (id = 0; id < rvd->vdev_children; id++) {
4349			if (rvd->vdev_child[id]->vdev_ishole) {
4350				vdev_free(rvd->vdev_child[id]);
4351				break;
4352			}
4353		}
4354		tvd = vd->vdev_child[c];
4355		vdev_remove_child(vd, tvd);
4356		tvd->vdev_id = id;
4357		vdev_add_child(rvd, tvd);
4358		vdev_config_dirty(tvd);
4359	}
4360
4361	if (nspares != 0) {
4362		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4363		    ZPOOL_CONFIG_SPARES);
4364		spa_load_spares(spa);
4365		spa->spa_spares.sav_sync = B_TRUE;
4366	}
4367
4368	if (nl2cache != 0) {
4369		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4370		    ZPOOL_CONFIG_L2CACHE);
4371		spa_load_l2cache(spa);
4372		spa->spa_l2cache.sav_sync = B_TRUE;
4373	}
4374
4375	/*
4376	 * We have to be careful when adding new vdevs to an existing pool.
4377	 * If other threads start allocating from these vdevs before we
4378	 * sync the config cache, and we lose power, then upon reboot we may
4379	 * fail to open the pool because there are DVAs that the config cache
4380	 * can't translate.  Therefore, we first add the vdevs without
4381	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4382	 * and then let spa_config_update() initialize the new metaslabs.
4383	 *
4384	 * spa_load() checks for added-but-not-initialized vdevs, so that
4385	 * if we lose power at any point in this sequence, the remaining
4386	 * steps will be completed the next time we load the pool.
4387	 */
4388	(void) spa_vdev_exit(spa, vd, txg, 0);
4389
4390	mutex_enter(&spa_namespace_lock);
4391	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4392	mutex_exit(&spa_namespace_lock);
4393
4394	return (0);
4395}
4396
4397/*
4398 * Attach a device to a mirror.  The arguments are the path to any device
4399 * in the mirror, and the nvroot for the new device.  If the path specifies
4400 * a device that is not mirrored, we automatically insert the mirror vdev.
4401 *
4402 * If 'replacing' is specified, the new device is intended to replace the
4403 * existing device; in this case the two devices are made into their own
4404 * mirror using the 'replacing' vdev, which is functionally identical to
4405 * the mirror vdev (it actually reuses all the same ops) but has a few
4406 * extra rules: you can't attach to it after it's been created, and upon
4407 * completion of resilvering, the first disk (the one being replaced)
4408 * is automatically detached.
4409 */
4410int
4411spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4412{
4413	uint64_t txg, dtl_max_txg;
4414	vdev_t *rvd = spa->spa_root_vdev;
4415	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4416	vdev_ops_t *pvops;
4417	char *oldvdpath, *newvdpath;
4418	int newvd_isspare;
4419	int error;
4420
4421	ASSERT(spa_writeable(spa));
4422
4423	txg = spa_vdev_enter(spa);
4424
4425	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4426
4427	if (oldvd == NULL)
4428		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4429
4430	if (!oldvd->vdev_ops->vdev_op_leaf)
4431		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4432
4433	pvd = oldvd->vdev_parent;
4434
4435	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4436	    VDEV_ALLOC_ATTACH)) != 0)
4437		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4438
4439	if (newrootvd->vdev_children != 1)
4440		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4441
4442	newvd = newrootvd->vdev_child[0];
4443
4444	if (!newvd->vdev_ops->vdev_op_leaf)
4445		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4446
4447	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4448		return (spa_vdev_exit(spa, newrootvd, txg, error));
4449
4450	/*
4451	 * Spares can't replace logs
4452	 */
4453	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4454		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4455
4456	if (!replacing) {
4457		/*
4458		 * For attach, the only allowable parent is a mirror or the root
4459		 * vdev.
4460		 */
4461		if (pvd->vdev_ops != &vdev_mirror_ops &&
4462		    pvd->vdev_ops != &vdev_root_ops)
4463			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4464
4465		pvops = &vdev_mirror_ops;
4466	} else {
4467		/*
4468		 * Active hot spares can only be replaced by inactive hot
4469		 * spares.
4470		 */
4471		if (pvd->vdev_ops == &vdev_spare_ops &&
4472		    oldvd->vdev_isspare &&
4473		    !spa_has_spare(spa, newvd->vdev_guid))
4474			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4475
4476		/*
4477		 * If the source is a hot spare, and the parent isn't already a
4478		 * spare, then we want to create a new hot spare.  Otherwise, we
4479		 * want to create a replacing vdev.  The user is not allowed to
4480		 * attach to a spared vdev child unless the 'isspare' state is
4481		 * the same (spare replaces spare, non-spare replaces
4482		 * non-spare).
4483		 */
4484		if (pvd->vdev_ops == &vdev_replacing_ops &&
4485		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4486			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4487		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4488		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4489			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4490		}
4491
4492		if (newvd->vdev_isspare)
4493			pvops = &vdev_spare_ops;
4494		else
4495			pvops = &vdev_replacing_ops;
4496	}
4497
4498	/*
4499	 * Make sure the new device is big enough.
4500	 */
4501	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4502		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4503
4504	/*
4505	 * The new device cannot have a higher alignment requirement
4506	 * than the top-level vdev.
4507	 */
4508	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4509		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4510
4511	/*
4512	 * If this is an in-place replacement, update oldvd's path and devid
4513	 * to make it distinguishable from newvd, and unopenable from now on.
4514	 */
4515	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4516		spa_strfree(oldvd->vdev_path);
4517		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4518		    KM_SLEEP);
4519		(void) sprintf(oldvd->vdev_path, "%s/%s",
4520		    newvd->vdev_path, "old");
4521		if (oldvd->vdev_devid != NULL) {
4522			spa_strfree(oldvd->vdev_devid);
4523			oldvd->vdev_devid = NULL;
4524		}
4525	}
4526
4527	/* mark the device being resilvered */
4528	newvd->vdev_resilvering = B_TRUE;
4529
4530	/*
4531	 * If the parent is not a mirror, or if we're replacing, insert the new
4532	 * mirror/replacing/spare vdev above oldvd.
4533	 */
4534	if (pvd->vdev_ops != pvops)
4535		pvd = vdev_add_parent(oldvd, pvops);
4536
4537	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4538	ASSERT(pvd->vdev_ops == pvops);
4539	ASSERT(oldvd->vdev_parent == pvd);
4540
4541	/*
4542	 * Extract the new device from its root and add it to pvd.
4543	 */
4544	vdev_remove_child(newrootvd, newvd);
4545	newvd->vdev_id = pvd->vdev_children;
4546	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4547	vdev_add_child(pvd, newvd);
4548
4549	tvd = newvd->vdev_top;
4550	ASSERT(pvd->vdev_top == tvd);
4551	ASSERT(tvd->vdev_parent == rvd);
4552
4553	vdev_config_dirty(tvd);
4554
4555	/*
4556	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4557	 * for any dmu_sync-ed blocks.  It will propagate upward when
4558	 * spa_vdev_exit() calls vdev_dtl_reassess().
4559	 */
4560	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4561
4562	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4563	    dtl_max_txg - TXG_INITIAL);
4564
4565	if (newvd->vdev_isspare) {
4566		spa_spare_activate(newvd);
4567		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4568	}
4569
4570	oldvdpath = spa_strdup(oldvd->vdev_path);
4571	newvdpath = spa_strdup(newvd->vdev_path);
4572	newvd_isspare = newvd->vdev_isspare;
4573
4574	/*
4575	 * Mark newvd's DTL dirty in this txg.
4576	 */
4577	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4578
4579	/*
4580	 * Restart the resilver
4581	 */
4582	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4583
4584	/*
4585	 * Commit the config
4586	 */
4587	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4588
4589	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
4590	    "%s vdev=%s %s vdev=%s",
4591	    replacing && newvd_isspare ? "spare in" :
4592	    replacing ? "replace" : "attach", newvdpath,
4593	    replacing ? "for" : "to", oldvdpath);
4594
4595	spa_strfree(oldvdpath);
4596	spa_strfree(newvdpath);
4597
4598	if (spa->spa_bootfs)
4599		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4600
4601	return (0);
4602}
4603
4604/*
4605 * Detach a device from a mirror or replacing vdev.
4606 * If 'replace_done' is specified, only detach if the parent
4607 * is a replacing vdev.
4608 */
4609int
4610spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4611{
4612	uint64_t txg;
4613	int error;
4614	vdev_t *rvd = spa->spa_root_vdev;
4615	vdev_t *vd, *pvd, *cvd, *tvd;
4616	boolean_t unspare = B_FALSE;
4617	uint64_t unspare_guid;
4618	char *vdpath;
4619
4620	ASSERT(spa_writeable(spa));
4621
4622	txg = spa_vdev_enter(spa);
4623
4624	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4625
4626	if (vd == NULL)
4627		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4628
4629	if (!vd->vdev_ops->vdev_op_leaf)
4630		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4631
4632	pvd = vd->vdev_parent;
4633
4634	/*
4635	 * If the parent/child relationship is not as expected, don't do it.
4636	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4637	 * vdev that's replacing B with C.  The user's intent in replacing
4638	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4639	 * the replace by detaching C, the expected behavior is to end up
4640	 * M(A,B).  But suppose that right after deciding to detach C,
4641	 * the replacement of B completes.  We would have M(A,C), and then
4642	 * ask to detach C, which would leave us with just A -- not what
4643	 * the user wanted.  To prevent this, we make sure that the
4644	 * parent/child relationship hasn't changed -- in this example,
4645	 * that C's parent is still the replacing vdev R.
4646	 */
4647	if (pvd->vdev_guid != pguid && pguid != 0)
4648		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4649
4650	/*
4651	 * Only 'replacing' or 'spare' vdevs can be replaced.
4652	 */
4653	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4654	    pvd->vdev_ops != &vdev_spare_ops)
4655		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4656
4657	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4658	    spa_version(spa) >= SPA_VERSION_SPARES);
4659
4660	/*
4661	 * Only mirror, replacing, and spare vdevs support detach.
4662	 */
4663	if (pvd->vdev_ops != &vdev_replacing_ops &&
4664	    pvd->vdev_ops != &vdev_mirror_ops &&
4665	    pvd->vdev_ops != &vdev_spare_ops)
4666		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4667
4668	/*
4669	 * If this device has the only valid copy of some data,
4670	 * we cannot safely detach it.
4671	 */
4672	if (vdev_dtl_required(vd))
4673		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4674
4675	ASSERT(pvd->vdev_children >= 2);
4676
4677	/*
4678	 * If we are detaching the second disk from a replacing vdev, then
4679	 * check to see if we changed the original vdev's path to have "/old"
4680	 * at the end in spa_vdev_attach().  If so, undo that change now.
4681	 */
4682	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4683	    vd->vdev_path != NULL) {
4684		size_t len = strlen(vd->vdev_path);
4685
4686		for (int c = 0; c < pvd->vdev_children; c++) {
4687			cvd = pvd->vdev_child[c];
4688
4689			if (cvd == vd || cvd->vdev_path == NULL)
4690				continue;
4691
4692			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4693			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4694				spa_strfree(cvd->vdev_path);
4695				cvd->vdev_path = spa_strdup(vd->vdev_path);
4696				break;
4697			}
4698		}
4699	}
4700
4701	/*
4702	 * If we are detaching the original disk from a spare, then it implies
4703	 * that the spare should become a real disk, and be removed from the
4704	 * active spare list for the pool.
4705	 */
4706	if (pvd->vdev_ops == &vdev_spare_ops &&
4707	    vd->vdev_id == 0 &&
4708	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4709		unspare = B_TRUE;
4710
4711	/*
4712	 * Erase the disk labels so the disk can be used for other things.
4713	 * This must be done after all other error cases are handled,
4714	 * but before we disembowel vd (so we can still do I/O to it).
4715	 * But if we can't do it, don't treat the error as fatal --
4716	 * it may be that the unwritability of the disk is the reason
4717	 * it's being detached!
4718	 */
4719	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4720
4721	/*
4722	 * Remove vd from its parent and compact the parent's children.
4723	 */
4724	vdev_remove_child(pvd, vd);
4725	vdev_compact_children(pvd);
4726
4727	/*
4728	 * Remember one of the remaining children so we can get tvd below.
4729	 */
4730	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4731
4732	/*
4733	 * If we need to remove the remaining child from the list of hot spares,
4734	 * do it now, marking the vdev as no longer a spare in the process.
4735	 * We must do this before vdev_remove_parent(), because that can
4736	 * change the GUID if it creates a new toplevel GUID.  For a similar
4737	 * reason, we must remove the spare now, in the same txg as the detach;
4738	 * otherwise someone could attach a new sibling, change the GUID, and
4739	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4740	 */
4741	if (unspare) {
4742		ASSERT(cvd->vdev_isspare);
4743		spa_spare_remove(cvd);
4744		unspare_guid = cvd->vdev_guid;
4745		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4746		cvd->vdev_unspare = B_TRUE;
4747	}
4748
4749	/*
4750	 * If the parent mirror/replacing vdev only has one child,
4751	 * the parent is no longer needed.  Remove it from the tree.
4752	 */
4753	if (pvd->vdev_children == 1) {
4754		if (pvd->vdev_ops == &vdev_spare_ops)
4755			cvd->vdev_unspare = B_FALSE;
4756		vdev_remove_parent(cvd);
4757		cvd->vdev_resilvering = B_FALSE;
4758	}
4759
4760
4761	/*
4762	 * We don't set tvd until now because the parent we just removed
4763	 * may have been the previous top-level vdev.
4764	 */
4765	tvd = cvd->vdev_top;
4766	ASSERT(tvd->vdev_parent == rvd);
4767
4768	/*
4769	 * Reevaluate the parent vdev state.
4770	 */
4771	vdev_propagate_state(cvd);
4772
4773	/*
4774	 * If the 'autoexpand' property is set on the pool then automatically
4775	 * try to expand the size of the pool. For example if the device we
4776	 * just detached was smaller than the others, it may be possible to
4777	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4778	 * first so that we can obtain the updated sizes of the leaf vdevs.
4779	 */
4780	if (spa->spa_autoexpand) {
4781		vdev_reopen(tvd);
4782		vdev_expand(tvd, txg);
4783	}
4784
4785	vdev_config_dirty(tvd);
4786
4787	/*
4788	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4789	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4790	 * But first make sure we're not on any *other* txg's DTL list, to
4791	 * prevent vd from being accessed after it's freed.
4792	 */
4793	vdpath = spa_strdup(vd->vdev_path);
4794	for (int t = 0; t < TXG_SIZE; t++)
4795		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4796	vd->vdev_detached = B_TRUE;
4797	vdev_dirty(tvd, VDD_DTL, vd, txg);
4798
4799	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4800
4801	/* hang on to the spa before we release the lock */
4802	spa_open_ref(spa, FTAG);
4803
4804	error = spa_vdev_exit(spa, vd, txg, 0);
4805
4806	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4807	    "vdev=%s", vdpath);
4808	spa_strfree(vdpath);
4809
4810	/*
4811	 * If this was the removal of the original device in a hot spare vdev,
4812	 * then we want to go through and remove the device from the hot spare
4813	 * list of every other pool.
4814	 */
4815	if (unspare) {
4816		spa_t *altspa = NULL;
4817
4818		mutex_enter(&spa_namespace_lock);
4819		while ((altspa = spa_next(altspa)) != NULL) {
4820			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4821			    altspa == spa)
4822				continue;
4823
4824			spa_open_ref(altspa, FTAG);
4825			mutex_exit(&spa_namespace_lock);
4826			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4827			mutex_enter(&spa_namespace_lock);
4828			spa_close(altspa, FTAG);
4829		}
4830		mutex_exit(&spa_namespace_lock);
4831
4832		/* search the rest of the vdevs for spares to remove */
4833		spa_vdev_resilver_done(spa);
4834	}
4835
4836	/* all done with the spa; OK to release */
4837	mutex_enter(&spa_namespace_lock);
4838	spa_close(spa, FTAG);
4839	mutex_exit(&spa_namespace_lock);
4840
4841	return (error);
4842}
4843
4844/*
4845 * Split a set of devices from their mirrors, and create a new pool from them.
4846 */
4847int
4848spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4849    nvlist_t *props, boolean_t exp)
4850{
4851	int error = 0;
4852	uint64_t txg, *glist;
4853	spa_t *newspa;
4854	uint_t c, children, lastlog;
4855	nvlist_t **child, *nvl, *tmp;
4856	dmu_tx_t *tx;
4857	char *altroot = NULL;
4858	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4859	boolean_t activate_slog;
4860
4861	ASSERT(spa_writeable(spa));
4862
4863	txg = spa_vdev_enter(spa);
4864
4865	/* clear the log and flush everything up to now */
4866	activate_slog = spa_passivate_log(spa);
4867	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4868	error = spa_offline_log(spa);
4869	txg = spa_vdev_config_enter(spa);
4870
4871	if (activate_slog)
4872		spa_activate_log(spa);
4873
4874	if (error != 0)
4875		return (spa_vdev_exit(spa, NULL, txg, error));
4876
4877	/* check new spa name before going any further */
4878	if (spa_lookup(newname) != NULL)
4879		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4880
4881	/*
4882	 * scan through all the children to ensure they're all mirrors
4883	 */
4884	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4885	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4886	    &children) != 0)
4887		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4888
4889	/* first, check to ensure we've got the right child count */
4890	rvd = spa->spa_root_vdev;
4891	lastlog = 0;
4892	for (c = 0; c < rvd->vdev_children; c++) {
4893		vdev_t *vd = rvd->vdev_child[c];
4894
4895		/* don't count the holes & logs as children */
4896		if (vd->vdev_islog || vd->vdev_ishole) {
4897			if (lastlog == 0)
4898				lastlog = c;
4899			continue;
4900		}
4901
4902		lastlog = 0;
4903	}
4904	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4905		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4906
4907	/* next, ensure no spare or cache devices are part of the split */
4908	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4909	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4910		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4911
4912	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4913	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4914
4915	/* then, loop over each vdev and validate it */
4916	for (c = 0; c < children; c++) {
4917		uint64_t is_hole = 0;
4918
4919		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4920		    &is_hole);
4921
4922		if (is_hole != 0) {
4923			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4924			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4925				continue;
4926			} else {
4927				error = EINVAL;
4928				break;
4929			}
4930		}
4931
4932		/* which disk is going to be split? */
4933		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4934		    &glist[c]) != 0) {
4935			error = EINVAL;
4936			break;
4937		}
4938
4939		/* look it up in the spa */
4940		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4941		if (vml[c] == NULL) {
4942			error = ENODEV;
4943			break;
4944		}
4945
4946		/* make sure there's nothing stopping the split */
4947		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4948		    vml[c]->vdev_islog ||
4949		    vml[c]->vdev_ishole ||
4950		    vml[c]->vdev_isspare ||
4951		    vml[c]->vdev_isl2cache ||
4952		    !vdev_writeable(vml[c]) ||
4953		    vml[c]->vdev_children != 0 ||
4954		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4955		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4956			error = EINVAL;
4957			break;
4958		}
4959
4960		if (vdev_dtl_required(vml[c])) {
4961			error = EBUSY;
4962			break;
4963		}
4964
4965		/* we need certain info from the top level */
4966		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4967		    vml[c]->vdev_top->vdev_ms_array) == 0);
4968		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4969		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4970		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4971		    vml[c]->vdev_top->vdev_asize) == 0);
4972		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4973		    vml[c]->vdev_top->vdev_ashift) == 0);
4974	}
4975
4976	if (error != 0) {
4977		kmem_free(vml, children * sizeof (vdev_t *));
4978		kmem_free(glist, children * sizeof (uint64_t));
4979		return (spa_vdev_exit(spa, NULL, txg, error));
4980	}
4981
4982	/* stop writers from using the disks */
4983	for (c = 0; c < children; c++) {
4984		if (vml[c] != NULL)
4985			vml[c]->vdev_offline = B_TRUE;
4986	}
4987	vdev_reopen(spa->spa_root_vdev);
4988
4989	/*
4990	 * Temporarily record the splitting vdevs in the spa config.  This
4991	 * will disappear once the config is regenerated.
4992	 */
4993	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4994	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4995	    glist, children) == 0);
4996	kmem_free(glist, children * sizeof (uint64_t));
4997
4998	mutex_enter(&spa->spa_props_lock);
4999	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5000	    nvl) == 0);
5001	mutex_exit(&spa->spa_props_lock);
5002	spa->spa_config_splitting = nvl;
5003	vdev_config_dirty(spa->spa_root_vdev);
5004
5005	/* configure and create the new pool */
5006	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5007	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5008	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5009	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5010	    spa_version(spa)) == 0);
5011	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5012	    spa->spa_config_txg) == 0);
5013	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5014	    spa_generate_guid(NULL)) == 0);
5015	(void) nvlist_lookup_string(props,
5016	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5017
5018	/* add the new pool to the namespace */
5019	newspa = spa_add(newname, config, altroot);
5020	newspa->spa_config_txg = spa->spa_config_txg;
5021	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5022
5023	/* release the spa config lock, retaining the namespace lock */
5024	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5025
5026	if (zio_injection_enabled)
5027		zio_handle_panic_injection(spa, FTAG, 1);
5028
5029	spa_activate(newspa, spa_mode_global);
5030	spa_async_suspend(newspa);
5031
5032#ifndef sun
5033	/* mark that we are creating new spa by splitting */
5034	newspa->spa_splitting_newspa = B_TRUE;
5035#endif
5036	/* create the new pool from the disks of the original pool */
5037	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5038#ifndef sun
5039	newspa->spa_splitting_newspa = B_FALSE;
5040#endif
5041	if (error)
5042		goto out;
5043
5044	/* if that worked, generate a real config for the new pool */
5045	if (newspa->spa_root_vdev != NULL) {
5046		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5047		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5048		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5049		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5050		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5051		    B_TRUE));
5052	}
5053
5054	/* set the props */
5055	if (props != NULL) {
5056		spa_configfile_set(newspa, props, B_FALSE);
5057		error = spa_prop_set(newspa, props);
5058		if (error)
5059			goto out;
5060	}
5061
5062	/* flush everything */
5063	txg = spa_vdev_config_enter(newspa);
5064	vdev_config_dirty(newspa->spa_root_vdev);
5065	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5066
5067	if (zio_injection_enabled)
5068		zio_handle_panic_injection(spa, FTAG, 2);
5069
5070	spa_async_resume(newspa);
5071
5072	/* finally, update the original pool's config */
5073	txg = spa_vdev_config_enter(spa);
5074	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5075	error = dmu_tx_assign(tx, TXG_WAIT);
5076	if (error != 0)
5077		dmu_tx_abort(tx);
5078	for (c = 0; c < children; c++) {
5079		if (vml[c] != NULL) {
5080			vdev_split(vml[c]);
5081			if (error == 0)
5082				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
5083				    spa, tx, "vdev=%s",
5084				    vml[c]->vdev_path);
5085			vdev_free(vml[c]);
5086		}
5087	}
5088	vdev_config_dirty(spa->spa_root_vdev);
5089	spa->spa_config_splitting = NULL;
5090	nvlist_free(nvl);
5091	if (error == 0)
5092		dmu_tx_commit(tx);
5093	(void) spa_vdev_exit(spa, NULL, txg, 0);
5094
5095	if (zio_injection_enabled)
5096		zio_handle_panic_injection(spa, FTAG, 3);
5097
5098	/* split is complete; log a history record */
5099	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
5100	    "split new pool %s from pool %s", newname, spa_name(spa));
5101
5102	kmem_free(vml, children * sizeof (vdev_t *));
5103
5104	/* if we're not going to mount the filesystems in userland, export */
5105	if (exp)
5106		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5107		    B_FALSE, B_FALSE);
5108
5109	return (error);
5110
5111out:
5112	spa_unload(newspa);
5113	spa_deactivate(newspa);
5114	spa_remove(newspa);
5115
5116	txg = spa_vdev_config_enter(spa);
5117
5118	/* re-online all offlined disks */
5119	for (c = 0; c < children; c++) {
5120		if (vml[c] != NULL)
5121			vml[c]->vdev_offline = B_FALSE;
5122	}
5123	vdev_reopen(spa->spa_root_vdev);
5124
5125	nvlist_free(spa->spa_config_splitting);
5126	spa->spa_config_splitting = NULL;
5127	(void) spa_vdev_exit(spa, NULL, txg, error);
5128
5129	kmem_free(vml, children * sizeof (vdev_t *));
5130	return (error);
5131}
5132
5133static nvlist_t *
5134spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5135{
5136	for (int i = 0; i < count; i++) {
5137		uint64_t guid;
5138
5139		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5140		    &guid) == 0);
5141
5142		if (guid == target_guid)
5143			return (nvpp[i]);
5144	}
5145
5146	return (NULL);
5147}
5148
5149static void
5150spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5151	nvlist_t *dev_to_remove)
5152{
5153	nvlist_t **newdev = NULL;
5154
5155	if (count > 1)
5156		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5157
5158	for (int i = 0, j = 0; i < count; i++) {
5159		if (dev[i] == dev_to_remove)
5160			continue;
5161		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5162	}
5163
5164	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5165	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5166
5167	for (int i = 0; i < count - 1; i++)
5168		nvlist_free(newdev[i]);
5169
5170	if (count > 1)
5171		kmem_free(newdev, (count - 1) * sizeof (void *));
5172}
5173
5174/*
5175 * Evacuate the device.
5176 */
5177static int
5178spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5179{
5180	uint64_t txg;
5181	int error = 0;
5182
5183	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5184	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5185	ASSERT(vd == vd->vdev_top);
5186
5187	/*
5188	 * Evacuate the device.  We don't hold the config lock as writer
5189	 * since we need to do I/O but we do keep the
5190	 * spa_namespace_lock held.  Once this completes the device
5191	 * should no longer have any blocks allocated on it.
5192	 */
5193	if (vd->vdev_islog) {
5194		if (vd->vdev_stat.vs_alloc != 0)
5195			error = spa_offline_log(spa);
5196	} else {
5197		error = ENOTSUP;
5198	}
5199
5200	if (error)
5201		return (error);
5202
5203	/*
5204	 * The evacuation succeeded.  Remove any remaining MOS metadata
5205	 * associated with this vdev, and wait for these changes to sync.
5206	 */
5207	ASSERT0(vd->vdev_stat.vs_alloc);
5208	txg = spa_vdev_config_enter(spa);
5209	vd->vdev_removing = B_TRUE;
5210	vdev_dirty(vd, 0, NULL, txg);
5211	vdev_config_dirty(vd);
5212	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5213
5214	return (0);
5215}
5216
5217/*
5218 * Complete the removal by cleaning up the namespace.
5219 */
5220static void
5221spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5222{
5223	vdev_t *rvd = spa->spa_root_vdev;
5224	uint64_t id = vd->vdev_id;
5225	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5226
5227	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5228	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5229	ASSERT(vd == vd->vdev_top);
5230
5231	/*
5232	 * Only remove any devices which are empty.
5233	 */
5234	if (vd->vdev_stat.vs_alloc != 0)
5235		return;
5236
5237	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5238
5239	if (list_link_active(&vd->vdev_state_dirty_node))
5240		vdev_state_clean(vd);
5241	if (list_link_active(&vd->vdev_config_dirty_node))
5242		vdev_config_clean(vd);
5243
5244	vdev_free(vd);
5245
5246	if (last_vdev) {
5247		vdev_compact_children(rvd);
5248	} else {
5249		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5250		vdev_add_child(rvd, vd);
5251	}
5252	vdev_config_dirty(rvd);
5253
5254	/*
5255	 * Reassess the health of our root vdev.
5256	 */
5257	vdev_reopen(rvd);
5258}
5259
5260/*
5261 * Remove a device from the pool -
5262 *
5263 * Removing a device from the vdev namespace requires several steps
5264 * and can take a significant amount of time.  As a result we use
5265 * the spa_vdev_config_[enter/exit] functions which allow us to
5266 * grab and release the spa_config_lock while still holding the namespace
5267 * lock.  During each step the configuration is synced out.
5268 */
5269
5270/*
5271 * Remove a device from the pool.  Currently, this supports removing only hot
5272 * spares, slogs, and level 2 ARC devices.
5273 */
5274int
5275spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5276{
5277	vdev_t *vd;
5278	metaslab_group_t *mg;
5279	nvlist_t **spares, **l2cache, *nv;
5280	uint64_t txg = 0;
5281	uint_t nspares, nl2cache;
5282	int error = 0;
5283	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5284
5285	ASSERT(spa_writeable(spa));
5286
5287	if (!locked)
5288		txg = spa_vdev_enter(spa);
5289
5290	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5291
5292	if (spa->spa_spares.sav_vdevs != NULL &&
5293	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5294	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5295	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5296		/*
5297		 * Only remove the hot spare if it's not currently in use
5298		 * in this pool.
5299		 */
5300		if (vd == NULL || unspare) {
5301			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5302			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5303			spa_load_spares(spa);
5304			spa->spa_spares.sav_sync = B_TRUE;
5305		} else {
5306			error = EBUSY;
5307		}
5308	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5309	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5310	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5311	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5312		/*
5313		 * Cache devices can always be removed.
5314		 */
5315		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5316		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5317		spa_load_l2cache(spa);
5318		spa->spa_l2cache.sav_sync = B_TRUE;
5319	} else if (vd != NULL && vd->vdev_islog) {
5320		ASSERT(!locked);
5321		ASSERT(vd == vd->vdev_top);
5322
5323		/*
5324		 * XXX - Once we have bp-rewrite this should
5325		 * become the common case.
5326		 */
5327
5328		mg = vd->vdev_mg;
5329
5330		/*
5331		 * Stop allocating from this vdev.
5332		 */
5333		metaslab_group_passivate(mg);
5334
5335		/*
5336		 * Wait for the youngest allocations and frees to sync,
5337		 * and then wait for the deferral of those frees to finish.
5338		 */
5339		spa_vdev_config_exit(spa, NULL,
5340		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5341
5342		/*
5343		 * Attempt to evacuate the vdev.
5344		 */
5345		error = spa_vdev_remove_evacuate(spa, vd);
5346
5347		txg = spa_vdev_config_enter(spa);
5348
5349		/*
5350		 * If we couldn't evacuate the vdev, unwind.
5351		 */
5352		if (error) {
5353			metaslab_group_activate(mg);
5354			return (spa_vdev_exit(spa, NULL, txg, error));
5355		}
5356
5357		/*
5358		 * Clean up the vdev namespace.
5359		 */
5360		spa_vdev_remove_from_namespace(spa, vd);
5361
5362	} else if (vd != NULL) {
5363		/*
5364		 * Normal vdevs cannot be removed (yet).
5365		 */
5366		error = ENOTSUP;
5367	} else {
5368		/*
5369		 * There is no vdev of any kind with the specified guid.
5370		 */
5371		error = ENOENT;
5372	}
5373
5374	if (!locked)
5375		return (spa_vdev_exit(spa, NULL, txg, error));
5376
5377	return (error);
5378}
5379
5380/*
5381 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5382 * current spared, so we can detach it.
5383 */
5384static vdev_t *
5385spa_vdev_resilver_done_hunt(vdev_t *vd)
5386{
5387	vdev_t *newvd, *oldvd;
5388
5389	for (int c = 0; c < vd->vdev_children; c++) {
5390		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5391		if (oldvd != NULL)
5392			return (oldvd);
5393	}
5394
5395	/*
5396	 * Check for a completed replacement.  We always consider the first
5397	 * vdev in the list to be the oldest vdev, and the last one to be
5398	 * the newest (see spa_vdev_attach() for how that works).  In
5399	 * the case where the newest vdev is faulted, we will not automatically
5400	 * remove it after a resilver completes.  This is OK as it will require
5401	 * user intervention to determine which disk the admin wishes to keep.
5402	 */
5403	if (vd->vdev_ops == &vdev_replacing_ops) {
5404		ASSERT(vd->vdev_children > 1);
5405
5406		newvd = vd->vdev_child[vd->vdev_children - 1];
5407		oldvd = vd->vdev_child[0];
5408
5409		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5410		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5411		    !vdev_dtl_required(oldvd))
5412			return (oldvd);
5413	}
5414
5415	/*
5416	 * Check for a completed resilver with the 'unspare' flag set.
5417	 */
5418	if (vd->vdev_ops == &vdev_spare_ops) {
5419		vdev_t *first = vd->vdev_child[0];
5420		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5421
5422		if (last->vdev_unspare) {
5423			oldvd = first;
5424			newvd = last;
5425		} else if (first->vdev_unspare) {
5426			oldvd = last;
5427			newvd = first;
5428		} else {
5429			oldvd = NULL;
5430		}
5431
5432		if (oldvd != NULL &&
5433		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5434		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5435		    !vdev_dtl_required(oldvd))
5436			return (oldvd);
5437
5438		/*
5439		 * If there are more than two spares attached to a disk,
5440		 * and those spares are not required, then we want to
5441		 * attempt to free them up now so that they can be used
5442		 * by other pools.  Once we're back down to a single
5443		 * disk+spare, we stop removing them.
5444		 */
5445		if (vd->vdev_children > 2) {
5446			newvd = vd->vdev_child[1];
5447
5448			if (newvd->vdev_isspare && last->vdev_isspare &&
5449			    vdev_dtl_empty(last, DTL_MISSING) &&
5450			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5451			    !vdev_dtl_required(newvd))
5452				return (newvd);
5453		}
5454	}
5455
5456	return (NULL);
5457}
5458
5459static void
5460spa_vdev_resilver_done(spa_t *spa)
5461{
5462	vdev_t *vd, *pvd, *ppvd;
5463	uint64_t guid, sguid, pguid, ppguid;
5464
5465	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5466
5467	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5468		pvd = vd->vdev_parent;
5469		ppvd = pvd->vdev_parent;
5470		guid = vd->vdev_guid;
5471		pguid = pvd->vdev_guid;
5472		ppguid = ppvd->vdev_guid;
5473		sguid = 0;
5474		/*
5475		 * If we have just finished replacing a hot spared device, then
5476		 * we need to detach the parent's first child (the original hot
5477		 * spare) as well.
5478		 */
5479		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5480		    ppvd->vdev_children == 2) {
5481			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5482			sguid = ppvd->vdev_child[1]->vdev_guid;
5483		}
5484		spa_config_exit(spa, SCL_ALL, FTAG);
5485		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5486			return;
5487		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5488			return;
5489		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5490	}
5491
5492	spa_config_exit(spa, SCL_ALL, FTAG);
5493}
5494
5495/*
5496 * Update the stored path or FRU for this vdev.
5497 */
5498int
5499spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5500    boolean_t ispath)
5501{
5502	vdev_t *vd;
5503	boolean_t sync = B_FALSE;
5504
5505	ASSERT(spa_writeable(spa));
5506
5507	spa_vdev_state_enter(spa, SCL_ALL);
5508
5509	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5510		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5511
5512	if (!vd->vdev_ops->vdev_op_leaf)
5513		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5514
5515	if (ispath) {
5516		if (strcmp(value, vd->vdev_path) != 0) {
5517			spa_strfree(vd->vdev_path);
5518			vd->vdev_path = spa_strdup(value);
5519			sync = B_TRUE;
5520		}
5521	} else {
5522		if (vd->vdev_fru == NULL) {
5523			vd->vdev_fru = spa_strdup(value);
5524			sync = B_TRUE;
5525		} else if (strcmp(value, vd->vdev_fru) != 0) {
5526			spa_strfree(vd->vdev_fru);
5527			vd->vdev_fru = spa_strdup(value);
5528			sync = B_TRUE;
5529		}
5530	}
5531
5532	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5533}
5534
5535int
5536spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5537{
5538	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5539}
5540
5541int
5542spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5543{
5544	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5545}
5546
5547/*
5548 * ==========================================================================
5549 * SPA Scanning
5550 * ==========================================================================
5551 */
5552
5553int
5554spa_scan_stop(spa_t *spa)
5555{
5556	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5557	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5558		return (EBUSY);
5559	return (dsl_scan_cancel(spa->spa_dsl_pool));
5560}
5561
5562int
5563spa_scan(spa_t *spa, pool_scan_func_t func)
5564{
5565	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5566
5567	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5568		return (ENOTSUP);
5569
5570	/*
5571	 * If a resilver was requested, but there is no DTL on a
5572	 * writeable leaf device, we have nothing to do.
5573	 */
5574	if (func == POOL_SCAN_RESILVER &&
5575	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5576		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5577		return (0);
5578	}
5579
5580	return (dsl_scan(spa->spa_dsl_pool, func));
5581}
5582
5583/*
5584 * ==========================================================================
5585 * SPA async task processing
5586 * ==========================================================================
5587 */
5588
5589static void
5590spa_async_remove(spa_t *spa, vdev_t *vd)
5591{
5592	if (vd->vdev_remove_wanted) {
5593		vd->vdev_remove_wanted = B_FALSE;
5594		vd->vdev_delayed_close = B_FALSE;
5595		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5596
5597		/*
5598		 * We want to clear the stats, but we don't want to do a full
5599		 * vdev_clear() as that will cause us to throw away
5600		 * degraded/faulted state as well as attempt to reopen the
5601		 * device, all of which is a waste.
5602		 */
5603		vd->vdev_stat.vs_read_errors = 0;
5604		vd->vdev_stat.vs_write_errors = 0;
5605		vd->vdev_stat.vs_checksum_errors = 0;
5606
5607		vdev_state_dirty(vd->vdev_top);
5608	}
5609
5610	for (int c = 0; c < vd->vdev_children; c++)
5611		spa_async_remove(spa, vd->vdev_child[c]);
5612}
5613
5614static void
5615spa_async_probe(spa_t *spa, vdev_t *vd)
5616{
5617	if (vd->vdev_probe_wanted) {
5618		vd->vdev_probe_wanted = B_FALSE;
5619		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5620	}
5621
5622	for (int c = 0; c < vd->vdev_children; c++)
5623		spa_async_probe(spa, vd->vdev_child[c]);
5624}
5625
5626static void
5627spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5628{
5629	sysevent_id_t eid;
5630	nvlist_t *attr;
5631	char *physpath;
5632
5633	if (!spa->spa_autoexpand)
5634		return;
5635
5636	for (int c = 0; c < vd->vdev_children; c++) {
5637		vdev_t *cvd = vd->vdev_child[c];
5638		spa_async_autoexpand(spa, cvd);
5639	}
5640
5641	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5642		return;
5643
5644	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5645	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5646
5647	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5648	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5649
5650	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5651	    ESC_ZFS_VDEV_AUTOEXPAND, attr, &eid, DDI_SLEEP);
5652
5653	nvlist_free(attr);
5654	kmem_free(physpath, MAXPATHLEN);
5655}
5656
5657static void
5658spa_async_thread(void *arg)
5659{
5660	spa_t *spa = arg;
5661	int tasks;
5662
5663	ASSERT(spa->spa_sync_on);
5664
5665	mutex_enter(&spa->spa_async_lock);
5666	tasks = spa->spa_async_tasks;
5667	spa->spa_async_tasks = 0;
5668	mutex_exit(&spa->spa_async_lock);
5669
5670	/*
5671	 * See if the config needs to be updated.
5672	 */
5673	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5674		uint64_t old_space, new_space;
5675
5676		mutex_enter(&spa_namespace_lock);
5677		old_space = metaslab_class_get_space(spa_normal_class(spa));
5678		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5679		new_space = metaslab_class_get_space(spa_normal_class(spa));
5680		mutex_exit(&spa_namespace_lock);
5681
5682		/*
5683		 * If the pool grew as a result of the config update,
5684		 * then log an internal history event.
5685		 */
5686		if (new_space != old_space) {
5687			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
5688			    spa, NULL,
5689			    "pool '%s' size: %llu(+%llu)",
5690			    spa_name(spa), new_space, new_space - old_space);
5691		}
5692	}
5693
5694	/*
5695	 * See if any devices need to be marked REMOVED.
5696	 */
5697	if (tasks & SPA_ASYNC_REMOVE) {
5698		spa_vdev_state_enter(spa, SCL_NONE);
5699		spa_async_remove(spa, spa->spa_root_vdev);
5700		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5701			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5702		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5703			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5704		(void) spa_vdev_state_exit(spa, NULL, 0);
5705	}
5706
5707	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5708		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5709		spa_async_autoexpand(spa, spa->spa_root_vdev);
5710		spa_config_exit(spa, SCL_CONFIG, FTAG);
5711	}
5712
5713	/*
5714	 * See if any devices need to be probed.
5715	 */
5716	if (tasks & SPA_ASYNC_PROBE) {
5717		spa_vdev_state_enter(spa, SCL_NONE);
5718		spa_async_probe(spa, spa->spa_root_vdev);
5719		(void) spa_vdev_state_exit(spa, NULL, 0);
5720	}
5721
5722	/*
5723	 * If any devices are done replacing, detach them.
5724	 */
5725	if (tasks & SPA_ASYNC_RESILVER_DONE)
5726		spa_vdev_resilver_done(spa);
5727
5728	/*
5729	 * Kick off a resilver.
5730	 */
5731	if (tasks & SPA_ASYNC_RESILVER)
5732		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5733
5734	/*
5735	 * Let the world know that we're done.
5736	 */
5737	mutex_enter(&spa->spa_async_lock);
5738	spa->spa_async_thread = NULL;
5739	cv_broadcast(&spa->spa_async_cv);
5740	mutex_exit(&spa->spa_async_lock);
5741	thread_exit();
5742}
5743
5744void
5745spa_async_suspend(spa_t *spa)
5746{
5747	mutex_enter(&spa->spa_async_lock);
5748	spa->spa_async_suspended++;
5749	while (spa->spa_async_thread != NULL)
5750		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5751	mutex_exit(&spa->spa_async_lock);
5752}
5753
5754void
5755spa_async_resume(spa_t *spa)
5756{
5757	mutex_enter(&spa->spa_async_lock);
5758	ASSERT(spa->spa_async_suspended != 0);
5759	spa->spa_async_suspended--;
5760	mutex_exit(&spa->spa_async_lock);
5761}
5762
5763static void
5764spa_async_dispatch(spa_t *spa)
5765{
5766	mutex_enter(&spa->spa_async_lock);
5767	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5768	    spa->spa_async_thread == NULL &&
5769	    rootdir != NULL && !vn_is_readonly(rootdir))
5770		spa->spa_async_thread = thread_create(NULL, 0,
5771		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5772	mutex_exit(&spa->spa_async_lock);
5773}
5774
5775void
5776spa_async_request(spa_t *spa, int task)
5777{
5778	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5779	mutex_enter(&spa->spa_async_lock);
5780	spa->spa_async_tasks |= task;
5781	mutex_exit(&spa->spa_async_lock);
5782}
5783
5784/*
5785 * ==========================================================================
5786 * SPA syncing routines
5787 * ==========================================================================
5788 */
5789
5790static int
5791bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5792{
5793	bpobj_t *bpo = arg;
5794	bpobj_enqueue(bpo, bp, tx);
5795	return (0);
5796}
5797
5798static int
5799spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5800{
5801	zio_t *zio = arg;
5802
5803	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5804	    BP_GET_PSIZE(bp), zio->io_flags));
5805	return (0);
5806}
5807
5808static void
5809spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5810{
5811	char *packed = NULL;
5812	size_t bufsize;
5813	size_t nvsize = 0;
5814	dmu_buf_t *db;
5815
5816	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5817
5818	/*
5819	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5820	 * information.  This avoids the dbuf_will_dirty() path and
5821	 * saves us a pre-read to get data we don't actually care about.
5822	 */
5823	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5824	packed = kmem_alloc(bufsize, KM_SLEEP);
5825
5826	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5827	    KM_SLEEP) == 0);
5828	bzero(packed + nvsize, bufsize - nvsize);
5829
5830	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5831
5832	kmem_free(packed, bufsize);
5833
5834	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5835	dmu_buf_will_dirty(db, tx);
5836	*(uint64_t *)db->db_data = nvsize;
5837	dmu_buf_rele(db, FTAG);
5838}
5839
5840static void
5841spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5842    const char *config, const char *entry)
5843{
5844	nvlist_t *nvroot;
5845	nvlist_t **list;
5846	int i;
5847
5848	if (!sav->sav_sync)
5849		return;
5850
5851	/*
5852	 * Update the MOS nvlist describing the list of available devices.
5853	 * spa_validate_aux() will have already made sure this nvlist is
5854	 * valid and the vdevs are labeled appropriately.
5855	 */
5856	if (sav->sav_object == 0) {
5857		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5858		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5859		    sizeof (uint64_t), tx);
5860		VERIFY(zap_update(spa->spa_meta_objset,
5861		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5862		    &sav->sav_object, tx) == 0);
5863	}
5864
5865	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5866	if (sav->sav_count == 0) {
5867		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5868	} else {
5869		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5870		for (i = 0; i < sav->sav_count; i++)
5871			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5872			    B_FALSE, VDEV_CONFIG_L2CACHE);
5873		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5874		    sav->sav_count) == 0);
5875		for (i = 0; i < sav->sav_count; i++)
5876			nvlist_free(list[i]);
5877		kmem_free(list, sav->sav_count * sizeof (void *));
5878	}
5879
5880	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5881	nvlist_free(nvroot);
5882
5883	sav->sav_sync = B_FALSE;
5884}
5885
5886static void
5887spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5888{
5889	nvlist_t *config;
5890
5891	if (list_is_empty(&spa->spa_config_dirty_list))
5892		return;
5893
5894	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5895
5896	config = spa_config_generate(spa, spa->spa_root_vdev,
5897	    dmu_tx_get_txg(tx), B_FALSE);
5898
5899	spa_config_exit(spa, SCL_STATE, FTAG);
5900
5901	if (spa->spa_config_syncing)
5902		nvlist_free(spa->spa_config_syncing);
5903	spa->spa_config_syncing = config;
5904
5905	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5906}
5907
5908static void
5909spa_sync_version(void *arg1, void *arg2, dmu_tx_t *tx)
5910{
5911	spa_t *spa = arg1;
5912	uint64_t version = *(uint64_t *)arg2;
5913
5914	/*
5915	 * Setting the version is special cased when first creating the pool.
5916	 */
5917	ASSERT(tx->tx_txg != TXG_INITIAL);
5918
5919	ASSERT(version <= SPA_VERSION);
5920	ASSERT(version >= spa_version(spa));
5921
5922	spa->spa_uberblock.ub_version = version;
5923	vdev_config_dirty(spa->spa_root_vdev);
5924}
5925
5926/*
5927 * Set zpool properties.
5928 */
5929static void
5930spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5931{
5932	spa_t *spa = arg1;
5933	objset_t *mos = spa->spa_meta_objset;
5934	nvlist_t *nvp = arg2;
5935	nvpair_t *elem = NULL;
5936
5937	mutex_enter(&spa->spa_props_lock);
5938
5939	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5940		uint64_t intval;
5941		char *strval, *fname;
5942		zpool_prop_t prop;
5943		const char *propname;
5944		zprop_type_t proptype;
5945		zfeature_info_t *feature;
5946
5947		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5948		case ZPROP_INVAL:
5949			/*
5950			 * We checked this earlier in spa_prop_validate().
5951			 */
5952			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5953
5954			fname = strchr(nvpair_name(elem), '@') + 1;
5955			VERIFY3U(0, ==, zfeature_lookup_name(fname, &feature));
5956
5957			spa_feature_enable(spa, feature, tx);
5958			break;
5959
5960		case ZPOOL_PROP_VERSION:
5961			VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5962			/*
5963			 * The version is synced seperatly before other
5964			 * properties and should be correct by now.
5965			 */
5966			ASSERT3U(spa_version(spa), >=, intval);
5967			break;
5968
5969		case ZPOOL_PROP_ALTROOT:
5970			/*
5971			 * 'altroot' is a non-persistent property. It should
5972			 * have been set temporarily at creation or import time.
5973			 */
5974			ASSERT(spa->spa_root != NULL);
5975			break;
5976
5977		case ZPOOL_PROP_READONLY:
5978		case ZPOOL_PROP_CACHEFILE:
5979			/*
5980			 * 'readonly' and 'cachefile' are also non-persisitent
5981			 * properties.
5982			 */
5983			break;
5984		case ZPOOL_PROP_COMMENT:
5985			VERIFY(nvpair_value_string(elem, &strval) == 0);
5986			if (spa->spa_comment != NULL)
5987				spa_strfree(spa->spa_comment);
5988			spa->spa_comment = spa_strdup(strval);
5989			/*
5990			 * We need to dirty the configuration on all the vdevs
5991			 * so that their labels get updated.  It's unnecessary
5992			 * to do this for pool creation since the vdev's
5993			 * configuratoin has already been dirtied.
5994			 */
5995			if (tx->tx_txg != TXG_INITIAL)
5996				vdev_config_dirty(spa->spa_root_vdev);
5997			break;
5998		default:
5999			/*
6000			 * Set pool property values in the poolprops mos object.
6001			 */
6002			if (spa->spa_pool_props_object == 0) {
6003				spa->spa_pool_props_object =
6004				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6005				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6006				    tx);
6007			}
6008
6009			/* normalize the property name */
6010			propname = zpool_prop_to_name(prop);
6011			proptype = zpool_prop_get_type(prop);
6012
6013			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6014				ASSERT(proptype == PROP_TYPE_STRING);
6015				VERIFY(nvpair_value_string(elem, &strval) == 0);
6016				VERIFY(zap_update(mos,
6017				    spa->spa_pool_props_object, propname,
6018				    1, strlen(strval) + 1, strval, tx) == 0);
6019
6020			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6021				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
6022
6023				if (proptype == PROP_TYPE_INDEX) {
6024					const char *unused;
6025					VERIFY(zpool_prop_index_to_string(
6026					    prop, intval, &unused) == 0);
6027				}
6028				VERIFY(zap_update(mos,
6029				    spa->spa_pool_props_object, propname,
6030				    8, 1, &intval, tx) == 0);
6031			} else {
6032				ASSERT(0); /* not allowed */
6033			}
6034
6035			switch (prop) {
6036			case ZPOOL_PROP_DELEGATION:
6037				spa->spa_delegation = intval;
6038				break;
6039			case ZPOOL_PROP_BOOTFS:
6040				spa->spa_bootfs = intval;
6041				break;
6042			case ZPOOL_PROP_FAILUREMODE:
6043				spa->spa_failmode = intval;
6044				break;
6045			case ZPOOL_PROP_AUTOEXPAND:
6046				spa->spa_autoexpand = intval;
6047				if (tx->tx_txg != TXG_INITIAL)
6048					spa_async_request(spa,
6049					    SPA_ASYNC_AUTOEXPAND);
6050				break;
6051			case ZPOOL_PROP_DEDUPDITTO:
6052				spa->spa_dedup_ditto = intval;
6053				break;
6054			default:
6055				break;
6056			}
6057		}
6058
6059		/* log internal history if this is not a zpool create */
6060		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
6061		    tx->tx_txg != TXG_INITIAL) {
6062			spa_history_log_internal(LOG_POOL_PROPSET,
6063			    spa, tx, "%s %lld %s",
6064			    nvpair_name(elem), intval, spa_name(spa));
6065		}
6066	}
6067
6068	mutex_exit(&spa->spa_props_lock);
6069}
6070
6071/*
6072 * Perform one-time upgrade on-disk changes.  spa_version() does not
6073 * reflect the new version this txg, so there must be no changes this
6074 * txg to anything that the upgrade code depends on after it executes.
6075 * Therefore this must be called after dsl_pool_sync() does the sync
6076 * tasks.
6077 */
6078static void
6079spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6080{
6081	dsl_pool_t *dp = spa->spa_dsl_pool;
6082
6083	ASSERT(spa->spa_sync_pass == 1);
6084
6085	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6086	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6087		dsl_pool_create_origin(dp, tx);
6088
6089		/* Keeping the origin open increases spa_minref */
6090		spa->spa_minref += 3;
6091	}
6092
6093	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6094	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6095		dsl_pool_upgrade_clones(dp, tx);
6096	}
6097
6098	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6099	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6100		dsl_pool_upgrade_dir_clones(dp, tx);
6101
6102		/* Keeping the freedir open increases spa_minref */
6103		spa->spa_minref += 3;
6104	}
6105
6106	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6107	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6108		spa_feature_create_zap_objects(spa, tx);
6109	}
6110}
6111
6112/*
6113 * Sync the specified transaction group.  New blocks may be dirtied as
6114 * part of the process, so we iterate until it converges.
6115 */
6116void
6117spa_sync(spa_t *spa, uint64_t txg)
6118{
6119	dsl_pool_t *dp = spa->spa_dsl_pool;
6120	objset_t *mos = spa->spa_meta_objset;
6121	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
6122	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6123	vdev_t *rvd = spa->spa_root_vdev;
6124	vdev_t *vd;
6125	dmu_tx_t *tx;
6126	int error;
6127
6128	VERIFY(spa_writeable(spa));
6129
6130	/*
6131	 * Lock out configuration changes.
6132	 */
6133	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6134
6135	spa->spa_syncing_txg = txg;
6136	spa->spa_sync_pass = 0;
6137
6138	/*
6139	 * If there are any pending vdev state changes, convert them
6140	 * into config changes that go out with this transaction group.
6141	 */
6142	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6143	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6144		/*
6145		 * We need the write lock here because, for aux vdevs,
6146		 * calling vdev_config_dirty() modifies sav_config.
6147		 * This is ugly and will become unnecessary when we
6148		 * eliminate the aux vdev wart by integrating all vdevs
6149		 * into the root vdev tree.
6150		 */
6151		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6152		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6153		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6154			vdev_state_clean(vd);
6155			vdev_config_dirty(vd);
6156		}
6157		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6158		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6159	}
6160	spa_config_exit(spa, SCL_STATE, FTAG);
6161
6162	tx = dmu_tx_create_assigned(dp, txg);
6163
6164	/*
6165	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6166	 * set spa_deflate if we have no raid-z vdevs.
6167	 */
6168	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6169	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6170		int i;
6171
6172		for (i = 0; i < rvd->vdev_children; i++) {
6173			vd = rvd->vdev_child[i];
6174			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6175				break;
6176		}
6177		if (i == rvd->vdev_children) {
6178			spa->spa_deflate = TRUE;
6179			VERIFY(0 == zap_add(spa->spa_meta_objset,
6180			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6181			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6182		}
6183	}
6184
6185	/*
6186	 * If anything has changed in this txg, or if someone is waiting
6187	 * for this txg to sync (eg, spa_vdev_remove()), push the
6188	 * deferred frees from the previous txg.  If not, leave them
6189	 * alone so that we don't generate work on an otherwise idle
6190	 * system.
6191	 */
6192	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6193	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6194	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6195	    ((dsl_scan_active(dp->dp_scan) ||
6196	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6197		zio_t *zio = zio_root(spa, NULL, NULL, 0);
6198		VERIFY3U(bpobj_iterate(defer_bpo,
6199		    spa_free_sync_cb, zio, tx), ==, 0);
6200		VERIFY0(zio_wait(zio));
6201	}
6202
6203	/*
6204	 * Iterate to convergence.
6205	 */
6206	do {
6207		int pass = ++spa->spa_sync_pass;
6208
6209		spa_sync_config_object(spa, tx);
6210		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6211		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6212		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6213		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6214		spa_errlog_sync(spa, txg);
6215		dsl_pool_sync(dp, txg);
6216
6217		if (pass <= SYNC_PASS_DEFERRED_FREE) {
6218			zio_t *zio = zio_root(spa, NULL, NULL, 0);
6219			bplist_iterate(free_bpl, spa_free_sync_cb,
6220			    zio, tx);
6221			VERIFY(zio_wait(zio) == 0);
6222		} else {
6223			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6224			    defer_bpo, tx);
6225		}
6226
6227		ddt_sync(spa, txg);
6228		dsl_scan_sync(dp, tx);
6229
6230		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6231			vdev_sync(vd, txg);
6232
6233		if (pass == 1)
6234			spa_sync_upgrades(spa, tx);
6235
6236	} while (dmu_objset_is_dirty(mos, txg));
6237
6238	/*
6239	 * Rewrite the vdev configuration (which includes the uberblock)
6240	 * to commit the transaction group.
6241	 *
6242	 * If there are no dirty vdevs, we sync the uberblock to a few
6243	 * random top-level vdevs that are known to be visible in the
6244	 * config cache (see spa_vdev_add() for a complete description).
6245	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6246	 */
6247	for (;;) {
6248		/*
6249		 * We hold SCL_STATE to prevent vdev open/close/etc.
6250		 * while we're attempting to write the vdev labels.
6251		 */
6252		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6253
6254		if (list_is_empty(&spa->spa_config_dirty_list)) {
6255			vdev_t *svd[SPA_DVAS_PER_BP];
6256			int svdcount = 0;
6257			int children = rvd->vdev_children;
6258			int c0 = spa_get_random(children);
6259
6260			for (int c = 0; c < children; c++) {
6261				vd = rvd->vdev_child[(c0 + c) % children];
6262				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6263					continue;
6264				svd[svdcount++] = vd;
6265				if (svdcount == SPA_DVAS_PER_BP)
6266					break;
6267			}
6268			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6269			if (error != 0)
6270				error = vdev_config_sync(svd, svdcount, txg,
6271				    B_TRUE);
6272		} else {
6273			error = vdev_config_sync(rvd->vdev_child,
6274			    rvd->vdev_children, txg, B_FALSE);
6275			if (error != 0)
6276				error = vdev_config_sync(rvd->vdev_child,
6277				    rvd->vdev_children, txg, B_TRUE);
6278		}
6279
6280		if (error == 0)
6281			spa->spa_last_synced_guid = rvd->vdev_guid;
6282
6283		spa_config_exit(spa, SCL_STATE, FTAG);
6284
6285		if (error == 0)
6286			break;
6287		zio_suspend(spa, NULL);
6288		zio_resume_wait(spa);
6289	}
6290	dmu_tx_commit(tx);
6291
6292	/*
6293	 * Clear the dirty config list.
6294	 */
6295	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6296		vdev_config_clean(vd);
6297
6298	/*
6299	 * Now that the new config has synced transactionally,
6300	 * let it become visible to the config cache.
6301	 */
6302	if (spa->spa_config_syncing != NULL) {
6303		spa_config_set(spa, spa->spa_config_syncing);
6304		spa->spa_config_txg = txg;
6305		spa->spa_config_syncing = NULL;
6306	}
6307
6308	spa->spa_ubsync = spa->spa_uberblock;
6309
6310	dsl_pool_sync_done(dp, txg);
6311
6312	/*
6313	 * Update usable space statistics.
6314	 */
6315	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6316		vdev_sync_done(vd, txg);
6317
6318	spa_update_dspace(spa);
6319
6320	/*
6321	 * It had better be the case that we didn't dirty anything
6322	 * since vdev_config_sync().
6323	 */
6324	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6325	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6326	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6327
6328	spa->spa_sync_pass = 0;
6329
6330	spa_config_exit(spa, SCL_CONFIG, FTAG);
6331
6332	spa_handle_ignored_writes(spa);
6333
6334	/*
6335	 * If any async tasks have been requested, kick them off.
6336	 */
6337	spa_async_dispatch(spa);
6338}
6339
6340/*
6341 * Sync all pools.  We don't want to hold the namespace lock across these
6342 * operations, so we take a reference on the spa_t and drop the lock during the
6343 * sync.
6344 */
6345void
6346spa_sync_allpools(void)
6347{
6348	spa_t *spa = NULL;
6349	mutex_enter(&spa_namespace_lock);
6350	while ((spa = spa_next(spa)) != NULL) {
6351		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6352		    !spa_writeable(spa) || spa_suspended(spa))
6353			continue;
6354		spa_open_ref(spa, FTAG);
6355		mutex_exit(&spa_namespace_lock);
6356		txg_wait_synced(spa_get_dsl(spa), 0);
6357		mutex_enter(&spa_namespace_lock);
6358		spa_close(spa, FTAG);
6359	}
6360	mutex_exit(&spa_namespace_lock);
6361}
6362
6363/*
6364 * ==========================================================================
6365 * Miscellaneous routines
6366 * ==========================================================================
6367 */
6368
6369/*
6370 * Remove all pools in the system.
6371 */
6372void
6373spa_evict_all(void)
6374{
6375	spa_t *spa;
6376
6377	/*
6378	 * Remove all cached state.  All pools should be closed now,
6379	 * so every spa in the AVL tree should be unreferenced.
6380	 */
6381	mutex_enter(&spa_namespace_lock);
6382	while ((spa = spa_next(NULL)) != NULL) {
6383		/*
6384		 * Stop async tasks.  The async thread may need to detach
6385		 * a device that's been replaced, which requires grabbing
6386		 * spa_namespace_lock, so we must drop it here.
6387		 */
6388		spa_open_ref(spa, FTAG);
6389		mutex_exit(&spa_namespace_lock);
6390		spa_async_suspend(spa);
6391		mutex_enter(&spa_namespace_lock);
6392		spa_close(spa, FTAG);
6393
6394		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6395			spa_unload(spa);
6396			spa_deactivate(spa);
6397		}
6398		spa_remove(spa);
6399	}
6400	mutex_exit(&spa_namespace_lock);
6401}
6402
6403vdev_t *
6404spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6405{
6406	vdev_t *vd;
6407	int i;
6408
6409	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6410		return (vd);
6411
6412	if (aux) {
6413		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6414			vd = spa->spa_l2cache.sav_vdevs[i];
6415			if (vd->vdev_guid == guid)
6416				return (vd);
6417		}
6418
6419		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6420			vd = spa->spa_spares.sav_vdevs[i];
6421			if (vd->vdev_guid == guid)
6422				return (vd);
6423		}
6424	}
6425
6426	return (NULL);
6427}
6428
6429void
6430spa_upgrade(spa_t *spa, uint64_t version)
6431{
6432	ASSERT(spa_writeable(spa));
6433
6434	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6435
6436	/*
6437	 * This should only be called for a non-faulted pool, and since a
6438	 * future version would result in an unopenable pool, this shouldn't be
6439	 * possible.
6440	 */
6441	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
6442	ASSERT(version >= spa->spa_uberblock.ub_version);
6443
6444	spa->spa_uberblock.ub_version = version;
6445	vdev_config_dirty(spa->spa_root_vdev);
6446
6447	spa_config_exit(spa, SCL_ALL, FTAG);
6448
6449	txg_wait_synced(spa_get_dsl(spa), 0);
6450}
6451
6452boolean_t
6453spa_has_spare(spa_t *spa, uint64_t guid)
6454{
6455	int i;
6456	uint64_t spareguid;
6457	spa_aux_vdev_t *sav = &spa->spa_spares;
6458
6459	for (i = 0; i < sav->sav_count; i++)
6460		if (sav->sav_vdevs[i]->vdev_guid == guid)
6461			return (B_TRUE);
6462
6463	for (i = 0; i < sav->sav_npending; i++) {
6464		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6465		    &spareguid) == 0 && spareguid == guid)
6466			return (B_TRUE);
6467	}
6468
6469	return (B_FALSE);
6470}
6471
6472/*
6473 * Check if a pool has an active shared spare device.
6474 * Note: reference count of an active spare is 2, as a spare and as a replace
6475 */
6476static boolean_t
6477spa_has_active_shared_spare(spa_t *spa)
6478{
6479	int i, refcnt;
6480	uint64_t pool;
6481	spa_aux_vdev_t *sav = &spa->spa_spares;
6482
6483	for (i = 0; i < sav->sav_count; i++) {
6484		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6485		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6486		    refcnt > 2)
6487			return (B_TRUE);
6488	}
6489
6490	return (B_FALSE);
6491}
6492
6493/*
6494 * Post a sysevent corresponding to the given event.  The 'name' must be one of
6495 * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6496 * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6497 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6498 * or zdb as real changes.
6499 */
6500void
6501spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6502{
6503#ifdef _KERNEL
6504	sysevent_t		*ev;
6505	sysevent_attr_list_t	*attr = NULL;
6506	sysevent_value_t	value;
6507	sysevent_id_t		eid;
6508
6509	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6510	    SE_SLEEP);
6511
6512	value.value_type = SE_DATA_TYPE_STRING;
6513	value.value.sv_string = spa_name(spa);
6514	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6515		goto done;
6516
6517	value.value_type = SE_DATA_TYPE_UINT64;
6518	value.value.sv_uint64 = spa_guid(spa);
6519	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6520		goto done;
6521
6522	if (vd) {
6523		value.value_type = SE_DATA_TYPE_UINT64;
6524		value.value.sv_uint64 = vd->vdev_guid;
6525		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6526		    SE_SLEEP) != 0)
6527			goto done;
6528
6529		if (vd->vdev_path) {
6530			value.value_type = SE_DATA_TYPE_STRING;
6531			value.value.sv_string = vd->vdev_path;
6532			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6533			    &value, SE_SLEEP) != 0)
6534				goto done;
6535		}
6536	}
6537
6538	if (sysevent_attach_attributes(ev, attr) != 0)
6539		goto done;
6540	attr = NULL;
6541
6542	(void) log_sysevent(ev, SE_SLEEP, &eid);
6543
6544done:
6545	if (attr)
6546		sysevent_free_attr(attr);
6547	sysevent_free(ev);
6548#endif
6549}
6550